Title
Cochlear-microphonic and middle-ear pressure changes during nitrous oxide anesthesia in cats.

Permalink
https://escholarship.org/uc/item/84s7z6br

Journal
The Journal of the Acoustical Society of America, 51(4)

ISSN
0001-4966

Authors
Starr, A
Schwartzkroin, P

Publication Date
1972-04-01

DOI
10.1121/1.1912985

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
could be reconciled with current theories is to assume that the neural representation contains information about the phase as well as the magnitude of the stimuli regardless of whether the stimuli are present at that moment. Whether phase information can be preserved neurally in this way is an as yet unanswered question.

REFERENCES

Received 9 June 1970

Cochlear-Microphonic and Middle-Ear Pressure Changes during Nitrous Oxide Anesthesia in Cats

A. STARR* AND P. SCHWARTZKROIN†

Stanford University Medical Center, Department of Neurology, Stanford, California 94305

The amplitude of cochlear-microphonic responses in cats was attenuated up to 18 dB during both induction and recovery from nitrous oxide anesthesia, with smaller changes (up to 3 dB) occurring during the periods of maintained anesthesia. This response variability was clearly related to alterations of middle-ear pressure and could not be attributed to changes in middle-ear muscle or efferent olivocochlear bundle activities.

Middle-ear pressure rose during inhalation of nitrous oxide with periodic abrupt returns to baseline levels during the period of maintained anesthesia; pressure became negative after withdrawal of nitrous oxide.

In the course of studying auditory responses in cats with chronically implanted round-window electrodes, we encountered a source of response amplitude variability attributable to the use of nitrous oxide inhalation anesthesia. Cochlear microphonic (CM) responses to tone signals (1-30 kHz) varied as much as 18 dB during both induction and recovery from nitrous oxide anesthesia and up to 3 dB during maintained anesthesia. Response variability was not the result of middle-ear muscle activity, since it persisted in cats paralyzed with gallamine triethiodide or d-tubocurarine, as well as in cats in which the tendons of the middle-ear muscles had been sectioned. Crushing the eighth nerve had no effect on the microphonic changes, indicating that the efferent olivocochlear bundle was also not involved in this phenomenon. Two lines of evidence suggested that nitrous oxide administration affected CM responses by influencing middle-ear pressure. First, nitrous oxide enters body cavities (such as the middle ear) before the normal major component of these cavities (nitrogen) has been resorbed (Matz et al., 1967; Rasmussen, 1967). If the cavity has rigid boundaries...

FIG. 1. Middle-ear pressure (top trace) and integrated CM response to a steady 3-kHz tone (bottom trace) during induction of nitrous oxide anesthesia.

The Journal of the Acoustical Society of America 1367
hours, this differential rate of gas exchange is accompanied by an increase of pressure (i.e., an increase in \(p_{N_2} \) without a corresponding decrease in \(p_{N_2} \)). A number of studies have demonstrated just such a rise in pressure within the middle ear during nitrous oxide anesthesia (Matz et al., 1967; Rasmussen, 1967; Thomsen et al., 1965). Second, Wever et al. (1942, 1948) and more recently Müller (1965) have shown that the amplitude of CMs can be affected by producing a pressure difference across the tympanic membrane. The present study was undertaken to examine CM responses and middle-ear pressure changes during nitrous oxide anesthesia.

I. METHODS

Eight cats were used in the experiments. They were anesthetized with Nembutal, with Halothane 1% in room air, or with a mixture of nitrous oxide 50%/oxygen 49%/halothane 1%, and intubated. The bulla was exposed by a posterolateral incision and a small hole drilled to visualize the round window. A 0.007-in. stainless steel wire, insulated except for a small ball (about 0.020-in. diam) at the tip, was placed on the round window and dental acrylic used to fix the electrode to the bulla and to seal the bulla closed. In six of the animals, a polyethylene tube (PE 190, i.d. 0.047 in.) was sealed into another small hole in the bulla for measurement of middle-ear pressure or for applying known amounts of pressure from a calibrated source. All wounds were infiltrated with a long-acting topical anesthesia (Procaine in oil), and the animal was then placed in a sound attenuating chamber and supported from a screw previously cemented to his skull. The animals were paralyzed with gallamine triethiodide (40 mg/h IV), artificially resired, and body temperature maintained between 37° and 39° C. Round-window activity was amplified (0.3-30 kHz) and integrated (time constant 50 msec), and the integrator output was displayed on both a dc penwriter and a digital volt meter. Middle-ear pressure was measured by an oil-filled blood-pressure transducer (Statham) and displayed on another channel of the dc penwriter. The sensitivity of our system was sufficient to detect pressure fluctuations as low as ±5 mm H₂O. The pressure transducer was calibrated by directly applying known pressures to the device. Sound signals (single tonal frequencies or swept tones of 1-30 kHz) were presented free field via a 1-in. Bruel & Kjaer microphone placed close to the external auditory canal. The intensity of the individual tones was adjusted to evoke 100 µV of cochlear microphonics. The intensity of the swept tone was adjusted so that the maximal response evoked was approximately 250 µV.

II. RESULTS AND CONCLUSIONS

The relation between middle-ear pressure and CM responses was examined in four cats. The animals were prepared under Halothane anesthesia (1% in room air) and allowed to respire room air for 1 h before beginning data collection. Results were as follows.

1. Unanesthetized condition. No significant deviation of middle-ear pressure from atmospheric levels was noted in the control periods. Cochlear-microphonic responses showed small amplitude fluctuations (±1 dB) during this same period. No attempt was made to define the source of this response variability.

2. Nitrous oxide condition. Within 2-5 min after introducing the nitrous oxide (\(N_2O 50% \)/oxygen 50%) middle-ear pressure began to increase at a slow steady rate (2-5 mm H₂O/min) (Fig. 1). Pressure rose to about 140 mm H₂O (range in the four cats was 80-140 mm H₂O) and then dropped sharply back towards 0 mm H₂O. This cycle of slow pressure rise and abrupt fall was repeated several times, usually with each succeeding pressure drop occurring at a lower pressure level. After 10-25 min of inhaling nitrous oxide, the

