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1. OBJECTIVES AND RESEARCH CONTEXT 

This research describes a new model of household vehicle usage behavior by type of 

vehicle. Forecasts of future vehicle emissions, including potential gains that might be 

attributed to introductions of alternative-fuel (clean-fuel) vehicles, critically depend upon 

the ability to forecast vehicle miles traveled by the fuel type, body style and size, and 

vintage of the vehicle. 

Households acquire vehicles to satisfy both the transportation needs and the 

preferences of household members. Consequently, vehicle usage by type of vehicle 

can be considered to be a function of three categories of variables: (1) household 

characteristics, (2) principal driver characteristics, and (3) characteristics of the vehicle 

itself. Examples of household characteristics are income, residential location, number 

of vehicles, number of license-holders, number of workers, and number of household 

members by age group. 

Usage of a specific vehicle depends heavily on which household license-holder typically 

drives the vehicle, i.e., the principal driver. Important principal driver characteristics 

include age, gender, and employment status. Workers, younger persons, and males 

are likely to drive more, as demonstrated in the models of Hensher (1985), Hensher, et 

al. (1992), Mannering (1983), Mannering and Winston (1985), and Train (1986). 

Usage is also affected by vehicle characteristicsJ. such as vehicle age (vintage), 

operating and capital costs, passenger and cargo capacity, and body style. Moreover, 

alternative-fuel vehicles are distinguished by vehicle attributes that potentially have an 

important influence on usage patterns; examples include limited range between 

refueling, coupled with limited fuel availability or the necessity to refuel or recharge the 

vehicle at home overnight. Differences between conventional-fuel and alternative-fuel 

vehicles in terms of fuel costs, cargo capacity, performance, and image are also 

expected to influence vehicle usage (van Wissen and Golob, 1992). 
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Applying a vehicle-type usage model in travel demand forecasts requires obtaining or 

developing forecasts of all of the model's exogenous variables. The first category of 

variables, household characteristics, can be readily forecast using Census data or 

household sociodemographic models used in regional planning. For example, the 

usage model developed here is part of a microsimulation forecasting system 

(Brownstone, et al., 1994; Bunch, et al., 1995) that is driven by a competing-risk hazard 

model of changing household demographics (Kazimi, 1995; Kazimi and Brownstone, 

1995). 

Forecasts of the second category of variables, characteristics of the principal driver, are 

problematic for multi-vehicle households, and also for single-vehicle households with 

more than one license-holder. For such households, modeling vehicle usage behavior 

involves allocating vehicles to license-holders in order to satisfy their activity needs 

(Golob, et al., 1995). In addition, it involves distributing total travel among the vehicles 

and license-holders. While, in principle, we only need forecasts of household and 

vehicle characteristics to forecast vehicle usage for single-vehicle households with only 

one license-holder, we need exogenous forecasts of the characteristics of the principal 

driver of each vehicle in multi-vehicle and multi-driver households. To address this 

issue, the models described in this paper simultaneously incorporate allocation of 

license-holders to vehicles along with vehicle utilization. 

Finally, exogenous forecasts of household vehicle holdings by type of vehicle are 

obtainable using vehicle type choice models, such as those developed by Lave and 

Train (1979), Manski and Sherman (1980), Hensher and Manefield (1982), Hocherman, 

et al. (1983), Berkovec (1985), Hensher and Le Plastrier (1985), Mannering and 

Winston (1985), Train (1986), McCarthy and Tay (1989), Hensher, et al. (1992). Such 

vehicle type choice models are based on vehicle holdings and transactions data (so 

called "revealed-preference" or RP models). Because consumers do not have actual 

experience with alternative-fuel vehicles that are likely to be available in 1998 and 

beyond, a vehicle type choice model based on stated preference (SP) data is required 

to forecast demand for these new vehicle types. One such model (Brownstone, et al., 
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1995) is being coupled with the usage models described in this paper to forecast 

alternative-fuel vehicle usage for the State of California. 

These models are similar to previous models of vehicle allocation and use in multi

vehicle households (Mannering, 1983; Hensher, 1985; Train, 1986; and Hensher, et al., 

1992) in that separate equations with correlated error terms are developed for each 

vehicle in the household. However, this research differs from previous efforts because 

there are additional equations that describe the most important characteristics of the 

principal driver of each vehicle. Although these characteristics cannot be readily 

forecast for use in a microsimulation system, they can be "solved out" of the problem; 

reduced-form equations are developed for forecasting purposes through a structural 

specification of vehicle allocation to drivers. Another unique feature is that the models 

use both RP and SP usage data simultaneously. In other words, the models are 

estimated with a mix of RP and SP observations, making the models sensitive to 

attributes associated with future alternative fuel vehicles. 

The current version of the models takes the household's vehicle holdings (both the 

number of vehicles and the vehicle types) as given. This model structure is 

theoretically unappealing (as described in Golob, et al., 1995), because a household's 

anticipated travel behavior is likely to influence its vehicle choices If the error terms of 

the vehicle choice model and the vehicle usage model are correlated, the parameter 

estimates will be biased. One approach is to apply a linear correction term involving a 

transformation of predicted vehicle choice probabilities to the usage model to account 

for self selectivity bias (McFadden et al., 1985; Mannering and Winston, 1985; Train, 

1986; Hensher, et al., (1992). Empirically, however, the selectivity corrections applied 

in utilization models to account for endogeneity bias have not had substantial effects on 

estimation results (Train, 1986; Hensher, 1992). More complex models, including direct 

joint estimation of choice and usage, are planned for future research. 
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2. DATA 

The data are from a 1993 survey conducted using geographically stratified pure random 

digit dialing. The survey, covering most of urbanized California excluding San Diego 

County, was composed of three distinct components, as described in Brownstone, et al. 

(1994) and Golob, et al. (1995). An initial computer-aided telephone interview (CATI) 

collected information on household structure, vehicle inventory, housing characteristics, 

employment data, commuting for all workers and students, and information about the 

intended next vehicle transaction. These CATI data were then used to produce a 

customized mail-out questionnaire which asked detailed questions about each 

household member's commuting and vehicle usage. The mail-out questionnaire also 

contained two SP (stated preference) vehicle type choice experiments for each 

household, the responses to which were collected in the third part of the survey, a 

follow-on CATI survey. 

Each of the SP experiments described three hypothetical vehicles in terms of attributes 

such as body type, fuel type, refueling range, purchase price, etc. These hypothetical 

vehicles included both alternative-fuel and gasoline vehicles. Attribute descriptions 

were varied according to an experimental design. For attributes related to body type 

and purchase price, candidate levels in the design were customized to be consistent 

with the types of vehicles that households indicated an interest in for their next intended 

vehicle purchase, so as to make the choice task more realistic and relevant. 

Households were asked to choose their preferred vehicle and indicate whether the 

chosen vehicle would replace an existing household vehicle (and if so, which one) or be 

added to the household fleet The questionnaire was customized so that the choices 

were characterized as transactions relative to the household's current vehicle holdings. 

Vehicle usage SP questions followed the choice experiment. The usage questions 

involved asking the household to assign principal drivers to each vehicle in the new 

vehicle fleet (including the SP chosen vehicle), and to indicate how many miles per year 

the chosen vehicle was likely to be driven. The flow of the survey ensured that 

4 



respondents first reported the principal drivers and usage patterns for their current 

vehicles before performing the SP task, allowing them to make informed judgments 

based on this information, as well as their own perceptions of principal driver and 

vehicle characteristics. Under this approach each completed survey provided both RP 

and SP measures of annual vehicle miles traveled that could be jointly analyzed in an 

appropriate model structure. The SP observations had the potential to provide data on 

the effect of alternative-fuel vehicle attributes on annual vehicle miles traveled. 

Of the 7,387 households that completed the initial CATI survey, 66%, or 4747 

households, successfully completed the mail-out portion of the survey. A comparison 

with Census data reveals that the sample is slightly biased toward home-owning larger 

households with higher incomes, and weights are being developed to balance the 

sample to the known population (Brownstone et al., 1994). An unweighted sample is 

used here. 

The breakdown of the 4747 households by vehicle ownership level was: 1% zero 

vehicles, 34% one vehicle, 47% two vehicles, 13% three vehicles, and 5% four or more 

vehicles. For one-vehicle households, 75% had exactly one driver, while 25% had two 

or more drivers. Thus, approximately 73% of the sample households were either multi

vehicle or single-vehicle/multiple-driver, where driver allocation behavior is relevant. 

The model variables are divided into three groups: (1) behavioral vehicle usage 

characteristics, capturing the ways in which households use their vehicles, (2) physical 

vehicle characteristics and (3) household structural characteristics. Vehicle usage for 

each household's vehicles (RP usage data) is self-reported in terms of "How many 

miles per year is this vehicle driven?" It would be more accurate to calculate annual 

usage from vehicle odometer readings one year apart, but such data are not available 

in a cross-sectional survey. Vehicle usage for the hypothetical future vehicles (SP 

usage data) was collected through a series of questions asking how many miles the 

vehicle chosen in a choice experiment would be driven each week, and who in the 

household would typically use the chosen vehicle to commute to work or school. 
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Because these models are being used in conjunction with a forecasting system, the 

household variables selected were limited to those produced by the available 

demographic forecasting model. The variable "Mean age of household heads," was 

computed as the mean of the ages of mates in spousal-like households, or the age of 

the single parent or person who can be identified as the major income-earner. The 

dummy variable "Household heads are retired" is set to one if one or both household 

heads are retired and neither household head is employed or temporarily unemployed; 

it is possible that another person, perhaps a grown child, is employed in such a 

household. 

Separate models are developed for single-vehicle households and multi-vehicle 

households. The sample sizes are: 2,260 single-vehicle observations, comprised of 

households currently holding one vehicle (RP data) and households ending up with one 

vehicle after the SP choice task; 3, 150 multi-vehicle observations, comprised of 

households currently holding two or more vehicles (RP data) and households ending up 

with two or more vehicles after the SP choice task. (In addition, a model of third-vehicle 

use was developed using a sample of 445 households with 3 or more vehicles, but this 

model is not reported here.) Each of the samples consists of households with known 

type and vintage of their current vehicle (single-vehicle sample), or no missing data on 

the newest two vehicles in their fleet (multi-vehicle sample). It is also required that 

there be no missing data on the age, sex and employment status of the principal drivers 

of each of these vehicles. 

3. SPECIFICATION 

3.1. Partition of the Variables into Endogenous and Exogenous Sets 

A distinguishing feature of this research is the endogenous treatment of driver 

allocation behavior, as noted previously. In order to avoid omitted-variables bias, 

vehicle miles of travel (VMT) is specified as a function of principal driver characteristics 
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in addition to exogenous household and vehicle type characteristics. However, 

principal driver characteristics are also specified as a function of the exogenous 

variables. This allows the principal driver characteristics, for which no exogenous 

forecasts are available, to be replaced by their predictors in the final forecasting 

equations. 

There are four endogenous variables for each vehicle. These are listed in Table 1. In 

the multi-vehicle case, household vehicles are arranged such that the newest of the 

vehicles is defined as "vehicle 1," described by the first four endogenous variables and 

the first group of vehicle-type exogenous variables. The second-newest vehicle is 

defined to be "vehicle 2," and it is described by the last four endogenous variables and 

the last group of vehicle-type variables. If two vehicles are of the same vintage, the 

order of listing by the respondent is preserved. 

Table 1: Endogenous Variables for Each Vehicle 

Variable Acronym 
Natural log of vehicle miles traveled per year Ln(VMT) 
Age of principal driver in years Driver Age 
Gender of principal driver (0 = male; 1 = female) Driver Gender 
Employment status of principal driver (1 = working) Driver Empl. St. 

The exogenous variables in each model are divided into two blocks: physical vehicle 

characteristics and household characteristics. The first block, listed in Table 2, is made 

up of 16 physical vehicle characteristics for each vehicle. 

The second block of exogenous variables is comprised of up to eleven household 

characteristics. This list is reproduced with associated acronyms for further reference in 

Table 3. The dummy variable for three or more vehicles is used only in the two-vehicle 

model. These variables, together with the driver characteristic variables listed in Table 

1, were selected on the basis of published vehicle usage model results (Mannering, 
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1983; Hensher, 1985; Mannering and Winston, 1985; Hensher and Smith, 1986; Train, 

1986; Golob, 1990; Hensher, at al., 1992). 

Table 2: Exogenous Variables for Each Vehicle 

Variable 
Vehicle Age (in years from 1993) 
Vehicle class dummies (12); base = luxury class 

Mini class 
Subcompact car class 
Compact car class 
Mid-size or full-size car class 
Full-size (standard) car class 
Sports car 
Compact pickup truck 
Full-size (standard) pickup truck 
Minivan (compact van) 
Full-size (standard) van 
Compact sport utility vehicle 
Full-size (standard) sport utility vehicle 

Operating cost per mile (in cents) 
Electric vehicle (dummy) 
Range between refueling in miles 

Acronym 
Vehicle Age 

Type: Mini 
Type: Subcompact 
Type: Compact 
Type: Mid-size 
Type: Full-size 
Type: Sports Car 
Type: Small Truck 
Type: Std. Truck 
Type: Minivan 
Type: Van 
Type: Compact SUV. 
Type: Full-size SUV. 
Operating Cost 
Electric Vehicle 
Range 

Table 3: Exogenous Variables - Household Characteristics 

Variable Acronym 
Household membership variables 

Total number of household members> 15 years No. 16+ Yr. Olds 
Number of children in household aged O to 5 No. less than 5 Yrs. Old 
Number of household members aged 16-20 No. 16-20 Yr. Olds 
Total number of children (all ages) in household Total children 
Household is a couple (dummy) Couple HH 

Household income less than $31,000 (dummy) Income< $31k 
Household income more than $60,000 (dummy) Income> $60k 
Household head(s) are retired (dummy) Retired HH 
Mean age of household heads Ave. Age of Heads 
Total Number of workers in household No. Heads Working 
Household has three or more vehicles (dummy) 3+ Vehicle HH 
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3.2. The Structural Equation Model Form 

The standard structural equations model (without latent variables) is given by 

y = By + rx + s (1) 

where y is an mx1 column vector of endogenous variables, and x is an nx1 column 

vector of exogenous variables. The structural parameters are the elements of the 

matrices: 

and 

B = matrix of causal links among the endogenous variables, 
(mxm) 

r = matrix of direct causal (regression) effects from the n exogenous 
(mxn) 

variables to the m endogenous variables. 

The. error-term parameters are the elements of the variance-covariance matrix: 

'P = E(ss') = symmetric variance-covariance matrix of the unexplained, 
(mxm) 

or unique, portions of the endogenous variables. 

For identification of system (1), B must be chosen such that (1-B) is non-singular, where 

I denotes the identity matrix of dimension m. 

The total effects of the endogenous variables on each other are given by 

(2) 

And the total effects of the exogenous variables on the endogenous variables in a 

structural equations model of this type are given by 

(3) 

which are the parameters of the reduced-form equations. 
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3.3. Division of the Problem into Separate Models 

Comparisons of sample sizes to the number of variables and potential number of 

parameters revealed that separate models could be developed for single-vehicle 

households and for two-vehicle households. However, the number of households with 

three or more vehicles was insufficient for the development of a dedicated three-vehicle 

model. The alternative was to expand the two-vehicle model to cover households with 

two or more vehicles, and to add a third-vehicle model for households with three or 

more vehicles. It might be preferable to model utilization of three vehicles 

simultaneously, but the expansion of the present structural equation system to 12 

endogenous variables and up to 58 exogenous variables (16 for each vehicle plus 10 

household variables) is infeasible with the present data. The use of a Third-Vehicle 

Model (not reported here), with only four endogenous and 26 exogenous variables, is a 

pragmatic solution to the problem. 

The Two-Vehicle Model, covering the two newest vehicles in multi-vehicle households, 

is the most complex, and its specification is described here in detail. The Single

Vehicle Model is a simplification of the Two-Vehicle Model. 

3.4. Specification of the Two-Vehicle Model 

Each model specification can be subdivided into: endogenous effects given by the B 

matrix in equation system (1 ), exogenous effects (the r matrix), and error-term 

variance-covariances (the \fl matrix). This specification is based on structure of the RP 

(revealed-preference) utilization model developed in Golob, et al. (1995), but the 

present model exhibits additional features particularly related to joint SP-RP estimation. 

The postulated causal relationships among the endogenous variables are depicted in 

Table 4. There are two types of direct effects: within-vehicle effects and between

vehicle effects. 
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Influenced 
variable 
Ln 
(VMT1) 

Driver 
Age1 

Driver 
Gender1 

Driver 
Empl. St1 

Ln 
(VMT2) 

Driver 
Age2 

Driver 
Gender2 

Driver 
Empl. St2 

Ln 

Table 4: Two-Vehicle Model 
Postulated Direct Effects Between Endogenous Variables 

(positive effects denoted by+, negative effects by-) 

Influencing Variable 

Driver Driver Driver Ln Driver Driver 
(VMT1) Age1 Gender1 Empl. St1 (VMT2) Age2 Gender2 

f31,2 (-} f31,3 (-) f31,4 (+) 

f33,2 {-) f33,7 {-) 

f34,2 {-) f34,3 {-) 

f3s,e= f31 ,2 f3s,1=f31,3 

f3e,4=f32,s 

13-,,3=[33,7 l3-,,e=f33,2 

f3a,4= f34,s f3a,e= f34,2 f3a,1=f34,3 

Driver 
Empl. St2 

f32,s {-) 

f34,8 {-) 

f3s,a=f31,4 

The within-vehicle effects are those in the upper left-hand (first vehicle) and lower right

hand (second vehicle) quadrants of the B matrix. Each of these effects is expected to 

be identical for the two vehicles, and equality restrictions are specified for 

corresponding pairs of 8-matrix parameters. Use is postulated to be less for vehicles 

primarily driven by older persons (P1,2 = Ps,6), and women (P1,3 = Ps,7), and use is 

postulated to be greater for vehicles primarily driven by employed persons (P1,3 = Ps,8). 

Male principal drivers are more likely to be employed (P4,3 = Pa.7), as are younger 

principal drivers (P4,2 = Pa,6), and older drivers are expected to be male (P3,2 = P7,6). An 

important feature of this specification is that, for each of the two household vehicles, 

VMT is postulated to be a function of all three of the principal driver variables. Thus, 

while driver allocation is endogenous, VMT is specified as a function of driver 

characteristics. 
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The postulated cross-vehicle effects are those in the lower left-hand and upper right

hand quadrants of the 8 matrix of Table 4. These reciprocal effects capture the 

relationships between the characteristics of the principal drivers of the two vehicles. 

We expect strong negative relationships between principal-driver genders and 

employment status in the between-vehicle effects, and this is operationalized by 

specifying equated pairs of reciprocal effects (P3,7 = P7,3) and (P4,8 = Pa,4). In addition, we 

expect that, if the driver of either vehicle is employed, the driver of the other vehicle is 

likely to be younger than otherwise expected {P2,8 = P6.4). Two-vehicle households with 

no employed drivers are likely to contain retired (and therefore older) members. The 

postulated model is parsimonious in that it has only nine free parameters in the 8 

matrix, representing nine pairs of equated direct effects. 

The postulated structure of the vehicle-characteristic exogenous effects is depicted in 

Table 5. The vehicle-type effects specified in the exogenous variable structure were 

developed by considering vehicle usage stereotypes. For example, there are typically 

more male principal drivers of compact and full-size pickup trucks; subcompact cars 

might have younger principal drivers; and minivans are likely to be driven by females. 

Logically, older vehicles and higher operating cost vehicles should be driven less, 

ceteris paribus. 

The major restrictions applied in specifying these exogenous vehicle-type influences 

are that the effects be the same for the two vehicles. It is a straightforward procedure 

to subsequently test whether the model can be significantly improved by releasing 

these cross-vehicle parameter equality restrictions. It is also quite possible that the 

characteristics of the first vehicle can affect the VMT and principal driver characteristics 

of the second vehicle, and conversely. The model was initially specified by setting all 

such cross-vehicle effects to zero. Tests were then conducted to ascertain whether 

cross-vehicle effects significantly improved model fit. 
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Table 5: Two-Vehicle Model 
Postulated Direct Effects from the Exogenous Variables 

Endogenous Variable 
Exogenous Ln Driver Driver Driver Ln Driver Driver Driver 

Variable (VMT1) Age1 Gender1 Empl. St1 (VMT2) Agez Gender2 Empl. St2 

Vehicle Age1 First vehicle: effects of Effects of characteristics of the 
Vehicle Classes1 vehicle characteristics first vehicle on VMT and driver 
Operating Cost1 on VMT and driver allocation allocation of the second 
Electric Vehicle1 (dense sub-matrix, (sparse sub-matrix, 
Range1 equated with 2nd vehicle effects) initially specified to be null) 
Vehicle Age2 Effects of characteristics of the Second vehicle: effects of 
Vehicle Classes2 second vehicle on VMT & driver vehicle characteristics 
Operating Cost2 allocation of the first vehicle on VMT and driver allocation 
Electric Vehicle2 (sparse sub-matrix, (dense sub-matrix, 
Range2 initially specified to be null) equated with 1st vehicle effects) 
No. 16-20 Yr. Olds 
No. of 16+ Yr. Olds Effects of household Effects of household 
No. 1-5 Yr. Olds characteristics on VMT and characteristics on VMT and 
Total No. of Kids principal driver allocation principal driver allocation 
Income > $60k of 1st vehicle of 2nd vehicle 
Ave. Age of Heads (equated across vehicles) (equated across vehicles) 
3+ Vehicle HH 

Examples of direct household effects to be tested include: Principal drivers in 

households with more workers and in high-income households are more likely to be 

employed. Usage is higher in households with more children and in high-income 

households. Principal drivers are younger in households with young children. Drivers 

in retired households are older and are less likely to be employed (although some 

drivers in retired households, such as adult children living with their parents, could be 

employed). Finally, households with three or more vehicles have lower levels of usage 

on their first and second vehicles, all else held constant. The default restriction on all of 

these postulated household influences involves equating the corresponding effects on 

the two vehicles, and then testing whether the relaxation of each equality results in a 

significant model improvement. 
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The final specification step involves the error-term variance-covariance matrix 4'. If the 

unique (error) component of any one of the four endogenous variables of the first 

vehicle is correlated with the unique component of the corresponding variable for the 

second vehicle, then we should find statistically significant coefficients for the 4' matrix 

terms ~15.1, ~ 6•2, ~ 7•3 , or ~ 8.7• That is, if what is not explained about a variable for one 

vehicle is correlated with what is not explained about the same variable for the other 

vehicle, these sub-diagonal parameters should be found to be significant. The freely 

estimated main-diagonal variances of the 4' matrix produce R2 values: 

R2 = (s .. - 11r..) / s .. 
1,1 '1'1,1 1,1 (4) 

where si i is the sample variance of endogenous variable i. 

4. ESTIMATION METHOD 

Structural equations systems of this type can be generally estimated using methods of 

moments (also known as variance analysis methods). These methods proceed by 

defining the sample variance-covariance matrix of the combined set of endogenous and 

exogenous variables, partitioned with the endogenous variables first: 

Syx] 
s I 

xx 
(5) 

where Syy denotes the variance-covariance matrix of the endogenous variables, Sy)( 

denotes the covariance matrix between the endogenous and exogenous variables, and 

Sxx denotes the variance-covariance matrix of the exogenous variables. In the Two

Vehicle Model, there are 8 endogenous variables and 38 exogenous variables, so S is 

a (46 by 46) symmetric matrix. It can be easily shown using matrix algebra that the 

corresponding variance-covariance matrix replicated by model system (1), denoted by 

(6) 
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is: 

Lyy = (I-sr1(rsxxl' + 'I')((1-sr1) I' 

Lyx = (1-sr1rsXX' 

(7) 

(8) 

and Lxx = Sxx is taken as given. The structural equation system is estimated using the 

variance-analysis normal-theory maximum likelihood method (Bollen, 1989). The fitting 

function for structural equations maximum likelihood (ML) estimation is 

FML = LoglI( 0 )I- LogjSj + tr[ SI( 0) ]- (p + q) , (9) 

where L(0) represents L (equations 6-8) implied by the vector of model parameters, e. 
This fitting function is (-2/n) times the log of the likelihood function that S is observed if 

L(0) is the true multivariate normal variance-covariance matrix. Minimization of FML is 

equivalent to maximization of the likelihood function. Under the assumptions of 

multivariate normality and the model being correctly specified, nFML is chi-square 

distributed, providing a test of model rejection and criteria for testing hierarchical 

models. Function (9) is minimized in the LISREL8 program using a modified Fletcher

Powell algorithm (Joreskog and Sorbom, 1993a). 

Note that if we fit the unrestricted reduced form by regressing each endogenous 

variable on all of the exogenous variables, then L(0) would exactly equal S and FML 

would be zero. Alternatively, we would get exactly the same result if we only imposed 

enough restrictions on the underlying parameters, e, to just identify the system. All of 

our models impose more restrictions than are necessary to identify the system. It turns 

out that nFML is simply the likelihood ratio test statistic for the null hypothesis that these 

over-identifying parameter restrictions are consistent with our observed data. 

Because four of the eight endogenous variables are dichotomous, the structural error 

terms corresponding to these dichotomous variables will have unequal variances. 

Although the coefficient estimates will still be consistent, the estimates of parameter 
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standard errors and the overall model chi-square goodness-of-fit will be inconsistent 

(Bentler and Bonett, 1980). Consistent estimates can be generated using the 

asymptotically distribution-free weighted least squares method (Browne, 1982, 1984), 

but this requires a much larger sample size. (The rule-of-thumb is that the sample size 

must be at least three times greater than the number of free entries in the asymptotic 

variance-covariance matrix of the correlation matrix, i.e., the fourth order moments; with 

36 variables, this requires approximately 3,250 observations.) However, Amemiya 

(1981) shows that for moderate sample sizes, the weighted least squares method may 

produce worse results than the unweighted maximum likelihood estimates used here. 

In any case, the coefficient estimates are still consistent. and they have been shown to 

be fairly robust (Boomsma, 1983). 

5. RESULTS: TWO-VEHICLE MODEL 

5.1. Model Fit and Structure 

The Two-Vehicle Model fits well according to the standard goodness-of-fit criteria. The 

likelihood ratio test statistic associated with the null hypothesis that the estimated model 

is consistent with the observed sample variance-covariance matrix is 210.5 with 237 

degrees of freedom, corresponding to a probability value of 0.892. Thus, the model 

cannot be rejected at the p = . 10 level. The estimated R2 value for VMT of the first 

(newest) vehicle is 0.115, and that of the second (oldest) vehicle is 0.131. As 

expected, significant positive error-term covariances were found between the VMT's of 

the two vehicles (t-statistic = 11.3), between principal driver ages (t-statistic = 8.4), and 

between principal driver genders (t-statistic = 15.2). 

The estimated direct effects between endogenous variables are listed with their t

statistics in Table 6. This endogenous variable structure model is basically in 

accordance with the hypotheses depicted in Table 4. All six of the within-vehicle 

endogenous-variable effects postulated for each vehicle were found to be statistically 
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significant and five of the six effects are equal across the two vehicles. The three 

postulated cross-vehicle effects were also found to be significant and symmetric. 

Table 6: Two-Vehicle Model 
Estimated Direct Effects Between Endogenous Variables (t-statistics in parentheses) 
(Coefficients that are restricted to be equal for the two vehicles are shown in bold) 

Influencing Variable 
Influenced Ln Driver Driver Driver Ln Driver Driver Driver 

variable (VMT1) Age1 Gender1 Empl. St1 (VMT2) Age2 Gender2 Empl. St2 

Ln -0.0043 -0.131 0.179 0.0797 
(VMT1) (-4.05) (-6.52) (4.54) (2.70) 

Driver -2.81 
Age1 (-5.85) 
Driver -0.0051 -0.693 
Gender1 (-7.78) (-21.6) 
Driver -0.0065 -0.103 -0.140 
Empl. St1 (-10.3) (-11.3) (-15.9) 
Ln -0.0028 -0.0043 -0.131 0.179 
(VMT2) (-2.12) (-4.05) (-6.52) (4.54) 
Driver -2.81 
Age2 (-5.85) 
Driver -0.693 0.506 -0.0036 
Gender2 (-21.6) ((3.72) (-6.46) 

Driver -0.140 -0.0065 -0.103 
Empl. St2 (-15.9) (-10.3) (-11.3) 

Three additional cross-vehicle effects were found to be necessary for good model fit. 

These are identified by the highlighted cells in Table 6: (1) If the driver of the first 

vehicle is older, use of the second vehicle is less than otherwise expected (effect !35 2 ), 

an effect which further links the influence of driver-age on VMT for the two vehicles. (2) 

If the driver of the second vehicle is female, use of the first vehicle is greater than 

expected (effect !35 2). And (3) if the driver of the first-vehicle is employed, the driver of 

the second vehicle is more likely to be female (effect 1374 ). The last two effects are 

consistent with the travel and activity patterns in many households in which there are 

working male heads and non-working female heads who bear the primary child care 

and home management responsibilities (Robinson, 1977; Pas, 1984; Townsend, 1987; 

Golob and McNally, 1995). 
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5.2. Total Effects 

The total effects of the endogenous variables on the two vehicle usage variables are 

listed in Table 7. For simplicity, only the total effects on the two VMT variables, 

elements ri 1.i and Tls.i U = 1 to 8) of matrix H defined in equation system (2), are 

shown. Results show that driver age has a significant effect on vehicle usage that is 

uniform for the two vehicles; if either driver is younger, both the first and second 

vehicles are likely to be used more. In contrast, the gender and employment status 

effects are consistent and reciprocal across the two vehicles. If the principal driver of 

either vehicle is female, that vehicle is driven less and the other vehicle is driven more, 

and if either driver is employed, that vehicle is driven more, and the other vehicle is 

driven less, ceteris paribus. These reciprocal pairs of effects are generally strongest for 

the driver's own vehicle. 

Table 7: Two-Vehicle Model 
Total Effects of the Other Endogenous Variables on the Two Usage Variables 

Influenced Variable 
Endogenous Ln (VMT1) Ln (VMT2) 

Variable Total effect t-statistic Total effect t-statistic 
Driver Age1 -0.00358 -3.36 -0.00363 -2.79 
Driver Gender1 -0.40013 -7.13 0.19975 5.33 
Driver Empl. St1 0.20385 5.03 -0.02565 -3.10 
Driver Age2 -0.00116 -4.72 -0.00362 -2.91 
Driver Gender2 0.35896 5.60 -0.28460 -6.24 
Driver Empl. St2 -0.02098 -3.26 0.15278 3.84 

The total effects of the exogenous variables on the usage endogenous variables are 

listed in Table 8. These are the coefficients of the reduced-form equations for two of 

the eight endogenous variables, which are given by matrix equation (2). 
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Table 8: Two-Vehicle Model 
Total Effects of the Exogenous Variables on the Two Vehicle Usage Variables 

Total Effects 
Exogenous Variable Ln (VMTJ Ln <VMT.,) 

Total effect t-statistic Total effect t-statistic 
Vehicle Aae, -0.01301 -2.98 -0.00095 -2.48 
Type1: Mini car -0.23091 -5.33 -0.00043 -0.10 
Type,: Subcompact 0.01675 3.33 0.01983 3.49 
Type1: Compact car 0.08289 2.41 0.00710 2.39 
Type1: Mid-size car -0.01416 -2.69 -0.06500 -1.57 
Type,: Full-size car -0.08733 -1.57 -0.00872 -2.32 
Type1: Sports car 0.03025 3.97 0.01494 2.44 
Type1: Small truck 0.07210 8.35 -0.03599 -6.52 
Type,: Std. Truck 0.08037 8.37 -0.04012 -6.53 
Type1: Minivan 0.12686 2.44 0.01668 4.12 
Type,: Std. Van 0.02095 2.05 -0.01046 -2.01 
Type,: Small SUV. 0.23267 4.33 -0.02145 -3.25 
Type1: Std. SUV. 0.07242 6.74 -0.02177 -2.80 
Operating Cost, -0.00057 -1.36 -0.00058 -1.31 
Electric Vehicle, -0.25025 -2.51 0.09420 1.25 
RanQe1 0.00153 3.30 0 - -
Vehicle Aae., 0.00443 1.14 -0.03372 -9.34 
Type?: Mini car 0.00323 3.19 -0.16784 -3.29 
Type?: Subcompact -0.00290 -0.59 0.02421 3.99 
Type?: Compact car 0.00140 2.26 0.00436 1.93 
Type?: Mid-size car 0.01319 2.46 -0.01784 -3.21 
Type?: Full-size car 0 - - 0 - -
Type?: Sports car -0.09826 -2.12 0.02713 3.63 
Type?: Small truck -0.06246 -6.43 0.05819 6.99 
Type?: Std. Truck -0.08374 -6.86 0.05863 6.70 
Type?: Minivan 0 - - 0 - -
Type?: Std. Van -0.01879 -2.01 0.01490 2.02 
Type?: Small SUV. -0.03829 -4.68 0.12405 2.17 
Type?: Std. SUV. -0.05326 -5.30 0.05463 5.84 
Operating Cost, 0.00427 0.626 -0.00860 -1.19 
Electric Vehicle? 0 - - -0.22579 -1.20 
RanQe, -0.00096 -1.53 0.00072 0.81 
No. of 16-20 Yr. Olds 0.00956 4.80 0.00822 1.55 
No. less than 5 Yrs. Old -0.00917 -3.41 0.04667 1.95 
Total no. of Kids 0.03060 3.30 0.03662 3.88 
lncome>$60k 0.11339 4.13 0.08506 3.10 
Retired HH -0.05129 -4.84 -0.04452 -4.19 
Ave. Aae of Heads -0.00350 -4.24 -0.00545 -5.88 
No. Heads WorkinQ 0.11234 5.51 0.10618 5.20 
3+ Vehicle HH 0 - - -0.04580 -1.59 
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The total effects of vehicle age on VMT are strongest for the second vehicle, but the 

effects are consistent for both vehicles: The older a vehicle is, the less it is used, 

ceteris paribus. Also, the older the first vehicle is, the less the other vehicle is used as 

well. The forecasting implication of this is reduced usage of the household fleet over 

time if no vehicle transactions occur. If household structure, income and employment 

do not change, the reduction in the fleet VMT will be further accentuated through the 

negative total effect on usage of driver age. This implies that households wishing to 

accommodate new travel demand are more likely to replace a vehicle with a newer one; 

while households with declining travel demand are more likely to hold on to their 

existing vehicles. 

The total effects of operating cost_are imprecisely estimated, but the signs of the within

vehicle effects are as expected. Also, a higher operating cost for the second vehicle 

implies a shift of usage from the second vehicle to the first vehicle, but the coefficients 

in the reduced-form equations have relatively high standard errors. 

The availability of the SP usage data yielded information about the effect of a limited 

range vehicle on annual VMT that would not otherwise be available from the RP 

responses alone. The effects of the electric vehicle (EV) dummy variable on VMT are 

potentially important for pollution and energy policies. If either of the first two vehicles 

in multi-vehicle households is a future EV, the model results imply that the EV will be 

driven less, ceteris paribus. Moreover, if the EV is the newest (first) vehicle in the 

household, the second vehicle will be driven more than otherwise expected. Thus, this 

model captures a shift in usage from EV's to conventional fuel vehicles, somewhat 

mitigating the emissions gains of the electricity versus conventional fuels. The 

magnitude of this cross-vehicle substitution effect can be assessed by using this 

utilization model for forecasting in combination with demographic, vehicle transaction, 

and vehicle type choice models (Brownstone, at al., 1994). 

The range variable also captures a reduced VMT effect for all limited-range vehicles 

(potentially including dedicated compressed natural gas vehicles in addition to EV's). 
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For limited-range second vehicles, there is also a shift in usage from the second vehicle 

to the first vehicle. 

The number of household members between 16 and 20 years old has a positive 

influence on VMT of both the first and second vehicle. However, the number of drivers 

in the household has negative effects on VMT of both vehicles, possibly indicating a 

shift of usage toward third and fourth vehicles in the household. The number of 

children 1 to 5 years old positively influences VMT mostly of the second vehicle, while 

the total number of children positively influences VMT of both the first and second 

vehicles. The_income effect has the expected sign, but, as in the case of average age 

of the heads, the effects are imprecisely estimated. Finally, as expected, the presence 

of three or more household vehicles reduces VMT of both the first and second vehicles. 

5.3. Scenarios of Changes in VMT Implied by the Total Effects 

The endogenous variables are expressed in terms of the natural logarithms of VMT, so 

the natural exponent of each reduced-form equation coefficient represents a 

multiplicative factor applied to the endogenous VMT variable in question. That is, 

exp(oi -c1} and exp(oi -c5,i) express multipliers of VMT for vehicles 1 and 2, respectively, 

where the T matrix of total exogenous effects is defined in equation system (3) and oi 

is the level of change in the jth exogenous variable. Some selected VMT multiplier 

effects are listed in Table 9 and 10. 

Each scenario listed in Tables 9 and 10 assumes that all factors not defined in the 

scenario remain constant. In the case of vehicle replacements, this includes the vehicle 

type class and operating cost. However, to provide realism, when vehicles are 

assumed to be replaced with identical vehicles with different ranges or fuels, it is 

assumed that the replacement vehicle is one year newer. 

Of all of the model predictions computed in Table 9, the most substantial effects are 

those attributable to vehicle range and the electric vehicle (EV) designator. In the case 
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of the first (newer) vehicle, a reduction in range of 150 miles reduces VMT by a factor of 

0.81, but there is no effect on VMT of the second vehicle. In the case of the second 

vehicle, a similar reduction in range of 150 miles reduces VMT by a factor of only 0.93, 

but first-vehicle VMT is predicted to increase by a factor of 1.15. The weaker second

vehicle range effect is partially due to an offsetting stronger second-vehicle age effect. 

Combining reduced range with the EV effect, the model predicts that if the first vehicle 

is an EV with 100 miles range, VMT will reduce by a factor of 0.58, and second-vehicle 

VMT will increase by a factor of 1.10. If the second vehicle is an EV with 100 miles 

range, VMT on this vehicle will reduce by a factor of 0.70, but there will be more of a 

shift to usage of the first vehicle, with first-vehicle VMT increasing by a factor of 1.24. 

Table 9: Two-Vehicle Model 
Exponentiated Total Effects on VMT of Selected Changes in Vehicle Characteristics 

Multiplier Multiplier 
Exogenous change Effect on Effect on 

Veh. 1 VMT Veh. 2 VMT 
Vehicle Aae. (in vears) 

vehicle ages one year 0.98 0.99 
replace with same type veh. 1 year newer 1.01 1.00 
replace with same type veh. 5 years newer 1.07 1.01 

Electric Vehicle1 (EV1) 
Range1 (in miles) 

replace 300 mi. veh. with 200 mi. non-EV, 1 yr. newer 0.87 1.00 
replace 300 mi. veh. with 150 mi. non-EV, 1 yr. newer 0.81 1.00 
replace 300 mi. veh. with 100 mi. EV, 1 vr. newer 0.58 1.10 
replace 300 mi. veh. with 75 mi. EV. 1 yr. newer 0.56 1.10 

Vehicle Aqe? (in vears) 
vehicle aqes one year 1.00 0.97 
replace with same type veh. 1 year newer 0.99 1.03 
replace with same type veh. 5 years newer 0.98 1.18 

Electric Vehicle? (EV?) 
Range? (in miles) 

replace 300 mi. veh. with 200 mi. non-EV, 1 yr. newer 1.10 0.96 
replace 300 mi. veh. with 150 mi. non-EV, 1 yr. newer 1.15 0.93 
replace 300 mi. veh. with 100 mi. EV, 1 yr. newer 1.21 0.72 
replace 300 mi. veh. with 75 mi. EV, 1 yr. newer 1.24 0.70 
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Given these results, we regard the SP data as providing useful improvements to the 

quality of our VMT forecasts for future alternative-fuel vehicles, and especially for 

electric vehicles. However, there were also some possible limitations inherent in the 

data from the SP experiment, which was mainly focused on the issue of vehicle choice. 

Respondents were apparently able to reflect the general effect of limited range electric 

vehicles on usage patterns through both the allocation of the vehicle and some 

adjustments to VMT. More subtle effects on utilization due to other attributes such as 

limited fuel availability (e.g., away from home recharging for electric vehicles, or smaller 

numbers of stations for natural gas vehicles) or differences in fuel operating costs may 

not have been as easily captured using this experimental format.. This could have 

resulted in an over-estimation of range and EV effects, and an underestimation of the 

effects of, e.g., improved operating costs. In fact, the coefficient on operating cost in 

our current model is rather modest, implying that the range and EV scenario results 

would not be substantially changed by imposing accompanying realistic changes in 

operating costs. Invalidating this result would require additional research. 

In contrast to the range effects, the vehicle aging effects are weaker for the first (newer) 

vehicle than for the second ( older) vehicle. If the newest vehicle in the household is 

replaced with a vehicle that is identical in type, operating cost, range, and fuel, but is 

five years newer, the model predicts that VMT for that vehicle will increase by 

approximately seven percent, with very little effect on VMT of the second vehicle. 

However, if the second vehicle is replaced with a vehicle that is identical in type, 

operating cost, range, and fuel, but is five years newer, the model predicts that VMT for 

that vehicle will increase by approximately eighteen percent, and VMT of the first 

vehicle will slightly decrease (by about two percent). 

predicted changes in VMT associated with the scenarios related to household 

characteristics are listed in Table 10. The influences related to the number of children 

in the household are smaller in magnitude than expected, but the usage behavior 

appears consistent with conventional notions of first- and second-vehicles. For 
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example, a new child places more pressure on the use of the second vehicle, the one 

that is less likely to be used for commuting. 

In contrast, the predicted effects of income and the number of household heads 

working are relatively strong, especially in combination. The joint impact of an 

additional worker and a higher household income is a predicted increase of twenty-five 

percent in usage for the first household vehicle, approximately half of which is 

attributable to an income effect; usage of the second vehicle increases by a slightly 

lower twenty-one percent. If one working head retires and income drops below the 

high-income cut-off, the model predicts that VMT of the first and second vehicles will be 

reduced by the factors 0.85 and 0.88, respectively. If both household heads quit 

working due to retirement, the predicted change in VMT is only ten percent for the first 

vehicle, providing that household income remains above (or below) the high-income 

cut-off. Finally, the presence of a third household vehicle has a modest influence on 

VMT of the second vehicle. 

Table 10: Two-Vehicle Model 
Exponentiated Total Effects on VMT of Selected Changes in Household Characteristics 

Multiplier Multiplier 
Exogenous change Effect on Effect on 

Veh. 1 VMT Veh. 2 VMT 
Number of 16-20 Yr. Olds 

child passes 16th birthday, no other chanqes 1.01 1.02 
Children 

birth of child, no other chanqes 1.02 1.09 
19 yr. old child moves out of home, no other chanqes 0.96 0.96 

Income and Employment Status 
income rises above $60k, no other chanqes 1.12 1.09 
+1 head workinq and income rises above $60k 1.25 1.21 
1 head workinQ: retires, income drops below $60k 0.85 0.88 
2 heads retire at same time, income stays above $60k 0.90 0.92 

Ownership of a Third Vehicle 
household adds third vehicle 1.00 0.96 
household disposes of third vehicle 1.00 1.05 
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6. RESULTS: THE SINGLE-VEHICLE MODEL 

6.1. Model Fit and Final Structure 

The structure of the Single-Vehicle Model is also basically in accordance with the 

structural hypotheses. This Model fits extremely well according to all goodness-of-fit 

criteria, the chi-square statistic being 41.82 with 49 degrees of freedom, corresponding 

to a probability value of 0.757. The model cannot be rejected at the p = .10 level. The 

estimated R2 value for VMT is 0.173. No significant error-term covariances were found 

between any pairs of the four endogenous variables. 

The endogenous variable structure determined to be optimal in the Single-Vehicle 

Model is similar to the within-vehicle structure found for the Two-Vehicle Model (the 

structure depicted in the upper-left-hand and lower-right-hand quadrants of the B matrix 

shown in Table 6). The only difference was that an additional direct effect was found 

between principal driver gender and age: female principal drivers of a vehicle in a 

single-vehicle household are younger than otherwise expected, ceteris paribus. 

6.2. Total Effects 

The total effects of the endogenous principal-driver variables on VMT for the Single

Vehicle Model are listed in Table 11. As in the multi-vehicle case, VMT is higher for 

younger, male, employed drivers, but the gender and employment status effects are 

relatively weaker for single-vehicle households. 

Table 11: Single-Vehicle Model 
Total Effects of the Other Endogenous Variables on Vehicle Usage 

Endogenous Total Effect on Ln(VMT) 
Variable Total effect t-statistic 

Driver Age -0.00396 -1.00 
Driver Gender -0.08037 -2.30 
Driver Empl. Status_ 0.11671 2.46 
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Finally, the total exogenous effects on VMT for the Single-Vehicle Model are listed in 

Table 12. Once again, these effects are similar to those found for multi-vehicle 

households, with some exceptions. Usage patterns are consistent for eight types of 

vehicles, but sportscars, minivans, standard sport utility vehicles, and full-size cars 

exhibit different usage patterns in single-vehicle, versus multi-vehicle, households 

Table 12: Single-Vehicle Model 
Total Effects of the Exogenous Variables on Vehicle Usage 

Exoaenous Variable Total effect t-statistic 
Vehicle Aqe -0.01574 -4.14 
Type: Mini car -0.27808 -5.97 
Type: Subcompact 0.09798 1.82 
Type: Compact car 0.12140 2.26 
Type: Mid-size car -0.00259 -0.91 
Type: Full-size car 0.00639 1.38 
Type: Sports car -0.00706 -1.46 
Type: Small truck 0.26612 2.64 
Type: Std. Truck 0.52883 3.26 
Type: Minivan 0.45711 3.86 
Type: Std. Van 0.34705 1.64 
Type: Small SUV. 0.31306 2.98 
Type: Std. SUV. 0.00000 0.00 
Operating Cost -0.01223 -1.31 
Electric Vehicle -0.15136 -1.58 
Ranqe 0.00138 3.62 
No. 16-20 Yr. Olds 0.04246 2.58 
No. 16+ Yr. Olds 0.03455 0.93 
No. less than 5 Yrs. Old 0.12448 2.31 
Total no. of Kids -0.11225 -3.78 
Income< $31k -0.19112 -5.19 
Income> $60k 0.10970 1.90 
Couple HH 0.00833 1.69 
Retired HH -0.02178 -1.67 
Ave. Age of Heads -0.01071 -8.46 
No. Heads Workinq 0.05588 2.21 

Regarding alternative-fuel vehicles, the negative EV effect and the positive effect of 

range on VMT are consistent between single-vehicle and multi-vehicle households. 
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7. A FORECASTING METHOD THAT PRESERVES HETEROGENEITY 

This model is being applied in a dynamic microsimulation forecasting system 

(Brownstone, et al., 1994), where a sociodemographic transition model and vehicle 

transactions models are being used to forecast changes in households' 

sociodemographic structure and composition of the vehicle fleets. The usage model is 

then exercised to forecast VMT for both the before- and after-situations for the 

household. The calculated change in forecasts is then applied as a percentage change 

to the actual base level of usage for the household in the before-situation. 

Even if the dynamic sociodemographic model predicts no change in household 

characteristics (household composition, employment status, or income), and the vehicle 

transactions model predicts no vehicle transactions for the household for the period in 

question, the present usage model will in general predict changes in VMT. This will be 

due to aging of the household heads, aging of the vehicles, and possible changes in 

the age categories of household members, particularly children. 

The most effective application of the usage models in a micro-simulation forecasting 

system uses a "pivot" approach (described below), rather than the traditional approach 

of using the expected value from a linear model. The pivot approach preserves 

heterogeneity across households. Heterogeneity due to spatial and lifestyle factors is 

to be expected; some households drive more miles per year than the model would 

predict while others drive fewer miles per year than the model would predict. 

By using the residual difference between observed and predicted VMT for each 

household vehicle in the model estimation data set, we can develop household/vehicle

specific multipliers that can be used during forecasting. Such multipliers take the form: 

8- = VMT ~bs / VMT ~red 
I I, Q I, Q (10) 

where i denotes the ith vehicle, and O denotes the "base year" of the forecast, which 

corresponds to the original estimation sample. A new predicted VMT is computed for 
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each forecasting period, and then "pivoted" by using the multiplier. These multipliers 

capture effects due to heterogeneity that might be missing from the model, and 

preserves them in the forecasts. One difficulty with this approach is that vehicle 

transactions will occur during the course of a forecast. Appropriate rules have been 

developed for re-assigning multipliers after a vehicle transaction, and these are being 

used in our microsimulation forecasting system. 

8. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH 

The structural elegance of the models and their statistical fit to the sample data provide 

support to our modeling approach. Moreover, the correspondence between pure RP 

results (Golob, et al., 1995) and the present SP-RP results is encouraging. We are also 

encouraged by the advantages associated with a jointly estimated RP-SP model that 

simultaneously captures the endogenous effects of vehicle re-allocation along with 

perceived changes in utilization associated with electric vehicle characteristics. These 

effects are not available from RP data alone. The approach automatically produces 

estimates that are consistently scaled, and yields reduced form equations that are 

convenient for forecasting utilization of alternative fuel vehicles.? 

However, the SP questions in the 1993 household survey from which these data were 

extracted are primarily focused on the issue of vehicle choice, and are potentially 

limited in capturing the full range of effects on usage attributable to fuel availability, 

peak and off-peak recharge costs for EV's, cargo capacity, performance, and other 

vehicle and fuel-system characteristics that might distinguish future vehicles. These 

issues are being pursued through a second household survey, conducted in 1994 that 

contained a different vehicle usage SP protocol. When the 1994 data are available, the 

robustness of the present model results can be assessed, and hopefully the model can 

be extended. 
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Potential selectivity bias can be accounted for in this usage model by linking the model 

to a discrete type-choice model (e.g., Ren, et al., 1995), and adding into the structural 

equation system a correction term variable involving a transformation of the 

household's predicted type vehicle choice probabilities (McFadden et al., 1985; 

Mannering and Winston, 1985; Train, 1986; Hensher, et al., 1992). It is doubtful that 

such a correction term would have a pronounced effect on the results. 

The known biases in the normal-theory maximum likelihood estimation method applied 

to dichotomous endogenous variables are concentrated on coefficient standard errors 

and overall goodness-of-fit criteria. The fit of the model is not in question, and 

hypothesis testing is subordinate to forecasting capability in this research. However, it 

would be possible to use unbiased generally weighted least squares estimation 

(Browne, 1982, 1984), as implemented in LISREL8 with PRE-LIS2 (Joreskog and 

Sorbom, 1993b), with a significantly increased sample size. 
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