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ABSTRACT OF THE DISSERTATION

Conicality of Morse Limit Sets and Stability

by

Jacob Daniel Garcia

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2024

Prof. Matthew Durham, Chairperson

One of the most successful techniques for studying groups acting on metric spaces

has been to study actions on spaces which admit hyperbolic properties. We study a group

G acting by isometries on a proper, geodesic metric space X by studying interactions

between the group action on the space and hyperbolic-like boundaries for X. We present

results regarding two different hyperbolic-like boundaries on X: the Morse boundary and

the sublinearly Morse boundary. Both of these boundaries are quasi-isometry invariants for

proper geodesic metric spaces.

Subgroup stability is a strong notion of quasiconvexity that generalizes convex

cocompactness in a variety of settings. A characterization of convex cocompact Kleinian

groups is that the limit set of the group is composed entirely of conical limit points in the

boundary of the three dimensional hyperbolic space. We show that stable subgroups admit

an identical conical limit point characterization in the Morse boundary. We also, addition-

ally, show that stable subgroups are characterized by having an entirely horospherical limit

set.

vii



A group G is non-elementary if G is not virtually cyclic and if its boundary is not

empty. We show that every non-elementary group acts minimally on its sublinearly Morse

boundary, i.e., for any element a in the sublinearly Morse boundary, Ga is dense in the

boundary. This result, which is joint with Yulan Qing and Elliott Vest, is an important

step towards understanding the dynamics of groups acting on their own sublinearly Morse

boundary.
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Chapter 1

Introduction

In the study of groups, a fruitful tool for discovery and understanding lies in the

study of its group actions, and in geometric group theory, we study groups by studying

actions on metric spaces. Note that every group acts trivially on the metric space which

consists of a single point, for this reason it is common to only study group actions which

are nice in some way, such as cobounded actions, proper actions, or isometric actions, see

Definition 2.2. In geometric group theory, the spaces that have yielded the most interesting

properties in the last few decades have been spaces that either have a notion of negative

curvature, called δ-hyperbolicity, or spaces which exhibit hyperbolic properties, see Defini-

tion 2.6. Many recent results are generalizations of group actions on Hn. Good examples

of these group actions include Kleinian groups, which are discrete groups of orientation

preserving isometries on H3, and surface groups acting on H2.

Recall that Hn has a natural visual boundary of Sn−1, and this boundary plays an

important role in understanding group actions on Hn, both by analyzing the fixed points
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on the boundary given by the action of a group element, and by studying the limit points

of the group action’s orbit onto the boundary, ΛG. (Definition 2.16)

This idea unifies the topics found in this dissertation, where we study group actions

on spaces with hyperbolic-like properties, and use a boundary of the metric space to study

this group action. First, we look at a generalization of convex cocompact groups called

stable subgroups, and we characterize these groups by studying the accumulation points

of this group on the Morse boundary. Second, we explore another related boundary, the

sublinearly Morse boundary, and we show that every finitely generated group acts minimally

on its sublinearly Morse boundary. The results on minimality are joint with Elliott Vest

and Yulan Qing.

1.1 Convex Cocompactness and Stability

Convex cocompact groups are an important example of Kleinian groups. These

are exactly the subgroups H whose orbit in H3 is convex cocompact. Additionally these

groups admit compact Kleinian manifolds via the quotient of the group on H3, and every

infinite order element of a convex cocompact group is loxodromic. Furthermore, convex

cocompactness is an open condition: given any matrix representation for the group, small

perturbations of the entries results in another convex cocompact group. We highlight some

of the other interesting properties of convex cocompact groups in the following theorem.

Theorem 1.1. ([Mar74, Sul85]) A Kleinian group H < Iso+(H3) ∼= PSL2(C) is called

convex cocompact if one of the following equivalent conditions hold:

1. H acts cocompactly on the convex hull of its limit set ΛH.
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2. Any H-orbit in H3 is quasiconvex.

3. Every limit point of H is conical.

4. H acts cocompactly on H3 ∪ Ω, where Ω = ∂H3 \ ΛH. □

However, other more recent versions of this relationship have been shown. Swen-

son showed a generalization of this theorem for Gromov hyperbolic groups equipped with

their visual boundaries [Swe01], and there has been recent interest in generalizing these re-

lationships beyond the setting of word-hyperbolic groups. For example, convex cocompact

subgroups of mapping class groups acting on Teichmüller space, equipped with the Thurston

compactification, have been characterized by Farb and Mosher [FM01] and Hamenstädt

[Ham05] as exactly the subgroups which determine Gromov hyperbolic surface group ex-

tensions. Specifically, given a subgroup Γ ≤Mod(S), and it’s surface group extension

1 → π1(S) → EΓ → Γ → 1,

the results of Farb, Mosher and Hamenstädt show that Γ is convex cocompact exactly when

EΓ is hyperbolic.

Additional work done in this direction has been done for subgroups of Out(Fn), re-

lating convex cocompact subgroups to hyperbolic extensions of free groups [HH18, ADT17].

In particular, given a free group F of rank r ≥ 3, one can construct the short exact sequence

1 → F → Aut(F) → Out(F) → 1.

By taking the preimage of a subgroup Γ ≤ Out(F) under the map Aut(F) →

Out(F), one obtains the extension on F, denoted EΓ, via 1 → F → EΓ → Γ → 1.
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Using work on Bestvina and Feighn [BF14], Dowdall and Taylor show that EΓ

is hyperbolic if all inifinte order elements of Γ are atoroidal and the action of Γ on the

free factor complex of F has a quasi-isometric orbit map [DT18], i.e., when Γ is convex

cocompact.

There has also been interest in creating generalizations which are applicable for any

finitely generated group. An important generalization comes from [DT15], where Durham

and Taylor introduced stability (see Definition 2.35) to characterize convex cocompact sub-

groups of a mapping class group in a way which is intrinsic to the geometry of the mapping

class group, and in fact, generalizes the notions of convex cocompactness to any finitely

generated group. The concept of stability was later generalized to strongly quasiconvex

subgroup, introduced in [Tra19]. We note that a subgroup is stable when it is undistorted

and strongly quasiconvex.

In the Kleinian, hyperbolic, and mapping class group settings, convex cocompact-

ness is characterized by properties of the limit set on an appropriate boundary [Swe01,

KL08]. For an arbitrary finitely generated group, it is possible to construct a (quasi-

isometric invariant) boundary called the Morse boundary, which was introduced by Cordes

in [Cor17] and expanded by Cordes and Hume in [CH17]. A generalization of convex co-

compactness developed by Cordes and Durham, called boundary convex cocompactness (see

Definition 2.36), uses both the Morse boundary and stability to generalize item (1) of The-

orem 1.1, see [CD17].

In this dissertation, we fully generalize item (3) of Theorem 1.1 to the setting of

finitely generated groups, thereby answering [CD17, Question 1.15]. In fact, we additionally

4



generalize some other characterizations from the hyperbolic setting found in [Swe01]. We

summarize these results in the following theorem:

Theorem 1.2. Let H be a finitely generated group acting by isometries on a proper geodesic

metric space X. The following are equivalent:

1. Any H-orbit in X is a stable embedding of H → X.

2. H acts boundary convex cocompactly on X.

3. Every point in ΛH is a conical limit point of H, ΛH ̸= ∅, and ΛH is a compact subset

of the Morse boundary of H.

4. Every point in ΛH is a horospherical limit point of H, ΛH ̸= ∅, and ΛH is a compact

subset of the Morse boundary of H.

Remark 1.3. The result (1) ⇔ (2) is found in the main theorem of [CD17]. We show

(3) ⇒ (4) in a combination of Propostion 3.4 and Theorem 3.8, using methods similar to

[Swe01]. We show (4) ⇒ (2) in Theorem 4.3, by first showing that non-cobounded actions

on the weak convex hull of ΛH admit a sequence of points pn which diverge quickly from the

orbit (see Lemma 4.1), but then showing that the pn converge to an element of ΛH, which

ultimately contradicts the horospherical limit point assumption. We also give an alternate

proof to (2) ⇒ (3) in Proposition 4.5 which does not use the main theorem from [CD17].

A limit point in ΛH is conical if the limit point is accumulated by the orbit in

a strong way: every geodesic ray representing the limit point gets close to the orbit, see

Definitions 2.12 and 3.2. In general, a geodesic ray which is constructed from geodesic
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segments [x, hx] need not stay close to the orbit of H, even when H is nicely embedded

into a hyperbolic space. For an example, see [Swe01, Lemma 3]. A limit point in ΛH is

horospherical if it is accumulated by the orbit in a similar way: every horoball around

a geodesic ray representing the limit point intersects the orbit. See Definition 2.12 and

Definition 3.2 for definitions of horoball and a horospherical limit point, respectively.

We take a moment to provide a broad overview of stability in the recent liter-

ature. In addition to results for the mapping class group from above in [FM01, KL08,

Ham05, DT15], it is also known that infinite index Morse subgroups of the mapping class

group exactly coincide with stable subgroups [Kim19], and stable subgroups of mapping

class groups (and more generally, stable subgroups of Morse local-to-global groups) have

interesting combination theorems [RST21]. Stability has also been studied in the context of

Morse local-to-global groups [CRSZ22], relatively hyperbolic groups [ADT17], and hierar-

chically hyperbolic groups [ABD21, RST23]. It is also known that stable subgroups admit

finite height [AMST19]. Also related, work of Karrer-Miraftab-Zbinden [KMZ24] losens the

condition of stability by analyzing the core of a weak convex hull.

Comparing Theorem 1.2 to Theorem 1.1, we see a cocompact action involving a

domain of discontinuity in Theorem 1.1 which does not appear in Theorem 1.2. This is

because the standard methods used for showing this property rely on the fact that the

(Gromov-)hyperbolic boundary for a word hyperbolic group is a compactification, and thus

finding the requisite compact set needed for a cocompact action boils down to finding an

appropriate closed subset. In contrast, the Morse boundary usually does not compactify

the underlying group. In fact, the Morse boundary compactifies a finitely generated group
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H if and only if H is word hyperbolic, see [Cor17, Theorem 3.10] and [CD17, Lemma 4.1].

This leads to an open question:

Open Question 1.4. Does there exist a classification of boundary convex cocompactness

via an appropriate action on a domain of discontinuity analog?

For other properties in Theorem 1.2, we are able to address the need for some

compactness in the Morse boundary by assuming that the limit set of the group, ΛH, is

a compact subset of the Morse boundary, see Definition 2.28 and Corollary 2.30. It is not

possible to remove the compactness condition in either point (3) or (4) of Theorem 1.2, as

we illustrate in the following example.

Example 1.5. Consider the group G = Z2 ∗ Z ∗ Z = ⟨a, b⟩ ∗ ⟨c⟩ ∗ ⟨d⟩ with subgroup H =

⟨a, b, c⟩. As discussed in [CD17, Remark 1.8], H is isometrically embedded and convex in

G, and so every point of ΛH is conical with respect to H. In fact, all rays representing a

point in ΛH travel through H infinitely often. However H is not hyperbolic, so H is not

stable, see [CD17, Section 1.2] for a complete discussion.

1.1.1 Applications to Mapping Class Groups

Convex cocompact subgroups of mapping class groups have been well studied, see

[FM01, Ham05], but in particular conical limit point characterizations have been analyzed

before. Let S be a finite type surface, Mod(S) its associated mapping class group, and

let T (S) be its associated Teichmüller space. In [KL08, Theorem 1.2], Kent and Leininger

show that a subgroup H of Mod(S) is convex cocompact if and only if all the limit points of

H in the Thurston compactification of T (S) are conical. By combining Theorem 1.2 with
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a theorem of Cordes and Durham, [CD17, Thorem 1.18], we obtain the following direct

comparison, which uses the intrinsic geometry of Mod(S) instead of the geometry of T (S).

Theorem 1.6. Let S be a finite type surface, let H < Mod(S) be finitely generated, and

consider ΛH in the Morse boundary of Mod(S). Then H is a convex-cocompact subgroup of

Mod(S) if, and only if, every point in ΛH is a conical limit point of H ↷ Mod(S), ΛH ̸= ∅,

and ΛH is compact in the Morse boundary of Mod(S).

This theorem, combined with the above result of [KL08], gives the following imme-

diate corollary, which shows that conicality is a strong condition in the setting of mapping

class groups. We discuss these results in Chapter 5.

Corollary 1.7. Let S be a finite type surface, and let H < Mod(S) be finitely generated.

The following are equivalent:

1. Every limit point of H in the Morse boundary of Mod(S) is a conical limit point of

H ↷ Mod(S) and ΛH is compact.

2. Every limit point of H in the Thurston compactification of T (S) is a conical limit

point of H ↷ T (S).

We also show that there exists a natural Mod(S)-equivariant map from Mod(S) to

T (S) which sends conical limit points of H < Mod(S) in the Morse boundary of Mod(S) to

conical limit point of H in the the Thurston compactification of T (S). This directly proves

the implication (1) ⇒ (2) in Corollary 1.7 without requiring results of [KL08], and in fact,

does not require H to be a convex cocompact subgroup, see Theorem 5.2 for details.
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1.2 Sub-linearly Morse Boundary and Minimality

The boundary of focus in the prior section, the Morse boundary, is one of many

boundaries that can be constructed for a given metric space. A foundational result of Gro-

mov [Gro87] constructs the visual boundary of a δ-hyperbolic space and shows that this

boundary is a quasi-isometry invariant of these spaces, see Definition 2.6 and Definition

2.9. In the setting of CAT(0) spaces, the visual boundary is not an invariant, as shown

by Croke and Kleiner in [CK00]. However, this was addressed by Charney and Sultan

[CS14] who introduced the contracting boundary for CAT(0) spaces and showed that con-

tracting boundaries are quasi-isometry invariants on these spaces. Every geodesic ray in a

δ-hyperbolic space is a contracting geodesic, so we can think of the contracting boundary

of a CAT(0) space as the part of the boundary which only sees the “hyperbolic directions”

of the space.

The Morse boundary, as discussed above, was introduced by Cordes [Cor17]. Every

Morse geodesic (see Definition 2.17) is a contracting geodesic in the CAT(0) setting, and

every geodesic ray in a δ-hyperbolic space is uniformly Morse, see Lemma 2.7. In this way,

the Morse boundary is a generalization of the contracting boundary for arbitrary geodesic

metric spaces. However, this is not the only generalization of the contracting property found

in the literature, see also [Min94, ACGH17, Mur19].

In [QR22], Qing and Rafi introduce the concept of a sublinearly contracting ray,

and its associated sublinearly contracting boundary. As a set, this boundary consists of all

sublinearly contracting rays and is a quasi-isometry invariant of CAT(0) spaces. A further

generalization to the sublinearly Morse boundary was then introduced in [QRT] by Rafi,
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Qing, and Tiozzo, and this boundary, like the Morse boundary, is a quasi-isometry invariant

of any proper, geodesic metric space, see Definition 6.3 and Definition 6.8.

Recall that a group is non-elementary if it is not virtually cyclic and if its boundary

is non-empty. A boundary of a non-elementary group is said to be minimal if any boundary-

orbit of the group is dense in the boundary, see Definition 6.11. Note that this is a stronger

condition than requiring that there exists at least one dense orbit, see Remark 6.12. Every

non-elementary hyperbolic group is minimal, see [KB02, Proposition 4.2] for a discussion.

Murray showed that non-elementary CAT(0) groups have minimal contracting boundaries

[Mur19], and Liu showed that Morse non-elementary groups have minimal Morse boundaries

[Liu21]. The action of a CAT(0) group on its sublinearly contracting boundary is minimal

by work of Qing and Zalloum, see [QZ19].

Of the boundaries discussed here, there is only one where it is was not known if the

boundary is minimal: the sublinearly Morse boundary of a proper, geodesic metric space.

We show that this boundary is indeed minimal. This result is joint with Yulan Qing and

Elliott Vest.

Theorem 1.8. Let G be a finitely generated group, and let ∂κG be its sublinearly Morse

boundary. If |∂κG| ≥ 3, then the group action G↷ ∂κG is minimal.

Notice that the requirement that |∂κG| ≥ 3 guarantees that G is non-elementary.

The proof of Theorem 1.8 relies heavily on Lemma 6.15, which, given b ∈ ∂κG and a ∈ ∂κG,

constructs uniform quality quasi-geodesics that begin by projection to a geodesic represen-

tative of ga, then eventually fellow-travel a geodesic representative of b. The sublinearly

Morse property shows that these quasi-geodesics sublinearly converge, see Theorem 6.23.
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Chapter 2

Background

In the introduction, we established context for our main results by describing

how our main results compare with the current literature. This chapter has the same

goal of establishing context, but instead we provide context by exploring the mathematical

constructions and proofs required for our results, and by exploring some key details and

constructions in familiar settings. We begin by providing a brief overview of introductory

topics in geometric group theory, which may be found in many introductory textbooks on

geometric group theory, such as [CM17, Hd00, DK18]. We also prove some claims in the

setting of hyperbolic spaces, before moving on to more recent foundational results required

for Theorem 1.2.

Although the constructions required for Theorem 1.8 are similar to the construc-

tions in this chapter, we delay our discussion of the sublinear boundary to Chapter 6.
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2.1 Groups and Hyperbolicity

We first explore the topic of groups acting on metric spaces. We take a moment to

recall some base definitions from the realm of metric geometry and to set some notation. An

isometric embedding is a function between metric spaces f : X → Y such that the dis-

tance is preserved by f , i.e. so that for any x1, x2 ∈ X, we have d(x1, x2) = d(f(x1), f(x2)).

Such a function is always injective. An isometry is a surjective isometric embedding, and

a geodesic is an isometric embedding of a closed interval. In particular, an isometric em-

bedding of [a, b] is a geodesic segment, an isometric embedding of [a,∞) is a geodesic

ray, and an isometric embedding of (−∞,∞) is a geodesic line. Given two points x

and y in a metric space, we denote [x, y] to be a geodesic between them, and we call a

metric space X a geodesic metric space if there exists at least one geodesic between

every pair of points. Given A ⊂ X and M ≥ 0, we denote the M-neighborhood of A by

NM (A) = {x ∈ X : d(x,A) ≤M}.

2.1.1 Finitely Generated Groups and Cayley Graphs

Unless otherwise stated, we’ll use 1 for the identity element for a group, and we’ll

write the group operation as multiplication. If G is a finitely generated group, then it

is straightforward to show that there exists a generating set S such that G = ⟨S⟩ where

S is finite, 1 ̸∈ S, and S−1 ⊆ S. Indeed, given some other finite generating set S′, one

can simply remove the identity element creating S′′ = S′ \ {1}, then we can define S =

S′′ ∪ (S′′)−1. While assuming these extra conditions on a generating set S are not required

for the constructions to follow, they do make the constructions more convenient.
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Given a group G with the above finite generating set S, we can construct a metric

graph that encodes it called the Cayley graph. Although we do not use this construction

in any of the novel results in this work, this construction does provide a plethora of examples

where our results can be used and is the motivating setting for our results.

Definition 2.1. Let G be a finitely generated group, and say G = ⟨S⟩. The Cayley graph

of G with respect to S, denoted Cay(G,S), is the metric graph such that:

1. The vertex set of Cay(G,S) is G.

2. For g, h ∈ G, there exists an edge between g and h if and only if g−1h ∈ S or h−1g ∈ S.

3. Every edge has length 1.

The third point in the definition defines a metric on Cay(G,S), denoted dS : the

distance between two points in Cay(G,S) is the length of the shortest path between them. It

is clear from this definition that Cay(G,S) is a proper and geodesic: since |S| <∞ all closed

balls are compact, and between any two points in Cay(G,S), there exists a path between

them whose length realises the distance between them. We also note that restricting dS to

the vertices of Cay(G,S) produces the word metric of G with respect to S.

A key property of Cayley graphs is that they admit very nice group actions. Recall

the following properties of group actions on metric spaces.

Definition 2.2. Let G be a group, let X be a metric space. The group action G↷ X is...

• proper if, for all K > 0 and every x, y ∈ X, the set {g ∈ G : d(gx, y) ≤ K} is finite.

• cobounded if there exists K > 0 so that, for every x, y ∈ X, there exists g ∈ G so
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that d(gx, y) ≤ K. Equivalently, if there exists a ball of radius K, BK(x0), so that

X =
⋃

g∈G gBK(x0).

• by isometries if the map x 7→ gx is a isometry for every g ∈ G.

If the group action satisfies all of these conditions, we call the group action geometric.

Notice that every Cayley graph of G admits a very natural G action via left

multiplication, indeed, g sends the vertices h and k to gh and gk, respectively, and if

there is an edge between h and k, there will be an edge between gh and gk. It is a

straightforward exercise to see that this group action is geometric, and that any subgroup

H ≤ G acts properly and by isometries on Cay(G,S). Note that the action H ↷ Cay(G,S)

is cobounded exactly when H has finite index in G.

This gives the following very useful observation: every finitely generated group acts

geometrically on a proper geodesic metric space. However, most finitely generated groups

G have many different finite generating sets, and these graphs can look very different. For

example, consider Cay(Z, {1}) and Cay(Z, {2, 3}).

0 1 2 3-1-2-3

Figure 2.1: Cayley Graph with generat-
ing set {1}

0 1 2 3-1-2-3

Figure 2.2: Cayley Graph with generat-
ing set {2, 3}

These both are metric graph representatives of Z, however they induce different

metrics on Z: Notice that d{1}(−2, 3) = 5, but d{2,3}(−2, 3) = 2. In particular, this shows

the identity map G→ G is not an isometry. In addition, Cay(Z, {1}) and Cay(Z, {2, 3}) are

not graph isomorphic, not homeomorphic, and not homotopic. However these two graphs
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do admit some similarities, in that there appear to be only two primary directions of travel

in both graphs. In fact, if one squints very hard while looking at these two graphs, they

appear to be the same! We now introduce a notion of equivalence that formalizes this idea.

Definition 2.3. Let X and Y be metric spaces, and let K ≥ 1 and C ≥ 0. A function

f : X → Y is called a (K,C)-quasi-isometric embedding if, for all x1, x2 ∈ X,

1

K
d(x1, x2)− C ≤ d(f(x1), f(x2)) ≤ Kd(x1, x2) + C.

Additionally, f is called C-coarsely surjective if for all y ∈ Y there exists x ∈ X so that

d(f(x), y) ≤ C. If f is a (K,C)-quasi-isometric embedding and is C-coarsely surjective, we

say f is a (K,C)-quasi-isometry.

It there exists constants K,C so that f is a (K,C)-quasi-isometric embedding

or a (K,C)-quasi-isometry, then we call f a quasi-isometric embedding or a quasi-

isometry, respectively. We additionally define a quasi-geodesic to be a quasi-isometric

embedding of a closed interval.

Remark 2.4. In general, quasi-geodesics do not need to be continuous, for example the floor

function ⌊·⌋ : R → R is a (1, 1)-quasi-geodesic. However, if X is a geodesic metric space,

every quasi-geodesic φ : I → X is bounded Hausdorff distance from a continuous quasi-

geodesic: Let S = {endpoints of I} ∪ {n ∈ Z : n ∈ I}, then create a new quasi-geodesic by

sequentially connecting the points in φ(S) with geodesic segments.

Note that there is a (3, 2)-quasi-isometry between Cay(Z, {1}) and Cay(Z, {2, 3}).

In fact, any two Cayley graphs for a finitely generated group G admit quasi-isometric Cayley

graphs. Although it is straightforward to show this directly, (see [CM17, Theorem 7.5]) it

is also a consequence of the following foundational lemma.
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Lemma 2.5 (Milnor-Swartz). Let G be a group and X be a geodesic metric space. If there

exists a geometric group action G↷ X, then

1. G = ⟨S⟩ for a finite set S

2. There exists a quasi-isometry between Cay(G,S) and X.

Thus we show the equivalence of Cayley graphs for a finitely generated group G

by recalling that G acts geometrically on each of its Cayley graphs. We also note that the

existence of a quasi-isometry between two metric spaces induces an equivalence relation on

the set of all metric spaces, see [CM17, Chapter 7, Exercise 10].

2.1.2 Hyperbolic Spaces

One of the benefits of introducing Lemma 2.5 is that it produces a large number

of immediate interesting examples. Given any closed Riemmanian surface S, π1(S) acts

geometrically on the universal cover of S. With the exception of the sphere and the torus,

the universal cover of all other closed Riemannian surfaces is H2. This shows that most

surface groups have a Cayley Graph which is quasi-isomorphic to H2. Around 1985, Gromov

showed that many of the properties of surface groups which arise from the connection to

H2 come from a coarse version of hyperbolicity, see [Gro87, KB02].

Definition 2.6. Let X be a geodesic metric space. We call X a δ-hyperbolic metric space

if every geodesic triangle is δ-slim, i.e., if for every x, y, z ∈ X, [x, z] ⊆ Nδ([x, y] ∪ [y, z]).

We call X a hyperbolic space if X is δ-hyperbolic for some δ ≥ 0.

As a first example of a hyperbolic space, one can consider metric trees, for example,

Cay(Z, {1}) and Cay(⟨a, b⟩, {a, b}). The second example, the Cayley graph of the free group
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on two generators, is familiar as the universal cover of the wedge of two circles. It is clear

to see that these examples, and in fact any metric tree, are all 0-hyperbolic.

Another easy example of a hyperbolic space is, as the name suggests, Hn. To see

why this space is hyperbolic in the sense of Definition 2.6, we can use the fact that every

triangle in Hn has an area bounded by π. (See [BH09, Proposition III.H.1.4]) Suppose there

exists a point p on the side of a geodesic triangle such that the distance from p to both of

the other sides is greater than 2. Then there exists a semicircle of radius 2 centered at p

contained in the triangle, but this semicircle has an area greater than π.

A key fact about δ-hyperbolic spaces is that quasi-geodesics must travel close to

geodesics. This idea motivates the definition of the Morse boundary that we use in Theorem

1.2, and it leads to a useful tool in the setting of hyperbolic spaces.

Lemma 2.7 (Morse Lemma). Let X be a proper, geodesic δ-hyperbolic space. There exists a

(non-decreasing) function N : [1,∞)×[0,∞) → [0,∞) such that, for any geodesic α and any

(K,C)-quasi-geodesic φ : [a, b] → X such that φ(a), φ(b) ∈ α, we have that φ ⊆ NN(K,C)(α).

A detailed proof of this lemma can be found in [BH09, Theorem III.H.1.7]. Note

that the Morse lemma is not true for Euclidean spaces: Let α be the x-axis in R2 and let

φn be the concatenation of the geodesic segments [(0, 0), (n, n)] and [(n, n), (2n, 0)]. Then

for each n ∈ N, φn is a (
√
2, 0)-quasi-geodesic with endpoints on α, but φn+1 ̸⊆ Nn(α).

Besides being a property of hyperbolic spaces, the Morse lemma exactly classifies a

geodesic metric space as a δ-hyperbolic space, where δ depends only on the Morse function

N . This key insight shows that the geodesic rays which exhibit fellow-travelling behavior

are essentially the “hyperbolic directions” of the space, see Definition 2.17.
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Proposition 2.8. Let X be a proper geodesic space. Suppose there exists a (non-decreasing)

function N : [1,∞) × [0,∞) → [0,∞) such that, for any geodesic α and any (K,C)-quasi-

geodesic φ : [a, b] → X with φ(a), φ(b) ∈ α, we have that φ ⊆ NN(K,C)(α). Then X is a

δ-hyperbolic space where δ = N(3, 0).

Proof. Let x, y, z ∈ X be arbitrary. Recalling that [x, z] is closed, let w ∈ [x, z] be such

that d(y, w) = d(y, [x, z]). Notice that d(y, w) ≤ d(y, s) for any s ∈ [x, z]. Let φ be the

concatenation of [x,w] and [w, y], and let ψ be the concatenation of [z, w] and [w, y]. We

show that φ is a (3, 0)-quasi-geodesic.

Let u, v ∈ φ. By Definition 2.3, it suffices to show that d(u, v) ≤ dφ(u, v) ≤

3d(u, v), where dφ measures the distance between points along the path φ. The first in-

equality is always satisfied since the φ-subpath is a path from u to v. The second inequality

is trivial if u and v are on the same segment of φ, so we assume that u ∈ [x,w] and v ∈ [w, y],

see Figure 2.3.

Since v ∈ [y, w], notice that d(v, w) ≤ d(v, s) for any s ∈ [x, z]. So in particular,

d(w, v) ≤ d(u, v). Using this fact together with the triangle inequality, we get

dφ(u, v) = d(u,w) + d(w, v) ≤ d(u, v) + d(v, w) + d(w, v) ≤ d(u, v) + d(u, v) + d(u, v).

Thus φ is a (3, 0)-quasi-geodesic. By a similar argument, ψ is also a (3, 0)-quasi-

geodesic. Therefore, φ ⊆ NN(3,0)([x, y]) and ψ ⊆ NN(3,0)([z, y]). So in particular, [x, z] ⊆

φ ∪ ψ ⊆ NN(3,0)([x, y] ∪ [z, y]). So by Definition 2.6, X is N(3, 0)-hyperbolic.

18



x

y

z

wu

v

Figure 2.3: Diagram for Proposition 2.8. Since the path φ = [x,w] ∗ [w, y] is a (3, 0)-quasi-
geodesic, the Morse lemma guarantees that [x,w] is at least within N(3, 0) of [x, y].

2.1.3 Visual Boundaries of Hyperbolic Spaces

Motivated by the fact that Hn has a natural boundary of Sn, which compactifies

the space, we now provide a definition for an analogous boundary called the visual boundary,

and in fact reproduces the Sn boundary for Hn.

Definition 2.9. Let X be a proper geodesic space, and let o ∈ X. Let Ro(X) be the

collection of all geodesic rays α : [a,∞) → X such that α(a) = o. Then we can define an

equivalence relation on Ro(X) by setting α ∼ β whenever the Hausdorff distance between

α and β is bounded. The visual boundary of X based at o is defined to be ∂∞Xo =

Ro(X)/ ∼. We equip ∂∞Xo with the topology generated by the neighborhood basis for α,

U(α, r, n) = {β ∈ ∂∞Xo : d(α(t), β(t) ≤ r for all t ≤ n}.

19



To give a colloquial interpretation of this definition, the visual boundary encodes

points “at infinity” by identifying the geodesic rays that travel in the same direction. The

topology described by the neighborhood basis states that two points at infinity are close

together if the sight lines corresponding to those points fellow travel for a long time. Note

that if X is a hyperbolic space, then X ∪ ∂∞Xo is a compact space, see [BH09, Proposition

III.H.3.7]. Whenever G↷ X acts by isometries, then G↷ Ro(X) is well defined, and this

passes down to an action G↷ ∂∞Xo.

Remark 2.10. In the case where X is δ-hyperbolic, we may use the Morse lemma (Lemma

2.7) to equivalently define ∂∞Xo by instead considering the collection of all quasi-geodesic

rays φ : [0,∞) → X with φ(0) = o.

One of the key properties of the visual boundary is that it is a quasi-isometry

invariant of δ-hyperbolic spaces. We formalize this statement below:

Proposition 2.11. Let X and Y be proper geodesic spaces and assume Y a δ-hyperbolic

space. If f : X → Y is a (K,C)-quasi-isometry, then

1. X is δ′-hyperbolic where δ′ depends only on K,C, and δ.

2. f induces a homeomorphism ∂f : ∂∞Xo → ∂∞Yf(o).

2.2 Morse Boundaries and Stability

In this section, we begin by exploring the definitions and statements found in

[Swe01], whose main theorem generalizes Theorem 1.1 into the setting of δ-hyperbolic
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spaces. We then introduce analogs appropriate for the setting of Morse boundaries and

explore their properties. We begin by setting some notation.

Definition 2.12. Let (X, d) be a proper, geodesic metric space, and let α : [a,∞) → X and

β : [b,∞) → X be two geodesic rays.

• Given a closed set S ⊆ X, we define the closest point projection to S as πS(x) =

{s ∈ S : d(s, x) = d(S, x)}.

• We say α and β N-asymptotically fellow-travel, denoted by α ∼N β, if there exists

T ∈ R so that whenever t ≥ T , we have d(α(t), β(t)) ≤ N .

In addition, if X is δ-hyperbolic we have the following definitions from [Swe01]:

• We denote the horoball about α by H(α) and define it as H(α) =
⋃
{β([b,∞)) :

β ∼6δ α, b ≥ a}.

• We denote the funnel about α by F (α) and define it as F (α) = {x ∈ X : d(x, α) ≤

d(πα(x), α(a))}.

• Given a point x in the visual boundary of X and a subset A ⊆ X, we say x is a

horopherical limit point of A if, for every geodesic ray α with α(∞) = x, we have

H(α) ∩A ̸= ∅.

• Given a point x in the visual boundary of X and a subset A ⊆ X, we say x is a

funneled limit point of A if, for every geodesic ray α with α(∞) = x, we have

F (α) ∩A ̸= ∅.
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• Given a point x in the visual boundary of X and a subset A ⊆ X, we say x is a

conical limit point of A if there exists K > 0 such that, for every geodesic ray α

with α(∞) = x, we have NK(α) ∩A ̸= ∅.

Remark 2.13. Notice that, given S ⊆ X and a point x ∈ X, the nearest point projection

πS(x) need not have a uniform bound, even in the case where S is a geodesic. For example,

one can take x to be the origin in R2 equipped with the L1 metric, and take S to be the

geodesic between (n, 0) and (0, n) which passes through (n, n). Then πS(x) = {(n, 0), (0, n)}.

We present here for completeness a relaxed version of a claim in [Swe01, pg 125]

which shows that every horoball of a geodesic ray contains a funnel of an equivalent geodesic

ray in a δ-hyperbolic space.

Lemma 2.14. Let (X, d) be a proper, geodesic, δ-hyperbolic space, and let α : [0,∞) → X

be a geodesic ray. Define α′ : [0,∞) → X by α′(t) = α(t+ 6δ). Then F (α′) ⊆ H(α).

Proof. See Figure 2.4. Let p ∈ F (α′). Construct a geodesic ray β : [b,∞) → X such that

β ∼6δ α and β(b) = p (for details on the existence of such a geodesic ray, we refer to [BH09,

pg 427-428]). Let q ∈ πα′(p) such that d(α(0), q) = min{d(α(0), x) : x ∈ πα′(p)}, i.e., so

that q is the point in πα′(p) closest to α(0). Notice that since p ∈ F (α′) we have that

d(p, q) ≤ d(q, α′(0)). Choose T ≥ 6δ so that q ∈ [α′(0), α′(T )] and so that for all t ≥ T , we

have d(α(t), β(t)) < 6δ. Then

T − b = d(β(T ), p) ≤ d(β(T ), α(T )) + d(α(T ), q) + d(q, p)

≤ 6δ + d(α′(T − 6δ), q) + d(q, α′(0)) = 6δ + (T − 6δ).

This shows that b ≥ 0, and so p = β(b) ∈ H(α).

22



α
α(0)

p = β(b)

α′(0)
= α(6δ)

α(T )
= α′(T − 6δ)

β(T )
β

πα′(p)q

F (α′)H(α)

≤ 6δ

Figure 2.4: Diagram for Lemma 2.14

We also include the complementary statement that every funnel of a geodesic ray

contains a horoball of an equivalent geodesic ray.

Lemma 2.15. ([Swe01, Lemma 5]) Let (X, d) be a proper, geodesic, δ-hyperbolic metric

space, and let α : [0,∞) → X be a geodesic ray. Define α′ : [0,∞) → X by α′(t) = α(t+12δ).

Then H(α′) ⊆ F (α). □

The combination of Lemma 2.14 and Lemma 2.15 give the following relationship,

which was originally stated as a corollary in [Swe01].

Corollary 2.16. In a proper, geodesic, δ-hyperbolic metric space, the funneled limit points

are exactly the horospherical limit points. □

In a proper, geodesic, δ-hyperbolic metric space, any two geodesic rays α and β

with dHaus(α, β) < ∞ can be re-parameterized so that they asymptotically fellow-travel
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(in the sense of Definition 2.12, for a fellow-travelling constant depending only on δ, see

[Swe01, Lemma 4]. This is an important part of the definition of a horoball in Definition

2.12. In order to define a horoball in a non-hyperbolic space, it will be necessary to develop

an analogue of this fact for Morse rays. We begin by recalling the definition.

Definition 2.17. ([Cor17, Definition 1.3]) A (quasi)-geodesic γ in a metric space is called

N-Morse, where N is a function [1,∞)× [0,∞) → [0,∞), if for any (K,C)-quasi-geodesic

φ with endpoints on γ, we have φ ⊂ NN(K,C)(γ). We call the function N a Morse gauge.

We say γ is Morse if there exists a Morse gauge N so that γ is N -Morse.

Definition 2.18. ([Cor17, CH17]) Given a Morse gauge N and a basepoint o ∈ X, the

N-Morse stratum, denoted XN
o , is defined as the set of all points x such that [o, x] is an

N -Morse geodesic. Each such stratum is δ-hyperbolic for δ depending only on N [CH17,

Proposition 3.2], and thus has a well defined visual boundary, which we denote as ∂XN
o .

If M is the set of all Morse gauges, then there is a natural partial order on M: N ≤ N ′

if N(K,C) ≤ N ′(K,C) for all K and C. Note the natural inclusion ∂XN
o ↪→ ∂XN ′

o is

continuous whenever N ≤ N ′ by [Cor17, Corollary 3.2]. We define the Morse boundary

based at o as

∂Xo = lim−→
M

∂XN
o

with the induced direct limit topology. Given a Morse geodesic ray α, we denote the associ-

ated point in ∂Xo as α(∞).

Remark 2.19. Often when studying the Morse boundary, the basepoint is suppressed from

the notation, as the Morse boundary is basepoint independent [Cor17, Proposition 2.5].
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However, we will often make use of the basepoint explicitly in the arguments to come, thus

we keep it in the notation.

The following fact states that subrays of Morse rays are also Morse. This will be

especially useful in Chapter 3, as many of the arguments which describe the relationships

between horoballs, funnels, and cones require restriction to a subray, as illustrated in the

proof of Lemma 2.14.

Lemma 2.20. ([Liu21, Lemma 3.1]) Let X be a geodesic metric space. Let α : I → X be

an N -Morse (λ, ϵ)-quasi-geodesic where I is an interval of R. Then for any interval I ′ ⊆ I,

the (λ, ϵ)-quasi-geodesic α′ = α|I′ is N ′-Morse where N ′ depends only on λ, ϵ, and N . □

We now present a combination of statements which will show that, given one Morse

ray and another ray which fellow-travels with the first, then eventually the fellow-travelling

constant is determined only by the Morse gauge of the first ray.

Proposition 2.21. ([Cor17, Proposition 2.4]) Let X be a geodesic metric space. Let α :

[0,∞) → X be an N -Morse geodesic ray. Let β : [0,∞) → be a geodesic ray such that

d(α(t), β(t)) < K for t ∈ [A,A + D] for some A ∈ [0,∞) and D ≥ 6K. Then for all

t ∈ [A+ 2K,A+D − 2K], d(α(t), β(t)) < 4N(1, 2N(5, 0)) + 2N(5, 0) + d(α(0), β(0)). □

The proof of Proposition 2.21, as presented in [Cor17], shows the following addi-

tional facts:

Corollary 2.22. Let X be a geodesic metric space. Let α : [0,∞) → X be an N -Morse

geodesic ray. Let β : [0,∞) → be a geodesic ray such that d(α(t), β(t)) < K for t ∈

[A,A+D] for some A ∈ [0,∞) and D ≥ 6K. Then there exists x, y ∈ [0, A+2K] such that

d(α(x), β(y)) < N(5, 0). □
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Corollary 2.23. ([Cor17, Corollary 2.6]) Let X be a geodesic metric space. Let α : [0,∞) →

X be an N -Morse geodesic ray. Let β : [0,∞) → be a geodesic ray such that d(α(t), β(t)) <

K for all t ∈ [0,∞) (i.e. β(∞) = α(∞)). Then for all t ∈ [2K,∞), d(α(t), β(t)) <

max{4N(1, 2N(5, 0)) + 2N(5, 0), 8N(3, 0)}+ d(α(0), β(0)). □

Combining Corollaries 2.22 and 2.23, we get the following generalization of [BH09,

Chapter 3, Lemma 3.3].

Proposition 2.24. Let X be a geodesic metric space. Let α : [0,∞) → X be an N -Morse

geodesic ray. Let β : [0,∞) → X be a geodesic ray such that d(α(t), β(t)) < K for all

t ∈ [0,∞) (i.e. β(∞) = α(∞)). Then there exists T1, T2 > 0 such that for all t ∈ [0,∞),

d(α(T1 + t), β(T2 + t)) < max{4N(1, 2N(5, 0)) + 2N(5, 0), 8N(3, 0)}+N(5, 0).

Proof. By Corollary 2.22, there exists x, y ≥ 0 so that d(α(x), β(y)) < N(5, 0). Define

α′(t) = α(x + t) and β′(t) = β(y + t), and note in particular that α′(0) = α(x) and

β′(0) = β(y). Applying Corollary 2.23 to α′ and β′ produces the desired result.

For convenience, we will denote δN = max{4N(1, 2N(5, 0))+2N(5, 0), 8N(3, 0)}+

N(5, 0). Using this notation, Proposition 2.24 leads to the following generalization of

[Swe01, Lemma 4].

Corollary 2.25. Let X be a geodesic metric space. Let α : [0,∞) → X be an N -Morse

geodesic ray. Let β : [0,∞) → X be a geodesic ray such that β(∞) = α(∞). Then there

exists a ∈ R and an isometry ρ : [a,∞) → [0,∞) so that α ∼δN β ◦ ρ.

Proof. Apply Proposition 2.24 to find T1, T2 > 0 so that for all t ∈ [0,∞), d(α(T1+t), β(T2+

t)) < δN . Then let ρ : [a,∞) → [0,∞) be the unique isometry such that ρ(T1) = T2.
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Proposition 2.26. Suppose α : [a,∞) → X is an N -Morse geodesic ray and β : [b,∞) → X

is a geodesic ray such that β ∼δN α and α(a) = β(b). Then β is M -Morse where M depends

only on N .

Proof. It suffices to show that dHaus(α, β) ≤ K where K ≥ 0 depends only on N . Choose

T > 0 so that d(α(t), β(t)) ≤ δN for all t ≥ T . Note that [β(b), β(t)] ∗ [β(t), α(t)]

is a (1, 2δN ) quasi-geodesic, so by [Cor17, Lemma 2.1], dHaus([α(a), α(t)], [β(b), β(t)] ∗

[β(t), α(t)]) ≤ L for some L depending only on N . But since l([α(t), β(t)]) ≤ δN , we

have dHaus([α(a), α(t)], [β(b), β(t)]) ≤ L+ δN .

The above statement leads to the following generalization, which is very similar

to [Cor17, Lemma 2.8]. This statement will be useful for showing a generalization of Corol-

lary 2.16, since our horoballs and funnels will be restricted to a single Morse stratum, see

Theorem 3.8.

Proposition 2.27. Suppose x ∈ ∂XN
o for a Morse gauge N . Then any geodesic ray

α : [a,∞) → X with α(∞) = x is M -Morse, where M depends only on N and the Morse

gauge of [α(a), o].

Proof. See Figure 2.5. Let β : [b,∞) → X be N -Morse with β(b) = o, β(∞) = α(∞), and

let N ′ be the Morse gauge of [α(a), β(b)]. For each n ∈ N, let γn = [α(a), β(b + n)]. Note

that β|[b,b+n] is Morse for some Morse gauge depending only on N by Lemma 2.20, and so

by [Cor17, Lemma 2.3], γn in N ′′-Morse for N ′′ depending only on max{N,N ′}. Then via a

straightforward generalization of [Cor17, Lemma 2.10], there exists an N ′′-Morse geodesic

ray γ with γn → γ (uniformly on compact sets) and γ(∞) = β(∞). Then Proposition 2.26

shows that α is Morse for an appropriate Morse gauge.
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Figure 2.5: Diagram for Proposition 2.27

2.2.1 Limit Sets and Weak Convex Hulls

We now introduce limit sets and weak convex hulls, and give some useful properties

that these sets have. We use these constructions to turn subsets of X into subsets of the

Morse boundary, and vice versa.

Definition 2.28. ([CD17, Definition 3.2]) Let X be a proper, geodesic metric space and let

A ⊆ X. The limit set of A, denoted as ΛA, is the set of points in ∂Xo such that, for some

Morse gauge N , there exists a sequence of points (ak) ⊂ A∩XN
o such that [o, ak] converges

(uniformly on compact sets) to a geodesic ray α with α(∞) = x. (Note α is N -Morse by

[Cor17, Lemma 2.10].) In the case where H acts properly by isometries on X, we use ΛH

to denote the limit set of Ho.

Remark 2.29. By [CD17, Lemma 3.3], ΛH is well-defined as the limit set of any orbit of

H, we merely choose the orbit Ho for convenience and simplicity in future arguments.

We also prove a fact about limit sets, see also [CD17, Lemma 4.1, Proposition 4.2].
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Corollary 2.30. Let X be a proper, geodesic metric space and suppose A ⊆ X. If ΛA ⊆

∂XN
o for some Morse gauge N , then ΛA is compact.

Proof. By [Cor17, Proposition 3.12], this follows from the fact that ΛH is closed.

Remark 2.31. By Corollary 2.30 and by [CD17, Lemma 4.1], the requirement that ΛH is

compact is equivalent to the requirement that ΛH is contained in the boundary of a single

Morse stratum.

Definition 2.32. ([Swe01, CD17]) Let X be a proper, geodesic metric space, and let A ⊆

X∪∂Xo. Then the weak convex hull of A, denoted WCH(A), is the union of all geodesic

(segments, rays, or lines) of X which have both endpoints in A.

We take a moment to highlight some nice interactions between the weak convex

hull of a compact limit set with the Morse boundary.

Lemma 2.33. ([CD17, Proposition 4.2]) Let X be a proper geodesic metric space and let

A ⊆ X such that ΛA ⊆ ∂XN
o for some Morse gauge N . Then there exists a Morse gauge

N ′, depending only on N , such that WCH(ΛA) ⊂ XN ′
o . □

Lemma 2.34. Let X be a proper geodesic metric space and let A ⊆ X such that ΛA ⊆ ∂XN
o

for some Morse gauge N . Then Λ(WCH(ΛA)) ⊆ ΛA.

Proof. We may assume |ΛA| > 1. Let x ∈ Λ(WCH(ΛA)). By Definition 2.28, there exists

xn ∈ WCH(ΛA) such that [o, xn] converges to a geodesic ray γ with γ(∞) = x. We

show that there exists K > 0 so that for all n there exists an with [o, xn] ⊆ NK([o, an]).

Thus, (a subsequence of) the geodesics [o, an] converge to a geodesic ray α : [0,∞) → X
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with α(0) = o, and α(∞) = γ(∞) = x and so x ∈ ΛA. It remains to find K so that

[o, xn] ⊆ NK([o, an]).

Fix n. Since xn ∈ WCH(ΛA), x ∈ η where η : (−∞,∞) :→ X is a geodesic with

η(±∞) ∈ ΛA. So, by Definition 2.28, there exists a+k , a
−
k ∈ A∩XN

o so that [o, a+k ] and [o, a−k ]

converge to geodesics β+ and β−, respectively, with β+(∞) = η(∞) and β−(−∞) = η(−∞).

Since ΛA ⊆ ∂XN
o , the triangle η ∪ β+ ∪ β− is L-slim for L depending only on N by [CD17,

Proposition 3.6], and as x ∈ η, there exists y ∈ β+ ∪ β− so that d(xn, y) ≤ L. Without

loss of generality, assume y ∈ β+. Since [o, a+k ] converges to β
+ uniformly on compact sets,

choose m large enough so that d(y, [o, a+m]) ≤ 1. Let z ∈ [o, a+m] so that d(y, z) ≤ 1, see

Figure 2.6.

Note that the concatenation [o, xn] ∗ [xn, z] is a (1, L + 1)-quasi-geodesic with

endpoints on [o, a+m]. Since [o, a+m] is N -Morse, we have that [o, xn] ⊆ [o, xn] ∗ [xn, z] ⊆

NN(1,L+1)([o, a
+
m]). Since K := N(1, L+1) did not depend on the choice of n, this completes

the proof.

η

β+β−

xn

y

z

≤ L

≤ 1

a+m

o

Figure 2.6: Diagram for Lemma 2.34
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Finally, we finish this section by stating the definitions of stability and boundary

convex cocompactness here for reference.

Definition 2.35. ([DT15] [CD17, Definition 1.3]) If f : X → Y is a quasi-isometric

embedding between geodesic metric spaces, we say X is a stable subspace of Y if there

exists a Morse Gauge N such that every pair of points in X can be connected by an N -

Morse quasi-geodesic in Y ; we call f a stable embedding.

If H < G are finitely generated groups, we say H is stable in G if the inclusion

map i : H ↪→ G is a stable embedding.

Definition 2.36. ([CD17, Definition 1.4]) We say that H acts boundary convex cocom-

pactly on X if the following conditions hold:

1. H acts properly on X,

2. ΛH is nonempty and compact,

3. The action of H on WCH(ΛH) is cobounded.

31



Chapter 3

Limit point characterizations in

the Morse Boundary

3.1 Limit points in the Morse boundary

The goal of this section is show that, given a set A ⊆ X, if x ∈ ∂Xo is a Morse

conical limit point of A, then x is a Morse horospherical limit point of A. This was first

shown in the hyperbolic case in [Swe01], we generalize this fact into the setting of proper

geodesic spaces. We begin by introducing horospheres and funnels for Morse rays.

Definition 3.1 (Horoballs, Funnels). Let X be a proper, geodesic metric space and let

o ∈ X be some designated point. Let α : [a,∞) → X be an N ′-Morse geodesic ray, and let

N be some, potentially different, Morse gauge. We define the N-Morse horoball around

α based at o as

HN
o (α) = {x ∈ XN

o | ∃β : [b,∞) → X with β ∼δN′ α and b ≥ a and β(b) = x}.
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We define the N-Morse funnel around α based at o as

FN
o (α) = {x ∈ XN

o | d(x, πα(x)) ≤ d(α(a), πα(x))}.

Comparing these definitions to Definition 2.12 shows that a Morse horoball is

a horoball about a Morse geodesic intersected with an appropriate Morse stratum, and

similarly, a Morse funnel is a funnel about a Morse geodesic intersected with an appropriate

Morse stratum. The following three definitions classify points on the Morse boundary by

asking if every horoball, funnel, or cone intersects a given subset of X.

Definition 3.2. Let X be a proper, geodesic metric space and let o ∈ X be some designated

point. Let A ⊂ X.

• We say that x ∈ ∂Xo is a Morse horospherical limit point of A if for every Morse

geodesic α with α(∞) = x, there exists a Morse gauge N such that HN
o (α) ∩A ̸= ∅.

• We say that x ∈ ∂Xo is a Morse funneled limit point of A if for every Morse

geodesic α with α(∞) = x, there exists a Morse gauge N such that FN
o (α) ∩A ̸= ∅.

• We say that x ∈ ∂Xo is a Morse conical limit point of A if there exists K > 0

such that, for every Morse geodesic α with α(∞) = x, we have that NK(α) ∩A ̸= ∅.

Remark 3.3. Notice that, in the case where X is a δ-hyperbolic space, these definitions

agree with the definitions given in Definition 2.12, as every geodesic in a δ-hyperbolic space is

N -Morse for N depending only on δ. In light of this, we will use “conical limit point” instead

of “Morse conical limit point” for the rest of this paper, except in cases where the difference

between these definitions causes confusion. We similarly reduce “Morse horospherical limit
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point” and “Morse funneled limit point” to “horospherical limit point” and “funneled limit

point,” respectively.

We now begin proving the new implications found in Theorem 1.2. We will first

show that every conical limit point of A is a funneled limit point of A, and then we will

show that the funneled limit points of A exactly coincide with the horospherical limit points

of A. These arguments generalize the arguments found in [Swe01].

Proposition 3.4. Let X be a proper, geodesic metric space and let o ∈ X. Let A ⊆ X. If

x ∈ ∂Xo is a conical limit point of A, then x is a funneled limit point of A.

Proof. See Figure 3.1. Let x ∈ ∂Xo be a conical limit point of A ⊆ X. Let α : [0,∞) → X

be an N -Morse geodesic with α(∞) = x. By Lemma 2.20, there exists a Morse gauge M

so that every geodesic sub-ray of α is M -Morse. Thus by Definition 3.2, there exists K ≥ 0

so that every subray of α gets at least K close to A.

Now define α′ = α|[3K,∞), and let a ∈ A such that a ∈ NK(α′). Then note that

d(a, πα(a)) ≤ d(a, πα′(a)) ≤ K, and so d(πα(a), πα′(a)) ≤ 2K. By the triangle inequality,

πα(a) ⊆ α|[K,∞). Therefore, d(πα(a), a) ≤ K = d(α(0), α(K)) ≤ d(α(0), πα′(a)). It remains

to show that a ∈ XN ′
o for a Morse gauge N ′ which is independent of the choice of a ∈ A.

Let L = d(o, α(0)), and let p ∈ πα′(a), and note that d(p, a) ≤ K. Thus, [o, α(0)]

and [p, a] are both N ′′-Morse depending only on max{K,L}, and [o, p] is N ′′′-Morse de-

pending only on N by Lemma 2.20. Since [o, a] is one side of a quadrilateral whose other

three sides are max{N ′′, N ′′′}-Morse, [o, a] is N ′-Morse where N ′ does not depend on choice

of a ∈ A by [Cor17, Lemma 2.3].
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α(∞) = xα(0)
α(3K)

πα′(a)πα(a)

NK(α′)
a

≤ K

o
L

p

Figure 3.1: Diagram for Lemma 3.4

3.2 Equivalence of Horospherical and Funneled limit points

Our next goal is to show that the funneled limit points of A coincide with the

horospherical limit points of A. Towards this end, we show that, given a point x in a

horoball of a subray, the projection of x to the subray is coarsely the same as the projection

to the base ray.

Lemma 3.5. Suppose α is an N -Morse geodesic ray and let α′ be a subray. Suppose

x ∈ HN ′
o (α′). If α(∞) ∈ ∂XN ′′

o , then dHaus(πα(x), πα′(x)) ≤ K, where K ≥ 0 depends only

on N , N ′, and N ′′.

Proof. See Figure 3.2. Let α : [0,∞) → X be an N -Morse geodesic ray and let α′ =

α|[a,∞) for some a ≥ 0. By Lemma 2.20, α′ is M -Morse for M depending only on N . Let

x ∈ HN ′′
o (α′), thus there exists β : [b,∞) → X a geodesic ray with b ≥ a, β(b) = x, and

β ∼δM α′. By Proposition 2.27, β is M ′-Morse for M ′ depending only on N , N ′, and N ′′.

We note that if πα(x) ⊆ α′, then πα(x) = πα′(x). So, we assume that πα(x) ̸⊆ α′. We

shall show that in this case, d(x, πα(x)) and d(x, πα′(x)) are both bounded above by an

appropriate constant, and this gives the desired result.
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Let p ∈ πα(x) \ α′, and let q ∈ πα′(x). Without loss of generality, let T be large

enough so that q ∈ [α′(a), α′(T )] and d(α′(T ), β(T )) ≤ δN .

Put γ = [β(b), α′(a)] ∗ [α′(a), α′(T )] ∗ [α′(T ), β(T )], and note that γ is a (3, 4δN )

quasi-geodesic. Thus there exists w ∈ [β(b), β(T )] and L ≥ 0 such that d(α′(a), w) ≤ L,

where L depends only on M ′ by [Cor17, Lemma 2.1]. Notice now that |d(α′(a), α′(T )) −

d(w, β(T ))| ≤ δN+L. However, since b ≥ a and w ∈ [β(b), β(T )], we know |d(α′(a), α′(T ))−

d(w, β(T ))| = d(α′(a), α′(T ))− d(w, β(T )). But then by the definition of the nearest point

projection and the triangle inequality, we have

d(x, p) ≤ d(x, q) ≤ d(x, α′(a)) ≤ d(x,w) + d(w,α′(a))

= d(x, β(T ))− d(w, β(T )) + d(w,α′(a))

= d(α′(b), α′(T ))− d(w, β(T )) + d(w,α′(a))

≤ d(α′(a), α′(T ))− d(w, β(T )) + L

≤ δN + L+ L.

Therefore, d(πα(x), x) and d(πα′(x), x) are both bounded above by L, which is a constant

depending only on N , N ′, and N ′′, as desired.

We’re now ready to show that Morse funneled limit points are exactly Morse

horospherical limit points. We proceed using the same strategy as the one found in [Swe01],

by showing direct generalizations of Lemma 2.14 and Lemma 2.15 for the Morse case.

Proposition 3.6. Let x ∈ ∂XN
o . Let α : [0,∞) → X be an N ′-Morse geodesic with

α(∞) = x. Then for every Morse gauge N ′′, there exists T ≥ 0 such that, for any subray

α′ of α with d(α(0), α′) ≥ T , we have HN ′′
o (α′) ⊆ FN ′′

o (α).
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α
α(0)

HN ′
o (α′)

πα′(x)πα(x)

α(a)
= α′(a)

β(T )

α(T )
= α′(T )

≤ δN

w

q

β(b) = x

p

≤ L

Figure 3.2: Diagram for Lemma 3.5

Proof. See Figure 3.3. Let α′ = α|[a,∞) be a subray of α. By Lemma 2.20, α′ is M -Morse

where M depends only on N ′. Let y ∈ HN ′′
o (α′). Thus there exists β : [b,∞) → X be a

geodesic ray such that b ≥ a, β(b) = y, and β ∼δM α′. Note that β is M ′-Morse where

M ′ depends only on N , N ′, and N ′′ by Proposition 2.27. Choose z ∈ πα(y) such that

d(α(0), z) = d(α(0), πα(y)), i.e., so that z is closest to α(0). By Lemma 3.5, there exists

p ∈ πα′(x) so that d(z, p) ≤ L for some L depending only on N , N ′, and N ′′. Choose t

large enough so that d(α′(t), β(t)) = d(α(t), β(t)) ≤ δM and p, α(b) ∈ [α(a), α(t)]. Note that

[y, p]∗ [p, α(t)]∗ [α(t), β(t)] is a (3, 4δM )-quasi-geodesic, thus there exists q ∈ [β(b), β(t)] and

λ ≥ 0 such that d(p, q) ≤ λ where λ depends only on M ′ by [Cor17, Lemma 2.1]. It suffices

to show that d(y, z) ≤ d(α(0), z).
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Using the triangle inequality and the definition of πα, we find

d(y, z) ≤ d(y, p) ≤ d(y, q) + d(q, p) ≤ d(y, q) + λ

= d(y, β(t))− d(q, β(t)) + λ = d(α(b), α(t))− d(q, β(t)) + λ

≤ d(α(a), α(t))− d(p, α(t)) + λ+ δM + λ

= d(α(a), p) + 2λ+ δM ≤ d(α(a), z) + L+ 2λ+ δM .

So, if a ≥ L+ 2λ+ δM , we have d(y, z) ≤ d(α(a), z) +L+ 2λ+ δM ≤ d(α(a), z) +

d(α(0), α(a)) = d(α(0), z).

α
α(0)

FN ′
o (α)

HN ′
o (α′)

πα′(y)πα(y)

α(a)
= α′(a)

β(T )

α(T )
= α′(T )

≤ δM

q

p

β(b) = y

z

≤ λ

Figure 3.3: Diagram for Lemma 3.6

Proposition 3.7. Let x ∈ ∂XN
o . Let α : [0,∞) → X be an N ′-Morse geodesic with

α(∞) = x. Suppose S = δN ′. Define α′ = α|[S,∞). Then FN ′′
o (α′) ⊆ HN ′′

o (α) for any Morse

gauge N ′′.
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Proof. Let y ∈ FN ′′
o (α′). By definition, d(y, πα′(y)) ≤ d(α(S), πα′(y)). Let p ∈ πα′(y) such

that d(α(S), p) = d(α(S), πα′(y)), i.e., let p be the element of πα′(y) which is closest to α(S).

Then d(y, p) ≤ d(α(S), p). Construct β : [b,∞) → X such that β(b) = y and β ∼δN′ α. We

want to show that b ≥ 0. Choose T ≥ 0 so that d(β(T ), α(T )) ≤ δN ′ . Then

T − b = d(y, β(T )) ≤ d(y, p) + d(p, α(T )) + d(α(T ), β(T ))

≤ d(α(S), p) + d(p, α(T )) + δN ′ = d(α(S), α(T )) + δN ′

= d(α(0), α(T ))− d(α(0), α(S)) + δN ′ = T − S + δN ′ = T

In summary, T − b ≤ T , but this immediately shows that 0 ≤ b, as desired.

α
α(0)

y = β(b)

α(S)
= α′(S)

α(T )

β(T )
β

πα′(y)p

FN ′′
o (α′)HN ′′

o (α)

≤ δN ′

Figure 3.4: Diagram for Lemma 3.7

Theorem 3.8. Let x ∈ ∂Xo. Then x is a Morse horospherical limit point of A ⊆ X if and

only if x is a Morse funneled limit point of A.

Proof. This is a direct consequence of Propositions 3.6 and 3.7.
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Chapter 4

Limit Set Conditions For Stability

In this section, we show that the horospherical limit point condition, combined

with the limit set being compact, is enough for to show that the group action on the weak

convex hull is cobounded. The main idea behind this argument is to show the contrapositive:

when the group action is not cobounded, then geodesic rays in the space eventually end up

very far from the orbit of the group. We begin by showing the following helpful fact, which

states that if a group acts non-coboundedly on the weak convex hull of its limit set, there

exists a sequence of points pn in the weak convex hull that “maximally avoids” the orbit.

Lemma 4.1. Suppose X is a proper geodesic metric space and suppose that H acts properly

on X by isometries. Assume that ΛH ̸= ∅. If the action H ↷WCH(ΛH) is not cobounded,

then there exists an increasing sequence of positive integers, (ni)i, such that for each i ∈ Z≥1

there exists pi ∈WCH(ΛH) satisfying

1. Bni(pi) ∩Ho = ∅,

2. d(pi, o) ≤ ni + 1.
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This fact is a straightforward consequence of the definition of a cobounded group

action, however we include a proof for the sake of completeness.

Proof. Set n0 = 1. We define qi and ni for i ≥ 1 via an inductive process. Since the

action of H ↷ WCH(ΛH) is not cobounded, there exists a point qi ∈ WCH(ΛH) such

that ni−1 + 1 < d(Ho, qi). By the definition of WCH(Λ), there exists a bi-infinite Morse

geodesic γ with γ(±∞) ∈ ΛH such that qi ∈ γ. Set ni to be the unique positive integer

such that ni < d(Ho, qi) ≤ ni + 1. Note that the sequence (ni)i is increasing because

ni−1 + 1 ≤ ni.

Since d(Ho, qi) ≤ ni + 1 there exists hi ∈ H so that d(qi, hio) ≤ ni + 1. Recalling

that the action of H on X is by isometries, we define pi = h−1
i qi, and so Bni(pi) ∩Ho = ∅,

and d(o, pi) ≤ ni + 1. Finally, by [CD17, Lemma 3.3], h−1
i γ is a bi-infinite Morse geodesic

with endpoints in ΛH, and so pi ∈WCH(ΛH).

We note that, under the additional assumption that ΛH is compact and that every

point in ΛH is conical, we get a stronger conclusion to this lemma, namely, we can take

ni = i for large i. We formally state and prove this observation.

Lemma 4.2 (Sliding Spheres). Suppose X is a proper geodesic metric space and suppose

that H acts properly on X by isometries. Assume that ΛH ̸= ∅, every point of ΛH is a

conical limit point of Ho, and that ΛH ⊆ ∂XN
o for some Morse gauge N . If the action

H ↷WCH(ΛH) is not cobounded, there exists a sequence of points pn ∈WCH(ΛH) such

that, for sufficiently large n, Bn(pn) ∩Ho = ∅ and o ∈ Bn+1(pn).

Proof. Let K > 0 be the conical limit point constant. Let n ∈ N with n > K + 1. By

[Liu21, Corollary 5.8], we may assume that ΛH has at least two distinct points. Since
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H ↷ WCH(ΛH) is not cobounded, there exists p ∈ WCH(ΛH) with d(p,Ho) > n. By

definition, p ∈ γ for some bi-infinite geodesic γ with γ(±∞) ∈ ΛH. Since ΛH ⊆ ∂XN
o , we

have by [CD17, Proposition 4.2] that γ is is Morse for some Morse gauge depending only

on N . Since every point in ΛH is a conical limit point of Ho, there exists h′ ∈ H such that

d(h′o, γ) < K. Put q ∈ πγ(h
′o).

We may assume that γ(s) = q and γ(s′) = p with s < s′. Let A = {r ∈ [s, s′] : n <

d(γ(r), Ho)}. (Equivalently, one may define A = {r ∈ [s, s′] : Bn(γ(r)) ∩Ho = ∅}.) Note

that s′ ∈ A. Put t = inf A. By the definition of t, we have n ≤ d(γ(t), Ho), see Figure 4.1.

We now claim that d(γ(t), Ho) < n+ 1.

Suppose for contradiction that n + 1 ≤ d(γ(t), Ho). By the triangle inequality,

n ≤ d(γ(t−1), Ho). So if t−1 ∈ [s, s′], then t−1 ∈ A, however t = inf A. Thus t−1 ̸∈ [s, s′].

Therefore, t ∈ [s, s+ 1], and so

n+ 1 ≤ d(γ(t), ho) ≤ d(γ(t), h′o) ≤ d(γ(t), q) + d(q, h′o)

= d(γ(t), γ(s)) + d(q, h′o) ≤ 1 +K ≤ n

But then n+ 1 ≤ n, a contradiction.

Thus, there exists h ∈ H such that ho ∈ Bn+1(γ(t)), but Bn(γ(t)) ∩Ho = ∅. Put

pn = h−1(γ(t)). By [CD17, Lemma 3.3], hγ is a bi-infinite Morse geodesic with endpoints

in ΛH. As H ↷ X by isometries, Bn(pn) ∩Ho = ∅, and o ∈ Bn+1(pn), as desired.

We now prove that (4) implies (2) in the language of Theorem 1.2. We show

that, if the action is not cobounded on the weak convex hull, then using Lemma 4.1 we

can find a sequence of points which maximally avoid the orbit of H, but by Arzelà-Ascoli,
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n n

γ(A) γ(s′) = pγ(t)

ho

γ(s) = q

h′o

Ho

Figure 4.1: Diagram for Lemma 4.2. We can think of this proof as sliding the ball on the
right towards the left until it is “up against” the orbit Ho, such as the ball centered at γ(t).

geodesics connecting these points to the basepoint eventually fellow-travel a ray which has

orbit points that at most linearly diverge from the ray.

Theorem 4.3. Suppose X is a proper geodesic metric space and suppose H acts properly

on X by isometries. Assume that ΛH ̸= ∅, every point of ΛH is a horospherical limit point

of Ho, and that there exists a Morse gauge N such that ΛH ⊂ ∂XN
o . Then the action of

H ↷WCH(ΛH) is cobounded.

Proof. For contradiction, assume that H ↷ WCH(ΛH) is not a cobounded action. By

Lemma 4.1, there exists a sequence of points pi ∈WCH(ΛH) and an increasing sequence of

positive integers (ni)i such that Bni(pi)∩Ho = ∅, and o ∈ Bni+1(pi). Let γi : [0, d(0, pi)] →

X be a geodesic connecting o and pi with γi(0) = o. Notice that since ΛH ⊂ ∂XN
o , we have

that γi is N
′-Morse for some N ′ depending only on N . By restricting to a subsequence, we

may assume that γi converges, uniformly on compact subsets, to an N ′-Morse geodesic ray

γ with γ(0) = o.

By construction and by Lemma 2.34, γ(∞) ∈ Λ(WCH(ΛH)) ⊆ ΛH. So, by

[Cor17, Corollary 2.6], there is an N -Morse geodesic ray α with α(0) = o and d(α(t), γ(t)) <

D for all t ≥ 0, where D ≥ 0 is a constant that depends only on N . Let T = 2D+4, and put
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α′ = α[T,∞). Since α
′(∞) ∈ ΛH, and so by Theorem 3.8, α′(∞) is a funneled limit point of

H. Thus there exists h ∈ H so that ho ∈ FN
o (α′). Let t0 = min{s : α′(s) ∈ πα′(ho)}. Since

the sequence γi converges uniformly on compact sets to γ, we may choose i large enough so

that d(γi(t0), γ(t0)) ≤ 1, see Figure 4.2.

α(∞)

γ(∞)

o

pi

γi(t0)

γ(t0)

α(t0)

ho

α(T )

2D + 4

≤ 1

≤ D

≤ d(α(T ), α(t0))

Figure 4.2: Diagram for Theorem 4.3

By the triangle inequality we have that d(γi(t0), α
′(t0)) ≤ D + 1, and therefore

|d(0, γi(t0)) − d(0, α(t0))| ≤ D + 1. Also, by construction we have that d(ho, α′(t0)) ≤

d(α(T ), α(t0)). Therefore we have

d(pi, ho) ≤ d(pi, γi(t0)) + d(γi(t0), α
′(t0)) + d(α(′t0), h0)

≤ d(0, γi(t0)) + (D + 1) + d(α(T ), α(t0))

= d(o, pi)− d(o, γi(t0)) + (D + 1) + d(0, α(t0))− d(0, α(T ))

≤ (ni + 1) + (D + 1) + (D + 1)− (2D + 4) ≤ ni − 1.

However, this contradicts the assumption that Bni(pi) ∩Ho = ∅.
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We now present an alternate definition of a conical limit point which agrees with

Definition 3.2 in the case where ΛA is compact, and requires us to only consider of the

geodesic rays which emanate from the given basepoint. By Corollary 2.30 and by [CD17,

Lemma 4.1], the requirement that ΛH is compact is equivalent to the requirement that ΛH

is contained in the boundary of a single Morse stratum.

Proposition 4.4. Let X be a proper, geodesic metric space. Let Y ⊆ X. Suppose ΛY ̸= ∅.

Then the following are equivalent:

1. x ∈ ∂Xo is a conical limit point of Y

2. There exists K > 0 such that, for every N -Morse geodesic ray α : [0,∞) → X with

α(0) = o and α(∞) = x, and for every T > 0, there exists y ∈ Y such that y ∈ NK(α′),

where α′ : [0,∞) → X is defined by α′(t) = α(t+ T ).

Proof. Showing (1) implies (2) is a direct consequence of Lemma 2.20 and Definition 3.2.

Instead assume (2). Let β : [b,∞) → X be an N ′-Morse ray with β(∞) = x. Let

α : [0,∞) → X an N -Morse geodesic ray with α(0) = o and α(∞) = x. Without loss

of generality, by Cor 2.25 there exists T > 0 such that d(α(t), β(t)) < δN for all t > T .

Put α′ : [0,∞) → X via α′(t) = α(t + T ). By hypothesis, there exists y ∈ Y such that

y ∈ NK(α′). Say s ∈ [0,∞) such that d(α′(s), y) < K, so via the triangle inequality we

have d(β(s + T ), y) ≤ d(β(s + t), α(s + t)) + d(α′(s), y) ≤ δN +K. Thus, y ∈ NK+δN (β),

which shows (1).

We conclude the chapter by showing that (3) ⇒ (2) for Theorem 1.2. Although

shown in [CD17, Corollary 1.14], we give a direct proof not relying on [CD17, Theorem 1.1].
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Proposition 4.5. Let X be a proper geodesic space and let H be a finitely generated group

of isometries of X where the orbit map H → X via h 7→ ho is a stable mapping. If there is

a Morse gauge N so that ΛH ⊆ ∂XN
o , then every x ∈ ΛH is a conical limit point of Ho.

Proof. Let x ∈ ΛH, and let α : [0,∞) → X be an N -Morse geodesic ray with α(∞) = x,

α(0) = o. Let α′ = α|[a,∞) be a subray of α. Notice that α′ is N ′-Morse where N ′ depends

only on N by Lemma 2.20. By Proposition 4.4, it suffices to show that there exists some

K ≥ 0, depending only on N ′ and H, so that Ho ∩NK(α′) ̸= ∅.

Since H is a stable subgroup of isometries on X, we have that for any h ∈ H, there

exists a (λ, λ)-quasi-geodesic γ from o to ho such that, for any p ∈ γ, B2λ(p) ∩ Ho ̸= ∅.

(To find such a path γ, take a geodesic in a Cayley graph for H and embed it into X by

extending the orbit map along appropriate geodesic segments.)

Now, since x ∈ ΛH, there exists a sequence hn ∈ H such that the sequence of

geodesic segments, βn = [o, hno], converges (uniformly on compact subsets) to a geodesic

ray β : [b,∞) → X with β(∞) = x and β(b) = o. Since H is a stable group of isometries, βn

is N ′′-Morse by Definition 2.35. Up to potentially re-parameterizing β, there exists T > a

so that d(β(T ), α(T )) < δN by Corollary 2.25.

Since βn converges to β uniformly on BT+1(o), the ball of radius T +1 centered at

o, there exists n ∈ N and p ∈ βn so that d(β(T ), p) < 1. Since γn is an (λ, λ)-quasi-geodesic

with endpoints on βn, there exists q ∈ γn so that d(p, q) ≤ N ′′(λ, λ). Finally, there exists

h ∈ H so that d(ho, q) ≤ λ.

Therefore by the triangle inequality, d(α(T ), ho) ≤ d(α(T ), β(T )) + d(β(T ), p) +

d(p, q) + d(q, ho) ≤ δN + 1 +N ′′(λ, λ) + 2λ. As α(T ) ∈ α′, this completes the proof.
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Chapter 5

Applications to Teichmüller Space

We conclude by illustrating applications to the above work in the setting of Te-

ichmüller space for a finite type surface S. We begin by setting some notation. Let Mod(S)

denote the mapping class group of S and let T (S) denote the associated Teichmüller space.

We will denote the set of projective measured foliations on S by PMF(S). The Thurston

compactification of Teichmüller space is T (S) = T (S) ∪ PMF(S).

We take a moment to restate Corollary 1.7 using the above notation:

Corollary 5.1. (Restatement of Corollary 1.7.) Let H be a finitely generated subgroup of

Mod(S). The following are equivalent:

1. Every element of ΛH ⊂ ∂Mod(S) is a conical limit point of H ↷ Mod(S) and ΛH is

compact (in the Morse boundary of Mod(S)).

2. Every element of ΛH ⊂ PMF(S) is a conical limit point of H ↷ T (S).

By work of Cordes, ∂Mod(S) is homeomorphic to ∂T (S) (where ∂ refers to the

Morse boundary) [Cor17, Theorem 4.12], and there exists a natural continuous injective
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map h∞ : ∂T (S) ↪→ PMF(S) [Cor17, Proposition 4.14]. Keeping this in mind, we denote

the continuous inclusion f∞ : ∂Mod(S) ↪→ PMF(S). The purpose of this section is to prove

the following theorem.

Theorem 5.2. Let H be a subgroup of Mod(S), and let x∞ ∈ ΛH ⊆ ∂Mod(S) be a conical

limit point of H ↷ Mod(S). Then f∞(x∞) ∈ PMF(S) is a conical limit point of H ↷ T (S).

Remark 5.3. This theorem directly proves (1) ⇒ (2) of Corollary 1.7.

Our proof of Theorem 5.2 uses several of the tools developed in [Cor17], so we take

a moment to recall the construction and definitions presented therein and from [MM00].

The curve graph, denoted C(S), is a locally infinite simplicial graph whose vertices are

isotopy classes of simple closed curves on S. We join two vertices with an edge it there

exists representative from each class that are disjoint.

A set of (pairs of) curves µ = {(α1, β1), (α2, β2), . . . , (αm, βm)} is called a complete

cleanmarking of S if the {α1, . . . , αm} forms a pants decomposition of S, if each αi is disjoint

from βj whenever i ̸= j, and if each αi intersects βi once if the surface filled by αi and βi is

a one-punctured torus. (Otherwise, αi and βi will intersect twice, and the filling surface is

a four-punctured sphere.) We call {α1, . . . , αm} the base of µ and we call βi the transverse

curve to αi in µ. For the sake of completeness, we also define the marking graph, M(S),

although the definition is not needed in this paper. M(S) is the simplicial graph whose

vertices are markings as defined above, and two markings are joined by an edge if they differ

by an elementary move. The marking graph M(S) is quasi-isometric to the mapping class

group Mod(S), see [MM00].
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For each σ ∈ T (S) there is a short marking, which is constructed inductively by

picking the shortest curves in σ for the base and repeating for the transverse curves. Now

define a map Υ : M(S) → T (S) by taking a marking µ to the region in the ϵ-thick part of

T (S), denoted Tϵ(S), where µ is a short marking in that region. As stated in [Cor17], it

is a well known fact that Υ is a coarsely well defined map which is coarsely Lipschitz. We

take a moment to prove that this map is coarsely equivariant.

Lemma 5.4. Let Υ : M(S) → T (S) be as above, and let H < Mod(S) be finitely generated.

Then there exists a constant K ≥ 0 such that, for any marking µ ∈ M and for any h ∈ H,

dT (S)(hΥ(µ),Υ(hµ)) ≤ K.

Proof. Let µ = {(α1, β1), . . . , (αm, βm)} ∈ M(S) and h ∈ H be arbitrary. Let σ ∈ T (S)

so that µ is a short marking on σ. (Equivalently, let σ = Υ(µ).) Since the action of H

on T (S) permutes the lengths of curves, the length of each pair (αi, βi) with respect to σ

is the same as the length of the pair (hαi, hβi) with respect to hσ. Therefore as µ was a

short marking for σ, this shows that hµ is a short marking for hσ = hΥ(µ). However, by

definition of Υ, hµ is also a short marking for Υ(hµ). As Υ was a coarsely well defined

function, this shows that dT (S)(hΥ(µ),Υ(hµ)) ≤ K for some K ≥ 0, as desired.

We now prove Theorem 5.2, using the above lemma and several tools from [Cor17]

to show that points in conical neighborhoods in M(S) end up in conical neighborhoods of

T (S).

Proof. Fix µ0 ∈ M(S). Let x ∈ ∂M(S)µ0 be a conical limit point of Hµ0. Put σ0 = Υ(µ0).

We shall show that f∞(x) is a conical limit point of Hσ0 by verifying the condition in
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Proposition 4.4. Let T ≥ 0 be arbitrary, and let λ : [0,∞) → T (S) be an arbitrary Morse

geodesic ray with λ(0) = σ0 and λ(∞) = f∞(x).

Let α : N → M(S) be an N -Morse geodesic with α(0) = µ0 and α(∞) = x. By

[Cor17, Lemma 4.9], Υ(α) is an N ′-Morse (A,B)-quasi-geodesic, for some A, B, and N ′

depending only on N . Put β = Υ(α). Notice that β(0) = σ0 and, by the construction of

f∞, we have β(∞) = f∞(x). (For details on the construction of f∞, we refer to [Cor17],

specifically Proposition 4.11, Theorem 4.12, and Proposition 4.14.)

Now let γn = [σ0, β(n)]. Then each γn is N ′′-Morse for N ′′ depending on N , and

by Arzelá-Ascoli and [Cor17, Lemma 2.10], a subsequence of the γn converges to a geodesic

ray β which is N ′′-Morse, and by [Cor17, Lemma 4.9], β is bounded Hausdorff distance

from γ, where the bound only depends on N . Say that dHaus(β, γ) ≤ K1 for K1 ≥ 0. By

[Cor17, Corollary 2.6], dHaus(γ, λ) ≤ K2 where K2 ≥ 0 depends only on N . Choose S ≥ 0

so that, for all s ≥ S, dT (S)(β(s), λ[T,∞)) ≤ K1 +K2.

By Proposition 4.4, there exists L ≥ 0 where, for all r ≥ 0, dM(S)(hµ0, α|[r,∞)) ≤ L

for some h ∈ H. Since β = Υ(α) and Υ is coarse Lipschitz, there exits K3 ≥ 0 and h ∈ H

so that dT (S)(Υ(hµ0), β|[S,∞)) ≤ K3. Let s0 ∈ [S,∞) so that dT (S)(Υ(hµ0), β(s0)) ≤ K3.

By Lemma 5.4, there exists K4 ≥ 0 such that dT (S)(Υ(hµ0), hΥ(µ0)) ≤ K4.

By the triangle inequality, we have

dT (S)(hσ0, λ|[T,∞)) ≤ d(hΥ(µ0),Υ(hµ0)) + d(Υ(hµ0), β(s0)) + d(β(s0), λ|[T,∞))

≤ K4 +K3 +K2 +K1.

By Proposition 4.4, λ(∞) = f∞(x) is a conical limit point of Hσ0.
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Chapter 6

Minimality of Sublinearly Morse

Boundaries

In this chapter, we present work with Yulan Qing and Elliott Vest, and we provide

the proof of Theorem 1.8, i.e. that the sublinearly Morse boundary is minimal. Before

diving into the proofs of these statements, we take a moment to introduce this boundary.

Just as the Morse boundary in Definition 2.18 was defined using Morse geodesic rays, we

define the sublinearly Morse boundary using sublinearly Morse rays. We direct the reader

to [QR22] and [QRT] for a more detailed description of the sublinearly Morse boundary.

We begin by first recalling the definition of a sublinear function, and we set nota-

tion for a common inequality found in the rest of this chapter.

Definition 6.1. A function κ : [0,∞) → [1,∞) is sublinear if limx→∞
κ(x)
x = 0.

A quantity D ≥ 0 is small compared to r > 0 if D ≤ r
2κ(r) .
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Although not required, it is often helpful to additionally assume that sublinear

functions are monotone increasing and concave, see [QR22, Remark 3.1] for details. Given

a proper, geodesic metric space X and a basepoint o, we adopt the following conventions

||x|| = d(x, o), κ(x) = κ(||x||)).

Definition 6.2. For a (quasi-)geodesic α : I → X and a constant n ≥ 0, we define the

(κ, n)-neighborhood of α to be Nκ(α, n) = {x : d(x, α) ≤ nκ(x)}.

Comparing this definition to the definition of a M -neighborhood shows a striking

difference: theM -neighborhood of a geodesic α is a set of “constant width” centered around

α, whereas the (κ, n)-neighborhood of α is a set whose width grows at a sublinear rate, see

Figure 6.1. However, these definitions agree exactly in the case that κ is a constant function.

o αo α
≤M

x

≤ nκ(x)

Figure 6.1: A comparison of NM (α) and Nκ(α, n). On the left is NM (α), a neighborhood
of constant width. On the right is Nκ(α, n), a neighborhood of α whose width grows
sublinearly.

Now that we have the notion of a sublinear neighborhood, we can use these to de-

fine a sublinearly Morse (quasi-)geodesic. Recall from Definition 2.17 that a Morse geodesic

α keeps (K,C)-quasi geodesics that begin and end on α within a neighborhood of constant
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width, where the width depends only on K and C. The following definition modifies this

familiar setting by instead using a neighborhood of sublinearly growing width.

Definition 6.3 (Sublinearly Morse Geodesic). A (quasi-)geodesic α is κ-Morse if there

is a Morse gauge N : [1,∞) × [0,∞) → [0,∞) so that, for any (K,C)-quasi-geodesic

φ : [a, b] → X with φ(a), φ(b) ∈ α, we have φ ⊆ Nκ(α,N(K,C)).

We say α is sublinearly Morse if there exists a sublinear κ so that α is κ-Morse.

Remark 6.4. This definition is called κ-weakly Morse in the literature, see [QRT, Defini-

tion 3.9]. We note that in the special case where κ is a constant function, Definition 6.3

exactly reconstructs the definition of a Morse geodesic found in Definition 2.17.

Another definition classifies sublinear geodesics by describing how far away the

“middle” of a quasi-geodesic is allowed to get from the geodesic.

Definition 6.5. Let α : [0,∞) → X be a (quasi)-geodesic with α(0) = o, and let κ be a

concave sublinear function. We say that α is κ-strongly Morse if there exists a Morse

gauge N : [1,∞)×[0,∞) → [0,∞) such that for any sublinear function κ′ and for any r > 0,

there exists R such that for any (K,C)-quasi-geodesic ray β : [0,∞) → X with β(0) = o

and N(K,C) small compared to r,

d(β(tR), α) ≤ κ′(R) =⇒ β|[0, tr] ⊂ Nκ

(
α,N(K,C)

)
,

where tr = inf{t ∈ [0,∞) : d(o, β(t)) = r} and tR = inf{t ∈ [0,∞) : d(o, β(t)) = R}, i.e.

the first time β(t) is distance r or distance R from φ(0) = o, respectively.

While more technical than Definition 6.3, these two definitions are equivalent in

the setting of proper, geodesic metrics spaces, as shown in the following result.
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Proposition 6.6. ([QRT, Proposition 3.10]) Let X be a proper, geodesic metric space, and

let α be a (quasi)-geodesic. Then α is κ-Morse if and only if α is κ-strongly Morse. □

Now looking towards defining a boundary using these geodesics, we define the

following relaxed version of fellow-travelling.

Definition 6.7 (κ Fellow Travelling). Given two (quasi-)geodesic rays α, β based at o, we

say that α ≃ β if they κ-fellow travel each other: i.e. if

lim
r→∞

dX(α(r), β(r))

r
= 0.

Equivalently, we say that α ≃ β if α is contained in a κ-neighborhood of β and β is contained

in a κ-neighborhood of α. We denote the equivalence class of α by α(∞), and we denote an

equivalence class without a specified representative using Gothic letters such as a.

Definition 6.8. Let κ be a sublinear function and let X be a proper, geodesic metric space.

Then the κ-Morse boundary based at o, denoted by ∂κXo, is the set of all equivalence

classes of κ-Morse (quasi-)geodesic rays based at o up to κ-fellow traveling.

Remark 6.9. If X is a proper geodesic metric space, then by [QRT, Lemma 4.2] every

equivalence class a contains a geodesic representative, i.e. there exists a geodesic ray α so

that α ∈ a. In particular, Definition 6.8 is well-defined by either equivalence classes of

quasi-geodesic rays or by equivalence classes of geodesic rays. In addition, if G acts on X

by isometries, then the action G↷ ∂κXo is well defined.

The topology on ∂κXo is defined similarly to the topology on the visual boundary

for a hyperbolic space, see Definition 2.9. However, while neighborhoods of α in the visual

boundary are defined by (constant width) fellow traveling up to a distance of r away from
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the basepoint, the neighborhoods of α in the κ-Morse boundary are defined by sublinearly

fellow traveling up to distance r from the basepoint.

Definition 6.10. Let X be a proper, geodesic metric space, and let κ be a sublinear function.

Let α be a geodesic ray representative of with a ∈ ∂κXo, and let N be a Morse gauge for α.

We define U(α, r) as follows:

An equivalence class b ∈ ∂κXo is an element of U(α, r) if, for any (K,C)-quasi-

geodesic φ : [0,∞) → X with φ ∈ b and with N(K,C) small compared to r (in the sense of

Definition 6.1), we have

φ([0, tr]) ⊆ Nκ(α,N(K,C))

where tr = inf{t ∈ [0,∞) : d(o, φ(t)) = r}, i.e. the first time φ(t) is distance r from

φ(0) = o.

For a proper, geodesic metric space X, the collection of sets U(α, r) form a neigh-

borhood basis for a, and in particular a ∈ U(α, r) [QRT, Lemma 4.2]. This defines a

topology on ∂κXo [QRT, Proposition 4.7], and in fact this topology is metrizable [QRT,

Theorem 4.10]. Notice that when G ↷ X by isometries, that a ∈ U(β, r) is equivalent to

ga ∈ U(gβ, r).

Now that we have defined the topology for ∂κXo, we begin building the results

towards a proof of Theorem 1.8. We start by defining what it means for a group to act

minimally on a space.

Definition 6.11. Let X be a topological space, and suppose G is a group acting on X. The

action G↷ X is called minimal if the orbit Gx is dense in X for any x ∈ X.
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Remark 6.12. Just because a group G has one dense orbit Gx in X, this does not mean

every orbit is dense in X. For example, let X = R and let G = Q×, the multiplicative

group of rational numbers, act on X by multiplication. Then G · 1 = Q× is dense in R, but

G · 0 = {0} is clearly not dense.

Definition 6.13. Let X be a proper, geodesic metric space and suppose G ↷ X acts

coboundedly with cobounded constant K. Let β : [0,∞) → X be a geodesic ray. We say a

sequence of group elements (gi)i tracks β if, for every T ≥ 0, there exists M ≥ 0 so that,

for every i ≥M , there exists t ≥ T with d(gio, β(t)) < K.

In all the results to follow, X will be a proper, geodesic metric space, and G↷ X

will be a cobounded action by isometries. We first show that when |∂κXo| ≥ 3, for any

b ∈ ∂κXo, there exists a ∈ ∂κXo so that a can be translated away from o along b, and vice

versa.

Lemma 6.14. Let K ≥ 0 be the cobounded constant of G ↷ X and assume |∂κXo| ≥ 3.

For any b ∈ ∂κXo, choose a geodesic ray β ∈ b and let (gi)i be any sequence in G that tracks

β. Then, there exists a ∈ ∂κXo such that for any α ∈ a and R > 0, there exists j ∈ N such

that giα ∩ BR(o) = ∅ for all i ≥ j. In addition, for any sequence (hi)i that tracks α, and

for any R > 0 there exists j ∈ N such that hiβ ∩BR(o) = ∅ for all i ≥ j.

Proof. Since (gi)i tracks β, d(gi · o) → ∞ as i→ ∞. Let a, c ∈ ∂κXo so that a ̸= c ̸= b. Let

α ∈ a and ζ ∈ c be geodesic representatives. For each i, let pi ∈ πgiα(o) and qi ∈ πgiζ(o). For

the sake of contradiction, assume that both sequences (||pi||)i and (||qi||)i have a subsequence

bounded above by some R > 0. By passing to a subsequence, we may assume both sequences

(||pi||)i and (||qi||)i are bounded above by R. Note that this implies d(gio, pi) → ∞ and
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d(gio, qi) → ∞, so we get that {g−1
i pi} and {g−1

i qi} are unbounded sequences. For each i,

we have d(pi, qi) < 2R. Thus, d(g−1
i pi, g

−1
i qi) < 2R. This gives two unbounded sequences

{g−1
i pi} and {g−1

i qi} such that d(g−1
i pi, g

−1
i qi) < 2R. This implies α and ζ fellow travel

which gives α ≃ ζ, a contradiction to a ̸= c.

Without loss of generality we may assume (||pi||)i is unbounded. Now assume, for

contradiction, that there exists an infinite sequence (xi)i with xi ∈ hiβ ∩ BR(o) for some

R > 0. Let kio ∈ BK(xi). Then {ki} is a sequence in G that tracks β, but d(kio, o) ≤ K+R

for all i, a contradiction.

We now introduce a lemma which, given a geodesic representative α of a and group

element g, constructs a uniform quality quasi-geodesic from gα to β.

Lemma 6.15. Let K ≥ 0 be the cobounded constant of G ↷ X and assume |∂κXo| ≥ 3.

For any b ∈ ∂X, choose a geodesic ray β : [0,∞) → X with β ∈ b and β(0) = o, and a

sequence (gi)i that tracks β. Let α ∈ a be as in Lemma 6.14. For any pi ∈ πgiα(o), there

exists a (27, 3K)-quasi-geodesic ray that contains [o, pi] whose tail end is β.

Proof. There exists an r ≥ 0 such that d(gi · o, β(r)) < K by definition of the cocompact

action. Thus, by [QR22, Lemma 2.5] γi = [o, pi] ∗ [pi, gio] ∗ [gio, β(r)] is a (3,K)-quasi-

geodesic. Let R > 0 be such that BR(o) contains γi. Denote qi = πγi(β(R)). We have

||qi|| = d(o, qi) ≥ d(o, β(R))− d(β(R), qi)

≥ R− d(β(r), β(R))

= R− (R− r) = r.
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Also, we see that d(o, pi) ≤ r + K because d(o, gio) ≤ r + K and pi is a closest point

projection. We now break into cases.

CASE 1: Suppose qi ̸∈ [o, pi], then let η be the concatenation of γi, starting at o

and ending at qi, with [qi, β(R)]. Note that η is a (9,K)-quasi-geodesic. Furthermore, as

||qi|| ≤ R = ||β(R)||, we get that for any x ∈ β([R,∞)), πη(x) = β(R), via an argument

found in [QR22, Lemma 4.3]. Hence η ∗ β([R,∞)) is an (27,K)-quasi geodesic that fellow

travels β. See Figure 6.2.

CASE 2: In the case that qi ∈ [o, pi], then qi is within K of pi. Indeed, since

||qi|| ≥ r and ||pi|| ≤ r+K, the fact that both qi and pi are on the geodesic [o, pi] emanating

from o implies d(qi, pi) ≤ K. Let η′ be the path which follows γi from o to qi, then follows

γi from qi back to pi, then follows [pi, qi], and finally follows [qi, β(R)]. Then η
′ is a (9, 3K)-

quasi-geodesic. Similar to CASE 1, we find a (27, 3K)-quasi-geodesic that fellow travels

β.

γi = [o, pi] ∗ [pi, gio] ∗ [gio, β(r)]
η = [o, pi] ∗ [pi, qi] ∗ [qi, β(R)]

a

gi · a

gi · o

βo

pi = πgi·a(o)

β(r) β(R)

qi = πγi(β(R))

Figure 6.2: A picture of CASE 1. We have η will be a (9,K) quasi-geodesic that contains
the geodesic segment [o, pi].
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Corollary 6.16. Given the conditions of Lemma 6.15, if β is κ-Morse, then the (27, 3K)-

quasi-geodesic ray found in Lemma 6.15 is κ-Morse with Morse gauge depending only on K

and the Morse gauge of β.

Proof. This is immediate from Lemma 6.15 and [QRT, Corollary 3.5].

Remark 6.17. Notice that Lemma 6.14 gives symmetric results: translating the basepoint

of α along β leaves every ball of radius R, and vice-versa. Therefore, by just changing letters

in the proof of Lemma 6.15, we can prove that there exists a (27, 3K)-quasi-geodesic which

first projects to an orbit of β, then eventually fellow travels α. The observation that these

arguments can change the role of α and β will be important point in proving Theorem 6.23.

To summarize the above lemma, we have found a quasi-geodesic which first nearest-

point projects to giα and then, eventually, fellow travels β. In this next lemma, we find a

quasi-geodesic λi which closest point projects to giα and then fellow travels giα. Using the

fact that the quasi-geodesic from Lemma 6.15 is Morse for a Morse gauge depending only

on K and β will give us control over the Morse gauge for λi.

Lemma 6.18. Let K ≥ 0 be the cobounded constant of G↷ X and assume |∂κXo| ≥ 3. For

any b ∈ ∂κXo, choose a geodesic β : [0,∞) → X) with β ∈ b and β(0) = o, and sequence

(gi)i that tracks β. Let α ∈ a be as in Lemma 6.14. For some pi ∈ πgiα(o), define λi as

the path which first follows [o, pi], then follows the ray giα forever. Then for every i, λi is

a (3, 0)-quasi-geodesic that is κ-Morse with Morse gauge depending only on α, β and K.

Proof. See Figure 6.3 for a picture of this proof. Consider any (q,Q)-qusi-geodesic ξ ∈

λi(∞). Let qi ∈ πξ(pi). Let ω be the path defined by following ξ from o to qi, then following
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[qi, pi]. Then ω is a (3q,Q)-quasi-geodesic with endpoints on [o, pi] which is contained in η,

where η is as constructed as in the proof of Lemma 6.15. By Definition 6.3,

ω ⊂ Nκ

(
η,mη(3q,Q)

)
,

where mη is the Morse gauge of η, and by Lemma 6.15, mη depends only on β and K.

Similarly, defining ω′ as the path which first follows [o, qi], and then follws the quasi-geodesic

ray ξ to infinity, we have that ω′ is a (3q,Q)-quasi-geodesic that fellow travels giα. Thus

ω′ ⊂ Nκ

(
giα,mgiα(3q,Q)

)
,

where mgiα is the Morse gauge of giα. But since gi acts by isometries, mα = mgiα is a

Morse gauge for α. Hence, we conclude ξ ⊂ ω ∪ω′ ⊂ Nκ

(
gi · a,mη(3q,Q)+mα(3q,Q)

)
.

λi = [o, pi] ∗ [pi, gi · a(∞)]

α

giα

gio

βo

pi = πgiα(o)

ξ

πξ(pi) = qi

Figure 6.3: Diagram for Lemma 6.18. To show ξ is κ-Morse, we subdivide ξ into two parts.
The initial segment can be leveraged by using the κ-Morseness of η in Lemma 6.15. The
remaining part of ξ fellow travels gi · a, so we leverage the κ-Morseness of gi · a.

Remark 6.19. Notably, the Morse gauge for λi does not depend on i.
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Notice that the construction of each λi begins by projecting to a point on giα.

Recall that we are choosing the sequence gi so that gi stays close to β and gets farther

and farther from o. It is therefore not surprising for us to find that the λi end up stay-

ing sublinearly close to β for longer and longer periods of time, as we show in the next

proposition.

Proposition 6.20. Let K ≥ 0 be the cobounded constant of G↷ X and assume |∂κXo| ≥ 3.

For any b ∈ ∂κXo, choose a geodesic β : [0,∞) → X) with β ∈ b and β(0) = o, and sequence

(gi)i that tracks β. Let α ∈ a be as in Lemma 6.14. For some pi ∈ πgiα(o), define λi as the

path which first follows [o, pi], then follows the ray giα forever. For any r > 0 there exists

an i such that

λi([0, tr]) ⊂ Nκ

(
β,mβ(9, 0)

)
,

where tr is the first time λi(t) is distance r from o and mβ is the Morse gauge of β.

Proof. Set κ′ = mβ(9, 0)κ. Since β is κ-Morse, there exists an R = R(3, 0, r, κ′) such that

Definition 6.5 holds. By Lemma 6.14, There exists an i such that for λi, we have ||pi|| ≥ R.

By Lemma 6.15, d(λi(R), β) ≤ mβ(9, 0)κ(λi(R)) = mβ(9, 0)κ(R). Hence, as β is κ-Morse,

λi([0, tr]) ⊂ Nκ

(
β,mβ(9, 0)

)
.

Notice that, referring to Definition 6.10, we have just shown that for every r > 0,

there exists i so that λi ∈ U(β, r). However, in order to satisfy the full conditions of

Definition 6.10, we need to show that the entire equivalence class of λi is contained in

U(β, r). This fact is straightforward: If ξ is in the same equivalence class as λi, then ξ and

λi sublinearly fellow travel in the sense of Definition 6.7. Since λi sublinearly follows β up
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to distance r, and ξ sublinearly follows λi for all time, ξ must also sublinearly travel β up

to some distance r′. We formalize this argument in the next proposition.

Proposition 6.21. Let K ≥ 0 be the cobounded constant of G↷ X and assume |∂κXo| ≥ 3.

For any b ∈ ∂κXo, choose a geodesic β : [0,∞) → X with β ∈ b and β(0) = o, and sequence

(gi)i that tracks β. Let α ∈ a be as in Lemma 6.14. For some pi ∈ πgiα(o), define λi as the

path which first follows [o, pi], then follows the ray giα forever. For any r > 0, there exists

an i such that for any (q,Q)-quasi-geodesic ξ with ξ ≃ λi and mβ(q,Q) small compared to

r, we have

ξ([0, tr]) ⊂ Nκ

(
β,mβ(q,Q)

)
,

where tr is the first time ξ(t) is distance r from o and mβ is the Morse gauge of β.

Proof. Let mλi
be the Morse gauge for λi. Choose R > 0 to be sufficiently large and i

such that λi([0, tR]) ⊂ Nκ

(
β,mβ(9, 0)

)
, where tR is the first time λi(t) is distance R from

o. Specifically, we can choose R to be larger than the R(3, 0, r, κ′) from Proposition 6.20

and also larger than 2r. Pick any (q,Q)-quasi-geodesic ξ such that ξ ≃ λi with mβ(q,Q)

small compared to r. By being in the same equivalence class, ξ([0, tr]) ⊆ Nκ

(
λi,mλi

(q,Q)
)
.

Since mλi
is independent of i by Remark 6.19, we denote mλi

by mλ. For any x ∈ ξ([0, tr]),

||πλi
(x)|| ≤ 2||x|| ≤ 2r by [QRT, Lemma 2.2]. Since R > 2r,

d

(
πβ

(
πλi

(x)
)
, πλi

(x)

)
≤ mβ(9, 0)κ(πλi

(x)) ≤ 2mβ(9, 0)κ(x).

That is, for any r > 0, we can find an i such that all ξ ≃ λi have

ξ([0, tr]) ⊂ Nκ

(
β, 2mβ(9, 0) +mλ(q,Q)

)
.
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See Figure 6.4. Note that by Lemma 6.18, 2mβ(9, 0) +mλ(q,Q) is also a Morse

gauge for β. By [QRT, Lemma 4.2] and its proof, there will also exist an i such that any ξ

with ξ ≃ λi will also have ξ([0, tr]) ⊂ Nκ

(
β,mβ(q,Q)

)
.

λi = [o, pi] ∗ [pi, giα(∞)]

α

giα

gio

βo

pi = πgiα(o)

ξ

ξ(tr)

x

πλi
(x)

πβ
(
πλi

(x)
)

λi(R)

Figure 6.4: Diagram for Proposition 6.21. We choose R large enough for any ξ and any
x ∈ ξ([0, tr]), its projection to λi will be within [o, pi] ⊆ λi. This bounds the distance of all
x ∈ ξ([0, tr]) to β in terms of mβ and mλ.

Corollary 6.22. Let K ≥ 0 be the cobounded constant of G↷ X and assume |∂κXo| ≥ 3.

For any b ∈ ∂κXo, choose a geodesic β ∈ b and a sequence (gi)i that tracks β. Let a be as

in Lemma 6.14. Then for any r > 0, there exists i so that gia ∈ U(β, r).

Proof. This is Proposition 6.21 using the notation of Definition 6.10.

We now prove the main result of this chapter, minimality of the sublinearly Morse

boundary. Notice that, by Lemma 6.14, for any b ∈ ∂κXo, there exists some element a so

that b ∈ Ga. However, we need to show that any element of ∂κXo has a dense orbit.
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Theorem 6.23 (Minimality). Let K ≥ 0 be the cobounded constant of G↷ X and assume

|∂κXo| ≥ 3. For every a ∈ ∂κXo, the orbit Ga is dense in ∂κXo.

Proof. Let b, c ∈ ∂κX. If b ∈ Gc, we are done. Otherwise, let a ̸= b ̸= c. Let α ∈ a β ∈ b,

and ζ ∈ c be geodesic ray representatives all with domain [0,∞). Let (gi)i be a sequence in

G that tracks β and let {hj} be a sequence in G that tracks α as in Lemma 6.14. Let r > 0

be arbitrary. By Corollary 6.22 there exists i so that gia ∈ U(β, r). It is clear that, since the

group action of G↷ X is by isometries, a ∈ U(g−1
i β, r). By [QRT, Claim 4.6], there exists

r′ > 0 and α′ ∈ a so that U(α′, r′) ⊆ U(g−1
i β, r). Again by Corollary 6.22 (and keeping

in mind Remark 6.17) there exists j so that hjc ∈ U(α′, r′), and so hjc ∈ U(g−1
i β, r), i.e.,

gihjc ∈ U(β, r).

We note that Theorem 1.8 adds an additional assumption that the group action

G↷ X is also proper, and in fact is the special case where X is a Cayley Graph for G, see

Definition 2.1 and Lemma 2.5. Therefore, Theorem 1.8 is a special case of Theorem 6.23.
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