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ABSTRACT
The urban microclimate is essential for accurate simulation-based urban building energy modelling
(UBEM). However, a high spatial-resolution microclimate can increase the computational resources
demands of UBEM. Surrogate modelling is one of the promising approaches for fast UBEM. This
study proposes a bidirectional Long Short-Term Memory (LSTM)-based approach for simulation-
based UBEM surrogate modelling. The estimations are aggregated into census tracts using total
building floor area. A case study using UBEM to estimate annual hourly building energy use and
anthropogenic heat from all existing buildings in Los Angeles County found that most of the surro-
gate models can complete the annual hourly simulation within 90 minutes with a normalized mean
absolute error lower than 10%, and that the bidirectional LSTM outperforms the standard LSTM
in accuracy. This study demonstrates the advantages of bidirectional RNN architecture in building
energy surrogate modelling and is expected to promote long-term and high-resolution UBEM with
detailed microclimates.

ARTICLE HISTORY
Received 8 November 2023
Accepted 21 May 2024

KEYWORDS
Bidirectional LSTMmodel;
anthropogenic heat; building
stock; energy use; surrogate
model; machine learning

1. Introduction

Urban Building Energy Modelling (UBEM) is the ‘compu-
tational modelling and simulation of the performance
of a group of buildings in the urban context,’ and
it includes not only the dynamics of individual build-
ings (e.g. energy use and demand) but also interactions
between buildings (e.g. solar reflection) and between
buildings and urban microclimates (e.g. building heat
emission) (Hong et al. 2020). The spatiotemporal estima-
tion of building performance by UBEM is a critical refer-
ence for urban-scale building energy performance eval-
uation, energy policy-making, building anthropogenic
heating estimation, district planning and retrofitting,
and more.

One of themost commonly used approaches for UBEM
is to utilize simulation models to capture the physical
dynamics of buildingperformance at the individual build-
ing level and then scale the estimation up to the urban
scale (Li et al. 2020). The simulation-based UBEM reduces
the amount of historical data needed (Abbasabadi and
Mehdi Ashayeri 2019), and is particularly important
for estimating various types of building performance
(e.g. building heat emission) that are difficult to mea-
sure or to collect data on. The simulation model-based

CONTACT Tianzhen Hong thong@lbl.gov Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA,
USA

approach also enables estimation under a ‘what-if’ sce-
nario, which is useful for many use cases, such as UBEM-
based design modifications and long-term future esti-
mates under climate change.

Unlike modelling a single building in a fixed loca-
tion, UBEM requires separate simulations for buildings or
groups of buildings under a variety of microclimate con-
ditions. The integration ofmicroclimate in UBEM is essen-
tial; many studies have supported the idea that urban
microclimate has significant impacts on the accuracy of
thermal load estimation, and thus building energy per-
formance (Hong et al. 2020). A typical example is the
effect of urban heat island (UHI). A recent study in the city
centre of Rome, Italy (Mediterranean climate), showed
there could be a 35% – 50% underestimation of the cool-
ing load if the climatic effect of UHI is not considered
(Ciancio et al. 2018). Nevertheless, the consideration of
microclimate dramatically increases the number of sim-
ulations needed for a UBEM, and the number of micro-
climatic zones grow quadratically with smaller sizes of
microclimate zones and a higher resolution of UBEM.
As will be shown in this paper, for a 12× 12-kilometre
microclimate zone, Los Angeles County’s UBEM needs
to model 62 separate microclimate zones. This number

© 2024 International Building Performance Simulation Association (IBPSA)

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19401493.2024.2359985&domain=pdf&date_stamp=2024-05-27
http://orcid.org/0000-0002-1805-1872
mailto:thong@lbl.gov


2 X. PAN ET AL.

would increase to nearly 9,000 if the 1× 1 kilometre
microclimate zone size suggested by previous studies
(Sezer et al. 2023) is adopted. The number of microcli-
mates and corresponding simulations necessary formod-
elling can be even higher in the background of climate
change and the need for long-term UBEMs.

Building surrogate models for simulation is a promis-
ing strategy to reduce the computational resources and
time required for UBEMs. The idea of surrogate mod-
elling for UBEM is to emulate computationally expen-
sive building energy simulations using a statisticalmodel.
The statistical model is trained using the inputs and out-
puts from a smaller number of simulations. Once trained
with satisfactory accuracy, the statistical model can esti-
mate the outputs of simulations without actually running
the simulation model, within a small amount of time,
and with unseen inputs (Westermann and Evins 2019).
In prior studies, building energy simulation (BES) sur-
rogate modelling has been extensively used for model
calibration (Herbinger, Vandenhof, and Kummert 2023),
uncertainty analysis (Fu et al. 2020), sensitivity analysis
(Tian et al. 2015), performance optimization (Yigit 2021),
and building predictive control (Taheri, Hosseini, and
Razban 2022). As an example, Magnier and Haghighat
managed to speed up multi-objective building optimiza-
tion using the surrogate model, which utilizes build-
ing properties (e.g. the thickness of concrete) and heat-
ing, ventilation, and air conditioning (HVAC) system
behaviours (e.g. heating setpoint) as features (Magnier
and Haghighat 2010). Despite its relevance to UBEM sur-
rogate modelling, BES surrogate modelling usually does
not consider varying microclimates (Liang et al. 2022).
For instance, the BES for optimizing building design at
a fixed location usually uses building design variables
(e.g. external insulation) as features and uses weather
conditions as merely fixed parameters (Prada, Gaspar-
ella, and Baggio 2018). However, as mentioned above,
microclimates are essential for accurate UBEM surrogate
modelling.

For simulation-based UBEMs with varying microcli-
mate surrounding the buildings, one of the most impor-
tant features for surrogate modelling is the weather fea-
ture (e.g. outdoor dry bulb temperature, relative humid-
ity), which has a temporal sequential nature. The lack of
modelling temporal pattern is unfavourable for accurate
UBEM surrogate modelling (Yoo, Clayton, and Yan 2023).
Therefore, although the deep feed-forward neural net-
work is popular in BES surrogate models because of its
simplicity (Zhang et al. 2021), it is not a good option for
UBEMs that are affected by microclimates. One of the
most effective approaches is using a one-dimensional
convolutional neural network (1D-CNN) (Zhou et al. 2022)
to encode the dynamicweather features inmicroclimates

and to form multivariate time series forecasting models.
In a typical study of utilizing 1D-CNN in building energy
surrogatemodellingwithmultiple climate zones,Wester-
mann et al. used kernelswith an eight-time-step length to
encode the annual hourly weather features and decode
the representation to the annual estimation for the tar-
get variable (Westermann,Welzel, and Evins 2020). Oneof
the advantages of 1D-CNNover the basic RNNs, including
LSTM and Gated recurrent unit (GRU), is the assumption
that the target is largely influenced by its neighbour-
hood. The neighbourhood is not limited to the features
at the previous time steps, and it also includes the fea-
tures at the subsequent (i.e. the future) time steps if
needed.

Nevertheless, RNNs are still very popular because their
structure is specially designed for time-series inputs and
can achieve good accuracy (Cohen et al. 2021; Pinto, Del-
tetto, and Capozzoli 2021; Li et al. 2022). In RNN-based
surrogate modelling, features usually have a high tem-
poral resolution (e.g. hours) and form time series (Ohta,
Sasakawa, and Sato 2020; Li et al. 2022). The weather
features and other dynamic features are processed by
moving a sliding window over the time series. The sliding
window stops at each time step (e.g. hour) and creates
a sequence of features being used to estimate targets
at one or more time steps. Previous studies comparing
the accuracy of RNNs and 1D-CNNs on time series fore-
casting have demonstrated that RNNs can achieve bet-
ter accuracy than 1D-CNNs (Chandra, Goyal, and Gupta
2021; Lara-Benítez, Carranza-García, and Riquelme 2021).
Despite the controversy over this finding (Bai, Kolter, and
Koltun 2018), RNNs remain an important approach for
UBEM surrogate modelling, and this study is therefore
focused on the RNN-based approaches. In the related lit-
erature, Ohta et al. used LSTM to estimate the thermal
comfort level and the power consumption for optimiz-
ing the air conditioner setpoint (Ohta, Sasakawa, and Sato
2020). In another example, Li et al. used the time-lagged
values of the outdoor air dry bulb temperature, relative
humidity, etc. to estimate the hourly values of the heating
and cooling energy load (Li et al. 2023).

It is important to note that weather feature time series
are predicted in advance during both the training and
estimation phases of UBEM surrogate modelling. Thus,
both the features before (i.e. the past) and after (i.e. the
future) the target time step are available when estimat-
ing the target and could therefore be utilized to train
the surrogate model. Since correlations are bidirectional,
not only past features, but also future features, are cor-
related with the target. Using both ‘past’ and ‘future’
dynamic features is thus potentially beneficial for model
training. However, the vast majority of previous studies
have only employed dynamic features from the ‘past’ and



JOURNAL OF BUILDING PERFORMANCE SIMULATION 3

Figure 1. Proposed approach for UBEM surrogate modelling.

neglected (Ohta, Sasakawa, and Sato 2020; Pinto, Del-
tetto, and Capozzoli 2021; Li et al. 2022; Li et al. 2023) or
underestimated (Cohen et al. 2021) the potential benefits
of features in the ‘future.’

In response to the shortcomings of previous RNN-
basedUBEM surrogatemodellingmethods, a Long Short-
TermMemory (LSTM)modelwith bidirectional RNNarchi-
tecture was used for surrogate modelling-based UBEM in
this study. First, the bidirectional LSTM (biLSTM) model
took the features at both the ‘past’ and ‘future’ of the tar-
get as inputs and estimated the targets of interest, includ-
ing electricity consumption and heat emissions, at the
building prototype level. The biLSTM was supported to
outperform the baselines in metrics, including the basic
LSTM.As the second step, theprototype-level estimations
for other microclimates in the UBEM were aggregated to
a higher geographical scale, using the building metadata
of the studied city. This study is expected to provide a less
computationally expensive approach to simulationbased
UBEMs in the context of urbanmicroclimates and climate
change. It also highlights the advantage of bidirectional
RNN architecture in UBEM surrogate modelling.

2. Method

Figure 1 demonstrates the workflow of the proposed
approach. First, the annual hourly energy consumption

and heat emission of building prototypes in the stud-
ied area were simulated in EnergyPlus. The simulated
energy consumption and heat emission were the tar-
gets of the surrogate model training, and the weather
variables were the features. The data were fed into a
bidirectional LSTM model, to construct separate surro-
gate models for each prototype that can estimate the
annual hourly building energy and heat emission in out-
of-sample microclimates. Estimations at the prototype
level may not provide sufficient urban-scale insights.
Therefore, as a second step, the prototype level estima-
tions were scaled up to the census tract resolution, a
common spatial resolution in many urban-scale datasets.
To obtain the census tract total energy and heat emis-
sions, the building prototype level energy and heat emis-
sion per floor area was multiplied by the total building
floor area in each census tract and weather grid. This
section elaborates on the components of the proposed
approach.

2.1. Simulation and datasets

The first step of the study is to generate training data for
surrogate models by conducting simulations for UBEM.
In building energymodelling, individual buildings should
be characterized in depth, while for UBEM, building char-
acteristics are usually simplified to prototypes. Almost all
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existing UBEM tools recommend the use of pre-defined
building prototypes that are categorized by construc-
tion year, usage (e.g. residential, office, commercial), and
building type (tower, detached residential, liner, etc.) (Fer-
rando et al. 2020). Each prototype can represent a cate-
gory of buildings, and the information is stored in Ener-
gyPlus IDF files. The other major data source is microcli-
mates. The microclimate is a group of weather features
with an hourly resolution, including hourly longwave and
shortwave flux at the ground surface, surface pressure,
relative humidity, outdoor air dry bulb temperature, and
other information. The geographical scope of a microcli-
mate depends on the use case, but it is usually cells with
side lengths of hundreds to thousands of metres. Each
microclimate is represented by an EnergyPlus Weather
File in the EPW format in this study. With B proto-
types and D microclimates, there are no more than B×
D prototype-microclimate pairs, as a microclimate zone
does not necessarily have all prototypes. Then, the IDF-
EPW pairs should be input into EnergyPlus for simulating
the hourly building performance of a year. Note that in
the real use case, only a portion of the IDF-EPW pairs is
required by the simulation to generate surrogate mod-
elling trainingdata, andmostof the simulations shouldbe
omitted. The target building performance could include
electricity consumption, natural gas consumption, or
building heat emissions to the surrounding outdoor
environment.

In this study, surrogate models were built separately
for different building prototypes. Thus, the simulation
results of IDF-EPW pairs were grouped by prototypes,
and in each group, there were multiple simulations
of P microclimates but with the same prototype. Each
simulation had Q sequences of weather features and
a sequence of target values. Each sequence contained
hourly values and had a length of T . To generate samples
(Xn, yn)(n = 1, 2, . . . ,N) for surrogate model training, a
sliding window with length L moving with a stride of
one was applied on weather features sequences to make
feature matrices Xn ∈ R

L×Q. yn ∈ R was the value of the
target at one time step after the last time step in Xn. Fol-
lowing this computation method, the simulation data of
different microclimates were processed separately, and
the number of samples N were P(T − L+ 1) in each pro-
totype group.

Weather features under microclimates are strong fea-
tures for estimating building performance, they can also
be regarded as variables that vary close to the TMY (Typ-
ical Meteorological Year) weather. Therefore, building
performance under TMY is also a highly correlated vari-
able with building performance under microclimates. For
this reason, annual hourly building performance in TMY
was also used as a surrogate modelling feature. Building

prototype IDF files and the TMY EPW file were sent to
EnergyPlus for simulation, and it produces sequences of
hourly target values of length T . Adding this additional
feature, the updated Xn belongs to R

L×(Q+1). Note that
this research practice results in additional simulations
beyond those required by UBEM. However, considering
that TMY is stable in the long term and is the same for
all building prototypes, the additional simulation cost is
very limited. Therefore, the energy simulation under TMY
could be included in the training data generation process
for surrogate modelling.

2.2. Bidirectional LSTMmodel

The samples generated in Section 2.1 were used to build
the surrogate model. The surrogate model used in this
study was built on the structure of RNN. Given input sam-
ples (Xn, yn)(n = 1, 2, . . . ,N), the goal of the surrogate
modelling is to find a function fθ : Xn→ yn, where θ is
the set of parameters that map the features matrix Xn =
[xk−L+1, . . . , xk](n = 1, . . . ,N, k = L, . . . , T − 1, x ∈R

Q+1)
to the building performance yn at time k + 1, by iterating
the equations below from time t = k − L+ 1 to t = k.

ht = H(Wxhxt +Whhht−1 + bh) (1)

where H is the hidden layer function, W denotes the
weight matrices, and b denotes the bias vector. hk is fed
into a dense layer to produce the predicted ŷn.

H is a simple activation function in the standard RNN,
but it can be replaced with other functions to form more
complex RNNs, including LSTM and the Gated Recurrent
Unit model. In the case of LSTM,H is implemented using
the following composite function:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (2)

ft = σ(Wxf xt +Whfht−1 +Wcf ct−1 + bf ) (3)

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc) (4)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (5)

ht = ottanh(ct) (6)

Where σ is the sigmoid function. i, f , o, c are the input
gate, the forget gate, the output gate, and the cell
vector, respectively, with the same size of the hidden
states.

Although supported as effective inmany cases by pre-
vious studies, standard RNNs and LSTMs only take the
previous hidden state as input. However, in UBEM, both
theprevious and subsequentweather features are known
during the training and testing. A bidirectional structure
could utilize both the previous and subsequent informa-
tion and obtain a higher accuracy. Thus, the model train-
ing in this study is to find a function F� : Xn→ yn, where
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Figure 2. Architecture of the adapted bidirectional LSTM. ht is the hidden state of the RNN cell at time t. xt is the feature vector at time

t.
−→
ht is the hidden state of the RNN cell in the forward direction at time t, and

←−
ht is the hidden state of the RNN cell in the backward

direction at time t.

� is the set of parameters that map the features at time
t and the hidden state at time t − 1 and time t + 1 to the
building performance at time t, by iterating the equations
below.

−→
ht = H(Wx�hxt +W�h�h�ht−1 + b�h) (7)

←−
ht = H

(
W

x
←
h
xt +W←

h
←
h

←
ht+1 + b←

h

)
(8)

ht = concatenate(
−→
ht ,
←−
ht ) (9)

where
−→
ht is the forward (i.e. from previous to subsequent

time steps) hidden state and
←−
ht is the backward (i.e. from

subsequent to previous time steps) hidden state. The
H used in this study was implemented using Equations
(2–6).

Figure 2 shows the details of the biLSTM used in this
study. Themodel follows the way a standard LSTM inputs
features by sequentially feeding the features at each time
step for all samples. Unlike a standard LSTM, in biLSTM
the features in a sample are fed into two separate LSTMs
in both forward and backward directions, after passing
through a batch normalization layer.

The model computes the features and hidden states
according to Equations (7–8). For a sample of a given
length, depending on the length of previous time steps

and subsequent time steps, the hidden states
−→
ht and

←−
ht

of a particular time step could be concatenated and fed

into a dense layer to produce the output of the model.

For example, for a sample five time steps long, the
−→
h3

and
←−
h3 could be used for the output, with the assump-

tion that the ‘past’ and ‘future’ are equally important.
The loss function used in this study is the mean squared
error.

2.3. Aggregation to the census tract level

After the simulation and the model training, the biLSTM
is able to estimate the performance of a specific proto-
type in unseen microclimates. This estimation is at the
prototype level, which cannot demonstrate urban build-
ing energy performance. To aggregate the estimates to
the urban scale, three types of information in the stud-
ied region need to be collected: (1) urban sub-region (i.e.
census tract in this study) geometries with geographical
information, (2) microclimate geometries with geograph-
ical information, and (3) the metadata of all individual
buildings (i.e. location, prototype, andbuilding floor area)
in the studied region. First, the microclimates of sub-
regions are determined by matching the geographical
location of sub-region geometries andmicroclimate zone
geometries. Second, the individual buildings arematched
with all sub-regions using the geographical locations.
The building floor areas of the prototypes in each sub-
region are obtained by grouping the individual buildings
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using their prototypes. As the final step, the target esti-
mations for prototypes are normalized using the building
areas of the prototypes. The building areas of the pro-
totypes in sub-regions are multiplied by the normalized
estimates (e.g. electricity consumption per square metre)
to derive the hourly estimates of performance for the
studied region and with the resolution of the sub-region.

2.4. Evaluationmetrics

Both relative and absolute metrics are used to evaluate
the accuracy of the surrogate models. The absolute met-
rics include root mean squared error (RMSE) and mean
absolute error (MAE), and the relative metrics used are
normalized RMSE (nRMSE) and normalized MAE (nMAE).
The metrics are defined below.

RMSE =
√∑N

n=1 (yn − ŷn)
2

N
(10)

MAE =
∑N

n=1 |yn − ŷn|
N

(11)

nRMSE = RMSE
1
N

∑N
n=1 |yn|

(12)

nMAE = MAE
1
N

∑N
n=1 |yn|

(13)

where ŷn is the estimation of the nth sample, yn is the
ground truth of the nth sample, and n(n = 1, . . . ,N) is
the index of the nth sample. RMSE and MAE are always
non-negative, and a low value indicates better accuracy.
nRMSE and nMAE are non-negative, where a lower value
indicates better accuracy and 0 indicates perfect estima-
tion.

The commonly used mean absolute percentage error
(MAPE) was replaced with nMAE in this study, as build-
ing performance targets are likely to be zero in some
cases (e.g. zero cooling load inwinter), and that is beyond
the definition of MAPE. But even if some of the targets
are zero, nMAE is still in the defined domain as long
as the average of samples is non-zero. It should also
be noted that the denominator of the nMAE, as well
as nRMSE, is the average absolute value of the ground
truth. This operation is conducted to avoid underestima-
tion of the variance in the target when there are neg-
ative target values, which could exist in building heat
emissions.

3. Case study

Los Angeles (LA) County is used as the testbed for the
surrogate modelling-based UBEM. The County of Los
Angeles aims to reduce greenhouse gases (GHGs) by 50%

by 2035 and achieve carbon neutrality by 2045 (County
of Los Angeles 2022), through decarbonization, efficiency
improvement, and water conservation in the buildings
sector, and by employing integrated strategies in other
sectors including transportation, energy systems, and
agriculture. In the City of Los Angeles (LA), the Los Ange-
les 100% Renewable Energy Study (LA100) outlines path-
ways for the city to achieve the goal of a 100% electricity
power supply by 2045 (Cochran et al. 2021). With these
ambitious goals, it is crucial to understand the energy
consumption and heat emissions of the LA building stock
under the current climate and future climate change sce-
narios. On the other hand, due to the city’s large size
and its long history, there are a large number of building
prototypes in LA County. LA County also has very differ-
ent microclimate zones because of its high-density urban
centres and geographic characteristic of being by both
the sea and themountains. Therefore, performing a UEBS
for LA County would incur a large number of separate
simulation models and long computational time. In this
study, surrogate models were built for LA County to esti-
mate the annual hourly energy consumption and heat
emissions.

Currently data sources like Energy Atlas (https://www.
energyatlas.ucla.edu/) provide measured energy con-
sumption data aggregated at the city and neighbour-
hood level. However, the temporal resolution is very low;
only reporting an annual total for each city or neighbour-
hood and each building type. Furthermore, the building
type classification is rather coarse, with all commercial
buildings in one category. In this study, an 8760 energy
and anthropogenic heat dataset was produced for all of
LA County at three spatial resolutions (Xu et al. 2022),
using EnergyPlus simulations of 54 prototype building
models and 62 local climate data points from theWeather
Research and Forecasting (WRF) TGWdataset (Jones et al.
2023). The surrogate models in this study were trained
using this dataset.

The 54 prototypes include 18 building types (i.e. multi-
family houses, single-family houses, heavy and lightman-
ufacturing facilities, nursing home, hospital, small hotel,
large hotel, small office, medium office, large office,
full-service restaurant, stand-alone retail, midrise apart-
ment, primary school, warehouse, college, supermarket,
and religious worship buildings), with three vintages:
pre-1980, 2004, and 2013. The prototypes used in this
study are relatively extensive compared to many previ-
ous UBEM studies that used 13–30 building prototypes
(Zhou et al. 2012; Zheng and Weng 2018; Luo et al. 2020;
Chen et al. 2022). On the other hand, microclimates were
simulated for 2018. Each microclimate is represented by
a group of weather features, including hourly downward
longwave flux at the ground surface (GLW), downward

https://www.energyatlas.ucla.edu/


JOURNAL OF BUILDING PERFORMANCE SIMULATION 7

Figure 3. Microclimate zones with index numbers in the case
study.

shortwave flux at the ground surface (SWDOWN), sur-
face pressure (PSFC), water vapour mixing ratio at 2
metres (Q2), relative humidity (RH), outdoor air dry bulb
temperature at 2 metres (T2), wind direction (WINDD),
and wind speed (WINDS). The microclimate zones are
12 km× 12 km cells, and LA County is discretized into 62
cells (shown in Figure 3).

Matching 62microclimates and 54 prototypes accord-
ing to the spatial distribution of the prototypes resulted
in 1,667 prototype-microclimate pairs. 1,667 EnergyPlus
simulations were built and run by using different pairs of
building prototypes and local climates, and each model
simulated one year of building performance. The simula-
tions were finished on a 2.8 gigahertz (GHz) Quad-Core
Intel Core i7 central processing unit in approximately 45
hours. In this study, electricity consumption (ELEC), and
anthropogenic heat components including the surface
convection heat loss (E-SURF), exhaust air heat loss (E-
EXH), andHVACsystemheat rejectionenergy (E-REJ)were
selected as the targets. The target values under TMY (Typ-
ical Meteorological Year) were obtained by running Ener-
gyPlus simulations for each prototype with the TMY3 at
LA airport.

The objective of the surrogate modelling is to esti-
mate the outputs of UBEM. Therefore, before surrogate

modelling, the accuracy of UBEM itself for estimating the
real-world energy modelling in LA County was also val-
idated. In the authors’ precursor study to this study (Xu
et al. 2024), the electricity consumption of LA County by
UBEMwas comparedwith that in EnergyAtlas 2016 (UCLA
California Center for Sustainable Communities (CCSC)
2020). The percentage estimation error regarding the
electricity consumption of thewhole LA County in Energy
Atlas is 6.75%, and the average of percentage estimation
error regarding the Energy Atlas electricity consumption
on the neighbourhood level is 10%.

For the surrogatemodelling, thebuildingperformance
under TMY, microclimate weather features, and target
valueswere time serieswith a lengthof 8,760 (T = 8, 760).
The length of the sliding window for generating sam-
ples was 25 (L = 25). For each sample (X , y), x belongs to
R
25×9 and y belongs to R. 5% – 25% of the prototype-

microclimate pairs in 2018 were randomly selected from
each prototype for the model training. Note that at least
two microclimates were selected for each prototype. In
themodel training, the learning rate was set as 0.001, and
the size of the hidden states was 512. To avoid redun-
dant hyperparameter searches, 15% of the training set
of one prototype’s (e.g. multi-family houses) surrogate
model was split into a validation set. The validation set
was used to determine the hyperparameters (i.e. learn-
ing rate, batch size, and the number of hidden layer
units) based on the grid search method. The training
was implementedonanNVIDIAV100graphicsprocessing
unit (GPU) and can be finished within 1.5 hours in most
cases. 75%– 95%of theprototype-microclimatepairs and
their samples were used for the test. Note that in this
study, a small portion of the data was used for training,
and most of the data was used for testing. The reason for
this is that the research objective is to reduce the number
of simulations required for UBEM and maintain a satis-
factory UBEM accuracy by means of surrogate modelling.
The training data indicates the required simulation com-
putation amount, and the test data indicates the reduced
computation workload and is used to evaluate the
accuracy.

The geometries with geographical information of the
census tracts and the metadata of all individual build-
ings (i.e. location, prototype, and building area) were col-
lected from the LA County open data portal and are also
available in the work by Xu et al. (Xu et al. 2022). The
aggregation followed the method in Section 2.3, which
outputs the estimations on the census tract level for LA
County. The datasets and codes of this study are available
at the GitHub repository github.com/pppxiyu/SurUBEM.
The reproducible procedures of preparing the datasets
are available at theGitHub repository github.com/IMMM-
SFA/xu_etal_2022_sdata.



8 X. PAN ET AL.

Figure 4. Partial correlation plots between the electricity consumption and the weather features. The duration of one lag or advance is
one hour. The electricity consumption is from multi-family buildings with pre-1980 vintage at Microclimate 51. Weather features time
series are fromMicroclimate 51: (a) partial correlations with weather features in previous time steps. (b) partial correlations with weather
features in subsequent time steps.

4. Results

4.1. Modelling and accuracy

In contrast to modelling using a standard RNN, this study
employed a bidirectional RNN to estimate the target val-
ues. To demonstrate the advantages of the biLSTM in
utilizing the data, the multi-family building model with
pre-1980 vintage at Microclimate 51 (MultiFamily-pre-
1980-51) was analyzed as an example, as MultiFamily-
pre-1980-51 has the largest building floor area among
all the prototype-microclimate pairs. In the analysis, the
electricity consumption and microclimate feature time
series were used to compute the partial correlations (P-
Corr) (Stark, Drori, and Abeles 2006). P-Corr describes the
associations between the electricity consumption and
the time-lagged weather features, without the effect of
previous time lags (Figure 4(a)). By simply reversing the
time series, the same calculation will produce the P-
Corr between the electricity consumption and the time-
advanced weather features (Figure 4(b)). A standard RNN
will use time-lagged weather features within a prede-
fined sequence length. As shown in Figure 4(a), the P-
Corr within the RNN time window decreases as the time
away from the target grows. Using a time window of the

same length, biRNN will use the features with higher P-
Corr in the RNN time window and also use the feature
with high P – Corr in the ‘future’ time steps. In short,
biRNN utilizes the more correlated features in the data,
which is favourable for the model training and higher
accuracy.

In addition to microclimate features, the prototype’s
performance under TMY was also used as one of the
features for the surrogate models. Electricity consump-
tion data for the three prototypes was used to illustrate
the benefit of this additional feature. Figure 5 shows the
electricity consumption of heavymanufacturing facilities,
large hotels, and single-family houses in February. It is
clear that heavymanufacturing facilities consume a great
deal of electricity and show a pattern of high electricity
consumption on weekdays and low electricity consump-
tion on weekends. This pattern is very regular and could
be less related to local weather than to facility use. In
contrast, the electricity consumption pattern of single-
family houses is visually irregular and can potentially be
modelled by weather features. The electricity consump-
tion pattern for large hotels falls somewhere in between,
showing stable seasonality and a declining trend, but still
could be related tomicroclimates. Facedwith the issue of
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Figure 5. Hourly electricity consumption of heavy manufacturing facilities, large hotels, and single-family houses in February.

varying microclimate-target correlation, the prototype’s
performance under TMY can be used as a ‘best guess’ for
the electricity consumption in the corresponding micro-
climate, which canmaintain its correlationwith the target
even when the microclimate influence is weaker.

Table 1 summarizes the accuracy and computation
time of the UBEM surrogate models. The metrics are at
the census tract level, and the computation time includes
both data preprocessing, model training, and estimat-
ing. The training of surrogate models estimating ELEC,
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Table 1. Metrics of target (i.e. ELEC, E-SURF, E-EXH, and E-REJ)
estimations at the census tract level.

Data used in
training (%)

Time
(min)

RMSE
(kWh)

MAE
(kWh)P nRMSE nMAE

ELEC 5 71 279.59 108.75 0.1421 0.0553
10 77 250.35 81.49 0.1440 0.0469
15 87 122.78 57.80 0.0936 0.0441

E-SURF 5 75 3924.08 2100.85 0.2013 0.1078
10 80 2963.46 1257.23 0.1545 0.0655
15 90 2888.69 1211.64 0.1440 0.0604

E-EXH 5 57 135.71 84.52 0.2260 0.1407
10 62 86.13 50.44 0.1656 0.0970
15 69 77.41 41.44 0.1512 0.0810

E-REJ 10 79 337.31 163.94 0.2496 0.1213
15 92 311.79 146.74 0.2413 0.1136
20 108 274.45 122.54 0.1978 0.0883
25 113 261.45 116.10 0.1976 0.0877

E-SURF, and E-EXH can be completed in up to 90 min-
utes using 5% to 15% of the simulation results. Most
of the nMAE of these estimations are within 10%, and
most of the nRMSE are within 15%. E-REJ is more diffi-
cult to estimate, and its nMAE can only be reduced to
less than 10% when using at least 20% of the simula-
tion results. It should be noted that the error rates could
be lower if more simulation results were used to train
the surrogate models. However, to balance accuracy and
computational time, 10% of the data are used for train-
ing and all following evaluations. Note that the metrics
in Table 1 measure the accuracy of the surrogate models
with respect to the simulation outputs, not the accuracy
regarding the real measurements (i.e. the ground truth).
In prior research, the normalized RMSE of the energy
demand UBEM with respect to the ground truth ranges
from 5% – 40% for overall evaluation (Oraiopoulos and
Howard 2022). As mentioned in the Case Study, the error
rate of UBEM regarding ground truth in this study is
6.75%. Considering the nRMSE of surrogate modelling is
14.40% with 10% training set. The overall error rate of
the surrogate modelling-based UBEM could be approx-
imated as 21%. Comparing to the metric range in prior
studies, the accuracy of the proposed method in the
present study is within the lower half of the range.

The accuracy of the biLSTM surrogate model is com-
paredwith those of the baselines, including naive estima-
tion, linear regression, multilayer perceptron, and stan-
dard LSTM (shown in Table 2). The naive estimation cal-
culates the mean value of the 10% selected simulation
results and uses the mean value as the estimation of tar-
gets in unseen microclimates. This is a good indicator of
the sensitivity of the target to microclimates. The elec-
tricity consumption is not very microclimate-sensitive,
whereas the nMAE for heat emission targets is much
larger, indicating a higher microclimate sensitivity. For
low microclimate-sensitive targets, the advantage of the
surrogate modelling is not obvious. But as the sensitivity

Table 2. Metrics of prediction target (i.e. ELEC, E-SURF, E-EXFIL,
and E-REJ) estimations at the census tract level by biLSTM and
the baselines. The metrics are from the surrogate models trained
with 10% of the simulation results. Linear regression, multilayer
perceptron, and standard LSTM use the past 24-hour lags data
as features, while biLSTM uses data of the past 12-hour lags and
subsequent 12-hour advances as features.

ELEC E-SURF E-EXH E-REJ

Naive RMSE (kWh) 209.53 4035.47 196.02 671.90
MAE (kWh) 87.05 2311.86 109.43 340.34
nRMSE 0.1205 0.2106 0.3768 0.4977
nMAE 0.0500 0.1206 0.2103 0.2521

Linear RMSE (kWh) 757.2 7255.17 258.27 1237.36
regression MAE (kWh) 270.34 3614.21 164.36 753.54

nRMSE 0.4356 0.3782 0.4968 0.9154
nMAE 0.1555 0.1884 0.3162 0.5575

Multilayer RMSE (kWh) 3873.80 13875.34 12644.90 16309.52
perception MAE (kWh) 1978.86 8441.37 7433.49 9824.85

nRMSE 2.2285 0.7232 24.3269 12.0671
nMAE 1.1384 0.4400 14.3009 7.2692

LSTM RMSE (kWh) 665.05 5353.69 188.50 752.51
MAE (kWh) 180.32 2755.81 114.03 346.82
nRMSE 0.3825 0.2790 0.3626 0.5567
nMAE 0.1037 0.1436 0.2194 0.2566

biLSTM RMSE (kWh) 181.23 2963.46 86.13 337.31
MAE (kWh) 54.79 1257.23 50.44 163.94
nRMSE 0.1031 0.1545 0.1656 0.2496
nMAE 0.0311 0.0655 0.0970 0.1213

increases, the difference between the nMAE of surrogate
models and the naive estimation is growing, and the sur-
rogate modelling easily outperforms the naive estima-
tion. On the other hand, biLSTM outperforms the stan-
dard LSTMmodel in all four metrics and targets. It echoes
the analysis of Figure 4 that the bidirectional architec-
ture is expected to produce better accuracy as the higher
correlation between features and targets.

Table 3 provides amore detailed evaluation of biLSTM-
based surrogate modelling at the prototype level. On the
one hand, the nMAE of the biLSTM varies across proto-
types. It is within the range of 1.5% (small hotel with
2004 vintage) and 9.61% (hospital with 2013 vintage).
Single-family houses andmulti-family houses,whichhave
the largest floor area in LA among all prototypes, have
an nMAE between 5.4% and 8.24%. Their correspond-
ing accuracy is closer to the nMAE at the census tract
level after the aggregation step (i.e. 4.69%). As can be
seen in Table 3, although some of the prototypes have a
lower estimation accuracy, the nMAE is still below 10%.
On the other hand, biLSTM outperforms other neural net-
workmodels (i.e. multilayer perceptron and LSTM) on the
vast majority of prototypes. For example, MLP fails on the
surrogate modelling of single-family houses with 2013
vintage, but biLSTMmaintains a low error rate.

4.2. Error distributions

As shown in Section 4.1, the trained biLSTM surro-
gate models have nMAE lower than 10% in most cases.
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Table 3. Prototype-level nMAE for multilayer perceptron, LSTM,
and biLSTM. The metrics are from the surrogate models trained
with 10% of the simulation results.

Building type Vintage MLP LSTM biLSTM

College pre 1980 0.3406 0.0523 0.0119
2004 0.2661 0.0518 0.0264
2013 0.2595 0.0409 0.0173

Full Service Restaurant pre 1980 0.1882 0.0806 0.0194
2004 0.4078 0.0713 0.0512
2013 0.3605 0.1031 0.0464

Heavy Manufacturing pre 1980 0.0773 0.0679 0.0126
2004 0.0784 0.6990 0.0314
2013 0.2044 0.3079 0.0181

Hospital pre 1980 0.0658 0.0288 0.0208
2004 0.1064 0.1093 0.0195
2013 0.1033 0.0640 0.0961

Large Hotel pre 1980 0.1200 0.2741 0.0576
2004 0.1384 0.2772 0.0435
2013 0.1335 0.2786 0.0324

Large Office pre 1980 0.1334 0.5805 0.0910
2004 0.0747 0.1807 0.0237
2013 0.0932 0.3060 0.0284

Light Manufacturing pre 1980 0.2142 0.1946 0.0138
2004 0.2169 0.0438 0.0122
2013 0.2340 0.0565 0.0354

Medium Office pre 1980 0.2550 0.0837 0.0499
2004 0.3293 0.0760 0.0480
2013 0.3375 0.0928 0.0758

Midrise Apartment pre 1980 0.3888 0.0801 0.0394
2004 0.2103 0.0949 0.0238
2013 0.2349 0.0840 0.0277

Multi Family House pre 1980 1.3097 0.0942 0.0623
2004 1.5002 0.1003 0.0562
2013 1.7590 0.0868 0.0540

Nursing Home N/A 0.3150 0.0906 0.0479
Primary School pre 1980 0.3066 0.0688 0.0281

2004 0.2400 0.0575 0.0394
2013 0.3118 0.0856 0.0564

Religious pre 1980 0.3301 0.0463 0.0247
post 1980 0.5473 0.0459 0.0218

Retail Standalone pre 1980 0.4231 0.0470 0.0265
2004 0.3177 0.0804 0.0477
2013 0.4908 0.0700 0.0464

Single Family House pre 1980 2.2233 0.1359 0.0699
2004 8.8825 0.1620 0.0824
2013 22.1449 0.1180 0.0572

Small Hotel pre 1980 0.1604 0.0788 0.0376
2004 0.1147 0.0399 0.0150
2013 0.2829 0.0561 0.0363

Small Office pre 1980 0.6976 0.0474 0.0186
2004 1.3106 0.0602 0.0378
2013 1.0747 0.0671 0.0314

Supermarket pre 1980 0.1219 0.0653 0.0320
2004 0.1074 0.0960 0.0906
2013 0.1468 0.0754 0.0345

Warehouse pre 1980 0.7478 0.0305 0.0213
2004 0.4526 0.0568 0.0290
2013 0.8191 0.0946 0.0431

However, the distribution of the error rate needs to be
further investigated to demonstrate the potential bias
of UBEM surrogate models in this study. Figure 6 shows
the distribution of nMAE for different building types and
targets. In terms of electricity consumption, residential
buildings have significantly higher error rates thanmanu-
facturing facilities and colleges, which have regular oper-
ations schedules. The reason for that is the electricity
consumption pattern of some non-residential buildings

(e.g. manufacturing facilities) is more regular, which is
more easily captured by the surrogate model, especially
when one of the features is the target values of the pro-
totype under TMY. Figure 6(b) shows the distribution of
nMAE for estimating E-SURF. Most of the building types
with low nMAE are small buildings, such as residential
buildings, retail buildings, small offices, etc., while large
buildings, such as manufacturing facilities, large office
buildings, and large hotels, have higher error rates. The
reason for this may be that larger buildings with a greater
surface area have higher surface heat emissions, and the
surrogate model performs better at estimating low heat
emissions.

For illustrating the spatial distribution of the estima-
tion errors, census tracts in four typical climate zones
were selected (as shown in Figure 7). The nMAE of esti-
mations are comparable in the inland residential area (i.e.
the second column in the figure) and the seaside residen-
tial area (i.e. the fourth column in the figure), and both
are relatively low. This indicates that the trained surro-
gate models perform well and can handle the difference
between seaside and inland microclimates. The nMAE of
the estimation for the downtown area census tract (i.e.
the first column in the figure) is also low. The surrogate
models are therefore considered to be adaptive to the
microclimate difference caused by the UHI as well. How-
ever, the model’s accuracy declines significantly in the
mountainous area (i.e. the third column in Figure 7). A
similar finding can be seen in Figure 8(a). Among the cen-
sus tracts randomly selected for the evaluation, the lower
left Area 1 (i.e. Portuguese BendReserve) has anobviously
higher error rate. Areas 2 (i.e. Indian Springs) and 3 (i.e.
Los Angeles National Forest) in the upper right section
also have higher nMAE; they are all mountainous areas or
have large areas of green space. The higher nMAE could
be explained by the spatial distribution of the residen-
tial building (i.e. single-family andmulti-family buildings)
area percentage regarding total building area for each
census tract. As shown in Figure 6(a), the error rate of
estimatingELEC is thehighest for residential buildingpro-
totypes. Therefore, the error rate of estimating ELEC for
a census tract is likely to be high if the census tract has
a high percentage of residential building areas (shown
in Figure 8(b)). As evidence, Figure 8(c – d) show that
the spatial distribution of the residential building area
percentage and the nMAE share a similar pattern. In par-
ticular, themountainous or green space area (i.e. areas 1©
– 3© in Figure 8(d)) has a higher percentage of residen-
tial buildings, and its ELEC estimation error is also higher
(shown in Figure 8(c)).

In addition to the spatial differences in the accuracy
of the surrogate models, it is also essential to evaluate its
variations in the temporal dimension. Figure 9 illustrates
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Figure 6. nMAE of the target (i.e. ELEC, E-SURF, E-EXH, and E-REJ) estimations at the prototype level. The experiments used 10% of the
simulation data. It should be noted that the prototypes used in this study are not limited to the ones shown in this figure. For exam-
ple, SingleFamily-2004 (SF2004), SingleFamily-2013 (SF2013), and SingleFamily-pre-1980 (SF1980) were used as single-family house
prototypes. The nMAE of single-family houses is the weighted nMAE of SF2004, SF2013, and SF1980 using their building areas.

the average electricity consumption estimation nMAE of
census tracts over the selected months, and one month
from each season was chosen. As shown in the figure,
there is no clear pattern of the change in nMAE from
one month to another. However, comparing the nMAE
between seasons, it is clear that the accuracy of the esti-
mates is similar for April (i.e. spring) and July (i.e. summer),
but the nMAE for October (i.e. fall) increases significantly,
withmore spikes, compared to April and July. In addition,
the overall nMAE for December (i.e. winter) is significantly
lower than the other months. Overall, the temporal vari-
ation in model accuracy is acceptable, but it should be
scrutinized when using the proposed method on other
datasets.

Figure 10 compares the distribution of the nMAE over
the electricity consumption peak time, valley time, and
the rest of the time. Both the peak and valley time
were identified using the default algorithm in the SciPy
find_peaks method and are shown in Figure 10(a) (Vir-
tanen et al. 2020). Unlike MAE or RMSE, which could be
much higher at peaks, nMAE has a significantly lower
mean value at the peak time of electricity consump-
tion, and its variance is also smaller. There is no obvi-
ous difference between the nMAE distribution of val-
ley time and the rest of the time. Furthermore, For the
evaluation at energy consumption peak time, the nor-
malized RMSE regarding measured values ranges from
about 10% to 35% in De Jaeger’s work (De Jaeger et al.
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Figure 7. ELEC estimations for June 15 to June 30 in selected census tracts. Census tract 6037207101 was selected for Microclimate 65.
Census tract 6037621201 was selected for Microclimate 35. Census tract 6037930301 was selected for Microclimate 109. Census tract
6037600303 was selected for Microclimate 50. The experiment generating the data for this figure used 10% of the simulation data to
build the surrogate model.

2020), and ranges from 84% to 129% in Prataviera et
al’s work (Prataviera et al. 2022) with comparable model
configuration. Compared to the range in the prior stud-
ies, the 4.98% nRMSE for the surrogate modelling in this
study (shown in the caption of Figure 10) is modest. It
suggests that the surrogate modelling in this study did
not result in obvious extra errors on top of the base
errors from UBEM, and even if the peak time accuracy of
UBEM is low, the proposed surrogate modelling method
could possibly remain a useful tool for reducing sim-
ulation time while maintaining the reasonable UBEM
accuracy.

5. Discussion and conclusions

5.1. Contributions

In this study, surrogate modelling is used to shorten the
computation time of simulation based UBEMwith a large
number of microclimates. In this novel approach, biL-
STM is used to build surrogate models for building pro-
totypes using a small portion of simulation results. The
trained surrogate models can estimate the building per-
formanceof theprototype in newmicroclimates. The esti-
mations are aggregated to the census tracts of LACounty.
The evaluation results show that the proposed approach
can reduce computation time with an nMAE lower than
10% in most cases, and biLSTM can outperform baseline

surrogate models in accuracy. This study has two major
contributions.

First, this study reduces the computation timeofUBEM
with microclimates and therefore decreases the difficulty
in long-term and high-resolution UBEM with microcli-
mates. It makes related analyses and applications more
convenient and easier to promote. On the one hand,
some long-term urban designs and retrofits need to con-
sider climate and microclimate in future decades. For
example, energy retrofits across the entire building stock
would require decades, during which the urban climate
will change (Streicher et al. 2021; Ma et al. 2023). In the
case where the building prototype is unchanged, the sur-
rogatemodel can utilize the simulation outputs based on
a small number of microclimates to estimate the perfor-
mances of the corresponding building prototype under
the remaining microclimates, which reduces the amount
of simulation computation for long-term UBEM. In the
case where the building prototypes change in the long
term, although the surrogatemodels need tobe retrained
after each building prototype update, they would remain
valid until the next update. Take the electricity con-
sumption UBEM as an example, even if the building
prototype is updated annually, the proposed surrogate
modelling approach still reduces the simulation effort
by 90% with an estimation accuracy higher than 90%
(shown in Table 1). Therefore, by using the approach pro-
posed in this study, the UBEM for energy retrofits can
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Figure 8. The relationship between the nMAE and the percentages of residential building (i.e. single-family andmulti-family buildings)
area over total building area. In sub-figures, Area 1© is the Portuguese Bend Reserve area. Area 2© is the Indian Springs area. Area 3© is
the Los Angeles National Forest area. The experiment generating the data for this figure used 10% of the simulation data to build the
surrogatemodel. (a) nMAE of ELEC estimations at randomly selected census tracts. (b) Scatter plot of the nMAE regarding the percentage
of residential building area. Eachpoint represents a census tract. (c)nMAEquantiles for each census tract. For example, the 0.8–1 category
contains the census tract with an nMAE ranking top 20% among all. Each category has the same amount of census tracts. (d) Percentage
of residential building area quantiles for each census tract.

be completed in a much shorter time or be completed
with a higher temporal resolution in the same amount of
time.

On the other hand, in the spatial dimension, some
urban designs and retrofits are sensitive to local microcli-
mates. For instance, UHI has a significant impact on build-
ing energy consumption, heat emissions, and environ-
mental thermal comfort, and that influences the neces-
sity and effectiveness of implementing some building
retrofit strategies, such as solar reflective materials, shad-
ing trees around buildings, and high albedo surfaces
(Bande et al. 2019). Therefore, urban designs and retrofits
rely on a high spatial resolution UBEM.With the proposed
approach, design and retrofit strategies canbe tested and
optimized in a short time, or in the same amount of time
but with a higher spatial resolution.

Second, this study demonstrates the advantages of
bidirectional LSTM architecture over LSTM in UBEM sur-
rogate modelling. Although a small number of previ-
ous studies have used bidirectional RNN architectures

in UBEM surrogate modelling, they concluded that stan-
dard RNNs can outperform bidirectional RNN architec-
tures (Cohen et al. 2021). This study shows the advan-
tage of biLSTM over LSTM in terms of accuracy and
draws the opposite conclusion. This study also high-
lights the suitability of biLSTM in BES surrogate mod-
elling for applications beyond UBEM, including build-
ing design optimization, simulation analysis acceleration,
high-resolution building energy modelling, and others
(Ohta, Sasakawa, and Sato 2020; Pinto, Deltetto, and
Capozzoli 2021; Li et al. 2022; Li et al. 2023). In these
applications, if one or more dynamic features of the tar-
get can be predicted prior to estimation and used as a
‘known future,’ biLSTMmodels should be prioritized over
the standard LSTM.

5.2. Limitations and future directions

Despite the promising contributions, this study has lim-
itations. First, the prototype-microclimate pairs used for
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Figure 9. Average nMAE of ELEC estimation among all census tracts with error bar determined by standard deviations. The experiment
generating the data for this figure used 10% of the simulation data to build the surrogate model.

Figure 10. nMAE distribution at the time series peak, valley, and rest of the time. (a) true electricity consumption peaks and valleys of
Census Tract 6037101122. (b) nMAE probability distribution of Census Tract 6037101122 at peaks, valleys, and the rest of the time. The
mean value of the peak nMAE is 3.89%, and the mean value of the peak nRMSE is 4.98%. The experiment generating the data for this
figure used 10% of simulation data to build the surrogate model.

EnergyPlus simulations and training data generation are
randomly selected for each prototype. As only a small
number of microclimates is selected, the chosen micro-
climates may be concentrated in certain areas, which

could result in biased sampling. In this case, the surrogate
models may be overfitted, and their estimation accuracy
would be limited. Second, this study selected the same
percentage of simulationmicroclimates for all prototypes
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and did not adjust the number of microclimates in dif-
ferent surrogate model training. However, the surrogate
model training for some prototypes (e.g. residential pro-
totypes) is more difficult, and therefore requires more
microclimates for simulations, and vice versa. On the
other hand, the time needed to complete a simulation
differs among prototypes. For small-sized buildings (e.g.
single-family houses), the simulation model runs faster. It
may be worthwhile to increase the number of microcli-
mates and simulations for these prototypes in exchange
for higher accuracy.

Third, although the proposed approach in this paper
can reduce the one-year UBEM simulation time to about
10% of the original time in most cases, it is not refined in
multi-year UBEM surrogate modelling. In this study, pat-
terns learned by the surrogatemodels in one year are not
utilizedby themodel training in the following years. Thus,
the following model training still requires about 10% of
the original simulation results, rather than making use of
the patterns that are already learned and require fewer
simulations. Fourth, the proposed UBES surrogate mod-
ellingmethod does not apply to all cities. In this study, LA
Countywas used in the case study to highlight the signifi-
cance of theUBES surrogatemodelling. However, in small
U.S. citieswithpopulations of approximately tens of thou-
sands of people, the number of building prototypes is
limited. Moreover, the number of microclimates may also
be limited because of the limited city size and potentially
homogeneous geographical and building stock charac-
teristics. In this case, it may be more efficient to conduct
UBES more conventionally.

As responses to the limitations, some promising future
research directions are highlighted. First, when selecting
simulation microclimates for generating training data for
surrogate models, the microclimates could be clustered.
The sampling of microclimates should consider the dis-
tribution of microclimates and balance the contribution
of all clusters. It could reduce the sampling bias, nar-
row the difference between the training and test data
distributions, and decrease the possibility of model over-
fitting. Second, instead of setting a fixed microclimate
sampling proportion for all prototypes, prototypes with
low prediction accuracy and short simulation time could
be assigned a higher sampling proportion, and vice versa.
This practice may require multiple trials and errors, and
the obtained rule-of-thumb sampling proportions and
the simulation counts may also apply to other related
studies.

Third, transfer learning could be used to transfer the
patterns learned by the surrogate models from one year
to another year in multi-year UBEM and reduce the sim-
ulation time for the latter. There could be two scenarios
for this future work. In the case of transferring between

the sameprototype but differentmicroclimates, a smaller
proportion (i.e. below 10%, if 10% is used in the first year)
of microclimates and simulations would still be required
for the second year. Then, the fine-tuning method could
tune the parameters of the trained surrogate models in
the first year to adapt to the microclimates in the sec-
ond year (Li et al. 2021). As an alternative to conducting
the transfer learning approach, the domain adaptation
method can force the optimizer in the training to look
for the common patterns in both years, which makes the
surrogate models in the first year also generalizable to
microclimates in the secondyearwithout additional train-
ing (Zhu et al. 2021). In the case of transferring between
different prototypes (e.g. transferring between cities),
the transfer learning approach is still applicable. In addi-
tion, the similarity analysis can calculate the correlations
between a newprototype in the second year and the pro-
totypes in the first year. The correlations can be then used
to weigh the outputs of the surrogate models in the first
year and estimate the target for a new prototype. This
approach is simple and free from further model training
(Dwivedi and Roig 2019).

Last but not least, to further reduce the model train-
ing time of surrogate models, improvements could be
made in terms of data preprocessing, model structure,
and model training.

• In this study, all usable samples (i.e. sequences
obtained from feature time series) were used to train
the model. That is not necessarily needed to obtain
high accuracy. Randomly selecting part of samples for
model training or setting the sliding window stride to
be greater than onewhen preparing training datamay
be beneficial for computation time, and that can also
maintain good accuracy.

• In this study, the surrogate model for each prototype
is built separately. One strategy as an alternative is
to use a single model for estimating the target for
all prototypes. Because the electricity consumption or
heat emissionmechanism of different prototypes may
share some patterns, this strategy could work as mul-
titask learning. It is expected to converge faster and
reduce computation time while maintaining accuracy
(Dong et al. 2015).

• RNN models process each time step sequentially,
which limits themodel’s compatibility for parallel com-
putation. The Transformer model structure does not
rely on sequential computation and enables a more
parallel computation (Vaswani et al. 2017). Future
research could apply Transformer models and their
variants to the surrogatemodelling for UBEMand eval-
uate their performance in terms of accuracy and com-
putation time.
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5.3. Conclusions

In this study, biLSTM was used to build surrogate mod-
els for simulation based UBEMs. The inputs of surrogate
models are weather features and building TMY perfor-
mances before and after the target time step. The training
data are about 10% of the simulation inputs and outputs
for the UBEM, and the remaining 90% of the simulations
are used for generating estimations for the test, aggre-
gating to census tracts, and evaluating model accuracies.
This study found that the surrogate modelling could pro-
duce nMAE lower than 10% using 10% of the simula-
tion results in estimating ELEC, E-SURF, and E-EXH, and it
requires 20% of the simulations to estimate E-REJ with an
nMAE lower than 10%. The nMAE of the surrogate mod-
elling based on biLSTM is lower than that based on LSTM
by more than 7%. In addition, the total training time for
all surrogate models is generally less than 90 minutes
with an NVIDIA V100 GPU. Regarding the distributions of
the estimation error, the nMAE are different among the
prototypes, which shows the potential bias of the UBEM
based on the proposed surrogatemodelling approach. In
the spatial dimension, the estimation errors are likely to
be high in census tracts with a high residential building
area percentage. In the temporal dimension, the mean
nMAE of the aggregated estimation among census tracts
reaches its lowest values in winter and highest in fall.
In addition, the nMAE is lower at the peak of the target
time series than at the rest of the time. In summary, the
novel biLSTM-based UBEM surrogate modelling method
could reduce the computation time of UBEMwhile main-
taining a certain level of accuracy. The overall proposed
approach is expected to reduce the difficulty in long-term
and high-resolution UBEM with widely varying microcli-
mates and promote the corresponding applications and
decision-making.
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