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A B S T R A C T

Lighting contributes a significant portion to the overall energy consumption in an office building. It is thus
important to reduce the energy consumption of lighting systems especially for Net Zero Energy Buildings
(NZEB). Maximizing daylight harvesting can significantly increase the energy savings. With increase in demand
for satisfying occupant preferences in visual comfort, the need for personalized lighting in the office space is also
rising. In this paper, a novel lighting control system for Net Zero Energy Buildings (NZEB) is proposed which
models the lighting system using Artificial Neural Network (ANN) and utilizes this model with the Internal
Model Control (IMC) principle for controller design. Modeling the lighting system using ANN reduces the
challenge of modeling a large and complex system with inherent process variability without the need to analyze
extensive data-sets. The proposed ANN-IMC controller uses feedback from sensors on the task table to maintain
desired illuminance, is easy to tune with just one parameter and is robust to process variability. The proposed
control design is applicable to square systems where the number of lights and number of sensors are equal.
However, the proposed architecture can also be extended for controlling other lighting accessories such as roller
blinds. The performance of the proposed lighting control system to harvest the daylight effectively is demon-
strated using both simulation results and an experimental setup in test-bed environment. The versatility of the
proposed system will allow an operator to deploy personalized lighting in an office space.

1. Introduction

With energy consumption rising across the world, many countries
including Singapore have embarked on various green building concepts
for achieving sustainable growth. For instance, the ambitious target of
’The Inter-Ministerial Committee on Sustainable Development’ in
Singapore is to achieve 80% Green Mark Certification for all buildings
by the year 2030 [1]. Artificial lighting contributes a significant portion
(around 29%) in overall energy consumption in office buildings [2]. In
Singapore, the Green Mark Certification includes points for ’Use of
better efficient lighting to minimize energy consumption from lighting
usage while maintaining proper lighting level’ and ’Use of daylighting
and glare simulation analysis to verify the adequacy of ambient lighting
levels in all normally occupied areas'. Net Zero Energy Buildings
(NZEB) which include on-site renewable energy sources are also
brought to focus as part of sustainable growth in Singapore [3]. There
are various initiatives taken by the Building and Construction Authority

of Singapore for reducing the energy consumption of lighting systems
(as well as the overall energy consumption). The introduction of low-
powered LED lights and the use of low voltage DC distribution system
has increased the potential for higher energy savings due to a higher
system level efficiency as compared to AC distribution system [4]. This
is in addition to the energy savings that can be achieved from occu-
pancy detection and daylight harvesting [5]. Furthermore, the need for
having personalized lighting to increase the occupantsâ€™ comfort is
also becoming critical [6].

In this paper, a closed loop smart lighting control is proposed which
satisfies the personalized lighting levels of occupants while simulta-
neously harvesting daylight to reduce energy consumption. The lighting
control system design utilizes Artificial Neural Network based Internal
Model Controller (ANN-IMC) for controlling illuminance using feed-
back from sensors placed at the desk level and by manipulating the
ceiling lights and automatic roller blinds. Despite the advantages of the
ANN, a closed loop system using ANN for smart lighting has not been

https://doi.org/10.1016/j.buildenv.2018.05.005
Received 6 March 2018; Received in revised form 18 April 2018; Accepted 3 May 2018

∗ Corresponding author. 2.718-20, iTrust (Centre for Research in Cyber Security), Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.
E-mail address: nandha001@e.ntu.edu.sg (N.K. Kandasamy).

Building and Environment 139 (2018) 170–180

0360-1323/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03601323
https://www.elsevier.com/locate/buildenv
https://doi.org/10.1016/j.buildenv.2018.05.005
https://doi.org/10.1016/j.buildenv.2018.05.005
mailto:nandha001@e.ntu.edu.sg
https://doi.org/10.1016/j.buildenv.2018.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.buildenv.2018.05.005&domain=pdf


reported in any of the methods available in literature. Implementation
of a closed loop ANN based lighting control will eliminate the draw-
backs identified by the authors in Ref. [7]. The proposed controller was
implemented in a test-bed environment at the SinBerBEST laboratory in
BEARS (Berkeley Educational Alliance for Research in Singapore). The
experimental results from that implementation (presented in Section5)
demonstrate the performance of the proposed controller in harvesting
daylight effectively. The proposed controller also robustly maintains
the illuminance levels at the setpoint despite moderate changes in the
position of the sensors at the desks. The main contributions of the paper
are the presented novel ANN-IMC controller which can achieve dy-
namic personalized lighting in the office space with daylight har-
vesting, a unified architecture for controlling luminaires as well as
other auxiliaries such as blinds.

2. Related work

The use of artificial intelligence for lighting prediction and lighting
control in an office space is at least two decades old [8]. The simplicity,
versatility and ability to adapt to the changes have aided such systems
to remain useful. The authors in Ref. [9] have used ANN based in-
telligent lighting control with on-line learning for smart homes which
has the capability to adapt to the residents′ behavioral patterns. The
authors used â€˜learning event-actions of the resident related to
lighting adjustments to derive the ANN based intelligent control algo-
rithm. The authors have stated that the algorithm cannot be applied for
residents with conflicting behavior which prohibits its application to
office spaces. In Ref. [10], the authors proposed a method based on
ANN for satisfying the illumination preference of each office user on
their table. The method also minimized the overall energy consumption
of lighting system with distributed luminaires. The model presented
was holistic and scalable, and represented the complex interactions
between the intensity of each luminaires and the measured illuminance
on each table. However, the authors did not include daylight interac-
tion and daylight harvesting in the study. Based on the literature survey
conducted in Ref. [11], it was observed that building occupants prefer
natural over artificial light and that daylight achieved higher occupant
productivity. Hence, it is important to consider daylighting in any
lighting control system. The authors in Ref. [7] proposed a sensor less
control strategy based on ANN, however daylight harvesting was not
included as no closed loop control was involved. Furthermore, the de-
sired illuminance (lux) was considered uniform across all task tables in
Refs. [10] [7], which indicates that user preferences were not con-
sidered.

The authors of [12] developed an ANN model to represent the il-
luminance distribution in a room with different luminaires to estimate
the time-dependent energy loss in lighting systems. An experimental
survey on state-of the-art lighting control strategies, namely, Illumi-
nation Balancing Algorithm, Daylight and occupancy adaptive lighting,
Spectral optimization for polychromatic lighting and Hierarchical op-
timization for spectrally tunable LEDs was presented in Ref. [13]. The
authors concluded that each method has its own merits and drawbacks,
and that selecting a method should depend on the control problem and
application. A decision tree was presented to match a particular ap-
plication to an appropriate algorithm. It is to be noted that the method
proposed in this paper falls under the category of Daylight and occu-
pancy adaptive lighting. The application of artificial intelligence is not
just limited to office spaces and it has been used for public lighting as
well [14].

A Fuzzy logic controller for lighting comfort that also considered
daylighting was proposed in Ref. [15]. Simulation and experimental
results for various desired illuminance (lux) levels on the table and their
corresponding energy savings was presented. The results demonstrated
that the potential for energy savings increased with increase in the
number of occupants whose visual comfort required lower illuminance.
In this method, the daylight contribution was obtained based on pre-

measured values, which would make the control inaccurate in many
cases. Also, the implementation necessitates detailed knowledge of the
fuzzy rules. In Ref. [16], the authors proposed a Competition Over
Resource algorithm for control of artificial lights in an office space and
evaluated the method with a scale model. The algorithm is based on a
bio-inspired meta-heuristic approach. However, impact of daylight is
not considered in the evaluation. A smart phone based intelligent
lighting control for smart homes was presented in Ref. [17] in which
the authors used the standard PI controller for achieving the task. The
above method cannot be extended to office space lighting owing to the
complex interaction between different luminaires and target table
sensors. The disadvantages of the above method was addressed in Refs.
[18] and [19], however, the authors did not validate the method with
neighbouring occupants having different desired settings. The authors
in Refs. [20] [21], investigated the occupant behavior and preference in
detail for Occupant centered lighting control for comfort and energy
efficient building operation. The authors emphasize the necessity of an
adaptive lighting control model. The method primarily focuses on ON
and OFF control rather than dimming control which could drastically
increase the robustness and performance of such algorithms.

In Ref. [22], a review for answering major research questions on
individual occupancy-based lighting control was carried out. The au-
thors assert that only 24 research studies were eligible based on various
factors. Out of these, only one applied the methods for an open office
plan (the proposed method is also developed and tested in open office
type testbed). Other studies presented in the review focused on perso-
nalized lighting. The authors in Ref. [23] justify the need to offer
lighting that serves the preferences of individuals, and they assert that
”by offering illuminances close to peoples' own preferences a significant
improvement in ratings of mood, lighting satisfaction, and environ-
mental satisfaction can be established”. In Ref. [23], it was observed
from an experimental study that consensus control improved user ap-
preciation of office lighting in an open office. It was also emphasized in
Ref. [24] that optimized systems for personalized environment is es-
sential for improved health and well being. To enable the occupants to
receive illuminances close to their own preferences without affecting
the neighbours, there is a need for one sensor/light.

Personalized lighting in office space was achieved using an optimal
lighting control algorithm in Ref. [25] where the authors used an il-
luminance generator model with optimization for generating dimming
signals. However, the impact of daylight is not considered in the above
research. Theoretical personalized lighting control based on space
model and space model queries was discussed in Ref. [26]. The authors
of [27] proposed a satisfaction based Q-learning control system for
improving the performance of traditional automated lighting systems. A
comfort model was proposed and a holistic control of lights and blinds
was studied with a human-centric approach. The algorithm could pro-
vide valuable insight on human preferences based on q-factor. A lu-
minaire based sensing approach for intelligent control of indoor
lighting was proposed in Ref. [28]. A linear mapping approach and
stand-alone PI controller for controlling the desired illuminance (lux)
on table was proposed (other approaches are also presented and com-
pared).

Luminarie based occupancy detection and counting [29] is in-
creasingly becoming popular as the method has the notable advantage
of minimal interference from external noises and can harvest daylight
without any limitations. Even the effect of degradation of luminaires
could be overcome by adjusting the desired set point through a user
feedback system. In Ref. [30], the authors used a wireless sensor net-
work based lighting system for achieving personalized lighting. How-
ever, the above method was not evaluated with daylight settings and
control of blinds based on the model used was not considered. A
comprehensive analysis was carried out for a centralized controller and
distributed controller based personalized lighting control in Refs. [31]
and [32]. The authors in Ref. [32] presented a distributed lighting
control system which considered the daylight and occupancy profile.
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The authors also presented a stability analysis for the proposed control
system. However, the methods were not validated using experiments
and also application to blinds control was not discussed. It was ob-
served in Ref. [33] that the user satisfaction improved with actual usage
of an automated blinds system with an expressive interface. It was
observed that a medium automation with feedback from the users was
more agreeable. A comprehensive review on ’Dynamic operation of
daylighting and shading systems' was presented in Ref. [34] and a
comprehensive review on different type of shading devices and type of
studies used for analysis (simulation or experimental or both) was
presented in Refs. [35,36]. It can be observed that none of the studies
reviewed in the paper discussed about personalized lighting and auto-
matic control of blinds.

There are many efficient methods of daylight harvesting such as
redirecting the natural light to deeper regions of the room than the
perimeter [37–41]. Transferring useful daylight into the core of the
building can increase lighting energy savings but it can increase cooling
loads as quantified in Ref. [38]. The decision to use such technologies
would depend on the overall energy reduction strategy. The proposed
control system can work in conjunction with louver technologies that
actively redirect sunlight in the room without the need for any mod-
ifications. The authors in Ref. [42] presented an exhaustive survey on
open loop control strategies for the control of shades, blinds and in-
tegrated lighting systems. The authors show that available methods
depend on the an external photo sensor/camera for control strategies.
The authors in Ref. [43] carried out a detailed analysis on the reasons
why daylight linked control of lighting systems are not wide spread.
One of the main reasons identified is the difficulty in design, installa-
tion and calibration of outdoor photo sensors. For the method proposed
in this paper, the input from an external photo sensor/camera is not
required and can operate with just indoor sensors.

In this paper, a comprehensive model that can cater for both
achieving personalized light settings along with daylight harvesting and
blinds control is proposed. Furthermore, the proposed technique was
validated in a test-bed (with real day light emulator) further than high-
fidelity simulations presented in the literature. The features of the
proposed system in comparison with the existing methods in literature
are presented in Table 1. It is to be noted that only methods applicable
to office spaces are included in the comparison. The table shows that
the proposed method can combine the advantages of all of the other
methods.

3. Modeling and controller design

3.1. ANN model of the lighting system

ANN has been successfully applied for identification and control of
many dynamic systems and with three typically networks being model
predictive control, NARMA-L2 control, and model reference control
[44]. As described by the authors [44,45], there are two stages in ANN
based control, namely, system identification and control design. The

advantages of ANN based control is that the undesirable or uncertain
parts of any system dynamics can be cancelled or compensated easily
and it has exceptional capability of approximating complex systems
[46].

An ANN based fitting model consisting of one input layer, hidden
layer and output layer (feed-forward network) can be used for modeling
the behavior of any ×n n lighting system, with n lights and n task ta-
bles. A feed-forward network is used for the application and the net-
work is designed to have sigmoid activation function for hidden neu-
rons and linear activation function for output neurons. This is a
standard network which has the capability to fit multi-dimensional
mapping problems arbitrarily well. However, consistency of the data
and sufficient neurons in hidden layer plays a critical role [7]. In this
paper, the network is trained using the Bayesian Regularization back-
propagation algorithm.

The equations governing the ANN model of the lighting system are
given by,

= × +H Sig W U b( )f h h (1)

= × +Y Lin W H b( )p o f o (2)

where, Yp is the measured illuminance vector of dimension n (minus the
ambient or daylight contribution) and U is the luminaire power vector
of dimension n. Hf is the output of hidden layer (of dimension h), Wh
represents the weights of hidden neurons (of dimension ×h n) and bh is
its corresponding bias (of dimension h). Wo is a ×n h matrix with ’h’
with a corresponding bias bo (of dimension n).

Equations (1) and (2) are together represented as,

=Y t M U( ) ( )p f (3)

where, the static non-linear function � �→M :f
n n represents the input-

output behavior of the lighting system.
The inverse model (with input and output interchanged) is used for

controller design and its equations are given by,

′ = ′ ′ × + ′H Sig W Y b( )f h p h (4)

= ′ ′ × ′ + ′U Lin W H b( )o f o (5)

where, ′W h and ′W o are ×h n matrices and ′b o and ′b o are the corre-
sponding biases.

Equations (4) and (5) are together represented as,

=U t A Y( ) ( )f p (6)

where, the non-linear static function, � �→A :f
n n captures the inverse-

plant behavior.
The structure of the networks used with their corresponding inputs

and outputs are shown in Fig. 1. The training data to develop both Af

and Mf was obtained from the experimental measurements in the test-
bed (described in Section 4). The training data consisted of illuminance
(lux) levels measured at the tables with power setting for the lights
ranging from 0 to 100% in steps of 5%. To gather the data for training
the neural network, three parameters of the system were varied: the
number of active lights (2, 4 or all active at a time), dimming % of active
lights (in steps of 5, from 0 to 100) and the daylight intensity. Over
20,000 data points (resulting from combinations of the three para-
meters) were collected using the experimental setup described in Sec-
tion 4. No human subjects were present during the data collection
process. The ANN model as well as the ANN inverse-model are designed
with 10 neurons in the hidden layer which reduces the overall data
required for modeling.

It is to be noted that choosing the power levels and the combination
of the luminaries for data collection would be a complex problem with
the increase in the dimension of the system i.e., when n is large in a nxn
system. However, with group control being a common aspect of any
lighting control system, a system with large nxn could be conveniently
split it into multiple subsets of mxm non-overlapping systems ( <m n).

Table 1
Comparison of the proposed method with existing methods.

Features Proposed
Method

[10] [7], [15] [16] [25] [27] [28]

Daylight harvesting Yes No Yes No No Yes Yes
Complex interaction

of distributed
luminaires

Yes Yes Yes Yes Yes No No

Adaptive to luminaire
degradation

Yes Yes Yes Yes No Yes Yes

Control of blinds Yes No No No No Yes No
Occupant preference

included
Yes No Yes No No Yes Yes

Closed loop control Yes No Yes Yes No Yes Yes
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In such cases the impact of lights in the neighbouring groups will be
treated similar to the daylight disturbance. Hence, the proposed could
be extended easily to any type of room. The authors trained the ANNs
with the complete set as well as a subset consisting of the power setting
for the lights ranging from 0 to 100% in steps of 5%, 253 data points
(applicable only for the test-bed). It was observed that though the ac-
curacy of ANN models was affected, the performance of the closed loop
was not.

3.2. Design of ANN-IMC controller

For the purposes of control development, the lighting system is
described as,

= + ≡ +Y s P s U s D s Y s D s( ) ( ) ( ) ( ) ( ) ( )p p (7)

where, Y s( )p is the measured output (illuminance in lux) of the actual-
system, Y s( )p is the measured output (in lux) in the absence of daylight
or ambient light, U s( ) is the input (light power in %), D s( ) represents
the unmeasured disturbance due to daylight and ambient light, and
P s( ) is the unknown actual-system transfer function.The model of the
lighting system is:

= ×Y s M s U s( ) ( ) ( )m (8)

where, Ym is the model output (illuminance in lux), and M s( ) is the
model transfer function. M can be considered the linear approximation
of Eq. (3): = ≈ ×Y t M U t M U t( ) ( ( )) ( )p f .

The following assumptions and constraints for controller design are
noted:

1. The dynamics between the U s( ) and Y s( )p are negligible. So, both
P s( ) and M s( ) are static transfer functions. Thus, M s( ) is of the
form,

≡ =

⎡

⎣

⎢
⎢
⎢
⎢

…
…

⋮ ⋮ ⋱ ⋮
…

⎤

⎦

⎥
⎥
⎥
⎥

M s M

k k k
k k k

k k k

( )

j

j

i i nn

11 12 1

21 22 2

1 2 (9)

where, element kij represents the gain between illuminance output i (or
lux sensor i) and power input of light j. The system P is a square matrix,
ie. the number of lights and the number of sensors is equal.

2. The mismatch between plant and model can arise from non-linear-
ities at the top end of the power input range. Mismatch can also be
introduced if sensor locations are changed slightly.

3. The power input �∈U t( ) n has elements ⩽ ⩽u0 100j ∀ = …j n1,2 ,
where, n is the number of lights as well as the number of illuminance
sensors.

4. The daylight/ambient disturbance �∈D t( ) n has elements
⩽ ⩽d300 2000j ∀ = …j n1,2 . Daylight is a slow varying and additive

disturbance.

The control system is designed with the simple IMC approach [47]
and is shown in Figs. 2, 3 and 4.

The closed loop equation of the general IMC structure is:

     = + + +− −Y s I PG PG R s I PG D s( ) [ ] ( ) [ ] ( )p c c

G s

c

G s

1

( )

1

( )T D (10)

where, the controller G s( )c is,

= − −G s I QM Q( ) [ ]c
1 (11)

Fig. 1. The structure of ANN inverse-model and ANN model with corresponding inputs and outputs.

Fig. 2. Design structure of the IMC.
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and G s( )T is the tracking transfer function and G s( )D is the disturbance
rejection transfer function.

If Q is selected as = −Q s M f s( ) ( )1 , the controller G s( )c in equation
(11) reduces to,

= ×
−

=−
−

G s M
f

f
M
λs

( )
1c

1
1

(12)

where, = +f s( ) λs
1

1 and λ is a tuning parameter.
With theG s( )c in equation (12), the closed loop equation in equation

(10) becomes,

= + × + + ×− − − − −Y s λsI PM PM R s λsI PM λs D s( ) [ ] ( ) [ ] ( ) ( )p
1 1 1 1 1

(13)

Applying FVT (Final Value Theorem) to equation (13) will show
that tracking and disturbance rejection are successful even when

≠P M . In the ideal case, =P M , and the closed loop equation in
equation (13) reduces to,

= × + − ×Y s fI R s f I D s( ) ( ) (1 ) ( )p (14)

Thus, the control law is,

= ⎛
⎝

⎞
⎠

≡ ×− −U s M
λs

E s M E s( ) 1 ( ) ( )1 1
(15)

where, E t( ) is the error signal and E t( ) is the integrated error.
At this step of the controller design, the ANN block Af (Eq. (6))

trained to accept illuminance input and provide the corresponding

power output is substituted for −M 1 in Eq. (15). This is because the ANN
function Af better represents the inverse-plant than −M 1 does because
Af captures non-linear behaviors.Therefore, in the actual implementa-
tion, the control law is,

∫= = ⎛

⎝
⎜

⎞

⎠
⎟U t A E t A

λ
E τ dτ( ) ( ( )) 1 ( )f f

t

0 (16)

Thus, the ANN block together with integrator ( )Iλs
1 is a non-linear

controller.
For the sake of analysis, we allow the linear approximation of Eq.

(6) as = ≈ ×U t A E t A E t( ) ( ( )) ( )f which enables us to visualize the
closed loop equation as,

= + × + + ×− −Y s λsI PA PA R s λsI PA λs D s( ) [ ] ( ) [ ] ( ) ( )p
1 1 (17)

Equation (17) implies that, for nominal stability, If PAI (where P
and A are static systems linearized around an operating point), then the
condition for stability is simply determined by + <λs( 1) 0.

3.2.1. Anti-windup reset

1. The integrator ( )Iλs
1 can windup when the error E t( ) is sustained at

a large value for a long time. For instance, such a situation can occur
if the daylight is very strong, or if the setpoints are unattainable, and
as a result, E t( ) will grow indefinitely.

2. So, an Anti-Windup Reset scheme is used as shown in figure where
=W wI is the windup gain. This will drive the input of the in-

tegrator to 0 whenever the control action U t( ) reaches the satura-
tion limits [0 100].

3.2.2. Discrete-time controller
Only the discrete-time version of the integrator ( )Iλs

1 is im-
plemented. The integrator is discretized using the forward-rectangular
method. That is,

= ⎡
⎣⎢ −

⎤
⎦⎥

×−
E z
E z

T
λ z

I( )
( ) (1 )1 (18)

4. The experimental setup and model validation

The lighting arrangement and the room layout of the test-bed set up
is shown in Fig. 5a and b. Zumtobel pendant lamps of type AERO 2
(9880 lumen) were used in the test-bed. EKO light sensors (ML-020S0)
were used for measuring the illuminance at the desk level. The sensors
used have a hemispherical field of view and the surrounding light
sources have impact on the measurements. The impact of the different
light sources on different sensors are represented by the gains shown in
Equation (9). The dimensions of the test-bed are 5.6 m in length, 4.4m

Fig. 3. Implementation structure of the IMC.

Fig. 4. Controller block for implementation.

Fig. 5. The lighting Test-bed at the SinBerBest Laboratory.
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in breadth and 3m in height. The luminaires are mounted such way
that it is located in the center of the room i.e., equidistant from the
walls. The sensors are placed in the tentative seating locations for the
occupants. The test-bed uses a National Instruments Data Acquisition
platform (NI cDAQ) to acquire signals from the sensors as well as to
actuate the lights through a web-server based WiFi gateway. A WiFi to
DALI gateway at each light interprets the command signals. This
hardware architecture, shown in Fig. 6, is used for both for system
identification and for controller implementation. The performance of
the ANN model and ANN inverse-model trained using data obtained
from the experimental setup is presented in Table 2 for few of the cases.

Fig. 7a shows the Root Mean Square Error (RMSE) between desired
illuminance and actual measurements, RMSE between the desired il-
luminance and predicted illuminance from ANN Model, and RMSE
between the actual measurements and predicted illuminance from ANN
Model. It can be observed that the RMSE of experimental value and the
predicted illuminance from ANN Model is mostly lower than 25 lux
with a maximum at 45 lux . Fig. 7b shows the box plot for lux/percen-
tage of all the luminaires based on the experimental results. The mean
lux/percentage of light power is approximately 7.2, from which the
maximum RMSE is 6.25% and RMSE of experimental value and pre-
dicted lux from ANN Model is always lower than 3.47%. ’100 lux ′ in the
desired illuminance column in Table 2 is used to indicate the absence of
a particular occupant. These values have not been considered in the
RMSE calculations.

Fig. 6. Hardware architecture.

Table 2
Performance of the ANN model and ANN controller.

Desired Illuminance (lux) Light power (%) predicted by ANN
Inverse-Model

Actual Output for the light power predicted by
ANN Inverse-Model

ANN Model Output for the light power predicted by
ANN Inverse-Model

300 300 300 300 300 300 15 23 11 19 13 26 290 325 283 313 291 309 298 295 278 299 294 303
350 350 350 350 350 350 18 27 12 22 15 31 360 385 330 364 335 362 351 348 323 354 346 358
400 400 400 400 400 400 21 31 14 26 18 37 406 429 384 419 410 427 405 400 369 408 397 414
450 450 450 450 450 450 24 36 16 30 20 42 451 494 431 476 446 472 455 449 415 458 447 467
500 500 500 500 500 500 26 40 17 33 22 47 489 534 458 517 486 528 502 493 462 501 493 515
100 300 300 300 300 300 0 28 13 19 12 26 168 338 275 310 288 306 162 310 288 298 287 306
100 100 300 300 300 300 0 0 17 25 13 25 106 112 297 314 288 308 104 103 305 299 295 301
100 100 100 300 300 300 2 1 0 30 17 27 106 125 176 325 313 325 109 109 178 316 312 310
100 100 100 100 300 300 3 7 0 0 18 32 108 128 118 119 317 322 95 99 118 107 301 309
100 100 100 100 100 300 4 6 1 0 0 37 95 98 97 104 132 313 96 89 93 101 132 310
100 500 500 500 500 500 0 48 19 34 21 45 265 545 435 516 417 516 265 525 434 499 470 519
100 100 500 500 500 500 0 0 33 44 24 43 162 176 514 510 498 501 178 180 522 515 501 506
100 100 100 500 500 500 0 0 0 54 32 46 130 173 280 540 540 520 118 150 224 505 516 504
100 100 100 100 500 500 1 5 1 0 32 54 110 125 183 166 508 508 96 106 95 156 501 505
100 100 100 100 100 500 4 5 1 0 0 65 112 117 131 153 213 542 106 97 122 146 204 520

Fig. 7. RMSE plots.
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5. ANN-IMC closed loop illuminance control

5.1. Simulation results

The controller and model developed in Section 3 were used in
Matlab-Simulink to demonstrate closed loop illuminance control at the
desk level (6 points) similar to Table 2. These simulations (shown in
Figs. 8 and 9) were carried out with following conditions.

1. Desired illuminance at each desk was 250, 300, 350, 400, 450 and
500 lux respectively. This setting is chosen to show the capability of
the control system to track combinations of setpoint values.

2. At =t s500 , the desired illuminance is changed to 300 lux on all
desks. This setting is chosen to show the response of the system to
step input.

3. At =t s1000 , a daylight disturbance of constant 700 lux on all desks
is introduced. This setting is chosen to show the response of the
system to daylight.

4. At =t s1500 , the daylight disturbance is removed. This setting is
chosen to demonstrate the anti-windup reset function.

5. The response time of the closed loop system to step changes in
setpoints and disturbances depends on the choice of λ and =λ 60
was selected for the simulation.

Fig. 8 shows that even with different desired illuminances on the
desks, the control system is able to drive the lighting system to the set-
points. In the presence of daylight disturbance, the set points are not
achieved owing to physical input constraints. That is, a negative power
value was necessary to compensate for the large daylight which is not
possible. It can also be observed that the control system quickly drives
the system back to the setpoints once the daylight disturbance is re-
moved. This highlights the anti-windup behavior.

Fig. 9 shows the simulation results for a case when three of the
occupants suddenly leave their desk and their corresponding desired

illuminances (300, 400 and 500 lux respectively) are defaulted to lux100
(step change). Even with extreme difference in setpoints on adjacent
desks, the control system is able to achieve its targets. A constant
daylight disturbance is used once again for a short duration.

5.2. Experimental results

The proposed controller was implemented in the test-bed to control
the illuminance (lux) at the desk level. The experiment was carried out
for various cases and the results are presented in Figs. 10 and 11. The
controller parameter λ was set to 60 for the closed loop experiment.
Fig. 10 shows the closed loop response of the system with varying
setpoints, with no daylight. Up to time =t s800 , all combinations of
illuminance setpoints are achieved by the control system. After time

=t s800 , extreme setpoint combinations are tested that drives a few of
the control inputs to 0. In that condition, some of the setpoints will not
be reached because that can happen only if negative control actions can
be applied. For example, between =t s1100 and =t s1300 , when the
setpoint to desk 6 is stepped up from 100 to 500, the illuminance at
desk 5 becomes higher than its setpoint (because luminaire 6 influences
desk 5's illuminance). The controller does its best to bring down the
illuiminance at desk 5 by setting the power input to luminaire 5 to 0.

Fig. 11 explores the case with fixed setpoints of 300 lux on all desks
with the influence of daylight. Emulated daylight was switched on for
short duration (using the daylight emulator of the testbed). The impact
of the daylight on the illuminance at a given desk will depend on its
distance from the emulator. So, the additive disturbance is not the same
at all the desks. The controller tries to compensate for this disturbance
by moving all the power inputs but one to zero. Two of the desks are
maintained at desired illuminance while the others are overpowered by
bright daylight even if the corresponding lights are fully off.

The proposed control loop has robustness to variations in sensor
locations and so occupants can move the desk sensor locations to suit
their needs (moderate changes). Even without any modifications to the

Fig. 8. Performance of ANN-IMC control (simulations).
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Fig. 9. Performance of ANN-IMC control (simulations).

Fig. 10. Performance of ANN-IMC Control with zero daylight and varying setpoint.
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controller, tracking is still achieved. The effect of changes in sensor
locations were observed in the values of power % applied to the lumi-
naires by the controller to compensate for plant-model mismatch.

6. Blinds actuation when daylight causes glare

The automatic actuation of roller blinds is tied to the useful daylight
index [48]. That is, the roller blinds are automatically deployed when
the maximum daylight contribution at any sensor location is greater
than lux2000 . The blinds are later retracted when the maximum
daylight contribution at any sensor location is less than × lux2000 tf

100 ,
where tf % is the transmission factor of the blinds. (In the test-bed, roller
blinds with 5 % fabric were used.) This behavior can be represented by
equation (19).

= ⎧
⎨⎩

− ≥
− < ×

∞

∞
Blinds

close if Y t Y t
open if Y t Y t tf

( ) ( ) 2000
( ) ( ) 2000 %

p m

p m (19)

where, Y t( )p is the measured illuminance (which includes D t( ), the
daylight disturbance), Y t( )m is the model output (which does not in-
corporate daylight) and ∞. is the ∞ − norm which captures the
maximum value element of the vector. Hysteresis can be introduced to
avoid the oscillation that might occur if the daylight contribution at any
sensor fluctuates.

The block diagram for deploying/retracting the roller blinds is

shown in Fig. 12. An advantage of the proposed method to actuate the
blinds is that the ANN Model from Section 3 is used to calculate the
daylight contribution without the need for separate daylight sensors.
Figs. 13 and 14show the blinds in open and closed positions

Fig. 11. Performance of ANN-IMC Control with fixed setpoint and daylight disturbances.

Fig. 12. Roller Blinds actuation logic.

Fig. 13. Blinds open for. − ≥∞Y t Y t( ) ( ) 2000p m .

Fig. 14. Blinds closed for. − < ×∞Y t Y t( ) ( ) 2000p m
tf

100 .
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respectively where the sensors located closest to the windows were the
ones that saw the maximum contribution from the emulated daylight.

7. Analysis on potential energy savings

An analysis on the potential energy savings with proposed method is
presented in this section. The Test-bed described in Section 4 is used for
the analysis. The base ’Lighting Power Density (LPD)’ with the available
lighting system is presented in Table 3.

It is to be noted that the LPD of the lighting system is high as the
system is designed to cater multiple experiments and not optimized for
the space. Hence, the LPD cannot be compared to market standards and
should only be used as baseline or a guideline for determining the
performance of the control system. The Test-bed uses a daylight emu-
lator and not actual daylight, hence the desired daylight settings for a
typical day is derived using the geographical location of the Test-bed
and DAILux software. Corresponding daylight settings are emulated
using daylight emulator and daylight at all six sensors are determined,
which is further used in the simulation platform (Matlab-Simulink) to
carry out numerical analysis on energy savings with the proposed
method.

A complete data-set containing the light intensity of the daylight
emulator and corresponding light intensity at all six sensors is presented
in the supplementary data. The average daylight for a typical day in
Singapore at the sensor ′S ′6 is presented in Table 4. The results for
energy savings with the above data (i.e., daylight from DIALux and light
intensity for the given daylight at ′S ′6 ) obtained from simulation plat-
form (Matlab-Simulink), is presented in Table 5.

With non-personalized lighting system, the opportunity to increase
the savings from 40% to 54% does not exist. This is due to the reason
that, once the system is designed for 500lux even if some of the occu-
pants desire lower light intensity at the desk, the energy savings cannot
be increased. Hence, the proposed method increases the range of energy
savings that could be achieved. However, the energy savings depends
on the profile of the preferences from occupants even though the pro-
posed method can facilitate the feasibility.

It is to be noted that the interplay of occupancy controls and day-
light/personal controls is also crucial in the lighting control system.
Proposed lighting control system leverages on a centralized occupancy
detection and localization system (ODLS). The above ODLS serves many
subsystems in the building energy management such as lighting control,

HVAC, demand response etc. The ODLS will feed the desired light set-
tings to the lighting control system. ODLS is virtual occupancy sensing
technique and is based on smart phones and wifi [49,50]. The control
system is robust to moderate changes in the position of the sensor
especially when it only shifts along the task plane (and not along its
perpendicular). The setpoint to the control loop is determined from
occupants' feedback which is based on their personal visual comfort.
Obviously, the occupant feedback will depend on the current illumi-
nance at the desk. If the position of the sensor is shifted and the lights
react to this change perceptibly, a user still has the ability to readjust
their personal visual comfort. This adds a second layer of robustness.
The translation from occupants' qualitative preference to quantitative
setpoint values is only possible with an ODLS and occupant feedback
system. However, these two systems are beyond the scope of the paper
and so, only the capability of the proposed system to track the setpoint
is evaluated.

8. Summary

This paper presented a closed loop controller for smart lighting
systems (with equal number of lights and sensors) using ANN models
and IMC-based control design. The features of the proposed method are.

1. Simplified ANN based modeling of the lighting system using limited
number of data points (with real data gathered from illuminance
sensors on the task table).

2. The proposed control system fully harvests daylight while main-
taining desired illuminance on individual task tables for persona-
lized light settings.

3. The proposed method is robust to the plant-model mismatch that
occurs due to natural variation (moderate) in the position of task
table sensors.

4. The proposed method has the capability to control other smart light
accessories such as roller blinds (unified model). The blinds are
activated based on the useful daylight index to avoid glare and
maintain visual comfort.

The method proposed in this paper could be effectively used in
NZEB where personalized light settings are required as it incorporates
daylight harvesting without compromising on user preferences.
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