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ABSTRACT OF THE DISSERTATION

A Computational Study on the Thermodynamics and Kinetic Evolution of W-Re Alloy

under Irradiation

by

Chen-Hsi Huang

Doctor of Philosophy in Materials Science and Engineering

University of California, Los Angeles, 2017

Professor Jaime Marian, Chair

Nuclear fusion energy is a promising future energy source. However, there are still many

challenges that are under studying. One big difficulty comes from material engineering: the

requirement to develop a material with superior properties including high hardness, high

melting temperature, high strength, high resistance to corrosion, creep, radiation, and low

He retention. Among all the choices of materials, tungsten is the prime candidate for plasma-

facing material in magnetic fusion energy devices due to its high strength and excellent high

temperature properties. However, under irradiation, the hardness of tungsten strongly in-

creases and the toughness is largely reduced, which is called irradiation hardening. The

hardening is caused by the formation of Re precipitates, which is induced by radiation. In

this work, we studied the micro-structural evolution of W and W-Re alloy under irradiation;

For this purpose, we applied a bottom-up approach. We started our research on development

of an atomic model. Specifically, we extended an Ising model for binary system to including

interstitial. The model was verified against several published works. We then studied alloy

evolution of W-Re system using various Monte Carlo simulation techniques. The thermody-

namics as well as kinetic evolution of W-Re alloy were studied. Finally, we moved onto the

continuum scale and study the cluster distribution and irradiation hardening using stochastic

dynamics simulations. The cluster dynamics in three creator environments: DEMO, HFIR,

and JOYO were simulated and the results were compared with experimental data.

ii



The dissertation of Chen-Hsi Huang is approved.

Jenn-Ming Yang

Nasr M. Ghoniem

Mathieu Bauchy

Jaime Marian, Committee Chair

University of California, Los Angeles

2017

iii



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A generalized Ising model and its use in kinetic Monte Carlo simulations 4

2.1 Theory and Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Cluster expansion Hamiltonians for binary alloys . . . . . . . . . . . 5

2.1.2 Generalization of the ABV Ising Hamiltonian to systems with inter-

stitial atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Kinetic Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . 16

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 AV system: Nanovoid formation in pure Al . . . . . . . . . . . . . . . 24

2.2.2 ABV system: Precipitation of Fe-Cu alloys . . . . . . . . . . . . . . . 24

2.2.3 ABVI system: Solute segregation at sinks . . . . . . . . . . . . . . . 27

2.2.4 ABVI system: Radiation-induced segregation at surfaces . . . . . . . 31

2.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Mechanism of Re precipitation in irradiated W-Re alloys from Monte Carlo

simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Theory and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Semi-Grand Canonical Monte Carlo for AB systems . . . . . . . . . . 40

3.1.3 Metropolis Monte Carlo calculations of ABV system configurations . 41

3.1.4 Kinetic Monte Carlo simulations of ABVI systems . . . . . . . . . . . 42

3.1.5 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



3.2.1 Structural phase diagrams . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Kinetic evolution of irradiated W-Re alloys . . . . . . . . . . . . . . . 61

3.3 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.1 Mechanism of nucleation and growth . . . . . . . . . . . . . . . . . . 71

3.3.2 Brief discussion on the validity of our results . . . . . . . . . . . . . . 73

3.3.3 Implications of our study . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.4 Sensitivity of results to model uncertainties . . . . . . . . . . . . . . 76

4 Stochastic cluster dynamics simulation study on W-Re alloy and its strength

77

4.1 Theory and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1.1 Stochastic cluster dynamics method . . . . . . . . . . . . . . . . . . . 77

4.1.2 Method parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Cluster size distribution and density . . . . . . . . . . . . . . . . . . 85

4.2.2 Irradiation hardening due to formation of clusters . . . . . . . . . . . 85

A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.1 Details in diffusion coefficient calculations . . . . . . . . . . . . . . . . . . . 92

A.2 Size dependence of physical time in kMC simulations . . . . . . . . . . . . . 92

A.3 Cluster size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 Confirmation of SRO preference of vacancies . . . . . . . . . . . . . . . . . . 95

A.5 KMC simulations with sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



List of Figures

2.1 Primitive cells for (a) FCC and (b) BCC lattices showing all eight vertices as

red spheres. The vectors ~a1, ~a2, and ~a3 are primitive basis of crystal, with a0

the lattice parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The three different models of activation energy . . . . . . . . . . . . . . . . . 19

2.3 Number densities of clusters with different sizes as a function of time. The

results consistent with Reina et al. work [VBP08] . . . . . . . . . . . . . . . 25

2.4 Initial (a), t = 0, and final (b), t = 28368 s alloy configurations. The red dots

represent solute atoms (B atoms). Solvent atoms and the vacancy are omitted

for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 The cluster mean radius of the ABV Fe-Cu system. The red line represents

the results in this work; the black filled squares are the data from Vincent et

al. [VBP08] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Spatial solute concentration profiles at different doses for the undersatured

alloy for the (a) solute enrichment and (b) solute depletion cases at T = 800

K. The supersatured case for (c) solute enrichment and (d) solute depletion

at T = 500 K are also shown. The nominal solute concentration of the alloy

is CB = 0.05 and the dose rate is 10−6 dpa·s−1. . . . . . . . . . . . . . . . . . 30

2.7 Snapshots of ABVI-1 system (undersaturated, enrichment) at (a) 2.56× 10−3

(b) 2.01 × 10−2 and (c) 2.01 dpa. For the ABVI-4 case (supersaturated,

depletion), configurations are shown at (d) 8.78×10−4 (e) 2.63×10−2 and (f)

0.258 dpa. Only solute atoms are shown. . . . . . . . . . . . . . . . . . . . . 31

2.8 Solute concentration profile and associated error bars at different doses for

the Au-10% at. Cu alloy at T= 650 K . The dose rate is 1.0 dpa·s−1. . . . . 36

2.9 Evolution of the degree of segregation at different temperatures. The total

solute concentration is 10% at. The dose rate is 1.0 dpa·s−1. . . . . . . . . . 37

vi



2.10 Snapshots of surface roughness at (a) t = 0, and (b) t = 0.02 s for the Au-10.0

at. Cu system alloy for a computational box of 660 × 32 × 32 primitive cells

at 500 K. Red dots represent solvent (A) atoms, while solute atoms (B) are

represented as green dots. The dose rate is 1.0 dpa·s−1. . . . . . . . . . . . . 38

3.1 Enthalpy of mixing as a function of solute concentration from ref. [GME16]

and 3rd-degree polynomial fit. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Configurations of V-Re clusters used to extract bond energy coefficients εA-V

and εB-V. Blue spheres represent vacancies, red spheres represents Re atoms.

All other lattice sites are occupied by A atoms, which are omitted for clarity.

Green spheres indicate the various equivalent sites for atoms to exchange

positions with the vacancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Solute composition X as a function of chemical potential ∆µ at different

temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Short range order parameter η as a function of global solute composition X at

different temperatures. The dashed line indicate the SRO interval caused by

normal concentration fluctuations during the generation of atomistic samples. 57

3.5 Structural phase diagram showing regions of changing SRO. The dashed lines

are the limits of applicability of the rigid bcc lattice model. The system dis-

plays slightly negative SRO throughout the entire temperature-concentration

space, indicating a preference to be in a solid solution state. . . . . . . . . . 58

3.6 Structural phase diagrams for four different vacancy concentrations. The dia-

grams clearly show the emergence of regions of solute segregation, character-

ized by positive SRO and a shifting of the transition phase boundary, η = 0,

towards the right (higher concentrations). . . . . . . . . . . . . . . . . . . . 59

vii



3.7 Equilibrated configurations for W-Re alloys containing vacancy and mixed-

interstitial at 600 K with (a) W-1.8at%Re alloy, 0.5 at% vacancy concentra-

tion and (b) W-1.4at%Re alloy, 0.1 at% mixed-interstitials, respectively. Red

spheres represent Re atoms, colored blue or green ones represent the defect in

each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Structural phase diagram for 0.1 at.% mixed-dumbbell concentration. The

diagram shows the emergence of regions of solute segregation, characterized

by η > 0, up to X = 0.1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Diffusivities of vacancies and solute atoms as a function of temperature and

alloy concentration. The solid lines correspond to the Arrhenius fits shown in

Table 3.5, while the dashed line corresponds to eq. (3.29). . . . . . . . . . . . 64

3.10 Phenomenological transport coefficients for solute-solute and vacancy-solute

interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 Precipitate growth with time at 1800 K and 10−3 dpa·s−1 in a W-2.0% at. Re

alloy. The dashed line represents perfect spherical growth (cf. A.2). A surface

reconstruction rendition of one precipitate at various times is provided as inset. 68

3.12 Radial concentration profile as a function of time for the precipitates formed

in the kMC simulations. The experimental results are taken from the work

by Xu et al. [XAB17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.13 Evolution of the differential SRO during the nucleation and growth in the

kMC simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.14 Spatial distribution of recombination events for several stages of precipitate

evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Recoil cumulative distribution function (CPDF) in W for DEMO, HFIR, and

JOYO reactors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 The dissociation energy of a Re atom from a pure Re cluster as a function of

NRe in the cluster. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

viii



4.3 The dissociation energy of (a) Re atom and (b) vacancy from a V-Re cluster

as a function of ratio of NRe/NV and NV , respectively. . . . . . . . . . . . . 84

4.4 The cluster size distributions of SIA loops, voids, and Re precipitates for

DEMO irradiations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 The cluster size distributions of SIA loops, voids, and Re precipitates for HFIR

irradiations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 The cluster size distributions of SIA loops, voids, and Re precipitates for

JOYO irradiations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Accumulation of all SIA loops, voids, and Re precipitates clusters as a function

of dose at different temperatures for DEMO, HFIR, and JOYO irradiations. 88

4.8 Accumulation of visible SIA loops, voids, and Re precipitates as a function of

dose at different temperatures for DEMO irradiations. . . . . . . . . . . . . . 89

4.9 Accumulation of visible SIA loops, voids, and Re precipitates as a function of

dose at different temperatures for HFIR irradiations. . . . . . . . . . . . . . 89

4.10 Accumulation of visible (>1.0 nm) SIA loops, voids, and Re precipitates as a

function of dose at different temperatures for JOYO irradiations. . . . . . . . 89

4.11 Radiation-induced hardening contributions from different clusters calculated

using Eq. (4.10) for (a) HFIR, JOYO and (b) DEMO reactors. For HFIR

reactor, there are visible clusters only at temperature of 673 K and hardening

at other temperatures is omitted. . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1 Mean square displacements of solute atoms 〈r2〉 as a function of time at 900

K for different solute concentrations. . . . . . . . . . . . . . . . . . . . . . . 93

A.2 The histogram plot of solute cluster distribution at 0s (beginning), 15s (grow-

ing), and 50s (end). The KMC simulations are performed at 2.0% solute

concentration at 2000 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ix



A.3 SRO evolution with initial configurations of full precipitation and random solid

solution. The KMC simulations are performed at 2.0% solute concentration

at 1800 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.4 Solute concentration profile along x-dimension for simulations in (a) plane

sink and (a) surface sink conditions. The KMC simulations were performed

at 2.0% solute concentration at 1500 K. . . . . . . . . . . . . . . . . . . . . . 98

x



List of Tables

2.1 Event reactions considered in this work. V: vacancy, A: matrix atom, B: solute

atom, AA: self interstitial, AB: mixed interstitial, BB: pure solute interstitial,

v: vacuum atom, As: surface matrix atom, Bs: surface solute atom. . . . . . 23

2.2 Bond energies for the Fe-Cu ABV system. A represents Fe atoms, B Cu atoms,

and V is the vacancy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Parameters for the ABVI system (after Soisson [Soi06]). ‘A’ and ‘B’ denote

solvent and solute atoms, respectively. ‘V’ represents vacancies and ‘I’ all

types of interstitial defects. All energies given in eV. Attempt frequencies

given in Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 The parameters for the Au-Cu ABVI system. ‘A’ are Cu atoms, ‘B’ are Au

atoms. X, Y= A, B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Energetics of W-Re systems calculated with DFT. . . . . . . . . . . . . . . . 47

3.2 Bond energy coefficients with the equation used for their calculation, and the

literature source. x is the local solute concentration . . . . . . . . . . . . . . 52

3.3 Saddle-point bond energy coefficients for vacancy jumps (in eV). . . . . . . . 54

3.4 Self-interstitial migration parameters. The jump distances for SIA, mixed-

dumbbell migrations are δ=a0
√

3/2, a0, respectively. . . . . . . . . . . . . . 54

3.5 Diffusion parameters for vacancy and solute diffusion as a function of solute

concentration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Re transmutation rates for DEMO, HFIR, and JOYO. . . . . . . . . . . . . 81

4.2 Diffusion coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 The defect cluster barrier strength α for different types and diameter of clus-

ters. The values were obtained from the work of Hu et al. [HKF16]. . . . . . 90

xi



Acknowledgments

It is a long journey of study for me to reach this point. Look back for these 25 years,

there were happiness, struggles, cheers, tears, and a lot more. It is glad that I could persist

on this road when facing all the obstacles, and it is also very happy to see that for every

difficulty there was a solution at the end.

The first ”thank you” goes to myself. I am really proud of you to finish this tough task.

I’ll then thank my parents for all the supports. I love you, mom and dad. I would also like

to give a big thank to my adviser, Jaime. You are literally the best adviser in the world. I

am really grateful that I could meet you in my Ph.D. study.

I would like to thank my girlfriend, Yawen, who supported me in the second half of my

Ph.D. both in life and in spirit, and motivated me in working hard. I am also appreciate

with all the discussions and supports from ”Rose Friday night group”, and all other friends,

who make my life better.

xii



Vita

2003 High School, The Affiliated Senior High School of National Taiwan Normal

University.

2007 B.S. (Materials, Engineering and System Science), National Tsing-Hua

University.

2010 M.S. (Materials, Engineering and System Science), National Tsing-Hua

University. Thesis: ”Molecular Dynamics Simulation Study: the Phase

Transition of Lipid Membranes in Solution and the Stability and Fracture

Mechanism of a Suspended Bilayer Lipid Membrane”.

Fall 2015 Teaching Assistant, ”Fracture of Engineering Materials” Online Master

Program in Engineering, UCLA.

Fall 2016 Teaching Assistant, ”System Engineering” Online Master Program in En-

gineering, UCLA.

2014–present Graduate Student Researcher, Materials Science Department, UCLA.

Publications

Chen-Hsi Huang, Pai-Yi Hsiao, Fan-Gang Tseng, Shih-Kang Fan, Chien-Chung Fu, and

Rong-Long Pan, ”Pore-Spanning Lipid Membrane under Indentation by a Probe Tip: A

Molecular Dynamics Simulation Study”, Langmuir 27 (19), 11930 (2011).

Chen-Hsi Huang and Pai-Yi Hsiao, ”Geometric Effect of Nanopores on the Behavior and

Stability of pore-spanning Lipid Membranes under Indentation”, Journal of Computational

and Theoretical Nanoscience 12, 3999 (2015).

xiii



Chen-Hsi Huang and Jaime Marian, ”A Generalized Ising Model for Studying Alloy Evolu-

tion under Irradiation and its Use in Kinetic Monte Carlo Simulations”, Journal of Physics:

Condensed Matter 28, 425201 (2016).

Chen-Hsi Huang, Leili Gharaee, Yue Zhao, Paul Erhart, Jaime Marian, ”Mechanism of Re

Precipitation in Irradiated W-Re Alloys from Kinetic Monte Carlo Simulations”, Physical

Review B under review.

xiv



CHAPTER 1

Introduction

Tungsten is the prime candidate material in magnetic fusion energy devices due to its high

strength and excellent high temperature properties [ZG00,RDV13,FN08,BD09]. Upon fast

neutron irradiation in the 600-1000◦C temperature range, W transmutes into Re by the

way of beta decay reactions at a rate that depends on the neutron spectrum and the po-

sition in the reactor. For the DEMO (demonstration fusion power plant) reactor concept,

calculations show that the transmutation rate is 2000 and 7000 atomic parts per million

(appm) per displacements per atom (dpa) in the divertor and the equatorial plane of the

first wall, respectively (where damage, in each case, accumulates at rates of 3.4 and 4.4

dpa/year) [GS11, GDZ12]. The irradiated microstructure initially evolves by accumulating

a high density of prismatic dislocation loops and vacancy clusters, approximately up to 0.15

dpa [HTH06, THH09, HTN11, HKF16]. Subsequently, a void lattice emerges and fully de-

velops at fluences of around 1 dpa. After a critical dose that ranges between 5 dpa for fast

(>1 MeV) neutron irradiation [HTN11] and 2.2 dpa in modified target rabbits in the HFIR

[HKK15, HKF16], W and W-Re alloys develop a high density of nanometric precipitates

with acicular shape at Re concentrations well below the solubility limit [HTN11, HKF16].

The structure of these precipitates is consistent with σ (W7Re6) and χ (WRe3) intermetallic

phases, which under equilibrium conditions only occur at temperatures and Re concentra-

tions substantially higher than those found in neutron irradiation studies [Cot04]. A principal

signature of the formation of these intermetallic structures in body-centered cubic (bcc) W

is the sharp increase in hardness and embrittlement [THH09,HTN11,HKF16]. Qualitatively
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similar observations have been recently made in W-2Re and W-1Re-1Os alloys subjected to

heavy ion irradiation [XBA15,XAB17], clearly establishing a link between primary damage

production and Re precipitation.

Precipitation of nonequlibrium phases in irradiated materials is commonplace. The stan-

dard theory of irradiation damage includes radiation enhanced diffusion (RED) and radiation

induced precipitation (RIP) as mechanisms that can drive the system out of equilibrium due

to the onset of point defect cluster fluxes towards defect sinks [Was07,DD58,CM79]. Within

this picture, Re precipitation in W or W-Re alloys under irradiation would then, in principle,

be unsurprising were it not for the fact that Re clustering is seen to occur at concentrations

still below the solubility limit even after RED has taken place. In spite of this, recent work

using energy models based on the cluster expansion formalism for the W-Re system, and

fitted to density functional theory (DFT) calculations, have revealed a direct relationship be-

tween excess vacancy concentrations and the formation of Re solute-rich clusters [WNK16].

These calculations are substantiated by recent neutron irradiation experiments of pure W at

900◦C up to 1.6 dpa in the HFR in Petten [KJR16]. Post-irradiation examination of the irra-

diated specimens reveals the formation of a fine distribution of voids with average 5 nm size

surrounded by Re-rich clouds. However, the relative concentration of Re around the voids

is still on the order of 12-18% (from a nominal overall concentration of 1.4% from transmu-

tation), well below the precipitation limit of Re in W at 900◦C. However, in the ion beam

irradiation experiments of W-2Re alloys by Xu et al. at 300 and 500◦C, Re-rich clusters with

bcc structure are seen to form with concentrations between 12 and 30% Re with no indication

of vacancies forming part of the clusters [XBA15,XAB17]. Another piece of evidence against

a strong association between vacancies and Re atoms comes from irradiation tests of W-Re

alloys performed at EBR-II in the 1970s and 80s [MNM74,SM74,WWB83,HS84,HS85]. In

these studies, the presence of Re was seen to suppress swelling, which would seem to suggest

a decoupling between vacancy clusters and Re atoms. Clearly, equilibrium thermodynamics

involving vacancies alone may not suffice to explain the precipitation tendencies in irradiated

W-Re alloys.
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All this is suggestive of alternative solute transport mechanisms that may be unique to

W-Re systems. Indeed, several recent studies using electronic structure calculations have

independently reported a peculiar association between self-interstitial atoms (SIA) and Re

solutes that results in very high solute transport efficacy [SYH14, SYH15, GME16]. This

mechanism consists of a series of mixed dumbbell rotations and translations such that the

mixed nature of the dumbbell is preserved and solutes can be transported over long distances

without the need for vacancy exchanges. Furthermore, this mechanism effectively transforms

one-dimensional SIA diffusion into a 3D mixed-dumbbell transport process at activation

energies considerably lower than that of vacancy diffusion.

The final purpose of this work is to study the mechanical behavior of W and W-Re

alloy in continuum scale such as cluster distributions, irradiation hardening, etc. To achieve

this goal, we applied an bottom-up approach from atomic scale, mesoscale to micro-scale.

We began our research with atomic model development. Specifically, we extended an pre-

existing Ising model to include interstitials. The work is discussed in chapter (2.3). After

that, we applied the model to Metropolis and kinetic Monte Carlo simulations to study

the thermodynamics and alloy evolution of W-Re alloy under irradiation. This is the most

important part of the work and is discussed in chapter (3.3.4). Finally, we moved onto the

continuum scale and studied cluster distribution and irradiation hardening using stochastic

cluster dynamics simulations, which can be seen in chapter (4.2.2).
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CHAPTER 2

A generalized Ising model and its use in kinetic Monte

Carlo simulations

In previous study, researchers have applied Ising model to the cluster expansion of the

Hamiltonian of a binary alloy system (details will be discussed in section (2.1.1)). It was

termed ABV Ising model, where A represents matrix atoms, B is solute atoms, and V is

the vacancies. The models are of interest in irradiated materials, to study non-equilibrium

phenomena such as radiation enhanced diffusion (RED) and radiation-induced precipita-

tion (RIP), and indeed have been applied on numerous times in irradiation damage scenar-

ios [SBM96,EB01,ENA03,VBP08,SBA13]. However, by their very nature, ABV simulations

obviate the existence of self-interstitial atoms (SIA), which are companion to vacancies dur-

ing defect production in the primary damage phase [Wol12]. Neglecting SIA (as well as

mixed interstitial) involvement in solute transport can often be justified when interstitial

diffusion is orders of magnitude faster than that of vacancies, and –as importantly– oc-

curs in a (quasi) one-dimensional manner. This results in a point defect imbalance when

SIAs reach defect sinks on time scales that are much shorter than those associated with va-

cancy motion, leaving vacancies as the sole facilitators of atomic transport [DDJ95,SBM96].

However, in certain cases interstitials play an important role in mediating solute diffusion,

and their effect can no longer be dismissed when formulating global energy models for so-

lute transport. A case in point is the recent discovery of solute drag by so-called ‘bridge’

interstitial configurations in W-Re/Os alloys [SYH15], although several other examples ex-

4



ist [WFM05,GE15,SNR15a]. In such cases, the ABV Hamiltonian is insufficient to capture

the contribution of SIAs to microstructural evolution. This has prompted the development

of cluster expansion Hamiltonians that include interstitials as well as vacancies as defect

species [Soi05, Soi06, KAB07, VBD08, SBC10, NBD12]. To date, however, an extension of

such Hamiltonians to the Ising framework has not been attempted. That is the central goal

of the work described in this chapter.

Here, a generalization of the ABV Ising model to ABVI systems of binary alloys subjected

to irradiation is proposed. The chapter is organized as follows: the methodology will be

described in detail in Section 2.1, providing a recipe to perform the ABV→ABVI extension.

Subsequently, in Section 2.2 I will provide three different verification exercises in increasing

order of complexity using published works. A brief discussion and the conclusions will be

given in Section 2.3.

2.1 Theory and Numerical Methods

2.1.1 Cluster expansion Hamiltonians for binary alloys

The most common approach to study the energetics of substitutional alloy systems is the

cluster expansion method, in which the energies of the different crystal configurations are

defined by specifying the occupation of each of the N sites of a fixed crystal lattice by a num-

ber of distinct chemical species (which may include solvent and solute atoms, defects, etc.).

This problem can quickly become intractable, given the combinatorial nature of arranging N

distinguishable atomic sites, and a number of approaches have been proposed to reduce the

dimensional complexity of the problem [LFF92,San93,BZ04]. A common simplification is to

assume that the Hamiltonian H of the system can be calculated as the sum of all possible
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pair interactions, defined by their bond energies:

H =
∑
α,β

nα-βεα-β (2.1)

Where α and β refer to a pair of lattice sites, n is the total number of different bond types,

and ε is the energy coefficients.

Further, a binary system containing two types of atoms (matrix) A and (solute) B, as

well as vacancy defects is termed the ‘ABV’ system, for which the pairwise cluster expansion

Hamiltonian (2.1) can be expressed as an Ising Hamiltonian of the following form [FVP93,

FPW00,WF03,WFG04]:

H = H0 +K
nn∑
〈i,j〉

σ2
i σ

2
j + U

nn∑
〈i,j〉

(
σ2
i σj + σ2

jσi
)

+ J
nn∑
〈i,j〉

σiσj (2.2)

where 〈i, j〉 refers to a pair of lattice sites i and j, and σ are the occupancy variables:

σ =


1 A (matrix atom)

0 V (vacancy)

−1 B (solute atom)

(2.3)

H0 in eq. (2.2) is a constant independent of the configuration of lattice sites. The three

coefficients K, U , and J are:

K = 1/4 (εA-A + εB-B + 2εA-B) + (εV-V − εA-V − εB-V)

U = 1/4 (εA-A − εB-B)− 1/2 (εA-V − εB-V)

J = 1/4 (εA-A + εB-B − 2εA-B)

Together with the activation energy parameters, which will described in Section (2.1.3.2),

these constants determine the kinetic behavior of the ABV system. The second term in the

r.h.s. of eq. (2.2) gives the relative importance of vacancies in the system. A large value of

this term implies low vacancy concentrations, which in the limit of one single vacancy in the

crystal converges to a constant value of K ′z (N/2− 1), where K ′ = 1/4 (εA-A + εB-B + 2εA-B)−

(εA-V + εB-V), and z is the coordination number [WFG04]. The asymmetry factor U de-

termines whether there is more affinity between A atoms and vacancies or B atoms and
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vacancies. U > 0 indicates a preference of A-V pairs. J determines the thermodynamics

of the system, with J > 0 leading to an ordered solid solution, J < 0 to a phase-separated

system, and J = 0 resulting in an ideal solid solution. This Hamiltonian can be trivially

extended from 1st nearest neighbors (nn) to higher nn by summing over all contributions:

H = H1st-nn +H2nd-nn + · · · (2.4)

2.1.2 Generalization of the ABV Ising Hamiltonian to systems with interstitial

atoms

Next, we expand eq. (2.2) to a system containing A and B atoms, vacancies, and interstitial

atoms, which we term ‘ABVI’. Interstitial atoms can be one of three distinct types, but in

all cases two (otherwise substitutional) atoms share a single lattice position: AA denotes

a self-interstitial atom (SIA), AB represents a mixed interstitial, and BB is a pure solute

interstitial. Adding these extra species to the cluster expansion Hamiltonian brings the total

number of species to six, which results in the following expression:

H =
nn∑
〈i,j〉

∑
α,β

εα-βλ
α
i λ

β
j (2.5)

where α, β = A, B, V, AA,AB,BB and the occupancy variable λαi = 1 if lattice site i is

occupied by type α and zero otherwise. The total number of independent terms in eq. (2.5)

is 36. However, assuming that a pair vacancy-interstitial is unstable up to several nearest

neighbor distances, we can eliminate all the εV-Iλ
VλI (where I= AA, AB, BB) terms in the

equation, thus reducing the total number of terms to 30.

In the spirit of the ABV Ising model, we assign spin variables of different types to each
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of the species of the Hamiltonian:

σ =



2 AA (self-interstitial atom)

1 A (matrix atom)

0 V (vacancy) and AB (mixed interstitial)

−1 B (solute atom)

−2 BB (solute-solute interstitial)

(2.6)

Although the set of spin variables for the ABVI model is not unique, the one chosen above

uses the lowest-order integer possible and preserves the magnetization of the Ising model,

i.e. the excess amount of solvent after the solute has been subtracted out. The convenience of

choosing a zero spin variable for both the V and AB species brings about some complications

in the Hamiltonian, however, which will be dealt with in Section 2.1.2.1.

From their definition in eq. (2.5), the six independent λα variables can be written in

terms of the spin variables furnished in eq. (2.6):

λAA =
1

24

(
σ4 + 2σ3 − σ2 − 2σ

)
λA =

1

6

(
−σ4 − σ3 + 4σ2 + 4σ

)
λV = λAB =

1

4

(
σ4 − 5σ2 + 4

)
(2.7)

λB =
1

6

(
−σ4 + σ3 + 4σ2 − 4σ

)
λBB =

1

24

(
σ4 − 2σ3 − σ2 + 2σ

)
Inserting the above expressions into eq. (2.5) and operating, the cluster expansion Hamilto-

nian is transformed into a generalized Ising system with integer spins:

H =
∑
〈i,j〉

[
C44σ

4
i σ

4
j + C43

(
σ4
i σ

3
j + σ3

i σ
4
j

)
+ C42

(
σ4
i σ

2
j + σ2

i σ
4
j

)
+

+C41

(
σ4
i σj + σiσ

4
j

)
+ C33σ

3
i σ

3
j + C32

(
σ3
i σ

2
j + σ2

i σ
3
j

)
+

+C31

(
σ3
i σj + σiσ

3
j

)
+ C22σ

2
i σ

2
j + C21

(
σ2
i σj + σiσ

2
j

)
+

+C11σiσj + C40

(
σ4
i + σ4

j

)
+ C30

(
σ3
i + σ3

j

)
+

+C20

(
σ2
i + σ2

j

)
+ C10 (σi + σj) + C00

]
(2.8)
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where Cmn are the coefficients of the cluster expansion.

2.1.2.1 Corrections to the Hamiltonian to separate V and AB contributions.

By construction, both vacancies and AB interstitials share σ = 0 in eq. (2.8), which in

turn makes λV = λAB = 1 leading to miscounting of both contributions. Corrections must

therefore be adopted to recover the correct energy from the Hamiltonian. These corrections

can simply be subtracted from the uncorrected Hamiltonian in eq. (2.8) as:

Hcorrected = Huncorrected − [correction terms] (2.9)

The correction terms can be readily identified on inspection of eq. (2.1):

[correction terms] = εV-VnAB-AB + εAB-ABnV-V + εA-VnA-AB +

+εV-BnAB-B + εA-ABnA-V + εAB-BnV-B (2.10)

where nα-β is numbers of bonds. Tracking the number of bonds in simulations takes extra

computational effort, and also implies deviating from a purely Ising treatment. It is thus

desirable to express nAB-AB, nV-V, nA-AB, nAB-B, nA-V, and nV-B as summations of powers

of the spin variables, as in eq. (2.8). In this fashion, the correction terms do not add any

additional cost to the evaluation of the Hamiltonian but, instead, only alter the value of the

coefficients in eq. (2.8). First, however, we must obtain expressions for all nα-β in terms of

the spin variable σ.

After discounting the nV-I terms (with I=AA, AB, BB), there are 18 nα-β and therefore

18 independent equations are needed. 10 of them can be obtained from the summations of

σ-polynomials:

∑
σiσj = 4nAA-AA + 2nAA-A − 2nAA-B − 4nAA-BB + nA-A +

−nA-B − 2nA-BB + nB-B + 2nB-BB + 4nBB-BB (2.11)
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∑
σ2
i σj + σiσ

2
j = 16nAA-AA + 6nAA-A − 2nAA-B + 2nA-A + 2nA-BB +

−2nB-B − 6nB-BB − 16nBB-BB (2.12)

∑
σ2
i σ

2
j = 16nAA-AA + 4nAA-A + 4nAA-B + 16nAA-BB + nA-A +

+nA-B + 4nA-BB + nB-B + 4nB-BB + 16nBB-BB (2.13)

∑
σ3
i σj + σiσ

3
j = 32nAA-AA + 10nAA-A − 10nAA-B − 32nAA-BB +

+2nA-A − 2nA-B − 10nA-BB + 2nB-B + 10nB-BB +

+32nBB-BB (2.14)

∑
σ3
i σ

2
j + σ2

i σ
3
j = 64nAA-AA + 12nAA-A + 4nAA-B + 2nA-A − 4nA-BB +

−2nB-B − 12nB-BB − 64nBB-BB (2.15)

∑
σ3
i σ

3
j = 64nAA-AA + 8nAA-A − 8nAA-B − 64nAA-BB + nA-A − nA-B +

−8nA-BB + nB-B − 8nB-BB + 64nBB-BB (2.16)

∑
σ4
i σj + σiσ

4
j = 64nAA-AA + 18nAA-A − 14nAA-B + 2nA-A +

+14nA-BB − 2nB-B − 18nB-BB − 64nBB-BB (2.17)

∑
σ4
i σ

2
j + σ2

i σ
4
j = 128nAA-AA + 20nAA-A + 20nAA-B + 128nAA-BB +

+2nA-A + 2nA-B + 20nA-BB + 2nB-B + 20nB-BB +

+128nBB-BB (2.18)

∑
σ4
i σ

3
j + σ3

i σ
4
j = 256nAA-AA + 24nAA-A − 8nAA-B + 2nA-A +

+8nA-BB − 2nB-B − 24nB-BB − 256nBB-BB (2.19)

∑
σ4
i σ

4
j = 256nAA-AA + 16nAA-A + 16nAA-B + 256nAA-BB + nA-A +

+nA-B + 16nA-BB + nB-B + 16nB-BB + 256nBB-BB (2.20)
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However, the above equations do not contain any nα-β with α or β= V, AB. Six more

equations that do contain these terms can be obtained by counting the numbers of six

species Nα:

zNAA = 2nAA-AA + nAA-A + nAA-AB + nAA-B + nAA-BB (2.21)

zNA = nAA-A + 2nA-A + nA-V + nA-AB + nA-B + nA-BB (2.22)

zNV = nA-V + 2nV-V + nV-B (2.23)

zNAB = nAA-AB + nA-AB + 2nAB-AB + nAB-B + nAB-BB (2.24)

zNB = nAA-B + nA-B + nV-B + nAB-B + 2nB-B + nB-BB (2.25)

zNBB = nAA-BB + nA-BB + nAB-BB + nB-BB + 2nBB-BB (2.26)

where z is the coordination number. Combining eqs. (2.11) through (2.26), we have 16 equa-

tions with 18 unknowns. In order to solve the system, we express everything parametrically

in terms of two bond numbers, nAB-A and nAB-B
1, and solve for the rest of the nα-β. nAB-A

and nAB-B are then the only bond numbers that must be calculated on the fly in the kMC

simulations.

2.1.2.2 The corrected Ising Hamiltonian.

After solving for all nα-β, the corrected Hamiltonian can be obtained by substituting eq.

(2.10) into eq. (2.9). Except for an additional term C0, the final expression of the corrected

Hamiltonian is the same as the uncorrected one in eq. (2.8). However, the coefficients Cmn

are now ‘corrected’ to account for the AB/V conflict. Based on the physical characteristics

of each coefficient, each term in the Hamiltonian of the ABVI system can be grouped into

1This choice is justified both by the fact that neither A-AB nor AB-B bonds are very likely to appear in
the simulations, and because –as will pointed out below– AB interstitialcy jumps are the likeliest to change
the global concentration of species, which results in the need to update the non-configurational constants in
the ABVI Hamiltonian (cf. eq. (2.27)).
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three different configurational classes and one non-configurational group:

Hcorrected =
nn∑
〈i,j〉

[
C44σ

4
i σ

4
j + C42

(
σ4
i σ

2
j + σ2

i σ
4
j

)
+ C22σ

2
i σ

2
j

]
+ (Class 1)

+
nn∑
〈i,j〉

[
C43

(
σ4
i σ

3
j + σ3

i σ
4
j

)
+ C41

(
σ4
i σj + σiσ

4
j

)
+ C32

(
σ3
i σ

2
j + σ2

i σ
3
j

)
+

+C21

(
σ2
i σj + σiσ

2
j

) ]
+ (Class 2)

+
nn∑
〈i,j〉

[
C33σ

3
i σ

3
j + C31

(
σ3
i σj + σiσ

3
j

)
+ C11σiσj

]
+ (Class 3)

+
nn∑
〈i,j〉

[ C40

(
σ4
i + σ4

j

)
+ C30

(
σ3
i + σ3

j

)
+ C20

(
σ2
i + σ2

j

)
+

+C10 (σi + σj) + C00 ] + C0 (Non-configurational) (2.27)

where the coefficients Cmn are:

Class 1

C44 =
1

576

{
(εAA-AA − 8εAA-A − 8εAA-B + 2εAA-BB − 8εA-BB − 8εB-BB + εBB-BB) +

+ (12εAA-AB − 12εAB-AB + 12εAB-BB) + (−48εA-V + 48εV-V − 48εV-B) +

+ (16εA-A + 32εA-B + 16εB-B)
}

C42 =
1

576

{
(−εAA-AA + 20εAA-A + 20εAA-B − 2εAA-BB + 20εA-BB + 20εB-BB − εBB-BB) +

+ (−36εAA-AB + 36εAB-AB − 36εAB-BB) + (216εA-V − 216εV-V + 216εV-B) +

+ (−64εA-A − 128εA-B − 64εB-B)
}

C22 =
1

576

{
(εAA-AA − 32εAA-A − 32εAA-B + 2εAA-BB − 32εA-BB − 32εB-BB + εBB-BB) +

+ (60εAA-AB − 60εAB-AB + 60εAB-BB) + (−960εA-V + 960εV-V − 960εV-B) +

+ (256εA-A + 512εA-B + 256εB-B)
}
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Class 2

C43 =
1

288

{
(εAA-AA − 6εAA-A − 2εAA-B + 2εA-BB + 6εB-BB − εBB-BB) +

+ (6εAA-AB − 6εAB-BB) + (−12εA-V + 12εV-B) + (8εA-A − 8εB-B)
}

C41 =
1

288

{
(−εAA-AA + 12εAA-A − 4εAA-B + 4εA-BB − 12εB-BB + εBB-BB) +

+ (−6εAA-AB + 6εAB-BB) + (48εA-V − 48εV-B) + (−32εA-A + 32εB-B)
}

C32 =
1

288

{
(−εAA-AA + 18εAA-A + 14εAA-B − 14εA-BB − 18εB-BB + εBB-BB) +

+ (−30εAA-AB + 30εAB-BB) + (60εA-V − 60εV-B) + (−32εA-A + 32εB-B)
}

C21 =
1

288

{
(εAA-AA − 24εAA-A − 8εAA-B + 8εA-BB + 24εB-BB − εBB-BB) +

+ (30εAA-AB − 30εAB-BB) + (−240εA-V + 240εV-B) + (128εA-A − 128εB-B)
}

Class 3

C33 =
1

144

{
(εAA-AA − 4εAA-A + 4εAA-B − 2εAA-BB + 4εA-BB − 4εB-BB + εBB-BB) +

+ (4εA-A − 8εA-B + 4εB-B)
}

C31 =
1

144

{
(−εAA-AA + 10εAA-A − 10εAA-B + 2εAA-BB − 10εA-BB + 10εB-BB − εBB-BB) +

+ (−16εA-A + 32εA-B − 16εB-B)
}

C11 =
1

144

{
(εAA-AA − 16εAA-A + 16εAA-B − 2εAA-BB + 16εA-BB − 16εB-BB + εBB-BB) +

+ (64εA-A − 128εA-B + 64εB-B)
}
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Non-Configurational

C40 =
1

24

{
(εAA-AB + εAB-BB) + (−4εA-AB + 6εAB-AB − 4εAB-B) +

+ (−4εA-V + 6εV-V − 4εV-B)
}

C30 =
1

12

{
(εAA-AB − εAB-BB) + (−2εA-AB + 2εAB-B) + (−2εA-V + 2εV-B)

}
C20 =

1

24

{
(−εAA-AB − εAB-BB) + (16εA-AB − 30εAB-AB + 16εAB-B) +

+ (16εA-V − 30εV-V + 16εV-B)
}

C10 =
1

12

{
(−εAA-AB + εAB-BB) + (8εA-AB − 8εAB-B) + (8εA-V − 8εV-B)

}
C00 = (εAB-AB + εV-V)

C0 =
nA-AB

2
(−εAB-AB + 2εA-AB − 2εA-V + εV-V) +

+
nAB-B

2
(−εAB-AB + 2εAB-B − 2εV-B + εV-V) +

+
Z

2
[NA (εAB-AB − 2εA-AB) +NB (εAB-AB − 2εAB-B)] +

−Z
2

[NV εAB-AB +NAAεV-V −NABεV-V +NBBεV-V]

This way of grouping the Cmn is not unique. We have chosen the three classes above to

represent a given physical behavior along the lines of the coefficients K, U , J of the ABV

Ising model. Loosely speaking, the physical meanings of each of the three classes is as follows:

• Class 1 (even-even power terms) gives the relative importance of interactions between

point defects (vacancies and interstitials).

• Class 2 (even-odd power terms) gives the affinity between atoms and point defects.

• Class 3 (odd-odd power terms) determines the equilibrium phase diagram.

In the standard ABV model, defect (vacancy) hops do not change the global species

concentrations. That means that the non-configurational class of terms in the Hamiltonian

(2.27) does not change merely by vacancy jumps. However, the ABVI model now allows

for defect transitions that change the global balance of species 2. Specifically, there are two

2The most obvious one being a vacancy-interstitial recombination.
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types of transitions that affect the species concentrations when they occur. The first one

involves vacancy-interstitial recombinations:

AA+V → A + A

AB+V → A + B

BB+V → B + B

The second type is related to the interstitialcy mechanism, by which an interstitial atom

displaces an atom from an adjacent lattice position so that it becomes the interstitial in its

turn, able to displace another atom. This mechanism includes four reactions:

AA + B → A + AB

AB + A → B + AA

AB + B → A + BB

BB + A → B + AB

Except when one of the above reactions occurs, the incremental energy formulation used

to compute energy differences between the initial and final states allows us to discard the

non-configurational terms during calculations.

In order to truly represent a generalized Hamiltonian, the ABVI model Hamiltonian must

reduce to the AV and ABV models in their respective limits (AV: no solute, vacancies; ABV:

solute plus vacancies). Indeed, we have conducted verification tests of both particular cases

and we have found matching results. This is the subject of Sec. 2.2, where we have simu-

lated the time evolution of AB, ABV and ABVI systems using the generalized Hamiltonian

presented above. Our method of choice is kinetic Monte Carlo (kMC), which we describe in

detail in the following section.
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2.1.3 Kinetic Monte Carlo Simulation

In this section we discuss relevant details of the kMC simulation method in relation to our

extended ABVI model. All simulations are conducted on a rigid lattice generated from

trigonal (primitive) representations of face-centered cubic (FCC) and body-centered cubic

(BCC) crystals. The primitive cells employed for each crystal structure are provided in

Figure 2.1. The simulations are generally conducted in the grand canonical ensemble, to

allow for irradiation damage simulations when required [CS63]. All kinetic transitions are

assumed to be due to defect hops. In particular, we consider the vacancy and interstitialcy

mechanisms to enable atomic transport. After every transition, the configuration of the

system is updated and a new transition is considered.

~a 1
=
a 0

[1/
2,

1/2
, 0

]

~a
2 =

a
0 [ 1/2, 0, 1/2]

~a
3 =

a
0 [0, 1/

2, 1/
2]

(a) (b)

~a1 = a0 [ ¯1/2, 1/2, 1/2]

~a
2
=
a

0 [ 1/
2, 1̄/

2, 1/
2]

~a 3
=
a 0

[1/
2,

1/2
,1̄/

2]

Figure 2.1: Primitive cells for (a) FCC and (b) BCC lattices showing all eight vertices as

red spheres. The vectors ~a1, ~a2, and ~a3 are primitive basis of crystal, with a0 the lattice

parameter.
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2.1.3.1 Residence-time algorithm.

We use the residence-time algorithm (RTA) [YE66] to track the kinetic evolution of the sys-

tem through a series of thermally activated transitions. The transition rates Rij connecting

an initial state i to a final state j are calculated as:

rij = ν exp

(
−∆Eij
kBT

)
(2.28)

where ∆Eij > 0 is an activation energy that will be discussed below, ν is the attempt

frequency, and 1/kBT is the reciprocal temperature. With the system in configuration i, an

event is randomly chosen with a probability proportional to its rate, and the time advanced

per kMC step is on average δti =
(∑

j rij

)−1
. In addition to thermally activated transitions

such as those represented by eq. (2.28), we consider spontaneous events –for which, strictly

speaking, ∆Eij may be negative– such as recombination between vacancies and interstitials,

absorption at sinks, etc. These events occur instantaneously with δt = 0.

2.1.3.2 Activation energy models.

There are several models proposed to describe the activation energy, which are based on

different interpretations of the atomic migration process (see for e.g., [SBC10] for a recent

review). The first model is the so-called saddle-point energy model (also known as ‘cut-bond’

model in [VBP08]) [SBM96,BS02,SF07]. The activation energy is given by:

∆Eij = ESP
XY −

∑
n

εX-n −
∑
p 6=X

εY -p (2.29)

where Y refers to the defect (e.g. a vacancy) and X to the atom exchanging positions with

Y . The later two summations are the bonding energies between X, Y and the adjacent

neighbor sites n and p and represent the energy of the system at the initial state. These

summations can be computed using the ABVI formulas described in Section 2.1.1. The

saddle-point energy ESP
XY is generally taken to be a constant [SBM96], or is computed as a
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especial sum of bond energies of the jumping atom at the saddle point: ESP
XY =

∑
q ε

SP,Y
Xq ,

where the subindex q represents the local neighbors of the jumping atom [BS02,SF07].

The second model is the so-called kinetic Ising model [DMD07,RMO11] (or final-initial

system energy, as is referred to by Vincent et al. [VBP08]). In this model, the activation

energy is dependent on the energy difference of the system ∆Hij between the initial i and

final states j, as well as a migration energy Em, which is a constant determined by the type

of defect-atom exchange. Two different forms of activation energy are proposed within this

model. The first form is given by [RMO11]:

∆Eij =

{
Em + ∆Hij, if ∆Hij > 0

Em, if ∆Hij < 0
(2.30)

This form assumes that the energy barrier of transitions from higher to lower energy states

is the migration energy Em, and Em + ∆Hij otherwise. An alternative, which is used in this

work, is given by [VBP08,DMD07]:

∆Eij = Em +
∆Hij

2
(2.31)

In this case, the migration energy is considered to be the energy difference between the

saddle point and the average energy between states i and j, Em = ESP − (Hi +Hj)/2. This

definition of Em results in an expression for ∆Eij that does not depend of the final state

energy Hj. A schematic diagram showing the different activation energy models discussed

here is provided in Fig. 2.2. It can be shown that all the three activation energy models

satisfy the detailed balance condition, i.e.:

rij
rji

= exp

(
−∆Hij

kBT

)
(2.32)

The different characteristics of each of these models have been discussed in detail by Soisson

et al. [SBC10]. In the saddle-point energy model, the height of the energy barrier is not

dependent on the energy of the final state, which agrees with the theory of thermally-

activated processes. Also, the energy barrier dependence on configurations can be fitted
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directly from empirical potentials or ab initio calculations. Recently, a more realistic saddle-

point energy model has been proposed, where the migration energy depends on the local

solute concentration [MSF12, SSM16]. This model requires a larger parameter database,

with the consequent extra cost in atomistic calculations or experimental parameterization.

For its part, the kinetic Ising model assumes that the migration energy depends on the

average of the energy difference between the initial and final states. This approach links the

energy barrier to the local chemical environment, with the advantage that no knowledge of

the saddle-point energy is required. It is also possible to evaluate energy barrier of events

other than defect jumps such as recombination and surface reactions (defect annihilation

and vacancy creation), described below in Sec. 2.1.3.4.

state i

state j

Saddle-Point Energy Model

ESP
XY

Hi state i

state j

Kinetic Ising Model I

Em

∆Hij

state i

state j

Kinetic Ising Model II

Em

∆Hij/2

Figure 2.2: The three different models of activation energy

2.1.3.3 Computing bond energies from electronic-structure calculations.

Bond energies to parameterize eq. (2.27) and its associated constants Cmn can be calculated

using a suitable atomistic force fields such as semi-empirical potentials, density-functional

theory (DFT), etc. Considering 2nd-nn interactions, the following parameters can be used

to write a set of equations from which to calculate the bond energies:
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• The cohesive energy of the pure metal A or B can be written as:

EA
coh = −z1

2
ε
(1)
A-A −

z2
2
ε
(2)
A-A (2.33)

EB
coh = −z1

2
ε
(1)
B-B −

z2
2
ε
(2)
B-B (2.34)

where z1 and z2 are coordination numbers of the first and second nearest neighbor

shells, and the superindex (i) refers to the nn shell. Care must be exercised when

computing each cohesive energy to ensure that the crystal lattice corresponds to the

equilibrium crystal lattice at the desired temperature.

• The pair interactions between an A atom and a B atom εA-B can be obtained from the

enthalpy of mixing:

Emix = −z1
2

(
ε
(1)
A-A + ε

(1)
B-B − 2ε

(1)
A-B

)
− z2

2

(
ε
(2)
A-A + ε

(2)
B-B − 2ε

(2)
A-B

)
(2.35)

• The formation energy of vacancy is calculated by removing an atom from a perfect

lattice position and putting it on the surface of the system. For a vacancy in a perfect

A-atom matrix containing N lattice sites:

EV
f = NEA

coh − (N − 1)EA
coh + z1ε

(1)
A-V + z2ε

(2)
A-V (2.36)

• Similarly, the formation energy of an interstitial pair in an A-atom matrix can be

written as:

EI
f = EA

coh + z1ε
(1)
A-I + z2ε

(2)
A-I (2.37)

where I= AA, AB, BB.

2.1.3.4 Events.

In kMC the kinetic evolution is determined by a series of independent events that represent

state transitions. Within the ABVI model, we consider five distinct types of events mediated

by point defect mechanisms, discussed below.
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1. Defect jumps : vacancies move by exchanging positions with one of the z1 1st nn atoms:

V + a→ a+ V

where a=A, B. Interstitials, for their part, move via the interstitialcy mechanism in-

troduced above. They can adopt either the dumbbell or crowdion structure, i.e. two

atoms sharing one lattice site:

I(a1-a2) + a1 → a1 + I(a2-a1)

where an interstitial composed of two atoms a1 and a2 (a1, a2=A,B) jumps into a

neighboring lattice site occupied by atom a1, giving rise to a new interstitial composed

of atoms a2 and a1.

2. Recombination: when a vacancy and an interstitial are found within a distance less

than a critical distance rc, a recombination event occurs. The generic reaction is:

I(a1-a2) + V → a1 + a2

Recombinations events occur spontaneously, with δt = 0.

3. Annihilation at defect sinks : in this work two types of defect sinks are used. The first

one, as suggested by Soisson [Soi06], is a thin slab of the simulation box designed to

act as a perfect defect sink (a simple model of grain boundary). When a defect jumps

into a lattice position belonging to the slab, it instantly disappears. To preserve the

alloy composition, a ‘reservoir’ is used such that when a vacancy is absorbed at the

sink, an atom is randomly chosen from the reservoir and placed at the sink site; for

interstitials, one of the two atoms is randomly chosen and stored in the reservoir; the

other atom remains on the sink site. Another inexhaustible sink is a free surface. The

lattice beyond the free surface is considered to be part of a ‘vacuum’ such that atoms

adjacent to vacuum lattice sites are defined as ‘surface atoms’. When a vacancy jumps

onto a site occupied by a surface atom, it first switches its position with the atom, and

then the vacancy becomes a vacuum site:

V + as → as + v
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where as refers to a surface atom, and v is a vacuum site. The mechanism for interstitial

annihilation is more complex. When an interstitial jumps onto a surface atom site,

an instantaneous recombination between the interstitial and the vacuum site occurs

(vacuum sites are a special class of vacancies). The reaction can be described as:

I(a1-a2) + v → a1 + a2

4. Thermal vacancy emission: material inhomogeneities such as surfaces, grain bound-

aries, dislocations, etc, can act as thermal sources of defects. Due to the relatively

high energy of interstitial defects compared to vacancies, interstitial emission is often

considered negligible. A thermal emission can be regarded as the inverse of a vacancy

annihilation event. For a free surface, a vacancy is created just below the surface by

having a vacuum site exchange positions with a surface atom:

v + as → as + V

The rate of vacancy emission can become sizable at high temperature, and should not

be discarded as an efficient vacancy generation mechanism with a strong effect on the

system kinetics.

5. Frenkel pair generation: when considering irradiation with light particles (e.g., elec-

trons), V-I pairs are generated in the lattice. As implemented in our method, when

a Frenkel pair insertion occurs, two lattice sites are randomly chosen, one becomes a

vacancy and the other becomes an interstitial formed by the two atoms involved:

a1 + a2 → V + I(a1-a2)

Frenkel pairs are introduced at a rate consistent with the imposed irradiation dose rate

(usually measured in displacements per atom per second, or dpa·s−1).

A compilation of all the reactions and events discussed in this section is provided in Table

2.1.
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Table 2.1: Event reactions considered in this work. V: vacancy, A: matrix atom, B: solute

atom, AA: self interstitial, AB: mixed interstitial, BB: pure solute interstitial, v: vacuum

atom, As: surface matrix atom, Bs: surface solute atom.

Vacancy jumps Interstitial jumps Recombinations Frenkel pair generation

V+A→A+V AA+A→A+AA AA+V→A+A A+A→AA+V

V+B→A+B AA+B→B+AA AB+V→A+B A+B→AB+V

BB+A→B+AB BB+V→B+B B+B→BB+V

BB+B→B+BB

AB+A→

{
A+AB

B+AA

AB+B→

{
A+BB

B+AB

Defect annihilation
Thermal emission

Ideal sink Surface

V→A V+As→As+v v+As→As+V

V→B V+Bs→Bs+v v+Bs→Bs+V

AA→A AA+v→A+As

BB→B BB+v→B+Bs

AB→

{
A

B
AB+v→

{
A+Bs

B+As
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2.2 Results

This section consists of various verification checks undertaken to ensure the correctness

of our approach. The first tests are designed to check the ‘downward’ consistency of our

model, i.e. comparing against AV and ABV models with reduced complexity w.r.t. the ABVI

Hamiltonian. Subsequently, we compare our method with KMC simulations of three different

ABVI systems published in the literature. In all simulations, atoms are initially assigned

randomly to lattice sites so as to achieve a perfect solid solution as a starting configuration.

2.2.1 AV system: Nanovoid formation in pure Al

An AV case, studied by Reina et al. [RMO11], was first trivially reproduced. Pure aluminum

with vacancy concentration of 0.1at% at 700 K is simulated. The simulation box size is set

to be 1003. Fig. (2.3) shows the results of number densities of clusters with different sizes

as a function of time. The results are consistent with Reina et al. work.

2.2.2 ABV system: Precipitation of Fe-Cu alloys

We simulate the system considered by Vincent et al. [VBP08]: a Fe-0.6% at. Cu alloy occu-

pying a periodic BCC lattice arranged into computational box with 80 × 80 × 80 primitive

cells containing 512,000 atoms and a single vacancy. The Hamiltonian includes 2nd-nn inter-

actions with energy coefficients given in Table 2.2. The energies of mixing for 1st and 2nd-nn

are 0.26 and 0.24 eV, which suggest a strong tendency toward phase separation [Gas08]. The

temperature is fixed at 773 K. During the simulations, the vacancy may become trapped in

solute precipitates, which does not result in net microstructural evolution and may stall the

simulations. To correct for this, Vincent et al. proposed to increment the kMC time only
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Figure 2.3: Number densities of clusters with different sizes as a function of time. The results

consistent with Reina et al. work [VBP08]

when the vacancy is surrounded by at most one solute atom. As well, to account for an

unrealistically high vacancy concentration, the kMC time step is rescaled according to:

δt =
CkMC

V

C0
V

δtkMC (2.38)

where C0
V = exp

(
−EV

f /kBT
)

is the thermodynamic vacancy concentration. The rescaling

factor in eq. (2.38) only reflects the true time acceleration when there is no solute present,

or while there is no precipitation. When the system is undergoing precipitation, the vacancy

concentration is environment-dependent and must be updated as the simulation progresses

[NS12]. Alternatively, rescaling can be avoided by introducing a vacancy source/sink, which

has recently been proposed [GMM01, MGL01, HWN09, Hin09, HDC10]. However, using a

vacancy source/sink requires that an exchange energy be defined, which introduces another

source of uncertainty. Vincent et al. adjust their kMC timescale by comparing the kinetic

evolution directly with experiments. Specifically, they matched a cluster mean radius of 0.9

nm in their simulations to a time of 7200 s. For consistency, we adopt the same approach

here. The initial and final configurations are shown in Fig. 2.4. The kinetic evolution

of precipitation is quantified by calculating the cluster mean radius of solute atoms as a
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Table 2.2: Bond energies for the Fe-Cu ABV system. A represents Fe atoms, B Cu atoms,

and V is the vacancy.

1st-nn interactions (eV) Migration energy (eV)

ε
(1)
A-A ε

(1)
A-B ε

(1)
B-B ε

(1)
A-V ε

(1)
B-V EV−A

m EV−B
m

−0.611 −0.480 −0.414 −0.163 −0.102 0.62 0.54

2nd-nn interactions (eV) Jump frequency (s−1)

ε
(2)
A-A ε

(2)
A-B ε

(2)
B-B ε

(2)
A-V ε

(2)
B-V νVA νVB

−0.611 −0.571 −0.611 −0.163 −0.180 6× 1012 6× 1012

(a) (b)

Figure 2.4: Initial (a), t = 0, and final (b), t = 28368 s alloy configurations. The red dots

represent solute atoms (B atoms). Solvent atoms and the vacancy are omitted for clarity.

function of time. It is assumed that a B atom belongs to a cluster if one of its 1st-nn is also

a B atom of the cluster. The cluster size is computed assuming a spherical shape from the

expression [SB02]:

R̄ = a0

(
3N

8π

) 1
3

(2.39)

where R̄ is the cluster mean radius, N is the number of solute atoms in the cluster, and a0 is

the lattice constant of the BCC lattice. As in ref. [VBP08], clusters containing three or less

atoms are not counted towards the calculation of R̄. To capture the statistical variability

of the simulations, we perform five independent runs under the same conditions and extract
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the time evolution of the average value of R̄. Error bars are extracted by calculating the

standard deviation for a representative data point subset consisting of 31 points. Our results

are provided in Figure 2.5, together with the data of Vincent et al. After taking into account

statistical errors and simulation conditions, it can be seen that Vincent et al.’s results are

generally within the error bars of our simulations. With this, we consider our Hamiltonian

sufficiently verified for the ABV system.

 0

 1

 2

 3

 4

10
2

10
4

10
6

R −
 (

n
m

)

Adjusted time (s)

This work
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Figure 2.5: The cluster mean radius of the ABV Fe-Cu system. The red line represents the

results in this work; the black filled squares are the data from Vincent et al. [VBP08]

2.2.3 ABVI system: Solute segregation at sinks

In this test, we reproduce the work of Soisson [Soi06]. The system consists of a BCC 256×

64×64 triclinic crystal lattice containing an A-5%B alloy, vacancies and interstitials defects.

A perfect planar defect sink is placed in the middle of the crystal and kMC simulations of

(radiation-induced) segregation at the defect sink are performed. Frenkel pairs are generated

at a rate of G = 10−6 dpa·s−1 following the mechanism described in Sec. 2.1.3.4.
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Segregation at the sinks is governed by the onset of solute fluxes in the system. These

fluxes are mediated by defect migration to and absorption at the sink. The solute flux can

be controlled by setting the defect migration energies such that exchanges with B atoms are

preferred over exchanges with A atoms (or vice versa), resulting in enrichment or depletion

of solute at the defect sink. While Soisson uses a saddle-point model to obtain the activation

energy (cf. Sec. 2.1.3.2), our implementation of the ABVI Hamiltonian has been designed

to employ a kinetic Ising model. In order to make both approaches as close to one another

as possible, we use Soisson’s bond energies directly and adjust the migration energies Em

so as to match the kinetic evolution. The parameters used are shown in Table 2.3. There

are four sets of parameters. The first two, ABVI-1 and ABVI-2, correspond to a system

with relatively low energy of mixing (Emix = 0.216 eV), representing undersaturated solid

solutions with high solubility limits. The other two, ABVI-3 and ABVI-4 correspond to a

system with Emix = 0.680 eV leading to supersaturated solid solutions. Systems ABVI-1

and ABVI-3 are such that a net flux of B atoms develops toward the sink (EV-A
m < EV-B

m ;

EI-A
m > EI-B

m ), whereas ABVI-2 and ABVI-4 result in solute depletion at the sink –the so-

called inverse Kirkendall effect–(EV-A
m > EV-B

m ; EI-A
m < EI-B

m ). For simplicity, migration

energies of vacancies and interstitials are set to produce the same segregation tendency for

each set of parameters. Other details considered by Soisson, such as recombination radii,

event sampling, etc., are also followed here3. The spatial solute concentration profiles are

shown in Fig. 2.6.

In the undersaturated alloy, no precipitation in the bulk is observed. As the dose in-

creases, the concentration of B atoms near the sink is enhanced (reduced) for the enrichment

(depletion) parameter set. For the enrichment case ABVI-1, a solute concentration drop at

the center of the system is observed. This can rationalized in terms of interstitialcy jumps.

After the solute concentration raises near the sink, interstitials must traverse a solute-rich

region in order to reach the sink. As interstitials penetrate the near-sink region, they will in-

creasingly become of the AB type. Because εA-B > εB-B, A atoms located in this solute-rich

3With one exception: the Frenkel pair distance is not set in this work.
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Table 2.3: Parameters for the ABVI system (after Soisson [Soi06]). ‘A’ and ‘B’ denote solvent

and solute atoms, respectively. ‘V’ represents vacancies and ‘I’ all types of interstitial defects.

All energies given in eV. Attempt frequencies given in Hz.

Kinetic parameters

ABVI-1 ABVI-2 ABVI-3 ABVI-4

high solubility low solubility

enrichment depletion enrichment depletion

νVA = νVB = νIA = νIB 5× 1015 5× 1015 5× 1015 5× 1015

εA-A = εB-B −1.07 −1.07 −1.07 −1.07

εA-B −1.043 −1.043 −0.985 −0.985

εA-V = εB-V −0.3 −0.3 −0.3 −0.3

εA-I = εB-I 0 0 0 0

EV−A
m 0.95 1.1 0.8 1.05

EV-B
m 1.05 0.9 1.2 0.95

EI-A
m 0.5 0.35 0.55 0.2

EI-B
m 0.5 0.65 0.45 0.8

region are energetically unfavorable. Therefore, interstitials jumps favor the avoidance of

A-B bonds, which results in enhanced matrix atom transport to the sink. This phenomenon

was not observed in Soisson’s work because they used a saddle-point energy model that gives

a nonlocal activation energy (does not depend on the atomic environment of the jumping

atom). Increasing the driving force for solute transport toward the sink (e.g., by setting

EI-A
m = 0.6, EI-B

m = 0.4), the drop at the sink disappears. Snapshots for ABVI-1 and ABVI-4

at three different doses are shown in Fig. 2.7.

For the low solubility alloy, on the other hand, bulk precipitation does occur, as one

would expect given the low marginal difference between bulk and sink segregation driving

forces. As Fig. 2.6 shows, the solute spatial profiles are much more fluctuative than their high

solubility counterparts, especially for the depletion case (ABVI-2 vs. ABVI-4). This of course
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Figure 2.6: Spatial solute concentration profiles at different doses for the undersatured alloy

for the (a) solute enrichment and (b) solute depletion cases at T = 800 K. The supersatured

case for (c) solute enrichment and (d) solute depletion at T = 500 K are also shown. The

nominal solute concentration of the alloy is CB = 0.05 and the dose rate is 10−6 dpa·s−1.

is a manifestation of the formation of precipitates in bulk. The mean free path for solute

diffusion is quite low, due to a high number density of precipitates acting as trapping sites,

which makes depletion dynamics slow. Soisson observed a less intense bulk precipitation

than shown here, possibly also due to the different in activation energy models employed. In

any case, the global qualitative features of the alloy evolution kinetics are matched by both

methods.

These results show that the saddle point energies are crucial in establishing the relative
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(a) (b) (c)

(d) (e) (f)

Figure 2.7: Snapshots of ABVI-1 system (undersaturated, enrichment) at (a) 2.56×10−3 (b)

2.01×10−2 and (c) 2.01 dpa. For the ABVI-4 case (supersaturated, depletion), configurations

are shown at (d) 8.78×10−4 (e) 2.63×10−2 and (f) 0.258 dpa. Only solute atoms are shown.

solute fluxes to sinks. This is in agreement with Le Bouar and Soisson [BS02], who showed

that the effect of (concentration dependent) saddle point energies on the kinetics can be felt

dramatically at low temperatures, when atomic transport is slowed down.

2.2.4 ABVI system: Radiation-induced segregation at surfaces

The last verification example that we undertake in this paper is that of a finite system

containing free surfaces. This mimics the case considered by Dubey and El-Azab, which
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studied a binary Au-Cu alloy under irradiation using a two-dimensional continuum reaction-

diffusion model that included a free surface [DE15]. These authors used mean-field rate

theory to solve the ordinary differential equation system representing defect kinetics with

spatial resolution. As such, our method differs fundamentally in that it relies on a discrete

lattice description, and so the comparison between both approaches must account for this

distinction. Our lattice system, however, is constructed so as to create two free surfaces along

one of the dimensions of the computational cell, with periodic boundary condition used in the

other two. Adjacent to the free surfaces, several layers of ‘vacuum’ atoms are introduced (cf.

Sec. 2.1.3.4 for the mechanisms involving these vacuum atoms). In this fashion, the surface

is always univocally defined as the interface between atomic lattice sites and vacuum sites,

which provides a convenient way to study the surface roughness as the simulation progresses.

Atoms connected to the vacuum, regardless of their chemical nature, have bond energies in

the direction along the surface normal equal to:

εs = a2γ − εAA (2.40)

where a is the bond length (depends on surface orientation), γ is the surface energy, and εAA

is a standard ‘bulk’ bond energy.

As well, considering free surfaces introduces both a defect sink and a defect source. In ad-

dition to Frenkel-pair generation by irradiation, point defects can also be emitted thermally

from the surface. Following Dubey and El-Azab, Frenkel-pair generation rate is set at 1.0

dpa·s−1. Regarding defect emission from the surface, the high formation energy difference

between interstitial defects and vacancies allows us to discount thermal emission of SIAs, as

done in ref. [DE15], while vacancies can be created at all surface sites. In each step, the rates

of all the possible creation paths, i.e. all 1st-nn jumps from surface sites towards the interior

of the box, are calculated and added to the global kMC event list. Vacancy emission can oc-

cur from any surface site. Given the potentially large number of such sites, we pre-compute

all the thermal emission rates at the beginning, and then simply update the list when the

local chemical environment around a surface site changes during the kMC simulation. The

large majority of these emission events do not result in a successful vacancy injection into
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the bulk but, rather, just in an emission immediately followed by re-absorption at the sur-

face. Considering these transitions (the so-called ‘flickering’ problem: not encountered in

continuum mean field approaches) is exceedingly inefficient. To deal with the problem, es-

pecially at elevated temperature, one can apply the following method: calculate numerically

the conditional probability that, if an emission event occurs, the emitted vacancy will make

it to a depth where the surface attraction is no longer felt. In other words, the probability

that an emission/re-absorption event is uncorrelated (diffusive) as opposed to correlated.

This enhances the computational efficiency per kMC step significantly, yet providing a very

accurate approximation to the ‘brute force’ method.

The annihilation of defects at surfaces is also considered, as described in Sec. 2.1.3.4.

After Dubey and El-Azab, we study a face-centered cubic binary Au-10% at. Cu alloy using

the energetics provided in Table 2.4 based on a study by Hashimoto et al. [HIS95]. The

computational box dimensions are 660 × 270 × 4 primitive cells, with a vacuum buffer of

20 atomic layers on either side of the free surface, along the x-direction. In this case,

jumps of mixed interstitials are calculated considering both directional possibilities, e.g.

AB+A→B+AA, or AB+A→AB+A (cf. Table 2.1), with their total rate weighted by a

factor of 1/2 to preserve the correct sampling statistics.

The differences between kMC simulations and the continuum model are also exhibited

in energy parameters. Dubey and El-Azab defined global parameters for their simulations

such as defect formation energies, and surface energies. In kMC simulations, however, one

need to express of all energies into bond energies. In this work, we set the vacuum energy

level as the zero reference, i.e. εv-X = 0 (where X= A, B, V, v), and the energies of atoms

on the surface are simply tallied in terms of the number of missing surface bonds. The

defect bond energy parameters then can be obtained from formation energies of vacancy

and interstitial using the formulas described in Section 2.1.3.3. The surface energy per area

and defect formation energies are taken from Dubey and El-Azab’s paper. In addition, after

Hashimoto et al., a conversion energy is applied when interstitial defects change their type
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after a diffusive jump. On some occasions, the activation energy for interstitialcy jumps can

become negative, which we simply interpret as a spontaneous event within the kMC cycle.

Table 2.4: The parameters for the Au-Cu ABVI system. ‘A’ are Cu atoms, ‘B’ are Au atoms.

X, Y= A, B.

Bond energies (eV)

εX-Y εV-X εAA-X εAB-X εBB-X

−0.1425 −0.01625 0.24625 0.12875 0.14625

Migration energies (eV)

EV-A
m EV-B

m EI-AA
m EI-AB

m EI-BB
m

0.88 0.76 0.3 0.377 0.12

Conversion energies (eV)

EAA→AB
c EAB→AA

c EBB→AB
c EAB→BB

c

0.3 0.5 0.12 0.32

Our kMC simulations are run up to a maximum dose of 0.04 dpa. As in Section 2.2.2,

we perform five independent runs to study the statistical variability and provide error bars

to the simulation results. In this case, we take the average and statistical deviation at

each point along the x-coordinate. The spatial solute concentration profiles at 650 K as a

function of dose are shown in Fig. 2.8. For the five simulations performed, the statistical

errors are on the order of 20%, approximately. From the figure, the enrichment of solute

atoms near the surfaces can be clearly appreciated, which is accompanied by local depletion

in the subsurface region. Segregation near the surfaces increases with dose, in agreement

with Dubey and El-Azab’s work. These authors also studied the degree of segregation as a

function of time M(t), defined as:

M(t) =

∫ ls

0

(
C(x, t)− C̄

)
dx (2.41)

where ls is an arbitrary segregation distance, C(x, t) is the instantaneous solute concen-

tration profile, and C̄ is the average solute concentration of the whole system. Here, we
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replace the integral by a discrete sum over lattice positions, with ls defined as the distance

from the surface at which the local concentration is within 10% of the background global

concentration. To avoid noise due to lattice fluctuations, we apply a Savitzky-Golay smooth-

ing filter [SG64] prior to the determination of ls. M represents the deviation of the local

concentration w.r.t. the average global concentration, integrated across the entire sample

thickness. As such, an increasing value of M reflects a higher degree of heterogeneity in the

solute distribution.

The evolution of M as a function of dose and temperature is shown in Fig. 2.9. Our

results are in agreement with those of Dubey and El-Azab, with M increasing with dose

monotonically in all cases. However, the evolution with temperature shows two distinct

trends. First, M increases with temperature up to a critical value of approximately 650 K.

Then, it gradually decreases until, at T = 900 K, the degree of segregation is practically

zero. The causes behind this behavior are well understood [OR79]. Essentially, at low

temperatures, vacancy mobility is limited, leading to high excess vacancy concentration and

high recombination rates. As a consequence, segregation is low due to small defect fluxes to

surfaces. At higher temperatures, vacancy and interstitial diffusion are activated resulting

in net solute segregation. However, above 650 K, significant numbers of vacancies start to be

emitted from the surfaces, leading to high back diffusion rates and again high recombination

rates. The two effects result in a reduced solute segregation to the surfaces. Therefore, the

maximum degree of segregation occurs at intermediate temperatures, consistent also with

Dubey and El-Azab’s findings.

KMC simulations are capable of providing morphological features that continuum meth-

ods cannot furnish. For example, our method can be used to study the evolution of the

surface roughness, an example of which is shown in Fig. 2.10. The figure contains two snap-

shots of the surface for a system with a computational box size of of 660× 32× 32 primitive

cells at 500 K at different accumulated doses, where clear surface morphology changes can

be appreciated. As well, surface roughness is accompanied by a concomitant increase in the
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Figure 2.8: Solute concentration profile and associated error bars at different doses for the

Au-10% at. Cu alloy at T= 650 K . The dose rate is 1.0 dpa·s−1.

concentration of solute atoms, which occurs by the mechanisms explained above.

2.3 Summary and Conclusions

We have proposed an extension of the standard ABV Hamiltonian to discrete binary sys-

tems containing interstitial defects. The chosen framework for this extension is the Ising

model, where three new values for the spin variables are considered: ‘+2’, representing pure

self-interstitials (A-A), ‘−2’, representing pure solute interstitials (B-B), and ‘0’, for mixed

interstitials (A-B). The reason for choosing these values is to preserve one of the essential

magnitudes of the Ising model, the magnetization N−1
∑

i σi, or, in the ABVI context, the

excess solute concentration. The main advantage behind expressing a cluster expansion

Hamiltonian as an Ising Hamiltonian is that thermodynamic information about the system
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Figure 2.9: Evolution of the degree of segregation at different temperatures. The total solute

concentration is 10% at. The dose rate is 1.0 dpa·s−1.

can more easily be construed in the Ising framework. For example, the value of the constants

of class 3 identified in eq. (2.27) uniquely determine the thermodynamic phase diagram of

the ABVI model (much like constant J in eq. (2.2) determines the structure of the ABV

system). Indeed, one of the aspects of greatest interest associated with the ABVI model is

to study how the presence of interstitials alters the behavior of substitutional binary alloys.

However, we leave this thermodynamic analysis for a specific binary system with well

characterized bond energetics for a future study, and, instead, in this paper we have focused

on verification by comparing against a number of selected published studies. The main tests

that we have conducted include discrete lattice ABV and ABVI for dilute Fe-Cu alloys,

as well as comparison against a spatially-resolved mean-field study of solute segregation at

free surfaces in irradiated Au-Cu alloys. In all cases, basic metrics related to the timescale

and/or some governing kinetic parameters were reproduced with good agreement. In terms of

computational cost, our Ising ABVI model scales in a similar manner as second-order cluster
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(a) (b)

Figure 2.10: Snapshots of surface roughness at (a) t = 0, and (b) t = 0.02 s for the Au-10.0

at. Cu system alloy for a computational box of 660× 32× 32 primitive cells at 500 K. Red

dots represent solvent (A) atoms, while solute atoms (B) are represented as green dots. The

dose rate is 1.0 dpa·s−1.

expansion Hamiltonians with similar cutoff radius –as it should, given that no advantage is

lost by simply recasting a cluster expansion Hamiltonian into the Ising form.

Thus, in conclusion, we present an ABVI Hamiltonian, cast as an Ising model Hamilto-

nian, for discrete event simulations that can be considered a generalization of ABV models.

Our model has been verified against existing parameterizations of cluster expansion Hamil-

tonians using kinetic Monte Carlo simulations, with good agreement observed. The model

will be used to study W-Re alloy evolution under irradiation, which will be discussed in the

next chapter.
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CHAPTER 3

Mechanism of Re precipitation in irradiated W-Re

alloys from Monte Carlo simulations

In this chapter, we study the kinetics of Re precipitation in irradiated W accounting for both

vacancy and interstitial transport. To this effect, we perform both Metropolis and kinetic

MC simulations on alloy evolution parameterized solely using first principles calculations.

The Metropolis MC simulation results provide a thermodynamic perspective on the W-Re

alloy system, while kinetic MC simulations give kinetic effect from defect transports on

the alloy. Previous DFT calculations have discovered an ”bridge” migration mechanism

for mixed-dumbbell interstitial, which consists of a series of mixed dumbbell rotations and

translations such that the mixed nature of the dumbbell is preserved and solutes can be

transported over long distances without the need for vacancy exchanges [SYH14, SYH15,

GME16]. Furthermore, this mechanism effectively transforms one-dimensional SIA diffusion

into a 3D mixed-dumbbell transport process at activation energies considerably lower than

that of vacancy diffusion. This mechanism has been suspected to have impact on RIP,

and therefore was implemented the mechanism in our KMC model. The chapter start in

Section 3.1 by describing the essential elements of our simulation models as well as the

parameterization effort based on DFT calculations. In Section 3.2, our main results are

provided, including semi-grand canonical Monte Carlo calculations of ternary W-Re-vacancy

and W-Re-SIA systems, and kMC simulations and analysis of the Re-precipitate nucleation

and growth. Finally, a discussion of the results and the conclusions are given in Section 3.3.
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3.1 Theory and methods

3.1.1 Energy model

The energy model employed is a cluster expansion Hamiltonian based on pair interactions

truncated to the 2nd-nearest neighbor (2nn) shell, as the ABVI model described in the

previous chapter:

H =
∑
i

∑
α,β

n
(i)
α-βε

(i)
α-β (3.1)

where (i) specifies the type of nearest-neighbor interaction (first or second), α and β refer to a

pair of lattice sites, separated by a distance specified by the index i, nα-β denotes the number

of occurrences (bonds) of each α-β pair, and εα-β is bond energy. In the previous chapter, I

have shown how this Hamiltonian can be reduced to a generalized Ising Hamiltonian involving

solvent and solute atoms (A and B), vacancies (V), and pure and mixed interstitials (AA,

BB, and AB) [HM16]. The Hamiltonian, As shown in Section 2.8, is then expressed as a sum

of polynomial terms of various degrees involving spin variables σα and σβ in the manner of

the Ising model:

H =
∑
n,m

∑
α,β

Cnmσ
n
ασ

m
β (3.2)

where n and m are exponents reflecting the order of each term, and Cnm are a coupling

constants shown in Section 2.1.2.2. In the chapter, the notations of atoms and point defects

are as the same as in previous chapter, with A: W atoms; B: Re atoms; V: vacancies, AA:

W-W dumbbell (or self-interstitial atom); BB: Re-Re dumbbell; AB: mixed W-Re dumbbell.

3.1.2 Semi-Grand Canonical Monte Carlo for AB systems

The thermodynamic phase diagram of the W-Re system can be studied using semi-grand

canonical Monte Carlo (SGMC) calculations as a function of temperature and solute con-
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centration [BLP81, DL93, PSM99, TLA04, CL05, BZK10]. We seek to minimize the ther-

modynamic potential of the semi-grand canonical ensemble, characterized by a constant

temperature T , a constant number of particles N , and a constant chemical potential µ 1.

In each SGMC step, a transition involving an atom selected at random is executed and the

new state is accepted with a probability:

pij = exp

(
−∆Hij −NB∆µ

kBT

)
(3.3)

where ∆Hij is the energy difference between the initial and final states, i and j, NB = NX

is the number of solute atoms (X: solute concentration), ∆µ is the change in chemical

potential per atom after the transition, and kB is Boltzmann’s constant. In this work, each

transition is defined by changing the chemical nature of one atom chosen at random (A→B

or B→A). In terms of the change in spin variable (in the notation of the generalized Ising

Hamiltonian, cf. eq. (3.2)), this always results in a change of δσ = ±2, such that eq. (3.3)

can be simplified to:

pij = exp

(
−∆Hij ± 2∆µ

kBT

)
(3.4)

In the calculations, the chemical potential difference ∆µ and the temperature T are input

variables, while the solute composition X and the equilibrium configurations are obtained

when convergence is reached.

3.1.3 Metropolis Monte Carlo calculations of ABV system configurations

During irradiation, the introduction of large amounts of defects has the potential to impact

the thermodynamics of the system. It is therefore of interest to calculate phase diagrams

with fixed defect concentrations using equilibrium (Metropolis) Monte Carlo. Defect concen-

trations are not thermodynamically equilibrated under irradiation –the number of vacancies

1For a brief discussion on the differences between the semi-grand canonical and the grand canonical
ensembles, see ref. [sgm].
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or interstitials is not controlled by the chemical potential–, and so the AB system must be

considered in conjunction with a fixed defect concentration. Take the case of vacancies for

example, to properly obtain converged nonequilibrium configurations of ABV systems, we

employ a flip and swap approach: (i) initially a system consisting of A atoms and a random

distribution of vacancies is considered; (ii) a lattice point is selected at random; (iii) if that

lattice point corresponds to an atom, a SGMC step is carried out, resulting in a change in the

relative concentrations of A and B; if it, on the contrary, corresponds to a vacant site, then a

canonical Monte Carlo step is carried out, leaving X unchanged, and the vacancy exchanges

its position with a randomly-selected atom. This trial swap is then accepted according to

the Boltzmann distribution:

pij = exp

(
−∆Hij

kBT

)
(3.5)

In this fashion, equilibrated AB alloys containing a fixed vacancy concentration are obtained,

from which one can determine the changes relative to the thermodynamic equilibrium con-

figurations. Although interstitials are much higher in energy than vacancies (so that only

very small concentrations need be explored), the procedure for the ABI system is identical

to that of the ABV system.

3.1.4 Kinetic Monte Carlo simulations of ABVI systems

The kinetic evolution of W-Re alloys under irradiation is studied using standard lattice kMC.

The system is evolved by events involving atomic jumps and time is advanced according to

the residence-time algorithm [YE66]. Jump rates are calculated as:

rij = ν exp

(
−∆Eij
kBT

)
(3.6)

where ν is an attempt frequency and ∆Eij is the activation energy to jump from state i to

state j.
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3.1.4.1 Vacancy migration model

A review on models proposed to describe the activation energy based on different inter-

pretations of the atomic migration process has been given in Chapter 2.3 (see also [HM16]

and [SBC10] for recent reviews). In this work, the activation energy of vacancy jump is calcu-

lated by the saddle-point energy model (or cut-bond model) [SBM96,SF07,MSF12,SSM16],

according to which ∆Eij is given by the energy difference of the configuration when the

jumping atom is at saddle point and the initial configuration:

∆Eij =
∑
p

εspα-p −
∑
q

ε(i)α-q −
∑
r 6=α

ε
(i)
V-r +

∑
∆Enon-broken

ij (3.7)

where α is the jumping atom, V is the vacancy, and εsp are the bond energies between the

atom at the saddle point and the neighboring atoms. The first term on the r.h.s. of eq.

(3.7) reflects the energy of the jumping atom at the saddle point. In this work, we consider

interactions up to 2nn distances for this term2. The second and third terms on the r.h.s.

of the equation are the energies of the jumping atom and the vacancy at the initial state i.

Finally, the fourth term gives the energy difference between state i and j for the non-broken

bonds due to local solute concentration changes. The dependence of bond coefficients on

local solute concentration will be discussed in Section 3.1.5.

3.1.4.2 Interstitial defect migration model

Here we consider self-interstitial atoms of the AA type, and mixed-interstitials AB. Due to

their rarity, BB interstitials are omitted in our calculations. In bcc metals, AA SIAs are

known to migrate athermally in one dimension along 〈111〉 directions with migration energy

Em, with sporadic rotations to other 〈111〉 orientations characterized by an activation energy

Er. These processes, however, are treated separately in the kMC simulations. In contrast

2In the saddle-point configuration for vacancy migration, there are six 1nn bonds and six 2nn bonds,
compared with eight and six for a lattice point configuration.
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to vacancy migration, activation energies of interstitial jumps are calculated using the direct

final-initial system energy model [DMD07,VBD08,VBP08,RMO11]:

∆Eij =


Em + ∆Hij, if ∆Hij > 0

Em, if ∆Hij < 0

(3.8)

In addition, we include a bias due to the well-known phenomenon of correlation, by which

a forward jump is slightly more likely to occur than a backward jump. This is reflected in a

correlation factor f computed as the ratio of forward to backward jumps [ZLH13], which in

our simulations is temperature dependent.

For their part, as pointed out in Chapter 1, recent DFT studies have revealed a new

migration mechanism for mixed dumbbells in W alloys. This mechanism involves an non-

dissociative sequence of rotations and translations such that the solute atom is always part of

the mixed dumbbell (in contrast with the intersticialcy or ’knock-on’ mechanism commonly

associated with SIAs) [SYH14,SYH15,GE15,GME16]. This effectively makes AB interstitials

move in three dimensions with 2nn jumps along 〈100〉 directions. Calculations for the W-Re

system have shown that the migration energy in this case is very low, on the order of one

tenth of an eV. As we shall see, this plays a big role in governing the kinetic evolution of

irradiated W-Re alloys.

3.1.4.3 Spontaneous events: recombination and absorption

Any recombination event occurs spontaneously (no sampling involved) when the distance

between an interstitial defect and a vacancy is within the 3rd nearest neighbor distance.

Another reaction considered to be instantaneous is the transition of a SIA into an AB

dumbbell when it encounters a solute atom: AA+B→AB+A. This is because the binding

energy between a SIA and a Re solute atom has been calculated to be −0.8 eV (negative

binding energies represent attraction). The distance for this transformation is set to be equal
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to the 1nn separation.

Defect absorption represents another type of spontaneous event. Absorption can occur

at sinks, such as a plane located in a stationary position within the simulation box [Soi06],

or a free surface [HM16]. Sinks can potentially act also as defect emitters, as in the case of

grain boundaries, dislocations, and free surfaces in real microstructures. Details about the

implementation of these processes can be found in ref. [HM16].

3.1.4.4 Frenkel pair generation

In this work, defects are generated as Frenkel pairs at a prescribed rate set by the damage

rate. To insert a defect pair, two atomic sites are chosen at random, one is replaced by a

vacancy and the other with an interstitial formed by an A atom and the lattice atom.

3.1.5 Parameters

There are five distinct atomic species used in this work: W atoms (A), Re atoms (B), vacan-

cies (V), SIAs (AA), and mixed-interstitials (AB). As mentioned above, our energy model

consists of pairwise interactions up to the 2nn shell. After discounting interstitial-vacancy

bonds, this amounts to 26 different types of bonds (13 for each nearest neighbor shell), all

of which must be obtained using first-principles calculations. Moreover, as discussed by

Martinez et al. [MSF12] and Senninger et al. [SSM16], several of these bond energies are

sensitive to the local solute concentration and must be computed on the fly in each Monte

Carlo step. Following Warczok et al. [WZK12], we reduce the number of unknowns from 26

to 13 by partitioning bond energies according the following relation:

ε(2) = ε(1)
(
r2nn
r1nn

)−6
(3.9)
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which is used unless both bond energies can be explicitly calculated. For the bcc lattice, this

results in ε
(1)
α-β/ε

(2)
α-β = 0.421875 for regular bond coefficients, and ε

sp(1)
α-β /ε

sp(2)
α-β = 0.194052 for

saddle-point bond coefficients.

The local solute concentration is always computed up to the 2nn shell. Next we describe

the parameterization procedure for each set of bond energies.

3.1.5.1 W-Re parameters

The W-Re bond coefficients are εA-A, εB-B, and εA-B. They determine the thermodynamic

equilibrium phase diagram of the alloy. εA-A and εB-B are obtained from the cohesive energies:

EA
coh = −z1

2
ε
(1)
A-A −

z2
2
ε
(2)
A-A

EB
coh = −z1

2
ε
(1)
B-B −

z2
2
ε
(2)
B-B

(3.10)

where z1 and z2 are coordination numbers for the 1nn and 2nn shells, respectively. The

cohesive energies calculated using DFT are given in Table 3.1. 3

The coefficient for the A-B bond is obtained from the enthalpy of mixing of W-Re, ∆Hmix,

which can be written within the Bragg-Williams approximation [BW34,BW35,Wil35] as:

∆Hmix =
z1
2

[
(1−X)ε

(1)
A-A +Xε

(1)
B-B + 2x(1− x)Ω(1)

s

]
+
z2
2

[
(1−X)ε

(2)
A-A +Xε

(2)
B-B + 2X(1−X)Ω(2)

s

] (3.11)

where X is the global solute concentration, and Ωs is the heat of solution, defined as:

Ω(1)
s = ε

(1)
A-B −

1

2

(
ε
(1)
A-A + ε

(1)
B-B

)
(3.12)

Ω(2)
s = ε

(2)
A-B −

1

2

(
ε
(2)
A-A + ε

(2)
B-B

)
(3.13)

3With xc-energy correction from Ref. [KIM11]
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Table 3.1: Energetics of W-Re systems calculated with DFT.

Quantity Value Source

EA
coh 8.3276 This work

EB
coh 7.4070 This work

∆Hmix −0.1571− 0.2311X Ref. [GME16]

EV
f 3.1690 This work

E
(a)
b −0.2096 This work

E
(b)
b −0.1520 This work

E
(c)
b −0.3079 This work

E
(d)
b −0.2992 This work

EV-V
b,1nn −0.0146 This work(3)

EV-V
b,2nn 0.3028 This work(3)

EAA
f 10.16 Ref. [GE15]

EAB
f 9.49 Ref. [GE15]

EAA-B
b,1nn −0.52 Ref. [GE15]

EAB-B
b,1nn −0.53 Ref. [SNK16]

EAA-AA
b,1nn −2.12 Ref. [BDS10]

EAA-AB
b,1nn −2.12 Assumed (4)

EAB-AB
b,1nn −3.2 Ref. [GME16]

EV→A
m (A) 1.623 This work

EV→B
m (A) 1.651 This work

E
V→A(1)
m (Fig. 3.2(c)) 1.7151 This work

E
V→A(2)
m (Fig. 3.2(c)) 1.6378 This work

E
V→B(3)
m (Fig. 3.2(c)) 1.577 This work

EV→A
m (V) 1.623 This work

EV→B
m (V) 1.651 This work
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Combining eqs. (3.10) and (3.11), ∆Emix can be expressed as:

X(1−X)Ω∗s = ∆Hmix + (1−X)EA
coh +XEB

coh (3.14)

where Ω∗s = z1Ω
(1)
s + z2Ω

(2)
s . To obtain the dependence of the heat of solution on the solute

concentration, we fit the l.h.s. of eq. (3.14) to the data points for the mixing enthalpies as a

function of X calculated in our previous work [GME16]. The best fit, shown in Figure 3.1,

is achieved when Ω∗s is expressed a linear function of the concentration:

Ω∗s = w0 + w1X

with w0 = −0.1571 and w1 = −0.2311. The negative values of w0 and w1 suggest a strong

tendency towards ordering, which becomes larger as the solute concentration increases. Com-

bining eqs. (3.9), (3.10), (3.12), and (3.14), one can obtain the values of Ω
(1)
s , Ω

(2)
s , ε

(1)
A-B, and

ε
(2)
A-B. A non-constant Ω∗s effectively implies that εA-B is also a function of the concentration.

Moreover, to reflect local composition variations in the W-Re alloys, we make the assumption

that the dependence of ε
(1)
A-B and ε

(2)
A-B on X can be transferred to the local environment of

each atom, such that both bond energy coefficients are functions of the local composition,

which we term x, and must be computed on the fly for each solute atom in the system.

3.1.5.2 Vacancy parameters

The vacancy bond coefficients are εA-V, εB-V, and εV-V. εA-V can be readily obtained from

the value of the vacancy formation energy:

EV
f = EA

coh − z1ε
(1)
A-V − z2ε

(2)
A-V (3.15)

where EV
f is the vacancy formation energy in pure W (given in Table 3.1). εB-V can be

obtained from the binding energies of V-Re configurations, which for a structure involving

m solute atoms and n vacancies is defined as:

EBmVn
b = EBmVn

f −mEB
f − nEV

f (3.16)
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Figure 3.1: Enthalpy of mixing as a function of solute concentration from ref. [GME16] and

3rd-degree polynomial fit.

where the Ef are the respective formation energies of each structure. In this work, binding

energies for the four vacancy-solute configurations shown in Figure 3.2 have been calculated

(cf. Table 3.1). One can now rewrite eq. (3.16) as a function of the B-V bond coefficients

ε
(1)
B-V and ε

(2)
B-V for each one of the configurations in the figure:

E
(a)
b = ε

(1)
B-V + ε

(1)
A-A − ε

(1)
A-B − ε

(1)
A-V (3.17a)

E
(b)
b = ε

(2)
B-V + ε

(2)
A-A − ε

(2)
A-B − ε

(2)
A-V (3.17b)

E
(c)
b =2ε

(1)
B-V + ε

(2)
B-B + 2ε

(1)
A-A + ε

(2)
A-A − 2ε

(1)
A-V − 2ε

(1)
A-B

− 2ε
(2)
A-B + 14∆ε

(1)
A-B + 10∆ε

(2)
A-B

(3.17c)

E
(d)
b = 2ε

(2)
B-V + 2ε

(2)
A-A − 2ε

(2)
A-B − 2ε

(2)
A-V (3.17d)
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where ∆ε
(m)
A-B is the change in ε

(m)
A-B due to the local solute concentration change resulting from

the vacancy jump.

To define the dependence on x of ε
(1)
B-V, we must consider two factors. First, our DFT

calculations show that ε
(1)
A-V > ε

(1)
B-V. Second, the values of ε

(1)
B-V is seen to increase with local

concentration. Both of these conditions are satisfied by assuming a dependence such as

ε
(1)
B-V(x) = ε

(1)
A-V − ax−1, where a is a fitting constant. As well, ε

(2)
B-V is seen to independently

increase with concentration, such that ε
(2)
B-V(x) = bx+ c, where b and c are fitting parameters

3
1

2

(a) (b) (c) (d)

Figure 3.2: Configurations of V-Re clusters used to extract bond energy coefficients εA-V and

εB-V. Blue spheres represent vacancies, red spheres represents Re atoms. All other lattice

sites are occupied by A atoms, which are omitted for clarity. Green spheres indicate the

various equivalent sites for atoms to exchange positions with the vacancy

εV-V can be readily calculated by considering the binding energy of a di-vacancy:

EV-V
b,1nn = ε

(1)
A-A + ε

(1)
V-V − 2ε

(1)
A-V (3.18)

EV-V
b,2nn = ε

(2)
A-A + ε

(2)
V-V − 2ε

(2)
A-V (3.19)

It is interesting to note that, in accordance with several other studies [BD07,VWF12,MNK11,

OIT14, SNK16], EV-V
b,2nn takes a positive value (cf. Table 3.1), indicating repulsion between

vacancies that are at 2nn distances of each other.
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3.1.5.3 Interstitial defect parameters

The interstitial bond coefficients include εAA-A, εAB-A, εAA-B, εAB-B, εAA-AA, εAA-AB, and

εAB-AB. εAA-A and εAB-A are calculated directly from the formation energies of SIAs and

mixed dumbbells:

EAA
f = −4ε

(1)
A-A − 3ε

(2)
A-A + 8ε

(1)
AA-A + 6ε

(2)
AA-A (3.20)

EAB
f = −4ε

(1)
A-A − 3ε

(2)
A-A + 8ε

(1)
AB-A + 6ε

(2)
AB-A (3.21)

The other bond coefficients are obtained from various binding energies:

EAA-B
b,1nn = ε

(1)
AA-B + ε

(1)
A-A − ε

(1)
AA-A − ε

(1)
A-B (3.22)

EAB-B
b,1nn = ε

(1)
AB-B + ε

(1)
A-A − ε

(1)
AB-A − ε

(1)
A-B (3.23)

EAA-AA
b,1nn = ε

(1)
AA-AA + ε

(1)
A-A − 2ε

(1)
AA-A (3.24)

EAA-AB
b,1nn = ε

(1)
AA-AB + ε

(1)
A-A − ε

(1)
AA-A − ε

(1)
AB-A (3.25)

EAB-AB
b,1nn = ε

(1)
AB-AB + ε

(1)
A-A − 2ε

(1)
AB-A (3.26)

These formation and binding energies are all taken from the literature4.

All the bond energy coefficients, the equation used for their calculation, and the source

of the numbers are compiled in Table 3.2.

3.1.5.4 Migration parameters

The attempt frequency (ν in eq. (3.6)) used for vacancy jumps in this work is set to be equal

to Debye frequency of W, or 6.5× 1012 Hz [GDD08], while for interstitials we use a value of

1.5× 1012 Hz [ZLH13].

4The only exception being the binding energy between an AA and an AB interstitial, which is assumed
to be equal to the binding energy between two AA.
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Table 3.2: Bond energy coefficients with the equation used for their calculation, and the

literature source. x is the local solute concentration

ε
(1)
A-A −1.5815 cohesive energy, eq. (3.9) This work

ε
(2)
A-A −0.6672 cohesive energy, eq. (3.9) This work

ε
(1)
B-B −1.4067 cohesive energy, eq. (3.9) This work

ε
(2)
B-B −0.5935 cohesive energy, eq. (3.9) This work

ε
(1)
A-B −1.5090− 0.0219x mixing energy Ref. [GME16]

ε
(2)
A-B −0.6366− 0.0092x eq. (3.9) Ref. [GME16]

ε
(1)
A-V −0.4898 formation energy, eq. (3.9) This work

ε
(2)
A-V −0.2067 formation energy, eq. (3.9) This work

ε
(1)
B-V −0.4898− 0.009432/x formation e fitted to ε

(1)
B−V = a+ b

x
This work

ε
(2)
B-V −0.3311 + 0.036x formation e fitted to ε

(1)
B−V = a+ bx This work

ε
(1)
V-V 0.5873 1nn binding energy This work

ε
(2)
V-V 0.5566 2nn binding energy This work

ε
(1)
AA-A 0.1740 formation energy, eq. (3.9) Ref. [GE15]

ε
(2)
AA-A 0.0734 formation energy, eq. (3.9) Ref. [GE15]

ε
(1)
AB-A 0.1104 formation energy, eq. (3.9) Ref. [GE15]

ε
(2)
AB-A 0.0466 formation energy, eq. (3.9) Ref. [GE15]

ε
(1)
AA-B −0.2750 binding energy Ref. [GE15]

ε
(2)
AA-B −0.1160 eq. (3.9) Ref. [GE15]

ε
(1)
AB-B −0.3486 binding energy Ref. [SNK16]

ε
(2)
AB-B −0.1470 eq. (3.9) Ref. [SNK16]

ε
(1)
AA-AA −0.1905 binding energy Ref. [BDS10]

ε
(2)
AA-AA −0.0804 eq. (3.9) Ref. [BDS10]

ε
(1)
AA-AB −0.2505 binding energy Assumed (4)

ε
(2)
AA-AB −0.1057 eq. (3.9) Assumed (4)

ε
(1)
AB-AB −1.3977 binding energy Ref. [GME16]

ε
(2)
AB-AB −0.5897 eq. (3.9) Ref. [GME16]
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From eq. (3.7), there are six different saddle-point bond coefficients: ε
sp(m)
A-A , ε

sp(m)
A-B , ε

sp(m)
A-V ,

ε
sp(m)
B-A , ε

sp(m)
B-B , and ε

sp(m)
B-V , where m= 1nn, 2nn. In this notation, ε

sp(m)
α-β represents the energy

of the bond between the atom at the saddle point α and its closest lattice neighbor β. This

means ε
sp(m)
α-β 6= ε

sp(m)
β-α .

The saddle-point bond coefficients connected to a lattice atom A (W atom), ε
sp(m)
α-A , can

be calculated as:

zsp1 ε
sp(1)
α-A + zsp2 ε

sp(2)
α-A = Em +

∑
n,q

ε
(n)
X-q +

∑
n,r 6=X

ε
(n)
V -r (3.27)

where zsp1 and zsp2 are the numbers of 1st- and 2nd nearest neighbor of an atom at the saddle

point, which are both equal to 6 for the bcc lattice, and Em is the migration energy. The

term ∆Enon-broken
ij in eq. (3.7) is zero here since no solute concentration change is involved in

an A-atom jump. ε
sp(2)
α-A is obtained from ε

sp(1)
α-A using eq. (3.9). Vacancy bonds are calculated

in a similar manner.

To calculate the saddle-point bond coefficients pertaining to B (Re) atoms, ε
sp(m)
α-B , one

must consider local solute concentration changes. To this end, we resort to the configurations

shown in Fig. 3.2(c). The A-B saddle-point coefficients ε
sp(m)
A-B are obtained from A-atom

jumps, labeled ‘1’ and ‘2’ in Fig. 3.2(c), into the vacant site. The B-B saddle-point coefficient

ε
sp(1)
B-B is computed assuming a B-atom (labeled ‘3’ in the figure) jump into the vacancy.

Equation (3.9) is then used to obtain the 2nn coefficients. All the necessary DFT calculations

to calculate the saddle-point bond coefficients were performed as part of the present work,

and are given in Table (3.3).

The migration energies of SIA and mixed-interstitials, the activation energy for SIA

rotation, as well as the correlation factors at different temperatures are taken from the

literature, and listed in Table (3.4).
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Table 3.3: Saddle-point bond energy coefficients for vacancy jumps (in eV).

ε
sp(1)
A-A −2.5975 ε

sp(2)
A-A −0.5041

ε
sp(1)
A-B −2.6451 ε

sp(2)
A-B −0.5532

ε
sp(1)
A-V 0.5465 ε

sp(2)
A-V 0.1060

ε
sp(1)
B-A −2.5188 ε

sp(2)
B-A −0.4888

ε
sp(1)
B-B −2.5417 ε

sp(2)
B-B −0.4943

ε
sp(1)
B-V 0.2902 ε

sp(2)
B-V 0.0563

Table 3.4: Self-interstitial migration parameters. The jump distances for SIA, mixed-

dumbbell migrations are δ=a0
√

3/2, a0, respectively.

EAA
m 0.003 Ref. [SYH14]

EAA
r 0.43 Ref. [SYH14]

EAB
m 0.12 Ref. [GME16]

f 2.93− 0.00055T Ref. [ZLH13]

3.1.5.5 DFT calculations

Density functional theory calculations were carried out using the projector augmented wave

(PAW) method [Bl94, KJ99] as implemented in the Vienna ab-initio simulation package

[KH93,KH94,KF96b,KF96a]. Since interstitial configurations involve short interatomic dis-

tances “hard” PAW setups that include semi-core electron states were employed with a plane

wave energy cutoff of 300 eV.

Exchange and correlation effects were described using the generalized gradient approxi-

mation [PBE96] while the occupation of electronic states was performed using the first order

Methfessel-Paxton scheme with a smearing width of 0.2 eV. The Brillouin zone was sampled

using 5× 5× 5 ~k-point grids. (A detailed discussion of the effect of different computational

parameters on the results can be found in Ref. [GE15]). All structures were optimized al-
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lowing full relaxation of both ionic positions and cell shape with forces converged to below

10 meV/Å. Migration barriers were computed using 4 × 4 × 4 supercells and the climbing

image-nudged elastic band method with three images [HUJ00].

3.2 Results

3.2.1 Structural phase diagrams

Although our energy model includes thermodynamic information reflective of the phase

stability of W-Re alloys, the model consists of a rigid lattice with bcc structure and is thus

suitable only for a given, well-defined, concentration range. Our DFT calculations yield

bond energies that are consistent with stable solid solutions from zero to approximately 40%

at. Re [GME16]. This is confirmed by way of SGMC simulations performed as a function

of composition and temperature in 64 × 64 × 64 computational cells. Figure 3.3 shows

the set of stable compositions obtained as a function of the chemical potential for several

temperatures. The figure shows a clear jump in the Re concentration at a temperature

of approximately 100 K. This is typically indicative of a phase boundary, as two distinct

phases characterized by widely different solute concentrations seem to coexist at the same

temperature and chemical potential. This may be indicative of a miscibility gap between Re

concentrations of a few percent and approximately 50 at.%, i.e. beyond the thermodynamic

validity of our rigid lattice model. To further characterize the configurations obtained,

we calculate the short-range order (SRO) of the configurations obtained according to the

Warren-Cowley parameter [Cow50]:

η = N−1B

NB∑
i

(
1− xi(A)

1−X

)
(3.28)

which gives the SRO parameter η of Re atoms w.r.t. matrix W atoms, with xi(A) being the

fraction of A atoms surrounding each solute atom i. The sum extends to all B atoms in the
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Figure 3.3: Solute composition X as a function of chemical potential ∆µ at different tem-

peratures.

system.

According to this definition, η > 0 implies phase separation, η = 0 represents an ideal

solid solution, and η < 0 indicates ordering. However, the SRO parameter of a random

solution has a range of ±0.003 regardless of solute composition due to the random occurrence

of dimers, trimers, and other small clusters. This band of natural order is marked with

dashed lines in Figure 3.4, which shows the equilibrium SRO as a function of X for several

temperatures. As the figure shows, the SRO parameter is near zero for dilute systems, and

gradually becomes negative as the concentration increases. Based on the figure we conclude

that equilibrium W-Re systems with up to ≈ 40 at.% solute content are consistent with

random solid solutions with a weak tendency to ordering at higher concentrations. The
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corresponding T -X phase diagram is provided in Figure 3.5.
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Figure 3.4: Short range order parameter η as a function of global solute composition X

at different temperatures. The dashed line indicate the SRO interval caused by normal

concentration fluctuations during the generation of atomistic samples.

3.2.1.1 Effect of vacancies on phase diagram

It is well known that non-equilibrium concentrations of defects can alter the thermodynamic

behavior of an alloy. For the W-Re system, Wrobel et al. have studied the ternary W-Re-

vacancy system and found that Re clustering occurs in the presence of non-thermodynamic

vacancy concentrations [WNK17]. Although these are unrealistic homogeneous defect con-
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Figure 3.5: Structural phase diagram showing regions of changing SRO. The dashed lines are

the limits of applicability of the rigid bcc lattice model. The system displays slightly negative

SRO throughout the entire temperature-concentration space, indicating a preference to be

in a solid solution state.

centrations, we can justify their study to hint at what could happen in highly heterogeneous

situations, such as near defect sinks in irradiated materials. Clusters appear as semi-ordered

structures of alternating solute and vacancy planes –a necessity given the short-range repul-

sion between Re atoms on the one hand, and vacancies on the other (cf. Table 3.1). Next,

we carry out a similar study involving various vacancy concentrations, temperatures, and

solute concentrations to obtain structural phase diagrams such as that shown in Fig. 3.5.

Each configuration is optimized by combining SGMC steps with energy minimization steps

following the process described in Section 3.1.3. Figure 3.6 shows the diagrams for vacancy

concentrations of Cv = 0.01, 0.1, 0.2, 0.5 at.% using 64× 64× 64 primitive cells.
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(a) Cv = 0.01 at.%
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(b) Cv = 0.1 at.%
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(c) Cv = 0.2 at.%
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(d) Cv = 0.5 at.%

Figure 3.6: Structural phase diagrams for four different vacancy concentrations. The dia-

grams clearly show the emergence of regions of solute segregation, characterized by positive

SRO and a shifting of the transition phase boundary, η = 0, towards the right (higher

concentrations).

As a representative example, Figure 3.7(a) shows the equilibrated configuration at 600

K, 1.8 at.% Re (which occurs for ∆µ = 0.26), and Cv = 0.5 at%. The figure shows several

Re-vacancy clusters with an ordered structure, consistent with the study by Wrobel et al.

[WNK17]. Due to their ordered structure, these solute-vacancy clusters form only at Re

concentrations that are commensurate with the vacancy concentration in the system, i.e. at

values of X . 0.04 in most cases.

59



(a) (b)

Figure 3.7: Equilibrated configurations for W-Re alloys containing vacancy and mixed-

interstitial at 600 K with (a) W-1.8at%Re alloy, 0.5 at% vacancy concentration and (b)

W-1.4at%Re alloy, 0.1 at% mixed-interstitials, respectively. Red spheres represent Re atoms,

colored blue or green ones represent the defect in each case.

3.2.1.2 Effect of interstitial defects on the phase diagram

Although vacancy concentrations such as those considered here are several orders of mag-

nitude larger than the vacancy concentration in thermal equilibrium, one can expect such

numbers under far-from-equilibrium conditions such as under high-dose or high-dose rate

irradiation. The case is much more difficult to make for SIAs due to their much higher

formation energy (3.2 vs. 10.2 eV, to take two representative numbers [GE15]). However,

given the inclination of single interstitials to convert into mixed dumbbells in the presence of

solute, it is of interest to repeat the same exercise of looking at the clustering propensity of

Re in such cases. The results are shown in Figure 3.8 for a defect concentration of 0.1 at.%.

The diagram reveals a stronger clustering tendency when interstitials are present compared

to vacancies. Such an effect originates from both more attractive binding energies between

mixed-interstitials and solute atoms, and between mixed-interstitials with themselves. A

snapshot of the equilibrated atomistic configuration is shown in Fig. 3.7(b), where the pre-

cipitates are seen to form platelet-like structures with a mixed dumbbell core surrounded by
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substitutional solute atoms.
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Figure 3.8: Structural phase diagram for 0.1 at.% mixed-dumbbell concentration. The di-

agram shows the emergence of regions of solute segregation, characterized by η > 0, up to

X = 0.1%.

3.2.2 Kinetic evolution of irradiated W-Re alloys

There are a number of factors that call for performing kMC simulations in W-Re systems.

1. First, equilibrium Monte Carlo calculations such as those performed in Section 3.2.1

do not provide information about the precipitate nucleation and growth mechanisms,

as well as the timescales involved.

61



2. Second, there is clear experimental evidence of Re-cluster formation in the absence of

vacancies. Hasegawa et al. [THH07,HTN11] and Hu et al. [HKF16] have both reported

the formation of W-Re intermetallic precipitates after high-dose, fast neutron irradia-

tion. Moreover, recent irradiation experiments have revealed the formation of Re-rich

clusters with bcc structure, i.e. prior to their conversion into σ and/or χ precipitates.

For example, Klimenkov et al. note that Re-rich particles not associated with cavities

formed in neutron-irradiated single crystal W [KJR16]. As well, using atom-probe

tomography Xu et al. have performed detailed analyses of Re-rich atmospheres in bcc

W without detecting significant numbers of vacancies [XAB17].

3. New understanding regarding interstitial-mediated solute transport in W-Re alloys

[SYH15,GME16], together with the results in Section 3.2.1.2, call for renewed simula-

tion efforts incorporating these new mechanisms –in particular, the three-dimensional

and associative nature of Re transport via mixed-dumbbell diffusion.

These considerations motivate the following study of the Re precipitation kinetics under

irradiation conditions. First, however, we proceed to calculate diffusion coefficients and

transport coefficients for defect species and solute atoms.

3.2.2.1 Calculation of diffusion coefficients

Tracer diffusion coefficients (i.e., in the absence of a concentration gradient) for vacancies,

interstitials, and solute species in three dimensions are assumed to follow an Arrhenius

temperature dependence:

D(T ) = νfδ2 exp

(
−Ea
kT

)
(3.29)

where ν is the so-called attempt frequency, f is the correlation factor, δ is the jump distance,

Ea is the activation energy, and D0 = νfδ2 is the so-called diffusion pre-factor. Defect

diffusivities can be obtained directly from this equation, with Ea ≡ Em. For solute diffusion
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via the vacancy mechanism, the above expression must be multiplied times the probability

of finding a vacancy in one of the 1nn positions, such that D0 = z1νfδ
2 and Ea = Em +EV

f .

However, fluctuations in local chemistry prevent us from using equations for homogeneous

systems such as eq. (3.29) to calculate the diffusivities of solutes and vacancies as a function

of the global solute concentration. In such cases, diffusion coefficients must be obtained by

recourse to Einstein’s equation:

D =
〈∆r2〉
6∆t

(3.30)

where 〈∆r2〉 is the mean squared displacement (msd) and ∆t is the time interval. This

formula assumes equilibrium defect concentrations, which are generally several orders of

magnitude smaller than what a typical simulation cell can afford. For this reason, the time in

eq. (3.30) is not directly the time clocked in the kMC simulations, ∆tkMC. Rather, it must be

rescaled by a coefficient that accounts for the difference in defect concentration [BS02,NS12]:

∆t = ∆tkMC
CkMC

Ceq
(3.31)

where CkMC and Ceq are the defect concentrations in the kMC simulations and in equilibrium,

respectively. For simulations involving only one defect, CkMC is simply equal to the inverse of

the number of atoms in the computational cell, CkMC = N−1, while Ceq = exp(−Ef/kBT ),

where Ef is the instantaneous defect formation energy, i.e. calculated accounting for the

local chemical environment. This is the approach used for vacancy mediated diffusion, with

EV
f =

∑
i εV-αi

, where αi symbolizes the neighboring atoms forming a bond with the vacancy.

During simulations of solute and vacancy diffusion, EV
f is updated in every Monte Carlo time

step and time rescaling is performed on the fly. The starting configuration for all calculations

involving solute atoms is the equilibrated alloy as obtained in Section 3.2.1 using SGMC

simulations. The results for the vacancy and solute diffusivities, Dv and Ds, can be seen in

Figure 3.9, while the parameters resulting from fitting the data points in the above figures

to eq. (3.29) are collected in Table 3.5. The details of obtaining diffusion coefficients from

KMC simulations can be seen in Appendix A.1. While Dv displays a moderate dependence

with the solute concentration, Ds is quite insensitive to it.
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Figure 3.9: Diffusivities of vacancies and solute atoms as a function of temperature and alloy

concentration. The solid lines correspond to the Arrhenius fits shown in Table 3.5, while the

dashed line corresponds to eq. (3.29).

As discussed in Section 3.1.5.4, self-interstitial migration occurs by way of fast sequences

of 〈111〉 transitions punctuated by sporadic rotations, whereas mixed dumbbell diffusion

occurs via random 〈100〉 hops in three dimensions. Interstitial diffusivities of both types can

be calculated straightforwardly by using eq. (3.29) parameterized with the data in Table 3.4.

3.2.2.2 Calculation of transport coefficients

Within linear response theory, mass transport can be related to chemical potential gradients

via Onsager’s phenomenological coefficients. The value and sign of these transport coef-

ficients can provide important physical information about the nature of solute and defect

fluxes. On a discrete lattice, the transport coefficients Lij coupling two diffusing species can

be calculated as [SSM16,AL03]:

Lij =
1

6V

〈∆ri∆rj〉
∆t

(3.32)

where V is the total volume of the system; ∆ri is the total displacement of species i, and

∆t is the rescaled time. Here we focus on the relationship between solutes and vacancy and
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Table 3.5: Diffusion parameters for vacancy and solute diffusion as a function of solute

concentration.

X [at. %] D0 [m2·s−1] Em [eV]

Vacancy diffusion

0.0 (eq. (3.29)) 4.84× 10−7 1.62

0.5 6.86× 10−6 1.73

1.0 6.92× 10−5 1.87

2.0 1.26× 10−3 2.08

5.0 2.57× 10−3 2.16

Solute diffusion

0.0 (eq. (3.29)) 3.87× 10−6 1.62 + 3.17 = 4.79

0.5 7.56× 10−7 4.67

1.0 7.80× 10−7 4.67

2.0 7.89× 10−7 4.66

5.0 6.75× 10−7 4.59

solute atoms, LB-B, and LB-V, as a function of temperature and solute content. Due to the

associative transport mechanism of AB interstitials, the corresponding transport coefficient

relating interstitials with solute atoms is always positive and we obviate its calculation.

Figure 3.10a shows the results for LB-B, which displays an Arrhenius temperature dependence

and is always positive. The dependence with solute concentration is not significant up to 5%,

with an average activation energy of 4.7 eV –very similar to the solute diffusion activation

energy– and a prefactor of approximately 3.9 × 1020 m−1·s−1. LB-B is by definition related

to the solute diffusion coefficient presented above.

In Figure 3.10b we plot the ratio LB-V/LB-B. Two observations stand out directly from

the figure. First, the value of LB-V is always negative (the exception being at 450 K, when is

almost zero). This indicates a reverse coupling between solutes and vacancies, i.e. vacancy

fluxes oppose solute fluxes. The implications of this calculation will become clearer when we

65



study solute precipitation in the next section. Second, LB-V is on average about an order of

magnitude larger than LB-B,which is to be expected for substitutional solutes moving by a

vacancy mechanism.
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Figure 3.10: Phenomenological transport coefficients for solute-solute and vacancy-solute

interactions.

3.2.2.3 Kinetic Monte Carlo simulations

To narrow down the large parametric space associated with irradiation of W-Re alloys (Re

concentration, temperature, dose, dose rate, etc.), we resort to the study performed in Sec-

tions 3.2.1 and 3.2.1.1. It was seen there that segregation occurs most favorably at low

solute compositions. For this reason, and to enable comparison with the work by Xu et

al. [XBA15,XAB17], we choose a W-2Re (at.) alloy for our study. By way of reference, this

would correspond to the transmutation fraction attained after a dose of 12 dpa or 4 full-power

years in DEMO’s first wall according to Gilbert and Sublet [GS11]. When relatively high

concentrations of defects are present –as one might expect during irradiation– precipitation

is also favored at high temperatures, so here we carry out our simulations between 1700

and 2000 K. We use box sizes of 643 and 803 with a damage insertion rate of 10−3 dpa per

second. As shown in Appendix A.2, the equivalence relation that exists between both box
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sizes enables us to compare them directly. Eight independent simulations were conducted

for statistical averaging and stochastic error estimation.

It is seen that, on average, a precipitate starts to grow after a waiting time of ≈ 21

seconds (or ≈ 0.02 dpa). This time can be regarded as the average incubation (nucleation)

time for the conditions considered in the study. Figure 3.11 shows the mean size from all

eight cases as a function of growth time, i.e. initializing the clock after the cluster nuclei

are formed regardless of the observed incubation time. The dashed line in the figure is the

associated spherical growth trend, which the precipitates are seen to follow for approximately

20 s. Subsequently, growth stops at a saturation radius of 4 nm, which is seen to be the

stable precipitate size. A surface reconstruction rendition of one of the precipitates is also

provided in the figure as a function of time. This depiction as a compact convex shape is not

intended to represent the true diffuse nature of the cluster, and is only shown as an indication

of the cluster average size and shape. The distribution of cluster sizes at beginning, during

growth, and after saturation can be seen in Appendix A.3.

The next question we address is the solute concentration inside the precipitate. Xu et

al. [XBA15, XAB17] have performed detailed atom probe analyses of radial concentration

profiles at 573 and 773 K and find that the precipitates that form might be better characerized

as ‘solute clouds’, reaching concentrations of around 30% in the center gradually declining as

the radius increases. Our analysis is shown in Figure 3.12, with results averaged over the 8

cases tried here. The figure shows that the concentration at the precipitate core (within the

inner 1.5 nanometers) surpasses 50% –the thermodynamic limit for the formation of inter-

metallic phases–, which could provide the driving force for such a transformation. Because

our energy model is not valid above the solid solution regime, we limit the interpretation of

such phenomenon however. What is clear is that the precipitates are not fully-dense, even

near their center. In fact, the relative solute concentration appears to diminish near the

precipitate core once the saturation point has been reached.
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Figure 3.11: Precipitate growth with time at 1800 K and 10−3 dpa·s−1 in a W-2.0% at. Re

alloy. The dashed line represents perfect spherical growth (cf. A.2). A surface reconstruction

rendition of one precipitate at various times is provided as inset.

Finally, we address the issue of whether it is vacancy or interstitial mediated transport

that is primarily responsible for solute agglomeration and the formation of Re-rich clusters.

To this end, we track the evolution with time of the incremental SRO change brought about

by any given kMC event during the formation stage of one the precipitates discussed above.

The results are given in Figure 3.13, where contributions from SIA and mixed interstitial

jumps, vacancy jumps, and Frenkel pair insertion are plotted. These results conclusively

demonstrate that mixed-interstitial transport is dominant among all other events to bring

solute together. Vacancies, on the other hand, serve a dual purpose. They first act as a

‘hinge’ between solute atoms that would otherwise repel, much in the manner shown in
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Figure 3.12: Radial concentration profile as a function of time for the precipitates formed

in the kMC simulations. The experimental results are taken from the work by Xu et

al. [XAB17].

Fig. 3.7(a). These results in an initial positive contribution to the SRO, as shown in the

inset to Fig. 3.13, by forming dimers, trimers, or other small solute clusters. However,

once a critical nucleus forms and starts to grow, vacancies reverse this behavior and act

to dissolve the precipitate (differential SRO turns negative in Fig. 3.13), mostly by making

the precipitate/matrix interface more diffuse. We also performed a simple confirmation on

the dual purpose of vacancies by performing KMC simulations with only one vacancy from

an initial configuration of complete phase separation and random configuration, which is

discussed in Appendix A.4. As expected, Frenkel pair insertion has practically no effect on

the overall precipitate evolution.

The precipitate grows by a sustained capture of mixed interstitials and subsequent attrac-

tion of vacancies. This gives rise to localized recombination at the precipitate, which makes

the precipitates incorporate solute atoms over time. Figure 3.14 shows the spatial location of

the recombination events during a period of 2.0 s before, during, and after precipitate growth.

69



−2

−1

 0

 1

 2

 3

 0  5  10  15  20  25  30  35  40

η

Time [s]

Total

Interstitial jumps

Vacancy jumps

F−P generations

0.00

0.02

0.04

 0  2  4
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simulations.

The figure clearly shows that, once formed, the precipitate becomes a preferential site for

recombinations, which results in further growth and eventually in saturation. Because the

primary source of solute is via interstitial transport, which also brings W atoms, the pre-

cipitates are never fully compact (x ∼ 1). Instead, maximum concentrations of around 50%

are seen near the center when the precipitates reach their saturation size of 4-nm radius. As

we will discuss in the next section, this is consistent with experimental measurements and

observations of both coherent bcc clusters and incoherent σ and χ phases.

Simulations performed with defect sinks in the same temperature range simply result in

solute segregation in the manner described in Section 2.3. Radiation induced precipitation

results from the onset of defect fluxes to the sinks, providing sufficient competition to delay

the formation of bulk precipitates beyond the time scales coverable in our kMC simulations.
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(a) During cluster nucleation. (b) During precipitate growth. (c) After size saturation.

Figure 3.14: Spatial distribution of recombination events for several stages of precipitate

evolution.

More information is provided in the Appendix A.5.

3.3 Discussion and conclusions

3.3.1 Mechanism of nucleation and growth

On the basis of our results, the sequence of events that leads to the formation of Re-rich

precipitates in irradiated W-2Re (at%) alloys is as follows:

1. First, a Frenkel pair is inserted in the computational box following the procedure spec-

ified in Section 3.1.4. As interstitials enter the system, they perform a one-dimensional

migration until they encounter a solute atom, after which they become mixed AB

dumbbells capable of transporting solute in 3D. As these mixed dumbbells diffuse

throughout the lattice, they encounter substitutional solute atoms and become trapped

forming a B-AB complex with a binding energy of 0.15 eV (cf. Table 3.1).
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2. The vacancy in the Frenkel pair migrates throughout the lattice contributing to the

formation of small Re complexes (dimers, trimers, tetramers, etc.). Vacancy motion

does not necessary imply solute drag, as indicated by the negative value of transport

coefficients in Section 3.2.2.2. However, as the evidence from the Metropolis Monte

Carlo simulations in Fig. 3.6 suggests, they can form small complexes of stable Re-V

clusters.

3. The vacancy can become locally trapped in the small Re-V complexes mentioned above.

However, at the high temperatures considered here, it is likely to de-trap and continue

migrating until it finds the immobilized interstitial from (1), as this provides the largest

thermodynamic driving force to reduce the energy of the crystal. When the vacancy

and the interstitial meet, another small Re cluster is formed. Throughout this process,

both mixed interstitial and vacancy hops are characterized by an increasing differential

SRO parameter (cf. Fig. 3.13).

4. Eventually, one of these Re clusters grows larger than the rest due to natural fluctua-

tions. When that happens, this larger cluster has a higher likelihood of attracting the

next V-AB recombination event. This signals the onset of the growth process, fueled

by continued attraction of AB mixed dumbbells and the subsequent associated recom-

bination. At this stage, vacancies reverse their role as solute-atom ‘hinges’ and begin

to contribute to cluster dissolution (negative differential SRO parameter in Fig. 3.13).

This results in the development of a more or less diffuse interface as the precipitate

grows, which delays the next recombination event and slows down growth.

5. Although the precipitate continues to be the main pole of attraction for vacancy-

interstitial recombinations (cf. Fig. 3.14), the system reaches a point where most of the

solute is consumed into a diffuse precipitate that halts further growth. Vacancies then

have more time to interact with the interface atoms before the next recombination

event, which results in a smearing of the precipitate interface. In the absence of sinks,

or other precipitates, the existing cluster is the sole focus of solute agglomeration,

which allows it grow to its maximum size for the current alloy content of 2% Re. It
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is to be expected that with competing solute sinks, the precipitates might either be

slightly smaller in size or less solute-dense internally.

This qualitative explanation is built on direct evidence and interpretation from our results,

described in detail in Section 3.3. However, to support some of the above points more

explicitly, we provide additional details as Supplementary Information.

Interestingly, the essential features of our mechanism were originally proposed by Her-

schitz and Seidman [HS84, HS85] on the basis of atom probe observations of neutron-

irradiated W-25Re alloys. Remarkably, these authors had the intuition to propose the basic

ingredients needed to have Re precipitate formation identified in our work with the more

limited understanding available at the time.

3.3.2 Brief discussion on the validity of our results

With the computational resources available to us, we can reasonably simulate systems with

less than 500,000 atoms into timescales of tens of seconds. This has proven sufficient to

study Re clustering at high temperatures, where vacancy mobility is high and comparable to

mixed-interstitial mobility. Recall from the previous section that the formation of clusters is

predicated on the concerted action of both defect species, with mixed interstitials becoming

trapped at small Re clusters followed by a recombination with a vacancy that makes the

cluster grow over time. Clustering and precipitation of Re in irradiated W has been seen

at temperatures sensibly lower than those explored here, such as 573 and 773 K for ion-

irradiated W-Re [XBA15,EXH15,XAB17], 773 and 1073 K for neutron irradiated W in HFIR

[HKF16], 1173 K in neutron irradiated W in the HFR reactor [KJR16], and by Williams et

al. at 973∼1173 K in EBR-II [WWB83]. The work by Hasegawa et al. in JOYO [THF08,

HTN11] does cover –by contrast– a similar temperature range as ours. The principle is that
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the mechanism proposed here can be conceivably extended to lower temperatures without

changes with just a timescale adjustment due to the significantly slower mobility of vacancies

at those temperatures. This would require simulated times that are far too long to cover

with kMC.

An intrinsic limitation of our model is that it is based on a rigid bcc lattice and cannot

thus capture the transition of precipitates to the intermetallic phase. As such, our model

does not necessarily reflect the true microstructural state when the local concentration sur-

passes 40∼50%, which is when phase coexistence is expected to occur according to the phase

diagram [EPG00]. However, our simulations are useful to determine the kinetic pathway

towards the accumulation of Re concentrations in the vicinity of that amount. Neutron

irradiation experiments such as those performed at JOYO and HFIR reveal the formation of

acicular σ and χ precipitates [WWB83,THF08,HTN11,HKF16], which presumably indicates

reaching local values of Re concentration of or higher than 40∼50% at the site of precipitate

formation. However, in controlled ion irradiation experiments [XBA15,EXH15,XAB17] there

is clear evidence that the precursor to the formation of these intermetallic precipitates are

noncompact Re-rich clusters with bcc structure. We cannot but speculate how the transition

from these solute-rich clusters to well-defined line compounds σ and χ takes place (perhaps

via a martensitic transformation, as in Fe-Cu systems [EMS13]), but it is clear that it is

preceded by the nucleation and growth of coherent Re clusters. In our simulations, we find

that the clusters have a maximum concentration of ≈50% in the center, in contrast with

Xu et al., who observe concentrations no larger than 30%. This disparity may simply be

a consequence of the different temperatures considered relative to our simulations (773 vs

1800 K), as it is expected that the accumulation of solute by the mechanism proposed here

will be accelerated by temperature.

As well, our Re clustering mechanism is predicated on the insertion of Frenkel pairs, when

it is well known that fast neutron and heavy-ion irradiation generally result in the formation

of clusters of vacancies and interstitials directly in displacement cascades. However, even here
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tungsten is somewhat of a special case. Recent work [SDN13,YSM15,SNR15a] suggests that

most of the defects in high-energy (>150 keV) cascades in W appear in the form of isolated

vacancies and interstitials. This, together with the fact that most displacement cascades for

non-fusion neutrons and heavy ions have energies well below the 150-keV baseline, gives us

confidence that our mechanism would be operative even in such scenarios.

3.3.3 Implications of our study

Beyond the obvious interest behind understanding the kinetics of Re-cluster formation in

irradiated W-Re alloys, our model is useful to interpret other physical phenomena. For ex-

ample, it is well known that swelling is suppressed in irradiated W-Re alloys compared to

pure W [MNM74]. By providing enhanced avenues for interstitial-vacancy recombination,

small Re clusters capture mixed interstitials, allowing sufficient time for vacancies to sub-

sequently find them and suppressing the onset of swelling. Intrinsic 3D mobility of mixed

dumbbells is likely to favor recombination as well. Note that this explanation for swelling

suppression is different to the one proposed for Fe-Cr alloys, where 1D migration of SIAs is

restrained by Cr atoms [TMB05].

Finally, the mechanisms proposed here refer to homogeneous nucleation, i.e. Re clustering

occurs without any assistance from RED or RIP, and hence without the need for defect sinks.

This is again a remarkable feature of these alloys, confirmed in several studies [HS85,XAB17,

KJR16]. As noted by Herschitz and Seidman, “The coherent precipitates were not associated

with either linear or planar defects or with any impurity atoms; i.e. a true homogeneous

radiation-induced precipitation occurs in this alloy”, or by Klimenkov et al., who point out

that “The formation of Re-rich particles with a round shape was detected in the single

crystal material. These particles were formed independently of cavities”. We leave out

heterogeneous precipitation at voids, as the evidence in the literature is conflicting at this

stage: discounted in some works [HS85,XAB17] and observed in others [KJR16].
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3.3.4 Sensitivity of results to model uncertainties

The issue of sensitivity of mesoscale models to atomistic parameters is of course of extraordi-

nary importance and the subject of larger methodologies such as uncertainty quantification

(UQ). This is especially true in a case like ours, where properties evaluated at the atomic-

molecular scale are transferred to the mesoscopic scale. Sources of uncertainty can originate

in numerical uncertainty, model uncertainty, and parametric uncertainty. Numerical uncer-

tainties are related to the finite time of the dynamic simulation, the number of particles, and

the accuracy of the computers used. Model uncertainty comes from the specific Hamiltonian

representation used here and the boundary conditions employed. Parametric uncertainties

stem from errors in parameter values due to noisy or insufficient calculations, or in approxi-

mations used to calculate them. In the specific case of DFT calculations, recent efforts point

to the need to propagate errors in the formulation of the functionals using proper statistical

analysis techniques [MSH15,Han11]. The intrinsic stochasticity of kMC simulations results

in another sort of uncertainty related to random number generators and the number of in-

dependent cases run. All told, this aspect of the simulations is the least understood, and is

starting to receive increased attention in the literature [Car08,CPL13,TPK15]. UQ requires

dedicated efforts, well beyond the scope of this work, and therefore here we simply note the

potential sources of uncertainty in our simulations and alert readers as to their potential

implications.
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CHAPTER 4

Stochastic cluster dynamics simulation study on W-Re

alloy and its strength

MC simulations can give us insight about the thermodynamic equilibrium and kinetic evolu-

tions of microstructures of W-Re alloy under irradiation. However, due to the computational

limitations, the system size and simulation time are limited to nm scale with ∼ 0.01 dpa,

in which we can only obtain one precipitate in the system. In order to extend the study to

micrometer scale with ∼ 1 dpa, we have to perform simulations on continuum regime. In this

chapter we study the W-Re alloy using stochastic cluster dynamics (SCD) simulations. The

parameters were obtained from previous MC simulations. The results of SCD simulations

can be used to predict the cluster distributions of W metal in irradiation environments and

further estimate the effect of irradiation-induced hardening.

4.1 Theory and methods

4.1.1 Stochastic cluster dynamics method

SCD simulation is a stochastic variant of the mean-field rate theory technique, alternative

to the standard ODE-based implementations, that eliminates the need to solve exceedingly
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large sets of ODEs and relies instead on sparse stochastic sampling from the underlying

kinetic master equation [MB11,MH12]. Rather than dealing with continuously varying defect

concentrations in an infinite volume, SCD evolves an integer-valued defect population Ni in

a finite material volume V, thus avoiding combinatorial explosion in the number of ODEs.

This makes SCD ideal to treat problems where the dimensionality of the cluster size space

is high, e.g., when multi-species simulations are of interest. SCD recasts the standard ODE

system into stochastic equations of the form:

dNi

dt
= g̃i −

∑
i

s̃ijNi +
∑
j

s̃jiNj −
∑
i,j

k̃ijNiNj +
∑
j,k

k̃jkNjNk (4.1)

where the set {g̃, s̃, k̃} represents the reaction rates of 0th (insertion), 1st (thermal dissocia-

tion, annihilation at sinks), and 2nd (binary reactions) order kinetic processes taking place

inside V. The detailed description of the SCD method can be found in Ref. [MB11].

In this work, we performed SCD simulations to study W-Re alloy under irradiation.

The cluster species contained in the system are Re atoms/clusters, SIAs/SIA loops, vacan-

cies/voids, and clusters with more than one species including V-Re and SIA-Re clusters.

From pervious DFT calculation work and our previous kMC simulation study, it has been

discovered that mixed-dumbbells play an important role on the segregation of W-Re alloy

under irradiation. Therefore, in this work, we carefully added the mechanism of cluster-

ing and transport of mixed-dumbbells. To keep the simulation simple, mixed-dumbbells

are not explicitly treated as a new species; instead, a SIA1Re1 cluster is considered as a

mixed-dumbbell.

In this work, system volume is set to be 10−20m3 and it is ensured that at all times

3
√
V > l, where l is the maximum of the diffusion lengths li of all species i in the system,

defined as:

l = max
i
{li},

li =

√
Di

Ri
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Here, Di and R−1i are the diffusivity and the lifetime of a mobile cluster within V . From Eq.

(4.1), Ri = s̃ +
∑

i k̃ijNi. In other words, we ensure that the characteristic diffusion length

of any defect species is contained within the simulation volume at any given time.

4.1.2 Method parameterization

The input parameters for the SCD method are defect insertion rates and distributions (0th-

order), dissociation energies (1st-order), and diffusion coefficients (1st- and 2nd-order). Below

we will discuss the parameterizations based on previous DFT calculation work and our

previous study of kinetic and Metropolis Monte Carlo (MC) simulations [HGZ17,HM16].

4.1.2.1 Irradiation damage

There are two types of irradiation damage: neutron damage and W to Re transmutation.

For the neutron damage, neutrons first hit on the material, resulting in primary knock-

on atoms (PKA) with various PKA energies. The PKA then create defects with equal

numbers of vacancies and interstitials. When a neutron damage event is performed, a primary

PKA energy EPKA is randomly generated according to the recoil energy distribution of

DEMO, HFIR, or JOYO reactors, which are the cumulative probability distribution functions

(CPDF) C(EPKA). The distributions are shown in Fig. (4.1). The defects are then inserted

into the system according to the relations of defect distribution to PKA energy.

The distribution of defects generated by a PKA has been studied by experiments and

molecular dynamics (MD) simulations [SNR15b]. Recently, Setyawan and his colleagues

performed MD simulations to study defect distributions with different PKA energies EPKA

[SNR15b]. The results on number of Frenkel pairs as well as fractions of clustered SIAs

vacancies as functions of PKA energy were extracted and used in this study. The number of
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Figure 4.1: Recoil cumulative distribution function (CPDF) in W for DEMO, HFIR, and

JOYO reactors.

Frenkel pairs NF as a function of PKA energy exhibited two regimes and was fitted to linear

regressions in a logarithmic graph:

∆Eij =

{
NF = 0.4172

(
EPKA

Ed

)0.74
, if EPKA

ED
< 341.42

NF = 0.0126
(
EPKA

Ed

)1.34
, otherwise

(4.2)

where Ed = 128 eV is the calculated average displacement threshold energy. The tempera-

ture dependency is much smaller and omitted in this study. The fractions of clustered SIAs

and vacancies fSIAc , fVc , on the other hand, depend on EPKA and temperature, respectively.

The fitting results for SIAs and vacancies are given as:

fSIAc = 0.09021

(
EPKA
Ed

)0.326

(4.3)

fVc = 0.625− 1.750× 10−4T (4.4)

where T is temperature. With the input parameters, defect distributions can be generated

using binomial sampling.

The Re transmutation rates were calculated from data from the reactors, which are listed
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in Table (4.1). It can be seen that the transmutation rate for HFIR is extremely high with

a value much larger than the other two reactors.

Table 4.1: Re transmutation rates for DEMO, HFIR, and JOYO.

Reactor Transmutation rate [at%/s]

DEMO 1.173× 10−8

HFIR 7.374× 10−7

JOYO 6.879× 10−8

4.1.2.2 Diffusion coefficients

The mobile species in the SCD simulations are: single and pure SIA clusters, single and pure

vacancy clusters, as well as single Re atoms and single mixed-dumbbells (SIA1Re1). Tracer

diffusion coefficients (i.e., in the absence of a concentration gradient) for an object in 3-D

movement is assumed to follow an Arrhenius temperature dependence:

D(T ) = νfδ2 exp

(
−Ea
kT

)
(4.5)

where ν is attempt frequency, f is the correlation factor, δ2 is the jump distance, Ea is

the activation energy, and D0 = νfδ2 is the diffusion pre-factor. Defect diffusivities can

be obtained directly from this equation, with Ea ≡ Em. For solute diffusion via the va-

cancy mechanism, the above expression must be multiplied times the probability of finding

a vacancy in one of the 1st − nn positions, such that D0 = ziνfδ
2 and Ea = Em + EV

f .

In our previous work, we have performed kinetic MC simulations of W-Re alloy with

only one vacancy at various temperatures and solute concentrations [HGZ17]. The diffusion

coefficient of Re atom in the simulations were obtained by Einstein’s equation:

D =
〈∆r2〉
6∆t

(4.6)
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where 〈∆r2〉 is the mean squared displacement (msd) and ∆t is the time interval. It should

be noted that since a solute atom migrates by exchanging position with a vacancy, the

diffusion coefficient of a solute atom depends on the concentration of vacancy. Therefore,

the time interval ∆t must be corrected by ∆t = ∆tkMC
CkMC

Ceq , where CkMC = 1/V olume is the

vacancy concentration of the kMC simulation and Ceq = exp(−Ef/kBT ) is the equilibrium

vacancy concentration. The resulting diffusion coefficients of vacancy and solute atom were

consistent with ones calculated from (4.5), and are used in this work.

The diffusion coefficient of SIA and mixed-dumbbell were directly calculated by (4.5)

[HGZ17]. The diffusion coefficients used in this work are listed in Table (4.2).

Table 4.2: Diffusion coefficients.

Species Pre-factor [cm2 · s−1] Activation energy [eV]

Pure SIA/cluster 2.752× 10−3 × (
√
NSIA)−1 0.003

Single mixed-dumbbell 1.498× 10−3 0.12

Pure vacancy/cluster 3.387× 10−3 × 0.001(NV −1) 1.623

Single Re atom 2.709× 10−2 4.79

4.1.2.3 Dissociation energy

The dissociation energy is defined as the energy difference between the system of a cluster to

the one when a monomer is emitted and separated apart from the cluster. The dissociation

energy of pure SIA and vacancy clusters has been set up and discussed in previous studies

[MB11,MH12], which is used in this work.

The dissociation energy of a Re atom from a pure Re cluster is calculated as the system

energy after moving a Re atom out from the cluster to infinity, subtracting the system energy

before the dissociation. In previous kMC work, we have obtained several large clusters with
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the solute concentration roughly equal to 50at%. To compute the dissociation energy, Re

atoms were moved one by one from the surface of a big cluster to a place where no bond

connection with other Re atoms. The Re atoms in the cluster were extracted in the order

of the distance to the center of mass of the cluster. The dissociation energy were fitted to a

linear relation and the results are shown in Fig. (4.2). The fitted dissociation energy ERe
diss

as a function of number of Re atoms in the cluster NRe is given as:

ERe
diss = −0.0258 + 4.736× 10−6NRe (4.7)
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Figure 4.2: The dissociation energy of a Re atom from a pure Re cluster as a function of

NRe in the cluster.

It can be noted that ERe
diss is negative, which means a pure Re cluster is not preferred and

would dissociate with time.

To obtain the dissociation energy of vacancy-Re clusters, we performed Metropolis Monte

Carlo simulations for VmRen clusters with m= 1, 2, 3, ..., 8. For each amount of number

of vacancies m, several simulations were run with different values of n (until the maximum

possible number of n that a complete cluster can form), and dissociation energies of a vacancy

and a Re atom were computed. The dissociation energy of a Re atom is dependent only
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on the ratio of the numbers of Re atoms to vacancies, whereas the dissociation energy of a

vacancy is a function of both the numbers of Re atoms and vacancies in the cluster. Fig. (4.3)

show the results of dissociation energies of a Re atom and a vacancy. The fitted functions

are given as:

EVmRen
diss (Re) = 0.079 + 0.154

m

n
(4.8)

EVmRen
diss (V ) = 0.494− 0.157m+ 0.077n− 0.003mn+ 0.015m2 − 0.001n2 (4.9)
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Figure 4.3: The dissociation energy of (a) Re atom and (b) vacancy from a V-Re cluster as

a function of ratio of NRe/NV and NV , respectively.

4.2 Results

We perform 15 simulations for DEMO, HFIR, and JOYO reactors, each with five tempera-

tures: 673, 773, 873, 973, and 1073 K. The system volume is set to be 10−20m3. The dpa

rate is set to be 2.4×10−07, which is the same as experimental value in Ref. [XBA15,XAB17]

for the purpose of comparison. The simulations are run for 2.4 dpa. The time evolution of

clusters containing different amounts of SIAs, vacancies, and Re atoms are recorded during

simulations for later analysis.
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4.2.1 Cluster size distribution and density

We first calculate the cluster size distribution. A cluster is classified as a SIA loop if the

cluster contains more SIAs than solute atoms; it belongs to a void if it contains more vacancies

than solute atoms; in all other cases, it is considered as a solute precipitate. The diameter

of the cluster is calculated by assuming a sphere for voids and precipitates, and a circle disk

with thickness of one burger’s vector for SIA loops. The size distributions of SIA loops, voids,

and precipitates at 0.5, 1.0, and 2.0 dpa for DEMO, HFIR, and JOYO reactors are shown

in Fig. (4.4), (4.5), and (4.6), respectively. It can be seen that at elevated temperatures

vacancies/voids dissapear in the systems due to the higher mobility of vacancies, which have

higher chance to be ended at sinks or recombinations. SIA loops, on the other hand, remain

in the systems due to the strong binding energy to Re atoms.

The number density of clusters (with monomer excluded) at 673 K as a function of dpa

is shown in Fig. (4.7). Experimentally, there is a limit resolution of 1nm when observing

clusters. In Fig. (4.8), (4.9), and (4.10), we show the number density evolution for the three

reactors with clusters diameter larger than 1nm. It can be clearly seen that for HFIR there

are only visible clusters at 673 K and therefore in the following hardening calculation we

only present results of HFIR at 673 K.

4.2.2 Irradiation hardening due to formation of clusters

The estimation of the hardening effects due to clusters have been studied and a dispersed

barrier hardening model has been developed by Friedel-Kroupa-Hirsh [KH64,ZM04]. In this

work, we perform a comparison of our simulation results with a recent experimental study

done by Hu and his co-workers [HKF16]. In their study, the change in yield strength σy is
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Figure 4.4: The cluster size distributions of SIA loops, voids, and Re precipitates for DEMO

irradiations.
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Figure 4.5: The cluster size distributions of SIA loops, voids, and Re precipitates for HFIR

irradiations.
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Figure 4.6: The cluster size distributions of SIA loops, voids, and Re precipitates for JOYO

irradiations.
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Figure 4.7: Accumulation of all SIA loops, voids, and Re precipitates clusters as a function

of dose at different temperatures for DEMO, HFIR, and JOYO irradiations.
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Figure 4.8: Accumulation of visible SIA loops, voids, and Re precipitates as a function of

dose at different temperatures for DEMO irradiations.
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Figure 4.9: Accumulation of visible SIA loops, voids, and Re precipitates as a function of

dose at different temperatures for HFIR irradiations.
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Figure 4.10: Accumulation of visible (>1.0 nm) SIA loops, voids, and Re precipitates as a

function of dose at different temperatures for JOYO irradiations.
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formulated as:

σy = 3.2Mαµb(Nd)
1
2 (4.10)

where M is the Taylor factor, α is the defect cluster barrier strength, µ is the shear modulus

of the tungsten matrix, b is the magnitude of the dislocation Burgers vector, N is the

number density. Followed by the work of Hu et al. [HKF16], the values of Taylor factor M ,

shear modulus µ were set to be 3.06, 161 Gpa, respectively, and Burgers vector is given as

b̄ = a
2
< 111 >. The defect cluster barrier strength α is different for different defect clusters:

voids and precipitates are considered as strong obstacles and therefore have relatively high

values of α. The values of α are listed in Table (4.3). In this calculation, only the contribution

of visible clusters (with diameter larger than 1.0 nm) is taken into account.

Table 4.3: The defect cluster barrier strength α for different types and diameter of clusters.

The values were obtained from the work of Hu et al. [HKF16].

Defects size barrier strength factor (α)

Dislocation loops >1.0 nm 0.15

Voids 1-2 nm 0.25

Voids 2-3 nm 0.30

Voids 3-4 nm 0.35

Voids >4 nm 0.40

Precipitates >1.0 nm 0.60

Fig. (4.11) shows the simulation results of irradiation hardening contribution from dif-

ferent clusters calculated using Eq. (4.10). As the dose increases, the hardness increases

as more damages are inserted into the systems. Hardening is dependent on temperature.

At low temperature, vacancy mobility is very small, making vacancies/voids hard to reach

at sinks. In this case, voids are the major obstacles to contribute to hardening. At high

temperature, voids are dissipated and Re precipitates become the main contributor of hard-

ening. The hardness increases obtained in this simulation work are partially consistent with
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the experimental data such as JOYO at low temperatures. However, some inconsistencies

are also observed. In the experimental work, The major contributor changes from SIA loops

and voids to Re precipitates as dose increase, which cannot observe in our simulation results.

Also, the contribution from Re precipitates for HFIR does not appear in the results, despite

the high transmutation rates.
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Figure 4.11: Radiation-induced hardening contributions from different clusters calculated

using Eq. (4.10) for (a) HFIR, JOYO and (b) DEMO reactors. For HFIR reactor, there

are visible clusters only at temperature of 673 K and hardening at other temperatures is

omitted.
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APPENDIX A

A.1 Details in diffusion coefficient calculations

During the diffusion simulations, we tracked the positions of the vacancy and solute atoms,

and calculated the mean square displacements by 〈∆r2〉 = n−1
∑n

a=1 r
2
a, where n = 1, nB

for the vacancy and solute atoms, respectively. Fig. (A.1) shows an example of 〈∆r2〉 as

a function of time for solute atom diffusions at 900 K at different solute concentrations. A

linear relation between 〈∆r2〉 and time can be observed. 100 data points are then selected

with equal time period and diffusion coefficients are obtained by fitting the data points to

the Einstein’s equation:

D =
〈∆r2〉
6∆t

(A.1)

Transport coefficients are calculated with the same method, with the dot product 〈∆ri∆rj〉

computed as (
∑n

a=1 ra) (
∑n

b=1 rb).

A.2 Size dependence of physical time in kMC simulations

As explained in Section 3.3, the mechanism of formation of Re clusters requires the concerted

action of both interstitials and vacancies. In order to be able to capture their formation

during reasonable computational times, the temperature regime considered must be one
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Figure A.1: Mean square displacements of solute atoms 〈r2〉 as a function of time at 900 K

for different solute concentrations.

where the mobility of both species is comparable (1700 ∼ 2000 K in our case). Then, the

rate of arrival of solute atoms to a previously-nucleated Re cluster can be approximated by:

rs =
1

tFP + tdiff
(A.2)

where tFP and tdiff are the average time in between successive Frenkel-pair insertions and a

characteristic diffusion time required by a vacancy and an interstitial to recombine with one

another. rs is measured in units of atoms per unit time. At the temperatures and dose rates

considered here, tFP � tdiff , such that rs ≈ tFP
−1. Assuming then that for each Frenkel pair

inserted a minimum of one solute atom is transported:

rs =
dNB

dt
= rdpaN (A.3)

where NB is the total number of solute atoms in the precipitate. rdpa in the above equation

is the damage rate, expressed in units of [dpa·s−1]. The precipitate volume growth rate is
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directly equal to the atomic volume times rs:

V̇ppt = Ωars = Ωa
dNB

dt
= ΩardpaN (A.4)

Assuming that the precipitate is close to spherical:

V̇ppt = 4πRppt
2Ṙppt = ΩardpaN

And, operating, we arrive at the equation for the evolution of the precipitate radius with

time:

Rppt =

(
ΩardpaNt

4π

) 1
3

(A.5)

which is the equation used for fitting in Fig. 3.11.

Then, from eq. (A.3), for a given constant dpa rate, it is clear that the ratio rs(V1)N
−1
1 =

rs(V2)N
−1
2 = constant, where V1 and V2 are two different box sizes. For as long as the

approximation in eq. (A.2) is valid, then:

t
(1)
FPN1 = t

(2)
FPN2 = constant

which allows us to compare simulations done on box sizes of 643 and 803 directly. We empha-

size that at lower temperatures, and/or high dose rate, where tFP ≈ tdiff , this comparison

is no longer valid.

A.3 Cluster size distribution

The cluster distribution evolution in a KMC simulation with no sink is shown in Fig. (A.2).

It demonstrates the transition of the cluster distribution while the big precipitate sucks

solute atoms from the small clusters.
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Figure A.2: The histogram plot of solute cluster distribution at 0s (beginning), 15s (growing),

and 50s (end). The KMC simulations are performed at 2.0% solute concentration at 2000

K.

A.4 Confirmation of SRO preference of vacancies

As discussed in the main text, a vacancy acts as a mediator for solute atoms to form small

cluster (dimer, trimer, etc.) when the W-Re alloy is in random-solution state, but changes

its roll to dissolve precipitates when the precipitate grows larger. We performed KMC sim-

ulations with only 1 vacancy to confirm the hypothesis. The vacancy was initially added to

the system and no other defect was generated during simulations. Two initial configurations

were used: random solution and complete precipitation with all solute atoms in a big cubic.

The SRO is then computed and compared. The simulations were performed at 2.0% solute
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concentration at 1800 K, with box size of 643. The results of SRO evolution can be seen

in Fig. (A.3). It can be seen that SRO with initial configurations of full precipitation and

random solid solution converges from a value of roughly 1.0, 0.0, respectively, to a value

close to 10−3.
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Figure A.3: SRO evolution with initial configurations of full precipitation and random solid

solution. The KMC simulations are performed at 2.0% solute concentration at 1800 K.

A.5 KMC simulations with sinks

As discussed in the theory and methods section, there are two sink conditions used in this

work: plane sink and surface sink. We performed KMC simulations on an 643 W-2.0% at. Re

alloy at 1800 K. The concentration profiles for the two sink conditions along x-dimension are

shown in Fig. (A.4). The enrichment of solute atoms can be clearly seen at the middle and
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two sides of the system for plane sink and surface sink conditions, respectively. As discussed

in the main text, mixed-interstitial is the major solute atom carrier to the sinks. Vacancy,

on the other hand, may disperse solute atoms to surrounding regions nearby sinks.
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