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A B S T R AC T

Every good collaboration is built on solid mutual understanding.
Without understanding their machines’ behavior, human opera-
tors cannot plan around them. Yet increasing automation is dis-
tancing them from active understanding. This dissertation will
apply cognitive science to build automation that boosts human
understanding.

The need for transparency is urgent for safety supervising tasks.
Humans’ environmental awareness and expansive understand-
ing of safety can save robots from unforeseen edge cases. But only
if those humans can also think through the robot’s ongoing activ-
ity. Actions can be optimized to evidence safety or clearly antic-
ipate faults, enabling supervisors to develop evidence-based ap-
propriate trust. This work explores how observing action allows
both humans and robots to construct better working models of the
other.

In research on assured autonomy we focus on how machines
can autonomously guarantee safety. Yet there will always remain
a modeling gap that we require human collaborators to help fill:
that’s why after decades of autopilot experience and improvements,
we still require two human pilots to validate ongoing safe opera-
tion. This thesis contends that safe robotics must work to inform
these safety collaborators; that choices don’t only function to com-
plete objectives but are also evidence that other agents ultimately
judge.

Characterizing how agents judge can empower our machines to
choose actions to win correct judgements. First1 we will exposit
how to learn humans’ safety concerns from data despite noisy
dynamics and demonstrations. After learning humans’ concerns,
we typify how they perceive and forecast danger2. Building on
cognitive science we present a model of human safety forecast-
ing structured by reachability analysis. This structure induces
data-efficient learning on small datasets so we can learn each su-

1 in Chapters 2 and 3
2 in Chapter 4
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pervisor’s idiosyncratic ways of thinking – enabling designers to
conform their intelligent systems like a glove to a hand.

We build on these models of human safety judgement to support
that judgement through machine choices. After learning each su-
pervisor’s unique alarms, respecting that safe set3 lets robot teams
decrease supervisory false positives. Extending this approach4 to
anticipate safety concerns ahead of the decision point, we opti-
mize motion as evidence to reject the null hypothesis of danger.

The approaches in this dissertation contributes a mathemati-
cal lens for further inquiries into human risk-taking, safety nego-
tiation, and technology learning5. By employing the formalisms
of intelligent safety to sketch human safety behavior, we imbue
machines with a “theory of mind” that is essential to fluent col-
laboration for our societal systems.

3 in Chapter 5
4 in Chapters 6 and 7
5 sketched in Chapter 8
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This work is dedicated to the beloved memory of William Clyde
Bryson, Jr. in the hopes that it opens a world of engineering to

others like the one he opened for me.
1939 – 2016

i



Not enjoyment, and not sorrow,
Is our destined end or way;

But to act, that each to-morrow
Find us farther than to-day.

— Henry Wadsorth Longfellow [44]
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• To the whole “Autonomous Anonymous” community for sol-
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perience. Especially to my fellow organizers Aaron Bestick,
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– For stepping back and giving me a view of the big pic-
ture, my peers under Shankar Sastry taught me rigor
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to each member gradually coming ’round the cube to
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the ideas in this work and wouldn’t be possible with-

iii



out the unique wit of each of my lab members: Tyler
Westenbroek, Joe Menke, Dexter Scobee, Jaime Fisac,
Dapo Afolabi, Chih-Yuan Frank Chiu, Victoria Tuck,
Kshama Dwarakanath, Mike Estrada, Josh Achiam, Kamil
Nar, Eric Mazumdar, Roy Dong, Kshitij Kulkarni, Chin-
may Maheshwari, Valmik Prabhu, Sally Hui, Michael
Psenka, Ritika Shrivastava, Stella Seo, Josephine Koe.
These rousing discussions pulled in ideas from neigh-
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• For teaching me gentleness and awareness of my position
to others, for teaching me that I will chase forms my en-
tire life, for giving me many opportunities to laugh at my
mistakes, I will always be grateful to the self-defense Yong-
mudo club at UC Berkeley and especially to masters Nor-
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David Commins, Raymond Cheung, Vera Chan, Stephanie
Siu, Thomas Smart, Patrick Baur and fellow students Ashis
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• To my family at Christ Church, thank you for being my Shire
and always reminding me to look up beyond the forest I’m
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L I S T O F F I G U R E S

Figure 3.1 Plot of risk thresholds for each state and
action hypothesis that are maximally al-
lowed (following Lemma 3.2.1) by the demon-
stration dataset. The data-allowed risk thresh-
olds for each hypothesis are plotted in their
respective state and action spaces. The dark
squares are states and actions the demon-
strator never took. Conversely, the light state
and actions squares were those chosen by
the demonstrator. This relative shading on
the states corresponds to the largest chance
of transition to that state that was demon-
strated in 𝒟. That transition chance is as
low as the risk threshold 𝜓(𝑥) on that state
can be set for a constraint without reject-
ing the demonstrations as infeasible and
making their likelihood 0. Therefore, in-
ferred constraints will have 𝜓(𝑥) equal to
that largest demonstrated transition chance. 26
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Figure 3.2 Executing our algorithm ranks how likely
the states are to be constraints. Compared
to the demonstrator, the first panel shows
how the initially hypothesized agent (that
is fully unconstrained with a vacuous con-
straint set 𝐶0) would be unlikely to avoid
the straightshot between its start and end
like the demonstrator did. Indeed, the bot-
tom middle gridcell should only be avoided
by an unconstrained demonstrator 𝐹𝐶+/𝐶0 =
29% of the time. It is unlikely that an un-
constrained agent would avoid this straight-
shot state – more likely there is a constraint
there. After identifying a constraint at this
bottom state (now marked with a red X),
the following panels continue to identify
avoidance behavior that is unlikely with-
out an explanatory constraint. 27

Figure 3.3 After the fourth constraint gets inferred,
the continued scaling shrinks by an order
of magnitude and then effectively halts as
𝐹 retracts to 𝐹 = 0.96. This corresponds
to inferring an untrue constraint. The last
three constraints in the upperhalf of the
grid are difficult to infer since those states
are already unlikely just from the uncon-
strained goal – adding those constraints
won’t change behavior much. Only constraints
that are relevant to the task can be iden-
tified. If the task is changed those uniden-
tified constraints in the blindspot may be-
come more relevant. Though this is a prob-
lem for generalization to new tasks, these
new tasks also solve the blindspot by mak-
ing those states relevant in their new demon-
strations. 28
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Figure 4.1 Illustration of the relationship between a
keep-out set 𝒦, the derived backward-reachable
set ℛ, and the resulting safe set Ω. Note
that 𝒦 ⊆ ℛ, and Ω is equal to the comple-
ment of ℛ. This illustration approximates
the result obtained using the Dubins car
dynamics given in (5.1). 36

Figure 4.2 Two dimensional slices of the zero level sets
of the value functions 𝑉𝑖(⋅) from the library
used for the experiment described in Chap-
ter 5. We used a family of Dubins car dy-
namics (see (5.1)) parametrized by 𝜔𝑚𝑎𝑥.
Notice that as 𝜔𝑚𝑎𝑥 decreases (the mod-
eled control authority is decreased), the level
sets extend farther away from the obstacle,
indicating that a robot is expected to turn
earlier to guarantee safety. 40

Figure 4.3 An example data set of how supervisors in-
tervene for a simple car model. This data
was gathered from the experiment described
in Chapter 5 and illustrates how one su-
pervisor’s interventions spread around the
contours of a reachable set. The red circles
represent the location of supervisor inter-
ventions, and the colored background rep-
resents the learned value function 𝑉(⋅) with
contour lines shown in black. In this case,
the learning algorithm chose a dynamics
model parametrized by 𝜔𝑚𝑎𝑥 = 0.75. 41

Figure 5.1 Top: if a robot’s behavior does not take into
account a human supervisor’s notion of safety,
the misaligned expectations can degrade
team performance. Bottom: When a robot
acts according to a human supervisor’s ex-
pectations, the supervisor can more easily
predict the robot’s behavior. 47

xii



L I S T OF F IGURES

Figure 5.2 Safe sets tested in our experiment (illus-
trated by their complementary reachable
set): (left) Standard safe set (calculated from
true dynamics and obstacle size), (middle)
example Learned safe set (calculated from
fitted supervisory perception of dynamics
and obstacle size), (right) Conservative safe
set (calculated from true dynamics and in-
flated obstacle size) 49

Figure 5.3 Screenshot of the task from Phase III of
the experiment. Robotic vehicles make trips
back and forth across the screen, detect-
ing and avoiding each obstacle with 80%
probability. The human supervisor must
remove an obstacle in the event that it is
undetected, but must infer this informa-
tion from the robots’ motion. 50

Figure 5.4 Average number of false positives per trial
plotted against the three safe set types. There
were significant differences between Stan-
dard and Learned (𝑝 < .05) and between
Standard and Conservative (𝑝 < .01). There
was no significant difference between Learned
and Conservative. 54

Figure 5.5 Regressed safe sets (viewed on the 𝜃 = 0
slice) from supervisor intervention data over-
laid on baselines. Three users’ safe sets clus-
tered to arcing like the Standard safe set.
Three others clustered to arcing like the
Conservative safe set. The final five safe
sets exhibit a distinct behavior that reflects
supervisors’ preference for gradual, pre-emptive
arcs. 55
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Figure 5.6 Empirical distribution of intervention states
observed during data collection (Phase II
of the experiment). The interventions within
the Conservative reachable set are colored
in red, leaving 115 interventions in the cor-
responding safe set. Similarly, the inter-
ventions within the Standard reachable set
are colored darker, leaving 397 interven-
tions in the corresponding safe set. Inter-
vention states not contained within a reach-
able set would have generated a false posi-
tive during the human-robot teaming task.

56
Figure 6.1 Overview: A human observes three possi-

ble robot motions with bicycle dynamics.
The black path (top) is ignorant of needing
to avoid the human and its control-minimizing
path is a collision course. The gray path
(middle) is optimized with a collision avoid-
ance term in addition to minimizing con-
trol effort. It’s path succeeds in avoiding
the human, but to minimize control cost it
comes concerningly close. The light green
path (bottom) is optimized to evidence its
awareness of the human’s needs so the hu-
man is informed. This legibility optimiza-
tion metric was historically too complex to
apply to non-holonomic dynamics tractably
(see conclusions of [12]). This work derives
a tractable equivalent metric. 59

Figure 6.2 Optimized paths through x-y space reach-
ing for either the leftwards destination (𝐻0�)
or the rightwards destination (𝐻1�). The
anticipative trajectory (in green) that op-
timizes Λ leads rightwards early; as op-
posed to the non-anticipative trajectories
(in gray) which indicate much more slowly.
The 𝐻1 trajectory takes three times longer
to move rightwards to 𝑥 = 2 69
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Figure 6.3 Paths through x-y space each optimized to
evidence one of five reaching targets reach-
ing. The anticipative trajectories for the far
ends Λ1 and Λ5 each exaggerate motion
out in their respective direction. Meanwhile
the anticipative trajectories for the inte-
rior goals (Λ2, Λ3, and Λ4) have their ex-
aggeration hemmed in, instead anticipat-
ing via a sharp juke early and then straight
shooting to the goal after alignment. 71

Figure 7.1 Optimized paths in x-y space: After the in-
structor corrects the robot to avoid the red
region around the origin, the robot must
demonstrate its new understanding. The
dark path is the optimum pre-correction
𝐻0 (from Equation 7.1), the gray path is
the optimum post-correction 𝐻1 (from Equa-
tion 7.2), and the green path is the opti-
mum for informing the corrector of the suc-
cessful correction Λ; all here with 𝑔 = [2, −2]𝑇 ,
𝑎1 = 40, 𝑎2 = 25, 𝑎3 = 1. 75

Figure 7.2 The informative control optimization can
even apply to nonlinear dynamics. After adding
a quadratic penalty to nearing state [2, −2]𝑇 ,
the avoidant optimum to �𝐻1 (in gray) in-
deed has a farther integral than the igno-
rant optimum to �𝐻0 (in black), but the path
still looks qualitatively the same. In con-
trast, the informative optimizer to Λ makes
its avoidance obvious. Here 𝑔 = [2, −1]𝑇 ,
ℎ = [−2, 2]𝑇 , 𝑎1 = 800, 𝑎2 = 10, 𝑎3 = 2.
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Figure 8.1 The two thrusts of mutual action under-
standing needed for human-AI-machine col-
laboration: machine learning models of hu-
man activity and human learning models
of robot activity. Together these thrusts col-
laborate to create a virtuous cycle; if our
robots understand human learning processes
then we can optimize actions to support
that learning. 82

Figure 8.2 Observing human driving behavior on one-
tenth scale vehicle in motion-capture track
for the Robot Autonomous Racing (ROAR)
project for constraint inference research as
in Chapter 2 83
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Table 5.1 Predicted and observed false positives. Left:
Predicted false positives from Phase II data.
Right: Observed false positives in Phase
III. 57
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1
M O R T A L S A N D M AC H I N E S I N M O T I O N

To date, every application of automation has a human backup. In-
dustrial robots screech into sticking points and rely on line super-
visors to halt the crash. Airlines’ autopilots may clock-in decades
of flight, yet they still rely on multiple pilots to check their work
and intervene for edge-cases. Behind every successful robot, there
is a capable human – waiting in the wings. They are tasked with
continuously monitoring robot performance for evidence that it is
operating within acceptable parameters. By integrating a human
element into the system, the combined human-robot system ben-
efits from humanity’s adaptivity and critical thinking to spot the
unquestioned.

Yet even this flexibility and capability has its limits, and joint
human-machine systems report failures. When the system fails,
it is the responsible caretaker on the scene who often bears the
brunt of the blame. Rather than defer responsibility by crying
“human error”, we should demand better overall system designs
since it is always a joint system failure.

Whether the fault “originates” with the human or the machine
it is the overall human-machine system that failed together. Af-
ter their career researching “human error”, Norman concludes in
their seminal textbook [55, p. 215]:

What we call “human error” is often simply a human
action that is inappropriate for the needs of technology.
As a result, it flags a deficit in our technology. It should
not be thought of as error. We should eliminate the
concept of error: instead, we should realize that people
can use assistance in translating their goals and plans
into the appropriate form for technology.

1



MORTAL S AND MACH INES IN MO T ION

Given the mismatch between human competencies
and technological requirements, errors are inevitable.
Therefore, the best designs take that fact as given and
seek to minimize the opportunities for errors while
also mitigating the consequences.

When “pilot-induced oscillations” rack airliners with shuddering
flight, it is fundamentally due to the mismatch between the ma-
chine’s and human’s frequencies.

Even when the failure originates with an automation fault, any
lack of intervention from the human supervisor is better thought
of as a failure at the interface between the human and machine.
When self-driving cars misread a white truck as a bright open sky
[8], some blame the owner for not supervising more closely. How-
ever, the handoff design failed in calibrating appropriate trust
and transparently telegraphing that something was amiss in time
for the human to react. Or when a new autopilot fails to report
angle-of-attack sensor mismatch [13, 75], the pilot’s inability to
wrangle the elevators back is thwarted by the erroneous automa-
tion invisibly turning itself back on after a few moments. For sys-
tems to benefit from human safety input, the joint system must
equip human decision making with the information they need.

For humans to use our systems effectively, designers must rec-
ognize that they are neither fools for foolproofing against nor ide-
alized minds with infinite thinking time, attention, and percep-
tion. Instead, like any collaborators, they have strengths within
limits. Mixed human-machine collaborations can tap humanity’s
strengths and bolster their limitations through assistance. The
following chapters starts the work of harnessing humanity’s safety
expertise while clearly learning limitations through statistical
models. They ground cognitive science into system theory to for-
malize human particularities. Only then can our machines er-
gonomically conform to their cognition.

If our robot designs are to successfully serve peoples’ needs,
we must prioritize enabling humans’ agency and decision-making
and build our machines around their strengths and fill in the ar-
eas humans are not suited for. This is human-centered design as
defined in Norman’s seminal textbook [55, p. 8]:

The solution is human-centered design (HCD), an
approach that puts human needs, capabilities, and be-

2



1.1 THES I S OVERV IEW AND CONTR IBUT IONS

havior first, then designs to accommodate those needs,
capabilities, and ways of behaving. Good design starts
with an understanding of psychology and technology.
Good design requires good communication, especially
from machine to person, indicating what actions are
possible, what is happening, and what is about to hap-
pen.

Rather than displace or assimilate human intelligence to mech-
anistic processes, we work to extend human agency through human-
centered automation. To support human intelligence, our machines
must be designed considerately of cognition’s needs. By sketching
mathematical models of cognition, we can design emergent AIs
to empower human thinking rather than replace it. My research
supports humans’ judgment on ongoing robot safety to ensure hu-
man concerns are prioritized. Our data-efficient machine learn-
ing algorithms can adapt to individuals’ concerns and respect di-
verse understandings of safety through continual improvement.
With models of how humans perceive and judge, our robots can op-
timize their actions to give humans the information they need. We
can design transparent systems by studying how humans learn
in action.

1.1 THES I S OVERV IEW AND CONTR IBUT IONS

Machines reason in the language of mathematical structures. Equip-
ping robots to consider humanity requires sketching human quirks
as mathematical formalisms. Even though human will is far more
than the clockwork of ratios and algorithms, the work of trying to
describe humanity is an opportunity to inspect parts up-close and
personal. Testing these computational translations in application
consistently reveals how humanity’s complexity exceeds our ex-
pectations.

Incorporating more and more of this complexity into behavioral
models must be tempered with what can be tractably solved. Even
though physicists have incorporated a zoo of particle interactions
into the Standard Model, only a fraction of the full model is ever
used in practical solutions. Likewise, this work focuses on devel-
oping the equivalent of a Newtonian mechanics for behavioral sci-
ence in engineering application. This tension between fidelity and
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tractability defines the art of applied cognitive science and is the
primary interest of my research. Instead of investigating root sys-
tems in neurology or cognitive science, this thesis will identify ap-
plicable distillations of these principles. The value of this work is
in distilling as much complex behavioral detail down into a model
and keeping it tractable through simplifying mathematical struc-
ture.

We start by expositing an application of the traditional ratio-
nal actor assumption to model human safety behavior. By statis-
tically fitting this model to expert demonstrations, our machines
can learn human concerns for safety and risk. How a human nav-
igates an unsafe environment can reveal the constraints they are
avoiding. In Chapter 2, we advance the state of the art in con-
straint inference to rigorously work in even stochastic environ-
ments.

Modeling the constraint rules themselves turns out not to be
enough, as humans diverge on how they enforce these rules. We
can capture divergent safety forecasting behaviors by regressing
to their binary labels of when to intervene. In Chapter 4 we show
that we can incorporate dynamic safety structure into these re-
gressions to form a data-efficient model of how human supervi-
sors judge our robots’ safety. Employing human experts to catch
dangerous edge cases for automation helps make the system more
efficient. Yet this dependable failsafe cannot work if their safety
forecasting is distracted by too many false alarms, an especially
common feature of employing one supervisor for a whole team
of robots. These false alarms happen when the human’s safety
forecasting does not align with the robots. Though each supervi-
sor may have distinct dynamic parameters for their mental sim-
ulation, learning from their alarm data reveals the contours of
their concerns. By modeling these diverse safety forecasts as a
reachable set, we can data efficiently learn supervisor’s unique
concerns and decrease false alarms across a team of robots.

With a mathematical approximation of human judgment, we
can optimize choices to be judged correctly despite uncertainty.
Chapter 6 optimizes control to evidence autonomous agents’ un-
derlying goals. We will see that this communicative optimization
can be computed with the same computational complexity rates
as the original non-communicative motion optimizations.
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Part I

U N D E R S T A N D I N G H U M A N C O N C E R N S
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2
M A X I M U M L I K E L I H O O D C O N S T R A I N T
I N F E R E N C E

As a first step to supporting human safety judgement, our au-
tonomous systems must first understand those humans’ safety
concerns. This chapter exposits constraint inference approaches
and presents my work extending constraint inference to stochas-
tic applications.

Uncertain transitions make up everyday situations. Under the
steaming Georgia sun [80], tires slip as the gravel spits up a
puff of caking chalk. Though the vehicle stumbles, innards float-
ing for a beat until the wheels bite the skittering ground again,
the driver recovers in time to hem the robot away from the tan-
gled labyrinth of weeds scratching at the track’s edge. Elsewhere
along the west’s brown stubbled hills [15, 16], the ground gulps
down long-missed rainwater and the old lake struggles to reserve
the surging runoff. Channeling new catchments and reservoirs
to handle the thrashing swings of weather, from droughts that
crack clay like chapped lips to floods , is essential to keep liveli-
hoods flowing. From split-seconds to sunburnt seasons, we need
to steer safely through stochastic surges.

When an expert operates a safety-critical dynamic system, con-
straint information is tacitly contained in their demonstrated tra-
jectories and controls. These constraints can be inferred by mod-
eling the system and operator as a constrained Markov Decision
Process and finding which constraint is most likely to generate
the demonstrated controls. Prior constraint inference work has
focused mainly on deterministic dynamics. Stochastic dynamics,

This chapter is an adaptation of “Maximum Likelihood Constraint Inference
from Stochastic Demonstrations” [50] written in collaboration with Kaylene C.
Stocking and S. Shankar Sastry
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2.1 INTRODUCT ION

however, can capture the uncertainty inherent to real applica-
tions and the risk tolerance that requires.

This chapter exposits prior art in constraint inference and a
novel extension to stochastic applications by using maximum causal
entropy likelihoods. This extension to more complicated systems
does not cost any extra computational complexity. The deriva-
tions in this chapter will reveal the simpler structure underneath
the forward-backward algorithms of prior art. We will derive an
algorithm that computes constraint likelihood and risk tolerance
in a unified Bellman backup, thereby keeping the same computa-
tional complexity as prior art.

2.1 IN T RO DUCT ION

Optimization-based control (such as Model Predictive Control (MPC))
promises autonomous behavior [4] even in nonlinear [54] or stochas-
tic dynamics [11, 80]. It has already impacted industrial practice
[58] as “model-predictive control”, and its recent incarnation as
“reinforcement learning” [54, 69] pushes the paradigm further by
leveraging large datasets and computing clusters.

Yet these optimizations only work if the clients’ goals can be en-
coded as reward functions and their concerns encoded as safety
constraint sets. One approach to this translation is to first solve
the inverse of optimal control: given near-optimal demonstrations
from the client, recover the reward function whose optimum would
match the demonstrator’s performance [39]. After fitting the task
specification in this way, the objective can then be optimized to
imitate the expert behavior [1] or used to predict human motion
[85].

Often, inverse optimal control focuses on inferring the magni-
tude of the reward function. But as optimal control increasingly
emphasizes working within constraints, inverse optimal control
is interested in identifying those constraints [3, 18, 42, 56, 64].
Chou [17] inferred constraints along the paths that would be low
cost but were never observed. This intuition was grounded into a
probabilistic framework by Scobee [64] by translating maximum
entropy inverse reinforcement learning [84] to work for hard con-
straints. Unfortunately, the maximum entropy used in Scobee’s
paper only works for deterministic systems.

7
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Non-deterministic models capture the uncertain dynamics in-
herent in applications. That uncertainty is especially important
to consider when designing for robust safety constraint satisfac-
tion. Stochasticity can stand in for a variety of unpredictable dy-
namics in applications: from unpredictable power sources in re-
newable power systems [40] to hard-to-model turbulence in road
conditions [80], from tumor cell growth in cancer treatment [63]
to unforeseen changes in stormwater reservoirs [16].

The maximum entropy likelihoods can be extended to uncertain
transition dynamics by conditioning the entropy at each time step
only on the previously revealed state transitions [83]. This maxi-
mum causal entropy has been extended from running state-based
rewards to learn signal temporal logic specifications [78]. Focus-
ing this to just inclusion-for-all-time specifications that make up
safety constraints allows for simpler algorithms as Scobee and
Sastry [64] did for deterministic systems. This chapter similarly
focuses on constraints, paralleling Scobee and Sastry[64], but goes
further to model stochasticity by factoring in the causality of dy-
namics as in Ziebart’s later work [83].

2.1.1 Contributions and Guide

This work advances prior art [64] in inferring state-action con-
straints:

• by respecting causality using the principle of maximum causal
entropy for likelihood generative models

• and by streamlining the algorithm into one backwards pass,
thereby maintaining the same computational complexity as
the non-stochastic version [64]

• by extending the hypothesis family to include risk-tolerating
chance constraints

2.2 BACKGROUND

Fitting models entails choosing the model out of some hypothesis
class that is “best” along some metric. A natural metric is how
likely the model would be to generate the observed demonstra-
tion data ̂𝑥𝑖 for 𝑖 ∈ [0, 1, ⋯ , 𝑁]. Formally, assuming the space of
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possible models (called the hypothesis family) is indexed by some
vector of parameters 𝜃, the best model is the one with the highest
probability of generating the dataset:

𝜃 = arg max
𝜃∈Θ

𝑃𝜃(𝑋0 = ̂𝑥0, 𝑋1 = ̂𝑥1, ⋯ 𝑋𝑁 = ̂𝑥𝑇) (2.1)

Which is the maximum likelihood estimate of the parameter 𝜃 of
the probability distribution 𝑃𝜃.

2.2.1 Markov Decision Processes

This probability distribution 𝑃𝜃(𝑋0, 𝑋1, ⋯ 𝑋𝑇) can factor into sim-
pler terms when the 𝑋𝑖 are states sampled over time from a causal
dynamical system. If the state 𝑋𝑖 contains all the evolving infor-
mation, then the Markov property means that datapoints only
depend on the past through the most recent preceding state. In
particular:

𝑃𝜃(𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, ⋯ , 𝑋0) = 𝑃𝜃(𝑋𝑖|𝑋𝑖−1) (2.2)

When these probabilistic dynamics over state are controlled by
some exogenous input 𝑎 to optimize some reward, these Markov
dynamics become a Markov Decision Process (MDP). In this work,
we focus on discrete time and discrete state and action spaces, so
the MDP can be written as a 4-tuple:

• state space 𝒳 = {𝑥0, 𝑥1, ⋯ , 𝑥𝑁𝑋 },

• set of actions 𝒜 = {𝑎0, 𝑎1, ⋯ , 𝑎𝑁𝐴},

• transition probability function

𝑃(𝑋𝑡+1 = 𝑥𝑡+1|𝑋𝑡 = 𝑥𝑡, 𝑎𝑡) = 𝑆(𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1)

where 𝑆 ∶ 𝒳 × 𝒜 × 𝒳 → [0, 1]. Because of this strong cou-
pling between actions and states across time, it will be use-
ful to discuss their joint distribution as a combined variable
𝜉 = (𝑎[0∶𝑇−1], 𝑥[0∶𝑇]) and the space of such trajectories as
Ξ = 𝒳𝑇 × 𝒜𝑇−1

9
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• and objective metric 𝑅(𝜉) ∶ Ξ → ℝ This work assumes the
reward to have a form that is decomposable over timesteps:

𝑅(𝜉) = 𝑤(𝑥𝑇) +
𝑇−1
∑
𝑡=0

𝑟(𝑥𝑡, 𝑎𝑡) (2.3)

where 𝑤(𝑥𝑇) is the final reward and 𝑟(𝑥, 𝑎) is the running
reward.

2.2.2 Estimating the Task’s Rewards

This probabilistic model can statistically fit to trajectory datasets;
either by tuning a parameter 𝜃 on the dynamics 𝑆𝜃(𝑥𝑡, 𝑎𝑡) or by
tuning a parameter 𝜃 on the rewards 𝑅𝜃(𝜉) to model the expert
demonstrator themselves. This latter modeling is the Inverse Op-
timal Control (IOC) approach to the imitation learning problem:
to replicate expert performance given a set of their demonstrated
trajectories 𝒟 = {𝜉1, 𝜉2, ⋯ , 𝜉𝑀}.

Continuing with using the maximum likelihood framework to
estimate parameters 𝜃, all that is needed is a likelihood that a par-
ticular 𝑅𝜃(𝜉) will generate 𝑎[0∶𝑇−1] and thereby 𝑥[1∶𝑇]. Ziebart
[84] introduced a random distribution on 𝜉 designed to be robust
to possible reward phenomena outside the necessarily limited hy-
pothesis class. Specifically, they assume that the parameter to
be estimated 𝜃 will multiply candidate feature functions 𝜙(𝑥, 𝑎)
that will form the spanning basis functions of the hypothesis class.
Mathematically:

𝑟𝜃(𝑥, 𝑎) = 𝜃𝑇𝜙(𝑥, 𝑎) (2.4)

The estimation, then, is able to choose the best distribution
along the 𝜙(𝑥, 𝑎) basis set, but is incapable of describing distribu-
tions outside of this linear subspace of function space. With the
goal of remaining maximally agnostic to (and therefore robust to)
this non-capturable space, Ziebart [83] deploys the distribution
that maximizes entropy outside the candidate 𝜙(𝑥, 𝑎):

𝑃𝜃(𝜉) = 𝑒𝑤(𝑥𝑇)+∑𝑇−1
𝑡=0 𝜃𝑇𝜙(𝑥𝑡,𝑎𝑡)

𝑍𝜃
(2.5)
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where 𝑍𝜃 is a normalizing constant.
This exponential family distribution makes state trajectories

that are equally rewarding1 equally likely and more optimal tra-
jectories exponentially more likely. This likelihood can be used to
estimate what rewards 𝑟𝜃(𝑥, 𝑎) would generate the demonstrated
behavior [84] which can in turn be used to replicate that expert
performance [85].

Ziebart [84] optimizes the parameters 𝜃 via gradient descent
on the log likelihood2. Following the derivations to Equation 5
of Ziebart [85], let 𝑓 (𝜉) = ∑𝑇−1

𝑡=0 𝜙(𝑥𝑡, 𝑎𝑡) denote the trajectory-
wide equivalent of the feature vector 𝜙(𝑥, 𝑎) that’ll define the tra-
jectory’s reward:

𝑅𝜃(𝜉) = 𝑤(𝑥𝑇) +
𝑇−1
∑
𝑡=0

𝜃𝑇𝜙(𝑥𝑡, 𝑎𝑡) (2.6)

= 𝑤(𝑥𝑇) + 𝜃𝑇𝑓 (𝜉) (2.7)

This reward function is linear in the parameter 𝜃 which will
make the gradient of the log likelihood in Equation 2.5 straight-
forward:

∇𝐿(𝜃) = ∑
𝜉∈𝒟

𝑓 (𝜉) − 𝔼
�̂�∼𝑒𝑅𝜃(𝜉)/𝑍𝜃

𝑓 ( ̂𝜉) (2.8)

Therefore forward simulating the system dynamics under the 𝜃-
optimal control and adding up the features accrued by each trajec-
tory is sufficient. The 𝜃-optimal control can be simply computed
for MDPs after a Bellman backup. Running the Bellman backup
followed by the forward simulation creates a forward-backward
algorithm similar to that in message passing that you can see
recreated in Algorithm 1.

1 Note, however, that this distribution distributes based only on the states and
not the actions that the agent actually has control over. This will result in a
non-causality that we will explore later on in Section 2.2.4.

2 Since the logarithm is a monotonic function, the log likelihood is guaranteed
to share optima with the likelihood
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Algorithm 1: Ziebart’s Algorithm to compute the gradient
on 𝜃
Data: Final reward 𝑤(𝑥) and running reward 𝑟(𝑥, 𝑎), Dynamics

𝑆(𝑥, 𝑎, 𝑥′), Vector of features 𝜙(𝑥, 𝑎)
Result: Computes for a given current reward model the

expected accruals of each feature stacked into a vector 𝐹
to compute the gradient on the reward model’s
parameters

// Bellman Backup to calculate the strategic transition
probabilities

1 for 𝑥 ∈ 𝒳 do
2 𝑍(𝑇, 𝑥) ← exp(𝑤(𝑥))
3 end
4 for 𝑡 ∈ [𝑇 − 1, 0] do
5 for 𝑥 ∈ 𝒳 do
6 𝑍(𝑡, 𝑥) ← 0
7 for 𝑎 ∈ 𝒜 do
8 𝑍𝑎(𝑡, 𝑥, 𝑎) ← 0
9 for 𝑥′ ∈ 𝒳 do

10 𝑍𝑎(𝑡, 𝑥, 𝑎)+ = 𝑆(𝑥, 𝑎, 𝑥′)𝑒𝑟𝜃(𝑥,𝑎)𝑍(𝑡 + 1, 𝑥′)
11 end
12 𝑍(𝑡, 𝑥)+ = 𝑍𝑎(𝑡, 𝑥, 𝑎)
13 end
14 end
15 end
16 𝑃𝑥(𝑎, 𝑡) = 𝑍𝑎(𝑡, 𝑥, 𝑎)/𝑍(𝑡, 𝑥)

// Forward Simulate to calculate expected state visitation
frequency (for calculating the expectation in gradient
on parameters)

17 for 𝑥 ∈ 𝒳 do
18 𝐷(0, 𝑥) ← 𝑝0(𝑥)
19 𝐹(𝑥) ← 0
20 end
21 for 𝑡 ∈ [0, 𝑇 − 1] do
22 for 𝑥 ∈ 𝒳 do
23 𝐷(𝑡, 𝑥) ← 0
24 for 𝑎 ∈ 𝒜 do
25 for 𝑥′ ∈ 𝒳 do
26 𝐷(𝑡 + 1, 𝑥′)+ = 𝑆(𝑥, 𝑎, 𝑥′)𝑃𝑥(𝑎, 𝑡)𝐷(𝑡, 𝑥)
27 end
28 end
29 end
30 end
31 return(∑𝑡∈[0,𝑇−1] ∑𝑥∈𝒳 𝐷(𝑡, 𝑥)𝜙(𝑥, 𝑡))
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2.2.3 Estimating the Task’s Constraints

Ziebart’s algorithm works well for modeling preferences and ideas
of optimality, but is insufficient to learn the expert’s safety rules
that must be satisfied to avoid dangers (e.g. how bicyclists avoid
potholes). This question of finding the feasible domain of the re-
ward function 𝑅(𝜉) is addressed by Scobee and Sastry [64] as an
optimization with the pre-identified reward magnitudes as an in-
put. The task then becomes to find the constraint set 𝐶 that will
form the support of the maximum entropy distribution as:

𝑃𝐶[0∶𝑇](𝜉) =
⎧{{
⎨{{⎩

𝑒𝑤(𝑥𝑇)+∑𝑇−1
𝑡=0 𝑟(𝑥𝑡,𝑎𝑡)

𝑍𝐶
, if 𝜉 ∈ 𝐶

0 , if 𝜉 ∉ 𝐶
(2.9)

where 𝜉 ∈ 𝐶[0∶𝑇] means that all of trajectory 𝜉’s states 𝑥0∶𝑇 and
actions 𝑎0∶𝑇−1 are safe.

Similarly to how we decomposed the reward function over time
into a sum of 𝑟(𝑥𝑡, 𝑎𝑡), we focus on the class of constraints that
rule on individual timepoints’ states 𝑥𝑡 ∈ 𝐶𝑋 or actions 𝑎𝑡 ∈ 𝐶𝐴
for all time.

𝑥𝑡 ∈ 𝐶𝑋 ∀𝑡 (2.10)
𝑎𝑡 ∈ 𝐶𝐴 ∀𝑡 (2.11)

These constraints can be rolled together into a state-indexed set
of allowable actions 𝐶𝑎(𝑥). The indicator for this set, that taking
an action 𝑎 from state 𝑥 is safe, is:

Φ𝐶(𝑎, 𝑥) =
= 𝕀[𝑎 ∈ 𝐶𝐴

∩ 𝑥𝑡 ∈ 𝐶𝑋)] (2.12)

Let the set of all such combined safety constraints 𝐶 be 𝒞.
Scobee’s [64] central insight to identify these constraints is that

narrowing the support 𝐶 (after fixing the reward magnitude 𝑟(𝑥, 𝑎))
will uniformly scale the distribution for all likelihoods still within
the support 𝐶. As long as the demonstrations stay inside this 𝐶,
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tightening the constrained safe regions will increase the likeli-
hood of observing those demonstrations. To avoid over-fitting to
ruling out all non-visited states and unused actions, states and ac-
tions were inferred as unsafe one-by-one until improvement rate
tapered off. The best such 𝑥𝑖 or 𝑎𝑗 to cut out is the one that pro-
duces the best scaling factor corresponding to the new normaliz-
ing constant 𝑍𝐶+ where 𝐶+ denotes the constraint set 𝐶 after the
candidate 𝑥𝑖 or 𝑎𝑗 is ruled out.

𝑍0∶𝑇
𝐶+ = ∑

𝜉∈𝐶+
𝑒𝑤(𝑥𝑇)+∑𝑇−1

𝑡=0 𝜃𝑇𝜙(𝑥𝑡,𝑎𝑡) (2.13)

This sum over all trajectories can be computed for MDPs by for-
ward simulating the probability distributions. In fact, this rank-
ing metric can be computed for all candidate constraint sets 𝐶+ ∈
𝒞 since this quantity 𝑍𝐶+ is proportional to the summed proba-
bility of all trajectories satisfying 𝐶+:

𝑃𝐶0,𝜃(𝜉 ∈ 𝐶+) =

=
∑𝜉∈𝐶+ 𝑒𝑤(𝑥𝑇)+∑𝑇−1

𝑡=0 𝜃𝑇𝜙(𝑥𝑡,𝑎𝑡)

𝑍0∶𝑇
𝐶0

(2.14)

=
𝑍0∶𝑇

𝐶+

𝑍0∶𝑇
𝐶0

(2.15)

where 𝐶0 ∈ 𝒞 is the baseline constraint set with no additional 𝑥𝑖

or 𝑎𝑗 cut out, and so 𝑍𝐶0 is a constant across all candidates’ for-
ward simulations. This means that the 𝑃𝐶0,𝜃(𝜉 ∈ 𝐶+) will form
an equivalent ranking on 𝐶+ as 𝑍𝐶+ would, and can be used inter-
changeably to identify the likelihood maximizing 𝐶+. Scobee and
Sastry linked this probability to the features used in Ziebart’s
reward inference [84] by casting the probability as the expecta-
tion of an indicator 𝕀[𝜉 ∈ 𝐶+]. The indicator of constraint satis-
faction is akin to the features tracked and counted by Ziebart’s
forward-backward algorithm, but requires an extra memory com-
ponent: once a trajectory has violated a constraint, that trajec-
tory is still unacceptable even after the state later re-enters the
safe set. Adapting Algorithm 1 to include this memory results in
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Scobee and Sastry’s algorithm (shown3 in Algorithm 2) for com-
puting the probabilities 𝑃𝐶0,𝜃(𝜉 ∈ 𝐶+) for ranking hypothesized
constraints.

2.2.4 Issues with Stochastics in Prior Art

Unfortunately the distribution in Equation 2.5 (and thereby the
constrained distribution in Equation 2.9 derived from it) only work
for non-stochastic dynamics as shown in [83]: the distribution
does not factor in how the probabilistic dynamics reveal transi-
tion information over time and thereby makes the agents’ selec-
tion of 𝑥 non-causal. Ziebart’s 2010 follow-up paper [83] rigorously
handled stochastic dynamics for inferring rewards by incorporat-
ing the dynamics’ information structure via a recursive definition
between the actions and succeeding states:

𝑃𝜃(𝑎𝑡|𝑥𝑡) = 𝑒𝑄𝑠𝑜𝑓 𝑡
𝜃,𝑡 (𝑎𝑡,𝑥𝑡)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝜃,𝑡 (𝑥𝑡)

(2.16)

𝑄𝑠𝑜𝑓 𝑡
𝜃,𝑡 (𝑎𝑡, 𝑥𝑡) = 𝑟(𝑥𝑡, 𝑎𝑡) + 𝔼𝑋𝑡+1𝑉𝑠𝑜𝑓 𝑡

𝜃,𝑡+1(𝑥𝑡+1) (2.17)

𝑉𝑠𝑜𝑓 𝑡
𝜃,𝑡 (𝑥𝑡) = log ∑

𝑎𝑡

𝑒𝑄𝑠𝑜𝑓 𝑡
𝜃,𝑡 (𝑎𝑡,𝑥𝑡) (2.18)

= softmax𝑎𝑡
𝑄𝑠𝑜𝑓 𝑡

𝜃,𝑡 (𝑎𝑡, 𝑥𝑡)

where 𝑄𝑠𝑜𝑓 𝑡 can be interpreted as a state-action soft-optimal value-
to-go and 𝑉𝑠𝑜𝑓 𝑡 the state’s soft-optimal value-to-go.

The present work will apply this improved causal distribution
from [83] to the constraint inference approach designed in [64]
in order to apply constraint inference to stochastic demonstra-
tions. Towards this end, constraints can be added to Equations
2.16, 2.17, 2.18 as:

3 Note that the 𝜙(𝑥, 𝑎) in this algorithm is the complement of Φ𝐶(𝑎, 𝑥) in Equa-
tion 2.12 and so 𝐹 is calculated as the complement of 𝐻
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2.2 BACKGROUND

Algorithm 2: Scobee and Sastry Feature Accrual History
Calculation
Data: Final reward 𝑤(𝑥) and running reward 𝑟(𝑥, 𝑎), Dynamics

𝑆(𝑥, 𝑎, 𝑥′), Vector of indicators of constraint violation
𝜙(𝑥, 𝑎) = 1 − Φ𝐶(𝑥, 𝑎) over all candidate constraints
𝐶+ ∈ 𝒞+.

Result: Computes for a given reward model the expected
accruals of each hypothesized constraint feature stacked
into a vector 𝐹 to compute the ranking on constraint
hypotheses

// Repeat lines 1-16 of Algorithm 1 to obtain 𝑃𝑥(𝑎, 𝑡)
// Forwards Simulation for constraint accrual calculation

17 for 𝑥 ∈ 𝒳 do
18 𝐷(0, 𝑥) ← 𝑝0(𝑥)
19 𝐻(0, 𝑥) ← 0
20 end
21 for 𝑡 ∈ [0, 𝑇 − 1] do
22 for 𝑥 ∈ 𝒳 do
23 for 𝑎 ∈ 𝒜 do
24 Δ(𝑡, 𝑥, 𝑎) = 𝜙(𝑥, 𝑎) ⊙ (𝐷(𝑡, 𝑥)1𝑛𝜙×1 − 𝐻(𝑡, 𝑥))
25 end
26 end
27 for 𝑥′ ∈ 𝒳 do
28 𝐷(𝑡 + 1, 𝑥′) ← 0
29 𝐻(𝑡 + 1, 𝑥′) ← 0
30 for 𝑎 ∈ 𝒜 do
31 for 𝑥 ∈ 𝒳 do
32 𝐷(𝑡 + 1, 𝑥′)+ = 𝑆(𝑥, 𝑎, 𝑥′)𝑃𝑥(𝑎, 𝑡)𝐷(𝑡, 𝑥)
33 𝐻(𝑡 + 1, 𝑥′)+ =

(𝐻(𝑡, 𝑥) + Δ(𝑡, 𝑥, 𝑎)) 𝑃𝑥(𝑎, 𝑡)𝑆(𝑥, 𝑎, 𝑥′)
34 end
35 end
36 end
37 end
38 return(1 − ∑𝑥′∈𝒳 𝐻(𝑇, 𝑥′))
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2.3 CONSTRA INT STAT I S T I C S

𝑃𝐶(𝑎𝑡|𝑥𝑡) = 𝑒𝑄𝑠𝑜𝑓 𝑡
𝐶,𝑡 (𝑎𝑡,𝑥𝑡)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶,𝑡 (𝑥𝑡)

Φ𝐶(𝑎𝑡, 𝑥𝑡) (2.19)

𝑄𝑠𝑜𝑓 𝑡
𝐶,𝑡 (𝑎𝑡, 𝑥𝑡) = 𝑟(𝑥𝑡, 𝑎𝑡) + 𝔼𝑋𝑡+1𝑉𝑠𝑜𝑓 𝑡

𝐶,𝑡+1(𝑥𝑡+1) (2.20)

𝑉𝑠𝑜𝑓 𝑡
𝐶,𝑡 (𝑥𝑡) = log ∑

𝑎𝑡

Φ𝐶(𝑎𝑡, 𝑥𝑡)𝑒𝑄𝑠𝑜𝑓 𝑡
𝐶,𝑡 (𝑎𝑡,𝑥𝑡) (2.21)

= softmax𝑎𝑡
Φ𝐶(𝑎𝑡, 𝑥𝑡)𝑄𝑠𝑜𝑓 𝑡

𝐶,𝑡 (𝑎𝑡, 𝑥𝑡)

2.3 CONS TRA INT STAT I S T I C S

The first step to applying the Scobee and Sastry’s [64] key insight
to the causal maximum entropy distribution defined in Equations
2.19-2.21 is writing the distribution joint over all timesteps in a
horizon [𝑡 ∶ 𝑇] (with any starting 𝑡 ∈ [0, 1, 2, ⋯ , 𝑇]) as:

𝑃𝐶(𝐴[𝑡∶𝑇] = 𝑎[𝑡∶𝑇]|𝑋𝑡 = 𝑥𝑡) (2.22)

=
⎧{{
⎨{{⎩

𝑒𝔼[𝑅(𝑋[𝑡∶𝑇],𝑎[𝑡∶𝑇])]

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶,𝑡 (𝑥𝑡)

, if 𝑎[𝑡∶𝑇] ∈ 𝑊[𝑡∶𝑇]
𝐶

0 , if 𝑎[𝑡∶𝑇] ∉ 𝑊[𝑡∶𝑇]
𝐶

(2.23)

where 𝑊[𝑡∶𝑇]
𝐶 is the set of feedback-controller sequences that sat-

isfy the condition in Equation 2.12 for all times 𝜏 ∈ [𝑡 ∶ 𝑇]. This
distribution over controls, rather than states as in the non-causal
Equation 2.9, means that the dynamics’ probability distribution
𝑆(𝑥𝑡, 𝑎𝑡, 𝑥𝑡+1) is truly incorporated.

With this causal correction in place, the insight from Scobee
and Sastry [64] applied to Equation 2.9 can be applied to Equa-
tion 2.23. Changing the constraint set 𝐶 only changes the normal-
izing constant 𝑍𝐶,𝑡:

𝑍𝑡∶𝑇
𝐶 = 𝑒𝑉𝑠𝑜𝑓 𝑡

𝐶,𝑡 (𝑥𝑡) (2.24)
Therefore incrementing from a constraint set 𝐶0 to any tighter
constraint set 𝐶+, as long as this 𝐶+ still includes the demonstra-
tions, will strictly increase the likelihood of the observed demon-
strations. To clarify the connection to the quantity in Equation
2.15 that was tracked in [64], note that:
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2.3 CONSTRA INT STAT I S T I C S

𝑃𝐶0,𝜃(𝜉𝑡∶𝑇 ∈ 𝐶+) =
𝑍𝑡∶𝑇

𝐶+

𝑍𝑡∶𝑇
𝐶0

= 𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶+,𝑡(𝑥𝑡)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡(𝑥𝑡)

(2.25)

which is the ratio for converting between 𝐶0’s normalizing con-
stant and 𝐶+’s normalizing constant. For brevity, we will denote
this probability by 𝐹𝐶+,𝑡(𝑥𝑡). Most crucially, the probability of a
trajectory starting at 𝑥𝑡 and staying inside 𝐶+ and 𝐶0 scales by
1/𝐹𝐶+,𝑡(𝑥𝑡). Therefore this 𝐹 forms a ranking on possible tight-
ened constraint sets 𝐶+; whichever has the smaller 𝐹𝐶+,𝑡(𝑥𝑡) will
have larger likelihoods of generating the measured demonstra-
tions dataset.

The ratio 𝐹𝐶+,𝑡(𝑥𝑡) can be computed by modifying the soft Bell-
man backup defined in Equations (2.19) - (2.21). This modified
backup procedure is described in the theorem below:

Theorem 2.3.1. Let 𝐶0 be a set of constraints and 𝐶+ be an aug-
mented version of𝐶0 withmore states constrained. Then 𝐹𝐶+,𝑡(𝑥𝑡)
can be computed as:

𝐹𝐶+,𝑡(𝑥𝑡)
= 𝔼𝑎𝑡∼𝑃𝐶0 [Φ𝐶+(𝑎𝑡, 𝑥𝑡)𝑒𝔼𝑥𝑡+1 log(𝐹𝐶+,𝑡+1(𝑥𝑡+1))]

Proof. It will be helpful to notate the set of legal actions from 𝑥
under constraint set 𝐶 as

𝐴𝐶(𝑥) = {𝑎 ∣ Φ𝐶(𝑎, 𝑥) = 1}

𝐹𝐶+,𝑡(𝑥𝑡) = 𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶+,𝑡(𝑥𝑡)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡(𝑥𝑡)

=
∑𝑎𝑡∈𝐴𝐶+(𝑥𝑡) 𝑒𝑄𝑠𝑜𝑓 𝑡

𝐶+,𝑡(𝑎𝑡,𝑥𝑡)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡(𝑥𝑡)

= ∑
𝑎𝑡∈𝐴𝐶+(𝑥𝑡)

𝑒𝑟(𝑥𝑡,𝑎𝑡)+𝔼𝑥𝑡+1𝑉𝑠𝑜𝑓 𝑡
𝐶+,𝑡+1(𝑥𝑡+1)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡(𝑥𝑡)

18



2.4 AL GOR I THM

It will be convenient to define the logarithm of our 𝐹𝐶,𝑡. Let it
be Δ𝑡

𝐶:

Δ𝑡+1
𝐶+ (𝑥𝑡+1) = log(𝐹𝐶+,𝑡+1(𝑥𝑡+1))

= log(𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶+,𝑡+1(𝑥𝑡+1)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡+1(𝑥𝑡+1)

)

= 𝑉𝑠𝑜𝑓 𝑡
𝐶+,𝑡+1(𝑥𝑡+1) − 𝑉𝑠𝑜𝑓 𝑡

𝐶0,𝑡+1(𝑥𝑡+1)

Then the ratio can be redefined in terms of previously calcu-
lated terms on 𝐶0 and our iterating 𝐹𝐶,𝑡

𝐹𝐶+,𝑡(𝑥𝑡) = ∑
𝑎𝑡∈𝐴𝐶+(𝑥𝑡)

𝑒𝑟(𝑥𝑡,𝑎𝑡)+𝔼𝑥𝑡+1𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡+1(𝑥𝑡+1)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡(𝑥𝑡)

⋅ 𝑒𝔼𝑥𝑡+1Δ𝑡+1
𝐶+ (𝑥𝑡+1)

= ∑
𝑎𝑡∈𝐴𝐶+(𝑥𝑡)

𝑒𝑄𝐶0(𝑥𝑡,𝑎𝑡)+𝔼𝑥𝑡+1Δ𝑡+1
𝐶+ (𝑥𝑡+1)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡(𝑥𝑡)

= ∑
𝑎𝑡∈𝐴𝐶+(𝑥𝑡)

𝑒𝑄𝐶0(𝑥𝑡,𝑎𝑡)

𝑒𝑉𝑠𝑜𝑓 𝑡
𝐶0,𝑡(𝑥𝑡)

𝑒𝔼𝑥𝑡+1Δ𝑡+1
𝐶+ (𝑥𝑡+1)

= ∑
𝑎𝑡∈𝐴𝐶+(𝑥𝑡)

𝑃𝐶0(𝑎𝑡|𝑥𝑡)𝑒𝔼𝑥𝑡+1Δ𝑡+1
𝐶+ (𝑥𝑡+1)

= 𝔼𝑎𝑡∼𝑃𝐶0 Φ𝐶+(𝑎𝑡, 𝑥𝑡)𝑒𝔼𝑥𝑡+1Δ𝑡+1
𝐶+ (𝑥𝑡+1) (2.26)

■

2.4 AL GOR I THM

Theorem 2.3.1 implies that an algorithm can compute the conver-
sion ratios 𝐹𝐶(𝑥) for all candidate constraints (which will corre-
spond to how much the hypothesis 𝐶 shrinks the support thereby
increasing the likelihoods) concurrent with the Bellman backup
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2.4 AL GOR I THM

for the baseline set of constraints 𝐶0. The Greedy Iterative Con-
straint Inference procedure pioneered in [64] suggests this selec-
tion can be performed iteratively adding just one constraint at a
time. This iterative approach can be shown to be bounded sub-
optimal compared to selecting all the constraints simultaneously
[64]. In this iterative approach, the 𝐹𝐶+ optimizing 𝐶+ will be-
come the baseline set of constraints for the next iteration 𝐶𝑖.

2.4.1 Comparing States and Actions Satisfaction Frequencies

Let 𝒞+ ⊂ 𝒞 be the subset of constraint sets that restrict only
one more action or state than the nominal constraint set 𝐶0. The
most likely constraint 𝐶 ∈ 𝒞+ is whichever still allows the ob-
served demonstrations while having the smallest satisfaction fre-
quency 𝐹𝐶+,0(𝑥0) from the starting state. This quantity can be
computed via our proposed algorithm as described in Algorithm
3’s pseudocode.

Analyzing the looped computations in Algorithm 3, we see that
they scale with the MDP spaces as 𝑂(|𝒳|2|𝒜||𝒞|) – which is identi-
cal to the computational complexity of the Scobee [64] constraint
inference for deterministic dynamics!

This Algorithm 3 was constructed to maintain the same hypoth-
esis evaluation metric 𝐹𝐶 = 𝑃𝐶0,𝜃(𝜉 ∈ 𝐶+) = 𝑍𝐶+,𝑡

𝑍𝐶0,𝑡
as prior art

to highlight analogies. With it, we have combined prior art’s for-
ward and backward passes into a single backup pass. However,
we can simplify further and only calculate the ranking 𝐹𝐶 = 𝑍𝐶+,𝑡

𝑍𝐶0,𝑡
after all passes have completed. Instead we only track the individ-
ual 𝑍𝐶+,𝑡 through the pass, which strips the algorithm down back
to just the soft Bellman backup update. This calculation would
exactly replace the need to calculate the 𝐹𝐶 at each time step
and would take the same number of operations (both will scale as
𝑂(|𝒳|2|𝒜||𝒞|)). Indeed, if the individual 𝑍𝐶+,𝑡 are calculated we
don’t even need to normalize by 𝑍𝐶0,𝑡 to rank hypotheses. We can
see that the ranking purely on the normalization factors 𝑍𝐶+,𝑡
corresponds to ranking hypotheses directly by the mass of their
support – the smaller normalization factors will result in larger
likelihoods on the demonstrations. Beyond Algorithm 3’s compar-
ative value in drawing analogies to state-of-the-art in maximum
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2.4 AL GOR I THM

Algorithm 3: Modified Soft Bellman Backup with Value
Ratio
Data: Final reward 𝑤(𝑥) and running reward 𝑟(𝑥, 𝑎), Dynamics

𝑆(𝑥, 𝑎, 𝑥′), Vector of indicators of constraint satisfaction
Φ𝐶(𝑥, 𝑎) for nominal constraint set 𝐶0 and all candidate
constraints 𝐶+ ∈ 𝒞+.

Result: A column vector 𝐹 where each entry corresponds to the
𝐹𝐶+,0 for 𝐶+ ∈ 𝒞+

1 for 𝑥 ∈ 𝒳 do
2 𝑍(𝑇, 𝑥) ← exp(𝑤(𝑥))
3 𝐹(𝑇, 𝑥) ← 1|𝒞+|×1
4 end
5 for 𝑡 ∈ [𝑇 − 1, 0] do
6 for 𝑥 ∈ 𝒳 do
7 𝑍(𝑡, 𝑥) ← 0
8 𝐹(𝑡, 𝑥) ← 0|𝒞+|×1
9 for 𝑎 ∈ 𝒜 do

10 𝑄(𝑡, 𝑥, 𝑎) ← 𝑟(𝑥, 𝑎)
11 𝐷(𝑡, 𝑥, 𝑎) ← 0|𝒞+|×1
12 for 𝑥′ ∈ 𝒳 do
13 𝑄(𝑡, 𝑥, 𝑎)+ = 𝑆(𝑥, 𝑎, 𝑥′) log(𝑍(𝑡 + 1, 𝑥′))
14 𝐷(𝑡, 𝑥, 𝑎)+ = 𝑆(𝑥, 𝑎, 𝑥′) log(𝐹(𝑡 + 1, 𝑥′))
15 end
16 𝑍(𝑡, 𝑥)+ = Φ𝐶𝑖(𝑥, 𝑎) exp(𝑄(𝑡, 𝑥, 𝑎))
17 𝐹(𝑡, 𝑥)+ = Φ𝐶∈𝒞+(𝑥, 𝑎) exp(𝑄(𝑡, 𝑥, 𝑎))

exp(𝐷(𝑡, 𝑥, 𝑎))
18 end
19 𝐹(𝑡, 𝑥) = 𝐹(𝑡, 𝑥)/𝑍(𝑡, 𝑥)
20 end
21 end
22 return(𝐹(0, 𝑥0))
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entropy IOC, the simplest algorithm to implement will just be the
pure Soft Bellman backup for each hypothesized constraint (see
the listing in Algorithm 4).

Algorithm 4: Pure Soft Bellman Backup
Data: Final reward 𝑤(𝑥) and running reward 𝑟(𝑥, 𝑎), Dynamics

𝑆(𝑥, 𝑎, 𝑥′), Vector of indicators of constraint satisfaction
Φ𝐶(𝑥, 𝑎) for nominal constraint set 𝐶0 and all candidate
constraints 𝐶+ ∈ 𝒞+.

Result: 𝑍 as a column vector where each entry corresponds to
the 𝑍𝐶+ for 𝐶+ ∈ 𝒞+

1 for 𝑥 ∈ 𝒳 do
2 𝑍(𝑇, 𝑥) ← exp(𝑤(𝑥))1|𝒞+|×1
3 end
4 for 𝑡 ∈ [𝑇 − 1, 0] do
5 for 𝑥 ∈ 𝒳 do
6 𝑍(𝑡, 𝑥) ← 0|𝒞+|×1
7 for 𝑎 ∈ 𝒜 do
8 𝑄(𝑡, 𝑥, 𝑎) ← 𝑟(𝑥, 𝑎)1|𝒞+|×1
9 for 𝑥′ ∈ 𝒳 do

10 𝑄(𝑡, 𝑥, 𝑎)+ = 𝑆(𝑥, 𝑎, 𝑥′) log(𝑍(𝑡 + 1, 𝑥′))
11 end
12 𝑍(𝑡, 𝑥)+ = Φ𝐶∈𝒞+(𝑥, 𝑎) exp(𝑄(𝑡, 𝑥, 𝑎))
13 end
14 end
15 end
16 return(𝑍(0, 𝑥0))

Whereas when working with a continuous hypothesis space of
parameters as in Ziebart [85] makes calculating gradients from a
current guess better than evaluating every hypothesis, when the
hypothesis space is finite performing a Bellman backup to rank
every hypothesis is not only feasible but equally efficient.

Although we extended the algorithm to handle stochastic dy-
namics, we did not have to increase the computational complexity
at all. It remains at 𝑂(|𝒳|2|𝒜||𝒳 + 𝒜|) as in prior art. That is,
control engineers can extract safety rules from expert demonstra-
tion data for the same cost in both stochastic and deterministic
dynamics.
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2.5 SUMMARY

2.5 SUMMARY

This chapter progressed prior art in constraint inference past
its roots in forward-backward algorithms into a unified Bellman
backup. Consolidating to a backwards pass allowed calculations
to marginalize over all futures instead of picking favorite futures
anti-causally. Shifting the maximum entropy distribution’s defi-
nition from realized states to chosen actions finally restored causal-
ity. With causality rigorously respected in the constraint likeli-
hood calculation, we can now infer constraints for systems with
uncertain transitions. We can now learn human’s safety concerns
despite noise in the dynamics as well as in their choices. Beyond
learning what states or actions experts deem dangerous, human
demonstrations through stochastic transitions can also teach us
what risks humans are willing to take. In the next chapter we
will extend the learnable hypothesis class to include constraints
on chances.
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3
C H A N C E C O N S T R A I N T S A N D L E A R N I N G R I S K
T H R E S H O L D S

Chapter 2 enabled us to learn human understandings of safety
even in stochastic dynamics. Now with notions of negotiating un-
certainty placed on human experts, we can now investigate not
just what states concern the human but also how much they’re
willing to risk entering that state. This chapter identifies a tech-
nique for identifying constraints on chances of transitions.

3.1 CHA NCE CONSTRA INTS

We now extend the definition of constraints used in Section 2.2.3.
Rather than prohibit all visitation to an undesirable state 𝑥, we
can instead allow some tolerance 𝜓 ∈ [0, 1] of risking entering
𝑥 using chance constraints: For any state 𝑥 ∈ 𝐶𝑋 we allow some
small probability 𝜓(𝑥) of transitioning to that state:

𝑃(𝑋𝑡+1 = ̄𝑥|𝑋𝑡 = 𝑥𝑡, 𝑎𝑡) ≤ 𝜓( ̄𝑥), ∀ ̄𝑥 ∉ 𝐶𝑋 (3.1)

To deterministically constrain out a state 𝑥 set 𝜓(𝑥) = 0. On
the other hand, setting 𝜓(𝑥) = 1 means the constraint is inactive
and transitioning to 𝑥 is freely allowed. Therefore the set of state
constraints 𝐶𝑋 can be encoded as a 𝜓(𝑥) over all states 𝑥 ∈ 𝒳.
As before, these constraints can be bundled with the action con-
straints into an indicator that an action 𝑎 from state 𝑥 is safe as:

This chapter is an adaptation of “Maximum Likelihood Constraint Inference
from Stochastic Demonstrations” [50] written in collaboration with Kaylene C.
Stocking and S. Shankar Sastry
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3.2 LEARN ING CHANCE THRESHOLDS

Φ𝐶(𝑎, 𝑥) =
= 𝕀[𝑎 ∈ 𝐶𝐴

∩ (𝑃(𝑋𝑡+1 = ̄𝑥|𝑋𝑡 = 𝑥, 𝑎) ≤ 𝜓( ̄𝑥)∀ ̄𝑥 ∉ 𝐶𝑋)] (3.2)

Now the set of all such safety constraints is 𝒞. This indicator
can replace the one in Equation 2.12 used in Algorithm 3 once the
risk thresholds 𝜓(𝑥) are identified.

3.2 LEA RN ING CHANCE THRESHOLDS

For each possible unsafe state 𝑥 there are a continuum of possi-
ble values for 𝜓. Rather than resorting to gridding up the inter-
val [0, 1] we can instead recognize a simple relation between the
demonstrations and the acceptable risk for any state 𝑥:
Lemma 3.2.1. When considering constraining out a single state 𝑥
from 𝐶𝑥, it will maximize the likelihood of the demonstrations to
choose the lowest possible 𝜓(𝑥) that doesn’t rule out any demon-
strations.
Proof. Consider two candidate constraints 𝐶+ and 𝐶+− that differ
only by 𝐶+− having exactly one 𝜓(𝑥) lower than 𝐶+ has. 𝐶+− will
always have 𝐹𝐶+−,0(𝑥0) ≤ 𝐹𝐶+,0(𝑥0). Since a smaller 𝐹𝐶+−,0(𝑥0)
means that 𝐶+− will have a larger likelihood of observing the demon-
strated trajectories if and only if it doesn’t rule out those trajec-
tories as infeasible, the smallest possible 𝜓(𝑥) will be the maxi-
mum likelihood estimator. ■

Therefore the risk thresholds 𝜓(𝑥) will maximize the likeli-
hood of the demonstrations by lying exactly on the demonstra-
tions’ transition probabilities. We can quickly infer the risk thresh-
olds as:

𝜓∗(𝑥) = max
𝜉∈𝒟

max
𝑡∈[0∶𝑇−1]

𝑆(𝑥𝑡, 𝑎𝑡, 𝑥) (3.3)

3.3 RES ULTS

We demonstrate the process of iteratively inferring constraints
ranked by Algorithm 3 (shown in Figures 3.1, 3.2, and 3.3) on a
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Figure 3.1: Plot of risk thresholds for each state and action hypothesis
that are maximally allowed (following Lemma 3.2.1) by the
demonstration dataset. The data-allowed risk thresholds for
each hypothesis are plotted in their respective state and ac-
tion spaces. The dark squares are states and actions the
demonstrator never took. Conversely, the light state and ac-
tions squares were those chosen by the demonstrator. This
relative shading on the states corresponds to the largest
chance of transition to that state that was demonstrated in
𝒟. That transition chance is as low as the risk threshold
𝜓(𝑥) on that state can be set for a constraint without re-
jecting the demonstrations as infeasible and making their
likelihood 0. Therefore, inferred constraints will have 𝜓(𝑥)
equal to that largest demonstrated transition chance.
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Figure 3.2: Executing our algorithm ranks how likely the states are
to be constraints. Compared to the demonstrator, the first
panel shows how the initially hypothesized agent (that is
fully unconstrained with a vacuous constraint set 𝐶0) would
be unlikely to avoid the straightshot between its start and
end like the demonstrator did. Indeed, the bottom middle
gridcell should only be avoided by an unconstrained demon-
strator 𝐹𝐶+/𝐶0 = 29% of the time. It is unlikely that an
unconstrained agent would avoid this straightshot state –
more likely there is a constraint there. After identifying a
constraint at this bottom state (now marked with a red X),
the following panels continue to identify avoidance behavior
that is unlikely without an explanatory constraint.
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Figure 3.3: After the fourth constraint gets inferred, the continued scal-
ing shrinks by an order of magnitude and then effectively
halts as 𝐹 retracts to 𝐹 = 0.96. This corresponds to inferring
an untrue constraint. The last three constraints in the up-
perhalf of the grid are difficult to infer since those states are
already unlikely just from the unconstrained goal – adding
those constraints won’t change behavior much. Only con-
straints that are relevant to the task can be identified. If
the task is changed those unidentified constraints in the
blindspot may become more relevant. Though this is a prob-
lem for generalization to new tasks, these new tasks also
solve the blindspot by making those states relevant in their
new demonstrations.
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3.4 L IM I TAT IONS AND FUTURE WORK

synthetic dataset of one hundred trajectories from the bottom left
to the bottom right avoiding the constrained states and actions
marked off with a red X in the figures. This dataset was synthe-
sized from simulated trajectories of a stochastically optimal agent
minimizing distance traveled on a two-dimensional “Gridworld”
MDP with movement in all eight compass directions. These eight
directions made up the action space 𝒜 along with a loitering ter-
minal action for once the goal was reached. Each directional ac-
tion was given a fixed “slippage” chance of 0.1 where a random
direction out of the other seven was followed instead. All ground-
truth state constraints were fixed at a constant chance threshold
of 𝜓 = 0.25.

The simulated demonstrator only noisily optimized the task,
following a Boltzmann choice distribution as described in Equa-
tion (2.23). The constraint inference algorithm was evaluated on
this dataset as shown in Figure 3.1. By the fifth iteration (shown
in the first panel of Figure 3.3), the algorithm succeeded in recov-
ering the groundtruth constraints (as shown in Figure 3.1).

3.4 L IM I TAT IONS AND FUTURE WORK

The algorithms discussed in this chapter focused on discretized
state and action spaces. For controlling many systems on prac-
tical timescales, the state must be handled as a continuous pa-
rameter. Ongoing work is investigating how gridded state spaces
like in Figure 3.2 can be refined to approximate continuous state
spaces [67]. Furthermore, the result from this chapter showed
how the constraint ranking passes can be reduced to a variant
Bellman backup. This result, as seen in Theorem 2.3.1, suggests
that continuous state and time constraints can also be ranked
by a similar variant to the continuous analogue to the Bellman
backup: the Hamilton Jacobi Bellman (HJB) partial differential
equation (PDE). Solving these partial differential equations can
pull on a rich literature of solutions, such as the fluid mechani-
cal viscosity solution [53]. Through analogy we would expect the
form of the HJB but with a softmax instead of its maximum as in:

−𝜕𝑉
𝜕𝑡 (𝑥, 𝑡) = soft max𝑎 𝑟(𝑥, 𝑎) + ∇𝑥𝑉 ⋅ 𝑓 (𝑥, 𝑎)
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3.5 D I SCUSS ION

yet rigorously deriving this differential equation from the max-
imum causal entropy distribution will take a solid effort into the
theory.

Extending constraint inference to stochastic systems raises ques-
tions of whether human experts might be better modeled using
a prospect-theoretic or risk-sensitive measure as in [47]. Future
work should investigate how human heuristics for statistical pre-
diction might impact the way demonstrations are generated. The
algorithm should be designed to be robust to these biases or even
leverage their structure.

3.5 D I S C USS ION

Humans are still the current gold-standard for safe operation over
machines. Machines must follow their lead to learn what safety
concerns impact the workplaces they are deployed in. In this chap-
ter, we saw how data from safe human operation can inform com-
putational understandings of safety. We interpret expert demon-
strations as chosen to perform well despite state and action con-
straints. This generative model lets us infer their underlying plan-
ning parameters using maximum likelihood estimation. Building
on distributions robust to reward misspecification [83] and inher-
iting constraint approximation guarantees from successive cover-
age [64], we extended that prior art to work with noisy transitions.
In this setting of precarious performances we introduce a notion
of risk with transition chance constraints. Fitting the constraint’s
chance thresholds equips the machine with a learned approxima-
tion of how expert operators balance risk and reward.

This modeling opens the door to exploring human risk-taking
behavior in a optimal control or reinforcement learning frame-
work (unlike the more task planning framework of [78]). Prior
art in inverse reinforcement learning [60] explored how demon-
strators risk the prospect of winning or losing reward [38]. How
do the decision-making models that are averse to reward risk ex-
tend to constraint violation risks? The model-based data analysis
advanced in this work starts to investigate this question, future
work can build from here to explore how prospect-theoretic distor-
tions affect decision-making.
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3.6 SUMMARY

By learning risk-reward balancing norms from demonstrations,
we sidestep the requirement for users to reason about statistics
explicitly. Kahneman and Tversky made careers out of highlight-
ing how humans are ill-equipped to explicitly reason about odds.
Yet an expert’s intuition is able to implicitly work over distribu-
tions through their aggregation of experience. By tapping into
demonstrations rather than textual responses, we bypass erro-
neous statistical distortions from the conscious mind and inter-
face directly with the subconscious mastery. It is important to in-
terface with human capability along humanity’s strengths rather
than forcing them to match the computer’s language. The work in
learning from demonstration shows one way that machines can
do this.

3.6 SU M MARY

This chapter extended techniques for learning safety from demon-
strations. The inverse optimal control problem learns character-
istics of planning that can be interpreted as an agent’s intent.
By carefully factoring in the causal structure of the stochastic
dynamics problem, we enabled maximum likelihood constraint
inference to be rigorously applied to stochastic systems.

With an understanding of the human’s safety concerns in the
state and action space, our autonomous agents can follow their
lead on acting safely. Yet just behaving safely is not enough; for
a team of human supervisor and autonomous robot to work, the
robot must also be transparently safe to the human’s perception.
In the next chapter we will see how each human’s safety percep-
tion differs, and solve this divergence by data-efficiently learning
each supervisor’s unique safety forecasting.
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4
L E A R N I N G H U M A N S ’ S A F E T Y F O R E C A S T I N G

Chapters 2 and 3 learned subsets of the state space that are un-
safe from the human’s understanding through their demonstra-
tions. This chapter goes from safety performance by a human to
safety supervision by a human. Going from active engagement
to passive monitoring forces the human to rely on their ability
to forecast. We will see that every person forecasts differently.
Through their distinct records of interventions, we can learn each
supervisor’s forecasting concerns. We can learn data-efficiently by
structuring the learning with mathematical structures from for-
mal verification.

We propose a model of an idealized supervisor to describe hu-
man behavior. Such a supervisor employs an internal model of the
robots’ dynamics to judge safety. Yet this internal potentially di-
verges from the model used to forecast the machine’s own safety
predictions. This difference creates safety disagreements in the
human-machine team. We represent these safety judgments by
constructing a safe set from this internal model using reachabil-
ity theory. When a robot leaves this safe set, the idealized super-
visor will intervene to assist, regardless of whether or not the
robot remains objectively safe. False positives, where a human
supervisor incorrectly judges a robot to be in danger, needlessly
consume supervisor attention. In this work, we propose a method
that decreases false positives by learning the supervisor’s safe set
and using that information to govern robot behavior. We prove
that robots behaving according to our approach will reduce the
occurrence of false positives for our idealized supervisor model.

This chapter is an adaptation of “Modeling supervisor safe sets for improving
collaboration in human-robot teams” [51] written in collaboration with Dexter
R.R. Scobee, Joseph Menke, Allen Yang, and S. Shankar Sastry
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4.1 BACKGROUND

Furthermore, we empirically validate our approach with a user
study that demonstrates a significant (𝑝 = 0.0328) reduction in
false positives for our method compared to a baseline safety con-
troller.

4.1 BACKGROUND

Our deployments of automated systems always fall back on hu-
man flexibility as a failsafe for safety. The most common inputs
these humans have onto these systems is a halt alert or takeover
switch. We believe that learning from this data will equip ma-
chines with models of safety closer to human experts. Not only can
this inject subject-area expertise into our automation designs, but
more closely following human understandings of safety can help
avoid confusing the supervisor when the humans’ safety concerns
don’t align with the robots’ safety models.

Learning from supervisor’s corrections can be done interactively
(or “coactively”) while supervisors intervene on robots [35] and
has been studied as a learning from demonstration (LfD) prob-
lem [5]. Learning from demonstration observes full performances
from expert demonstrators and attempts to extract statistics suf-
ficient for a robot to imitate the performance. The trajectory focus
of foundational LfD means the dynamics focus on timed quanti-
ties ranging from dynamics models [19], to reference trajectories
[1], to optimization objectives [84]. Prior art in learning from cor-
rections [5, 66] inherited the goal of inferring optimization objec-
tives from Inverse Optimal Control [39, 84]. This chapter focuses
on the discrete quality of the instantaneous event of takeover. We
will see that it corresponds to a discrete crossing from safe to un-
safe. This binary flip will be captured by a binary-valued set inclu-
sion function as we infer subsets of states for safety: constraints.

Constraints can also be learned from expert demonstration [50,
64, 67, 78]. Here too the algorithms inherit from Ziebart [84] a fo-
cus on full-horizon trajectories for demonstrator data. Compared
to the data from takeover states, full-horizon trajectories contain
many more datapoints. This wealth of datapoints both promises
the possibility of more expertise information to be encoded in it
but also detracts from efficiency as larger datasets need to be
gathered and processed. This paper examines whether just the
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starting state of a takeover (removing all the time-coupled follow-
ing states of how the expert drives the system to recovery) can in-
form us of safety. Indeed, this distillation will reveal how the tim-
ing of takeovers can provide insights beyond just the safety task
into the supervisor’s unique perception of safety. Understanding
each supervisor’s unique way of perceiving safety will empower
robots to avoid alarming supervisors unnecessarily, as we will
demonstrate in a user study in Chapter 5.

Based on the success of cognitive dynamical models for explain-
ing humans’ understanding of physical systems, we posit that hu-
man operators may have some notion of reachable sets which they
employ to predict collisions or avoid obstacles. We propose a noisy
idealized model to describe the behavior of the human supervisor
of a robotic team, and we develop a framework for estimating the
human supervisor’s mental model of a dynamical system based
on observing their interactions with the team. We then propose
a control framework that capitalizes on this learned information
to improve collaboration in such human-robot teams.

4.2 DE F I N ING REACHAB I L I T Y FOR SAFET Y

Consider a dynamical system with bounded input 𝑢 and bounded
disturbance 𝑑, given by

̇𝑥 = 𝑓 (𝑥, 𝑢, 𝑑),
𝑥 ∈ ℝ𝑛, 𝑢 ∈ 𝒰 ⊂ ℝ𝑛𝑢, 𝑑 ∈ 𝒟 ⊂ ℝ𝑛𝑑, (4.1)

where 𝒰 and 𝒟 are compact. We let U and D denote the sets of
measurable functions u ∶ [0, ∞) → 𝒰 and d ∶ [0, ∞) → 𝒟, re-
spectively, which represent possible time histories for the system
input and disturbance. Given a choice of input and disturbance
signals, there exists a unique continuous trajectory 𝜉 ∶ [0, ∞) →
ℝ𝑛 from any initial state 𝑥 which solves

̇𝜉(𝑡) = 𝑓 (𝜉(𝑡), u(𝑡), d(𝑡)), a.e. 𝑡 ≥ 0,
𝜉(0) = 𝑥,

(4.2)

where 𝜉(⋅) describes the evolution of the dynamical system [20].
Obstacles in the environment can be modeled as a “keep-out”

set of states 𝒦 ⊂ ℝ𝑛 that the system must avoid. We define the
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4.2 DEF IN ING REACHAB I L I T Y FOR SAFET Y

safety of the system with respect to this set, such that the system
is considered to be safe at state 𝜉(0) = 𝑥 over time horizon 𝑇
as long as we can choose u(⋅) to guarantee that there exists no
time 𝑡 ∈ [0, 𝑇] for which 𝜉(𝑡) ∈ 𝒦. The task of maintaining the
system’s safety over this interval can be modeled as a differential
game between the control input and the disturbance. Consider an
optimal control signal u(⋅) which attempts to steer the system
away from 𝒦 and an optimal disturbance d(⋅) which attempts
to drive the system towards 𝒦. By choosing any Lipschitz pay-
off function 𝑙 ∶ ℝ𝑛 → ℝ which is negative-valued for 𝑥 ∈ 𝒦 and
positive for 𝑥 ∉ 𝒦, we can encode the outcome of this game via
a value function 𝑉(𝑥, 𝑡) characterized by the following Hamilton-
Jacobi-Isaacs variational inequality [25]:

min
⎧{{
⎨{{⎩

𝑙(𝑥) − 𝑉(𝑥, 𝑡),
𝜕𝑉
𝜕𝑡 (𝑥, 𝑡) + max

𝑢∈𝒰
min
𝑑∈𝒟

𝜕𝑉
𝜕𝑥 (𝑥, 𝑡) · 𝑓 (𝑥, 𝑢, 𝑑)

= 0

𝑉(𝑥, 𝑇) = 𝑙(𝑥).

(4.3)

The value function 𝑉(𝑥, 𝑡) that satisfies the above conditions
is equal to min𝜏∈[𝑡,𝑇] 𝑙(𝜉∗(𝜏)) for the trajectory with 𝜉∗(𝑡) = 𝑥
driven by an optimal control u(⋅) and an optimal disturbance d(⋅).
We can therefore find the set of states

ℛ𝑇 = {𝑥 ∈ ℝ𝑛 ∶ 𝑉(𝑥, 0) < 0}
from which we cannot guarantee the safety of the system on

the interval [0, 𝑇], also known as the backward-reachable set of
𝒦 over this interval. That is, for all initial states 𝑥 ∈ ℛ𝑇 and
feedback control polices u(𝑡) = 𝑔(𝜉(𝑡)), there exists some distur-
bance d(⋅) ∈ D such that 𝜉(𝑡) ∈ 𝒦 for some 𝑡 ∈ [0, 𝑇].

If there exists a non-empty controlled-invariant set Ω that does
not intersect 𝒦, then we deem this set Ω a “safe set” because
there exists a feedback policy that guarantees that the system
remains in Ω, and thus out of 𝒦, for all time. It follows from their
properties that Ω is the complement of ℛ𝑇 , and the relationship
between 𝒦, ℛ𝑇 , and Ω is visualized in Fig. 4.1. Within a safe
set Ω, the value function becomes independent of 𝑡 as 𝑇 → ∞
[25]. Because we focus on the case where the system is initialized
to some safe state 𝜉(0) ∈ Ω and we aim to maintain 𝜉(𝑡) ∈ Ω for
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Figure 4.1: Illustration of the relationship between a keep-out set 𝒦,
the derived backward-reachable set ℛ, and the resulting
safe set Ω. Note that 𝒦 ⊆ ℛ, and Ω is equal to the com-
plement of ℛ. This illustration approximates the result ob-
tained using the Dubins car dynamics given in (5.1).

all 𝑡 ∈ [0, ∞), we simplify notation by defining the terms 𝑉(𝑥) ≜
lim𝑇→∞ 𝑉(𝑥, ⋅) and ℛ ≜ ℛ∞.

One approach to guaranteeing the safety of the system is to ap-
ply a “minimally invasive” controller which activates on the zero
level set of 𝑉(𝑥) [30]. This approach allows complete flexibility
of control as long as 𝜉(𝑡) ∈ interior(Ω), and applies the optimal
control to avoid 𝒦 when 𝜉(⋅) reaches the boundary of Ω. We refer
the interested reader to [25, 30] for a more thorough treatment of
reachability and minimally invasive controllers.

4.3 THE NO I S Y IDEAL I ZED SUPERV I SOR MODEL

We define an idealized model of the supervisor of a robotic team
whose responsibility it is to ensure that no robots collide with ob-
stacles represented by the keep-out set 𝒦. The idealized super-
visor behaves as a minimally invasive controller as described in
Section 4.2. However, while the robotic team members’ true dy-
namics are given by the function 𝑓 (𝑥, 𝑢, 𝑑) as in (4.1), the super-
visor possesses an internal model of the robots’ dynamics given
by 𝑓𝑆(𝑥, 𝑢, 𝑑), which is not necessarily equal to the true dynamics.
Following the differential game characterized by (4.3), the super-
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4.4 LEARN ING SAFE SETS FROM INTERVENT IONS

visor also possesses an internal value function 𝑉𝑆(⋅) and safe set
Ω𝑆 which they use to evaluate the safety of each state 𝑥 in the en-
vironment. We allow for the possibility that the supervisor adds
some amount of margin 𝜇 to their internal safe set, such that
Ω𝑆 = {𝑥 ∈ ℝ𝑛 ∶ 𝑉𝑆(𝑥) ≥ 𝜇}. Therefore, the idealized supervisor
will always intervene when a robotic team member reaches the 𝜇
level set of 𝑉𝑆(⋅), rather than the zero level set of the true 𝑉(⋅).
We further specify that the idealized supervisor is conservative:

∀𝑥 ∈ ℝ𝑛, 𝑉(𝑥) ≤ 0 ⟹ 𝑉𝑆(𝑥) ≤ 𝜇 (4.4)

This condition implies that the supervisor will never let a robot
teammate leave the true safe set Ω since Ω𝑆 ⊆ Ω. Addition-
ally, we propose a noisy version of this idealized supervisor: the
noisy idealized supervisor will intervene when they observe a
robot reach the 𝜇 + 𝑤 level set of 𝑉𝑆(⋅), where 𝑤 is drawn from
𝒩(0, 𝜎2

𝑆) whenever a supervisor makes a safety judgement.

4.4 L E AR N ING SAFE SETS FROM INTERVENT IONS

We choose to model the human supervisor of a robotic team as ap-
proximating the behavior of the idealized supervisor model pre-
sented in Section 4.3. That is, the human supervisor will allow
the robots to perform their task however they choose, but inter-
vene whenever they perceive that a robot is approaching an obsta-
cle 𝒦 in the state space. Given this model, we can interpret the
points at which the human intervenes as corresponding to the un-
known 𝜇 level set of some value function 𝑉𝐻(⋅) ∶ ℝ𝑛 → ℝ, which
characterizes the human’s mental safe set Ω𝐻 . Our goal is to use
observations of human interventions to derive an estimated value
function �̂�𝐻(⋅) and �̂� which describe the observed behavior and
induce an estimated Ω̂𝐻 . We approach this task by deriving a
Maximum Likelihood Estimator (MLE) of the human’s mental
safe set. If we assume that a human supervisor always intends to
intervene at the 𝜇 level set of 𝑉𝐻(𝑥), but their ability to precisely
intervene at this level is subject to Gaussian noise, either from
observation error or variability in reaction time, then we can con-
sider the value at an intervention point 𝑥𝑖 as being drawn from a
normal distribution centered at 𝜇 (that is, 𝑉𝐻(𝑥𝑖) ∼ 𝒩(𝜇, 𝜎2)).
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4.4 LEARN ING SAFE SETS FROM INTERVENT IONS

Given a proposed value function �̂�𝐻(⋅) and a set of intervention
points {𝑥1, 𝑥2, ⋯ , 𝑥𝑝} with corresponding values

{�̂�𝐻(𝑥1), �̂�𝐻(𝑥2), ⋯ , �̂�𝐻(𝑥𝑝)}
,

we wish to estimate the most likely 𝜇 and 𝜎2 to explain these
interventions. Gaussian distributions induce the following prob-
ability density function for a single observation �̂�𝐻(𝑥𝑗)

𝑓 (�̂�𝐻(𝑥𝑗) | 𝜇, 𝜎2) = 1
√2𝜋𝜎2

exp
⎛⎜⎜⎜
⎝

−
(�̂�𝐻(𝑥𝑗) − 𝜇)

2

2𝜎2
⎞⎟⎟⎟
⎠

(4.5)

which leads to the following probability density for a set of 𝑝 in-
dependent observations

𝑓 (�̂�𝐻(𝑥1), ⋯ , �̂�𝐻(𝑥𝑝) | 𝜇, 𝜎2) =
𝑝

∏
𝑗=1

𝑓 (�̂�𝐻(𝑥𝑗) | 𝜇, 𝜎2)

= ( 1
2𝜋𝜎2 )

𝑝
2

exp
⎛⎜⎜⎜⎜
⎝

−
∑𝑝

𝑗=1 (�̂�𝐻(𝑥𝑗) − 𝜇)
2

2𝜎2
⎞⎟⎟⎟⎟
⎠

.

(4.6)

The likelihood of any estimated parameter values �̂� and �̂�2 being
correct, given the observations and the proposed value function
�̂�𝐻(⋅), is expressed as

ℒ (�̂�, �̂�2 | �̂�𝐻(⋅)) = 𝑓 (�̂�𝐻(𝑥1), ⋯ , �̂�𝐻(𝑥𝑝) | �̂�, �̂�2) (4.7)

It can be shown that the values of the unknown parameters 𝜇
and 𝜎2 that maximize the likelihood function are given by

�̂�∗ = 1
𝑝

𝑝
∑
𝑗=1

�̂�𝐻(𝑥𝑗) and �̂�∗2 = 1
𝑝

𝑝
∑
𝑗=1

(�̂�𝐻(𝑥𝑗) − �̂�∗)
2

,

(4.8)

which are simply the mean and variance of the set of observations.
Notice that the estimates given by (4.8) are computed with re-

spect to a given value function �̂�𝐻(⋅). If we were to assume that
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4.4 LEARN ING SAFE SETS FROM INTERVENT IONS

the human supervisor has a perfect model of the system dynam-
ics, then we could simply set �̂�𝐻(⋅) to equal the true 𝑉(⋅) of the
system in (4.1), and �̂�∗ would be the maximum likelihood esti-
mate for the level at which the supervisor will intervene. How-
ever, it is unlikely that a human supervisor’s notion of the dy-
namics will correspond exactly to this model, and we would like to
maintain the flexibility of estimating value functions that are not
strictly derived from (4.1). To this end, we define the maximum
likelihood of �̂�𝐻(⋅) being the 𝑉𝐻(⋅) that produced our observa-
tions as ℒ∗(�̂�𝐻(⋅)) = max�̂�,�̂�2 ℒ(�̂�, �̂�2 | �̂�𝐻(⋅)). The value of
ℒ∗(�̂�𝐻(⋅)) is obtained by substituting the estimates from (4.8)
into the probability density function from (4.6). That is,

ℒ∗ (�̂�𝐻(⋅)) = 𝑓 (�̂�𝐻(𝑥1), ⋯ , �̂�𝐻(𝑥𝑝) | �̂�∗, �̂�∗2) (4.9)
We seek the most likely value function to explain our observa-

tions, which will be the value function �̂�∗(⋅) with the greatest
maximum likelihood ℒ∗(�̂�∗(⋅)) (the maximum over maxima)

�̂�∗(⋅) = arg max
𝑉(⋅)∈𝒱

ℒ∗ (𝑉(⋅)) , (4.10)

where 𝒱 is the set of all possible value functions.
In order to make this optimization tractable, we can restrict

ourselves to a set of value functions {𝑉𝜃(⋅)}𝜃∈ℝ𝑚 corresponding
to a family of dynamics functions {𝑓𝜃(⋅, ⋅, ⋅)}𝜃∈ℝ𝑚 parameterized
by 𝜃 ∈ ℝ𝑚, making the optimization in question

�̂�∗(⋅) = arg max
𝜃∈ℝ𝑚

ℒ∗ (𝑉𝜃(⋅)) . (4.11)

In practice, we may not be able to find an expression for the
gradient of ℒ∗(𝑉𝜃(⋅)) with respect to 𝜃, since the value function
is derived from the dynamics 𝑓𝜃(⋅, ⋅, ⋅) via the differential game
given by (4.3). The lack of a gradient expression restricts the use
of numerical methods to solve the problem as presented in (4.11).
In these cases, we can compute a representative library of 𝑏 value
functions {𝑉𝑖(⋅)}𝑏

𝑖=1 corresponding to a set of 𝑏 representative pa-
rameter values {𝜃𝑖}𝑏

𝑖=1 (see Fig. 4.2 for an example library). The
optimization then reduces to choosing the most likely value func-
tion from among this library

�̂�∗(⋅) = arg max
𝑖∈{1,⋯,𝑏}

ℒ∗ (𝑉𝑖(⋅)) . (4.12)
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Figure 4.2: Two dimensional slices of the zero level sets of the value
functions 𝑉𝑖(⋅) from the library used for the experiment de-
scribed in Chapter 5. We used a family of Dubins car dynam-
ics (see (5.1)) parametrized by 𝜔𝑚𝑎𝑥. Notice that as 𝜔𝑚𝑎𝑥
decreases (the modeled control authority is decreased), the
level sets extend farther away from the obstacle, indicating
that a robot is expected to turn earlier to guarantee safety.

In order to ensure that the learned safe set is conservative, we
can extend our MLE to a Maximum A Posteriori (MAP) estima-
tor by incorporating our prior belief that, regardless of the safe
set that the supervisor uses to generate interventions, they do
not want the robots to be unsafe with respect to the true dynam-
ics. In this case, we maintain a uniform prior 𝑃(𝜃) that assigns
equal probability to all 𝑉𝜃(⋅) whose zero sublevel sets are super-
sets of the zero sublevel set of the true 𝑉(⋅), and zero probability
to all other 𝑉𝜃(⋅). In other words, we assume that the supervisor
does not overestimate the agility of the robots, and in practice we
can enforce this condition by choosing the library in (4.12) to only
contain appropriate value functions. Moreover, regardless of the
choice of �̂�𝐻(⋅), we assume that the supervisor intends to inter-
vene before reaching the zero level set of �̂�𝐻(⋅), which always in-
cludes the boundary of 𝒦. If we choose a prior 𝑃(𝜇) that assigns
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Figure 4.3: An example data set of how supervisors intervene for a sim-
ple car model. This data was gathered from the experiment
described in Chapter 5 and illustrates how one supervisor’s
interventions spread around the contours of a reachable set.
The red circles represent the location of supervisor interven-
tions, and the colored background represents the learned
value function 𝑉(⋅) with contour lines shown in black. In
this case, the learning algorithm chose a dynamics model
parametrized by 𝜔𝑚𝑎𝑥 = 0.75.

zero probability to all non-positive 𝜇 and uniform probability else-
where, it can be shown that the MAP estimates are obtained by
letting �̂�∗ equal max {�̂�∗, 0} and otherwise proceeding as before.
Fig. 4.3 provides an example of this algorithm estimating a safe
set from human supervisor intervention data.

4.5 CON T ROL ON LEARNED SAFE SETS

We propose that safe sets learned according to the approach in
Section 4.4 can be used to create effective control laws for the
robotic members of human-robot teams. Recall our model of the
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4.5 CONTROL ON LEARNED SAFE SETS

human supervisor of a robotic team: the supervisor must rely
on each robot’s autonomy to complete the majority of their tasks
unassisted, but the supervisor may intervene to correct a robot’s
behavior when necessary (such as by avoiding an imminent colli-
sion with the keep-out set 𝒦). We put forth that in the scenario
where the human intervenes to prevent a collision, they do so be-
cause they observe that a robot has violated the boundaries of
their mental safe set Ω𝐻 .

Now, consider a team of robots navigating an unknown envi-
ronment, and which are able to avoid any obstacles that they de-
tect. One approach to safely automating this team is to have each
robot behave according to a minimally invasive control law: the
robots are allowed to follow trajectories generated by any plan-
ning algorithm, so long as they remain within Ω, the reachable
set computed using the baseline dynamics model (4.1) with asso-
ciated value function 𝑉(⋅). Whenever these robots detect an ob-
stacle, they add it to the keep-out set 𝒦, thus modifying Ω and
𝑉(⋅). If a robot reaches the boundary of Ω, it applies the optimal
control to avoid 𝒦 until it has cleared the obstacle. However, it
is possible that a robot does not detect an obstacle, and a human
supervisor must intervene to ensure robot safety.

As stated above, the human supervisor will intervene when a
robot reaches the boundary of Ω𝐻 , not the boundary of Ω. This
discrepancy leads to the possibility that the supervisor will inter-
vene when the robot reaches some state 𝑥, even if the robot would
have avoided the obstacle without intervention. These situations
arise whenever 𝑉𝐻(𝑥) ≤ 𝜇 but 𝑉(𝑥) > 0. These “false positive”
interventions represent unnecessary work for the human super-
visor, and we seek to eliminate them in order to improve the hu-
man’s experience and the team’s overall performance.

We propose using a safe set Ω̂𝐻 learned from previous observa-
tions of supervisor interventions, as outlined in Section 4.4, as a
substitute for Ω in the robots’ minimally invasive control law. By
estimating the human’s internal safe set, we take advantage of
the following property:
Property. For an idealized supervisor collaborating with a team of
robots as described in Section 4.5, if the robots avoid detected ob-
stacles 𝒦 by applying an optimally safe control at the boundary
of safe set Ω𝑆, then if the supervisor plans to intervene because
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4.6 D I SCUSS ION

they observe 𝜉𝑖(𝑡) ∈ 𝑅𝑆 for robot 𝑖, the supervisor can infer that
robot 𝑖 has not detected an obstacle and any supervisor interven-
tion will not be a false positive.

Proof. The proof of this property follows constructively from the
definitions of safe set, idealized supervisor, and false positive. If
robot 𝑖 had correctly detected an obstacle and adjusted its repre-
sentation of Ω𝑆 accordingly, then it would have applied the opti-
mal control to remain within the supervisor’s safe set. Therefore,
if the supervisor is able to observe that robot 𝑖 has left Ω𝑆, it must
be the case that the robot has not detected the obstacle. False posi-
tives are defined to be supervisor interventions that occur when a
robot has detected an obstacle but the supervisor still intervenes.
In this case, the supervisor can correctly infer that robot 𝑖 has not
detected an obstacle, so any intervention at this point cannot be
a false positive. ■

For an idealized supervisor, as Ω̂𝑆 becomes an arbitrarily good
approximation of Ω𝑆, the number of false positive interventions
will approach zero. For a noisy idealized supervisor, the supervi-
sor will intervene whenever 𝑉𝑆(𝑥)+𝑤 ≤ 𝜇 where 𝑤 ∼ 𝒩(0, 𝜎2

𝑆).
This noise will continue to produce false positives, even with a
perfect fit Ω̂𝑆 = Ω𝑆, if the robots apply the optimally safe con-
trol at the 𝜇-level set of Ω𝑆. Instead, the level set 𝛼 where the
optimally safe control is applied can be raised arbitrarily high to
drive the false positive rate to zero. For example, 𝛼 = 𝜇 + 2𝜎𝑆 is
sufficient to avoid over 97% of intervention states used for learn-
ing, in expectation. We test the efficacy of our approach through
the human-subjects experiment described in Section 5.2.

4.6 D I SCUSS ION

These simple avoidance controllers assumes the noisy Newton hy-
pothesis for human cognition and analyzes forecasting through
reachability calculations. By modeling which system states com-
mand supervisory attention, we can program autonomous sys-
tems to avoid those states when they do not require attention. We
find that building from cognitive scientific principles into tractable
mathematical structures borrowed from established verification
produces predictive and data-efficient results. This work suggests
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the potential of using other dynamic verification tools to model
facets of human judgement. For example, the human interven-
tions of this chapter could be modeled as responses to violated
assume-guarantee contracts between the agents suggesting what
actions need to be delegated and when. The rich toolsets of verifi-
cation and their different concerns are fertile ground for rigorous
development in human-robot collaboration. Formalizing concepts
from psychology into mathematical structures equips machines
with the computational language to learn human concerns.

By considering judgement mathematically, we witness just how
much human cognition varies from the “rational” standard used
to approximate mean human behavior. Our machines had to con-
sider how each supervisor works with a distinct mental simula-
tor for safety forecasting. This discrepancy between purely ratio-
nal “econs” and humans in-the-wild is well noted in economet-
rics’ prospect theory and broader behavioral economics. Behavior
that diverges from mean models not only happens within mar-
kets – in our user study we see how every user has distinct con-
cerns. When dealing with supervisory precision as measured by
false positives, we see that this discrepancy has concrete impact
on how we design our systems of machines and workers. We can
make tractable headway in modeling this discrepancy through
parametrized models like safe sets. Research considering cogni-
tion’s idiosyncrasies through divergent intelligent systems mod-
els can tractably improve human-machine collaboration.

4.7 SUMMARY

Rather than work from long demonstrations of safe behavior, this
chapter examined learning from the volumes of safety takeovers.
In this supervisory context, new mental phenomena enter into
the problem: how does the human forecast safety from the present
state? This chapter applied reachability analysis to structure data-
efficient regression to this phenomenon. In the next chapter we
will examine an application of learning human forecasting: by
being cognizant of human safety judgement, robots can mitigate
false alarms due to mismatched dynamics models.
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5
AV O I D I N G FA L S E A L A R M S T H R O U G H
M O D E L I N G

When a human supervisor collaborates with a team of robots,
the human’s attention is divided, and cognitive resources are at
a premium. We aim to optimize the distribution of these resources
and the flow of attention. The ways that robot performance alarms
the supervisor’s attention can be predicted in part with the model
derived in Chapter 4. We empirically validate the usefulness of
the noisy idealized supervisor model with a user study. In part-
nering users with a team of robots that considered their perspec-
tive, we reduced unneeded interventions (𝑝 = 0.0328) over the
default safety controller. This reduction in false positives also
tracked the amounts predicted by the noisy idealized supervisor
model.

5.1 INTRODUCT IO N AND BACKGROUND

As automation becomes more pervasive throughout society, hu-
mans will increasingly find themselves interacting with autonomous
and semi-autonomous systems. These interactions have the po-
tential to multiply the productivity of human workers, since it
will become possible for a single human to supervise the behavior
of multiple robotic agents.

While a human may be able to successfully exert direct control
over a single robot, it becomes intractable for a human to directly

This chapter is an adaptation of “Modeling supervisor safe sets for improving
collaboration in human-robot teams” [51] written in collaboration with Dexter
R.R. Scobee, Joseph Menke, Allen Yang, and S. Shankar Sastry
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5.1 INTRODUCT ION AND BACKGROUND

Figure 5.1: Top: if a robot’s behavior does not take into account a hu-
man supervisor’s notion of safety, the misaligned expecta-
tions can degrade team performance. Bottom: When a robot
acts according to a human supervisor’s expectations, the su-
pervisor can more easily predict the robot’s behavior.

control teams of robots 1. In order to manage the increased com-
plexity of multi-robot teams, the human must be able to rely on
increased autonomy from the robots, freeing the human to focus
their attention only on those areas where they are most needed.
Our goal is to model what grabs the supervisor’s attention in or-
der to modify robot behavior to reduce the occurrence of distrac-
tions.

This project is inspired by work like Bajcsy et al [5] and Jain
et al [35] that learn from supervisor interventions in a “coactive”
learning framework. These works apply Learning from Demon-
stration techniques to the more challenging domain where the
given data is just a correction from a trajectory rather than a full

1 in fact, even when working with a single robot, semi-autonomous assistance
helps the human-machine collaboration as discussed in the literature on as-
sistive teleoperation [23, 37]
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trajectory. The authors of [5] posed this correction challenge in
model-based framework that interprets the human’s signals as re-
sulting from an optimization problem. This inverse optimization
framework has also been used in Inverse Reinforcement Learn-
ing [1, 84] which applies Inverse Optimal Control (as conceived
of by Kalman [39]) to interpreting human trajectories. Our work
applies the inverse optimization framework to learn from the su-
pervisor’s decisions to intervene.

Results in cognitive science suggest that humans observing phys-
ical scenes can be modeled as performing a noisy “mental simu-
lation” to predict trajectories [9, 65]. We posit that human super-
visors utilize this same cognitive dynamic simulation to predict
robot safety and intervene accordingly. Specifically, we theorize
that the intervention behavior is driven by an internal “safe set”
which we can attempt to reconstruct by observing supervisor in-
terventions.

5.2 EX P E R IMENTAL DES IGN FOR USER VAL IDAT ION

Our goal in understanding and modeling the supervisor’s con-
ception of safety is to improve team performance by decreasing
cognitive overload. Although we have based our human model-
ing on the cognitive science literature, we do not intend to verify
humans’ exact cognitive processes. Instead, we aim to apply our
inspiration from cognitive science toward building better human-
robot teams. To this end, our hypotheses are:

• H1: Representing supervisor behavior as cognitive keep-out
sets allows intervention signals to be distilled into an action-
able rule which will decrease supervisory false positives and
cognitive strain, thereby increasing team performance and
trust.

• H2: Fitting danger-avoidance behavior to a supervisor’s be-
liefs is preferable to generic conservative behavior.

In our experiment, we gather supervisor intervention data, fit
our model to the data, and then run a human-robot teaming task
that assesses performance.
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Figure 5.2: Safe sets tested in our experiment (illustrated by their com-
plementary reachable set): (left) Standard safe set (calcu-
lated from true dynamics and obstacle size), (middle) exam-
ple Learned safe set (calculated from fitted supervisory per-
ception of dynamics and obstacle size), (right) Conservative
safe set (calculated from true dynamics and inflated obsta-
cle size)

5.2.1 Procedure

Our experiment applies the idealized supervisor theory and learn-
ing algorithm to supervising simulated robots. The robots moved
according to the Dubins car model:

̇𝑥 = 3 cos(𝜃)
̇𝑦 = 3 sin(𝜃)
̇𝜃 = 𝑢

𝑢 ∈ 𝒰 = [−𝜔𝑚𝑎𝑥, 𝜔𝑚𝑎𝑥], 𝜔𝑚𝑎𝑥 = 1

(5.1)

The experiment is divided into three phases. In Phase I, the
subject is given an opportunity to familiarize themselves with
the robotic system’s dynamics. The user is allowed to directly ap-
ply the full range of controls through the computer keyboard for
one minute. After ensuring the user has some experience from
which to build an internal dynamics model, we then assess their
emergent conception of safety. In Phase II, supervisory data is
extracted from the subject by showing them scenes where the
robot is driving towards an obstacle, and the supervisor decides
where to intervene to avoid a crash. After building their concep-
tual model of the robot’s dynamics, they share data on it through
veering the robot out of crashes. By detecting when they flinch in
the game of chicken we can learn what states alarm this supervi-
sor uniquely through our algorithm described in Chapter 4. Our
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Figure 5.3: Screenshot of the task from Phase III of the experiment.
Robotic vehicles make trips back and forth across the screen,
detecting and avoiding each obstacle with 80% probability.
The human supervisor must remove an obstacle in the event
that it is undetected, but must infer this information from
the robots’ motion.

estimator used a library of candidate dynamics functions parame-
terized by values of 𝜔𝑚𝑎𝑥 between 0 and 3, as shown in Fig. 4.2. In
this experiment, we enforced conservativeness by excluding sub-
jects whose Learned sets were not supersets of the Standard safe
set, rather than enforcing a prior directly on 𝜔𝑚𝑎𝑥. The Learned
safe set is assessed in Phase III against two fixed safe sets (see
Fig. 5.2) pre-calculated from the true dynamic equations.

These safe sets were calculated using Hamilton-Jacobi reacha-
bility as described in Section 4.2 using the Level Set Toolbox [52]
for MATLAB.

We compare the vehicles that have learned human safety con-
cerns against vehicles that don’t consider the supervisor but only
avoid obstacles using the engineered concerns designed into the
minimum safety guarantees (as per [30]). Vehicles rumble across
the pixelated screen, delivering packages between depots that re-
ward the team. Skittering towards dark holes strewn across their
workspace, their autonomous understanding of safety swerves
them away from a crash. Yet 20% of the time their simulated
sensors “fail” to perceive the obstacles and they can only blindly
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crash, costing a full delivery’s worth of rewards. Therefore, the
subject hovers above their mouse, watching for oncoming colli-
sions with dark holes strewn across the vehicles’ workspace. With
a click they can displace an obstacle at the expense of half the re-
wards scored by one of their vehicles’ successful deliveries. Still, it
beats losing a full delivery’s worth in a crash. Humans must bal-
ance relying on delegated autonomy and supporting team mem-
bers’ blindspots. In that decision, the supervisor will be consider-
ing their understanding of safety and forecasts of vehicle motion.
In turn, team members will either obey only their understanding
of safety using the minimum interventions from the baseline safe
sets (as in [30]) or they can match the concerns their collaborator
is working with. We contend that considering their collaborator’s
concerns will help the human discern the robot’s (un)safety.

5.2.2 Independent Variables

To assess our hypotheses, we manipulate the safe set used be-
tween team supervision trials. We exposed the human subject
to three teams, each driving using one of three safe sets. The
Learned set is derived from Phase II supervisor intervention ob-
servations as described in Section 4.1, using 𝛼 = 𝜇. The two base-
line kernels are calculated using Hamilton-Jacobi-Isaacs reach-
ability on the true dynamic equations. The Standard set is cal-
culated using the true obstacle size. The Conservative set adds
a buffer that doubles the effective size of the obstacle, inducing
trajectories that give obstacles a wide berth.

5.2.3 Dependent Measures

5.2.3.1 Objective Measures

The team was tasked with making trips across the screen to reach
randomized goals. The robots’ task was to travel across the screen,
safely dodging obstacles along the way, while the human was
tasked with supervising as a failsafe to remove an obstacle if the
robots should fail to observe and avoid it.

Team performance was quantified using three objective met-
rics: number of trips completed, number of supervisory interven-
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tions, and the number of obstacle collisions. These metrics were
presented to the subject as an aggregated, arcade-style score. To
incentivize participants to only intervene when necessary, obstacle-
removal interventions reduced the score, but only by half as much
as an obstacle collision.

The number of interventions taken by the supervisor can also
serve as a proxy measurement to quantify the amount of cognitive
strain they experience while working with the robotic team. Of
particular note are the number of interventions that were not ac-
tually required, as the supervisor incorrectly judged that a robot
had not detected an obstacle. These false positives needlessly drain
supervisor attention and indicate a lack of trust in the system. We
aim to increase the human’s trust in the system, which we quan-
tify by a decrease in these false positives.

5.2.3.2 Subjective Measures

After each round of pairwise comparison (completing the task
with two different robotic teams), we gauged how the choice of safe
set impacted the subject’s subjective experience with a question-
naire. The questionnaires asked subjects how much they agreed
with a series of simple statements on a 7-point Likert scale (1
- Strongly Disagree, 7 - Strongly Agree). These statements were
designed to measure Trust, Perceived Performance, Interpretabil-
ity, Confidence, Team Fluency, and overall Preference between
the teams in the comparison.

5.2.4 Subject Allocation

The subject population consisted of 6 male, 5 female, and 1 non-
binary participants between the ages of 18-29. We used a within-
subjects design where each subject was asked to complete all three
possible pairwise comparisons of our three treatments (the safe
sets used). We used a balanced Latin Square design for the or-
der of comparisons, with no treatment being first in a pair twice.
Furthermore, we generated six randomized versions of the task
so that subjects were presented with a different version of the
task for each trial across the three pairwise comparisons. To avoid
coupling the treatment results to a particular version of the task,
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each treatment was paired with each task version an equal num-
ber of times across our subject population.

5.3 ANALYS I S AND D I SCUSS ION

5.3.1 H1: False Positive Reduction over Standard

Our first hypothesis is that a Learned safe set that reflects the
supervisor’s intervention behavior would decrease the number of
false positives compared to the Standard safe set. To test this, we
performed a one-way repeated measures ANOVA on the number
of supervisory false positives from Phase III of the experiment
with safe set as the manipulated factor. A false positive was any
supervisor intervention where the removed obstacle was actually
detected by all nearby robots, which would have avoided it suc-
cessfully. The robot team’s safe set had a significant effect on the
number of supervisory false positives (𝐹(2, 20) = 8.72, 𝑝 < 0.01).
An all-pairs post-hoc Tukey method found that the Learned safe
set significantly decreased (𝑝 = 0.0328 < 0.05) false positives
over the Standard safe set, but there was no significant differ-
ence between the Learned safe set and the Conservative safe set
(which also significantly decreased false positives over the Stan-
dard safe set, with 𝑝 < 0.01). These results support our main hy-
pothesis that representing supervisor behavior as cognitive keep-
out sets allows intervention signals to be distilled into an action-
able rule which will decrease supervisory false positives.

The second half of that hypothesis, that decreasing supervisory
false positives will increase trust and team performance was not
shown conclusively from our data. We performed a one-way, re-
peated measures ANOVA on the pairwise comparison surveys be-
tween the teams using the Learned and the Standard safe sets.
Measures of trust showed no significant improvement (𝐹(1, 9) =
1.86, 𝑝 = 0.21).

5.3.2 H2: Preference over Conservative

For 9 of 11 participants, the Learned safe set had shorter avoid-
ance arcs than the Conservative set. We hypothesized that this
greater efficiency would make the tailored conservativeness of
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*

**

Figure 5.4: Average number of false positives per trial plotted against
the three safe set types. There were significant differences
between Standard and Learned (𝑝 < .05) and between Stan-
dard and Conservative (𝑝 < .01). There was no significant
difference between Learned and Conservative.

the Learned set preferable to the baseline Conservative safe set.
However, a t-test showed that the survey responses for preference
were statistically indistinguishable (𝑝 = 0.8) from a neutral score:
an inconclusive result for Hypothesis 2. We believe that this re-
sult stems from users judging preference more on intelligibility,
the ease of avoiding false positives, than on efficiency, the short-
ness of paths. As discussed in Section 5.3.1, both the Learned and
Conservative safe sets led to significant false positive reductions
over the Standard set.

This indistinguishability is further compounded since a pref-
erence for intelligibility seems to be expressed by some subjects
in their Phase II intervention data, resulting in their Learned
safe sets having similar arcs as the Conservative safe set (see Fig.
5.5). Future work could investigate this efficiency-intelligibility
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Figure 5.5: Regressed safe sets (viewed on the 𝜃 = 0 slice) from super-
visor intervention data overlaid on baselines. Three users’
safe sets clustered to arcing like the Standard safe set. Three
others clustered to arcing like the Conservative safe set. The
final five safe sets exhibit a distinct behavior that reflects su-
pervisors’ preference for gradual, pre-emptive arcs.

trade-off further by using a conservative baseline that is distin-
guishably more conservative than user safe sets and by making
efficiency more central to the team task.

5.3.3 Model Validity

The statistically significant decreases in false positives observed
in Phase III agree with the decreases predicted by the supervisor
model based on intervention data from Phase II. Our model posits
that interventions occur at states noisily distributed about a safe
set boundary. Therefore, it predicts that the empirical distribu-
tion of Phase II intervention states contained within a proposed
safe set (see Fig. 5.6) will mirror the proportion of false positive in-
terventions observed in Phase III: if states are deemed safe by the
controller, they will not be avoided, even when the noisy supervi-
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Figure 5.6: Empirical distribution of intervention states observed dur-
ing data collection (Phase II of the experiment). The inter-
ventions within the Conservative reachable set are colored
in red, leaving 115 interventions in the corresponding safe
set. Similarly, the interventions within the Standard reach-
able set are colored darker, leaving 397 interventions in the
corresponding safe set. Intervention states not contained
within a reachable set would have generated a false positive
during the human-robot teaming task.

sor would judge them to be unsafe. Since the Learned safe set con-
troller intervenes at the �̂�∗ level set (see Section 4.4), exactly half
the intervention states will be contained within the Learned safe
set in expectation. The model’s predictions are compared against
observed false positives in Table 5.1.

5.4 SU M MARY

Our user study demonstrates a significant reduction in false pos-
itives over baseline behavior when learning from human safety
forecasting. We can model human safety forecasting data-efficiently
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Interventions Predicted Average Observed
in Safe Set F.P. vs Std. F.P. F.P. vs Std.

Standard 397 / 440 100% 12.54 100%
Learned 220 / 440 55.4% 7.31 58.3%
Conservative 115 / 440 29% 4.68 37.3%

Table 5.1: Predicted and observed false positives. Left: Predicted false
positives from Phase II data. Right: Observed false positives
in Phase III.

using a statistical model built on top of reachability analysis for
safe sets. We employ the noisy idealized supervisor as the gener-
ative model in a learning algorithm to predict supervisor safety
judgements, and we present a safety controller for robotic agents
that respects the supervisor’s perception of safety. This safety con-
troller is guaranteed to reduce false positives for idealized super-
visors and real supervisors match those trends.

Automation with human supervisors relies on leveraging the
human supervisor’s cognitive resources for success. Respecting
these resources is essential for creating well performing human-
robot teams. It is especially important to avoid overtaxing the
human as automated teams continue to scale up, and a single
human worker both accomplishes more and bears more cognitive
load than ever. To alleviate this burden, we can decrease the num-
ber of issues that command the supervisor’s attention by reducing
false positives.

Our results show that it is possible to reduce false positives,
and thus cognitive load, by aligning robot behavior with humans’
expectations. Yet since corrective action follows the “minimum in-
tervention safety controller” framework, it also means the human
is only informed of safety at the last possible moment. How can we
incorporate anticipation into robot motion to inform supervisors
in a timely manner? This is the inquiry for the next chapter.
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6
C O M M U N I C A T I N G T H R O U G H P R A G M A T I C
O P T I M I Z A T I O N

Previous chapters have equipped our machines to consider hu-
mans’ safety concerns, both in constraints and dynamic forecast-
ing. The next chapters will equip humans to understand the robots’
concerns. We can equip human understanding this way through
optimizing robot behavior to transparently evidence its concerns.

Prior art in transparent motion largely ignores the robot’s dy-
namics, preferring pure motion planning instead. Yet without dy-
namic information included about the robot, the robot might not
actually be able to execute the plan. Furthermore, this limited
scope precludes the ability to express dynamic properties like mo-
tion constraints.

This high-level scoping helped make optimizations tractable.
For example, the Bayesian perspective introduced by Dragan and
Srinivasa [22] drew paths for robot arms that pointed towards
where they were reaching. Extending the algorithm to controlling
a car made the planning too slow to execute in real-time [12].

This chapter streamlines the legibility objective to have equiva-
lent computational complexity as the original objective to be com-
municated. This enables any optimal control algorithm that can
solve the original task to also solve the legible version of that task.
This algorithm’s simplicity will enable the next chapter to commu-
nicate robot intents beyond just end-states to include character-
istics like safety.

This chapter will demonstrate how to replicate the properties
introduced in prior art (like legibility, exaggeration, and antici-

This chapter is an adaptation of “An Efficient Understandability Objective for
Dynamic Optimal Control” [49] written in collaboration with S. Shankar Sas-
try
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6.1 INTRODUCT ION

X

ignorant ( ) 
optimizer

H0

avoidant ( ) 
optimizer
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optimizer
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Figure 6.1: Overview: A human observes three possible robot motions
with bicycle dynamics. The black path (top) is ignorant of
needing to avoid the human and its control-minimizing path
is a collision course. The gray path (middle) is optimized
with a collision avoidance term in addition to minimizing
control effort. It’s path succeeds in avoiding the human, but
to minimize control cost it comes concerningly close. The
light green path (bottom) is optimized to evidence its aware-
ness of the human’s needs so the human is informed. This
legibility optimization metric was historically too complex to
apply to non-holonomic dynamics tractably (see conclusions
of [12]). This work derives a tractable equivalent metric.

pation) more tractably using a streamlined algorithm that arises
from a simpler observer model.

6.1 IN T RO DUCT ION

Social and assistive robots need to communicate their intentions
to collaborators. This is transparency. Indeed, studies in the psy-
chology of human-human collaboration [74] emphasize the impor-
tance of theory of mind: the ability to reason about what your col-
laboration partner is thinking. Already roboticists have seen this
need in building robots to work around people. Avoiding crashing
with humans required robots to forecast their ways [76]. Follow-
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ing their users’ lead required robots to consider humans’ ends and
goals [57]. Working together means being mindful of the other.

Of course, humans need to consider the same information about
their partner. Even when coordinating something as simple as
handing over an object, task intent of “what”, “when”, and ”where”
must be synchronized [68]. And for those tasks, robots can help in-
form handovers by how they hold their hands [10]. Showing your
hand this way generalizes to myriad modalities for coordination:
through text, speech, graphics, blinking lights, and a multitude
of other media [2]. Yet no amount of exclamation can convince
users of intention if the robot is not acting that way.

The hard evidence of the robot’s choices are the final judge of
performance. Safety supervisors must judge critically, wary of
bugs and mistakes in perception. For them, the robot’s actions
are ultimately what must be kept in line. Even for humans who
are not explicitly in the loop as critical supervisors, they should
engage the system with appropriate trust. Calibrating their trust
to the appropriate level requires critically examining the robot’s
performance. Therefore the robot’s actions will be the critical com-
munication medium.

6.1.1 Prior Art in Commmunicative Action

Communication and action are so entwined, our language does
not distinguish between acting (for agency) and acting (for ex-
pression). Not only does humanity act out their intent, but mil-
lennia of crafty puppeteers animate scraps of cloth and wood to
act out intents [33]. Unfortunately we cannot afford to employ
a puppeteer to run every robot (though we’ve tried before1). In-
stead we need to automate the animating principles [71]. Beyond
learning functionality from human demonstrations as in main-

1 Though the history of artificial motion can be traced through medieval records
[77] to antiquity, artificial intelligence has been more elusive. Eighteenth cen-
tury tech hype marveled at Jacquet Droz’s clockwork porcelain dolls that could
replicate handwriting, yet they were limited to pre-programmed sentences and
sketches [81]. Harnessing the runaway speculation at that time, one Wolfgang
von Klempelen claimed to use similar clockwork to play chess (two full cen-
turies before deep blue!). Despite the elaborate showcasing of its internal gears
and cogs, its humanlike reactions and behavior turned out to be produced by
a human chess master secreted away in the cabinet under the chessboard.
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line Learning from Demonstration (LFD) (e.g. [1, 62, 83]), Giel-
niak introduced extracting specifically communicative keyframes
to exaggerate the expression of motion [28, 29]. Whereas previous
human-aware motion planning would optimize for human space
(whether for following [57] or proxemics [46]), Gielniak empha-
sized the expressive elements by translating principles of anima-
tion like secondary motion [27] into optimizations. Actions not
only accomplish goals but aspects of the motion communicate
robot purposes [70, 82].

Following the motion optimization approach, Dragan [22] ap-
plied the linguistics’ inference-based pragmatics models to make
an explicitly informative objective. These inference models follow
the “theory theory” of cognitive science that humans construct
and test models from observed data [31, 32]. Assuming humans
read actions from the “teleogical2 stance” [21] , interpreting ac-
tions can be viewed as inferring hidden goals or preferences on
actions [6, 7, 36, 45]. Designers of explainable AIs have turned
this cognitive model of action understanding into an optimization
objective for motion planning [24, 26, 34]. Dragan formalized the
distinction between purely optimizing for expected intent versus
acting to be interpreted as predictability versus legibility. Though
generating distinct optima for motion, these two objectives mostly
align [43] explaining the appeal of imitative approaches like LFD.

This inference-based principle promises to generalize to a va-
riety of morphologies and applications, such as self-driving vehi-
cles [12]. However, this generalization to dynamic control is rare
amongst prior art (both amongst inference-based [24, 26, 34] and
general understandable motion [14, 46]). The only prior work on
applying legibility optimization to nonlinear dynamics [12] em-
phasized that the algorithm lacked the efficiency to run online.
Mixing the belief-space dynamics of the inference objective with
the non-holonomic dynamics of continuous control often stymies
low-level communicative motion.

This chapter derives a simplified equivalent metric to legibility
that is in the identical complexity class as the uncommunicative
task. That is, optimizing the communicative motion problem re-
quires no extra complexity over the barebones task.

2 Reading purpose into non-human objects seems to be an instinctual reflex for
humans, as our inherited myths are teeming with personalities and motives
for everything from trees to rivers to the sun itself.
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6.1.2 Contributions and Outline

The main contribution of this work is the simplified legibility for-
mulation that will be laid out in this chapter. Along the way,
a more powerful hypothesis class for modeling “intent” is intro-
duced in Section 6.3. This broader class opens the door to com-
municating more than just endpoints which we will explore in
Chapter 7.

6.2 MATHEMAT ICAL BACKGROUND

The robotic motion problem is to select actions 𝑢 from the set of
available choices 𝑈 = ℝ𝑛𝑢 to steer the evolving state 𝑥 in the
state space 𝑋 = ℝ𝑛𝑥. The actions influence the state through the
dynamic difference equation:

𝑥(𝑡 + 1) = ̄𝑓 (𝑥(𝑡), 𝑢(𝑡)), ∀𝑡 ∈ [0, 1, ⋯ , 𝑇] (6.1)

for discrete-time systems or through the dynamics differential
equation:

̇𝑥(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡)), ∀𝑡 ∈ [0, 𝑇) (6.2)

for continuous time systems. For these differently timed dy-
namics, the time-indexing set ([0, 1, ⋯ , 𝑇] ⊂ ℤ or [0, 𝑇) ⊂ ℝ)
is called the time horizon 𝒯 with 𝑇 being the final time. Let 𝒳
be the set of functions 𝑥(⋅) ∶ 𝒯 → 𝑋 and 𝒰 be the set of functions
𝑢(⋅) ∶ 𝒯 → 𝑈.

Aside: For the rest of this chapter, we will focus on the continuous-
time case but the mathematics will apply straightforwardly to
discretely-indexed functions. Similarly we focus attention on con-
tinuous state and action spaces, but the contributions can be re-
derived for discrete state or action spaces with some change in
notation.

Actions can be chosen following a variety of paradigms. This
chapter follows the optimization-based paradigm for reflecting
goal-driven “intelligent” behavior. Here possible action choices,
along with their resultant state trajectories starting from some
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given initial state 𝑥(0) = 𝑥0, are ranked by some objective func-
tion 𝐽(𝑥(⋅), 𝑢(⋅)). Often these objectives are time-decomposable
and so can be broken into a running cost 𝐿(𝑥(𝑡), 𝑢(𝑡)) and termi-
nal cost 𝜙(𝑥(𝑇)) as:

𝐽(𝑥(⋅), 𝑢(⋅)) = 𝜙(𝑥(𝑇)) + ∫
𝑇

0 𝐿(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏 (6.3)

The goal is to choose the actions to achieve an extremum of
this objective function (a minimum when 𝐽 is considered a cost
or a maximum when 𝐽 is considered a reward). This is notated
mathematically:

min
𝑢(⋅)

𝐽(𝑥(⋅), 𝑢(⋅))

subject to
̇𝑥(𝑡) = 𝑓 (𝑥, 𝑢, 𝑡) ∀𝑡 ∈ 𝒯

𝑥(0) = 𝑥0 (6.4)

Algorithms focused on planning the path abstract the problem
by allowing the agent to directly choose states 𝑥. This configura-
tion is equivalent to setting the action space equal to the state
space 𝑈 = 𝑋 and setting

𝑓 (𝑥, 𝑢, 𝑡) = 𝑢 (6.5)

which is a linear, fully controllable dynamic system making it
simple to optimize. Applied systems rarely have this luxury, but
sacrificing dynamic feasibility is often made in order to tackle
more complex objectives, like in joint task-and-motion planning or
for non-convex human-factors objectives (like in [46]). This work
will simplify the legibility metric enough that it can be optimized
with respect to even nonlinear dynamics.

For notational concision and to focus on the actual decision vari-
able 𝑢(⋅), we will combine the cost function 𝐽(𝑥(⋅), 𝑢(⋅)) with the
constraints ̇𝑥(𝑡) = 𝑓 (𝑥, 𝑢, 𝑡) ∀𝑡 ∈ 𝒯 and 𝑥(0) = 𝑥0

ℋ𝐽(𝑢(⋅)) = 𝐽(𝜌(𝑢(⋅), 𝑥0), 𝑢(⋅)), (6.6)
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using the unique solution map 𝜌(𝑢(⋅), 𝑥0) (that exists from the
Picard-Lindelof theorem). We will narrow 𝒰 to the set of piece-
wise continuous functions and require that the dynamics 𝑓 (𝑥, 𝑢, 𝑡)
are Lipschitz continuous in state 𝑥, continuous in 𝑢 and piecewise
continuous in 𝑡.

6.3 E XTERNAL OBSERVER MODEL ING

Traditionally, when animating a robot using optimal control, the
robotic agent optimizes its behavior to concord with some agenda
𝐽(𝑥(⋅), 𝑢(⋅)) (e.g. merge onto a highway without collisions). Yet
optimizing just a task objective ignores the needs of external ob-
servers working around the robot. Robots do not operate in an
informational vacuum. As robots start working in human-spaces,
these other agents will observe and interpret the robot’s motion
to understand their behavior. In this work, we are particularly
interested in how humans understand the robot’s intended goals.
These can be encoded as optimization parameters. So the human’s
interpretation is deciding between hypothesized optimization prob-
lems that might be generating the robot’s behavior. These opti-
mizations can be summarized by a metric ℋ𝐽𝑖(𝑢(⋅)) correspond-
ing to hypothesis 𝐻𝑖. This chapter focuses on binary hypothesis
testing: the human is deciding between a default case 𝐻0 and an
alternative 𝐻1. Multiple hypothesis testing can be performed as
iterated binary hypothesis testing with corrections (e.g. Bon Fer-
roni), but this problem is left for future work.

Following the hypothesis testing framework, we assume there
is a null hypothesis that the observer will default to believing and
an alternative hypothesis that describes the true characteristic
of our robotic agent. These could be some essential binary (e.g.
safe/unsafe) or a choice between two options (reaching for the left
object or the right one). Applications like these are explored fur-
ther in Chapter 7.

For any binary hypotheses, the uniformly most powerful test
that an observer can use to judge the robot’s performance is a
Likelihood Ratio Test:
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if Λ(𝑢(⋅)) ≤ 𝜂 , rejects 𝐻0
if Λ(𝑢(⋅)) > 𝜂 , fails to reject 𝐻0

where the deciding factor is the ratio between the probability
of observing the robot’s choices given the different hypotheses
𝑃(𝑢(⋅)|𝐻𝑖):

Λ(𝑢(⋅)) ≔ 𝑃(𝑢(⋅)|𝐻0)
𝑃(𝑢(⋅)|𝐻1) (6.7)

Following cognitive scientific models such as [45, 48], we formu-
late the hypothesized likelihood of observing a performed motion
as an exponential distribution with cost as the sufficient statistic:

𝑃(𝑢(⋅)|𝐻𝑖) ∝ 𝑒−ℋ𝐽𝑖(𝑢(⋅))

𝑍𝑖
(6.8)

This distribution models the human observer as expecting op-
timal behavior (according to their hypothesized ℋ𝐽𝑖), but leav-
ing sub-optimal behaviors as possible due to their inconfidence in
ℋ𝐽𝑖 [48, 83]. This distribution is referred to as the “Boltzmann
distribution” by analogy to the statistical mechanical equilibrium
distribution where the negative cost function is interpreted as the
energy.

This Boltzmann distribution was used in the prior state-of-the-
art [24], but required calculating the normalization constant 𝑍𝑖.
This requires integrating over all possible time-varying controllers:

𝑃(𝑢(⋅)|𝐻𝑖) = 𝑒−ℋ𝐽𝑖(𝑢(⋅))

𝑍𝑖

= 𝑒−ℋ𝐽𝑖(𝑢(⋅))

∫𝑢(⋅) 𝑒−ℋ𝐽𝑖(𝑢(⋅))𝑑𝑢(⋅)
(6.9)

Unfortunately, this is an infinite dimensional space. Dragan
and Srinivasa sidestepped this Sisyphean task by approximating
it instead by fully solving for the optimal cost-to-go in the con-
trol problem. For their focus on unconstrained planning problems
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with quadratic costs, this could be done in closed form. Unfortu-
nately, when working with nonlinear dynamics, the problem can
no longer be solved analytically.

In the next section we will introduce an equivalent optimization
problem that does not require calculating the partition function 𝑍𝑖
at all.

6.4 OP T I M I Z ING CONTROL S FOR INFORMAT IVENESS

The model of human action interpretation in Section 6.3 classifies
some actions as evidence for the null hypothesis and others as
evidence for the alternative. Our robot can optimize its chosen
actions to ensure it evidences the correct alternative:

Lemma 6.4.1. For every likelihood ratio testing observer, the con-
trol that optimizes:

min
𝑢(⋅)

Λ(𝑢(⋅)) = min
𝑢(⋅)

𝑃(𝑢(⋅)|𝐻0)
𝑃(𝑢(⋅)|𝐻1) (6.10)

is guaranteed to be evidence to reject the null hypothesis for every
obsever with non-empty rejection region:

𝑅𝑁𝑃 = {𝑥 ∶ Λ(𝑢(⋅)) = 𝑃(𝑢(⋅)|𝐻0)
𝑃(𝑢(⋅)|𝐻1) ≤ 𝜂} ≠ ∅ (6.11)

Proof of Lemma 6.4.1. From the assumed property (6.11) there
exists an 𝑢𝑟(⋅) ∈ 𝑅𝑁𝑃 that, by definition, satisfies:

Λ(𝑢𝑟(⋅)) ≤ 𝜂

Yet this 𝑢𝑟(⋅) cannot have smaller Λ(𝑢(⋅)) than 𝑢∗(⋅) since 𝑢∗(⋅)
optimizes Λ. Indeed,

Λ(𝑢∗(⋅)) ≤ Λ(𝑢𝑟(⋅)) ≤ 𝜂

Therefore the optimizer is in the rejection region for any testing
value of 𝜂.

■

This optimization turns out to have a simple form in terms of
the hypotheses’ costs:
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Theorem 6.4.2 (Simplified Equivalent of Maximizing Self-Evi-
dence). The problem of maximizing the observer’s likelihood ratio
in favor of the alternative hypothesis:

min
𝑢(⋅)

Λ(𝑢(⋅)) = min
𝑢(⋅)

𝑃(𝑢(⋅)|𝐻0)
𝑃(𝑢(⋅)|𝐻1) (6.12)

has the same optima as:

min
𝑢(⋅)

ℋ𝐽1(𝑢(⋅)) − ℋ𝐽0(𝑢(⋅)) (6.13)

Call this equivalent objective:

𝐿(𝑢(⋅)) ≔ ℋ𝐽1(𝑢(⋅)) − ℋ𝐽0(𝑢(⋅))

Proof of Theorem 6.4.2.

min
𝑢(⋅)

Λ(𝑢(⋅)) = min
𝑢(⋅)

𝑃(𝑢(⋅)|𝐻0)
𝑃(𝑢(⋅)|𝐻1)

= min
𝑢(⋅)

𝑒
−ℋ𝐽0

(𝑢(⋅))

𝑍0

𝑒
−ℋ𝐽1

(𝑢(⋅))

𝑍1

= min
𝑢(⋅)

𝑍1
𝑍0

𝑒−ℋ𝐽0(𝑢(⋅))

𝑒−ℋ𝐽1(𝑢(⋅))

= min
𝑢(⋅)

𝑍1
𝑍0

𝑒−ℋ𝐽0(𝑢(⋅))+ℋ𝐽1(𝑢(⋅))

An objective can be composed with any non-decreasing func-
tion and have equivalent optima. Since the partitions 𝑍𝑖 are non-
negative and the logarithm is non-decreasing we can compose an
equivalent objective as:

𝐿(𝑢(⋅)) ≔ log(𝑍0
𝑍1

Λ(𝑢(⋅)))

= log(𝑍0
𝑍1

𝑍1
𝑍0

𝑒−ℋ𝐽0(𝑢(⋅))+ℋ𝐽1(𝑢(⋅)))

= log(𝑒−ℋ𝐽0(𝑢(⋅))+ℋ𝐽1(𝑢(⋅)))
= −ℋ𝐽0(𝑢(⋅)) + ℋ𝐽1(𝑢(⋅))
= ℋ𝐽1(𝑢(⋅)) − ℋ𝐽0(𝑢(⋅)) (6.14)

■
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Therefore the equivalent objective 𝐿(𝑢(⋅)) defined in Equation
6.14 can be used instead of the likelihood ratio, thereby avoiding
calculating partition functions 𝑍𝑖. This goal can be understood
as aiming to improve the alternative hypothesis’ cost while per-
forming worse at the null hypothesis’ cost. The simple linearity
of Equation 6.14 makes informative control as tractable as the
original optimization:

Corollary 6.4.2.1 (Time Complexity of Theorem 6.4.2’s objective).
For any gradient-based control optimization method, finding the
optima of the likelihood ratio inherits the order of time-complexity
from the original (non-communicative) optimizations in equation
(6.4) (whichever has higher time-complexity) .

Proof of Corollary 6.4.2.1. The optima of the likelihood ratio can
be found as the optima of Equation 6.14. Because of the linear
form of Equation 6.14, all queries to the objective function and
its derivatives must only query the two hypotheses’ respective
lookups and combine them. Therefore the computational complex-
ity of each iteration will be at most the sum of the two hypotheses’
complexities. Thus they will share the same growth-rate/order of
time-complexity.

■

The hypotheses’ rewards are combined linearly with equal weights
in Theorem 6.4.2. However, if the designer desires the robot to
not only optimally communicate but also optimize the original re-
ward, more weight on the 𝐻1 term can be added in:

min
𝑢(⋅)

𝐿(𝑢(⋅)) + 𝛼ℋ𝐽1(𝑢(⋅))

= min
𝑢(⋅)

(1 + 𝛼)ℋ𝐽1(𝑢(⋅)) − ℋ𝐽0(𝑢(⋅)) (6.15)

This weight 𝛼 could be interpreted formally as a Lagrange mul-
tiplier on a sub-optimality bound as suggested in Section VI of
[24]. This relative weighting between the original optimization
and the informativeness objective can be dynamically shifted to
create another desirable property: anticipativeness.
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 optimizerH0  optimizerH1

 optimizerΛ

X X

X

Y

Figure 6.2: Optimized paths through x-y space reaching for either the
leftwards destination (𝐻0�) or the rightwards destination
(𝐻1�). The anticipative trajectory (in green) that optimizes
Λ leads rightwards early; as opposed to the non-anticipative
trajectories (in gray) which indicate much more slowly. The
𝐻1 trajectory takes three times longer to move rightwards
to 𝑥 = 2

6.5 ANT IC I PAT ION THROUGH RECED ING HOR I ZON CONTROL

Previous work emphasized the importance of communicating in-
tent earlier in the motion. Gielniak and Thomaz [28] promoted
the concept of “anticipativeness” and tweaked motions to express
salient gestures earlier on in the time horizon.

Dragan and Srinivasa [24] incorporated this concept of antic-
ipativeness by ensuring that unfinished viewings of the motion
plan would also push the Bayesian observer towards the correct
conclusion. They formulated this early expressiveness by optimiz-
ing for all incomplete viewings on time horizons [0, 𝑡] for 𝑡 ∈
[0, 𝑇] simultaneously. They chose to combine these multiple sub-
objectives through a weighted linear combination:

∫
𝑇

𝑡=0(𝑇 − 𝑡)𝑃(𝐻1|𝑢(0 ∶ 𝑡))𝑑𝑡
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This sum of probabilities again requires weighting by the nor-
malizing partition constants. Instead, an equivalent prioritiza-
tion of communication for earlier actions can be accomplished
through receding horizon control. For earlier horizons more weight
can be placed on informativeness through lower 𝛼 in Equation
6.15. As we approach the final horizons, we can gradually shift
more 𝛼-weight to prioritizing the original task.

Concretely, let the problem be replanned at times ̄𝑡0, ̄𝑡1, ⋯ ̄𝑡𝑀.
Let 𝛼(𝑡) be some increasing function of time that will prioritize
efficiency over communicativeness in later replanning horizons.
Let �̄�𝑖(⋅) be the optimal controls from one of 𝑀 optimization prob-
lems on horizons [ ̄𝑡𝑖, 𝑇)

�̄�𝑖 = arg min
𝑢(⋅)

(𝛼( ̄𝑡𝑖) + 1)ℋ𝐽1(𝑢(⋅)) − ℋ𝐽0(𝑢(⋅)) (6.16)

The robot will follow the controls from �̄�𝑖(⋅) for all times ̄𝑡𝑖 ≤
𝑡 < ̄𝑡𝑖+1.

Whereas the original path planning problem would have been
too expensive to replan, the streamlined objective in Theorem
6.4.2 is tractable enough to replan online. In fact, for the prob-
lem in Dragan and Srinivasa [24] it becomes a Linear Quadratic
Regulator (LQR). This is because they use the path-planning ap-
proximation of Equation (6.5) for the dynamics and a quadratic
penalty:

𝐽𝑖(𝑥(⋅), 𝑢(⋅)) = ‖𝑥(𝑇) − 𝑔𝑖‖2
2 + ∫

𝑇
0 ‖𝑢(𝑡)‖2

2𝑑𝑡 (6.17)

where 𝑔𝑖 was one of two goals the robot could be reaching to
grab.

This receding horizon anticipation optimization was used to
recreate Dragan and Srinivasa’s [24] exaggerated arcing path
plans, as seen in Figure 6.2. Unlike that method, the solutions
could be found analytically thanks to the streamlined objectives
of Equation (6.13) leaving the LQR structure intact.

The above result focuses entirely on differentiating between the
true concept and the distractor hypothesis. This can be useful in
cases where there are two clear hypotheses (e.g. left or right, safe
or unsafe, ignorant or corrected). If there are multiple distractor
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informative ( ) 
optimizer for 

far left 
reaching

Λ1 informative ( ) 
optimizer for 

far right 
reaching

Λ5

X

Y

Figure 6.3: Paths through x-y space each optimized to evidence one of
five reaching targets reaching. The anticipative trajectories
for the far ends Λ1 and Λ5 each exaggerate motion out in
their respective direction. Meanwhile the anticipative tra-
jectories for the interior goals (Λ2, Λ3, and Λ4) have their
exaggeration hemmed in, instead anticipating via a sharp
juke early and then straight shooting to the goal after align-
ment.

hypotheses 𝐻0,𝑖 for 𝑖 ∈ [1, 𝑁], informativeness could be encoded
as constraints ensuring correct decisions along each pair:

min𝑢 𝐻1(𝑢)
subject to 𝐻1 − 𝐻0,1 ≤ 𝜂1

𝐻1 − 𝐻0,2 ≤ 𝜂2
⋮

𝐻1 − 𝐻0,𝑁 ≤ 𝜂𝑁
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This approach still optimizes the original objective while bound-
ing the confusion on each pairwise hypothesis test between the
truth and a distractor. Figure 6.3 demonstrates this optimization
for five different true objectives 𝐻1 corresponding to five different
reach targets.

A Lagrangian analysis reveals that this multi-objective opti-
mization will still reduce into a linear combination of the hypothe-
ses’ objectives as in the binary hypothesis case. Indeed, inspection
of Dragan’s gradient derivations in Equation 11 of [24] shows this
underlying linear structure but required the coefficients be calcu-
lated explicitly via solving for the optimal cost-to-go over multiple
horizons. Their fixation on optimizing for multiple horizons simul-
taneously obfuscated the intuitive structure from the linear com-
bination: that evidencing the true objective from the distractors
just requires performing well on the true objective and poorly on
the distractors.

6.6 PRED ICTAB I L I T Y VERSUS LEG IB I L I T Y D I SCUSS ION

Section 6.4 proved the interchangeability of motion communica-
tiveness with the streamlined objective 𝐿(𝑢(⋅)) along with time-
complexity and outcome guarantees. The linear structure of 𝐿(𝑢(⋅))
also clarifies a disagreement in the literature on the relation of
“predictability” and “legibility”. Dragan and Srinivasa [24] em-
phasized the distinction between “predictability”, defined as op-
timizing expectedness given the task 𝐻1(𝑢(⋅)), and “legibility”,
defined as optimizing making the task clear which in our binary
hypothesis setting is Λ(𝑢(⋅)). Crucially they state in [22]:

“Predictability and legibility are fundamentally differ-
ent and often contradictory properties of motion.”

Lichtenthaler and Kirsch questioned this contradictoriness and
concluded that “the two factors are coherent” [43].

Our work clarifies the exact relation between “predictability”
𝐻1(𝑢(⋅)) and “legibility” Λ(𝑢(⋅)) through the simplified relation
stated in Theorem 6.4.2. By reformulating the legibility problem
from Λ(𝑢(⋅)) into the equivalent, simplified linear combination
𝐿(𝑢(⋅)) in Eq. 6.13, we can state the difference between predictabil-
ity and legibility quite simply: legibility 𝐿(𝑢(⋅)) increases lin-
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early with predictability 𝐻1(𝑢(⋅)), meaning they are indeed co-
herent and typically correlated as [43] asserts, while also having
an uncorrelated term (equal to adding in −𝐻0(𝑢(⋅))) that will
cause the legibility optimizers to be fundamentally different from
predictability optimizers.

6.7 SUMMARY

Prior art in communicative motion shifted motion planning away
from the view that the robot is in an informational vacuum. In-
stead, the motion is observed and interpreted to infer latent in-
tents. This view shifts the centering from machine performance
to its impact on the human-machine collaboration.

And taking the human-centered perspective does not need to be
costly. The derivations in this chapter showed how moving com-
municatively can be done for practically no extra computational
cost. We were able to achieve this by removing the fixation on op-
timizing for multiple observation windows simultaneously that
bloated Dragan’s algorithm [24]. By focusing on a simple hypoth-
esis testing framework we revealed the intuitive linear combina-
tion structure of evidential motion. From first principles of cogni-
tive scientific models3 we rigorously derived the simple intuition
that communicating one task hypothesis over another simply re-
quires performing well by the first and poorly on the other.

This chapter’s approach to evidential motion was able to recre-
ate the desirable properties identified by previous work [24, 28]
through a more efficient objective. We will see in the next chap-
ter how this simplicity will allow for easy extension to broader
messages and optimization structures including true control.

3 such as Baker [7] or Jara-Ettinger [36]’s “naive utility calculus” for action un-
derstanding
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The previous chapter introduced the hypothesis testing model
to streamline communicative motion optimization. This simpli-
fied framework makes it straightforward to extend the communi-
cated payload from end-state goals to broader classes of “intent”.
We expand the definition of “intent” to include any parameter of
the optimal control problem, thereby opening the door to extend
communications to running preferences or even hard capabili-
ties or safety constraints. Beyond replicating previous art with
greater efficiency, the legible model predictive control (LMPC) al-
gorithm can solve entirely new problems. We can now commu-
nicate back full understandings of corrected task specifications
during value alignment interactions as in those proposed by Jain
[35] or Bajcsy [5], closing the loop for robots to dialog with users
about their preferences.

Of particular interest to our goal of mutual understanding for
safety, is to share understandings of the constraints learned by
methods like those in Part i. Choosing actions to provide evidence
of safety well ahead of critical response times1 assuages concerns
and empowers humans to plan on the machine’s safety compli-
ance.

7.1 R E SPONS IVENESS T O UPDATES

The previous chapter extended the expressible payload from just
end-points (as in Dragan and Srinivasa [24]) to include the dy-

This chapter is an adaptation of “An Efficient Understandability Objective for
Dynamic Optimal Control” [49] written in collaboration with S. Shankar Sas-
try

1 cf. Chapter 5
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ignorant ( ) 
optimizer

H0

corrected ( ) optimizerH1

confirmatory ( ) optimizerΛ

X

X

Y

Figure 7.1: Optimized paths in x-y space: After the instructor corrects
the robot to avoid the red region around the origin, the robot
must demonstrate its new understanding. The dark path is
the optimum pre-correction 𝐻0 (from Equation 7.1), the gray
path is the optimum post-correction 𝐻1 (from Equation 7.2),
and the green path is the optimum for informing the correc-
tor of the successful correction Λ; all here with 𝑔 = [2, −2]𝑇 ,
𝑎1 = 40, 𝑎2 = 25, 𝑎3 = 1.

namic cost and constraints as well. This opens the door to commu-
nicate differences in running costs as in [34] but through commu-
nicative motion instead of scenario generation. This could help
improve in-task teaching (like the physical in-task value align-
ment in [5]) by confirming whether the lesson was learned cor-
rectly, thereby completing the communication loop proposed in
[2]’s roadmap. Figure 7.1 takes the use case of [5] where the user
corrects the robot and adds a penalty on approaching the obstacle
at the origin:

𝐽0(𝑥(⋅), 𝑢(⋅)) = 𝑎1‖𝑥(𝑇) − 𝑔‖2
2 + ∫

𝑇
0 𝑎2‖𝑢(𝑡)‖2

2𝑑𝑡 (7.1)
𝐽1(𝑥(⋅), 𝑢(⋅)) = 𝑎1 ∗ ‖𝑥(𝑇) − 𝑔‖2

2

+ ∫
𝑇

0 𝑎2‖𝑢(𝑡)‖2
2 − 𝑎3‖𝑥(𝑡)‖2

2𝑑𝑡 (7.2)

By accentuating the alternative hypothesis 𝐻1 over the null
hypothesis 𝐻0 the robot clarifies whether or not it’s understood
the correction. If the human likes the robot’s understanding of 𝐽1
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they can rest easy. If they find the new behavior still unsatisfac-
tory, they are now informed to know what else must be added.

7.2 EV IDENT SAF ET Y FOR NONL INEAR S YSTEMS

X

ignorant ( ) 
optimizer

H0

avoidant ( ) 
optimizer

H1

informative ( ) optimizerΛ

Figure 7.2: The informative control optimization can even apply to non-
linear dynamics. After adding a quadratic penalty to near-
ing state [2, −2]𝑇 , the avoidant optimum to �𝐻1 (in gray)
indeed has a farther integral than the ignorant optimum to
�𝐻0 (in black), but the path still looks qualitatively the same.
In contrast, the informative optimizer to Λ makes its avoid-
ance obvious. Here 𝑔 = [2, −1]𝑇 , ℎ = [−2, 2]𝑇 , 𝑎1 = 800,
𝑎2 = 10, 𝑎3 = 2.

In communicating full optimizations rather than just endpoints
we can now communicate running tasks such as obstacle avoid-
ance. Following a potential field approach [59], we could encode
the constraints identified in previous chapters with a repellent
cost around the blocked states.

The null hypothesis minimizes the control effort added to the
final distance from the goal 𝑥 − 𝑦 point 𝑔 = [2, −1] (it is agnostic
to angle), while the alternative hypothesis also quadratically pe-
nalizes proximity to an undesirable 𝑥 − 𝑦 position at 𝑎 = [−2, 2]:
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𝐽0(𝑥(⋅), 𝑢(⋅)) = 𝑎1‖𝑃𝑥(𝑇) − 𝑔‖2
2 + ∫

𝑇
0 𝑎2‖𝑢(𝑡)‖2

2𝑑𝑡 (7.3)
𝐽1(𝑥(⋅), 𝑢(⋅)) = 𝑎1‖𝑃𝑥(𝑇) − 𝑔‖2

2

+ ∫
𝑇

0 𝑎2‖𝑢(𝑡)‖2
2 − 𝑎3‖𝑃𝑥(𝑡) − ℎ‖2

2𝑑𝑡 (7.4)

where 𝑃 is the projection from the three dimensional state of
planar position and angle down only to planar position:

𝑃 = ⎛⎜
⎝

1 0 0
0 1 0

⎞⎟
⎠

Not only does the reformulation in Chapter 6 allow communi-
cating differences in running costs, it is also built to apply to sys-
tems with running dynamic constraints. And the new formulation
in Equation 6.14 is lightweight enough to be tractable for the nu-
merical methods often necessary for nonlinear optimal control.

This capacity is demonstrated in Figure 7.2 for the following
example non-holonomic dynamical control problem. The stream-
lined objective in Equation 6.14 can be optimized for nonlinear dy-
namics using established nonlinear control frameworks, for exam-
ple the iterative Linear Quadratic Regulator approach [73][72].
Consider the three dimensional Dubins vehicle with constant ve-
locity 𝑣 = 3:

𝑑
𝑑𝑡𝑥(𝑡) =

⎛⎜⎜⎜⎜⎜
⎝

𝑣 cos(𝑥3(𝑡))
𝑣 sin(𝑥3(𝑡))

𝑢(𝑡)

⎞⎟⎟⎟⎟⎟
⎠

(7.5)

7.3 D I SCUSS ION

By viewing motion not only as needing to be safe but also dou-
bling as evidence for an external validator to observe, we were
able to generate motion that anticipates safety well ahead of time
(as seen in Figure 7.2). This improves over the the avoidance al-
gorithms in Chapter 5 that only demonstrated safety exactly on
the human’s critical decision boundary. This inability to assuage
concerns ahead of the point when humans needed to make deci-
sions caused the robot’s to still trigger some false positives. Now
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by considering the informativeness of their motions, robots can
address supervisor’s concerns ahead of time while still balancing
efficiency.

We streamlined the “legible” control problem to be on the exact
same order of complexity as the original (uncommunicative) con-
trol problems and demonstrated some communicative motions.
Opening communicative motion to new optimization frameworks
and new applications also opens potentials for future research in
human modeling and communication.

7.3.1 Human Modeling

This work derived a simplified objective for choosing controls that
will communicate the robot’s task-intent. And every communica-
tion requires assuming how receivers will interpret the signals.
We have laid out our assumed model based on the receiver testing
optimally (i.e. uniformly most powerfully) with respect to binary
Boltzmann hypotheses. Which in turn are optimal distributions
around a known characteristic reward function with random hid-
den preferences [48, 83]. Yet this is not the only tenable receiver
model.

There is a rich space of alternative decision models for human
observers. In particular, humans rarely have infinite computa-
tion resources to judge and so will likely use heuristics (e.g. trun-
cated cost-to-gos on their time horizon judgements, or not con-
sider alternative outcomes fully and clip the infinite support of
the Boltzmann distribution Equation 6.8). And even with infi-
nite computational resources, decisions may be skewed by risk-
averseness (like in [61]) if their decision has tangible outcomes
(e.g. whether or not to trust an oncoming autonomous vehicle
with their safety).

7.3.2 Communication Extensions

Casting the hypotheses as differentiating between full optimal
control tasks allowed us to communicate about more than just
endpoint states. For example, when users issue a new command
to their robot, the robot’s should express their understanding of
the new goal. In Bajcsy and Losey’s conception [5], physical cor-
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rections should be interpreted as updates to the robot’s running
reward function. These requests for better value alignment can
be transparently respected by contrasting the old task’s optimiza-
tion with the corrected task’s formulation. Future work should ex-
plore what cognitive phenomena arise in how users perceive and
plan around systems that communicate reception of their inputs.

Generalizing the hypotheses from destinations to full optimal
control problems also opens the possibility of communicating what
constraints the robot is bound to through motion. This frame-
work can provide a new perspective on communicating capabil-
ity as Kwon et al. prompted in [41]. This constraint communica-
tion could also be used to inform a supervisor whether or not the
robot is obeying safety rules. The hard evidence of performed mo-
tion may be a uniquely suited communication channel to debug
system failures; as the old adage goes “actions speak louder than
words”. For constraint communicating to work, future work must
develop what it means to subtract reward-hypotheses that don’t
share the same support. After deriving, we can explore cognitive
phenomena on safety-critical judgement (such as risk-sensitivity
[61]).

7.4 SUMMARY

The more efficient objective derived in the last chapter let us com-
municate dynamic properties rapidly in control, unlocking more
complex systems such as the illustrative Dubins car. Further-
more, by extending prior art in optimization-based communica-
tive motion by broadening the subject to be conveyed from end-
point goals (as in [24, 26]) to full optimal control problems, we can
express dynamic properties such as ongoing safety (illustrated
with a obstacle avoidance cost function as promoted by the “elas-
tic bands” [59] or potential field approaches [79]).

The more efficient hypothesis testing model for communicative
motion was able to extend anticipation and exaggeration to [24,
28] across optimal control frameworks like LQR, Iterative Linear
Quadratic Regulation (iLQR), and MPC. Though simplified mod-
els of intelligent behavior like these may sacrifice some detailing
features (in this chapter’s case, neglecting the Bayesian view de-
creases the ability to model observers’ prior beliefs), the detail is
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traded for tractability that enables more powerful algorithms to
simply integrate the findings. Though not demonstrated here, we
contend that control approaches ranging from dynamic program-
ming to deep reinforcement learning approaches can all shift to
choosing communicativeness with this simple difference objective.
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8
L O O K I N G F O R WA R D

Mutual understanding is the foundation of solid collaboration,
yet our autonomous agents’ inner workings are scarcely under-
stood by their users. These users’ understandings are constructed
from observing machine behavior, so that autonomous behavior
could be optimized to inform collaborators of key planning pa-
rameters. Yet knowing what information the human needs re-
quires understanding how they perceive and reason. This the-
sis’ research equips robots with cognitive models to contribute to
group learning and activity. Looking forward, we foresee future
research programs that can design machines to data-efficiently
model human cognition across applications. With these cognition
models, autonomous agents can adapt optimization choices to in-
form humans how to work with our machines.

DIRECTION 1:
ROBOTS LEARN MODELS OF HUMAN ACTION

DIRECTION 2:
HUMANS LEARN MODELS OF ROBOT ACTION

MUTUAL 
UNDERSTANDING
COLLABORATION

Figure 8.1: The two thrusts of mutual action understanding needed for
human-AI-machine collaboration: machine learning models
of human activity and human learning models of robot activ-
ity. Together these thrusts collaborate to create a virtuous
cycle; if our robots understand human learning processes
then we can optimize actions to support that learning.
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Figure 8.2: Observing human driving behavior on one-tenth scale vehi-
cle in motion-capture track for the Robot Autonomous Rac-
ing (ROAR) project for constraint inference research as in
Chapter 2

8.1 M ACH INE LEARN ING MODEL S OF HUMAN BEHAV IOR

Insofar as artificial intelligence algorithms are intelligent they
can double as approximations1 to sketch human intelligence. With
these approximations in hand, machines can now consider how
humans think, perceive, and make decisions. That is to say, ma-
chines can be considerate. For example, Chapter 4 used the math-
ematics of formal safety guarantees to model human supervisory
behavior which reduced the number of false alarms our robots
generated. Powerful tools from machine learning and AI optimiza-
tion can become mathematical representations of cognition; for-
malisms as varied as random utility models from econometrics2

to likelihood threshold testing from communications theory3 all
form the language for our machines to understand humanity. These
parsimonious cognition models are data-efficient enough to adapt
online to each unique users’ needs4, resulting in artificial intelli-
gence behavior that ergonomically conforms to each individuals’
cognition.

1 Importantly we contend that these models are useful for rough forecasts in-
stead of underlying the true neural structure of human thought. It is unlikely
humans solve computations to think. Yet letting computers respond to compu-
tational models of humans can still generate considerate behavior.

2 cf. Chapter 2
3 cf. Chapter 6
4 cf. Chapter 4
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In Chapter 2 we saw how optimal choice models could be in-
verted to explain expert avoidance. As urban planners test novel
designs for sharing the streets, driving behavior will adapt slowly
due to unfamiliarity or resistance. Vehicle movement data reveals
how drivers are responding to street design interventions like pro-
tected bike lanes or pedestrian yielding. We can quantify what pri-
orities and constraints drive motorists’ behavior through inverse
optimal control [67]. Inferring these constraints on motorists’ be-
havior can quantitatively describe how citizens understand new
rules and how many follow them.

Modeling human needs can also augment clinical diagnostics
with quantifiable interpretations. In collaboration with UCSF’s
Musculoskeletal Research Consortium, we are translating these
models to examine neurological recovery through motion data.
Current practice in clinical assessments of post-stroke movement
recovery are confounded by changes in strength and patients’ com-
pensation strategies. Research developments are providing mea-
sures and insight on the movement smoothness but stops short
of examining how the observed movements are linked to underly-
ing changes in multi-joint motor control. Our statistical models
can explain movement stereotypes dynamically and can be gen-
erated from smaller datasets enabling them to be integrated into
clinical practice. If successful, this work can improve the under-
lying models of motor recovery as well as tracking and treatment
in the hospital and clinic. Human modeling will support doctors’
diagnostics with explicable machine learning and parsimonious
models.

8.2 IN FORM ING HUMAN LEARN ING OF MACH INE BEHAV IOR

With these learned models tailored to specific human behavior,
our robots and AI systems can optimize their performance to sup-
port human thinking. Chapter 5 demonstrated how just repli-
cating safety interventions learned from human supervisors can
preempt concerns and decrease false alarms. Chapter 6 showed
how optimizing motion against models of evidence-based valida-
tion can inform users of updated priorities or safety awareness.
We can extend communicative motion to support human under-
standing in our public infrastructure. Equipping these applica-
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tions with interpretations of human behavior provides some quan-
tifiable approaches to explore the idiosyncrasies of human judge-
ment.

Communicative motion research will increase fluent flow of traf-
fic for self-driving cars. Contemporary self-driving vehicles cause
accidents predominantly through being rear-ended or side-swiped.
Far from being pure “human error”, these accidents are prompted
by uninterpretable autonomous motion and must be corrected by
optimizing motion that considers observers’ informational needs.
Future research in this area can optimize driving motion to evi-
dence braking to improve other motorists’ reaction times and de-
crease rear-end rates. Evidencing plans through motion is also
crucial for successful unprotected left turns: a major stall point
for autonomous driving. With models of how human perceive on-
going safety, we can quantify the informational value of behavior
like nosing into an intersection, enabling coordination needs to be
incorporated into motion planning alongside efficiency optimiza-
tion and safety guarantees. This traffic flow setting will allow us
to research the structure of how concepts like right-of-way can be
formally incorporated into our systems.

Beyond optimizing autonomous vehicles (AVs) to support safe
motorists, our AVs must also yield city streets to residents’ needs
for walking, wheelchairing, and bicycling. These more exposed
road users need dependable guarantees that our machines are
mindful of their safety needs. It is critical that our vehicles not
only yield to humans but that humans can plan on that priority.
By modeling pedestrians’ safety concerns and fitting to their in-
ference idiosyncrasies, we can reliably help road users know they
are safe. Supporting human understanding in our shared public
places will guarantee there is always space for humans.

Studying this safety collaboration in the streets with evidence
thresholds like those exposited in Chapter 6 can let us investi-
gate the variance of wariness, anxiety, or trust across the public.
Expanding the safety judgement models from Chapter 5 or the ev-
idence gathering models from Chapter 6, we can explore cognitive
phenomena like prospect theory or recency bias through curbside
interactions.

By researching how humans come to understand machines’ ca-
pabilities and constraints, we can also advance how we teach tech-
nology to students. Active interaction with machines’ operations
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is already a cornerstone of engineering education through both
laboratories and design studios. With algorithms that generate
evidence for understanding machines like those in Chapter 6, ma-
chines can automatically generate informative demonstrations
for students’ inquiries. By introducing quantifiable statistics like
the evidence thresholds for hypothesis acceptance, we can inves-
tigate how students support hypotheses and how previous experi-
ence in related areas can transfer. Elaborating on these hypoth-
esis testing models, we can explore how students might discover
the need for new hypotheses and begin to inquire how these novel
explanations are invented. We can improve technology and engi-
neering education through AI that explicitly informs human un-
derstanding.

8.3 SU M MARY

Following from the mathematical models presented in this the-
sis, future research can nurture societal systems to support hu-
man understanding and agency across healthcare, transporta-
tion, and education.

• The struggles of patients recovering limb mobility will shed
light onto their specific blockages; in contrast to label-based
deep learning black-boxes, seeing patients as agents with a
few impediments produces parsimonious interpretations as
localized constraints. By using interpretable models, we can
partner with healthcare providers’ knowledge and increase
understanding altogether.

• Interactions at dangerous intersections can be grounded in
the perspectives and confusions of road-users, connecting
city planners to users’ needs through data. Entering into
that same ecosystem, robotic vehicles can consider other road-
users’ perceptions and work to improve their understanding
for smooth flow and assurance.

• Active learning for technology education can be amplified
through intelligent machines that generate evidence for stu-
dents’ inquiries.
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This thesis demonstrated how benefitting from human expertise
requires conforming to each person’s unique cognitive needs. From
Chapter 5, we see how each operator’s divergent thinking requires
distinct actions. And in Chapter 4 we saw how we could data-
efficiently conform to each individual thanks to the rich structure
borrowed from formal control verification. We exhort you, reader,
to continue leveraging the rich literature of intelligent control to
approximate human behavior in mathematical terms.

This modeling can statistically make sense of datasets on hu-
man behavior to inform decisions. These behavioral sketches in
computable terms will also equip algorithms with a “theory of
mind”. Once our machines understand the process, they can take
actions to support it. By considering human thinking, our dy-
namic safety-critical systems can take action to augment human
intelligence and decision-making. From Chapter 6 we saw how
straightforward it is to take action to inform human judgement.
Simply modeling how machine’s actions inform human thinking
in new applications can give improved joint decision-making for
little computational complexity. Consider what judgements users
in your system need to make, draw an analogy to how statis-
tics would make that judgement, and furnish what the algorithm
would need in their shoes: people need at least that much.

With the mechanisms of contemporary machine learning and
intelligent controllers, we can formulate cognitive scientific prin-
ciples into computable models. These empower robots to consider
human needs for understanding and decision-making and opti-
mize their own actions to support humanity’s learning. By sup-
porting understanding, our machines become usable and useful,
empowering human activity rather than replacing it.
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