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Three-dimensional phase contrast imaging of multiply-scattering samples in X-ray and electron
microscopy is extremely challenging, due to small numerical apertures, the unavailability
of wavefront shaping optics, and the highly nonlinear inversion required from intensity-only
measurements. In this work, we present a new algorithm using the scattering matrix formalism
to solve the scattering from a non-crystalline medium from scanning diffraction measurements,
and recover the illumination aberrations. Our method will enable 3D imaging and materials
characterization at high resolution for a wide range of materials.

I. INTRODUCTION

Phase contrast imaging is widely used in light [1, 2], x-
ray [3, 4], and electron microscopy [5, 6], due to its high
efficiency and resolution. By using coherent radiation to
illuminate a sample, we can resolve very small changes
in a sample’s local index of refraction through the
interference of the illumination wave fronts that the
accumulated phase shifts produce [7]. However, because
we can only directly measure the probability density
of a illumination wave function (given by the wave
intensity, or amplitude squared), phase contrast imaging
is a fundamentally nonlinear measurement process: we
must indirectly infer the underlying relative phase shifts
induced by the sample [8].

Various approximations can make phase contrast
microscopy data easier to interpret. The first is by
assuming that the sample is a pure phase object, i.e.
it does not modulate the illumination wave function
amplitude directly, and so any variations in the measured
intensity can be directly ascribed to changes in the
sample’s index of refraction [9]. However this assumption
does not guarantee uniqueness in all cases, due the
possibly of phase wrapping [10]. An even stronger
assumption is the weak phase object approximation
(WPOA), where the sample’s transmission function
is assumed to be a small imaginary perturbation a
known carrier wave [11]. When the WPOA holds, the
linear relation implied between specimen potential and
measured intensity allow constructive and unambiguous
solution. Another commonly used simplification in phase
contrast microscopy is the projection approximation

∗ philipp.pelz@berkeley.edu
† cophus@gmail.com

(PA), where all scattering is assumed to originate from
an infinitesimally thin 2D plane [12, 13]. The various
different approximations above hold for a wide range
of samples of interest and are therefore very useful in
practice [14].

However, phase contrast imaging of many samples cannot
be approximated by any of the above assumptions.
Transmission electron microscopy (TEM) in particular
often violates these assumptions, due to high scattering
cross section of electrons with matter [15]. Instead, these
scattering processes can typically only be modeled by a
framework that includes multiple scattering [16]. The
equations describing multiple scattering for a paraxial
wave function can be approximately solved with the
multislice algorithm [17], which has also been used as
a model for inverse scattering in many experimental
configurations in light, X-ray- and electron microscopy.
While the inverse multislice model has been successfully
applied to image thick, multiply scattering specimens in
light microscopy [18–21], its use in X-ray [22–26] and
electron microscopy [27–30] has been limited to proof-
of-principle demonstrations with less than 10 slices or
weakly scattering samples. This is mainly due to the
fact that the optical systems in X-ray and electron
microscopy have relatively small numerical apertures,
such that the information recorded from a single view
covers only a small fraction of reciprocal space [31–
33]. This problem can be overcome either by enforcing
strong prior knowledge about the underlying scattering
potential in the form of sparsity constraints or the
proper choice of slice separation [30], or by performing
tomographic experiments [34–36].

Another framework that incorporates multiple scattering
is the scattering matrix (S-matrix) formalism [37, 38].
In electron microscopy, the S-matrix formalism has
been used to efficiently calculate diffraction results
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with single crystals [38] and for scanning TEM
(STEM) experiments [39, 40], and to retrieve projected
potentials of strongly scattering samples in a two-step
approach. First, the S-matrix is retrieved from a
series of intensity measurements. Second, the projected
structure is retrieved. The proposed experimental
methods for retrieval of the S-matrix from intensity
measurements range from measurements with different
crystal thicknesses and sample tilts [41], different sample
tilts alone [42–44], wavelength variation [45], large-angle
rocking beam diffraction [46], and scanning diffraction
with a convergent beam [47]. Only the last two of
these approaches have been experimentally demonstrated
[46, 48], and only on single-crystal structures.

In the visible light wavelengths, S-matrix retrieval
and subsequent singular value decomposition allows
the identification of transmission eigenchannels [49] in
strongly scattering materials and maximization of energy
transport [50] through the system. Phase retrieval of
the S-matrix is performed by real-space phase- [51] or
amplitude-modulation [52, 53], 4-phase interferometry
[49], or full-field Mach-Zehnder interferometry [54] with
input- and output channels in the plane-wave basis. The
input and output channels of the S-matrix are often
represented in real-space, achieved by imaging the output
plane with a CCD camera.

Our contribution in this work is three-fold: first, we
develop the measurement operator to calculate scanning
diffraction intensities of arbitrary samples from a given
S-matrix and derive its adjoint operator. Second, we
formulate a phase retrieval algorithm that retrieves the
S-matrix of arbitrary samples from a series of scanning
diffraction measurements with different modulations of
the illumination aperture (e.g. a defocus series). Third,
we formulate a relaxation of the phase retrieval algorithm
for samples that do not require the full S-matrix to be
reconstructed.

II. RECONSTRUCTING THE S-MATRIX

A. Theory of phase contrast imaging

Phase contrast microscopy with coherent light or matter
waves defined by the wavefunction |ψ〉r typically uses a
series of interferometric measurements to invert a partial
differential equation of the form

i
[
a∇2
⊥ + b V (r′)

]
|ψ〉r′ =

∂ |ψ〉r′
∂z

, (1)

where i is the imaginary constant, ∇2
⊥ is the two-

dimensional Laplace operator, V (r′) is the three-
dimensional potential over the real space coordinates
r′ = (r, z), and a and b are real-valued constant
prefactors. The formal operator solution to this equation

for a wave function that has propagated a distance ∆z
through the potential is given by [55],

|ψ〉(r,z+∆z) = exp
[
ia∆z∇2

⊥ + ib V∆z(r, z)
]
|ψ〉r′ . (2)

In the scattering matrix formalism, the entire process of
multiple scattering is modeled by multiplication with the
complex-valued linear operator S,

|ψ〉out = S |ψ〉in . (3)

The S-matrix formalism has a wide range of applications
in describing the interaction of coherent waves with
multiply scattering objects [56].

All the previously discussed methods for S-matrix-
retrieval at high resolution have in common that
they require a crystalline sample to solve for either
the scattering matrix or the structure factors. The
interferometric methods developed for light optics rely
on the ability to precisely manipulate phases and/or
amplitudes of the S-matrix input channels and such
precise control of the electron and X-ray optics is not
yet feasible. In the following section, we describe our
iterative reconstruction scheme from scanning diffraction
measurements for S-matrix-retrieval.

B. A real-space S-matrix measurement model

Previous work for retrieving the S-matrix from scanning
diffraction measurements modeled the formation of the
diffraction pattern intensity in the far-field of the sample,
given a coherent probe |ψ〉 at position ρ,

|ψ〉r−ρ =
∑

|h|<hmax

Ψ(h)e2πih·(r−ρ), (4)

with an intensity measurement given by [47]

I(q,ρ,Ψ) =

∣∣∣∣∣∣
∑

|h|<hmax

Sq,hΨ(h)e−2πih·ρ

∣∣∣∣∣∣
2

. (5)

In this work, we use the approximation that the wave
function has a finite support after propagating through
the specimen potential. To use this approximation as a
constraint in an inversion algorithm, we need to represent
the S-matrix in real space:

I(q,ρ,Ψ) =

∣∣∣∣∣∣Fr

 ∑
|h|<hmax

Sr,hΨ(h)e−2πih·ρ

∣∣∣∣∣∣
2

. (6)

Here Sr,h is the S-matrix that maps Fourier-space
input coefficents at wave-vectors h (we refer to these
as the “beams” of the S-matrix) to real-space output
coefficients at positions r.



3

a b

* * *
***

* * *
* * *

***
* * *

* * *
***

* * *
* * *

***
* * *

Ag
C

24nm

FIG. 1. Measurement scheme for S-matrix inversion. (a) A scanning diffraction series of a strongly scattering sample at atomic
resolution, where the phases Ψd of the probe-forming aperture are varied after each scan, here by changing the defocus. (b)
Computational graph of the S-matrix measurement operator for D = 4 different defocus aberrations. For each scan position, a
patch with the size of the diffraction detector (M1 ×M2) is cropped out of each S-matrix beam. Then, each cropped beam is
multiplied by the corresponding complex phase factor (indicated by the * operation), depending on the phase and amplitude of
beam the illumination aperture Ψd,b, and the scanning phase e−2πihb·ρk,d of the current position. Subsequently, all phase-shifted
beams are coherently summed (the Σ operator) to form an exit wave. Then the exit wave is propagated to the far-field (Fr

operation) and measured on the detector.

A previous experiment [48] used Eq. 5 and a series
of defocus modulations to retrieve the phases of Sq,h

for a set of h vectors separately, and then used
symmetry relations of Sq,h to find the relative phases
between the different S-matrix columns. Whereas that
approach is only valid for crystalline samples, we use
only self-consistency in the measured data and retrieve
all amplitudes and phases of Sr,h simultaneously. We

also introduce a real-space compactness constraint on
the scattered probes produced by the scattering matrix,
equivalent to the method of Fourier-interpolating the S-
matrix [39]. We introduce the cropping operator,

Cρ,∆(r) =

{
1 if rx − ρx ≤ ∆x/2 and ry − ρy ≤ ∆y/2

0 otherwise

(7)
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a two dimensional rectangular function of width ∆
centered about each probe scan position ρ, which
transforms Eq. 5 into

I(q,ρ,Ψ) =

∣∣∣∣∣∣Fr

 ∑
|h|<hmax

[Cρ,∆(r)Sr,h] Ψ(h)e−2πih·ρ

∣∣∣∣∣∣
2

.

(8)
The fact that the cropping operator acts on all S-
matrix beams equally leads to a self-consistent solution
when measurements are taken with overlapping probe
positions.

C. Phase retrieval of the S-matrix

We now describe an algorithm to retrieve all amplitudes
and phases of Sr,h simultaneously, given a set of
phase modulations {χd(h)}d=1,...,D of the probe-forming
aperture, using only self-consistency in the measured
data. Let the detector be sampled with M1 × M2

pixels. We perform a scan with K positions and D
different probes and label a single position with k
and a single defocus with d. Then the measured
intensities have the dimension I ∈ RK·D·M1·M2 . For
ease of notation, we enumerate all B samples in
|h| < hmax with indices b = 1, ...,B. The S-matrix
measurement operator maps the B beams of the S-
matrix of sampled on a discrete grid of N1 × N2 pixels
and the D probes to K · D diffraction patterns of size
M1 × M2. A : CB×N1×N2 × CD×M1×M2 → CKDM1M2 .
For better readability, we first define the
measurement operator for position k and probe d:
Ak,d : CB×N1×N2 × CM1×M2 → CM1·M2 :

Ak,d(S,Ψd) :=

[
Fr

[
B∑

b=1

Ψd,b e
−2πihb·ρk,d [Ck,dS]b

]]V
,

(9)
where [·]V is a vectorization from 2D to 1D. We
have also introduced the linear cropping operator
Ck,d := Cρk,d

: CB×N1×N2 → CB×M1×M2 , which extracts
a real-space patch of size M1 × M2 from each beam of
a given S-matrix at the position with index k for the
phase modulation d. The measurement operator for
the full experiment is just the operators for each probe
and position stacked on top of each other: A(S,Ψ) =

[A1,1(S,Ψ1),A2,1(S,Ψ1), ...,AK,D(S,ΨD)]
T

We can then
write the forward model for the measured intensities of
a series of D scanning diffraction experiments taken with
different probes as

y = |A(S,Ψ)|2 . (10)

Given this forward model and a set of intensity
measurements I we can formulate the phase retrieval

problem for blind S-matrix inversion as

Find S ∈ CB×N1×N2 and Ψ ∈ CD×M1×M2

Subject to |A(S,Ψ)|2 = I.

If the wave functions Ψ are known, the problem of
finding S from a set of measurements I is a classical
phase retrieval problem. There is a rich history of a
algorithmic developments to solve the phase retrieval
problem. Historically the first were algorithms based
on alternating projections onto non-convex constraint
sets [57–59]. Since these algorithms lack theoretical
convergence guarantees, more recently convex relaxations
were developed [60, 61] which provide a convergence
guarantee, but use a prohibitive amount of memory.
More recently, Bayesian accelerated gradient methods
[62] and methods based on the alternating direction
method of multipliers (ADMM) [63] have become
popular. Since the wave functions Ψd are usually
not known precisely in advance, the problem turns
into multi-objective optimization. Additionally, in the
presence of noise, it is beneficial to the reconstruction
quality to include the noise model of the detector in the
optimization. Since most advanced detectors in X-ray
and electron microscopy are counting detectors, the noise
statistics follow a Poisson distribution: I ∼ Poisson(y).
Here we choose an amplitude-based cost function as an
approximation to the Poisson likelihood, due to its better
convergence behaviour and divergence-free derivative
[64, 65]:

D(y, I) :=
∣∣∣∣∣∣y −√I

∣∣∣∣∣∣
2
, (11)

where ‖ · ‖2 is the l2 norm and y are far-field amplitudes
of the current model. We use the ADMM algorithm
[66] to solve the joint optimization problem of S and Ψ.
The augmented Langrangian of the S-matrix retrieval
problem is

Lβ(S,Ψ, z,Λ) = D(|z|) + Re
{
Λ† (A(S,Ψ)− z)

}
+
β

2
‖A(S,Ψ)− z‖22, (12)

where we have introduced the auxiliary variables
z ∈ CK·D·M1·M2 and Λ ∈ CK·D·M1·M2 , which link the data-
loss term with the model-loss term. We seek to solve for
S and Ψ such that L(S,Ψ, z,Λ) is minimized:

(S∗,Ψ∗, z∗,Λ∗) = arg max
Λ

arg min
S,Ψ,z

L(S,Ψ, z,Λ) (13)

ADMM decouples the joint problem into subproblems
and solves them step by step:

1. Ψl+1 = arg minΨ LΨ
β := arg minΨ Lβ(S l,Ψ, zl,Λl)

2. S l+1 = arg minS LSβ := arg minS Lβ(S,Ψl+1, zl,Λl)

3. zl+1 = arg minz Lβ(S l+1,Ψl+1, z,Λl)

4. Λl+1 = Λl + β(zl+1 −A(S l+1,Ψl+1))
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D. Subproblems w.r.t. Ψ and S

The subproblems with respect to Ψ and S both
involve the adjoint of the measurement operator
A, which for a single measurement is given by

AS †k,d : CM1M2 → CB×N1×N2

ASb †k,d (z) = CT
k,d

[
Ψ∗d,be

2πihb·ρk,dF†q [zk,d]
]

(14)

for a fixed Ψ, and AΨd,b †
k,d : CM1·M2 → CM1×M2

AΨd,b †
k,d (z) =

1

M1M2

M1∑
m1

M2∑
m2[

K∑
k=1

[Ck,dS]
∗
b e

2πihb·ρk,dF†q [zk,d]

]
m1,m2

(15)

for a fixed Sb. We solve the subproblems with respect to
Ψ and S with gradient descent.

Ψl+1 = Ψl + γ1

∂LΨ
β

∂Ψ
(16)

S l+1 = S l + γ2

∂LSβ
∂S

, (17)

where γ1, γ2 ∈ R are gradient descent step sizes. We
found that one gradient step per iteration is usually
enough for fast convergence. The gradient is given by

∂LΨ
β

∂Ψd,b
=βAΨd,b †

k,d (zl −Ak,d(S,Ψd)−
Λl

β
) (18)

∂LSβ
∂Sb

=β

K∑
k=1

D∑
d=1

ASb †k,d (zl −Ak,d(S,Ψd)−
Λl

β
). (19)

See the Appendix B for a detailed derivation.

E. Subproblem w.r.t. z

The subproblem w.r.t. z was solved elsewhere [67]. The
solution is

zl+1 =
sgn(ẑ)

[√
I + β|ẑ|

]
(1 + β)

. (20)

The full ADMM algorithm is then given as:

Algorithm 1 Joint S-matrix and probe retrieval via ADMM

Input:
measured intensities I ∈ RK×D×M1×M2

scan positions ρ ∈ RK×D×2

initial Fourier space probe phases χ0 ∈ CD×B

step sizes γ1, γ2, β ∈ R
Initialize:
set (N1,N2) = dmax(rs)+M

M
e ·M such that the plane waves

eih·r have periodic boundary conditions
calculate Imean = 1

K

∑K
k=1 Ik and

amax = max{||Ik||1∀k = {1, ...,K}}
Ψ0 ← amax√

||Imean||1
Imeaneiχ

0

S0
b ← eihb·r,S ∈ CB×N1×N2

Λ = 0, z = 0

Run:

1: for l = 0 to L do
2: ẑ = zl + Λl

β

3: Ψl+1 ← Ψl + γ1 ·
∂LΨ

β

∂Ψ

(
S l,Ψl, ẑ

)
4: S l+1 ← S l + γ2 ·

∂LS
β

∂S

(
S l,Ψl+1, ẑ

)
5: ẑ = A(S l+1,Ψl+1)− Λl

β

6: zl+1 ← sgn(ẑ)[
√

I+β|ẑ|]
(1+β)

7: Λl+1 ← Λl + β(zl+1 −A(S l+1,Ψl+1))
8: end for

Output: S∗ = SL

III. SIMULATED S-MATRIX PHASE
RETRIEVAL

In this section, we use forward simulations to validate
our S-matrix phase retrieval algorithm. We also examine
the algorithm dependence on the sampling density and
calibration.

A. Sampling and calibration dependence

To demonstrate that our algorithm can reconstruct S-
matrices of realistic samples, we simulate a 4D-STEM
focal series of the sample shown in Fig. 1 a), as it
may appear in a tomography experiment. The sample
contains two decahedral Ag nanoparticles of 3.3 nm
diameter, placed on the top and bottom sides of an
amorphous carbon substrate, tilted by 67◦, giving it an
axial extent of 24 nm. The probe convergence angle is
chosen as 26 mrad and the electron energy as 300 kV,
resulting in a depth of focus (DOF) of 5.8 nm and a
sample depth of 4.1× DOF. The detector was set to
record diffraction signal up to 40 mrad, resulting in a
sampling grid with steps of 25 pm. The field of view
was scanned with 129× 129 positions on a 2D grid with
the half-period resolution. The reconstruction shown in
Fig. 2 used 6 defoci with a step of 4.6 nm, with the first
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FIG. 2. (a) Simulated experiment with (b) the probe-forming aperture used for simulating the experiment shown in Fig. 1
(a). Selected beams numbered in (b) are shown from the reconstructed S-matrix in (a) and the ground-truth S-matrix in (c).
The skew effect of the exit waves in different beams comes from the three-dimensional structure, and is a parallax effect of
the different propagation directions of the beams. (d) Test sample of randomly distributed Germanium atoms. (e) R-factor vs
number of iterations for different numbers of defoci and oversampling rates used in the simulations. (f) Normalized root mean
square error of the model S-matrix vs number of iterations for different numbers of defoci and oversampling rates. h) Mean
probe error vs number of iterations for defocus miscalibration levels of 10 %, 20 % and 30 % of the defocus step and random
higher order aberrations.

defocus at the top of the sample. The detector size was
set to 128× 128 pixels, yielding an angular resolution of
0.31 µrad and S-matrix dimensions of S ∈ C5973×256×256.

We ran Algorithm 1 for 500 iterations, utilizing
48 NVIDIA V-100 GPUs. After 200 minutes, the
reconstruction converged to an normalized root mean

square error (NRMSE) of 4 % and an R-factor of 0.1 %.
Nine selected S-matrix beams from the reconstruction
are shown in Fig. 2 a, and the ground-truth S-matrix is
shown in 2c. To investigate the convergence properties
under varying number of measurements and calibration
errors, we used a smaller test sample, consisting of 16
randomly distributed Germanium atoms in a volume of
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5 Å× 5 Å× 100 Å, shown in Fig. 2d. The convergence
angle for the following tests was chosen as 30 mrad, with
a detector spanning 60 mrad, and the diffraction patterns
were sampled on a 20× 20 pixel detector, yielding S-
matrix dimensions of S ∈ C177×60×60, and the defocus
step was chosen as 2 nm.

For the following investigations we fix the scan step to
Nyquist sampling. First we investigate the converge
behaviour with respect to the number of measured defoci.
Fig. 2e and f show the R-factor, and the NRMSE as a
function of iterations and number of defoci measured. We
define the oversampling factor as

O =
# nonzero measurements

# variables in S-matrix
, (21)

and the bright-field oversampling factor as

OBF =
# nonzero measurements in bright-field

# variables in S-matrix
. (22)

One can see that for 2 defocus measurements, the
NRMSE diverges slowly, and for 3 measurements the
NRMSE does not converge monotonously with the R-
factor. While the oversampling factor O lies above
the number 4 typically needed for successful phase
retrieval, the number of phase modulations that each
beam receives, OBF , is below the threshold. For this
case, a more heterogeneous sample than the crystalline
objects considered in previous work, the reconstruction
does not stably converge in these cases. This could be due
to the small defocus steps used and will be investigated
in the future.

We also investigate the dependence of the probe
refinement on the level of defocus miscalibration and
residual uncorrected probe aberrations. Fig. 2 h) shows
the mean errors of 30 reconstructions performed with
defocus errors ∆C1 drawn form a normal distribution
with a standard deviation of 10 %, 20 % and 30 % of the
defocus step, axial coma with a standard deviation of
100 nm, three-fold astigmatism with a standard deviation
of 20 nm, spherical aberration with a standard deviation
of 4 µm, and star aberration with a standard deviation
of 4 µm. Although convergence takes roughly twice
as many iterations S-matrix-reconstruction with mis-
calibrated aberrations, for all miscalibration values a
probe reconstruction error of less than 10 % was achieved.

B. Reconstructing the projected S-matrix

Consider the scattering matrix for a phase object, which
is a valid approximation for a thin and weakly scattering
sample [14], with specimen potential V (r). The analytic
expression for each component will be,

Sr,h = eiσV (r)−2πih·r . (23)

So every S-matrix component will be the same except
for the multiplicative phase ramp of e−2πih·r. As we
consider thicker, more strongly scattering objects we
would expect each component of the S-matrix to be
increasingly different and we consider the similarity or
lack thereof of each of the S-matrix components to be
an indication of the degree of strong multiple scattering
of a sample. When reconstructing the S-matrix from a
4D-STEM dataset the automatic choice for choosing the
sampling of beams, the set of h vectors, is to match it
to the number of pixels within the bright-field disk or
aperture function of the STEM probe in the diffraction
patterns. For a fine diffraction space sampling of an
object that does not exhibit much multiple scattering
this sampling of beams might be highly redundant and
we might improve our reconstruction by forcing a more
sparse sampling of beams and increasing the ratio of
experimental measurements to unknown parameters in
our reconstruction. On the other hand, very thick
and strongly scattering samples might require very high
sampling of the diffraction patterns for an accurate
reconstruction of the S-matrix. While the latter case can
only be solved with better sampling in the diffraction
plane, for the former case in this section we outline a
strategy for choosing a sparser sampling of the input
beams h that involves partitioning of the bright-field disk
into separate “tiles”.

Shown in Fig. 3 are the complex values of a subset
of S-matrix components for a) 7.3 Å, b) 36.5 Å and
c) 109.5 Å thicknesses of an ScAlO3 crystal. All
beams have been multiplied by the conjugate of the
phase ramp that appears in Eq. 23, e2πih·r. For
Fig. 3(a) the difference between beams is minimal so
a phase object approximation would be appropriate
for this thickness. For Fig. 3 b)-c) we see increasing
variation between beams as the object becomes thicker.
A partitioning system aims to group these S-matrix
components by similarity and visual comparison of the
S-matrix montages with the Fresnel propagator, P(h) =
exp
(
−iλπh2t

)
, for free-space of equivalent thickness of

the crystal (shown to the right of each subfigure) suggests
that a criterion based on phase variation of a Fresnel
free-space propagator might be an effective way of doing
this. We partition the bright-field disk into annular
regions

√
(i− 1)∆φ/λπt < hi <

√
i∆φ/λπt where

i ∈ N and ∆φ, the Fresnel propagator phase variance,
is a predetermined criterion (we use ∆φ = π/4 in this
work). These regions are further divided azimuthally,
with an arclength equal to the radius of the inner-most
partition,

√
∆φ/λπt. We represent these partitions with

the map τ : {0, ...,B} → {0, ...,Btile} from beams to
beam tiles. Partitioning according to his criterion is
shown to the right where each different color indicates
a separate partition of the bright-field disk for each of
the thicknesses in Fig. 3(a)-(c). We note finally that this
is an approximate criterion only since thickness of an
uncharacterised object can only be guessed at based on
the intuition of the microscopist and the Fresnel criterion
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does not take into account the scattering strength per
unit volume of the object. For example we might expect
samples containing a high density of heavy (large Z)
elements to exhibit greater beam to beam variation of
the S-matrix components than materials with only small
Z numbers.

Partitioning reduces the number of needed measurements
by a factor Btile/B. The reconstructed S-matrix
then has the reduced dimension S ∈ CBtile×N1×N2 ,
and the beam-dependent beam-tilt e−2πih·r has to be
separated from the S-matrix variable to allow the beam-
averaging. We define therefore the un-tilted S-matrix
Str,h := Sr,he

−2πih·r, which is the new latent-variable in
the projected S-matrix problem. The forward operator
becomes

Atk,d(St,Ψd) :=[
Fr

[
B∑

b=1

Ψk,d,b e
−2πihb·ρk,d

[
Ck,dSt

]
τ(b)

e2πih·r

]]V
,

and the gradient with respect to St is

∂LStβ
∂Stb

=
β

|Qb|
∑
q∈Qb

K∑
k=1

D∑
d=1

ASb †k,d (zl −Atk,d(St,Ψd)−
Λl

β
) (24)

where we have introduced the set
Qb = {n | τ(n) = b∀n ∈ {1, ..., B}} of beams that
belong to tile b and |Qb| is the cardinality of Qb.

IV. CONCLUSION AND OUTLOOK

We have introduced a new method for S-matrix retrieval,
that converges without any regularization for samples
which span 4 depths of focus and more, and numerical
apertures which are experimentally accessible, and can
recover aberration miscalibrations of up to 30 %. We
have also introduced a simplified model, projected S-
matrix inversion, for the case when the sample is thin
enough that not every beam that is measured on the
detector has to be included in the model. In future work,
we will compare projected S-matrix inversion to mixed-
state ptychography and multi-slice ptychography, since
both offer alternative methods for moving beyond the
simple model of single-mode ptychography.

The S-matrix-retrieval methods developed here could
be used for a number of advancements in imaging
through and with strongly scattering materials in X-ray
and electron microscopy. In combination with adaptive
electron optics [68], selective focusing through crystalline
materials may become possible in a similar vein to light

AlSc

O

(a)

(b)

(c)

7.3 Å

36.5 Å

109.5 Å

Beam tiling

20 mrad

Beam tiling

20 mrad

Beam tiling

20 mrad

Fresnel propagator

Fresnel propagator

Fresnel propagator

|ѱ|

arg(ѱ)

FIG. 3. Partitioning of the S-matrix beams into separate
tiles according to the expected degree of departure from
the phase object approximation. In each subplot a subset
of the complex components of the scattering matrix (color
hue is phase and color saturation is amplitude according
to inset colorwheel) are shown for a ScAlO3 crystal with
(a) 7.3 Å, (b) 36.5 Å and (c) 109.5 Å thickness. With
increasing thickness there is increasing variability between the
different components. The beam partitioning suggested by
a phase variance of the Fresnel freespace propagator of π/4
described in the text is inset on the top right for each of the
thicknesses in (a)-(c) where each colour in the bright-field disk
corresponds to a seperate Btile

optical experiments [69].
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The retrieved S-matrix can be used for depth-sectioning
which is robust against multiple scattering. S-
matrix-retrieval may also form the basis of inverse
multi-slice algorithms for phase-contrast tomography
in scanning diffraction microscopes. The angular
decomposition in the S-matrix may be useful for ab-
initio angular and transverse alignment of different tilt
angles for phase-contrast tomography. This approach
may be experimentally more feasible than end-to-end
tomographic reconstruction algorithms. Finally, one
could think about characterizing amorphous materials
from their S-matrix.
To allow optimal image quality, future refinements of
the algorithm could include experimental uncertainties
like position errors, and modeling of nuisance parameters
like spatial and temporal incoherence, similar to their
treatment in ptychographic reconstruction algorithms
[70–74].
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Appendix A: Complexity analysis

Both the forward calculation and the backward
calculation have the following computational complexity:
per diffraction pattern the forward pass has a
complexity of O(M1

2M2
2B log(M1M2)) where the factor

O(M1M2 log(M1M2)) comes from the fast Fourier
transform operation. The forward and backward
calculation on the full dataset then have a complexity
of O(KDM1

2M2
2B log(M1M2)). Since the number of

beams scales quadratically with the size of the detector,
the overall complexity scales with O(KDM4 log

(
M2
)
) for

a square detector of size M. While this might seem
intractable for currently available large detectors, it is
offset by the fact that KDM2 of these computations
are embarrassingly parallel batched complex matrix
multiplications and can be carried out very efficiently on
commonly available hardware accelerators.
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Appendix B: Derivation of the adjoint S-matrix
measurement operator

We derive the adjoint operators ASb †k,d (z) and AΨd,b †
k,d (z)

with matrix algebra. In matrix notation, the S-matrix
forward model to generate I ∈ RKDM with M = M1 ·M2

from S ∈ CBN with N = N1 · N2 can be written as AS :
CBN → CKDM

I = |FΣCS|2 = |ASS|2 , (B1)

with F ∈ CKDM×KDM a block-diagonal matrix
representing a batched Fourier transform acting on
KD exit waves, C ∈ RKDBM×BN the cropping matrix
that extracts KD patches centered at the scanning
positions out of the B beams of the S-matrix, and
Σ ∈ CKDM×KDBM the coherent summation operator over
all beams. Written out in block matrices with diagonal
entries, Σ is shown in Fig. 4. The adjoint (hermitian

transpose) operator A†S is then

A†S = CTΣ†F†, (B2)

which, written out for a single diffraction pattern with
defocus index d and position index k is

ASb †k,d (z) = CT
k,d

[
Ψ∗d,be

2πihb·ρk,dF†q [zk,d]
]

(B3)

In the same vein, the forward model to generate
I ∈ RKDM from Ψ ∈ CDB can be written as
AΨ : CDB → CKDM

I = |FΣΨΨ|2 = |AΨΨ|2 (B4)

The adjoint operator A†Ψ is then

A†Ψ = Σ†ΨF†, (B5)

which, written out for a single diffraction pattern with
defocus index d and position index k is

AΨd,b †
k,d (z) =

1

M1M2

M1∑
m1

M2∑
m2[

K∑
k=1

[Ck,dS]
∗
b e

2πihb·ρk,dF†q [zk,d]

]
m1,m2

(B6)
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k=1 d=1

k=2 d=1

k=1 d=2

k=2 d=2

k=K d=D

b=1 b=2 b=B

FIG. 4. The first BM columns of Σ written out explicitly with diagonal matrix blocks of size M×M.
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