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The flow duration curve is a signature catchment characteristic that depicts graphically the relationship
between the exceedance probability of streamflow and its magnitude. This curve is relatively easy to cre-
ate and interpret, and is used widely for hydrologic analysis, water quality management, and the design
of hydroelectric power plants (among others). Several mathematical expressions have been proposed to
mimic the FDC. Yet, these efforts have not been particularly successful, in large part because available
functions are not flexible enough to portray accurately the functional shape of the FDC for a large range
of catchments and contrasting hydrologic behaviors. Here, we extend the work of Vrugt and Sadegh
(2013) and introduce several commonly used models of the soil water characteristic as new class of
closed-form parametric expressions for the flow duration curve. These soil water retention functions
are relatively simple to use, contain between two to three parameters, and mimic closely the empirical
FDCs of 430 catchments of the MOPEX data set. We then relate the calibrated parameter values of these
models to physical and climatological characteristics of the watershed using multivariate linear regres-
sion analysis, and evaluate the regionalization potential of our proposed models against those of the lit-
erature. If quality of fit is of main importance then the 3-parameter van Genuchten model is preferred,
whereas the 2-parameter lognormal, 3-parameter GEV and generalized Pareto models show greater pro-
mise for regionalization.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

The flow duration curve (FDC) is a widely used characteristic
signature of a watershed, and is one of the three most commonly
used graphical methods in hydrologic studies, along with the mass
curve and the hydrograph (Foster, 1934). The FDC relates the
exceedance probability (frequency) of streamflow to its magni-
tude, and characterizes both the flow regime and the streamflow
variability of a watershed. It is closely related to the ‘‘survival”
function in statistics (Vogel and Fennessey, 1994), and is inter-
preted as a complement to the streamflow cumulative distribution
function (CDF). The FDC is frequently used to predict the distribu-
tion of streamflow for water resources planning purposes, to sim-
plify analysis of water resources problems, and to communicate
watershed behavior to those who lack in-depth hydrologic
knowledge. One should be particularly careful to rely solely on
the FDC as main descriptor of catchment behavior (Vogel and
Fennessey, 1995; Westerberg et al., 2014) as the curve represents
the rainfall-runoff as disaggregated in the time domain and hence
lacks temporal structure (Searcy, 1959; Vogel and Fennessey,
1994).

The first application of the FDC dates back to 1880 and appears
in the work by Clemens Herschel (Foster, 1934). Ever since, the FDC
has been used in many fields of study including (among others) the
design and operation of hydropower plants (Singh et al., 2001;
Niadas and Mentzelopoulos, 2008), flow diversion and irrigation
planning (Chow, 1964; Warnick, 1984; Pitman, 1993; Mallory and
McKenzie, 1993), streamflow assessment and prediction (Tharme,
2003), sedimentation (Vogel and Fennessey, 1995), water quality
management (Mitchell, 1957; Searcy, 1959; Jehng-Jung and Bau,
1996; Moftakhari et al., 2015), waste-water treatment design
(Male and Ogawa, 1984), and low-flow analysis (Wilby et al.,
1994; Smakhtin, 2001; Pfannerstill et al., 2014). Recent studies have
used the FDC as a benchmark for quality control (Cole et al., 2003),
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and signature or metric for model calibration and evaluation
(Refsgaard and Knudsen, 1996; Yu and Yang, 2000; Wagener and
Wheater, 2006; Son and Sivapalan, 2007; Yadav et al., 2007;
Yilmaz et al., 2008; Zhang et al., 2008; Blazkova and Beven, 2009;
Westerberg et al., 2011; Vrugt and Sadegh, 2013; Pfannerstill
et al., 2014; Sadegh and Vrugt, 2014; Sadegh et al., 2015). For
instance, Vrugt and Sadegh (2013) used the fitting coefficients of
a simple parametric expression of the FDC as summary statistics
in diagnostic model calibration and evaluation using approximate
Bayesian computation (ABC). This ABC diagnostics methodology
has been introduced and described by Vrugt and Sadegh (2013)
and interested readers are referred to this and subsequent publica-
tions by Sadegh and Vrugt (2014), Sadegh et al. (2015), Vrugt (2016)
for further details.

Application of FDCs for hypothesis testing (Kavetski et al., 2011)
can improve identifiability and help attenuate the problems asso-
ciated with traditional residual-based objective (likelihood) func-
tions (e.g. Nash–Sutcliffe, sum of squared residuals, absolute
error, relative error) that emphasize fitting specific parts of the
hydrograph, such as high or low flows (Schaefli and Gupta, 2007;
Kavetski et al., 2011; Westerberg et al., 2011), and thereby lose
important information regarding the structural inadequacies of
the model (Gupta et al., 2008, 2012; Vrugt and Sadegh, 2013).
The FDC is a signature watershed characteristic that along with
other hydrologic metrics, can help shed lights on epistemic (model
structural) errors (Euser et al., 2013; Vrugt and Sadegh, 2013). For
example, Son and Sivapalan (2007) used the FDC to highlight the
reasons of model malfunctioning and to propose improvements
to the structure of their conceptual water balance model for the
watershed under investigation. Indeed, a deep groundwater flux
was required to simulate adequately dominant low flows of the
hydrograph. Yilmaz et al. (2008) in a similar effort to improve sim-
ulation of the vertical distribution of soil moisture in the HL-DHM
model, used the slope of the FDC as benchmark for model perfor-
mance. The FDC was deemed suitable for this purpose due to its
strong dependence on the simulated soil moisture distribution,
and relative lack of sensitivity to rainfall data and timing errors.
However, the proposed refinements of the HL-DHM model were
found inadequate and this failure was attributed to the inherent
weaknesses of the conceptual structure of HL-DHM.

The usefulness of duration curves (e.g. precipitation (Yokoo and
Sivapalan, 2011), baseflow (Kunkle, 1962) and streamflow (flow)
(Hughes and Smakhtin, 1996)) depends in large part on the tempo-
ral resolution of the data (e.g. quarterly, hourly, daily, weekly, and
monthly) these curves are constructed from. FDCs derived from
daily streamflow data are commonly considered to warrant an ade-
quate analysis of the hydrologic response of a watershed (Vogel and
Fennessey, 1994; Smakhtin, 2001; Wagener and Wheater, 2006;
Zhao et al., 2012). For example, a FDC with a steepmid section (also
referred to as slope) is characteristic for a watershed that responds
quickly to rainfall, and thus has a small storage capacity and large
ratio of direct runoff to baseflow. A more moderate slope, on the
contrary, is indicative of a basin whose streamflow response reacts
much slower to precipitation forcingwith discharge that ismade up
in large part of baseflow (Yilmaz et al., 2008).

The shape of the FDC is determined by several factors including
(amongst others) topography, physiography, climate, vegetation
cover, land use, and storage capacity (Singh, 1971; Lane et al.,
2005; Zhao et al., 2012; Brown et al., 2013), and can be used to per-
form regional analysis (Wagener and Wheater, 2006; Masih et al.,
2010) or to cluster catchments into relatively homogeneous groups
that exhibit a relatively similar hydrologic behavior (Sawicz et al.,
2011; Coopersmith et al., 2012). Different studies have appeared in
the hydrologic literature that have analyzed how the shape of the
FDC is affected by physiographic factors and/or vegetation cover.
Despite this progress made, interpretation of the FDC can be con-
troversial if an insufficiently long streamflow data record is used
(Vogel and Fennessey, 1994). The lower end of the FDC (low flows)
is particularly sensitive to the period of study, and to whether the
streamflow data includes severe droughts or not (Castellarin et al.,
2004a). If the available data is sparse and does not warrant an
accurate description of the FDC, then the use of an annual duration
curve is advocated (Searcy, 1959; Vogel and Fennessey, 1994;
Castellarin et al., 2004a,b). This curve describes the relationship
between the magnitude and frequency of the streamflow for a
‘‘typical hypothetical year” (Vogel and Fennessey, 1994). To con-
struct an annual FDC, the available data is divided into z years
and individual FDCs are constructed for each year. Then, for each
exceedance probability a median streamflow is derived from these
z different FDCs and used to create the annual FDC. Vogel and
Fennessey (1994) used this concept to associate confidence and
recurrence intervals to FDCs in a nonparametric framework. One
should note that the FDC of the total data record is, in general,
more accurate than the annual FDC (Leboutillier and Waylen,
1993). What is more, recent studies have provided physically-
based approaches, especially for tidal rivers, to extend river dis-
charge records beyond the period of observation (Moftakhari
et al., 2013; Moftakhari, 2015). Such approaches can be helpful
to derive the FDC for sites with scarce or no discharge observations.

To better analyze and understand the physical controls on the
FDC, it is common practice to divide the total FDC (TFDC) into a
slow (SFDC) and fast (FFDC) flow component (Yokoo and
Sivapalan, 2011; Cheng et al., 2012; Coopersmith et al., 2012;
Yaeger et al., 2012; Ye et al., 2012). For example, Yokoo and
Sivapalan (2011) concluded from numerical simulations with a
simple water balance model that the FFDC is controlled mainly
by precipitation events and timing, whereas the SFDC is most sen-
sitive to the storage capacity of the watershed and its baseflow
response. This type of analysis is of particular value in regionaliza-
tion studies, and prediction in ungauged basins. Indeed, much
effort has gone towards prediction of the FDC in ungauged basins
using measurements of the rainfall-runoff response from hydrolog-
ically similar, and preferably geographically nearby, gauged basins
(Holmes et al., 2002; Sivapalan et al., 2003).

In this context, one approach has been to cluster catchments
into classes with similar physiographic and climatic characteristics,
and then to estimate dimensionless (non-parametric) FDCs for
gauged basins which in turn are then applied to ungauged basins
(Niadas, 2005; Ganora et al., 2009). One such example is the work
of Pugliese et al. (2014) who applied top-kriging to predict the
empirical FDC in ungauged catchments. The FDCs are normalized
by an index value (e.g. mean annual runoff) to generate dimension-
less curves (Ganora et al., 2009; Shamseldin, 2014). A detailed
review on methods for clustering of homogeneous catchments
appears in Sauquet and Catalogne (2011) and Booker and Snelder
(2012), and interested readers are referred to these publications
for more information. Another approach has been to mimic the
empirical (observed) FDC with a mathematical/probabilistic model
and to correlate the fitting coefficients of such parametric expres-
sions to physical and climatological characteristics of the water-
shed using regression techniques, index models, artificial
intelligence, and spacial interpolation schemes (Fennessey and
Vogel, 1990; Yu and Yang, 1996; Yu et al., 2002; Croker et al.,
2003; Castellarin et al., 2004a,b, 2007; Li et al., 2010; Sauquet and
Catalogne, 2011; Viola et al., 2011; Longobardi and Villani, 2013;
Pumo et al., 2013; Mendicino and Senatore, 2013; Shamseldin,
2014; Waseem et al., 2015). Such pedotransfer functions can then
be used to predict the FDC of ungauged basins from simple catch-
ment data (e.g. soil texture, topography, vegetation cover, etc.).

Models that emulate the FDC can be grouped in two main
classes: 1. Physical models that use physiographic and climatic
characteristics of the watersheds (e.g. drainage area, mean areal
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precipitation, soil properties, etc.) as parameters of the FDC (Singh,
1971; Dingman, 1978; Yu and Yang, 1996; Holmes et al., 2002; Yu
et al., 2002; Lane et al., 2005; Botter et al., 2008; Mohamoud, 2008)
and 2. Probabilistic/mathematical functions that use between two
to five fitting coefficients to mimic the empirical FDC as closely and
consistently as possible (Quimpo et al., 1983; Mimikou and
Kaemaki, 1985; Fennessey and Vogel, 1990; Leboutillier and
Waylen, 1993; Franchini and Suppo, 1996; Cigizoglu and Bayazit,
2000; Croker et al., 2003; Botter et al., 2008; Li et al., 2010;
Booker and Snelder, 2012).

The early work of Dingman (1978) is the first study that used
physical models to mimic empirical FDCs. Topography maps were
used as signature of catchment behavior to predict the FDC using
relatively simple first-order polynomial functions. Two more
recent studies by Yu and Yang (1996), and Yu et al. (2002) used
similar regression functions to predict the FDC of catchments in
Taiwan but considered the drainage area as main proxy of the
rainfall-runoff transformation.

Probabilistic methods include the use of lognormal and lognor-
mal mixture (Fennessey and Vogel, 1990; Leboutillier and Waylen,
1993; Castellarin et al., 2004a; Li et al., 2010), generalized Pareto
(Castellarin et al., 2004b), generalized extreme value, gamma and
Gumbel (Booker and Snelder, 2012), beta (Iacobellis, 2008), and
logistic distributions (Castellarin et al., 2004b). Other mathematical
models include (amongst others) the use of exponential, power, log-
arithmic (Quimpo et al., 1983; Franchini and Suppo, 1996; Lane
et al., 2005; Booker and Snelder, 2012), and polynomial functions
(Mimikou and Kaemaki, 1985; Yu et al., 2002). Detailed reviews of
different functions for the FDC can be found in Sauquet and
Catalogne (2011), Booker and Snelder (2012) and Mendicino and
Senatore (2013). In another line of work, Cigizoglu and Bayazit
(2000) used convolution theory to predict the FDC as a product of
periodic and stochastic streamflow components. What is more,
Croker et al. (2003) used probability theory to combine amodel that
predicts the FDC of days with non-zero streamflow with a distribu-
tion function that determines randomly the probability of dry days.

Notwithstanding this progress made, the probabilistic and
mathematical functions used in the hydrologic literature fail, usu-
ally, to properly mimic all parts of the FDC when benchmarked
against watersheds with completely different hydrologic behav-
iors. Consequently, some researchers focus only on a specific por-
tion of the FDC, commonly the low flows (Fennessey and Vogel,
1990; Franchini and Suppo, 1996), whereas others prefer to use
several percentiles of the FDC rather than the entire curve (Lane
et al., 2005; Mohamoud, 2008; Blazkova and Beven, 2009). While
complex ‘‘S” shaped FDCs can only be modeled adequately if a suf-
ficient number of parameters (say five to seven) are used (Ganora
et al., 2009), one should be particularly careful using such rela-
tively complex FDC models for regionalization and prediction in
ungauged basins as parameter correlation and insensitivity can
complicate and corrupt the inference and results.

In this paper, we introduce a new class of closed-form mathe-
matical expressions which are capable of describing the FDCs of
a very large number of watersheds with contrasting hydrologic
behaviors. We extend the ideas presented in Vrugt and Sadegh
(2013), and propose several commonly used functions of the soil
water characteristic as mathematical models for the observed
(empirical) FDCs. These models have between two to three param-
eters and describe closely the FDCs of the MOPEX data set. This
work is a follow up of Vrugt and Sadegh (2013) who introduced
a 2-parameter formulation of the van Genuchten (VG) retention
function (van Genuchten, 1980) as model for the FDC. The fitting
coefficients of this function were derived by calibration against
the observed FDC of the French Broad river basin and used as sum-
mary statistics in diagnostic model evaluation with ABC. Here, we
extend this preliminary work, and introduce and benchmark sev-
eral other soil water retention functions (SWRFs) using historical
streamflow observations from 430 watersheds of the MOPEX data
set. We are particularly interested in the quality of fit of each
model, parameter sensitivity and correlation, and regionalization
potential of the fitting coefficients.

The motivating idea of this paper is the strong analogy in hydro-
logic functioning and behavior between a watershed and a porous
medium such as a soil. Both are subject to hydroclimatologic forcing
(e.g. rainfall, evaporation, transpiration), have an intrinsic ability to
retainwater (this capacity is due to capillary action, osmotic binding
and the presence of London-van der Waals forces acting between
the solid phase and water), and transport water in response to gra-
dients in the total (hydraulic) potential (includes effects of gravity
and local water availability). This transport of water can take place
via different trajectories including fast (e.g.macropores – also called
preferential flow), and slow (matrix) flowpathways, and involve the
entire range of flow conditions ranging from simple linear/nonlin-
ear laminar flow to turbulent (within stream) transport. This anal-
ogy attempt is tailored specifically to surface hydrology to help
rectify the chronic historical deficit of physics-based approaches
(derived from first-order physical principles) in analyzing the
watershed response to rainfall. Related ideas published by Vrugt
et al. (2005) have shown how concepts of micromixing borrowed
from the field of chemical reaction engineering can be used tomodel
tracer experiments at C-wells near Yucca Mountain, Nevada.

One does not need to agree with our analogy hypothesis to
appreciate the findings of this paper. Our hypothesis does open
up an arsenal of new mathematical and physically-based
approaches to describe large-scale hydrologic behavior. For
instance, dual porosity (permeability) approaches allow one to
describe preferential flow whereas the mobile/immobile water
concept developed (among others) to simulate correctly the tailing
behavior of solutes provides a mechanism to describe correctly the
residence time distribution of water in the catchment in pursuit of
a correct representation of the age distribution of the hydrograph.
These ideas provide a powerful alternative to conceptual modeling
approaches but have to be supported with much further research
and analysis, the outcome of which will be reported in due course.
For now, we focus our attention to the use of soil hydraulic models
to describe accurately the flow duration curve of a large cohort of
watersheds with contrasting hydrologic behaviors. These mathe-
matical expressions can be used (amongst others) for hydrologic
modeling, prediction in ungauged basins and regionalization.

The remainder of this paper is organized as follows. Section 2
provides a brief review of the most commonly used probabilistic
and empirical models in the literature to mimic the FDC, and intro-
duces several closed-form expressions of the soil water character-
istic to emulate FDCs. This section also discusses the MOPEX data
set, and the optimization procedure to estimate the values of the
fitting coefficients of each SWRF. Then in Section 3, we present
and discuss the fitting results of each of the proposed parametric
expressions. Here, we are especially concerned with benchmarking
of our results against those of the FDC models used in the litera-
ture, analysis of parameter sensitivity and correlation. Section 4
evaluates the regionalization potential of each parametric expres-
sion of the FDC using multivariate regression analysis of the FDC
parameters and basin characteristics. Finally, Section 5 concludes
this paper with a summary of the most important findings.
2. Materials and methods

2.1. Experimental data: MOPEX data set

We use daily streamflow data from 438 MOPEX watersheds to
analyze the ability of different mathematical functions to fit the



M. Sadegh et al. / Journal of Hydrology 535 (2016) 438–456 441
empirical FDCs. This data set has been described by Duan et al.
(2006) and is available for public download from the following
website: http://ftp://hydrology.nws.noaa.gov/pub/gcip/mopex/US_
Data/. This includes watersheds from across the United States with
different hydrologic behaviors. The empirical FDCs are constructed
using all of the available streamflow data for each watershed.
Fig. 1 shows the observed FDCs for eight of the MOPEX watersheds.
The discharge values of each watershed (y-axis) are normalized
between zero and one so that the FDCs of the watersheds can be
compared more easily visually. A large variety in the FDCs of the
MOPEX data set is observed. This confirms the need for a flexible
function that can adequately describe the large range of hydrologic
behaviors.

This rich archive of 438 catchments in the USA contains rela-
tively long records of daily hydrologic data (rainfall, potential
evapotranspiration and streamflow). Eight watersheds were
excluded from our analysis due to an insufficient number of
streamflow observations. The remaining 430 catchments have
between 3,773 and 19,997 daily streamflow observations and were
used for FDC model testing and evaluation. Fig. 2 provides further
insights into the amount of data available for different watersheds,
and presents a frequency distribution (histogram) of the length of
the data set (days).
2.2. Empirical flow duration curve

The FDC describes the relationship between the magnitude of
the streamflow and its exceedance probability. The shape of a
flow-duration curve in its upper and lower regions is particularly
significant in evaluating the stream and basin characteristics. The
shape of the curve in the high-flow region indicates the type of
flood regime the basin is likely to have, whereas, the shape of the
low-flow region characterizes the ability of the basin to sustain
low flows during dry seasons. A very steep curve (high flows for
short periods) would be expected for rain-caused floods on small
watersheds.

If we denote with bY ¼ fŷ1; . . . ; ŷng the observed record of n dis-
charge values, then we can calculate the exceedance probability of
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Fig. 1. Flow duration curves of eight watersheds of the MOPEX data set. The streamflow
empirical FDCs can be compared.
each value of bY as follows. We first sort the n-vector of bY in
descending order and store vector of discharge values in the vectorbYrms. Each element of this sorted vector is then assigned a rank,
R ¼ f1; . . . ;ng starting with one for the largest discharge value

(first element of bYrms). We can now calculate the exceedance prob-

ability, ei of each discharge observation, i ¼ f1; . . . ;ng of bYrms using
the Weibull plotting position

êi ¼ 1
n

ri � 1
2

� �
; ð1Þ

where i denotes the element number of bYrms (equivalent to rank),

and Ê ¼ fê1; . . . ; êng signifies the n-vector of corresponding excee-
dance probabilities. Other formulations of Eq. (1) have been pro-
posed in the statistical literature but provide very similar
estimates of the exceedance probabilities for large data records,
say n > 100.

The FDC is an important signature of the catchment response to
rainfall and is relatively easy to construct from the observed dis-
charge record. It only requires a function to sort the discharge data
record. One issue, however deserves special attention, and that is
the presence of (near)-zero flows. This is common for (dry-bed)
ephemeral or intermittent streams in semi-arid watersheds that
alternate between short flash-flood events characterized by pro-
nounced runoff dynamics and rapidly rising hydrographs, and long
periods of (nearly) zero flows. With treatment of zero flow days the
FDC would consist of two different parts, a regular ‘‘S”-shaped sec-
tion between values of the exceedance probability, êi 2 ½0;1� p̂0�
and ŷ > 0, and a horizontal portion for êi 2 ½1� p̂0;1� and ŷ ¼ 0,
where p̂0 denotes the probability of zero flows. The value of p̂0 is
easily computed from the observed record of discharge values

p̂0 ¼ n0

n
ð2Þ

where n0 signifies the number of zero flow observations. The value
of p̂0 is not as much determined by watershed properties (geology,
soils, slope, etc.) but rather by climatic conditions (precipitation). In
the remainder of this paper, we therefore assume p̂0 to be known
for each watershed and use the following variable instead
0.5 0.6 0.7 0.8 0.9 1

probability [−]

Pemigewasset River, NH
Little Pee Dee River, SC
Licking River, KY
Genesee River, NY
Green River, IL
Kankakee River, IN
Santa Ysabel Creek, CA
White River, WA

values have been normalized so that they share a common scale and the different
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ê�i ¼
êi

1� p̂0
; ð3Þ

in our parametric expressions of the FDC. This transformed variable
scales linearly the exceedance probabilities of the non-zero flows to
the interval ½0;1�. The exceedance probabilities of the original dis-
charge record are then easily derived by inverting Eq. (3). Note,
the majority of the MOPEX data records (>82%) has strictly positive
flows, and thus for those watersheds p̂0 ¼ 0 and consequently
ê�i ¼ êi. In the remainder of this paper, we use the wording ‘‘empir-
ical FDC” to denote the n measured {êi; ŷi} pairs of the watershed.

2.3. Probabilistic and mathematical functions

We now review a suite of different functions commonly used in
the hydrologic literature to mimic the empirical FDC. These func-
tions can be grouped in two main classes. The first class builds
on commonly used probability distributions, and are also referred
to in the literature as probabilistic models. The second class of
models uses standard parametric expressions to capture the ‘‘S”-
shaped curve of the FDC. Unlike the first class of models which uses
the mathematical equation of the (inverse) CDF, this second group
of nonprobabilistic models involves a higher-degree of trial-and-
error in their development.

2.3.1. Probabilistic models
This class of models is used widely by researchers and practi-

tioners in large part due to their relative parametric simplicity,
flexibility, solid statistical underpinning and relative ease of
derivation. Indeed, the probability of exceedence, e, is easily com-
puted from the cumulative distribution function (CDF) as follows

e ¼ 1� pðy � YÞ ¼ 1� CDFðyÞ; ð4Þ
so that the highest flows (CDF close to unity) are associated with an
exceedance probability of zero. Thus, any statistical distribution
with a closed-form mathematical expression for its CDF can be
easily converted into a model for the FDC. In the remainder of this
section, we conveniently refer to the transformation of Eq. (4) as the
pseudo-CDF or the pseudo-inverse CDF if variables e and y are
switched around.

The first of these models involves the Gumbel distribution
(Booker and Snelder, 2012). The skew of the discharge data, so
clearly visible in a frequency distribution of the streamflows,
prompts the use of this model. The pseudo-inverse CDF of the
Gumbel distribution is given by

yi ¼ aG � bG log � log 1� e�i
� �� �

; ð5Þ
where e�i denotes the scaled exceedance probability, and aG

(mm/day) and bG (mm/day) are coefficients that define the location
and scale of the Gumbel distribution. Eq. (5) is a special case of the
generalized extreme value (GEV) distribution.

yi ¼ aGEV þ bGEV

cGEV
� logð1� e�i Þ
� ��cGEV � 1

n o
; ð6Þ

where aGEV (mm/day), bGEV (mm/day), and cGEV (–) denote the loca-
tion, scale, and shape parameters of the GEV distribution, respec-
tively. The shape parameter, cGEV, controls the skewness of the
distribution and enables the fitting of tailed streamflow distribu-
tions. The GEV distribution is widely used in the field of hydrology
to model floods and drought (extremes) (Katz et al., 2002), as well
as the FDC (Booker and Snelder, 2012). If cGEV ¼ 0 then the GEV dis-
tribution simplifies to the Gumbel distribution.

The lognormal distribution is another statistical distribution
that is used widely for the modeling of the FDC [Fennessey and
Vogel (1990), among others]. This model can produce the skew
necessary to describe the nonsymmetrical shape of the frequency
distribution of streamflows. The pseudo-inverse of the lognormal
distribution is given by

yi ¼ exp aLN �
ffiffiffi
2

p
bLNerfc

�1 2ð1� e�i Þ
� �n o

; ð7Þ

where erfc�1ðxÞ returns the value of the inverse complementary
error function evaluated at x, and aLN (mm/day) and bLN (mm/day)
are location and scale coefficients of the lognormal distribution,
respectively. A more advanced 3-parameter formulation of the log-
normal distribution [see Longobardi and Villani (2013), among
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others] provides more flexibility to fit the empirical FDC. The fol-
lowing mathematical formulation defines the pseudo-inverse of
this function

yi ¼ cLN þ exp aLN �
ffiffiffi
2

p
bLNerfc

�1 2ð1� e�i Þ
� �n o

; ð8Þ

where cLN (mm/day) constitutes the third parameter of the lognor-
mal distribution. If cLN ¼ 0 this function simplifies to the 2-
parameter formulation of the lognormal distribution.

We also consider in this study the logistic and generalized Pareto
distribution. Their formulations have perhaps not been used widely
to describe the empirical FDC, but their usefulness should be veri-
fied in the present paper for a meaningful benchmarking of the cur-
rent state-of-the-art. The logistic distribution (LG) is given by

yi ¼ aLG � bLG log
1

1� e�i
� 1

� �
; ð9Þ

where aLG (mm/day) and bLG (mm/day) are coefficients of the distri-
bution. The generalized Pareto (GP) distribution is defined as follows

yi ¼ aGP þ bGP

cGP
ðe�i Þ�cGP � 1
� �

; ð10Þ

and the fitting coefficients aGP (mm/day), bGP (mm/day), and cGP (–)
need to be derived by fitting against the empirical FDC. This con-
cludes the description of the probabilistic functions (models) of
the FDC. These functions use as their main building block the
(inverse) CDF of some commonly used probability distribution. In
a later section of this paper we will detail how the coefficients in
each of these functions are derived. The next section continues
our review with nonprobabilistic models of the FDC.

2.3.2. Nonprobabilistic models
The second class of FDC models used in the literature builds on

rather standard parametric expressions. These models have in
common with their probabilistic counterparts the use of fitting
coefficients. These coefficients are subject to inference using some
nonlinear minimization method and data of the empirical FDC. The
first two nonprobabilistic models involve the logarithmic (LOG)
and power (PW) functions

yi ¼ bLOG þ aLOG logðe�i Þ; ð11Þ
and

yi ¼ bPWðe�i Þ�aPW ; ð12Þ
where aLOG (mm/day), bLOG (mm/day), aPW (–), and bPW (mm/day)
are fitting coefficients. A 2-parameter exponential function was
suggested by Quimpo et al. (1983)

yi ¼ aQ expð�bQe�i Þ; ð13Þ
with coefficients aQ (mm/day) and bQ (–).

Franchini and Suppo (1996) proposed a 3-parameter expression
of the FDC defined as

yi ¼ bFS þ aFSð1� e�i ÞcFS ; ð14Þ
in which aFS (mm/day), bFS (mm/day) and cFS (–) denote the fitting
coefficients. This parametric function was originally proposed to
describe only the low flow part of the FDC, but has been applied
to the entire FDC as well (Sauquet and Catalogne, 2011).

More recently, Viola et al. (2011) proposed a simple 2-
parameter function which is given by

yi ¼ aV
1
e�
i
� 1

	 
bV
if ei < 1� p0

0 if ei P 1� p0

8<: ; ð15Þ

and aV (mm/day), and bV (–) are the fitting coefficients. This con-
cludes our description of the nonprobabilistic FDC models.
Practical experience suggests that the probabilistic and non-
probabilistic models discussed thus far are not always flexible
enough to fit closely the FDC for a large range of watersheds with
contrasting hydrologic behaviors. In the next section we therefore
introduce a new class of parametric expressions which are
designed specifically to accurately describe the FDCs for a large
range of hydrologic behaviors.

2.3.3. Proposed formulations
The functional shape of the FDC has many elements in common

with that of the soil water characteristic. This is graphically illus-
trated in Fig. 3 which plots the water retention function of five dif-
ferent soils presented in van Genuchten (1980). These curves
depict the relationship between the volumetric moisture content,
h (x-axis) and the corresponding pressure head, h (y-axis) of a soil
and are derived by fitting equation

h ¼ hr þ hs � hr

1þ ðajhjÞn� �m ; ð16Þ

to experimental ðh;hÞ data collected in the laboratory. This equa-
tion is also known as the van Genuchten (VG) model and contains
five different coefficients, also called soil hydraulic parameters,
where hs (cm3/cm3) and hr (cm3/cm3) denote the saturated and
residual moisture content, respectively, and a (1/cm), n (–) and m
(–) are fitting coefficients that determine the air-entry value and
slope of the WRF. In most studies, the value of m is set conveniently
to 1� 1=n. This not only reduces the number of water retention
parameters to four, but also provides a closed-form expression
for the unsaturated soil hydraulic conductivity function (van
Genuchten, 1980).

The shape of the WRFs plotted in Fig. 3 shows great similarity
with the FDCs displayed previously in Fig. 1. This suggests that
Eq. (16) might be a good parametric expression to describe the
FDC and thus relationship between the exceedance probability of
streamflow (x-axis) and its magnitude (y-axis). To make sure that
the exceedance probability is bounded exactly between 0 and 1,
we set hr ¼ 0 and hs ¼ 1, respectively. This leads to the following
3-parameter VG formulation of the FDC proposed by Vrugt and
Sadegh (2013)

e�i ¼ 1þ ðaVGyiÞbVG
h i�cVG

; ð17Þ

with coefficients aVG (day/mm), bVG (–), and cVG (–). This VG-
formulation relates the streamflow (input variable) to its excee-
dance probability (output variable), and has to be inverted to be
consistent with the other formulations used herein. This gives

yi ¼
1
aVG

ðe�i Þð�1=cVGÞ � 1
h ið1=bVGÞ

: ð18Þ

The VG-formulation presented in Eq. (18) can be simplified to a 2-
parameter function if we assume that cVG ¼ 1� 1=bVG. We will con-
sider both VG formulations of the FDC.

The VG function is used widely in porous flow models to solve
numerically variably saturated water flow. Yet, many other
hydraulic models have been proposed in the vadose zone literature
to characterize the retention and unsaturated soil hydraulic con-
ductivity functions. We consider herein the lognormal WRF of
Kosugi (1994, 1996)

e�i ¼
1
2 erfc

1ffiffi
2

p
bK

log yi�cK
aK�cK

	 
h i
if yi > cK

1 if yi 6 cK

(
; ð19Þ

where aK (mm/day), bK (–) and cK (mm/day) are coefficients that
need to be determined by calibration against the empirical FDC of
each watershed. We now need to invert Eq. (19) to get as output
the exceedance probability for a given value of the streamflow



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

100

200

300

400

500

600

700

Water content [cm3/cm3]

So
il 

w
at

er
 p

re
ss

ur
e 

he
ad

 (a
bs

ol
ut

e 
va

lu
e)

 [c
m

]

Hygiene Sandstone (α = 0.0079, n = 10.4)
Touchet Silt Loam G.E.3 (α = 0.0050, n = 7.09)
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Fig. 3. Water retention functions of five different soil types derived from van Genuchten (1980). The WRF depicts the relationship between the soil water pressure head (cm)
and moisture content (cm3/cm3). We conveniently plot absolute values of the soil water pressure head (negative in the unsaturated zone).

Table 1
Summary of the probabilistic, nonprobabilistic, and proposed WRF-based FDC models. All these functions return the streamflow value, yi , for a given value of
the exceedance probability, e�i . The variables a: ; b: , and c: are fitting coefficients whose values need to be derived by calibration against the empirical FDC of a
watershed. The acronyms listed in the second column of this table are used in the remainder of this paper to refer to each individual model.

Model name Acronym Model formulation

2-parameter formulations

Lognormal LN yi ¼ exp aLN �
ffiffiffi
2

p
bLNerfc

�1 2ð1� e�i Þ
� �n o

Gumbel G yi ¼ aG � bG log � log 1� e�i
� �� �

Logistic LG yi ¼ aLG � bLG log 1
1�e�

i
� 1

	 

Logarithmic LOG yi ¼ bLOG þ aLOG logðe�i Þ
Power PW yi ¼ bPWðe�i Þ�aPW

Quimpo Q yi ¼ aQ exp �bQ e�i
� �

Viola V
yi ¼ aV 1

e�
i
� 1

	 
bV

van Genuchten VG
yi ¼ 1

aVG
e�i
� � �1=ð1�1=bVG Þ½ � � 1

n o 1
bVG

Kosugi K yi ¼ aK exp
ffiffiffi
2

p
bKerfc

�1ð2e�i Þ
h i

3-parameter formulations

Lognormal LN yi ¼ cLN þ exp aLN �
ffiffiffi
2

p
bLNerfc

�1 2ð1� e�i Þ
� �n o

Generalized Pareto GP yi ¼ aGP þ bGP
cGP

ðe�i Þ�cGP � 1
� �

GEV GEV yi ¼ aGEV þ bGEV
cGEV

� logð1� e�i Þ
� ��cGEV � 1

n o
Franchini and Suppo FS yi ¼ bFS þ aFSð1� e�i ÞcFS
van Genuchten VG

yi ¼ 1
aVG

ðe�i Þ�1=cVG � 1
h ið1=bVGÞ

Kosugi K yi ¼ cK þ ðaK � cKÞ exp
ffiffiffi
2

p
bKerfc

�1 2e�i
� �h i
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yi ¼ cK þ ðaK � cKÞ exp
ffiffiffi
2

p
bKerfc

�1ð2e�i Þ
h i

: ð20Þ
We can simplify this 3-parameter formulation by setting cK ¼ 0.
This 2-parameter formulation of Kosugi is then, after a log-
transformation and some rearrangement, equivalent mathemati-
cally to the 2-parameter lognormal distribution. The 3-parameter
Kosugi model differs however from its counterpart of the lognormal
distribution.

The main advantage of the WRF of Kosugi is that its parameters
can be related directly to the pore size distribution and hence exhi-
bit a much better physical underpinning than their counterparts of
the VG model. This might increase the chances of successful
regionalization.

A summary of the different models of the FDC appears in
Table 1. The acronym of each model listed in the second column
of this table are used in the remainder of this paper when referring
to each individual model.

2.4. Change of dependent/independent variables

The functions of the FDC presented in the previous section
return the streamflow value (dependent variable) for a given
exceedance probability (independent variable), or y ¼ FðeÞ. For



M. Sadegh et al. / Journal of Hydrology 535 (2016) 438–456 445
practical considerations, however it might be useful to have avail-
able a direct expression for the exceedance probability instead, and
thus e ¼ F�1ðyÞ. This inverse formulation returns the exceedance
probability (dependent variable) for a given streamfow value
(independent variable) and is particularly useful if one wants to
compute (among others) the relative amount of time that the
streamflow is likely to exceed a certain target. If this flow value
constitutes the maximum capacity of the channel, then the proba-
bility of flooding can be assessed. Indeed, this inverse formulation
is of great value to decision makers concerned with the design and
engineering of dams and other flood protection structures. For
example, a structure can be designed to perform well within some
range of flows, such as flows that occur between 20% and 80% of
the time (or some other selected interval).

The inverse formulation, e ¼ F�1ðyÞ is rather straightforward to
derive for each of the FDC models listed in the previous section. For
example, the inverse ( = pseudo CDF) of the Gumbel distribution in
Eq. (5) can be derived in the following few steps. We first note that
e�i ¼ F�1ðyiÞ and replace the exceedance probability, e�i in Eq. (5)
with F�1ðyiÞ. This gives

yi ¼ aG � bG log½� logð1� F�1ðyiÞÞ�: ð21Þ
We now isolate F�1ðyiÞ

log½� logð1� F�1ðyiÞÞ� ¼
aG � yi
bG

; ð22Þ

and get rid of the first logð�Þ operator at the left hand side using the
exponential function

� logð1� F�1ðyiÞÞ ¼ exp
aG � yi
bG

� �
: ð23Þ
Table 2
Summary of the probabilistic, nonprobabilistic, and proposed WRF-based FDC
models. All these functions return the exceedance probability, e�i , for a given value
of the streamflow, yi . The variables a: ; b: , and c: are fitting coefficients whose values
need to be derived by calibration against the empirical FDC of a watershed.

Model name Model formulation

2-parameter formulations

Lognormal e�i ¼ 1� 1
2 erfc

aLN�logðyiÞffiffi
2

p
bLN

h i
Gumbel e�i ¼ 1� exp � exp aG�yi

bG

	 
h i
Logistic

e�i ¼ 1� 1þ exp aLG�yi
bLG

	 
h i�1

Quimpo e�i ¼ � 1
bQ

log yi
aQ

	 

Viola

e�i ¼ yi
aV

	 
ð1=bVÞ þ 1
� ��1

Logarithmic e�i ¼ exp yi�bLOG
aLOG

	 

Power

e�i ¼ yi
bPW

	 
ð�1=aPW Þ

VG
e�i ¼ 1þ ðaVGyiÞbVG

h ið1=bVG�1Þ

Kosugi e�i ¼ 1
2 erfc

1ffiffi
2

p
bK
log yi

aK

	 
h i
3-parameter formulations

Lognormal e�i ¼ 1� 1
2 erfc

aLN�logðyi�cLNÞffiffi
2

p
bLN

h i
Generalized Pareto

e�i ¼ 1þ cGPðyi�aGPÞ
bGP

h ið�1=cGPÞ

GEV
e�i ¼ 1� exp � 1þ cGEV

yi�aGEV
bGEV

	 
h ið�1=cGEVÞ

 �

Franchini and Suppo
e�i ¼ 1� yi�bFS

aFS

	 
1=cFS

VG e�i ¼ 1þ ðaVGyiÞbVG
h i�cVG

Kosugi e�i ¼ 1
2 erfc

1ffiffi
2

p
bK
log yi�cK

aK�cK

	 
h i
If we repeat the same operation, and rearrange the final equation
we derive

e�i ¼ F�1ðyiÞ ¼ 1� exp � exp
aG � yi
bG

� �� �
: ð24Þ

These steps can be repeated for each of the parametric expressions
of the FDC in the previous Section 2.3.

Table 2 lists for each FDC model of Section 2.3 (see also Table 1)
the inverse function, F�1ðyiÞ. We do not summarize conditions for
the values of the parameters in each FDC function. Their values are
carefully chosen to avoid division by zero (example: bLN > 0) and
ensure that each log operator has strictly positive input arguments
(example: aQ > 0).

2.5. Parameter estimation of FDC models

Now we have discussed the different FDC models we are left
with inference of their coefficients. We have developed a MATLAB
program called ‘‘FDCFIT” which automatically determines the best
values of the fitting coefficients of the FDCmodels used herein for a
given streamflow data record. Graphical output is provided as well.
We consider two different calibration cases involving optimization
of the FDC coefficients in the (a) streamflow, Y-space, and (b)
exceedance probability, E-space using a standard sum of squared
error (SSE) objective function

SSEðxjÊÞ ¼
Xn
i¼1

ŷi � FðxjêiÞ½ �2 in Y-space ð25Þ

SSEðxjŶÞ ¼
Xn
i¼1

êi � F�1ðxjŷiÞ
� �2

in E-space ð26Þ

where x = fa�; b�g or fa�; b�; c�g is the m-vector of fitting coefficients,

Ê ¼ fê1; . . . ; êng and bY ¼ fŷ1; . . . ; ŷng denote the measured values of
the exceedance probability and streamflow, respectively, and Fð�Þ
and F�1ð�Þ signify the formulations of the FDC model in the stream-
flow (Table 1) and exceedance probability (Table 2) space.

We consider separately these two different calibration cases as
they lead to quite different optimized values of the coefficients of
each FDC model. Calibration in the Y-space emphasizes fitting of
the peak flows at low exceedance probabilities. The sensitivity to
lower flows can be increased if a ‘1-type objective function were
implemented using the absolute rather than squared values of
the streamflow error residuals. Calibration in the E-space places
equal importance to each observation of the exceedance probabil-
ity, and therefore should lead to a model fit that describes nicely
the entire FDC. In the results section we will discuss the results
of both calibration cases.

The calibration of each FDC model demonstrated to be a much
more difficult task than initially expected. In fact, a reasonable con-
jecture is that FDC functions and their optimized parameters pre-
sented in the literature might have been spurious and subject to
premature convergence. A suite of different optimization algo-
rithms were used and tested to estimate the optimal values of
the coefficients of each FDC model and watershed. None of these
methods were always able to find successfully the global mini-
mum. This is a rather surprising finding given the rather low
dimensionality of the parameter space. Response surfaces of the
FDC models revealed the culprit. For some of the watersheds the
response surfaces were rather flat and the global minimum of
Eqs. (25/26) well hidden in a small pocket of the parameter space.

After comprehensive testing of different optimization algo-
rithms, we implemented in the program FDCFIT a multi-start
gradient-based local optimization approach with Levenberg
Marquardt (LM) (Marquardt, 1963). A total of 20 LM trialswere used



Table 3
Performance statistics of the quality of fit of each individual FDC model. We list the
mean and standard deviation of the Root Mean Square Error (RMSE) (mm/day)
derived from Eqs. (25/26), and the percentage of watersheds each respective 2, or 3-
parameter model provides the best fit to the empirical FDCs. The values listed
between parenthesis signify the results when the models are calibrated in the
exceedance probability or E-space.

Model name Mean RMSE STD of RMSE % Best model

2-parameter formulations
Lognormal 0.2864 (0.0205) 0.1975 (0.0134) 65.02 (43.02)
Gumbel 0.9666 (0.0611) 0.6488 (0.0197) 0.70 (0.93)
Logistic 1.2228 (0.0768) 0.7741 (0.0176) 0 (0)
Quimpo 0.7983 (0.0650) 0.5656 (0.0252) 0.23 (0.23)
Viola 0.5948 (0.0211) 0.3900 (0.0130) 3.72 (14.65)
Logarithmic 0.7516 (0.0410) 0.5579 (0.0189) 4.15 (6.28)
Power 0.7848 (0.0973) 0.5017 (0.0343) 0.70 (2.33)
VG 0.4361 (0.0276) 0.3154 (0.0149) 25.48 (31.63)
Kosugi 0.2864 (0.0205) 0.1975 (0.0134) 65.02 (43.02)

3-parameter formulations
Lognormal 0.2370 (0.0126) 0.1701 (0.0099) 23.95 (18.37)
Generalized Pareto 0.2697 (0.0138) 0.2007 (0.0080) 9.53 (22.33)
GEV 0.3512 (0.0158) 0.2393 (0.0114) 1.86 (8.84)
Franchini and Suppo 0.6989 (0.0722) 0.5023 (0.0174) 1.40 (0.23)
VG 0.1747 (0.0137) 0.1313 (0.0073) 63.26 (26.98)
Kosugi 0.2370 (0.0119) 0.1701 (0.0071) 23.95 (23.25)
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to locate the global minimum of the fitting coefficients of each
model andwatershed. These trialswere initialized at different start-
ing points drawn randomly from the prior parameter space with
Latin hypercube sampling (McKay et al., 1979). In case that the
LM method was unable to reduce substantially the SSE the
(derivative-free) Nelder-Mead Simplex algorithm (Nelder and
Mead, 1965) was used instead tominimize Eqs. (25/26). This hybrid
two-step approach demonstrated to be robust and CPU-efficient.

In a separate trial with DREAM (Vrugt et al., 2008, 2009) we also
determined for each watershed the posterior uncertainty of each of
the coefficients of the FDC models. A standard Gaussian (least-
squares type) likelihood function was used in all these calculations
with default settings of the algorithmic variables of DREAM. Con-
vergence of the chains to a limiting distribution was assessed with
different diagnostics (Vrugt, 2016).

3. Results and discussion

Table 3 summarizes the performance of each of the FDC models
for the MOPEX data set used herein. We list separately the first
(mean) and second-order (standard deviation) moment of the Root
Mean Square Error (RMSE) of the fit to the empirical FDCs of the
430 different watersheds. Performance statistics are presented
for both calibration cases in the streamflow and exceedance prob-
ability space (between parenthesis). For model selection purposes
we also list the number of times (expressed in %) each respective
FDC model achieves the lowest RMSE among its constituent formu-
lations with similar structural complexity (number of parameters).
Note, we do not consider herein metrics such as Akaike’s and
Bayes’ information criterion as the number of data points of the
FDC is much larger than the number of parameters of each model.
Hence, the RMSE suffices as metric for model selection.

The results in Table 3 highlight several key findings. First, the
proposed 2-parameter FDC models of K and VG provide substan-
tially lower mean RMSE values than their counterparts with simi-
lar structural complexity used in the hydrologic literature. From all
2-parameter models, the K model is preferred receiving the best
performance in the streamflow space for about 65% of the water-
sheds, and for 43% of the basins in the exceedance probability
space. The VG model is ranked second with best performance
for more than 25% of watersheds in the Y-space and 31% in the
E-space. Second, the 2-parameter K model exhibits, as expected,
the same performance as the 2-parameter LN model. Third, the Q
and LG models fit the empirical FDCs rather poorly in both the Y-
and E-spaces. Fourth, among the 3-parameter formulations of the
FDC, the VG model generally exhibits the best performance with
lowest RMSE for about 63% of the watersheds when evaluated in
the Y-space and 27% of basins when calibrated in the E-space. Fifth,
the 3-parameter K and LN models, although dissimilar in their
mathematical formulations, give identical results in the Y-space
yet different RMSE values in the exceedance probability space. This
apparent discrepancy can be explained by further analysis of the
models and fitting results. Both models are structurally similar at
low exceedance probabilities (high flows), and this part of the
curve determines the coefficients of the FDC models when fitting
in the streamflow space. The differences between these two mod-
els are better reflected when they are calibrated in the exceedance
probability space, and all flow observations are treated equally.
Sixth, the 3-parameter FS model provides a rather poor fit to the
data with RMSE of 0.6989 (mm/day) which is even inferior to some
of the 2-parameter FDC models. For all intents and purposes the 3-
parameter formulation of the VG model achieves the best overall
results. This model is thus preferred if the fitting of the empirical
FDC is of main concern.

We have considered bimodal formulations of the VG and K
models as well (Durner, 1994). These 5-parameter models were
constructed by a linear superposition of two of their 2-parameter
formulations and include an additional weight for both (sub)
curves. These bimodal FDC formulations are superior to the models
used herein when evaluated in the E-space, but showed no
improvement in the Y-space. For two reasons, we decided not to
include these 5-parameter formulations in the present paper. First,
bimodal formulations of the WRF cannot be inverted analytically.
This complicated their evaluation in the streamflow space. Second,
the parameters of these models exhibit rather poor regionalization
relationships (as will be shown later).

To provide more insights into the fitting results for individual
catchments, consider Fig. 4 that plots histograms of the RMSE
(mm/day) values of the 430 different watersheds. Color coding is
used to differentiate among the FDC models. To simplify visual
interpretation a common x-axis was used for all different models
and complexities. The results presented in this figure confirm our
earlier conclusions that the proposed WRF-based models (and 2-
parameter LN model) are superior to their counterparts used in
the literature. For the 2-parameter FDC models, the LN (plot A)
and K (Plot E) models are preferred as their distribution of RMSE
values is most skewed to the left in direction of zero RMSE. The
2-parameter VG model (plot I) provides a RMSE distribution that
is very similar to that of the K model but with somewhat larger
mean value. For the 3-parameter models, the VG model receives
the best results with mode of the RMSE histogram closest to zero
and relatively little dispersion around this value. This plot confirms
our previous finding that the VG-3 model outperforms all other
models and should be used if the purpose of application is to pre-
dict the streamflow for a given exceedance probability. The 3-
parameter K (plot N) and LN (plot M) models provide very similar
RMSE distributions, which are in close agreement as well with
the marginal distribution of the GP model (plot F). From all
3-parameter models, the performance of the FS model (plot K) is
rather poor with mode of the RMSE distribution of about 0.8
(mm/day) and values that range between 0 and 3 (mm/day).

Thus far we have focused our attention on the quality of fit of
the individual FDC models without recourse to assessment of their
parameter sensitivity, identifiability and correlation. Fig. 5 plots,
for a large range of exceedance probabilities, the sensitivity of
the simulated streamflow values to each of the individual
parameters in the VG (top panel) and K (bottom panel) models.
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Color coding is used to differentiate among the different parame-
ters of each model. We display separately the results for the 2 (left
column), and 3 (right column) parameter formulations of both
models. We follow Vrugt et al. (2002) and derive these partial sen-
sitivities, @yi=@xj analytically by differentiation of the VG and K
models to each of their m coefficients, j ¼ f1; . . . ;mg. For example,
for the 2-parameter formulation of K, them-vector of parameters is
x ¼ faK; bKg, and their partial sensitivities are given by

@yi=@aK ¼ exp
ffiffiffi
2

p
bK erfc

�1ð2 e�i Þ
h i

;

@yi=@bK ¼
ffiffiffi
2

p
aKerfc

�1ð2 e�i Þ exp
ffiffiffi
2

p
bKerfc

�1ð2 e�i Þ
h i

;
ð27Þ

and their numerical values are plotted in Fig. 5B with a blue and red
line, respectively using representative values of aK and bK, and 1000
values of the exceedance probability using equidistant intervals
between 0 and 1. We draw the following conclusions based on
the results presented in Fig. 5.

In the first place, the parameters of the 2-parameter VG and K
models appear to be most sensitive at high flows and exhibit
almost negligible sensitivity at large values of the exceedance
probability. In other words, if these models are calibrated in the
streamflow space then their coefficients are determined primarily
from data of the rainfall-driven part of the hydrograph. Second, the
3-parameter VG and K models exhibit a higher sensitivity than
their 2-parameter formulations at lower streamflows. This is par-
ticularly true for the VG model and should simplify inference.
Third, the 3-parameter VG model appears to be most sensitive to
each of its parameters with values of the @yi=@cVG that are, on aver-
age, highest of all the four proposed parametric expressions. Thus
if parameter uncertainty is of main concern then the 3-parameter
formulation of VG is preferred as its fitting coefficients are most
sensitive and thus best defined by the empirical FDC. Finally, all
of the parameters in each of the models show their maximum sen-
sitivity at approximately similar streamflow values. This finding is
rather unfortunate as it makes all four FDC-models vulnerable to
parameter correlation (interaction). This is not particularly desir-
able if the fitting coefficients are used as summary statistics for
diagnostic model evaluation.

We now provide a more detailed visual comparison of the
observed and fitted FDCs. We select, from the MOPEX data set,
three watersheds with widely different rainfall-runoff response



Fig. 5. Partial parameter sensitivities of the VG (top panel) and K (bottom panel) models of the FDC for a range of different streamflow values. Color coding is used to
differentiate between the parameters a� (red), b� (blue), and c� (green) of the VG-2, VG-3, K-2, and K-3 models. The gray dashed line plots zero sensitivity. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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and present their empirical FDCs in Figs. 6 (Green river), 7 (Kanka-
kee river), and 8 (Little river). The fit of each model is color coded
and derived by calibration in the streamflow space using the objec-
tive function of Eq. (25). To help illuminate differences between
the fit of the fifteen FDC models, we use an arithmetic (top) and
logarithmic (bottom) scale of the streamflow values. The log scale
makes it easier to compare the values of the streamflow that cover
a relatively large range. The empirical FDC is separately indicated
using the red dots. Four different graphs are used for each water-
shed to simplify graphical interpretation.
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Table 4
Mean values of the correlation coefficients of the DREAM-derived posterior parameter samples for the 430 different watersheds of the MOPEX data set. Values that are listed in
parenthesis pertain to calibration in the E-space instead.

aVG bVG aK bK

2-parameter formulations
aVG 1.00 0.90 (0.81) aK 1.00 0.89 (0.16)
bVG 0.90 (0.81) 1.00 bK 0.89 (0.16) 1.00

3-parameter formulations
aVG bVG cVG aK bK cK

aVG 1.00 0.15 (0.89) 0.64 (0.96) aK 1.00 0.90 (0.44) 0.93 (0.46)
bVG 0.15 (0.89) 1.00 0.71 (0.93) bK 0.90 (0.44) 1.00 0.91 (0.67)
cVG 0.64 (0.96) 0.71 (0.93) 1.00 cK 0.93 (0.46) 0.91 (0.67) 1.00
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The empirical FDCs plotted in Figs. 6–8 exhibit their well-
known hyperbolic shape when plotted using a linear scale of the
streamflow observations. The FDCs of the Green river and Little
river appear somewhat similar, although their range of flows dif-
fers somewhat. For the Kankakee watershed a tail is visible at
the extreme lower end of the FDC with lowest streamflow values.
Such tailing behavior is often observed in the WRF of soils and sig-
nifies the air-entry value. The characteristic ‘‘S”-shape of the
empirical FDCs is most apparent when a log-scale is used for the
streamflow data.
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respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Visual analysis of the behavior of each model demonstrates that
it is particularly difficult to judge their quality of fit if a linear scale
of the streamflow observations is used. In fact, all models appear to
describe the empirical FDCs reasonably well, and the observed
fê�i ; ŷig data pairs are hardly visible. The differences between the
models become most apparent when the FDCs are plotted on a log-
arithmic streamflow scale. The 3-parameter formulation of VG is
most supported by the data as it provides the closest fit to the
empirical FDCs. The 3-parameter LN and K models receive an
almost similar performance, yet some deviations of these models
are apparent at low flows (high exceedance probabilities), particu-
larly for the Little river watershed. These findings are supported by
our previous results listed in Table 3.

If a 2-parameter formulation of the FDC is preferred then the K
model (and thus LN distribution) exhibits superior performance.
The 2-parameter VG model does a good job in fitting the FDCs of
the MOPEX watersheds, yet this model systematically underesti-
mates the exceedance probabilities of the lower streamflow values.
Thismismatch isparticularlynoticeable for theGreenriver andLittle
river (Figs. 6 and 8) andhighlights a structural deficiency of theVG-2
model for watersheds with a relatively large number of low flows.

The benefits of using a more complex FDC model are most spec-
tacular for the VG model and Little river. The 3-parameter formu-
lation of this model achieves a much better performance than its 2-
parameter counterpart. This VG-2 model cannot describe ade-
quately the discharge of this watershed which falls rapidly from
about 35 to 7 mm/day, then decreases linearly to about 2 mm/day,
and then smoothly reduces to values of zero.
The results presented in Figs. 6–8 display relatively large defi-
ciencies between the empirical and simulated FDCs at intermedi-
ate and low flows. This is particularly true for the 2-parameter
models. This mismatch can be remedied considerably if the FDC
models are calibrated in the exceedance probability space, results
of which have been summarized in Table 3. This issue of how to
calibrate FDC models has received little attention in the hydrologic
literature, but is of imminent importance in their application. What
is more, some FDC models predict negative values of the stream-
flow when their formulations of Table 1 are evaluated at higher
values of the exceedance probability. Examples include the 2-
parameter G, LG, and LOG, and the 3-parameter GEV model. What
is more, the 3-parameter GP, LN, and K models also allow for neg-
ative streamflow prediction, if their third parameter, c, is permitted
to adopt negative values in the optimization process. Thus, some
care should be exercised with their use and evaluation. The other
models are not affected by this behavior, for instance, the excee-
dance probabilities and streamflow values predicted by the K and
VG models are bounded between ½0� 1�, and ½0�1�, respectively.

We now proceed with an in-depth study of the interaction
between the parameters of the WRF-based FDC formulations.
Table 4 lists average linear correlation coefficients of the fitting
coefficients of the VG and K models derived from Markov chain
Monte Carlo (MCMC) simulation with DREAM using the 430 differ-
ent watersheds of the MOPEX data set. These values are calculated
by computing the mean of the absolute values of the linear corre-
lation coefficients among the posterior parameter samples of each
individual watershed. Absolute values have to be used for each
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Fig. 10. Comparison of the simulated FDCs of the 3-parameter VG and K models against their empirical counterparts (red dots) of the MOPEX data set. Each model was
calibrated in the streamflow space by minimization of Eq. (25) using a multi-start Levenberg–Marquardt approach. The different graphs correspond to the (A) SB Potomac, (B)
Tygart Valley, (C) NF Holston, (D) Little, (E) Green, (F) Kankakee, (G) EF San Gabriel, (H) White, (I) Pemigewasset, (J) Little Pee Dee, (K) Licking, and (L) Genesee river basins,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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watershed to avoid cancellation of positive and negative correla-
tions. Of course, strong parameter correlation is not of much
importance if quality of fit is the main concern in application of
the VG and K models, but becomes particularly important if the fit-
ting coefficients of each model are used as summary metrics for
diagnostic analysis. Independent model parameters are also
desired for regionalization studies when relating model parame-
ters to one or more basin characteristics.

The results presented in Table 4 illustrate several important
findings. First, the parameters of the VG-2 model exhibit a much
stronger posterior correlation than the coefficients of the VG-3
model when calibrated against streamflow data. This result is per-
haps rather unexpected but in part explained by the much
improved fit of the 3-parameter formulation of this model. The
posterior correlations of both VG model formulations are more
similar when calibrated in the exceedance probability space. Sec-
ond, the posterior correlation of the K-3 model are somewhat lar-
ger than those derived for the K-2 model. This is true for both
calibration cases. Third, the 2-parameter formulations of the K
and VG models exhibit a similar correlation when calibrated in
the streamflow space. If these models are fitted against the excee-
dance probabilities, then the K model is preferred as its coefficients
exhibit a much smaller correlation. Fourth, the posterior parameter
correlations of the VG-3 model are much lower than their counter-
parts of the K-3 model when fitted against the streamflow data of
the FDC. The opposite result is true if both models are calibrated
against the exceedance probabilities.
These results might be somewhat confusing to interpret. Main
results are that the two calibration cases lead to (very) different
correlation structures among the parameters of the VG and K mod-
els, and that the VG-3 model exhibits much lower parameter inter-
dependencies than the K-3 model when calibrated in the
streamflow space. This latter finding is supported by the behavior
of the partial derivatives of the parameters (see Fig. 5) which have
a larger sensitivity in the VG-3 model. The opposite conclusion
about these sensitivities is true when the VG-3 and K-3 models
are fitted against the exceedance probability.

We now present in Figs. 9 and 10 the fitting results of the pro-
posed 2-parameter and 3-parameter VG and K parametric expres-
sions of the FDC for a sample of 12 different watersheds
distributed over the USA. This includes the (A) SB Potomac (B)
Tygart Valley (C) NF Holston (D) Little (E) Green (F) Kankakee (G)
EF San Gabriel (H)White (I) Pemigewasset (J) Little Pee Dee (K) Lick-
ing, and (L) Genesee, river basins in the states ofWest Virginia,West
Virginia, Virginia, Arkansas, Illinois, Indiana, California, Washing-
ton, New Hampshire, South Carolina, Kentucky, and Washington,
respectively.

Comparison of the fitting results of Figs. 9 and 10 demonstrates
an improved skill of the 3-parameter formulations of VG and K
over their 2-parameter formulations. This enhanced fit might not
always be readily apparent as the models have been calibrated in
the Y-space and thus favor fitting the ‘‘left” end of the empirical
FDC with the highest streamflow values. The improvement in fit
of the VG-3 model over its two-parameter formulation is



0 0.25 0.5 0.75 1
10−2

10−1

100

101

102
(I)

0 0.25 0.5 0.75 1
10−2

10−1

100

101 (J)

Exceedance probability [−]
0 0.25 0.5 0.75 1

10−2

10−1

100

101

102
(K)

0 0.25 0.5 0.75 1
10−2

10−1

100

101

102 (L)

10−2

10−1

100

101 (E)

St
re

am
flo

w
 [m

m
/d

ay
]

10−1

100

101
(F)

10−2

10−1

100

101

102
(G)

10−1

100

101

102

(H)

10−2

10−1

100

101

102 (A) Kosugi−3
VG−3

10−2

10−1

100

101

102 (B)

10−2

10−1

100

101

102
(C)

10−2

10−1

100

101

102
(D)

Fig. 11. Comparison of the simulated FDCs of the 3-parameter VG and K models against their empirical counterparts (red dots) of the MOPEX data set. Each model was
calibrated in the exceedance probability space by minimization of Eq. (26) using a multi-start Levenberg–Marquardt approach. The different graphs correspond to the (A) SB
Potomac, (B) Tygart Valley, (C) NF Holston, (D) Little, (E) Green, (F) Kankakee, (G) EF San Gabriel, (H) White, (I) Pemigewasset, (J) Little Pee Dee, (K) Licking, and (L) Genesee
river basins, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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significant. The added skill provided by the third parameter in the
K model is not as convincing, because the K-2 model does a much
better job than the VG-2 model in reproducing the empirical FDCs.
This might not be immediately visible in performance metrics such
as the RMSE as this statistic is determined in large part by devia-
tions in the large flows. Indeed, the use of a log-scale for the
streamflow values exaggerates the differences between the mod-
eled and measured FDC for lower flow values. Indeed, the differ-
ence on a log-scale could equate to one order of magnitude
whereas the difference between the empirical and fitted FDC is
only 0.1 mm/day, or 0.001 mm/day for that matter. This hardly
influences metrics such as the RMSE.

Some persistent deviations of the 2-parameter K and VGmodels
remain apparent at the low flows (high exceedance probabilities),
particularly for semi-arid and arid watersheds that are character-
ized by long dry periods and occasional but large precipitation
events (convective thunderstorms). The 3-parameter formulation
of VG improves the fitting of the FDC of such watersheds, but can-
not reproduce the two distinctly different processes of runoff gen-
eration. A bimodal formulation of the K and VG model will improve
significantly the description of the FDC of semi arid and arid water-
sheds, in large part because of their ability to describe separately
the low and high flow portions of the FDC. These models are not
considered herein for reasons discussed before.

Fig. 11 plots the results of the 3-parameter K and VG models for
the 12 different watersheds of Fig. 10, but now calibrated in the
exceedance probability, E-, space rather than the streamflow, Y-,
space. While the fit to the lower end of the curve has improved
in all presented watersheds, model performance for high flows of
some watersheds has deteriorated somewhat. This is most visible
for the Licking and Genesee river basins plotted in graphs K and
L, respectively. Calibration in the E-space places equal weight on
each FDC-data point and therefore should lead to a model fit that
mimics as closely as possible the entire range of flows of the FDC.

Our results demonstrate that the easiest watersheds to fit are
those that are relatively wet and in which the baseflow from the
groundwater reservoir makes up a large portion of the total
streamflow. The FDC then exhibits a relatively mild slope with
two clearly defined tails. Such ‘‘S”-shaped curve is easiest to capture
with the 2- and 3-parameter formulations of VG and K. Examples
includes the Kankakee (F), White (H), and Little Pee Dee (J) river
basins.

We conclude the results section with some remarks: (1) The fit-
ting of the proposed FDC models is not without problems. We
therefore recommend to use different starting points with a local
search method to minimize chances of premature convergence to
the wrong values of the FDC fitting coefficients and (2) The pro-
posed WRF-based functions demonstrate low sensitivity to low
flows (Fig. 5), and hence some care should be exercised if these
models are used to estimate the exceedance probability of extreme
events. One way to mitigate this problem is to calibrate these mod-
els in the E-space using the formulations of the models of Table 2.
The results of this approach have been presented in Table 3 and
favor the use of the VG-3 model. Alternatively, one could use a ‘1

formulation of the objective function to weight all streamflow
observations equally.
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4. Regionalization of FDC models

If the main interest in application of FDC models is to fit the
empirical FDC then the VG-3 model is preferred. This model
achieves the best performance for the watersheds of the MOPEX
data set. The fitted model can then be used to calculate the excee-
dance probability for a given flow level, or vice versa the flow
associated with a certain exceedance probability. All this is useful
for decision makers considered with flood-risk management.
Moreover, the parametric expressions proposed herein are also
of great use in diagnostic model evaluation (Vrugt and Sadegh,
2013) to help find behavioral model simulations that honor the
empirical FDC as closely and consistently as possible. The opti-
mized values of the coefficients are then used as summary
metrics.

We now investigate whether we can relate the optimized coef-
ficients of each model to basic catchment properties. This has no
bearing on the main results of our fitting analysis, but is deemed
important if the main interest in application of these models is
to estimate the FDCs of ungaged watersheds. To analyze the
regionalization potential of each FDC model we relate the opti-
mized coefficients to basic catchment properties of the MOPEX
data set. The list of basin descriptions is available on the internet
from the ftp site of the MOPEX data set. We restrict attention to
catchment properties that are relatively easy to derive, including
watershed area, the ratios of annual precipitation and annual
potential evaporation, annual runoff and annual precipitation,
and annual runoff and annual potential evaporation, NDVI value,
porosity, the upper limit of the unsaturated soil moisture content,
the wilting point, the saturated hydraulic conductivity, the annual
potential evapotranspiration, the annual precipitation, the frac-
tions of sand, loamy sand, sandy loam, and silt loam in the upper
10 cm of the soil, the fraction of mixed forest, the coverage of
closed shrublands, and the fraction of woodland and wooded
grassland. Most of these descriptors are unitless.

We select those five basin descriptors that exhibit the highest
linear correlation with each parameter of each model. Multivariate
linear regression (MLR) is then used to combine those five
catchment properties into a single equation. In so doing, we divide
the pool of 438 MOPEX watersheds into a calibration and evalua-
tion data set. We remove watersheds with a significant number
of zero flow days. This leaves us with 177 watersheds for calibra-
tion and 181 watersheds for evaluation. The MLR function is
derived for the 177 calibration watersheds, and subsequently eval-
uated for the 181 evaluation watersheds.

Table 5 summarizes the results of our regionalization analysis.
The second and third column list the performance of each model
for the calibration and evaluation data set. The last column sum-
marizes for each parameter of each FDC model the index of the
basin descriptor. This should help readers implement the regional-
ization functions in their own work. The listed RMSE values mea-
sure the distance between the empirical FDC and simulated FDC
derived using values of the model parameters predicted by the
MLR equation using values of the basin descriptors. Values listed
in parenthesis display the performance when evaluated in the
exceedance probability space.

The results of this Table demonstrate that the 2-parameter LN
model achieves the best regionalization results. The average RMSE
amounts to about 0.69 (mm/day) and 0.10 (–) when evaluated in
the streamflow and exceedance probability space, respectively.
The GEV model exhibits very similar RMSE values in the stream-
flow space (0.69 mm/day) but somewhat larger values of 0.17 (–)
when the model misfit is measured in the exceedance probability
space. The GP model also shows a relatively high regionalization
potential. The proposed VG model exhibits rather poor regionaliza-
tion relationships with RMSE value that is 3–5 times larger than
that of the 2-parameter LN model when evaluated in the stream-
flow space. The result of the K model is somewhat better but still
much inferior to that of the LN model. These findings are rather
disappointing and highlight a trade-off between quality of fit and
regionalization potential.

Note that the results of the K-2 model do not match those of the
2-parameter LN distribution, even though their functions are
mathematically equivalent after some simple transformation of
their parameters. This finding highlights one of the limitations of
MLR and that is that it can capture only linear relationships
between the model parameters and catchment properties.
Parameter transformations that enhance linearity between their
optimized values and catchment properties will improve regional-
ization relationships.

One of the reasons to use theWRF of K is that its parameters can
be directly related to the pore size distribution, and thus have a
physical interpretation. We verify whether this also holds for the
formulations used herein to fit the empirical FDCs of the MOPEX
watersheds. The optimized values of aK and bK of the K-2 model
indeed show a strong correlation with the physical and climato-
logic characteristics of the watershed. Linear correlation coeffi-
cients of about 0.8 are found with the mean annual precipitation
and potential evapotranspiration. This opens up new possibilities
for regionalization and prediction in ungaged basins using for
instance, precipitation data products from remote sensing. Note
that the coefficient aK of the 2-parameter K model exhibits an
almost perfect linear correlation with the median streamflow value
(see Fig. 12). This result is not surprising as the parameter aK is
defined as the median streamflow value.

Now we have established an almost perfectly linear correlation
between the median streamflow level and the value of parameter
aK of the 2-parameter K model, we can readily fit this model to
empirical FDCs. Note, the correlation between aK and the median
streamflow level is not perfectly linear (r = 0.997). We can there-
fore get a somewhat improved fit to the empirical FDC if we fine
tune aK and bK jointly.



Table 5
Performance statistics of each model in our regionalization analysis. The RMSE values are derived by comparing for each model separately the empirical FDC with the simulated
FDC derived using model parameter values derived from the regionalization equations of MLR with the five most informative basin descriptors. Listed values in column 2 and 3
correspond to the average error in the streamflow (Table 1) and (between brackets) exceedance probability (Table 2) space. The five catchment properties that exhibit the highest
correlation with each model parameter (optimized in the streamflow space) are listed in the last column.

Model name Calibration set Evaluation set Basin descriptors (Y-space)

Lognormal-2 0.7031 (0.1060) 0.6929 (0.0989) aLN : 19 18 51 52 17
bLN : 51 23 19 26 18

a

Gumbel 1.1200 (0.1401) 1.1205 (0.1253) aG : 81 26 23 22 21
bG : 26 81 82 23 169

Logistic 1.3451 (0.1448) 1.3439 (0.1323) aLG : 52 17 18 19 51
bLG : 52 17 18 19 51

Logarithmic 0.9792 (0.1201) 1.0078 (0.1220) aLOG : 52 17 18 19 51
bLOG : 21 22 81 23 26

Power 1.0178 (3.2974) 1.0432 (3.2072) aP : 51 23 19 26 81
bP : 52 17 18 19 51

Quimpo 1.7517 (0.4208) 1.5779 (0.4704) aQ : 52 17 4 23 26
bQ : 51 189 19 18 20

Viola 0.8748 (0.5618) 0.8884 (0.6232) aV : 52 17 18 19 51
bV : 51 23 26 19 81

VG-2 2.9013 (0.2161) 3.1861 (0.2043) aVG : 20 19 18 52 189
bVG : 170 23 22 21 52

Kosugi-2 0.8057 (0.1284) 0.8669 (0.1156) aK : 52 17 18 19 51
bK : 51 23 19 26 18

Lognormal-3 0.7405 (0.1119) 0.7463 (0.1083) aLN : 19 18 51 17 52
bLN : 51 19 23 26 18
cLN : 170 21 17 22 23

Generalized Pareto 0.7202 (0.1496) 0.7668 (0.1327) aGP : 170 21 22 23 26
bGP : 52 17 18 19 51
cGP : 51 26 81 23 19

GEV 0.6938 (0.2057) 0.7649 (0.1651) aGEV : 52 17 18 19 51
bGEV : 52 17 18 19 51
cGEV : 51 26 23 19 81

Franchini and Suppo 1.3560 (0.1602) 1.3626 (0.1535) aFS : 52 17 4 18 26
bFS : 52 18 17 19 51
cFS : 51 189 19 18 20

VG-3 1.9910 (0.2696) 1.9842 (0.2979) aVG : 20 19 18 189 52
bVG : 20 19 189 18 52
cVG : 52 17 18 170 19

Kosugi-3 0.9623 (0.1429) 0.9637 (0.8980) aK : 52 17 18 19 51
bK : 51 19 23 26 18
cK : 170 21 17 22 23

a 4: area, 17: rainfall/PET ratio, 18: runoff/rainfall ratio, 19: ET/PET ratio, 20: NDVI derivative value, 21: porosity, 22: upper limit of unsaturated soil water content, 23:
wilting point, 26: saturated hydraulic conductivity, 51: annual PET, 52: annual rainfall, 81: fraction of sand (0–10 cm layer), 82: loamy sand fraction upper 10 cm of soil, 83:
sandy loam fraction (0–10 cm), 169: fraction of mixed forest coverage, 170: fraction of closed shrublands coverage, 189: fraction of wooded grassland coverage.
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5. Conclusions

The FDC has been used to characterize information regarding
catchment streamflow variability and flow regime in various
hydrologic design and management studies. While several
physically-based and probabilistic/mathematical functions have
been used to model the empirical FDCs, they fail to characterize
adequately the low tail of the FDC at high exceedance probabilities,
and the large differences between the FDCs of watersheds with
contrasting hydrologic behaviors. This paper extends the work of
Vrugt and Sadegh (2013) and introduces a new class of closed-
form parametric expressions to closely characterize the FDCs of
arid, semi-arid, and wet catchments. These continuous functions,
equivalent to the WRFs of VG and K, are derived from the field of
vadose zone hydrology and have been used widely to describe
the water characteristic of variably saturated soils. Two different
formulations of the VG and K models have been introduced to
mimic empirical FDCs. These functions differ in their structural
complexity and include between two to three coefficients whose
values need to be derived by fitting against the observed FDCs.

Application of the WRFs to 430 watersheds of the MOPEX data
set demonstrates that the VG and K models closely match the
empirical FDCs of arid, semi-arid, and wet catchments. The pro-
posed parametric expressions exhibit a superior performance over
other commonly used FDC models in the hydrologic literature. If
quality of fit is of paramount importance then the 3-parameter
VG model is preferred as it provides the closest fit to the empirical
FDCs. If the fitting coefficients of the FDC model are to be used for
regionalization or as summary statistics in diagnostic analysis then
the 2-parameter LN function (K) is preferred.

It is further demonstrated that the proposed parametric expres-
sions exhibit a rather poor regionalization potential. The 2-
parameter LNmodel achieves the best regionalization performance
from all FDC models considered in our analysis. The parameters aK

and bK of the K-2 model exhibit a strong correlation however with
physical and climatological characteristics of the catchment. What
is more, the parameter aK is nearly equivalent to the median value
of the streamflow observations, reducing the K-2 calibration prob-
lem to just a single parameter.
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