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Disentangling Heterogeneity in Alzheimer’s Disease: Two 
Empirically-Derived Subtypes

Anna E. Blanken, Shubir Dutt, Yanrong Li, Daniel A. Nation, Alzheimer’s Disease 
Neuroimaging Initiative
Department of Psychology, University of Southern California, Los Angeles, CA, USA

Abstract

Background: Clinical-pathological Alzheimer’s disease (AD) subtypes may help distill 

heterogeneity in patient presentation. To date, no studies have utilized neuropsychological and 

biological markers to identify preclinical subtypes with longitudinal stability.

Objective: The objective of this study was to empirically derive AD endophenotypes using a 

combination of cognitive and biological markers.

Methods: Hierarchical cluster analysis grouped dementia-free older adults using memory, 

executive and language abilities, and cerebrospinal fluid amyloid-(3 and phosphorylated tau. Brain 

volume differences, neuropsychological trajectory, and progression to dementia were compared, 

controlling for age, gender, education, and apolipoprotein E4 (ApoE4).

Results: Subgroups included asymptomatic-normal (n = 653) with unimpaired cognition and 

subthreshold biomarkers, typical AD (TAD; n = 191) showing marked memory decline, high 

ApoE4 rates and abnormal biomarkers, and atypical AD (AAD; n = 132) with widespread 

cognitive decline, intermediate biomarker levels, older age, less education and more white matter 

lesions. Cognitive profiles showed longitudinal stability with corresponding patterns of cortical 

atrophy, despite nearly identical rates of progression to AD dementia.

Conclusion: Two clinical-pathological AD subtypes are identified with potential implications 

for preventative efforts. Keywords: Alzheimer’s disease, atypical AD, cluster analysis, 

heterogeneity, neuroimaging

INTRODUCTION

Pathophysiological changes typical of Alzheimer’s disease (AD) are thought to precede 

clinical symptoms [1]. Realistically, both clinical manifestation and biomarker presentation 

of AD vary considerably during the prodromal phase [2–4]. Furthermore, mixed 

neuropathology accounts for most dementia cases and can have summative or interactive 

effects altering clinical presentation [5, 6]. Several notable atypical AD variants illustrating 

this variability are described, including frontal, posterior cortical, and logopenic aphasia 

[7–9]. Such heterogeneity contributes to diagnostic errors, inaccurate prognosis, and 

undesirable treatment outcomes [10–12].

Investigating clinical-pathological subtypes may generate insight into how disease-

modifying factors interface with pathophysiology [5]. Clinical symptomology and AD 

pathogenesis may depend on genetic (e.g., ApoE4 carrier status), environmental (e.g., 
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socioeconomic status, culture), and neuropsychological factors (e.g., cognitive reserve) [13, 

14]. Therefore, separation of syndromal and etiological features may obscure key modifying 

factors.

The present study sought to identify AD endophenotypes using cluster analysis, a machine 

learning technique that categorizes individuals using a set of characteristics. Similar 

work has yielded a classic AD subtype with amnesia, AD biomarker abnormality, high 

ApoE4 rate, and disproportionate medial temporal atrophy [2–4, 15, 16]. Atypical subtypes 

have demonstrable clinical heterogeneity, diffuse cortical atrophy, and less salient CSF 

biomarker signature [2, 4, 17, 18]. Whether subtypes represent true variants or advanced 

disease severity remains unclear. We hypothesized that combined clinical and pathological 

markers would form subtypes with longitudinal stability and equifinality regarding clinical 

progression [3, 19]. This approach may assist clinicians who evaluate both clinical and 

biological data when drawing diagnostic and prognostic conclusions.

METHOD

Subjects

Participants included 367 cognitively normal (CN) and 609 mild cognitive impairment 

(MCI) subjects participating in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

ADNI, a longitudinal study with sites across the United States, was designed to track AD 

using clinical and cognitive tests, magnetic resonance imaging (MRI), positron emission 

tomography (PET), cerebrospinal fluid (CSF), and blood biomarkers. The study was 

approved per site by local Institutional Review Boards (IRB). Written informed consent 

was obtained for all participants.

The ADNI cohort has been previously described [20]. AD diagnosis was based on the 

National Institute of Neurological and Communicative Disorders and Stroke and the AD 

and Related Disorders Association (NINCDS-ADRDA) criteria [21–23]. Subjects with other 

neurological disorders, psychiatric history, recent alcohol or substance dependence, less than 

6 years of education, or without fluency in English or Spanish, were excluded. The full 

list of inclusion/exclusion criteria is available online (http://www.adni-info.org/Scientists/

ADNIScientistsHome.aspx). Data were available at the Laboratory of \ NeuroImaging 

(LONI) ADNI repository (https://ida.loni.usc.edu).

Neuropsychological testing

Subjects completed annual neuropsychological testing. The American National Adult 

Reading Test (ANART) estimated premorbid verbal IQ. Consistent with prior studies, six 

neuropsychological scores were selected from three cognitive domains [Executive Function: 

Trail Making Test (TMT) A and B; Memory: Rey’s Auditory Verbal Learning Test (RAVLT) 

free recall and recognition trials; Language: Category Fluency and Boston Naming Test 

30-item (BNT)] for neuropsychological profiles [10]. Follow-up comparisons used Z-scores 

normed by age, sex, and education [(TMT A&B, Category Fluency, BNT, Mini-Mental State 

Examination (MMSE)] and age-normed Z-scores (RAVLT).

Blanken et al. Page 2

J Alzheimers Dis. Author manuscript; available in PMC 2022 February 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.adni-info.org/Scientists/ADNIScientistsHome.aspx
http://www.adni-info.org/Scientists/ADNIScientistsHome.aspx
https://ida.loni.usc.edu


Cerebrospinal fluid biomarkers

Subjects participated in biennial lumbar punctures for CSF collection. Aliquots of ADNI 

GO plus ADNI 2 CSF samples were analyzed using the xMAP Luminex platform and 

Innogenetics/Fujirebio AlzBio3 immunoassay kits. Baseline CSF markers were examined 

using cutoff values reported by Shaw and colleagues for the ADNI sample [24]. Biomarker 

values for A(3 and p-tau were separately coded “positive” or “negative” for AD-type profile. 

An alternative CSF immunoassay, Elecsys®, was used in follow-up analyses to confirm the 

identified AD subtypes [25, 26].

Genotyping

ADNI 1 participants were genotyped according to the Illumina Human610-Quad BeadChip 

(Illumina, Inc., San Diego, CA) protocol, and ADNI-2/GO participants according to the 

Illumina HumanOmni Express BeadChip (Illumina, Inc., San Diego, CA) protocol. ApoE 
genotyping was performed on DNA samples obtained from subjects’ blood as described 

in http://www.adni-info.org/Scientists/Pdfs/ADNI_GeneralProceduresManual.pdf. ApoE is a 

polymorphic gene with the following isoforms: ApoE2 (e2 allele), ApoE3 (e3 allele), and 

ApoE4 (e4 allele). In our analyses that included ApoE status, we coded ApoE genotype as 0 

or 1, with 1 indicating the presence of one or more ApoE e4 alleles.

Magnetic resonance imaging

Baseline MRI scans for a subset of subjects with scans passing ADNI quality con trol 

measures (n = 536; asymptomatic n = 367, typical n = 89, atypical n = 64) were analyzed 

using voxel-based morphometry (VBM) conducted in SPM12 (Wellcome Department 

of Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm12) 

[27]. Whole-brain-analysis was conducted to examine group differences. T1-weighted 

images were segmented into gray and white matter tissue classes using SPM12’s unified 

segmentation procedure, spatially normalized to a template image, and smoothed with an 

8 mm full-width at half-maximum (FWHM) isotropic Gaussian kernel. Normalized voxel 

size was 1.5 mm. All clusters and peak voxels of gray matter T-statistic brain maps were 

thresholded at p < 0.05, using family wise error (FWE) correction. We used absolute 

threshold masking to exclude voxels with gray matter probabilities of less than 0.1. Total 

intracranial volume (TIV) was computed by summing the segmented gray matter, white 

matter, and CSF for each individual. One-way analysis of variance (ANOVA) was used to 

compare groups, controlling for age, sex, and TIV.

White matter hyperintensity volumes (WMH) were derived by the Department of Neurology 

and Center for Neuroscience at the University of California, Davis. In ADNI 2/GO, WMH 

were quantified using an updated four-tissue segmentation pipeline (http://adni.loni.usc.edu). 

Baseline data were available for 559 ADNIGO/2 subjects. Log transformation was applied 

to correct for kurtosis in the distribution of the WMH volumes.

Statistical analyses

We applied hierarchical cluster analysis with Ward’s method using cognitive and biomarker 

variables to classify dementia-free subjects. We chose this approach based on prior machine 

learning studies which revealed high rates of false positive diagnosis in the ADNI sample 
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[10]. Z-scores were calculated from means and standard deviations of the whole sample 

prior to analyses. Discriminant function analyses (DFA) selected the optimal number of 

clusters and quantitatively assessed the ability of selected cognitive and biomarker measures 

to correctly predict cluster membership.

Chi-square analyses, logistic regression, and ANOVA were used to examine group 

demographics. Analysis of covariance (ANCOVA) with least significant difference (LSD) 

post-hoc analysis compared groups on cognitive performance, biomarker status, and disease 

risk factors. General linear mixed models (GLMM) with unstructured covariance matrix 

and maximum likelihood estimation were used for longitudinal examination of group 

membership as a predictor. Group time, age, sex, education, and ApoE4 carrier status were 

included in the model as fixed factors. Intercept and time were entered as random effects. 

The model included three time points (Baseline, Month 12, and Month 24 visit), coded as 0, 

1, and 2. LSD post-hoc analysis was used to conduct pairwise comparisons. Cox regression 

was used to examine rate of progression to AD. Age, gender, education, and ApoE4 status 

were included as covariates. Analyses were two-tailed with a set at p < 0.05. False discovery 

rate (FDR) was controlled using the Benjamini-Hochberg procedure to address type I error 

due to multiple comparisons. Results were assessed when FDR was controlled at both 0.05 

and 0.10 [28]. Analyses were performed with SPSS for Windows OS version 20.0.0 (SPSS, 

263 Armonk, NY: IBM Corp).

RESULTS

Hierarchical cluster analysis

We identified three distinct subtypes. One, labeled asymptomatic-normal (n = 653; 66.9% 

of sample), was characterized by normal neuropsychological performance and biomarker 

levels subthreshold for abnormality. Another group, labeled typical AD (n = 191; 19.6% of 

sample), had substantial memory impairment, relatively preserved executive and language 

abilities, and elevated biomarker signature consistent with AD. The third group, identified 

as atypical AD (n = 132; 13.5% of sample), displayed relatively preserved memory ability 

in the presence of impaired executive function and language domains, and a biomarker 

signature falling between the asymptomatic-normal and the typical AD groups. Figures 1 

and 2 summarize the AD profiles.

Validity of cluster-derived AD subtypes

Means and standard deviations for baseline measures are in Table 1 (please see 

Supplementary Table 1 for comparisons for the subset of subjects included in MRI 

analyses). Observed raw score cognitive differences between all groups were replicated 

when compared on age and education adjusted scores. Two discriminant functions were 

obtained accounting for 69.2% and 30.8% of variance among the three subgroups. The 

selected measures correctly classified 89.2% of original grouped cases. A leave-one-out 

cross-validation technique was used, after which the percentage of correctly classified cases
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Subtype demographics and risk factors

Subject demographics are in Table 2. Apart from systolic blood pressure, all comparisons 

remained significant with FDR limited to 0.05. With FDR limited to 0.1, asymptomatic-

normal individuals exhibited lower systolic blood pressure than atypical AD (η2 = 0.04).

The groups differed in level of educational attainment (F(2,974) = 6.43, p = 0.002, η2 = 

0.013), number of errors on the ANART (F(2,974) = 92.09, p = 0.004, η2 = 0.033), and 

age (F(2,974) = 21.08, p < 0.001, η2 = 0.042), as atypical AD was less educated and 

showed lower premorbid verbal intellectual ability (errors on the ANART) compared to 

typical AD (years education: p = 0.022; ANART: p = 0.025) and asymptomatic-normal 

individuals (years education & ANART: p < 0.001). Typical AD also performed worse than 

the asymptomatic-normal group on the ANART (p < 0.001). Atypical AD was older than 

both typical AD (p = 0.044) and asymptomatic-normal groups (p < 0.001).

Groups differed in baseline diagnosis (χ2[1] = 132.60, p < 0.001), with typical AD more 

likely to be diagnosed with MCI (90.6%), compared to asymptomatic-normal (49.9%, 

χ2[1] = 2.61 p < 0.001) and atypical AD (83.3%, χ2[1] = 0.097 p = 0.039). After 

entering covariates, asymptomatic-normal individuals were still less likely diagnosed with 

MCI (b = −2.19, Wald χ2[1] = 64.94, p = 0.001), but no difference remained between 

atypical and typical AD (b = −0.451, Wald χ2[1] = 1.69, p = 0.195). Groups differed in 

proportion of ApoE4 carriers (typical AD > atypical AD > asymptomatic-normal: typical 

versus atypical χ2[1] = 27.55, p < 0.001; asymptomatic-normal versus atypical χ2[1] 

= 11.68, p = 0.001; asymptomatic-normal versus typical χ2[1] = 118.62, p < 0.001), 

and all three comparisons remained significant (with p < 0.001) after entering covariates. 

Asymptomatic-normal individuals had 30.8% carriers, typical AD had 74.9% carriers, and 

atypical AD had 46.2% carriers. Atypical AD exhibited greater white matter lesion burden 

than asymptomatic-normal individuals (F(2, 558) = 4.74, p = 0.009, η2 = 0.017). Typical 

AD did not differ from the other groups in white matter lesion burden.

Subtype stability over time—Subtype stability was determined through analysis of 

group differences over two years of follow-up. At both follow-up visits, we observed 

maintenance of distinct neuropsychological profiles among empirically-derived AD groups. 

Atypical AD performed worse in language and executive functioning than both typical 

AD (language: p < 0.001; executive functioning: p < 0.001) and asymptomaticnormal 

(language: p < 0.001; executive functioning: p < 0.001). Atypical AD also performed 

worse than asymptomatic-normal individuals in memory (p < 0.001). Notably, typical AD 

performed worse on memory than both atypical AD and asymptomatic-normal groups (p < 

0.001) and per- As expected, each pairwise comparison between groups (e.g., atypical AD 

versus typical AD, asymptomatic-normal versus typical AD, asymptomatic-normal versus 

atypical AD) was statistically significant with p < 0.001 for each comparison. RAVLT, Rey 

Auditory Verbal Learning Test; CSF, cerebrospinal fluid; AAD, atypical AD; TAD, typical 

AD; AN, asymptomatic-normal. formed worse in language and executive functioning than 

asymptomatic-normal individuals (language: p < 0.001; executive functioning: p < 0.001).
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Subtype comparisons on biomarker status—Groups differed in biomarker status 

(A(3: F(2, 974) = 102.01, p < 0.001, η2 = 0.174; p-tau: F(2,974) = 52.6, p < 0.001, η2 

= 0.098). After post-hoc pairwise comparisons, typical AD demonstrated the most marked 

biomarker elevation on both CSF measures (p < 0.001), followed by atypical AD (p < 

0.001), and asymptomatic-normal individuals (p < 0.001).

Consistent with differences in continuous markers, typical AD included more CSF A(3 and 

p-tau positive individuals (A(3: 97.9%; p-tau: 93.2%) than atypical AD (A(3: 77.9%; p-tau: 

84.8%) (A(3: χ2[1] = 33.94 p < 0.001; p-tau: χ2[1] = 5.93 p < 0.013) and asymptomatic-

normal individuals (A(3: 40.2%; p-tau: 68.9%) (A(3: χ2[1] = 197.26 p < 0.001; p-tau: χ2[1] 

= 45.75 p < 0.001). Atypical AD had more individuals positive for both biomarkers than the 

asymptomatic-normal group (χ2[1] = 55.77, p < 0.001). Most (91.6%) of typical AD were 

positive for both biomarkers, in contrast to significantly lower rates in atypical AD (68.7%) 

(χ2[1] = 29.11, p < 0.001) and asymptomatic-normal individuals (33.5%) (χ2[1] = 201.43, 

p < 0.001). While less than 1% of individuals in the typical AD group were negative for both 

biomarkers, approximately 6% of atypical AD were negative for both biomarkers.

Clinical outcomes—Cox regression revealed greater risk of progression to AD dementia 

diagnosis for typical AD compared to asymptomatic-normal individuals (p < 0.001), but no 

difference between typical and atypical AD (p = 0.730). Typical AD was at 4.398 times 

greater risk of progressing to AD dementia than asymptomatic-normal, and atypical AD was 

at 4.120 times greater risk (p < 0.001) (Fig. 3). Using conventional clinical criteria for MCI, 

17.9% of atypical AD subjects were identified as normal at month 24, compared to 7.1% of 

typical AD, and 50.9% of asymptomatic-normal individuals (atypical versus typical: χ2[1] 

= 7.01 p = 0.008; atypical versus asymptomatic-normal χ2[1] = 35.58 p < 0.001; typical 

versus asymptomatic-normal χ2[1] = 96.99 p < 0.001).

On the CDR, asymptomatic-normal subjects scored better than both typical and atypical AD, 

(Mean Difference SE = −1.62 0.01, t(2, 1012.0) = −16.3, p < 0.001) but the AD groups did 

not differ (Mean Difference SE = −0.16 0.13, t(2, 981.5) = −1.20, p = 0.230). Atypical AD 

had more preserved functioning on the FAQ than typical AD (Mean Difference SE = −1.21 

0.47, t(2, 990.4) = −2.58, p = 0.010), and asymptomatic-normal individuals scored better 

than both AD groups (p < 0.001). Differences between groups on CDR and FAQ measures 

remained significant with FDR limited to 0.05.

Brain atrophy—Consistent with classical patterns of cerebral atrophy in AD, VBM 

analysis revealed greater bilateral atrophy in the medial temporal lobe, left precuneus, 

left angular gyrus, right inferior and superior temporal gyri, for typical AD relative 

to asymptomatic-normal individuals (puncorrected < 0.001; pFWE < 0.05). In contrast, 

atypical AD showed diffuse atrophy extending to limbic, frontal, occipital, and temporal 

regions compared to both typical AD (puncorrected < 0.001; pFWE < 0.05) and 

asymptomatic-normal groups (puncorrected < 0.001; pFWE < 0.05). Specifically, atypical 

AD showed greater atrophy than typical AD in the bilateral middle cingulate gyrus, bilateral 

supplementary motor cortex, left pars opercularis, left prefrontal gyrus, left precentral 

gyrus, and right occipital gyrus (puncorrected <0.001; pFWE < 0.05) (Fig. 4). Relative 

to asymptomatic-normal individuals, atypical AD exhibited greater bilateral atrophy in the 
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amygdala, cingulate gyrus, supramarginal gyrus, and bilateral frontal and posterior regions 

(e.g., right medial orbital gyrus, occipital fusiform gyrus; left middle frontal gyrus, pars 

opercularis, postcentral gyrus, angular gyrus, precuneus, middle occipital). Supplementary 

Tables 2–4 portray significant clusters resulting from VBM analyses with corresponding 

anatomical regions and FWE corrected p-values for both cluster and peak-level analyses.

DISCUSSION

Three distinct clinical-pathological subgroups were identifiable by combined 

neuropsychological and biomarker signatures. Asymptomatic-normal individuals, at the 

least risk of developing AD, displayed subthreshold biomarker signature, and relatively 

preserved brain volume and cognitive functioning. Typical AD exhibited AD-consistent 

biomarker abnormalities, localized medial temporal atrophy, and memory impairment with 

relatively preserved language and executive functioning. Atyp ical AD, a substantial portion 

of our sample (40.9% of AD-risk participants), exhibited disproportionate executive function 

and language impairment with relatively spared memory function, diffuse brain atrophy 

pattern, and intermediate biomarker elevation. CSF levels of A(3 and tau may be less salient 

biomarkers for this group.

The identified subgroups partly corresponded with previously described neuropsychological 

phenotypes [10]. However, prior studies noted atypical (i.e., “dysexecutive” or “mixed”) 

groups with commensurate levels of memory impairment and AD biomarker abnormality, 

and higher rate of AD progression, raising the possibility of “atypical” groups representing 

advanced disease progression rather than differing typologies [3]. In this study, AD subtypes 

exhibited longitudinal stability of neuropsychological profile despite equivalent rates of 

progression and global impairment levels. Therefore, identified groups likely represent 

distinct subtypes rather than different stages of disease.

Further underscoring the typology versus disease stage hypothesis, the present AD subtypes 

displayed double-dissociations of both neuropsychological and biomarker profiles. Atypical 

AD displayed greater executive and language impairment than typical AD, despite less 

pronounced biomarker abnormality and relative preservation of memory ability. Although 

atypical AD presentations have been previously published, the prevalence of these variants 

is estimated to be low. Snowden et al. reported that 5% of 523 patients with AD presented 

with posterior cortical atrophy, Johnson et al. describe a frontal variant of AD occurring in 

3 out of 63 patients with AD, and logopenic aphasia has been similarly reported in small 

numbers of AD patients [7,29]. In contrast, the atypical AD group presented here formed 

a substantial minority, approximately 41%, of individuals at-risk of AD diagnosis. There 

are also other inconsistencies between previously published subtypes and the atypical group 

defined here, such as age of onset. While phenotypic variants have been tied to earlier onset 

of disease and faster rate of decline, in this sample the group with atypical presentation 

tended to be somewhat older and did not significantly differ in rate of AD diagnosis [30]. 

There may be a much larger role for atypical presentations of AD requiring far greater 

elaboration. To underscore this point, a recent study of over 1,000 autopsy brains from older 

adults observed 230 different combinations of neuropathologies commonly seen in aging 
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[31]. These findings indicate that heterogeneity in AD may be grossly undervalued and is 

thus deserving of much attention in future research.

Atypical AD was the oldest group. However, age was included as a covariate in all 

models, and cannot fully explain group differences. Nevertheless, advancing age is linked 

to atypical neuropsychological and brain atrophy profiles, and challenging diagnoses 

[32, 33]. Compared to asymptomaticnormal individuals, atypical AD showed greater 

white matter lesion burden and higher systolic blood pressure, signifying contribution of 

comorbidity with agerelated vascular disease to differential biomarker, neuropsychological 

and brain atrophy patterns [34]. Evidence suggests soluble A(3 interacts with agerelated 

vascular changes (e.g., cerebral blood flow), contributing to AD pathogenesis and neuronal 

dysfunction, before observable A(3 aggregates begin to form [35]. Structural differences 

in A(3 fibrils, which are formed by accumulated soluble A(3, also exist between AD 

phenotypes. Different A(3 fibrils exhibit differential neurotoxicity, demonstrating how 

the interaction between pathology and non-pathologic factors is crucial to understanding 

disease-related brain changes. Furthermore, a small portion (6%) of individuals in the 

atypical AD group were negative for both AD biomarkers, in contrast to 1% of typical AD. 

Recently the contribution of non-AD pathologies to cognitive impairment has been called 

into attention, and biomarkers of neurovascular dysfunction may be more relevant to the 

atypical AD individuals [36, 37].

Atypical AD also had lower premorbid educational and intellectual attainment, both 

proposed markers of cognitive reserve. Cognitive reserve may convey resilience in the 

context of both agerelated and AD-related neurocognitive decline due to greater efficiency 

in use of cognitive resources [38]. Other theories propose that “neural reserve” (e.g., larger 

brains or greater synaptic densities) promotes resiliency to AD-related brain changes [39]. 

The apparent dearth of cognitive reserve in atypical AD may partially explain the pattern 

of neurocognitive decline as we observed equivalent disease progression rates despite lower 

AD pathological burden. They also exhibited more widespread brain volume differences, 

possibly due to premorbid differences rather than disease-related atrophy. Future studies 

examining longitudinal atrophy patterns may clarify the role of neural reserve in AD 

subtypes.

In contrast to typical AD, only a minority of atypical AD carried the ApoE4 allele. ApoE4 

increases AD risk and influences A(3 accumulation and clearance, in turn modifying 

AD progression [40]. Previous work linking ApoE4 to prominent medial temporal lobe 

atrophy suggests that genetic effects may be regionally specific. Animal studies reveal that 

ApoE4 influences memory impairment via functional neurovascular or metabolic changes, 

independent of neurodegeneration, possibly explaining amnestic differences between the 

two AD groups [41, 42]. ApoE4 also associates with younger age of onset, consistent 

with present finding of younger age and higher rate of ApoE4 in typical AD [43]. 

Some individuals may be less susceptible to ApoE4-specific AD risk. For the current 

atypical AD individuals with widespread cortical atrophy, alternative contextual risk factors 

may contribute to dysexecutive and dysnomic presentation, whereas classic AD-related 

pathological factors of A(3, tau, and ApoE4 status may not crucially affect disease trajectory 

[44]. Notably, the prevalence of the ApoE4 allele in the asymptomatic-normal group (30.8% 
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carriers) was higher than estimated prevalence rates for cognitively normal individuals in 

the general population (10–15%). A large contributing factor to this disparity is likely a 

characteristic of the ADNI study population, which oversampled for memory impairment 

and is predominately Caucasian, highly educated, and North American. ApoE4 prevalence 

has been shown to vary globally, with North American and European populations typically 

showing greater rates of ApoE4 carriers than Asian, African, and populations in the southern 

hemisphere [45, 46]. Typical AD showed pronounced atrophy of the medial temporal 

lobe (e.g., hippocampus and entorhinal cortex), consistent with amnestic profile. The AD 

groups did not differ in hippocampal volumes. Relative to asymptomatic-normal individuals, 

atypical AD did not show as pronounced reduction of hippocampal volume as typical AD. 

However, atypical AD group differed in volumes of the amygdala and other medial temporal 

structures. Despite important methodological differences across studies, our findings are 

consistent with previous studies deriving subtypes by pathological differences [2, 15, 47]. 

We extend prior work by suggesting that the hippocampal sparing pattern may be part of 

a larger clinicalpathological pattern that includes distinct patterns of cognitive impairment, 

CSF biomarkers, and genetic risk.

There was a substantial difference between clusterderived subgroups and ADNI diagnostic 

criteria, such that more than half (53.5%) of MCI individuals were reclassified into 

the asymptomatic-normal group. Furthermore, by using cluster analysis to derive the 

asymptomatic-normal group, we were able to capture all but one individual who reverted 

from MCI to cognitively normal over follow-up. These results are in line with previous 

findings that have shown a significant rate of false-positive errors such that a large portion 

of ADNI subjects diagnosed with MCI perform within normal limits on neuropsychological 

testing [10, 48]. Our cluster-analysis approach may be one way in which to correct for these 

diagnostic errors.

Though episodic memory historically typifies AD, meta-analysis of preclinical 

neuropsychological changes identifies a range of implicated domains, including subtle 

changes in global cognition, memory, executive function, and language [49–51]. Atypical 

AD, with relatively spared memory, had similar rate of eventual AD diagnosis, exemplified 

by comparable clinical ratings of global impairment (CDR). Informants also reported less 

functional impairment in atypical AD, possibly hindering early evaluation due to unusual 

and subthreshold presentation of cognitive and biological markers, lower genetic risk, and 

advanced age [52]. Moreover, pronounced memory impairment may be more debilitating 

in daily life, noticeable to peers, and likely to drive patients to a specialist. Studies of 

empirically-derived MCI neuropsychological profiles corroborate cognitive heterogeneity at 

this stage [4, 18, 48, 53]. Clearly outlined AD subtypes may assist clinicians in earlier 

identification and treatment of atypical AD. The present study has both limitations and 

strengths. The ADNI study recruits and collects data from subjects from over 50 centers 

across the United States and Canada, and is not representative of the general population, 

due to exclusion criteria and oversampling of memory impairment. The study is currently 

in its third phase and many participants have incomplete data. Also, a high percentage of 

individuals have discontinued from all or key parts of data collection (e.g., lumbar puncture). 

This suggests that similar studies in more diverse samples would yield greater heterogeneity 

in clinical-pathological profiles. Furthermore, data on non-Caucasian individuals was 
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limited, preventing meaningful analysis of racial or ethnic differences that likely increase 

variation [54]. For strengths, combining cognitive and biological markers to classify patient 

subtypes represents a novel approach, possibly providing superior prognostic and diagnostic 

value at early disease stages [55, 56]. Longitudinal design allowed examination of subtype 

stability and progression. Treatment development to date has been unsuc-cessful, but 

unpacking heterogeneity could improve diagnosis and treatment planning. Certain subtypes 

might be more responsive to treatments based on modifying factors beyond the treatment 

target (e.g., A(3). Clinical trials utilizing a comprehensive clinical-pathological profile may 

disentangle patient specific heterogeneity and identify subtype-specific treatment responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Profile of typical AD. The right panel depicts areas where typical AD exhibited smaller 

brain regions compared to asymptomatic- normal individuals (cluster level pFWE < 0.05). 

The color bar represents T-score values. T-maps display results from ANCOVA with age, 

gender, and TIV included as covariates. The left panel depicts key AD-related genetic, 

biomarker, and neuropsychological data for the typical AD group.
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Fig 2. 
Profile of atypical AD. The right panel depicts areas where atypical AD exhibited smaller 

brain regions compared to asymptomatic- normal individuals (cluster level pFWE < 0.05). 

The color bar represents T-score values. T-maps display results from ANCOVA with age, 

gender, and TIV included as covariates. The left panel depicts key AD-related genetic, 

biomarker, and neuropsychological data for the atypical AD group.
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Fig. 3. 
Cox’s regression evaluating progression to AD dementia for each group over multiple 

time points (measured in months). Compared to atypical and typical AD, the asymptomatic-

normal group had significantly less risk of developing AD over more than 5 years. The two 

AD groups did not differ from one another in risk of progressing to AD diagnosis.
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Fig. 4. 
VBM t-maps exhibit brain regions where atypical AD exhibited smaller brain volume than 

typical AD (cluster level pFWE < 0.05). The color bar represents T-score values.
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Table 1

Summarized mean (standard deviation) raw baseline neuropsychological and biomarker values

AN TAD AAD Group p

(n = 653) (n = 191) (n = 132) Comparison

RAVLT Delayed Recall (words)

 Raw 6.80 (3.83) 1.30 (1.78) 3.64 (3.54) TAD<AAD<AN <0.001

 Z-Score 0.33 (1.50) 2.38 (0.77) 1.45 (1.42)

RAVLT Recognition (words)

 Raw 12.80 (0.10) 7.89 (0.20) 10.27 (0.23) TAD<AAD<AN <0.001

 Z-Score −0.37 (1.57) −3.39 (2.36) −1.78 (2.52)

Category Fluency (words)

 Raw 20.02 (5.06) 18.55 (5.54) 13.18 (4.24) AAD<TAD<AN <0.001

 Z-Score −0.13 (0.93) −0.61 (0.93) −1.25 (0.85)

Boston Naming Test (names)

 Raw 27.88 (2.32) 26.76 (2.60) 23.08 (5.06) AAD<TAD<AN <0.001

 Z-Score −0.11 (0.80) −0.43 (0.91) −1.53 (1.71)

Trails A (seconds)

 Raw 33.59 (10.22) 39.86 (13.10) 59.22 (27.28) AAD<TAD<AN <0.001

 Z-Score −0.06 (0.73) −0.45 (0.95) −0.67 (2.02)

Trails B (seconds)

 Raw 80.67 (27.38) 114.17 (56.90) 200.20 (69.79) AAD<TAD<AN <0.001

 Z-Score 0.01 (0.62) −1.68 (1.28) −2.43 (1.62)

CSF A(342 (pg/mL) 201.23 (50.91) 131.76 (24.05) 160.87 (46.12) TAD<AAD<AN <0.001

CSF P-Tau181P (pg/mL) 31.64 (18.00) 54.08 (26.62) 36.93 (15.74) AN<AAD<TAD <0.001

As expected, each pairwise comparison between groups (e.g., atypical AD versus typical AD, asymptomatic-normal versus typical AD, 
asymptomatic-normal versus atypical AD) was statistically significant with p < 0.001 for each comparison. RAVLT, Rey Auditory Verbal Learning 
Test; CSF, cerebrospinal fluid; AAD, atypical AD; TAD, typical AD; AN, asymptomatic-normal.
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Table 2

Demographic comparisons

AN TAD AAD Group p

(n = 653) (n = 191) (n = 132) Comparison

Age (y) 72.2 (6.8) 73.4 (7.0) 76.1 (7.0) AN < TAD < AAD <0.001

 M (SD)

Baseline Diagnosis (MCI) % 49.9 90.6 83.3 AN < AAD < TAD <0.001

Gender (M: F) % 52.8:47.2 58.1:41.9 59.8:40.2 0.199

Education (y) 16.4 (2.6) 16.1 (2.7) 15.4 (3.0) AAD < TAD = AN <0.001

 M (SD)

ApoE4 (Carriers) % 30.8 74.9 46.2 AN < AAD < TAD <0.001

WML Volume (cm3) 0.46 (0.52) 0.63 (0.47) 0.79 (0.54) AN < AAD 0.004

 ADNI GO/2 (n = 559)

 M (SD)

Smoker Status % 40.0 40.3 36.4 0.721

Hypertension % 46.1 46.6 56.1 AN < AAD <0.001

Hypercholesterolemia % 50.4 51.5 57.1 0.266

Pulse Pressure 59.3 (14.5) 60.8 (15.3) 61.9 (15.0) 0.127

 M (SD)

Systolic BP 133.9 (16.5) 135.3 (16.6) 137.1 (15.7) AN < AAD 0.039

 M (SD)

Diastolic BP 74.6 (9.4) 74.6 (9.6) 75.3 (9.4) 0.765

 M (SD)

BMI 27.7 26.2 26.1 TAD = AAD < AN <0.001

 M (SD)

Diabetes % 9.0 7.9 8.3 0.866

Data are summarized as either Mean (Standard Deviation) or percentage as indicated. Significant differences (p < 0.05) among groups are indicated 
in bold. AAD, atypical AD; TAD, typical AD; AN, asymptomatic-normal; BMI, body mass index; BP, blood pressure; WML, white matter lesion; 
ApoE4, apolipoprotein E4 allele. White matter lesion values were log-transformed for analyses.
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