
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Deep Learning Approaches for Scene Understanding

Permalink
https://escholarship.org/uc/item/84z6r6wr

Author
Liu, Hengyue

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/84z6r6wr
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Deep Learning Approaches for Scene Understanding

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Hengyue Liu

June 2024

Dissertation Committee:

Dr. Bir Bhanu, Chairperson
Dr. Konstantinos Karydis
Dr. Nanpeng Yu

Copyright by
Hengyue Liu

2024

The Dissertation of Hengyue Liu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I thank my dissertation chair, Dr. Bir Bhanu, who never gives up on motivating me to finish my

degree. I would like to thank Dr. Konstantinos Karydis and Dr. Nanpeng Yu for being my com-

mittee members on my dissertation defense. I would also want to thank Dr. Matthew Barth and

Dr. Craig Schroeder for conferring my doctoral candidacy. I am grateful for the friends/colleagues

who were part of my graduate life: Dr. Adam Witmer, Alex Woonggi Shin, Ankit Jain Rakesh

Kumar, Dr. Runze Li, Saisri Padmaja Jonnalagedda, and Xiu Zhang. My research was supported by

Bourns Endowment and funds and a gift from SEVAai. Inc. This dissertation was compiled from

“Pose-guided R-CNN for Jersey Number Recognition in Sports”, “JEDE: Universal Jersey Number

Detector for Sports”, “Fully Convolutional Scene Graph Generation”, “RepSGG: Novel Represen-

tations of Entities and Relationships for Scene Graph Generation”, and “Dynamically Throttleable

Neural Networks, by Hengyue Liu et al. © 2019, 2020 the IEEE, and 2022 Springer-Verlag GmbH

Germany, part of Springer Nature.

iv

To my mother Chunhua Bai, my father Tinggeng Liu, I thank you for all the love and

support. I also thank my love Heng Fang, Mufasa Fang, and Chototsu Moushin Fang, for

their company.

v

ABSTRACT OF THE DISSERTATION

Deep Learning Approaches for Scene Understanding

by

Hengyue Liu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2024

Dr. Bir Bhanu, Chairperson

Scene understanding is an important aspect of computer vision, encompassing a variety of

tasks such as image classification, object detection, scene graph generation, and action recognition.

With the advances of deep learning models, scene understanding has seen significant improvements

in accuracy, robustness, and efficiency, enabling more sophisticated and reliable applications in au-

tomated sports analytics, visual relationship detection, and dynamic neural networks. Deep learning

techniques that perform on standardized benchmarks often struggle when applied in real-world sce-

narios where the environment variables are often unconstrained and diverse, resulting in challenges

that can hinder their accuracy and generalizability. This thesis delves into the evolution of scene un-

derstanding through deep learning, and presents novel approaches for specialized tasks like jersey

number detection, scene graph generation, and dynamically throttleable neural networks. The devel-

oped techniques enhance the deep model’s ability to learn robust and transferable representations,

enabling better generalization across diverse visual domains. Both theory and experimentation will

be presented.

vi

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1

2 Pose-Guided R-CNN for Jersey Number Recognition in Sports 5

2.1 Introduction . 5

2.2 Related Work . 8

2.3 Contributions of this Chapter . 11

2.4 Approach . 11

2.4.1 Task Definition . 12

2.4.2 RoIAlign Faster R-CNN . 13

2.4.3 Proposal Association . 14

2.4.4 Three-class Region Proposal Network . 15

2.4.5 Pose-guided Supervision . 16

2.5 Experimental Results . 17

2.5.1 Dataset . 18

2.5.2 Implementation Details . 19

2.5.3 Main Results . 22

2.5.4 Ablation Study . 23

2.6 Conclusion . 25

vii

3 JEDE: Universal Jersey Number Detector for Sports 27

3.1 Introduction . 27

3.2 Related Work . 30

3.2.1 Player Detection and Tracking . 31

3.2.2 Jersey Number Recognition . 31

3.2.3 Jersey Number Detection . 32

3.3 Contributions of this Chapter . 33

3.4 Technical Approach . 34

3.4.1 Problem Setup . 34

3.4.2 Backbone, RPN and Player Branch . 35

3.4.3 Pose-Guided Branch . 36

3.4.4 Digit Branch and Jersey Number Detection 42

3.4.5 Data Augmentations . 44

3.5 Experiments . 47

3.5.1 Dataset . 47

3.5.2 Implementation Details . 49

3.5.3 Digit Detection Results . 51

3.5.4 Jersey Number Detection Results . 53

3.5.5 Cross-domain Results . 56

3.5.6 Ablation Study . 59

4 Fully Convolutional Scene Graph Generation 69

4.1 Introduction . 69

4.2 Related Work . 71

4.3 Contributions of this Chapter . 73

4.4 Object Detection as Keypoint Estimation . 73

4.5 Relation Affinity Fields . 76

4.5.1 Inference . 78

4.5.2 Multi-scale Prediction . 79

4.6 Experiments . 81

4.6.1 Implementation Details . 83

4.6.2 Quantitative Results . 84

viii

4.6.3 Ablation Study . 87

5 RepSGG: Novel Representations of Entities and Relationships for Scene Graph Gen-
eration 92

5.1 Introduction . 92

5.2 Related Work . 96

5.2.1 Feature Representations . 96

5.2.2 Long-tailed Distributions . 99

5.3 Contributions of this Chapter . 99

5.4 Technical Approach . 100

5.4.1 Entity Detection . 101

5.4.2 Entity Encoder . 102

5.4.3 Relationship Encoder . 104

5.4.4 Relationships as Attention Weights . 110

5.4.5 Training . 112

5.5 Experiments . 120

5.5.1 Datasets and Evaluation . 120

5.5.2 Implementation Details . 122

5.5.3 Quantitative Results . 123

5.5.4 Qualitative Analysis . 130

5.5.5 Ablation Studies . 133

5.6 Limitations and Future Work . 141

6 Dynamically Throttleable Neural Networks 142

6.1 Introduction . 142

6.2 Related Work . 145

6.2.1 Conditional Computation . 145

6.2.2 Adaptive Control . 147

6.2.3 Summary . 148

6.3 Contributions of this Chapter . 149

6.4 Technical Approach . 150

6.4.1 Objective and problem setting . 150

6.4.2 Throttleable Neural Networks . 151

ix

6.4.3 Context-Aware Controller . 158

6.5 Experiments . 163

6.5.1 Experimental Setup . 163

6.5.2 Image Classification Task . 165

6.5.3 Object Detection . 168

6.5.4 Video-based Hand Gesture Recognition 169

6.5.5 Hardware Implementation . 173

6.5.6 Analysis . 174

6.6 Additional Analysis . 180

6.6.1 FLOPs Calculation . 180

6.6.2 Detailed Architectures . 180

6.6.3 Class distribution of 20BN-JESTER . 181

7 Conclusions 184

Bibliography 187

x

List of Figures

2.1 Illustration of two type of distractions (best viewed in color). Numbers bounded by
green box are the jersey numbers of our interest while red-boxed numbers are noise.
Our motivation partially comes from how to deal with various kinds of false positives. 6

2.2 Demonstration of robustness to false positives. Left: original image; middle: Faster
R-CNN results; right: proposed pose-guided R-CNN results. Our framework pre-
vents the wrong detection of the character ’s’ in the background. 7

2.3 The architecture of proposed pose-guided R-CNN (feature maps are just for illus-
trations and not representing the actual results). 12

2.4 Some examples from the dataset. (g), (k), and (l) are examples of multi-jersey
annotations; (a), (f) and (g) are illustrations of jersey numbers under common
conditions; (c) and (h) exhibit contrast lighting conditions ; (i) shows a close-view
image where number aspect ratio is distorted; (b), (d) and (j) are examples of
numbers influenced by pose deformation; (e) is highly distorted but still recognizable. 15

2.5 Distribution of digits in the data. 18

2.6 Precision-Recall Curves over each class. Left figure shows the Faster R-CNN re-
sults; right one shows ours results with improvement. 21

2.7 Recognition results across different poses. Most-left and most-right poses are ex-
treme cases in our test set for this identity. 22

2.8 Exemplary results from wild images collected from internet. Fails: ’7’ is classified
wrongly as ’2’ in second last image; ’6’ in the last image is classified wrongly as ’5’. 25

xi

3.1 The architecture of JEDE - it can be divided into four modules: (1) a backbone net-
work that extracts features and constructs a feature pyramid (e.g., ResNet-50 FPN)
followed by a RPN (Section 3.4.2.1); (2) a player branch that extracts features from
player proposals generated from the RPN via RoIAlign, performs classification,
bounding-box regression, and keypoints regression (Section 3.4.2.2); (3) a pose-
guided branch that predicts digit proposals from the pooled player’s features and
corresponding keypoint heatmaps (Section 3.4.3); (4) a digit branch that extracts
features from digit proposals, and then performs digit classification and bounding-
box regression (Section 3.4.4.1). Fully-connected layers are denoted by FCs, and
convolutional layers by CONVs. 30

3.2 The architecture of the pose-guided branch. In this example, a two-digit jersey
number is predicted. the center of digit “1” is predicted on the first channel of O
shown as the red dot, and the center of digit “4” is predicted on the second channel
of O shown as the blue dot. The predictions of size and center offset are location-
aware and class-agnostic. 40

3.3 Example augmented images (left to right) using CopyPasteMix, SwapDigit,
and CopyPasteMix+SwapDigit. 46

3.4 Example images from the collected dataset for each video labeled in numerical as-
cending order. Images are resized for illustration. The second row shows the his-
togram of digit annotations for each video. 49

3.5 Qualitative comparisons between JEDE and other methods. Each bounding box is
labeled with the predicted class and score, if available. The digit class is labeled
under the left bottom corner of the bounding box for all methods (rows 1, 2, 3, 6, 7),
and the jersey number is labeled above the box for JEDE models (rows 6, 7). Only
jersey numbers are labeled for Mask TextSpotter V3 and SwinTextSpotter. Images
are resized for illustration. 54

3.6 Qualitative comparison on the cross-domain task S→B. Faster R-CNN, Mask TextSpot-
ter V3, and SwinTextSpotter achieve poor performances with false positive detec-
tions that predict players, body parts, or texts as digits. JEDE Baseline performs
well on player detection and pose estimation with fair digit classification perfor-
mance. JEDE Augmented is much more robust to recognize digits thanks to the
proposed data augmentation methods. 57

3.7 Per-class AP comparisons between JEDE Baseline and Augmented for each fold
and cross-domain task. 63

3.8 Qualitative results for images in the wild. Sports from left to right, top to bottom
are: soccer, lacrosse, rugby, American football, cricket, basketball, volleyball, ice
hockey, handball, beach soccer, hockey, and water polo. 64

xii

4.1 An example of scene graph generation. (a) The ground-truth scene graph of an im-
age. (b) The ground-truth bounding boxes and their centers. (c) Our proposed rela-
tionship representation called relation affinity fields. (The image is 2353896.jpg
from Visual Genome [1].) . 70

4.2 One example of our proposed fully convolutional scene graph generation architec-
ture using four scales of features for prediction. We refer to the “backbone” as the
feature extraction CNN like ResNet [2], and the “neck” as the network for generat-
ing multi-scale features like FPN [3], and the head as several convolutional layers
(convs in figure). Shown in the right part, there are four output features per scale:
O, ∆, S for object detection and F for relationship detection. For single-scale
prediction, the backbone features of τ = 4 will be directly fed into the heads. . . . 74

4.3 An example of GT relation affinity field of predicate LAYING ON based on equa-
tions 4.3 and 4.4. A non-zero unit vector is only defined on locations inside πcat→table

LAYING ON .
78

4.4 FCSGG per-predicate PredCls@100 results for selected predicates using HRNetW48-
5S-FPN×2-f. 85

5.1 Illustration of RepSGG. For n detected entities, each entity is represented by K
subject queries and K object keys. The attention weights between queries and keys
are projected as the predicate classification scores in the shape of P × nK × nK,
where P is the number of predicates in a dataset. The final predicate classification is
reduced to the shape of P ×n×n by max-pooling, and top predictions are collected
as the scene graph. K = 3 and n = 3 in the example. 93

5.2 An illustration of RepSGG. (a) Entity detection and encoder: firstly, the FCOS en-
tity detector detects a bird (colored in red) and rock (colored in blue). For each
entity, K subject and object rep-embeddings (K = 3 in this illustration) are re-
trieved based on the entity’s class label as E0

s (shaped as a rounded rectangle) and
E0

o (shaped as a hexagon), respectively. The entity encoder generates entities’ visual
features as V0, and semantic-specific bounding box embeddings Qb and Kb. (b)
Relationship encoder: the initial queries Q0 (representing subjects) are generated
by adding V0 and E0

s with Qb acting as positional embeddings, and likewise for
the keys K0 (representing objects). Semantic-specific visual features are sampled
around entities dynamically based on input queries and keys via rep-point sam-
plers (5 samples per rep-embedding in this illustration), and then utilized to update
queries and keys via a GCA layer to gather more visual context. Subsequently, the
cross-attention between queries and keys are performed via a RCA layer to further
capture semantic features. (c) Relationship output layer: the pair-wise relationship
scores are computed as the sigmoid activation of raw attention weights between the
linear projections of queries and keys. The group-wise maximum scores are then
taken as the predicate classification scores. 101

xiii

5.3 BCE loss on PGLA-adjusted logits. (a) Loss on a positive predicate pwhere Yp,i,j =
1. (b) Loss on a positive predicate p with B = 0 (left), and with W = 1 (right). (c)
Loss on a negative predicate p where Yp,i,j = 0. The legend in (c) is shared across
(a) - (c), and gray lines in figures represent the BCE loss on original logits. 116

5.4 Per-predicate SGDet R@100 comparison between RepSGG, RepSGGPGLA, and
FGPL on VG150 dataset. RepSGGPGLA performs better on body and tail groups.
The overall standard deviation of R@100 is 14.6 (RepSGG), 12.3 (RepSGGPGLA),
and 13.6 (FGPL) respectively, which also implies that RepSGGPGLA achieves a
more balanced performance. 124

5.5 The t-SNE visualization of subject rep-embeddings Es, projected to RC×K×2 with
pairwise cosine similarity. There are C ×K = 150 × 4 = 600 points in total, and
each point represents a subject rep-embedding in the projected 2D space. The top-
10 similar pairs are labeled. Rep-embeddings of the same entity class share a color.
Only the entity classes involved in the top-10 pairs are colored, while the others are
displayed in gray. 130

5.6 The t-SNE visualization results on the output subject queries of the relationship
encoder (QLd) for 10 frequent entity classes. 131

5.7 Visualizations on predicted subject and object rep-point mean and std offsets. For
each entity class, the offsets of subject means, object means, subject stds, and object
stds are shown on the top-left, top-right, bottom-left, and bottom-right of the sub-
figure. The coordinates represent spatial offsets w.r.t. the ground-truth centers, while
the color saturation denotes the scale offsets w.r.t. the entity feature scale. The more
saturated the color is, the larger the scale offset is, and vice versa. 132

5.8 Effects of λ in (5.14) on R@100 and mR@100. The value of λ used for each model
is annotated, where λ = 0 denotes “PGLA is not applied”, and λ = 1 denotes the
default PGLA. 139

5.9 Inference speed and mR@50 benchmark on the SGDet task. 139

6.1 Conceptual architectures: (a) an ordinary gating network, (b) an ordinary dynamic
network, (c) the proposed DTNN. A computation node can represent a single
kernel, a group of kernels, a layer or a group of layers based on different designs.
An executed computation node is drawn as while an unexecuted or gated node is
drawn as . 144

6.2 Selective gating strategies. The colored blocks are activated groups while white
groups are gated. (a) and (b) are gating strategies along different dimensions, while
(c) and (d) have different ordering of gating. 152

6.3 Comparisons of relative accuracy drop (%) w.r.t. the peak accuracy on CIFAR-10
for DenseNet-WN with recent dynamic computation methods. Green shaded area
denotes the utilization range of [0.5, 1] for the TNN, which has 3 × 108 FLOPs at
u = 1 and 0.79× 108 FLOPs at u = 0.5. 165

xiv

6.4 Comparisons of relative accuracy drop (%) w.r.t. the peak accuracy on ImageNet
for ResNeXt-WN with recent dynamic computation methods. Green shaded area
denotes the utilization range of [0.5, 1] for the TNN, which has 4.2 GFLOPs at
u = 1 and 1.1 GFLOPs at u = 0.5. 167

6.5 TNNs are robust to test-time dropout for object detection on VOC2007 using Faster
R-CNN with throttleable “backbones”. 167

6.6 A DTNN framework consisting of a light-weight context-aware controller and WIDTH-
WISE throttleable 3D convolutional neural network (C3D-W) for video-based hand
gesture recognition. The first layer tϕ(1) of C3D-W is non-throttleble. 168

6.7 Classification accuracy on validation set over utilization parameter u for each ges-
ture class. The top-left facet shows the average accuracy of 81.10% across all
classes ,while a vanilla C3D achieves an accuracy of 82.67%. 170

6.8 Hand gesture recognition results on 20BN-Jester validation set (as test set). With the
context-aware controller, DTNN achieves the best accuracy-computation trade-off
comparing to TNN with fixed utilization. 172

6.9 Measured throttling performance on NVIDIA Jetson AGX Xavier. 173

6.10 Comparison of classification accuracy with different gate control methods for three
standard CNN architectures on the CIFAR-10 dataset. 176

6.11 The learned gating pattern for selected blocks of DenseNet-DW on CIFAR-10 with
the REINFORCE training. The dotted line shows uniform utilization. 176

6.12 Comparisons of results between throttleable and vanilla architectures for image
classification on ImageNet-1K. 176

6.13 Class distribution of 20BN-JESTER training set. 181

xv

List of Tables

2.1 Dataset statistics. H ,W , h andw are image height, image width, digit b-box height,
and digit b-box width respectively. For heights and widths, the unit is pixel; mask
area counts the number of pixels on the object; mask center is normalized within
range [0, 1]. 19

2.2 Comparison of results among approaches. Our method achieves the best accuracy
(ACC) for both number-level and digit-level recognition. Input is cropped grayscale
image for Gerke’s [4], and original RGB image for all other approaches. 20

2.3 Comparison of Faster R-CNN and our pose-guided R-CNN results. The backbone
used is ResNet-FPN-50, and input image size is 512× 512. 23

3.1 Dataset statistics. The collected statistics from the second left to the rightmost col-
umn are: the number (#) of images, the number of annotated digits, the number of
annotated players, the number of players with annotated keypoints, the mean and
standard deviation of the bounding box size of players and digits (in pixels), and the
bounding box area ratio of digit to player. 44

3.2 Jersey digit detection results. 50

3.3 Jersey number detection results. 52

3.4 Performance comparison for S→B task. 55

3.5 Performance comparison for B→S task. 58

3.6 Ablation on backbone networks. 60

3.7 GT Bounding box minimum overlap: Smaller value gives better results. 61

3.8 GT heatmap spatial size: Larger size gives better results. 61

3.9 Input to pose-guided branch: fusion of both features gives better results. 61

3.10 Feature fusion methods: concatenation gives better results. 61

3.11 Positional embeddings (PE): Concatenation w/ keypoint heatmaps gives better results. 62

3.12 Normalization layers: GN provides better results using a small batch size. 62

xvi

3.13 Ablation on the input features for number length classification. 62

3.14 Digit RoI pooling resolution: larger resolution gives better results. 62

3.15 Ablation on data augmentations. 64

3.16 Comparison of JEDE Baseline and Augmented on player detection and human pose
estimation results. 66

4.1 Recall and no-graph constraint recall @K evaluation results on VG-150. ⋆ denotes
the methods evaluated on other datasets, such that VTransE is evaluated on VG-200
[5] and FactorizableNet on a smaller set following [6]. † denotes the methods with
updated re-implementation results. - denotes the results that are not reported in the
corresponding work. 82

4.2 The SGG results on mean recall@K and no-graph constraint mean recall@K. . . . 83

4.3 Comparisons of SGG results on zero-shot Recall@K, and our results on no-graph
constraint zero-shot Recall@K. 84

4.4 Ablations on losses used for positive samples and regularization factor on negative
samples of RAFs. AP50 and SGDet results are reported using HRNetW32-1S. . . . 88

4.5 Comparisons of FPN s FPN×2, and Multi-scale batch normalization s group nor-
malization. AP50 and SGDet results are reported using ResNet50-4S. 88

4.6 Model size and speed comparisons for SGDet. 90

5.1 Comparisons of R@K and mR@K results on VG150 between the proposed methods
and SOTA methods. Methods are grouped from top to bottom as: point-based,
query-based, and box-based methods. FCSGG [7] uses HRNet [8] as backbone,
and CoRF [9] uses Swin-S [10]. The best results are bold, and the second-best
results are underlined. 121

5.2 PredCls results of zero-shot mean recall (zs-mR@K) and zero-shot recall (zs-R@K)
on VG150 compared to state-of-the-art methods. The best results are bold, and the
second-best results are underlined. 127

5.3 Comparisons with the state-of-the-art methods on OI V6. R@50 in the table is
micro-Recall@50 [11]. The best results are bold, and the second-best results are
underlined. 128

5.4 Comparisons of RepSGG models without PGLA, with recall-guided LA, and with
precision-guided LA on PredCls and SGCls tasks. 129

5.5 Ablation studies of number of rep-embeddings K, number of encoder layers Le,
and number of decoder layers Ld in RepSGGPGLA. Results on mR@100 and zs-
mR@100 are collected for three SGG tasks. 134

5.6 Ablation studies of GCA and RCA. 134

xvii

5.7 Ablation studies on using separate subject and object rep-embeddings (Es ̸= Eo)
vs. identical rep-embeddings (Es = Eo). 135

5.8 Ablation studies of loss and training configurations. 137

5.9 Effects of W, B, and D in PGLA. 138

6.1 Theoretical comparisons of the DTNN and related work on conditional computa-
tion. The proposed method supports both width-wise and depth-wise gating. It can
achieve static inference using fixed utilization, or per-input dynamic inference with
a learnable contextual controller without fine-tuning or re-training the throttleable
neural network. 146

6.2 Comparisons of accuracy (%) on CIFAR-10 between full-throttle TNNs and vanilla
architectures. 177

6.3 FLOPs calculation for common layers. 180

6.4 Detailed architectures of the DTNN for video-based hand gesture recognition on the
Jester dataset. 182

6.5 The contextual controller architecture based on 3D-ShuffleNet. 183

6.6 Cost comparison between the data path network (C3D-WN) and controller (3D-
ShuffleNet). 183

xviii

Chapter 1

Introduction

The rapid progress in deep learning-based computer vision has opened unprecedented

possibilities in computing various high-level analytics for sports. Artificial intelligence techniques

such as predictive analysis, automatic highlight generation, and assistant coaching have been ap-

plied to improve performance and decision-making for teams and players. To perform any high-

level analysis from a game match, collecting the locations (where) and identities (who) of players

is crucial and challenging. Recognizing player jersey number in sports match video streams is a

challenging computer vision task. The human pose and view-point variations displayed in frames

lead to many difficulties in recognizing the digits on jerseys. These challenges are addressed here

using an approach that exploits human body part cues with a Region-based Convolutional Neural

Network (R-CNN) variant for digit level localization and classification. We propose a Pose-guided

R-CNN [12] framework which adopts the Region Proposal Network (RPN) to perform anchor clas-

sification and bounding-box regression over three classes: background, person and digit. The per-

son and digit proposals are geometrically related and fed to a network classifier. Subsequently,

1

it introduces a human body key-point prediction branch and a pose-guided regressor to get better

bounding-box offsets for generating digit proposals. We further propose a universal JErsey number

DEtector (JEDE) [13] for player identification that predicts players’ bounding boxes and keypoints,

along with bounding boxes and classes of jersey digits and numbers in an end-to-end manner. In-

stead of generating digit proposals from pre-defined anchors, JEDE predicts more robust proposals

guided by players’ features and pose estimation. Moreover, a dataset is collected from soccer and

basketball matches with annotations on players’ bounding boxes and body keypoints, and jersey

digits’ bounding boxes and labels. Extensive experimental results and ablation studies on the col-

lected dataset show that the proposed method outperforms the state-of-the-art methods by a large

margin. Both quantitative and qualitative results also demonstrate JEDE’s superior practicality and

generalizability over different sports. Our frameworks outperform all existing models on jersey

number recognition task. This work will be essential to the automation of player identification

across multiple sports, and releasing the dataset will ease future research on sports video analysis.

To understand a scene, it is important to infer underlying properties of entities and the

relationships between them. Scene Graph Generation (SGG) has achieved significant progress re-

cently. A scene graph is an explicit graph representation for modeling a visual scene, where entities

are the nodes, and pairwise relationships are represented as edges. However, most previous works

rely heavily on fixed-size entity representations based on bounding box proposals, anchors, or learn-

able queries. As each representation’s cardinality has different trade-offs between performance and

computation overhead, extracting highly representative features efficiently and dynamically is both

challenging and crucial for SGG. We present a fully convolutional scene graph generation (FCSGG)

model [7] that detects objects and relations simultaneously. FCSGG is a conceptually elegant and

2

efficient bottom-up approach that encodes objects as bounding box center points, and relationships

as 2D vector fields which are named as Relation Affinity Fields (RAFs). RAFs encode both se-

mantic and spatial features, and explicitly represent the relationship between a pair of objects by

the integral on a sub-region that points from subject to object. FCSGG only utilizes visual features

and still generates strong results for scene graph generation. We then propose a novel architecture

called RepSGG [14] to address the aforementioned challenges, formulating a subject as queries, an

object as keys, and their relationship as the maximum attention weight between pairwise queries

and keys. With more fine-grained and flexible representation power for entities and relationships,

RepSGG learns to sample semantically discriminative and representative points for relationship in-

ference. Moreover, the long-tailed distribution also poses a significant challenge for generalization

of SGG. A run-time performance-guided logit adjustment (PGLA) strategy is proposed such that

the relationship logits are modified via affine transformations based on run-time performance dur-

ing training. This strategy encourages a more balanced performance between dominant and rare

classes. Experimental results show that FCSGG and RepSGG achieve the state-of-the-art or com-

parable performance on the Visual Genome and Open Images V6 datasets with fast inference speed,

demonstrating the efficacy and efficiency of the proposed methods.

Conditional computation for deep neural networks reduces overall computational load and

improves model accuracy by running a subset of the network. In this work, we present a runtime dy-

namically throttleable neural network (DTNN) [15] that can self-regulate its own performance target

and computing resources by dynamically activating neurons in response to a single control signal,

called utilization. We describe a generic formulation of throttleable neural networks (TNNs) by

grouping and gating partial neural modules with various gating strategies. To directly optimize ar-

3

bitrary application-level performance metrics and model complexity, a controller network is trained

separately to predict a context-aware utilization via deep contextual bandits. Extensive experiments

and comparisons on image classification and object detection tasks show that TNNs can be effec-

tively throttled across a wide range of utilization settings, while having peak accuracy and lower

cost that are comparable to corresponding vanilla architectures such as VGG, ResNet, ResNeXt

and DenseNet. We further demonstrate the effectiveness of the controller network on a throttleable

3D convolutional networks (C3D) for video-based hand gesture recognition, which outperforms the

vanilla C3D and all fixed utilization settings.

Besides the topics mentioned above, we also explore using deep learning techniques to

solve real-world problems in specialised scene understanding tasks, like early wildfire smoke de-

tection [16], human embryonic stem cell classification [17], and video-language foundation mod-

els [18].

4

Chapter 2

Pose-Guided R-CNN for Jersey Number

Recognition in Sports

2.1 Introduction

Broadcast sports are one of the most watched and studied videos in the world. Game

analysis is performed in real time by professional commentators and videos are often recorded for

coaching purposes. Analysis requires the review of thousands of hours of footage over the course of

a season, and requires tasks that are impractical to be performed by human observer. Therefore, the

automation of analysis is especially important. Tasks such as player detection, tracking, identifica-

tion, as well as generation of game synopses, can be automated using computer vision algorithms

to gather comprehensive sports match information without ever having to watch a minute of game

video. Automated sports video analysis enhances the broadcasting experience for both the narrator

and audience by providing auxiliary information of player’s location and identity at each time point.

5

Match statistics from video analysis can be provided directly to coaches and players to improve

strategy planning, opponent scouting, and player performance.

Figure 2.1: Illustration of two type of distractions (best viewed in color). Numbers bounded by
green box are the jersey numbers of our interest while red-boxed numbers are noise. Our motivation
partially comes from how to deal with various kinds of false positives.

Identifying players in sports matches is a key research challenge to make all the merits of

automatic sports analysis come true. However, there are numerous problems in recognizing players

in unconstrained sports video. The video resolution, viewpoint and motions of cameras, player’s

pose, lighting conditions, variations of sports fields and jerseys, all these factors can introduce

significant challenges for automatic video analysis. Traditional approaches for player recognition

in sports can be organized into two categories: identifying players via face recognition or jersey

number recognition. Both approaches have their own strength and flaws. Face recognition is robust

given high resolution closeup shot, while infeasible for wide shots where faces are indistinguishable

or low-resolution images. Jersey number recognition can be achieved under most cases as long as

6

the numbers can be detected or segmented, but suffers from human pose deformation, shooting

angles, motion blur, illumination conditions, etc. Moreover, the detection result is influenced by

not only these factors but also distractions within or around the playground, such as yard markers,

house numbers (illustrated in Figure 2.1), clocks, commercial logos and banners, etc.

Figure 2.2: Demonstration of robustness to false positives. Left: original image; middle: Faster
R-CNN results; right: proposed pose-guided R-CNN results. Our framework prevents the wrong
detection of the character ’s’ in the background.

This paper introduces a pose-guided R-CNN framework to address the challenges asso-

ciated with player identification through jersey numbers. Faster R-CNN [19] is a two-stage object

detector which can perform classification and bounding-box (b-box) regression, and Mask R-CNN

[20] is an extension of it with predictions of segmentation masks. This work adapts and expands

these concepts with re-designed region proposal and pose-guided b-box regression. The framework

consists of two stages. The first stage addresses the digit-person proposal matching problem using

a RPN which outputs candidate object b-boxes across three classes, background, player or digit

(as opposed to vanilla RPN, which only proposes two, foreground, background). Person proposals

and digit proposals are collected separately from a single RPN without adding many parameters.

7

The second stage uses a modification of Faster R-CNN that replaces ROIPool with RoIAlign, and

includes a human body key-point branch for predicting key-point masks. The classification and

b-box regression are performed on pooled digit features concatenated with key-point masks. This

framework improves localization performance of digits by associating person and digit Regions of

Interest (RoI), as well as adding human pose supervision signal. Consequently, the model only tar-

gets digits inside person proposals with the help from keypoint locations. An example of efficacy

of our framework is illustrated in Figure 2.2.

The rest of the chapter is organized as follows. Section 2.2 introduces the background

of jersey number recognition and related research. Section 2.4 discusses the framework in details.

Section 2.5 evaluates several models with the introduced dataset and other wild images from web,

demonstrating the applicability across other sports. Several key conclusions are drawn in Section

2.6.

2.2 Related Work

Jersey number recognition problem: The problem of interest can be considered as the

combination of person identification and digit recognition problem in the context of sports broad-

cast videos. Traditional approaches before the dominance of deep learning usually first build an

Optical Character Recognition (OCR) system then classify numbers based on segmentation results.

Šari et al. [21] introduce a complete OCR system to segment images in HSV color space with heavy

pre-processing and post-processing. Ye et al. [22] combine tracking information of frames and a

OCR system to predict jersey number based on voting. Lu et al. [23] take the person localizations

of deformable part model (DPM) detector then performs OCR and classification with matching

8

templates. These OCR-based methods have limited flexibility and robustness dealing with larger

datasets. Switching to deep learning approaches, Gerke [4] designs a neural network for jersey

number recgonition on small number-centered jersey images. A recent work from Li et al. [24]

embed Spatial Transformer Network (STN) modules [25] into a CNN architecture to localize jer-

sey number more precisely and trains the network with additional manually-labeled transformation

quadrangles in a semi-supervised fashion.

Some works take sports field into considerations. Delannay et al. [26] formulate ground

plane occupancy maps from multi-views detection to perform localization, followed by a OCR

system and multi-class Support Vector Machine (SVM). Gerke et al. [27] consider the player recog-

nition problem as a classifier fusion of players’ positional features and jersey number convolutional

neural network (CNN) ones [4]. These works put strong assumptions on the hidden pattern of

player’s movement and mapping of real-world and image coordinates of players. These assump-

tions are neither well-constructed nor universal applicable.

The jersey number recognition problem can be formulated as person re-identification

(ReID) as well. Some approaches favor performing player identification directly. Lu et al. [28]

use handcrafted combination of features to create a player representation model, then builds a L1-

regularized logistic regression classifier [29] for classification, and a Conditional Random Field

(CRF) graphical model to predict unlabeled videos. Lu et al. [30] continue the work by introducing

homography estimation and a weakly-supervised learning to reduce the labor of manual annotation

via auxiliary text log information of game matches. Senocak et al. [31] tackle player identification

problem by constructing a fused feature of multi-scale features extracted from whole body image

and pooled features from body parts. We also consider player identification important since the

9

jersey number features are highly correlated to human body ones.

Scene Text recognition: Regarding this similar research, Poignant et al. [32] propose a

video OCR system for text recognition combing audio information to perform person identification.

Goodfellow et al. [33] tackle number sequences recognition in constrained natural images with deep

neural networks. Jaderberg et al. [34] proposed a complete text recognition system for natural scene

images with heavily-engineered framework. [35, 36] use STNs for natural scene text detection and

recognition. Bušta et al. [37] modify Region Proposal Network (RPN) [19] with rotation capability

for better text localization. The above-mentioned literature addresses the issue of scene text being in

irregular shapes which is also common but more complicated in jersey recognition problem. Jersey

numbers are often distorted by player pose deformations and fast motion blur. Li et al. [24] adopt

STN modules [25] in hope of improving localization and rectifying number distortion. However,

the success of STN is built upon the fact of there being only one jersey number per image in their

dataset. it is not applicable for complex scene with more involved people.

R-CNN based approaches: With the successes of R-CNNs [38, 39, 19, 20], object de-

tection and classification are unified with high practicality. Mask R-CNN [20] and Faster R-CNN

[19] are built upon RPNs with pre-defined anchors to generate region proposals, then the features

are pooled from these proposals and fed into regression and classification heads. Vanilla RPN has 3

scales and 3 ratios for each anchor, Ma et al. [40] extended the anchor design with rotation param-

eter for better text proposal alignment. Cai et al. [41] introduced a multi-stage Cascade R-CNN to

address the issue of degraded detection performance when increasing IoU thresholds.

The main concern of recognition problem in nature scenes is: how to get robust region

proposals. This work exploits the fact that locations of numbers and players are highly related, and

10

achieves the state-of-the-art results. Our framework represents a strong advancement in automated

analysis of multi-sport videos.

2.3 Contributions of this Chapter

• The RPN has been re-designed to better fit the jersey number recognition problem. The RPN

outputs three classes, i.e., ”background”, ”person” and ”digit”. By dividing into person and

digit proposals, it is possible to match between them to jointly generate better proposals.

• A pose-guided supervision for digit bounding-box is proposed. It learns the offsets of pro-

posals given the prediction of human body keypoints. This module is considered as the re-

finement of RPN proposals.

• State-of-the-art performance for the jersey number recognition task in comparison to previ-

ously established frameworks. Significantly different from previous works, ours is capable of

locating and predicting multiple numbers from input images.

• A noval dataset of 3567 images that offers person and digit bounding-boxes, human body

keypoints and digit masks. One or more players and digits are annotated per image. More

images are being labeled, and the dataset will be made publicly available.

2.4 Approach

In this section, the jersey number recognition task is defined in details. A vanilla Faster

R-CNN is replaced with a 3-class RPN and extended with additional key-point branch and human

pose supervision, yielding the ”Pose-guided R-CNN” framework shown in Figure 2.3. For real-time

11

Figure 2.3: The architecture of proposed pose-guided R-CNN (feature maps are just for illustrations
and not representing the actual results).

applicability, a corresponding light-weight model without sacrificing much performance that runs

at 12 fps on a single NVIDIA GeForce GTX 1080 Ti GPU.

2.4.1 Task Definition

A jersey number is defined as the number worn on a player’s uniform in order to identify

and distinguish players. In our work, only numbers on the back are considered where player’s

jersey number is typically printed for most sports. Exact one number is associated to one player,

and there can be multiple digits in a jersey number. Consider the input image to the model is a image

in which at least one player presents with visible and recognizable jersey number. The task is to

predict any human-recognizable digit instance [0, ..., 9] displayed in the image. While this task has

been modeled as an exact number classification problem [4] as well as a number length prediction

problem [24], this work models the task as a 10-digit classification problem.

12

2.4.2 RoIAlign Faster R-CNN

From previous task definition, region-based methods are extremely suitable for our prob-

lem. One of the successful architectures is Faster R-CNN. It consists of a backbone feature extrac-

tor, a Region Proposal Network followed by a feature pooling module, and network heads for b-box

regression and classification for each RoI. For an image, shareable convolutional (Conv) features

are extracted first with choices of backbone architectures such as VGG-16 [42], ResNet [2] and

ResNeXt [43] then the RPN generates a set of reference boxes (anchors) from an image of any size.

For each pixel location, there can be arbitrary number of anchors given different scales and aspect

ratios. A sliding network will traverse each pixel location and tries to predict if an object exists in the

corresponding anchor and regress the b-box from shared features. After the proposals are generated,

the pooled features for each RoI will be fed into the fully connected layers to perform detection and

classification. Feature extraction from each RoI is done with RoI max pooling (RoIPool) such that

a h×w Conv feature map is divided into numbers of h/H ×w/W sub-windows then max-pooling

is performed for each grid with quantization. For each detected b-box, non-maximum suppression

(NMS) is used to filter out similar and close b-boxes.

Some modules are improved by Mask R-CNN. First it incorporates the Feature Pyramid

Network (FPN) [3] with the backbone to generate multi-scale features. It then replaces RoIPool

with RoIAlign which interpolates the sampled feature for better alignment between RoI and input

feature maps. Beside, it adds an extra branch to generate object masks in parallel in addition to

classification and b-box regression. The output mask is represented as a m × m px binary mask

from each RoI without losing the spatial layout of convolutional features. For additional details, we

refer interested readers to [19, 3, 20]. Faster R-CNN is referred to this improved implementation

13

unless specified.

The loss is defined as a multi-task loss both for final prediction and RPN proposals:

L = Lcls + λLreg, (2.1)

where Lcls is classification loss, Lreg is the b-box regression loss, and λ is the multi-task balance

weight. We consider each digit from 0 to 9 as a class, a ’person’ class and a ’background’ (’BG’)

class, in total of K = 12 independent classes. Ground-truth class is denoted by u where uBG = 0

by convention. For each RoI, the output layer will produce a discrete probability distribution p =

(p0, pK−1), then the class loss is define as log loss for true class

Lcls(p,u) = − log pu. (2.2)

The localization loss is defined as

Lreg(t
u, v) =

∑
i∈{x,y,w,h}

smoothL1(t
u
i − vi), (2.3)

‘ where u > 0 (’BG’ class does not contribute to the loss), and tui is predicted bounding-box offsets

four-tuple (x, y,w,h) for class u. (x, y) is the top-left corner coordinate, (w,h) is the predicted

dimension of the b-box. v = (vx, vy, vw, vh) as the ground-truth b-box. smoothL1 is a robust L1

loss against outliers defined in [39].

2.4.3 Proposal Association

Up to this point, we have generated proposals of either one digit or a person and same

for final detections. To collect the final results in terms of jersey numbers, we reduce our problem

into a graph matching problem [44] with some relaxations. Nodes of the graph are the person

and digit proposals, and the edges are all possible connections between pairs of person and digit

14

Figure 2.4: Some examples from the dataset. (g), (k), and (l) are examples of multi-jersey anno-
tations; (a), (f) and (g) are illustrations of jersey numbers under common conditions; (c) and (h)
exhibit contrast lighting conditions ; (i) shows a close-view image where number aspect ratio is
distorted; (b), (d) and (j) are examples of numbers influenced by pose deformation; (e) is highly
distorted but still recognizable.

proposals. The weight of each edge is computed by the Euclidean distance between the two centers

of bounding boxes. And for each person node, there must exist k edges matched with digit nodes,

where 1 ≤ k ≤ 2. So each person node can be matched with up to two other digit nodes which is

not necessarily bipartite matching. The problem is then solved by choosing the top-2 digit proposals

for each person proposal.

2.4.4 Three-class Region Proposal Network

The original RPN only estimate the probability of each proposal being an object or not.

It takes shared features to perform classification and bounding-box regression of anchors. Our mo-

tivation is simple: instead of just 2 classes, this work uses 3 classes to represent ’BG’, ’person’ and

’digit’ by adding very few parameters. In this way, anchors are not treated independently. Anchors

are divided into person and digit anchors that are then correlated by their spatial relationships.

No modifications are made to the pre-defined anchor settings in [19] that there are lots

15

of overlaps among anchors. Each anchor is actually associated with many other anchors in terms

of location. For example, if an anchor is of scale 512, some anchors of scale less than 512 will be

inside it. The proposal scheme is modified to accommodate this anchor association. For training

vanilla RPN, each positive anchor is assigned based on two criteria. The following conditions are

provided along with three-class RPN:

• Anchors with the highest Intersection-over-Union overlap with certain ground-truth box.

• Person anchors with IoU higher than 0.7.

• Digit anchors with IoU higher than 0.7 and inside any person anchor.

After filtering and assignment of anchors, we associate each digit anchor to its closest person anchor

based on Euclidean distance between centers of the two boxes.

2.4.5 Pose-guided Supervision

Mask R-CNN can also perform human body keypoints estimation as stated in [20]. Simi-

lar to the binary mask representation of objects, each body keypoint is modeled as an object except

that there is only one pixel labeled in the mask. For K types of keypoints, e.g. right shoulder, left

hip, etc., there are K individual one-hot masks. Human body modelling is not required in Mask

R-CNN framework to achieve fair results. In the case of jersey number recognition, it is reasonable

and achievable to perform jersey number localization better given body keypoints layouts. Though

Faster R-CNN is capable of bounding-box regression for jersey numbers, there are limitations un-

der more sophisticated scenarios. For example, complex jersey patterns, different number fonts, and

numbers on the court introduce difficulties for RPN to generate satisfactory proposals. To tackle the

problem, a pose-guided supervision branch is proposed for refining number localization.

16

A keypoint branch for predicting key-point mask is added similar to [20, 45]. The key-

point detection is only applied on person RoIs. At this point, each person RoI is associated with

multiple digit RoIs as a result of three-class RPN. The keypoint mask is fed into a shallow network

to obtain b-box offsets with which we can correct the RPN proposals. Features of refined proposals

are then pooled via ROIAlign. It involves a transformation from keypoint locations to associated

digit b-box regression in a hidden space. Finally, a digit branch is formulated that is responsible for

digit recognition on refined RoIs. This cascade design provides digit RoIs with more information

outside their regions.

The proposed pose-guided network takes predicted keypoints mask from each person RoI

as inputs, and output the b-boxes offsets of corresponding jersey numbers. It is a small but effective

network consisting of three fully connected layers.

The loss function 2.1 can be modified accordingly by adding related keypoint classifica-

tion and regression loss Lkeypoint
cls , Lkeypoint

reg . Then the regression loss for digit b-box is computed

from the RoI refined by keypoint mask. The final loss function is

L = Lcls + λLreg + ηλLkeypoint
cls + γλLkeypoint

reg , (2.4)

where η and γ are hyper-parameters similar to λ.

2.5 Experimental Results

The proposed pose-guided R-CNN, as well as related models are evaluated on the col-

lected dataset, since there is no publicly available dataset on jersey numbers. The evaluation metrics

used are standard Average Precision (AP) with IoU thresholds set to 0.5 and 0.75, and AP average

(mAP) across IoU from 0.5 to 0.95. Number-level and digit-level accuracies are also reported.

17

Figure 2.5: Distribution of digits in the data.

2.5.1 Dataset

The dataset is gathered from four full soccer matches. The recording device used is a

single Canon XA10 video camera which is installed 15 feet high, and 10 to 20 feet away from the

horizontal baseline of the soccer field. For better video qualities in terms of recognizable jersey

numbers, the camera operator is allowed to pan and zoom accordingly. Next, we convert the col-

lected videos into frames by two different ways. One is to perform a human detector over frames

scaled by 2 to get reliable images containing players. OpenPose [46] is used for person detection.

In order to collect more difficult images, Random shifts and paddings are added to detected areas.

The detection results are padded by 150px and a random shift of 20px. After data collection was

complete, two professional annotators labeled any legible jersey numbers via VGG Image Annota-

tor [47]. As a result, there are arbitrary number of ground-truths (GT) per person per image.

A total of 3567 images are annotated with ground-truth (GT) digit masks resulting in

6293 digit instances, see the distribution in Figure 2.5. All images are also labeled with person

bounding-boxes and four human body key-points, namely left shoulder (LS), right shoulder (RS),

left hip (LH) and right hip (RH). There are 114 images contain multiple numbers, and each digit is

18

Table 2.1: Dataset statistics. H , W , h and w are image height, image width, digit b-box height,
and digit b-box width respectively. For heights and widths, the unit is pixel; mask area counts the
number of pixels on the object; mask center is normalized within range [0, 1].

H W h w Digit mask area Digit mask center

Mean 315.06 214.53 34.70 18.90 424.40 (0.50, 0.29)

Std 92.11 38.47 15.16 7.85 20.69 (0.12, 0.09)

labeled with its associated person box. Figure 2.4 shows a few examples for our dataset. Dataset

statistics are illustrated in Table 2.1.

Bounding-box sizes are sorted into small (area < 322), medium (322 < area < 962) and

large (area < 962) objects like COCO dataset [48]. For person b-boxes, there are 4111 large, 213

medium and 1 small objects; for digit ones, there are 7 large, 1210 medium and 5076 small objects.

2.5.2 Implementation Details

The hyper-parameters in the loss function 2.4 are all set to one. All the experimented

models make use of image augmentation technique by applying random affine transformation and

hue/saturation manipulation to both original image and corresponding b-box. The backbone feature

used in all experiments is ResNet-FPN. We use ResNet features at 4 different stages [C2,C3,C4,C5]

to build the feature pyramid. The constructed RPN features are [P2,P3,P4,P5,P6]. The light-

weight model removes C5 and P6. For RPN anchors, 5 scales [32, 64, 128, 256, 512] and 3 ratios

[0.3, 0.5, 1] are used. For the classification network head, P6 is not used as input. Partial imple-

mentation is adopted from [49].

Person and keypoint branches: The settings for person branch are same as described in

19

Table 2.2: Comparison of results among approaches. Our method achieves the best accuracy (ACC)
for both number-level and digit-level recognition. Input is cropped grayscale image for Gerke’s [4],
and original RGB image for all other approaches.

Framework Backbone Input ACCnumber ACCdigit

Gerke[4] - 402 65.04% -

Li et al. [24] - 2002 74.41% 77.86%

Li et al. [24] ResNet-50 5122 77.55% 80.23%

Faster R-CNN ResNet-FPN-50 2562 86.13% 89.32%

Faster R-CNN ResNet-FPN-50 5122 88.74% 90.09%

Faster R-CNN ResNet-FPN-101 5122 89.02% 91.11%

Pose-guided (Ours) ResNet-FPN-18 5122 81.66% 83.97%

Pose-guided (Ours) ResNet-FPN-50 2562 90.84% 92.13%

Pose-guided (Ours) ResNet-FPN-50 5122 91.01% 93.29%

Pose-guided (Ours) ResNet-FPN-101 5122 92.14% 94.09%

[20]. The keypoint branch is based on mask prediction in Mask R-CNN, except that the keypoint

mask is up-sampled to 32× 32.

Digit branch: The pose-guided supervision module consists of two 512 Fully-Connected

(FC) layers, and a N × 4 FC layer with linear activation as digit b-box regression head. N is

the number of proposals, so it outputs the b-box offsets for each digit RoI. The rest of the branch

resembles person branch except for the pooling size to be 16 × 16 in digit classification head. It

gives better performance since digits are relative small in images.

Different settings including but not limited to changing the backbone features, input image

size, image operations (re-sizing, padding, cropping, etc.), number of image channels are used in

experimentation. ResNet-FPN-18, ResNet-FPN-50 and ResNet-FPN-101 with/without proposed

pose-guided module are investigated. For collecting convincing results, the dataset is divided video-

20

wisely, with video 0, 2, 3 for training and video 1 for testing.

Pre-train: To accommodate the lack of person-keypoint data in the collected dataset,

the network is pre-trained on the COCO dataset [48] with a frozen digit branch. In this dataset,

17 human body keypoints are annotated, but four of them are used for less parameters and bet-

ter convergence. Person and keypoint branches are then unfrozen, and the digit branch is trained

with Street View House Number (SVHN) dataset [33]. This large-scale dataset consists of digit

sequences with each digit labeled with bounding box. The model benefits from this dataset for

training the backbone feature extractor.

Training: The model is trained for 100 epochs with a starting learning rate (LR) of 0.01.

Learning rate is reduced by 10 every 20 epochs. The rest hyper-parameters are same with Mask

R-CNN [20].

Testing: The settings are the same as training except that 100 detections are kept.

Figure 2.6: Precision-Recall Curves over each class. Left figure shows the Faster R-CNN results;
right one shows ours results with improvement.

21

Figure 2.7: Recognition results across different poses. Most-left and most-right poses are extreme
cases in our test set for this identity.

2.5.3 Main Results

The proposed model is compared to available methods in the field of jersey number recog-

nition, see Table 2.2. All variants of our model outperform previous state-of-the-art models includ-

ing Gerke [4] and Li et al. [24]. These two approaches can only perform image-level recognition.

For fair comparison, multi-number images are removed during training and testing. Each image is

grayscale, cropped and re-sized to 40 × 40 in accordance with [4]. Without access to the dataset

of [24], this architecture is implemented without axis supervision. Its variant with ResNet-50 is

also implemented. Faster-RCNN is also a strong baseline which already outperforms [4, 24]. The

proposed model achieves even better performance that is highly robust to post variations. Figure 2.7

visualizes the recognition results against different poses. We evaluate both digit-level and number-

level accuracies for our model and [4, 24]. The results are illustrated in Table 2.2.

Evaluation metrics including number-level and digit-level accuracies, mean average pre-

cision (mAP), AP50, and AP75 are used to compare variants of the R-CNN approaches. APs for

different object scales are not used since most ’person’ boxes are large and most ’digit’ are small.

The results are shown in Table 2.3. The proposed pose-guided R-CNN gives the best overall results.

22

Table 2.3: Comparison of Faster R-CNN and our pose-guided R-CNN results. The backbone used
is ResNet-FPN-50, and input image size is 512× 512.

Method ACCnumber ACCdigit mAP AP50 AP75

Faster R-CNN 87.23% 89.04% 40.60 67.21 45.58

Pose-guided (Ours) 90.44% 93.12% 44.74 73.31 48.77

2.5.4 Ablation Study

In this section, we only consider ResNet-FPN-50 as our backbone given several reasons:

it has around 19M less parameters; we have a small dataset so ResNet-50 is more suitable; we did

not fine-tune the models so better performance can be achieved through regularization. Therefore,

we choose ResNet-FPN-50 over ResNet-FPN-101 without sacrificing much performance. Multi-

number images are included for experiments in this section.

Input size: To build feature pyramid for ResNet-50, we need to resize the image so that

its width and height can be divided by 2 at least 5 times. We need the image size to be large enough

since the numbers in the dataset are mostly small objects. For simplicity, we re-size to square image

with paddings while keeping the aspect ratio. We did experiments with several sizes: 128, 256,

512, 1024. When the input size is 512, it achieves the best performance of mAP 44.74, which

outperforms 10.20, 3.12 and 0.56 points with respect to size 128, 256, and 1024.

Does 3-class RPN solely help: With the baseline of Faster R-CNN, we want to evaluate

if replace the vanilla RPN with our 3-class RPN help improve the performance. We use image size

of 512 × 512 as input, and ResNet-FPN backbone for this experiment’s settings. Three-class RPN

has −0.09, 0.12 and −0.14 gain respectively over vanilla RPN on mAP , AP50, and AP75. Both

23

give similar experimental results, so it suggest that by just switching to three-class RPN, the perfor-

mance is not significantly influenced. RPN is a shallow ’neck’ network for anchor classification and

regression. Splitting ’object’ class into ’person’ and ’digit’ does not introduce hardness for these

two tasks, but we can not guarantee multi-class RPN will work for more classes. The key function

of our three-class RPN is dividing then matching person and digit anchors. If the following struc-

ture remains the same with Faster R-CNN, the results are expected to be similar. However, as we

already match the anchors in three-class RPN, the proposal association procedure for number-level

prediction can be removed.

Pose-guided R-CNN: Table 2.3 suggests that there is 4.14 gain over Faster R-CNN. We

also report AP50 for each class for these two models illustrated in Figure 2.6. It shows significant

improvement achieved by adding pose supervision which has a keypoint mAP of 58.2. The reason

of poor performance on ’0’ is that We have very few images contain ’0’ in test dataset, so it drops

drastically even if only one of them is classified incorrectly. Figure 2.7 provides recognition results

of our pose-guided R-CNN model against different poses. However, there are still some limita-

tions under extreme poses as the last two examples shown in Figure 2.7. For testing our model’s

generalization, We also collected some images from internet videos for different sports: basketball,

American football and hockey. The results are illustrated in Figure 2.8. Fair detection results are

still obtained, but classification performance is reduced. Recognition is possibly simpler for soccer

and basketball due to plain jerseys, while jerseys in American football and hockey are normally

bulky with sharp contours. Better performance can be achieved by gathering more data.

24

Figure 2.8: Exemplary results from wild images collected from internet. Fails: ’7’ is classified
wrongly as ’2’ in second last image; ’6’ in the last image is classified wrongly as ’5’.

2.6 Conclusion

In this work, a pose-guided R-CNN multi-task framework is proposed as an all-in-one

solution for person detection, body keypoints prediction and jersey number recognition. It produces

the best digit accuracy of 94.09% comparing with related literature. Three insights are used to

achieve this performance: 1. re-designed three-class RPN for anchor association; 2. implemen-

tation of pose-guided localization network that can impose proposal refinement for jersey number

location through human pose; 3. the generality of region-based CNN model. By combining the

25

three components, the proposed approach is end-to-end trainable and can be easily extended to

other sports.

26

Chapter 3

JEDE: Universal Jersey Number

Detector for Sports

3.1 Introduction

Recently, there has been a tremendous growing interest in artificial intelligence (AI) tech-

nology for sports. Every aspect of sports, from the recruitment of athletes to the analysis of per-

formance, from game planning to injury management, from audience experience to media, is em-

powered by AI. Not only industry has substantially explored new technologies for sports, but also

academia has dramatically strengthened the research capacity on the topic. Among various AI appli-

cations, computer vision (CV) for sports has one of the most significant potentials which may have

a huge impact on the way people view and consume sports content. For example, current tracking

systems [50, 51] are deployed in stadiums and collect comprehensive game data on players, referees,

and the ball in real-time. The basic statistics of players’ moving direction, speed, and acceleration,

27

and even more advanced statistics could be obtained via CV. Knowing players’ locations, augmented

reality (AR) can be applied in live broadcasting to provide entertainment enhancements such as ball

movement diagrams, player identifications, scoring probabilities, etc. There are many other CV

applications for sports, such as event detection [52, 53, 54], activity recognition [55], human pose

estimation [56, 57, 58], human motion prediction [59, 60], automatic highlight generation [61], and

image generative models [62]. Moreover, the research in CV for sports is not only about generating

statistics, but also about scene understanding and human behavior analysis.

We have seen deep learning models [63] that defeat humans in many games like Go,

Chess, and Atari. These games serve as perfect simulators for learning. Analogically for real-world

applications, sports games are the perfect simulation environment for scene and human behavior

understanding. Tuyls et al. [64] propose three foundational areas associated with soccer AI re-

search: statistical learning, computer vision, and game theory. Computer vision models provide the

complementary high-level and spatially-detailed features for the other two areas, while benefit from

low-dimensional game-related statistics and metadata from them. Shih [65] proposes the content

pyramid for sports video analytics, which consists of four layers: video, object, action, and conclu-

sion. The object layer as the second lowest level, connects the raw data processing and higher-level

analysis. Undoubtedly, object detection or player identification is the most important building block

for sports video analysis. Traditional methods for player identification rely on hand-crafted fea-

tures [66, 28] or face recognition [67, 68, 69, 70, 71], which are infeasible for complex scenes or

different fields-of-view. Researchers also try to solve the problem by detecting the jersey number

since it is the generic visual cue of identity. Early approaches [22, 21, 72, 23] are based on optical

character recognition (OCR) to extract and classify numbers. However, these methods are not robust

28

to the challenges in broadcast sports videos, such as illumination changes [73], low jersey number

resolution, viewpoint and camera movements [28], players’ pose deformation, occlusion, motion

blur [74], and stadium distractions [12], etc. Deep learning has been widely applied in CV, but there

are only a few papers on jersey number classification [4, 24] or player detection [75, 76, 77], not

to mention end-to-end jersey number detection. Previous work [4, 24] is only applicable for single-

person images to perform image classification, but not for frames consisting of multiple players.

In this paper, we propose a novel jersey number detection framework for player iden-

tification in sports videos, named as universal JErsey number DEtector (JEDE). It is a multi-stage

detector, which predicts players’ bounding boxes and pose estimations, with associated jersey digits’

bounding boxes and classes all at once. The first stage extracts image features through a “backbone”

network (e.g., ResNet-50 [2]) and constructs a feature pyramid [3]; then, a Region Proposal Network

(RPN) [19] is used for generating player candidate proposals. The second stage extracts features

using RoIAlign [20] from each player’s candidate box and performs classification, bounding-box

regression, and human-body keypoint regression. In parallel with these detections, we add a branch

that predicts the bounding boxes of digits of the jersey number within each player’s bounding box.

Both the player’s features and corresponding keypoint predictions are used for generating digit pro-

posals. More specifically, we model individual digit as an object, which is represented by the center

and size of its bounding box. Within each player proposal, we regress the center and size heatmaps

of the digits given the extracted player features and keypoint heatmaps. By conditioning on human

pose information, the localization of digits is significantly improved. We then extract features from

digit proposals and perform digit classification and bounding box regression. Finally, the digit de-

tections are paired as number detections. Our framework is performed on a per-frame basis with fast

29

FCs

digit features

class (0 - 9 or background)
digit bounding box

feature pyramid

pose-guided branch

class (player or not)
player bounding box

CONVs

player features

FCs

digit proposals

(1) (2)

(3)(4)

Backbone+RPN RoIAlign

RoIAlign

keypoint heatmaps

Figure 3.1: The architecture of JEDE - it can be divided into four modules: (1) a backbone network
that extracts features and constructs a feature pyramid (e.g., ResNet-50 FPN) followed by a RPN
(Section 3.4.2.1); (2) a player branch that extracts features from player proposals generated from
the RPN via RoIAlign, performs classification, bounding-box regression, and keypoints regression
(Section 3.4.2.2); (3) a pose-guided branch that predicts digit proposals from the pooled player’s
features and corresponding keypoint heatmaps (Section 3.4.3); (4) a digit branch that extracts fea-
tures from digit proposals, and then performs digit classification and bounding-box regression (Sec-
tion 3.4.4.1). Fully-connected layers are denoted by FCs, and convolutional layers by CONVs.

inference speed, and no motion information is used. Besides the novel architecture, two data aug-

mentation techniques called CopypasteMix and SwapDigit are proposed. CopypasteMix

creates new training data by copying and pasting among images, while SwapDigit by swapping

digit instances with data from other datasets such as Street View House Number (SVHN) [33]. This

paper significantly extends our previous work [12] by re-designing the architecture, proposing new

data augmentation methods, and providing more experimental results and ablation studies.

3.2 Related Work

This work is mainly focused on jersey number detection, which is also highly related to

many general vision tasks such as person re-identification (Re-ID) [78], object detection [19, 79],

multi-object tracking (MOT) [80], and scene text detection [81, 82, 83]. Reviewing all the related

literature is beyond the scope, thus we only discuss the most relevant research on sports analysis.

30

3.2.1 Player Detection and Tracking

Player detection and tracking are important techniques that are required for sports video

analysis, providing the spatial and temporal information about players. Player detection is the pre-

liminary step for player identification that generates bounding boxes of players, while player track-

ing associates the bounding boxes between frames and assigns a tracking ID for each bounding

box. Traditional methods rely on hand-crafted features. For example, Lu et al. [23, 30] use the

deformable part model (DPM) for player detection and then perform player classification based on

handcrafted features and tracking information. Gerke [84] et al. augment Histogram of Oriented

Gradients (HOG) features [85] with jersey color information to improve player detection perfor-

mance. Modern deep-learning approaches adopt off-the-shelf object detectors and their variants for

player detection [86, 87, 88, 89]. For player tracking, off-the-shelf multi-object tracking algorithms

are commonly used [90, 91, 92, 93]. Sentioscope [94] is one example of such a system that maps

the image to a modeled soccer field, performs player detection, builds a likelihood model based on

appearance and motion, classifies teams based on jersey colors, and assigns identity tags to tracks.

3.2.2 Jersey Number Recognition

Jersey number recognition can be considered as the task of person identification (ID) in

the context of sports broadcast videos where each player’s ID is uniquely associated with the jersey

number. Player identification can be performed directly based on the player’s appearance or pose

features [30, 31, 95, 96, 93], but re-training is required if the match roster or target sport changes.

Jersey number recognition provides a relatively more general and robust solution to player identifi-

cation. Most approaches can only perform jersey number recognition on images that only contain

31

a single player. Traditional approaches before the dominance of deep learning usually first build an

OCR system, and then classify numbers based on segmentation results. Šari et al. [21] introduce an

OCR system to segment images in HSV color space with heavy pre-processing and post-processing.

Ye et al. [22] combine tracking information of frames and a OCR system to predict jersey number

based on voting. These OCR-based methods have limited flexibility and robustness on real-world

data. Switching to deep learning approaches, Gerke [4] designs a neural network for jersey num-

ber recognition in cropped jersey number images. Li et al. [24] propose a framework that adopts

Spatial Transformer Network (STN) [25] to refine jersey number features automatically, which is

trained with additional labeled transformation quadrangles in a semi-supervised fashion. Some

work takes the given sports field into consideration: Delannay et al. [97] create ground plane occu-

pancy maps from multi-view detections to perform localization, followed by an OCR system with

a Support Vector Machine classifier; Gerke et al. [27] combine the players’ spatial constellation

features and jersey number features from CNNs to achieve better per-game player recognition per-

formance. These work make strong assumptions on the hidden pattern of player’s movement and

accurate inverse homography, which is not practical or generalizable for other sports.

3.2.3 Jersey Number Detection

There is limited work on jersey number detection due to significant challenges like human

pose deformation, camera view changes, motion blur, and various illumination conditions. Tradi-

tional OCR-based methods [22, 21] can only perform single jersey number detection on single-

player images with close-up views. Our previous work [12] explores deep-learning-based multi-

player multi-digit jersey number detection, and proposes a pose-guided R-CNN that still has some

limitations. It requires associations between player and digit bounding boxes, where wrong associa-

32

tions may occur in crowded scenes. It does not work well on images with a wider field-of-view due

to insufficient training data. In this paper, JEDE addresses these challenges and limitations. The

major extension over [12] lies in the pose-guided branch and data augmentation. The re-designed

pose-guided branch directly predicts digit proposals from each player proposal instead of using

RPN, so no association of bounding boxes is needed. It provides more accurate and robust digit

proposals based on the player’s features and keypoints. The proposed data augmentation strategies

CopypasteMix and SwapDigit introduce more training data variations that significantly alle-

viate the problem of limited data as compared to [12]. As a result, the proposed framework JEDE

achieves the state-of-the-art results and outperforms pose-guided R-CNN by a large margin. The

contributions of the paper are summarized in Section 3.1.

3.3 Contributions of this Chapter

1. We tackle the player identification problem via jersey number detection that is more robust to

real-world variations. We propose the first framework that can simultaneously predict players’

bounding boxes, pose estimations, jersey digits’ and numbers’ bounding boxes and classes.

The rich predictions provided by our framework are significant for higher-level analysis.

2. Unlike previous jersey number recognition frameworks, jersey number detection addressed in

this paper is a challenging multi-player multi-digit detection problem. Our proposed model

JEDE generates jersey number detections from instance-level digit localization and classifi-

cation, which is much more accurate and reliable.

3. We collect a dataset consisting of 4477 images from soccer and basketball matches. There

are 6054 labeled players with 5406 labeled human body pose, and 6293 labeled digits. More-

33

over, we propose data augmentation strategies named CopypasteMix and SwapDigit

that effectively improve detection performance and robustness. We also explore pre-training

on COCO [48] and SVHN [33] datasets, which further improve the results.

4. We conduct comprehensive evaluations, ablation studies, and comparisons of the proposed

framework with the state-of-the-art methods for jersey number recognition, object detection,

and scene text detection on the collected dataset. We also show that the proposed method is

easily generalized on wild images across different sports with superb performance.

3.4 Technical Approach

R-CNN and its variants [98, 39, 19, 20, 99] are flexible, general, and extensible for many

computer vision tasks, such as object detection, instance segmentation, human pose estimation, and

panoptic segmentation. This flexibility provides more capabilities for sports analysis that involves

more complex scene dynamics. In this section, we explain our overall framework and individual

modules of our proposed method.

3.4.1 Problem Setup

A jersey number is defined as the unique number on the player’s uniform to identify

players. In our work, only the number printed on the back is considered since it typically exists

for most team sports. As a jersey number consists of a sequence of at most two digits in most

sports [100], we only consider detecting the number with a maximum length of two digits. The task

is then to predict the bounding box and class of any visible and recognizable digit instance on the

back of the jersey in an image. We formulate jersey number detection as a multi-step approach:

34

player detection, digit detection, and jersey number detection. Player detection is based on two-

stage Faster R-CNN; digit detection is a top-down approach performed on each Region-of-Interest

(RoI) of detected players; we then generate jersey number candidates based on the predicted digits.

For jersey number recognition, [4, 24] simply treats it as a number classification task, while our

approach performs per-instance digit classification and association within each player’s RoI.

The overall architecture of JEDE is presented in Fig. 3.1. Inspired by Mask R-CNN [20],

the framework consists of four main components: a feature pyramid network (FPN) [3] as the

backbone, followed by a region proposal network (RPN) [19] for generating player proposals; a

player branch for player/background classification, bounding boxes regression, and pose estima-

tion; a pose-guided branch for generating digit proposals; a digit branch for digit classification

and bounding boxes regression. The final jersey numbers are generated from digit detections as a

post-processing step which will be discussed in Section 3.4.4.2.

3.4.2 Backbone, RPN and Player Branch

3.4.2.1 Backbone and RPN

Similar to scene text detection, jersey number detection is challenging because of varying

sizes and fonts of jersey numbers in sports broadcasting. The scale of a player changes with the

change of the camera and its viewpoint. Therefore, the scale of jersey numbers also changes in a

wide range. To capture high-level semantic features at all scales, a feature pyramid [3] is constructed

from ResNet [2] features. RPN is used to generate player proposals for the subsequent player and

pose-guided branches. We use 5 scales of anchors {32, 64, 128, 256, 512}, and 3 aspect ratios {0.5,

1, 2} following Faster R-CNN [19, 3]. As shown in section 3.5 later, we achieve similar results with

35

faster inference speed by removing the anchor size of 32.

3.4.2.2 Player Branch

The player branch includes three tasks: binary classification (player s background), bound-

ing box regression, and keypoints regression. Given the player proposals from RPN, RoIAlign [20]

is used for extracting features. We keep the same Mask R-CNN [20] heads (small prediction net-

works) with pre-trained weights for faster convergence, where the pooling size is 7 × 7 (pixels in

feature maps) for classification and bounding box regression, and 14× 14 for keypoints regression.

For human body keypoint detection, we predict a mask of shape 17 × 56 × 56 for each player

RoI, where there are 17 types of person keypoints following the COCO dataset [48], and the output

feature side length is 56. Please refer to Mask R-CNN [20] for more details.

3.4.3 Pose-Guided Branch

For jersey number detection task, previous work [12] has demonstrated that better jersey

number localization can be achieved given human pose information. Though Faster R-CNN is ca-

pable of regressing jersey number or digit bounding boxes directly, there are limitations under more

difficult scenarios. For example, varying jersey patterns, fonts, hash marks, and commercial ban-

ners introduce difficulties in generating satisfactory proposals for RPN. To tackle these problems,

we introduce a pose-guided branch for refining digit localization conditioned on the player detec-

tion and pose estimation. Each digit proposal is generated based on the regressions of its center

and bounding box size within a player proposal. We also provide a theoretical analysis on why the

human pose helps in digit localization in the supplementary material.

36

3.4.3.1 Design

We consider a single player proposal for illustration. Given the player’s bounding box pre-

dicted from the player branch, the player features are pooled from the feature pyramid as one input

to the pose-guided branch. Another input is the regressed keypoint heatmaps. Since the feature di-

mensions may be different, we use small fully convolutional networks (FCNs) for adjusting feature

dimensions. Specifically, a convolution kernel with stride of 2 is used for downsampling, and bilin-

ear interpolation is used for upsampling, if needed. The player features generated by the FCN (two

3× 3 64-channel convolutional layers by default) is denoted by Fplayer. Depending on the configu-

rations, the spatial dimension of Fplayer may remain the same or increase to have higher-resolution

features for digit localization. The keypoint heatmaps are downsampled spatially to have larger re-

ception fields via a FCN, capturing more semantic features from the pose estimations. We name the

resulting features as Fkpts. Both features are then fused as F = fusion(Fplayer, Fkpts) ∈ RC×M×M ,

where fusion is the function that combines the two input features, C is the output number of chan-

nels, and M is the output feature side length. The feature fusion can be either concatenation,

addition, or multiplication. The ablation study on fusion methods is provided in Section 3.5.6. Op-

tionally, positional information can be considered as additional features. We adopt the extended 2D

version of positional embeddings [101], and concatenate them with Fkpts. We can also concatenate

the embeddings with F which is less effective as shown in the ablation study (Section 3.5.6).

3.4.3.2 Output and Ground-truth Generation

We then regress heatmaps for digit center, center offset, and size respectively. The fused

features F will be fed into 3 FCN prediction heads, each of which consists of four 3 × 3 64-

37

channel convolutional layers. Since there are at most 2 digits for a jersey number for most of the

sports, predicting two-channel center heatmaps O ∈ R2×M×M is sufficient. For a single-digit

jersey number, the ground-truth (GT) center is only defined on the first channel. As for a two-digit

jersey number, the left digit center is defined on the first channel, and the right digit center on the

second channel. Specifically, we define the GT digit center class d ∈ {0, 1} and the bounding box

(x0, y0,x1, y1) where (x0, y0) and (x1, y1) denote the coordinates of the left-top and right-bottom

corners. The center is computed as o = (ox, oy) = ((x0 + x1)/2, (y0 + y1)/2). We then need to

map the digit center coordinates into the feature scale. Given the corresponding player’s bounding

box (xp0, y
p
0 ,x

p
1, y

p
1), we compute the relative coordinates with respect to the player’s bounding box

as (ox − xp0, oy − y
p
0). The feature-to-bounding-box width and height ratios are computed as

rw =M/(xp1 − x
p
0), rh =M/(yp1 − y

p
0), (3.1)

respectively. Finally, the digit center in the M ×M feature grid is

(o′x, o
′
y) = (rw · (ox − xp0), rh · (oy − y

p
0)). (3.2)

For regression of the GT digit center, we quantize the coordinates, and assign the value of 1 at

(⌊o′x⌋, ⌊o′y⌋) and 0 otherwise, where ⌊·⌋ is the floor function. To obtain more positive training

samples, the object center will be modulated by a bivariate Gaussian distribution along the x-axis

and y-axis following Law [102] and Zhou et al. [103]. Given the size of the bounding box (w,h) =

(x1 − x0, y1 − y0), the feature-scale size is (w′,h′) = (rw · w, rh · h). Based on the feature-scale

bounding box size, and the desired minimum Intersection over Union (IoU) denoted by min iou,

the Gaussian standard deviations σx and σy are derived as:

(σx,σy) =
1

3
(a, b) =

1

3
⌊1−

√
min iou√
2

· (w′,h′) + 1⌋, (3.3)

38

where σx and σy control the spread of the distribution, and a and b are the semi-minor axes along

the x-axis and y-axis respectively. The value of min iou is chosen in the range of (0, 1), such that

for any point (x, y) in the ellipse region R = {(x, y)|x2

a2
+ y2

b2
≤ 1}, when using it as a center to

create a bounding box of size (w,h), the bounding box has at leastmin iou IoU with the GT. Then,

for a digit of class d, its GT center heatmaps are computed as

Od,x,y =

exp

(
9
∥x 9 ⌊o′x⌋∥22

2σ2x
9
∥y 9 ⌊o′y⌋∥22

2σ2y

)
, ∀(x, y) ∈ R

0 otherwise.

(3.4)

In addition to center heatmaps, we regress digit center offsets ∆ ∈ R2×M×M for re-

covering from discretized coordinates. The first and second channels of ∆ represent the off-

sets along x-axis and y-axis respectively. The offset target at the digit center is ∆⌊o′x⌋,⌊o′y⌋ =

(o′x − ⌊o′x⌋, o′y − ⌊o′y⌋), and 0 on all other locations. For regression of size S ∈ R2×M×M , the

size target at (⌊o′x⌋, ⌊o′y⌋) is the feature-scale width and height (w′,h′) and 0 otherwise.

3.4.3.3 Losses

Regressions are performed for the three output heatmaps of the pose-guided branch. We

use Gaussian focal loss [102, 104, 103] for digit center heatmaps with default hyper-parameters

α = 2 and γ = 4 for weight balancing. Let Ô be the predicted center heatmaps, then the pixel-wise

loss LOd,x,y
is defined as:

LOd,x,y
= −

(1− Ôd,x,y)

α log(Ôd,x,y) if Od,x,y = 1

(Ôd,x,y)
α(1−Od,x,y)

γ log(1− Ôd,x,y) o/w.

(3.5)

39

FCNFCNFCN

“no-digit”
“single-digit”

“two-digit”

Fusion

FCN

Player features Keypoint heatmaps

...

FCN

MLP

Center offsetsCenter heatmaps Size

Positional
embeddings

Figure 3.2: The architecture of the pose-guided branch. In this example, a two-digit jersey number
is predicted. the center of digit “1” is predicted on the first channel of O shown as the red dot,
and the center of digit “4” is predicted on the second channel of O shown as the blue dot. The
predictions of size and center offset are location-aware and class-agnostic.

The offset and size targets are only defined at the GT digit center locations where Od,x,y = 1, and

regressed via L1 loss as L∆x,y and LSx,y . The overall digit detection objective is

Ldet =
1

N

∑
d,x,y

(
LOd,x,y

+ λ∆L∆x,y + λsLSx,y

)
, (3.6)

where N is the total number of digits within the player proposal; λ∆ and λs are hyper-parameters

for weight balancing. We empirically set λ∆ = 1 and λs = 1 for all experiments.

3.4.3.4 Decoding Digit Proposals

With the output digit center heatmaps Ô, center offsets ∆̂ , and digit bounding box sizes

Ŝ, we need to decode the digit proposals for both training and inference. To get the digit centers, we

40

follow the same step in [103]. Specifically, a sigmoid function is applied to the predicted center

heatmaps Ô such that the values are mapped into the range of [0, 1]. Then a 3 × 3 max pooling is

applied to center heatmaps for filtering duplicate detections. The value of Ôc,x,y is considered as

the measurement of the detection score. Then the top peaks in center heatmaps can be extracted

as the detected digit centers {ôi}Ki=1, where ôi = (ôix, ô
i
y) and K is the hyper-parameter to control

how many digit proposals to keep per player proposal. During training, we set K = 100 where the

top 50 digit proposals are kept plus 50 random proposals since we need negative training examples

for digit classifications. For inference, we set K = 20 with the top 20 proposals for balancing the

accuracy and inference speed.

To get the corresponding center offset and bounding box size, we gather the values at

the detected digit center (ôx, ôy) from ∆̂ and Ŝ, namely the center offset ∆̂ôx,ôy = (δ̂x, δ̂y) and

bounding box size Ŝôx,ôy = (ŵ′, ĥ′). The width and height ratios, r̂w and r̂h, can be computed via

Equation 3.1 given the predicted player proposal (x̂p0, ŷ
p
0 , x̂

p
1, ŷ

p
1). Finally, the digit bounding box

(x̂0, ŷ0, x̂1, ŷ1) can be recovered as

x̂0 = x̂p0 + (ôx + δ̂x − ŵ′/2)/r̂w,

ŷ0 = ŷp0 + (ôy + δ̂y − ĥ′/2)/r̂h,

x̂1 = x̂p0 + (ôx + δ̂x + ŵ′/2)/r̂w,

ŷ1 = ŷp0 + (ôy + δ̂y + ĥ′/2)/r̂h.

(3.7)

To obtain jersey number detections, we group the digit detections based on the digit center

class, and determine the jersey number length. We add a small multilayer perceptron (MLP) parallel

to the output layer of the center prediction head, for classifying the number length (“no-digit”,

“single-digit”, and “two-digit”). The MLP consists of a MaxPool layer (downsampling by a factor

41

of 2) and 3 fully-connected (FC) layers. The number length is denoted by l ∈ {0, 1, 2}, which will

be used for generating jersey number detection.

3.4.4 Digit Branch and Jersey Number Detection

3.4.4.1 Digit Branch

We sample both positive and negative (ratio of 1:3) digit proposals from the output of

the pose-guided branch for training, then extract 7 × 7 digit features via RoIAlign [20]. The digit

branch architecture is the same as the player branch except that there are 11 output classes for digit

classification, including 10 digit classes and 1 background class. The predicted digit class is denoted

by c with a confidence score u, which will be used for generating jersey number detections.

3.4.4.2 Jersey Number Detection

We predict the jersey number length l̂ for each player proposal as discussed in Sec-

tion 3.4.3.4. Then within each player proposal, there are multiple digit detections denoted by

Bdigit = {b̂i}Ki=1, where b̂i = (x̂i0, ŷ
i
0, x̂

i
1, ŷ

i
1, ĉ

i, ûi), with the predicted digit center class d̂i from

the pose-guided branch. The jersey number detection is generated based on the predicted number

length l̂. For l̂ = 0, we simply discard all the bounding boxes; for single-digit case l̂ = 1, all the

digit detections of ĉi = 0 are considered as number detections. For a two-digit number where l̂ = 2,

we union digit bounding boxes pair-wisely and use the multiplication of corresponding digit class

scores as the jersey number score. The jersey number class is the concatenation (⊕) of digit classes

for two-digit numbers. The top 100 jersey number detections are selected (topk) for evaluation

purpose. The process to obtain the jersey number detections Bnumber is described in Algorithm 1.

42

Algorithm 1 Jersey number detection

Input: Digit detections Bdigit, jersey number length l̂

Output: Jersey number detections Bnumber

1: if l̂ = 0 then

2: Bnumber ← ∅

3: else if l̂ = 1 then

4: Bnumber ← Bdigit

5: else if l̂ = 2 then

6: Bd=0 ← {b̂i|d̂i = 0}, Bd=1 ← {b̂j |d̂j = 1}

7: Bnumber ← {(min(x̂i0, x̂
j
0), min(ŷ

i
0, ŷ

j
0),

max(x̂i1, x̂
j
1), max(ŷ

i
1, ŷ

j
1),

ĉi ⊕ ĉj , ûi × ûj) |

b̂i ∈ Bd=0 ∧ b̂j ∈ Bd=1}
8: end if

9: Bnumber ← topk(Bnumber)

10: return Bnumber

43

Table 3.1: Dataset statistics. The collected statistics from the second left to the rightmost column
are: the number (#) of images, the number of annotated digits, the number of annotated players, the
number of players with annotated keypoints, the mean and standard deviation of the bounding box
size of players and digits (in pixels), and the bounding box area ratio of digit to player.

Video # Images # Digits # Players # Kpts Image width Image height Player width Player height Digit width Digit height Area ratio

1 1030 1940 1323 1062 224.00± 0.00 224.00± 0.00 100.13±25.78 172.18± 27.71 20.06± 5.69 24.08± 6.59 0.03± 0.01

2 706 1347 768 732 173.42± 30.58 281.64±48.28 95.14±30.25 242.57± 54.12 15.58± 3.87 28.94± 6.01 0.02± 0.01

3 418 829 468 420 224.46± 37.58 389.36±80.58 154.35±46.72 343.98± 97.66 28.56±10.66 53.08±16.22 0.03± 0.01

4 1413 2180 1769 1472 225.23± 42.41 376.15±79.79 139.77±52.17 324.87±102.18 22.01± 7.43 44.69±12.62 0.02± 0.01

5 910 2779 1726 1720 640.00± 0.00 360.00± 0.00 82.38±23.07 160.83± 39.89 10.16± 2.97 19.71± 3.12 0.02± 0.01

Total 4477 9075 6054 5406 301.01±174.63 324.19±84.19 110.21±45.33 235.77±102.45 17.61± 8.36 31.06±14.81 0.02± 0.01

3.4.5 Data Augmentations

During training, we employ multi-scale training by randomly resizing the images to sev-

eral predetermined scales. To further improve both the player and jersey number detection perfor-

mance, we introduce three data augmentation methods specifically designed for the jersey number

detection task in this section. The jersey number detection is highly dependent on the player detec-

tion performance. The more accurate player bounding boxes are predicted, the better digit localiza-

tion performance is thanks to the proposed pose-guided branch. However, the digit classification

is challenging due to many factors such as motion blur, clothing deformation, etc. We collected

cropped player images from several soccer matches with annotations of players’ bounding boxes,

keypoints, and digit bounding boxes. However, the collected data does not cover enough scene vari-

ations and range of jersey numbers. A jersey number may correlate to its popularity and a player’s

position in certain sports, but the digit distribution suffers significant bias given the limited data.

Sufficient data for training both player detection and digit classification is needed.

44

3.4.5.1 Pretraining

To create a general jersey number detection framework that works for most sports, we

need more data besides our dataset. We incorporate the Street View House Number (SVHN)

dataset [33] and COCO Keypoints dataset [48] for pretraining. SVHN contains images of num-

bers with annotated digit bounding boxes, and COCO contains images of persons with annotated

bounding boxes and keypoints. Specifically, during each training iteration, we randomly select data

from SVHN and COCO with equal probabilities. The backbone network is trained on both datasets

for obtaining robust player and digit feature representations; RPN and player branch are only trained

on COCO for generating robust person detection and keypoint estimation. As for the digit branch,

the digit features are pooled from the ground-truth digit bounding boxes and used for training the

digit classifier. During pretraining, the pose-guided branch is unused.

3.4.5.2 CopyPasteMix

As discussed in our previous work [12], our collected images are enlarged patches cropped

from whole video frames. Each image contains at least one player with annotations. Inspired

from recent work on data augmentation [105, 106, 107, 108, 109], we propose a data augmentation

method called CopyPasteMix that provides more variability to the training data. It copies ran-

dom number of images and pastes onto a black background image. The source images are resized

randomly, and each image is pasted in order of largest to smallest onto a random location. If one

image has an IoU over 0.5 with the previously pasted image, we re-generate the target location and

retry. For any two images with IoU less or equal to 0.5, we perform a linear blending of the two

images with equal weights. After all the sources images are pasted, we adjust the ground-truth an-

45

CopyPasteMix SwapDigit CopyPasteMix+SwapDigit

Figure 3.3: Example augmented images (left to right) using CopyPasteMix, SwapDigit, and
CopyPasteMix+SwapDigit.

notations accordingly. We then train on the resulting synthetic image. By using CopyPasteMix,

we have more training targets at different scales and locations per image. Empirically, the number

of images used to construct the synthetic image is randomly selected between 1 and 5.

3.4.5.3 SwapDigit

We also design another augmentation method called SwapDigit. We borrow the data

from SVHN, such that the RoI of a digit in our training images is randomly replaced with a cropped

digit RoI in SVHN. By using SwapDigit, we effectively mitigate the lack of digit annotations

problem such that each digit class can be trained with enough data for the digit classifier. It is worth

noting that CopyPasteMix and SwapDigit can be used simultaneously for maximizing data

efficiency and performance gain.

Among all the discussed data augmentation methods, only translation or scaling of bound-

ing boxes are involved. The human body keypoints are changed accordingly with respect to the

players’ bounding boxes. We do not want to undermine the geometric relationship between the

46

human pose and digit locations, so no other transformation is carried out. Some examples of aug-

mented images are shown in Figure 3.3. In Section 3.5, we show significant performance gains by

using the proposed augmentation methods, and investigate the individual and combinatorial effects

of the augmentations in Section 3.5.6. A theoretical analysis on the effectiveness of the proposed

data augmentation methods is provided in the supplementary material.

3.5 Experiments

To validate the effectiveness of JEDE, we conduct experiments and compare with other

state-of-the-art methods on our collected dataset as there is no publicly available dataset. We con-

duct evaluations on both jersey digit and number detection tasks. Following the standard COCO [48]

metrics for object detection, we report the bounding box AP and AR (averaged precision and recall

across IoU thresholds from 0.5 to 0.95 with an interval of 0.05), AP50, AP75, AR50, and AP75 where

the IoU threshold is denoted by the subscript.

3.5.1 Dataset

There is no publicly available jersey number dataset with instance-level annotations. To

identify players in sports scenes, predicting the jersey numbers can be more robust than from other

visual information like face and gait. It is natural to consider the jersey number detection as a

top-down process where player localization provides robust prior information for digit localization.

Human pose information can also be useful by providing implicit constraints on digit locations. Pre-

vious work [4, 24] only investigates image-level jersey number recognition which is not practical for

real-world applications where multiple players are involved. Instead of performing player identity

47

classification directly, digit detection provides more accurate visual cues of players’ identities. To

continue the advances towards the ultimate goal of automatic sports analysis, we introduce a new

dataset that addresses three core research problems in detection for sports: player detection, player

pose estimation, and digit detection.

We choose soccer and basketball, two of the most popular team sports, for creating the

dataset. To collect data with sufficient variations, the game match videos are selected based on

different jersey colors, jersey number colors, and jersey number fonts. The soccer data is collected

from four matches. The recording device used is a single Canon XA10 video camera which is

installed on a pole that is 15 feet high, and 10 to 20 feet away from the horizontal baseline of the

soccer field. For better video qualities on jersey numbers, the camera operator is allowed to pan and

zoom accordingly. Next, the video frames are enlarged by a factor of 2. An off-the-shelf person

detector (e.g., OpenPose [46]) is applied to get players’ bounding boxes. The image is cropped

around each bounding box with a padding of 150 pixels and a random shift within 20 pixels to

create data variations. Besides the soccer sport, we also collect frames from one basketball match.

To increase the diversity and add more challenging training data, the basketball frames are enlarged

by a factor of 2 and divided into 4 large patches of equal size. After the data collection is completed,

the images are labeled via VGG Image Annotator [47]. For each player in an image, we annotate its

bounding box and legible digits. For players with digit annotations, 4 human body keypoints (left

shoulder, right shoulder, left hip and right hip) are also annotated.

In total, there are 4477 labeled images, including annotations of 6054 players with 5406

of them are labeled with keypoints, and 9075 digits. We list the statistics of the collected dataset in

Table 3.1. There are large variations in scales within each collected video, and even larger across

48

videos. The digit to player bounding box area ratio is only around 2% as shown in the table. The

relatively small scale of digits makes jersey number detection even a more challenging task. Some

example image and digit class distributions for each video are shown in Figure 3.4. The differences

in image appearance and digit distribution are significant. For a fair evaluation on the unbalanced

dataset, we perform k-fold cross validation where the training and testing data are divided by videos

for examining the generalization power of JEDE.

video 1 video 2 video 3 video 4 video 5

Figure 3.4: Example images from the collected dataset for each video labeled in numerical as-
cending order. Images are resized for illustration. The second row shows the histogram of digit
annotations for each video.

3.5.2 Implementation Details

Our implementation is built upon the codebase Detectron2 [110] and PyTorch [111]. All

experiments are conducted on a workstation with two Nvidia 1080 Ti GPUs. The model is trained in

parallel and evaluated on a single GPU. We set the hyper-parameters following Mask R-CNN [20].

A fixed random seed is used, and no data balancing strategy is applied in all experiments for fair

comparisons. We perform 4-fold cross validation on the collected soccer data, and conduct cross-

domain evaluations by training on soccer and testing on basketball data, and vice versa.

We first implement a JEDE baseline with a ResNet-50-FPN backbone [3, 20]. The posi-

49

Table 3.2: Jersey digit detection results.

Fold Method AP AP50 AP75 AR AR50 AR75

1

Faster R-CNN 25.26 42.01 27.52 40.00 41.42 41.42

Cascade R-CNN 25.10 35.41 31.79 39.97 40.32 40.32

TridentNet 26.06 40.30 31.68 38.89 40.85 40.85

Pose-guided R-CNN 27.03 44.05 30.55 40.22 42.15 42.15

JEDE Baseline 30.28 55.96 28.98 43.96 44.67 44.67

JEDE Augmented 51.08 80.10 60.09 64.24 65.33 65.33

2

Faster R-CNN 49.61 71.79 61.05 67.48 69.09 69.09

Cascade R-CNN 54.97 76.00 67.00 69.86 70.60 70.60

TridentNet 56.07 77.68 70.79 69.97 70.60 70.60

Pose-guided R-CNN 48.33 71.01 60.23 65.43 67.07 67.07

JEDE Baseline 49.46 73.45 61.31 66.6 67.47 67.47

JEDE Augmented 59.70 86.28 74.73 70.89 71.23 71.23

3

Faster R-CNN 55.79 76.69 67.44 64.74 67.30 67.30

Cascade R-CNN 60.01 77.93 72.53 72.27 74.59 74.59

TridentNet 57.50 75.35 70.07 67.09 68.54 68.54

Pose-guided R-CNN 46.74 75.32 53.76 55.89 57.14 57.14

JEDE Baseline 48.80 77.65 54.38 57.85 59.33 59.33

JEDE Augmented 56.85 88.44 65.76 64.70 66.28 66.28

4

Faster R-CNN 49.17 65.64 60.86 66.33 68.57 68.57

Cascade R-CNN 62.09 76.18 73.59 72.91 74.52 74.52

TridentNet 59.29 75.94 72.65 68.30 69.16 69.16

Pose-guided R-CNN 51.45 71.27 63.33 65.67 67.01 67.01

JEDE Baseline 53.32 73.80 65.46 66.93 68.02 68.02

JEDE Augmented 67.15 91.65 82.81 73.02 74.25 74.25

tional embeddings are not included, and only multi-scale training is used during training. We then

implement an augmented version of JEDE baseline by adding the positional embeddings and us-

ing the proposed augmentation methods. Specifically, we pretrain the model on COCO and SVHN

simultaneously with equal sampling probabilities, where CopyPasteMix with a maximum of 5

images is applied for SVHN data. Then, we train on our dataset using both CopyPasteMix and

SwapDigit with the same hyper-parameters of the baseline model.

50

Training: The input images are resized such that their longer edge is no more than 800

pixels. For the short edge, we use multi-scale training such that a random scale is selected during

each iteration. We follow some common pixel values for the shorter edge [19, 20] to choose from:

480, 512, 544, 576, 608, and 640. For each image, there are 512 sampled player RoIs with a ratio

of 1:3 of positive samples (RoIs with IoU ≥ 0.5 over GT player bounding boxes) to negatives.

For each detected player, we sample 100 digit proposals from the pose-guided branch. Within the

predicted center heatmaps of each player, we sample the top 50 locations with the highest scores,

and randomly sample other 50 from the rest as negative samples. The maximum number of sampled

digit proposals per image is set as 256. We train the whole framework for 50k iterations, with a mini-

batch size of 4 (2 images per GPU on 2 GPUs) and learning rate of 0.0002. The learning rate is

decreased by 10 at the 40k-th iteration. We use a weight decay of 0.0001 and momentum of 0.9.

Inference: The test images are resized such that their longer edge is no more than 800

pixels while the shorter edge is at least 480 pixels. Top 1000 player proposals from RPN are kept.

We run the player branch on these proposals followed by non-maximum suppression to get the top

100 player bounding boxes ranked by classification scores. The keypoints regression and pose-

guided branch are applied to these selected boxes. For each player instance, we keep the top 20

digit proposals. Finally, all the digit proposals are fed into the digit branch to obtain the final

classifications and bounding boxes, followed by non-maximum suppression.

3.5.3 Digit Detection Results

In this sub-section, we evaluate the jersey digit detection performance with thorough com-

parisons of JEDE to pose-guided R-CNN [12], and state-of-the-art object detectors such as Faster

51

Table 3.3: Jersey number detection results.

Fold Method AP AP50 AP75 AR AR50 AR75

1

Mask TextSpotter V3 - 2.43 0.25 - 35.84 3.72

SwinTextSpotter 5.28 6.85 6.44 14.71 16.55 16.58

Pose-guided R-CNN 13.15 18.35 14.67 27.43 28.02 28.02

JEDE Baseline 18.07 26.87 20.93 35.69 35.99 35.99

JEDE Augmented 37.12 50.69 45.84 50.29 50.63 50.63

2

Mask TextSpotter V3 - 0.77 0.11 - 11.49 1.65

SwinTextSpotter 10.54 12.27 12.00 14.64 18.54 18.54

Pose-guided R-CNN 32.23 42.27 39.73 47.85 48.84 48.84

JEDE Baseline 36.02 43.59 42.69 50.26 50.61 50.61

JEDE Augmented 36.12 45.60 44.08 54.61 54.65 54.65

3

Mask TextSpotter V3 - 1.80 0.48 - 29.24 7.88

SwinTextSpotter 11.29 13.83 13.49 23.53 26.55 26.63

Pose-guided R-CNN 43.12 55.12 52.36 58.42 60.12 60.12

JEDE Baseline 45.17 59.03 55.42 62.38 63.83 63.83

JEDE Augmented 48.27 61.72 57.51 57.85 59.31 59.31

4

Mask TextSpotter V3 - 0.21 0.12 - 5.65 3.27

SwinTextSpotter 9.73 12.82 11.35 17.33 19.64 19.87

Pose-guided R-CNN 33.76 40.92 38.45 44.77 46.58 46.58

JEDE Baseline 36.35 44.42 42.84 47.95 48.27 48.27

JEDE Augmented 42.87 52.82 51.53 53.18 54.19 54.19

R-CNN [19], Cascade R-CNN [112], and TridentNet [113]. Serving as competitive methods, Cas-

cade R-CNN includes a sequence of detectors that improve the detection quality, while TridentNet

is robust to object scale variations.

The results of JEDE models are listed and compared with other methods in Table 3.2. For

each cross validation result, the fold number indicates which test video is used, e.g. fold 1 means

that we train on videos 2, 3, and 4, then test on video 1. Our models achieve the state-of-the-art

results with substantial improvements. JEDE baseline already outperforms Faster R-CNN over most

metrics, and the augmented JEDE further improves the results. Fold 1 and 4 involve less training

52

data and more testing data, and we see more performance gains for JEDE. For example of fold 1,

JEDE baseline has 5.02 points improvement in AP over Faster R-CNN, and 3.25 points over pose-

guided R-CNN. The results prove the effectiveness of the pose-guided branch. The digit localization

can be improved by extracting contextual information from the pose features with limited training

data. Moreover, the model trained with augmentations achieves massive gains such that AP is

doubled compared with Faster R-CNN. Both precision and recall are dramatically improved over

the baseline model, demonstrating that we have more accurate bounding box predictions and better

digit classifiers. This highlights that our proposed augmentation methods are capable of diversifying

the training data without any extra cost. It can be seen that the results of JEDE for fold 3 are slightly

lower than Cascade R-CNN. Since fold 3 only contains 418 testing images, whose size is relatively

small compared with other folds, it is a natural disturbance for a such small performance gap. The

augmented JEDE still outperforms Cascade R-CNN by 10.51 AP50.

3.5.4 Jersey Number Detection Results

For jersey number detection evaluations, we use the same metrics as in digit detection.

Naturally, the precision is less than it is in digit detection, as both digits must be detected corrected

for a two-digit jersey number to be counted as a true positive detection. We report the results

of JEDE models, and compare with the pose-guided R-CNN and the state-of-the-art scene text

detection frameworks Mask TextSpotter V3 [81], and SwinTextSpotter [83]. We use their open-

sourced codebases and modify the output number of classes to 11 (“0” -“9” and “background”).

The model Mask TextSpotter V3 is initialized with their pre-trained weights, and SwinTextSpotter

is trained from scratch. Both models are trained with the same settings as in Section 3.5.2.

53

 J
ED

E
Au

gm
en

te
d

JE

D
E

Ba
se

lin
e

Sw
in

Te
xt

Sp
ot

te
r

 M
as

k
Te

xt
Sp

ot
te

r V
3

 T
rid

en
tN

et

C
as

ca
de

 R
-C

N
N

 F
as

te
r R

-C
N

N

Figure 3.5: Qualitative comparisons between JEDE and other methods. Each bounding box is
labeled with the predicted class and score, if available. The digit class is labeled under the left
bottom corner of the bounding box for all methods (rows 1, 2, 3, 6, 7), and the jersey number is
labeled above the box for JEDE models (rows 6, 7). Only jersey numbers are labeled for Mask
TextSpotter V3 and SwinTextSpotter. Images are resized for illustration.

Table 3.3 compares our results to Mask TextSpotter V3, SwinTextSpotter, and pose-

guided R-CNN. For Mask TextSpotter V3, we only report AP50, AP75, AR50, and AR75. JEDE

outperforms other methods in every fold by a large margin. For example in fold 1, the baseline

JEDE achieves 26.87 AP50, which shows 24.44 points improvement over Mask TextSpotter V3 and

20.02 points improvement over SwinTextSpotter. The augmented JEDE further pushes the perfor-

mance with 50.69 AP50. It is worth noting that both Mask TextSpotter V3 and SwinTextSpotter

have poor AP but fair AR results. This indicates that these methods are able to detect jersey number

bounding boxes but barely classify them correctly. To examine this behavior, we conduct experi-

ments by modifying our detection branches similar to commonly used scene text detection methods.

Specifically, we detect jersey number bounding boxes directly where the union of digit bounding

54

Table 3.4: Performance comparison for S→B task.

Method AP AP50 AP75 AR AR50 AR75

Faster R-CNN 0.00 0.01 0.01 0.12 0.15 0.16

Cascade R-CNN 0.01 0.01 0.01 0.16 0.19 0.19

TridentNet 0.00 0.00 0.00 0.02 0.02 0.02

Pose-guided R-CNN 0.04 0.32 0.00 0.25 0.28 0.28

JEDE Baseline 0.09 0.46 0.00 0.36 0.37 0.37

JEDE Augmented 10.17 30.34 3.91 19.97 24.06 24.07

Mask TextSpotter V3 - 0.00 0.00 - 0.08 0.00

SwinTextSpotter 0.05 0.08 0.08 0.04 0.05 0.05

Pose-guided R-CNN 0.01 0.07 0.00 0.05 0.05 0.05

JEDE Baseline 0.02 0.09 0.00 0.07 0.07 0.07

JEDE Augmented 9.90 21.60 7.71 20.05 22.56 22.56

boxes is considered for a two-digit number. Then we add the sequence modeling (e.g., Bidirectional

LSTM [114, 115]) for pooled jersey number features as in [116, 117, 81]. The number classification

is performed per column of the features that can be trained using Connectionist Temporal Classi-

fication (CTC) [118]. This modified model achieves 13.71 AP50 which is much lower than the

JEDE baseline. The unsatisfied results can be justified by the sequence modeling of jersey numbers.

Scene text detection relies on lexicons and contextual information between characters, while there

is no such dependence between digits in a jersey number. Moreover, there are not enough jersey

numbers for training a robust recurrent model for sequence classification. Traditional scene text

detection frameworks are probably not suitable for directly detecting jersey numbers unless heavy

adaptations are applied.

In Figure 3.5, we provide the qualitative comparisons between JEDE and other methods.

55

Only detections with a confidence score over 0.2 are shown. JEDE models consistently perform

better under different conditions. The pose-guided branch provides a strong regularization for the

digit locations as seen from columns 7 and 8 in the figure. JEDE models predict accurate digit

bounding boxes, while other methods predict wrong locations on arms or hips. It can also be seen

that JEDE is more robust to low-resolution images (columns 1 and 2). The last column shows

a failure case where an extreme pose is presented: “9” is not recognized correctly due to rare

deformations. JEDE Augmented still predicts an accurate digit bounding box, while other methods

generate some false positive detections. It further demonstrates that the pose-guided branch provides

more reliable digit proposals. Nevertheless, there are some failure cases for the proposed method

as well. For example, in the last row of Figure 3.5: in the 4-th image, “46” is not detected due to

partial occlusion; in the 9-th image, “39” is not recognized since “single-digit” is predicted from the

jersey number length classifier.

3.5.5 Cross-domain Results

It is well known that deep learning vision models are highly dependent on large labeled

datasets. Even though a trained model can success on one dataset, its performance often declines

significantly on new data or new domain. This problem is referred to as dataset shift [119] where

training and testing data distributions are different. It can be observed from Tables 3.2 and 3.3 that

the detection performance differs among each testing fold, although both training and testing data

are collected from soccer matches. The visual changes between soccer matches are substantial,

not to mention the domain shift from soccer to other sports, and vice versa. Thus, we perform

two cross-domain experiments between the soccer and basketball data, without using any transfer

56

 J
ED

E
Au

gm
en

te
d

 J
ED

E
Ba

se
lin

e

 S
w

in
Te

xt
Sp

ot
te

r (
pr

et
ra

in
ed

)

Sw
in

Te
xt

Sp
ot

te
r

 M
as

k
Te

xt
Sp

ot
te

r V
3

 F

as
te

r R
-C

N
N

Figure 3.6: Qualitative comparison on the cross-domain task S→B. Faster R-CNN, Mask TextSpot-
ter V3, and SwinTextSpotter achieve poor performances with false positive detections that predict
players, body parts, or texts as digits. JEDE Baseline performs well on player detection and pose
estimation with fair digit classification performance. JEDE Augmented is much more robust to rec-
ognize digits thanks to the proposed data augmentation methods.

learning [120] or domain adaptation [121] technique.

The first experiment is training on soccer and testing on basketball data (S→B). During

testing, we resize the input image such that the longer edge is no more than 1600 pixels, and the short

edge is at least 960 pixels. The results are shown in Table 3.4. Although models trained without

augmentations suffer from the domain shift and limited data, JEDE Baseline still outperforms other

methods significantly. With augmentations, JEDE achieves much better performance with 30.34

digit AP50 and 21.60 number AP50. We further show the qualitative results in Figure 3.6. For

SwinTextSpotter, we also use their pre-trained model to perform text detection directly as shown in

the 4-th row of Figure 3.6. JEDE Augmented still achieves the best detection results overall. Pre-

57

Table 3.5: Performance comparison for B→S task.

Method AP AP50 AP75 AR AR50 AR75

Faster R-CNN 1.49 3.80 0.98 3.04 3.46 3.46

Cascade R-CNN 1.46 2.94 1.33 3.85 4.01 4.01

TridentNet 0.14 0.65 0.00 0.84 0.84 0.84

Pose-guided R-CNN 1.51 4.02 1.07 3.60 3.83 3.83

JEDE Baseline 0.63 2.54 0.15 1.94 2.11 2.11

JEDE Augmented 9.09 32.54 1.85 15.81 16.29 18.61

Mask TextSpotter V3 - 0.98 0.16 - 17.96 3.03

SwinTextSpotter 0.00 0.00 0.00 0.06 0.10 0.11

Pose-guided R-CNN 0.20 0.78 0.05 0.48 0.50 0.50

JEDE Baseline 0.23 0.87 0.06 0.56 0.58 0.58

JEDE Augmented 8.40 20.24 5.22 13.97 14.02 14.02

trained SwinTextSpotter can achieve fair detection results, but cannot distinguish between jersey

numbers and other texts. In some difficult conditions as shown in Figure 3.6, JEDE may fail, such

as in the second image, “77” is not detected due to motion blur; and in the 4-th image, “12” is not

detected due to small digit scale.

The other experiment is training on basketball and testing on soccer data (B→S). During

testing, we resize the input image such that the longer edge is no more than 400 pixels, and the

short edge is at least 240 pixels. CopyPasteMix is not applied for JEDE Augmented. The results

are shown in Table 3.5. We observe worse results compared with the ones on S→B, since there

is much less training data (but more testing data) for basketball domain (Table 3.1). Nevertheless,

JEDE Augmented still achieves the best results among all the methods with number AP50 being

over 20 times better than Mask TextSpotter V3. By comparing the JEDE Baseline and Augmented

58

results, it implies that SwapDigit significantly mitigate the problem of limited training data, sug-

gesting the high practicality of the proposed data augmentation strategies. The cross-domain results

demonstrate that JEDE models have better generalizability over other methods.

3.5.6 Ablation Study

We conduct a number of ablations to analyze JEDE, and show the digit detection results

in this section unless otherwise specified. All the experiments are based on JEDE Baseline. Best

results are in bold.

Backbone: Table 3.6 shows a comparison of JEDE results, number of parameters (in

Million), giga floating point operations (GFlops), and inference frame per second (FPS) of various

backbones. The metrics are measured on a Nvidia GTX 1080 Ti GPU with a batch size of 1, and the

GFlops and FPS are averaged over all testing images. We observe that the results do not benefit from

much deeper networks such as ResNet-101 and ResNeXt-101 due to overfitting on limited training

data. The JEDE Augmented with ResNet-101 slightly outperforms it with ResNet-50 by 0.08 as

shown in Table 3.2. It indicates that the proposed data augmentation methods are more effective

than increasing the model size. We also observe notable speed and performance improvements by

removing the anchor size of 32. Since small proposals are simple negative examples (background)

that do not contribute much to the loss, the model acquires more effective proposals during training

by removing small anchors. We also compute the inference speed of Mask TextSpotter V3 and

SwinTextSpotter with the same settings since the jersey number detection task is time-sensitive. On

average, Mask TextSpotter V3 achieves 5.04 FPS and SwinTextSpotter achieves 2.46 FPS, while

JEDE with ResNet-50 backbone achieves 22.68 FPS as a comparison. GT Minimum IoU: As

59

Table 3.6: Ablation on backbone networks.

Backbone AP AR Params GFlops FPS

ResNet-18 11.58 23.51 67.4M 52.5 24.55

ResNet-50 25.15 38.80 80.5M 60.9 20.37

ResNet-50† 25.33 40.14 80.5M 52.0 22.68

ResNet-101 24.50 38.85 93.2M 77.7 17.54

ResNeXt-101-32x8d 19.62 35.98 144.0M 119.2 10.76

† The smallest anchors of size 32 are removed.

discussed in Section 3.4.3.2, the hyper-parameter min iou controls the Gaussian blob size of the

digit centers. The largermin iou is, the smaller the blob size is. Table 3.7 shows the results of using

different values of min iou. It can be observed that smaller min iou gives better results because

more training samples are included while training center heatmaps regression. GT heatmap spatial

size: The spatial size of the GT heatmaps is important for predicting the center locations of digits.

Hypothetically, higher resolution the heatmaps have, more accurate the prediction will be due to

less coordinate discretization. We perform the sensitivity analysis of the heatmap size and show

the results in Table 3.8. The input player features are interpolated to the desired size. As expected,

using the largest size achieves slightly better AP. However, simply up-sampling features does not

improve the results significantly. We further perform the experiment by pooling 56 × 56 player

features directly. As a result, AP is significantly improved by 4.67 compared with using 14× 14.

Keypoint s player features: We investigate the effectiveness of the pose-guided branch.

60

Table 3.7: GT Bounding box minimum overlap:
Smaller value gives better results.

min iou AP AR

0.1 26.46 38.95

0.3 25.79 38.69

0.5 26.12 38.77

Table 3.8: GT heatmap spatial size: Larger size
gives better results.

Size AP AR

14× 14 24.15 35.68

28× 28 22.90 36.06

56× 56 24.53 35.73

56× 56‡ 28.82 39.96

‡ Directly pooled without interpola-

tion.

Table 3.9: Input to pose-guided branch:
fusion of both features gives better results.

Input Features AP AR

Keypoint 12.77 24.02

Player 20.81 31.64

Both 23.55 34.81

Table 3.10: Feature fusion methods: concatena-
tion gives better results.

Fusion method AP AR

Multiply 20.79 33.50

Sum 21.40 33.76

Concatenate 23.07 36.43

There are two default input features, the keypoint heatmaps and pooled player features. We conduct

ablation experiments by 1. only using the keypoint features, 2. only using the player features, and

3. using the fusion of both features. The results are shown in Table 3.9. Using both features signifi-

cantly outperforms only using one set of features. By adding the keypoint features, AP is improved

by 2.74 points. It validates the effectiveness of the pose-guided branch that pose information is

helpful for localizing digits.

Fusion methods: We also investigate the fusion methods of the player features and key-

61

Table 3.11: Positional embeddings (PE): Con-
catenation w/ keypoint heatmaps gives better re-
sults.

Concat w/ AP AR

No PE 23.07 36.43

Fused features 24.81 35.89

Keypoint heatmaps 25.29 37.96

Table 3.12: Normalization layers:
GN provides better results using a small batch
size.

Norm AP AR

None 21.44 32.14

BN 22.12 34.58

GN 27.73 42.51

point features, and show the results in Table 3.10. Concatenation has better performance because it

provides more feature transformations for the branch to reduce the semantic difference between the

player features and the keypoint heatmaps.

Table 3.13: Ablation on the input features for
number length classification.

Input features AP AR

Center heatmaps 11.11 20.97

2nd last features 12.75 23.80

Fused features 12.66 20.16

Table 3.14: Digit RoI pooling resolution: larger
resolution gives better results.

Pooling Res. AP AR

7× 7 20.79 35.34

14× 14 23.19 35.22

28× 28 24.99 36.60

Positional embeddings: We examine the effectiveness of concatenating positional em-

beddings (PE) with different features, fused features or keypoint heatmaps, and show the results in

Table 3.11. Adding the positional embeddings improves the results, and concatenating with key-

point heatmaps outperforms with fused features by 0.48 AP. One possible reason is that both PE and

keypoint heatmaps provide spatial information and make learning easier.

62

Normalization layers: We further perform an ablation study on the normalization layers

used in the pose-guided branch. Two commonly used feature normalization methods are selected,

namely Batch Normalization (BN) [122] and Group Normalization (GN) [123], and the results are

shown in Table 3.12. The results are improved by using normalization layers, and GN performs

better than BN due to training with a small batch size of 4. We expect that better results can be

achieved by using a larger batch size.

Number length classification: As discussed in Section 3.4.4.2, we use a MLP to pre-

dict the jersey number length. We investigate three possible features to be considered as its input:

center heatmaps, the second last features in the center prediction head (features before the center

heatmaps), and the fused features. The jersey number detection results are shown in Table 3.13.

Using the 2nd last features gives the best AP and AR. Using the center heatmaps has worse per-

formance due to the loss of contextual information of the player, which is useful for number length

classification.

0 1 2 3 4 5 6 7 8 90

25

50

Fold 1

0 1 2 3 4 5 6 7 8 90

50

Fold 2

0 1 2 3 4 5 6 7 8 90

25

50

Fold 3

0 1 2 3 4 5 6 7 8 90

50

Fold 4

0 1 2 3 4 5 6 7 8 90

20

S -> B Task

0 1 2 3 4 5 6 7 8 90

10

B -> S Task

JEDE Baseline JEDE Augmenteddigit class

AP

Figure 3.7: Per-class AP comparisons between JEDE Baseline and Augmented for each fold and
cross-domain task.

Digit RoI pooling resolution: One of the hyper-parameters of the digit branch is the digit

63

Figure 3.8: Qualitative results for images in the wild. Sports from left to right, top to bottom
are: soccer, lacrosse, rugby, American football, cricket, basketball, volleyball, ice hockey, handball,
beach soccer, hockey, and water polo.

RoI pooling resolution. We conduct experiments with different resolutions and shown the results in

Table 3.14. It can be observed that larger pooling size gives better performance. Higher resolution

provides more fine-grained visual features that are helpful for differentiating similar digits like “1”

and “7”.

Table 3.15: Ablation on data augmentations.

Random Crop Pre-train CopyPasteMix SwapDigit AP AR

21.44 32.14

✓ 23.16 35.90

✓ 30.37 40.73

✓ 39.24 57.13

✓ 30.36 44.57

✓ ✓ 45.95 60.42

✓ ✓ ✓ 49.80 63.35

64

Augmentations: Besides the ablation on architectures, we also perform the effects of

data augmentations on JEDE, including random crop with a maximum of 30% crop rate, pre-train

on COCO and SVHN, CopyPasteMix, and SwapDigit. For JEDE Baseline, no augmentation

is conducted to balance the uneven distribution of digits for fair comparison. The results are shown

in Table 3.15. Each data augmentation method improves the results compared to JEDE Baseline.

CopyPasteMix achieves the largest gain of AP by 17.80, while random crop only improves AP

by 1.72. Moreover, combining CopyPasteMix and SwapDigit with pre-trained weights gives

the best AP gain of 28.36, and AR gain of 31.21. The results demonstrate that data augmentation

is one of the key factors for improving the performance given limited data. For jersey number

detection task, our specially designed augmentation methods have stronger regularization capability

than general methods like random crop.

Better results could be achieved by re-sampling [124], but the testing data distribution will

still be very different from training data in the cross validation. This is the reason why SwapDigit

is implemented for mitigating the problem of unbalanced data. By using the SVHN dataset which

is well-balanced for digit annotations, the detection performance is much improved for those digit

classes that are trained insufficiently. We provide a per-class comparison of JEDE Baseline and Aug-

mented as shown in Figure 3.7. It can be observed that larger relative improvements are achieved

for those digit classes that have a low AP.

We also evaluate and compare the player bounding box detection mean average precision

(AP player) and keypoint detection mean average precision (AP kpts) for each experiment following

the standard metrics [48]. We only report on the four categories of keypoints for which annotations

are available in our dataset. The results are shown in Table 3.16. It can be observed that JEDE

65

Table 3.16: Comparison of JEDE Baseline and Augmented on player detection and human pose
estimation results.

Experiment Method AP player AP kpts

Fold 1
JEDE Baseline 76.52 94.88

JEDE Augmented 80.44 97.13

Fold 2
JEDE Baseline 81.44 99.45

JEDE Augmented 79.57 99.58

Fold 3
JEDE Baseline 83.29 91.27

JEDE Augmented 75.49 96.31

Fold 4
JEDE Baseline 80.59 96.45

JEDE Augmented 76.45 98.03

S→B
JEDE Baseline 41.76 49.61

JEDE Augmented 41.42 52.46

B→S
JEDE Baseline 61.83 65.86

JEDE Augmented 70.41 83.05

Augmented achieves better keypoint detection performance in each experiment, especially when

less training data is available in the B→S task. The testing images for each fold are cropped frames

with low variances, and thus the data distribution difference between training and testing are small.

With data augmentations, we provide a stronger regularization by training with more instances

at different scales. As a result, JEDE Augmented receives less training data that are similar to

the testing data. This suggests why JEDE Augmented achieves slightly lower AP player in some

66

experiments compared with the baseline.

Towards a universal jersey number detector: To fully exploit the capability of JEDE,

we develop a slightly larger model using the best hyper-parameters found in the ablation studies.

We use larger input image size with a maximum of 1589 pixels for the longer edge. We first pre-

train the model on SVHN and COCO, and then train using CopyPasteMix and SwapDigit. To

prevent “forgetting” [125] the pre-trained weights for player detection, we train on COCO and our

whole dataset (including soccer and basketball data) concurrently with an equal sampling probabil-

ity for 150k iterations (3× longer than all other experiments). The learning rate is decreased by 10

at the 120k-th iteration. Since we use all the data for training, we only show the qualitative results

on images collected from the Internet. We choose several popular team sports for visualizations as

in Figure 3.8. The qualitative results demonstrate the remarkable generalizability of JEDE across

different sports, even though is it only trained on soccer and basketball domains. There are limi-

tations of the proposed framework as shown in the last image in the figure, where the numbers on

the players’ heads are not detected. For uncommon poses and digit locations which do not present

during training, JEDE can only reject low-confidence detections.

Limitations and solutions: JEDE achieves great performances on player detection, player

pose estimation, and jersey number detection. However, the detections are not perfect as shown in

the visualizations. We summarize the limitations and their solutions as follows:

• Our approach is data-driven, and the performance still suffer from the lack of extensive data.

If more annotations on sports-related poses and jersey numbers are available, better results

can be achieved.

• The jersey number detection performance relies on the accuracy of jersey number length

67

prediction. If the length is predicted incorrectly, the predicted jersey number will be wrong.

As discussed in Section 3.5.4, if more training data of digits are provided, the number length

predictor can be replaced with a sequence decoder like the one used in Mask TextSpotter

V3 [81] and SwinTextSpotter [83].

• It is difficult for JEDE, object detection, or scene text detection framework to handle blur, oc-

clusion, and small scale. JEDE can be deployed for real-time sports analysis. If the detection

fails in a particular frame, we can still obtain correct detections in future frames. Moreover,

in future work, JEDE can be extended for video analysis by integrating tracking for handling

fast-changing conditions in sports fields.

68

Chapter 4

Fully Convolutional Scene Graph

Generation

4.1 Introduction

Philosophers, linguists and artists have long wondered about the semantic content of what

the mind perceives in images and speech [126, 127, 128, 129]. Many have argued that images carry

layers of meaning [130, 131]. Considered as an engineering problem, semantic content has been

modeled either as latent representations [132, 133, 134, 135], or explicitly as structured represen-

tations [136, 137, 138]. For a computer vision system to explicitly represent and reason about the

detailed semantics, Johnson [139] et al. adopt and formalize scene graphs from computer graph-

ics community. A scene graph serves as a powerful representation that enables many down-stream

high-level reasoning tasks such as image captioning [140, 141], image retrieval [142, 139], Visual

Question answering [143, 144] and image generation [142, 145].

69

banana chair wheel
ON HAS(a)

(b) (c)

ONHAS

} relation a�nity �elds

Figure 4.1: An example of scene graph generation. (a) The ground-truth scene graph of an image.
(b) The ground-truth bounding boxes and their centers. (c) Our proposed relationship representation
called relation affinity fields. (The image is 2353896.jpg from Visual Genome [1].)

A scene graph is considered as an explicit structural representation for describing the se-

mantics of a visual scene. The nodes in a scene graph represent the object classes and the edges

represent the relationships between the objects. Figure 4.1(a) shows a simple example of a scene

graph that represents the underlying semantics of an image. Each relationship between two objects

is denoted as a triplet of <subject, PREDICATE, object> , i.e., banana ON−→ chair and

chair
HAS−−→ wheel in Figure 4.1(a). Most of the SGG work [146, 147, 148, 138, 149] is build

as a two-stage pipeline: object detection then scene graph generation. For the first stage of object

detection, existing object detectors, i.e., Fast/Faster R-CNN [39, 19], are used for object feature ex-

traction from region proposals. For the second stage of scene graph generation, various approxima-

tion methods [148, 138, 149] for graph inference have been used. Some work [146, 150, 151, 152]

have also investigated how to utilize external knowledge for improving the results. However, most

previous work suffer from not only the long-tailed distribution of relationships [153, 154, 149],

but also the highly biased prediction conditioned on object labels [155, 156, 157, 147]. Conse-

quently, frequent predicates will prevail over less frequent ones, and unseen relationships can not

70

be identified. Moreover, the extensibility and inference speed of a SGG framework is crucial for

accelerating down-stream tasks. Although few researchers have studied the efficiency and scala-

bility in SGG [11, 158, 159], the high computational complexity impedes the practicality towards

real-world applications. A natural question that arises is: can we solve scene graph generation in

a per-pixel prediction fashion? Recently, anchor-free object detectors [102, 160, 161, 103] have

become popular due to their simplicity and low cost. These methods treat an object as a single

or many, pre-defined or self-learned keypoints. Relating object detection to human pose estima-

tion, if an object can be modeled as a point (human “keypoint”), is it possible to represent a binary

relationship as vectors (human “limb”)?

In this chapter, we propose a novel fully convolutional scene graph generation model, i.e.,

FCSGG, with state-of-the-art object detection results on Visual Genome dataset [1], as well as com-

pelling SGG results compared with visual-only methods. We present a bottom-up representation of

objects and relationships by modeling objects as points and relationships as vectors. Each relation-

ship is encoded as a segment in a 2D vector field called relation affinity field (RAF). Figure 4.1(c)

shows an illustration of RAFs for predicates ON and HAS. Both objects and relationships are pre-

dicted as dense feature maps without losing spatial information. For the first time, scene graphs can

be generated from a single convolutional neural network (CNN) with significantly reduced model

size and inference speed.

4.2 Related Work

We categorize the related work of SGG into the following directions: refinement of con-

textual feature, adaptation of external knowledge, and others.

71

Contextual feature refinement. Xu et al. [138] proposed an iterative message passing

mechanism based on Gated Recurrent Units [162], where the hidden states are used for predictions.

Followers [148, 149] studied better recurrent neural networks [114, 163, 164] for encoding object

and edge context. Others trying to incorporate more spatial features into SGG. Li et al. [6] proposed

the MSDN that merges features across multiple semantic levels, and later achieved message passing

constrained on visual phrase [165]. Dai et al. [166] proposed a spatial module by learning from

bounding box masks. Woo et al. [167] introduced the geometric embeddings by directly encoding

the bounding box offsets between objects. Wang et al. [168] further studied the effects of relative

positions between objects for extracting more discriminating features. Our method is fundamentally

different from these methods as the relationships are grounded semantically and spatially directly

into CNN features. Without any explicit iterative information exchange between nodes and edges,

our model is able to predict objects and relationships in a single forward pass.

External knowledge adaptation. Beyond visual features, linguistic knowledge can serve

as additional features for SGG [169, 136, 170, 150]. By adopting statistical correlations of objects,

Chen et al. [146] utilized graph neural networks [171] to infer relationships. Gu et al. [172] and

Zareian et al. [151, 152] explored the usefulness of knowledge or commonsense graphs for SGG.

Tang et al. [147] proposed an de-biasing method by causal interventions of predictions. Lin et

al. [173] investigated the graph properties and mitigated the long-tailed distributions of relation-

ships. Compared with these methods, our proposed model relies only on visual features but still

yields a strong performance.

Very few researchers have investigated alternatives either for object feature or relationship

feature representations. Newell [174] and Zhang et al. [5] tried latent-space embeddings for rela-

72

tionship and achieved improvements. Different from most of the previous work, FCSGG reformu-

lates and generalizes relationship representations from only visual-based features in near real-time,

which is much faster than specifically designed SGG models for efficiency [158, 159].

4.3 Contributions of this Chapter

• We propose the first fully convolutional scene graph generation model that is more compact

and computationally efficient compared to previous SGG models.

• We introduce a novel relationship representation called relation affinity fields that generalizes

well on unseen visual relationships. FCSGG achieves strong results on zero-shot recall.

• Our proposed model outperforms most of the visual-only SGG methods, and achieves com-

petitive results compared to methods boosted by external knowledge.

• We conduct comprehensive experiments and benchmark our proposed method together with

several previous work on model efficiency, and FCSGG achieves near real-time inference.

4.4 Object Detection as Keypoint Estimation

In this section, we provide the preliminaries of modeling object detection as keypoint

estimation in a single-scale dense feature map prediction fashion.

Our model is built upon a one-stage anchor-free detector, namely CenterNet [103]. Dif-

ferent from commonly used anchor-based R-CNN approaches for generating object proposals and

features, it predicts three dense features that represent centers of object bounding boxes, center off-

sets, and object sizes. More specifically, an input image I ∈ R3×W×H will go through a backbone

73

τ=4

4 shared heads across
di�erent scales of features

τ=8

τ=16

τ=32 convs

convs

convs

convs

Neck

Backbone

Sizes

RAFs

Heads

Center heatmaps

Center o�sets

Heads

Heads

Heads
τ=4

τ=8

τ=16

τ=32

P5

P4

P3

P2

Figure 4.2: One example of our proposed fully convolutional scene graph generation architecture
using four scales of features for prediction. We refer to the “backbone” as the feature extraction
CNN like ResNet [2], and the “neck” as the network for generating multi-scale features like FPN [3],
and the head as several convolutional layers (convs in figure). Shown in the right part, there are
four output features per scale: O, ∆, S for object detection and F for relationship detection. For
single-scale prediction, the backbone features of τ = 4 will be directly fed into the heads.

CNN generating feature maps of size w × h = ⌊Wτ ⌋ × ⌊
H
τ ⌋ where τ is the total stride until the

last layer, and we set τ = 4 unless specified otherwise. Then these features will be fed into three

prediction heads, each of which consists of several convolutional layers. The three heads are for pre-

dicting object center heatmaps O ∈ RC×w×h where C is the number of object classes in a dataset,

object center offsets ∆ ∈ R2×w×h for recovering from downsampled coordinates, and object sizes

S ∈ R2×w×h, respectively (shown in the dashed block of Figure 4.2). We define the ground-truth

(GT) objects in an image as B = {bi} where bi = (xi0, y
i
0,x

i
1, y

i
1, c

i) is the object i of class ci,

(xi0, y
i
0) and (xi1, y

i
1) denote the coordinates of the left-top and right-bottom corners of its bounding

box. The center of the bounding box is defined as oi = (oix,o
i
y) = ((xi0 + xi1)/2, (y

i
0 + yi1)/2),

and the size of the object is defined as si = (xi1 − xi0, yi1 − yi0). To obtain the ground-truth center

heatmaps at feature level, we divide coordinates by the stride τ and add Gaussian-smoothed samples

following Law [102] and Zhou et al. [103]. Formally, the object center oi will be modulated by a

74

bivariate Gaussian distribution along x-axis and y-axis on Oci . The value around oi is computed as

Oci,x,y = exp
(
9
∥x 9 ⌊oix/τ⌋∥22

2σ2x
9
∥y 9 ⌊oiy/τ⌋∥22

2σ2y

)
, (4.1)

where σx and σy controls the spread of the distribution. When multiple objects of the same class

c contribute to Oc,x,y, the maximum is taken as the ground truth. The center heatmaps are then

supervised by Gaussian focal loss [102, 104, 103]. More details are provided in the supplementary

file.

In addition to the supervision of center heatmaps, the center offset regression L∆ and

object size regression LS are used to recover object detections. For mitigating discretization er-

ror due to downsampling, the offset target is δi = oi/τ − ⌊oi/τ⌋, and regressed via L1 loss as

L∆x,y= ||∆̂x,y − δi||1 at center locations. For object size regression LS, the target is feature-level

object size si/τ , and the actual size can be recovered by multiplying the output stride. We also

use L1 loss as LSx,y= ||Ŝx,y − si||1 at center locations. Both object size and offset regressors are

class-agnostic such that there will be only one valid regression target at a particular location where

Oc,x,y = 1. If two object centers collide onto the same location, we choose the smaller object for

regression. The overall object detection objective is

Ldet =
1

N

∑
c,x,y

(
LOc,x,y + λ∆L∆x,y + λsLSx,y

)
, (4.2)

where N is the total number of objects in the image, λ∆ and λs are hyper-parameters for weight

balancing. We empirically set λ∆ = 1 and λs = 0.1 for all experiments. Until here, object centers,

offsets, and sizes are all represented in single-scale feature maps. We will discuss a multi-scale

prediction approach reducing regression ambiguity effectively in section 4.5.2.

75

4.5 Relation Affinity Fields

Newell and Deng [174] model objects as center points, and ground edges at the midpoint

of two vertices then construct the graph via associative embeddings. The midpoint serves as a con-

fidence measurement of presence of relationships. However, false detections and ambiguities arise

when there are crowded objects in a region, or the associated objects of a relation are far away

from each other. Another limitation is that it still needs feature extraction and grouping that cause

low inference speed. Inspired and from a bottom-up 2D human pose estimation work called Open-

Pose [175], we migrate the concept of part affinity fields into scene graph generation. Our proposed

method grounds relationships onto CNN features pixel by pixel, and mitigates above mentioned

limitations.

Our model is conceptually simple: in addition to the outputs that are produced by the

object detection network described in Section 4.4, we add another branch that outputs a novel feature

representation for relationships called relation affinity fields (RAFs). Specifically, the RAFs are a

set of 2D vector fields F = {Fp} ∈ RP×2×h×w , where p ∈ RP and P is the number of predicate

classes in a dataset. Each 2D vector field Fp represents the relationships among all the object pairs

of predicate p. Given our definition of objects as center points, the ground-truth RAFs are defined as

vectors flow from the center of subject to the center of object. More formally, we define the binary

relationships among objects B in the input image as R = {ri→j}, where ri→j = (bi, pi→j , bj) is

the relationship triplet from subject bi to object bj with predicate pi→j . We define a “path” πi→j
p

that “propagates” pi→j from subject center oi to object center oj . For a point p = (x, y), its

76

ground-truth relation affinity field vector Fp,x,y is given as

Fp,x,y =

ei→j =

oj − oi

||oj − oi||2
if p ∈ πi→j

p

0 otherwise,

(4.3)

and the path πi→j
p is defined on a set of points between object centers forming a rectangular region:

πi→j
p = {p | 0 ≤ ei→j · (p− oi) ≤ ϵei→j

and |ei→j
⊥ · (p− oi)| ≤ ϵ

ei→j
⊥
},

(4.4)

where ϵei→j = ||oj − oi||2 as the relationship “length” along the direction ei→j , and ϵ
ei→j
⊥

=

min(ai, bi, aj , bj) as the relationship “semi-width” along ei→j
⊥ (orthogonal to ei→j) being the min-

imum of object centers’ radii. Since vectors may overlap at the same point, the ground-truth RAF

Fp averages the fields computed for all the relationship triplets containing that particular predicate

p. It is given as Fp =
1

nc(x,y)

∑
x,y Fp,x,y, where nc(x, y) is the number of non-zero vectors at point

(x, y). With the definition of ground-truth RAFs, we can train our network to regress such dense

feature maps. The RAF regression loss Lraf can be estimated using a normal regression losses Lreg

such as L1, L2 or smooth L1 [39]. Given the predicted RAFs F̂, the loss is defined as per-pixel

weighted regression loss as

Lraf = W · Lreg(F̂,F), (4.5)

where W is a pixel-wise weight tensor of the same shape of F. The weights W are determined and

divided into three cases (Figure 4.3):

1. Wp,x,y = 1 if (x, y) is exactly on the line segment between objects having the relationship p

2. Wp,x,y ∈ (0, 1) if the distance between (x, y) and the line segment is small and the value is

negative correlated to the distance

77

3. otherwise where Fp,x,y = 0.

We provide ablation study on the choice of losses and the weight tensor in Section 4.6.3. Finally,

the complete loss for training our proposed model can be written as L = Ldet + Lraf .

cat table
laying on

Figure 4.3: An example of GT relation affinity field of predicate LAYING ON based on equa-
tions 4.3 and 4.4. A non-zero unit vector is only defined on locations inside πcat→table

LAYING ON .

Our proposed RAFs encode rich information of both spatial and semantic features as

dense feature maps, and enable end-to-end joint training of object detection and relation detection.

To extract relationship from predictions, path integral over RAFs is performed which will be de-

scribed below.

4.5.1 Inference

We compute path integrals over RAFs along the line segments connecting pairs of de-

tected object centers as the scores of relationships. Specifically, for two candidate object centers

ôi and ôj with predicted class scores ĥi and ĥj , we gather the predicted RAFs F̂ along the path

between ôi and ôj , and compute the mean of their projections onto êi→j = (ôj − ôi)/||ôj − ôi||2.

78

The path integral scores Ei→j are identified as the confidences of existence of relationships:

Ei→j =
ĥi · ĥj

mi→j

∑
p∈RP

∑
(x,y)∈πi→j

Fp,x,y · êi→j , (4.6)

where mi→j = |πi→j | is the number of points in πi→j . Since our RAFs are object-class-agnostic,

we multiply the class scores of the objects and the path integral score as the overall classification

score for the relationship predicate. The integral will be performed spatially for each predicate

channel, so Ei→j represents the confidences of predicted relationship triplet r̂i→j for all predicates.

Note that the integral could be negative that indicates an opposite relationship of the object pairs,

and those negative integral values can be simply negated as Ej→i = −Ei→j . Finally, both scores

of Ei→j and Ej→i will be used for ranking the predicted relationships. We also experiment with a

simple re-weighting step known as frequency bias [149] by multiplying Ei→j with 1.0001nc(r̂i→j),

where nc(r̂i→j) counts the occurrence of triplet ri→j in training set. The path integral procedure is

presented in Algorithm 2. In practice, the operations are performed using matrix multiplication in

stead of FOR LOOP for fast inference.

4.5.2 Multi-scale Prediction

Since object centers are downsampled to feature level, their centers could collide onto the

same pixel location. Regression ambiguity may rise due to single-scale feature representations. We

address this problem by utilizing multi-scale prediction and shared detection heads.

Though Zhou et al. [103] argued that only a very small fraction (<0.1% in COCO [48]

dataset) of objects have center collision problem at stride of 4, the size and offset regression targets

need better assignment strategy since there is only one valid target per pixel. We follow the work of

FPN [3], RetinaNet [104] and FCOS [160], and assign the ground-truth bounding boxes to different

79

Algorithm 2 Path Integral over Relation Affinity Fields

Input: Object centers {ôi}, Relation Affinity Fields F̂

Output: Relations R̂ = {r̂i→j = (i,Ei→j , j)|i ̸= j}

1: R̂← {}

2: for each center pair (ôi, ôj)|i ̸= j do

3: πi→j ← LINSPACE(ôi, ôj) ∈ Rmi→j×2

4: F̂πi→j ← INDEX(F̂, πi→j) ∈ RP×mi→j×2

5: Ei→j , Ej→i ∈ RP ← Equation 4.6

6: R̂← R̂
⋃
{r̂i→j = (i,Ei→j , j)}

7:
⋃
{r̂j→i = (j,Ej→i, i)}

8: end for

9: return SORTED(R̂)

levels based on scales. Building upon the backbone features, we construct multi-level feature maps

{Pk} where Pk is of stride 2k. We refer the network component of generating multi-scale features

as the “neck” (the green box in Figure 4.2), such as FPN [3]. We define a valid range [lk,uk] ⊂

[0,Lmax] for objects in each scale, where Lmax is the maximum size of longer edge allowed for

training and testing. Only bounding boxes of area within [l2k,u
2
k] are qualified for the k-th scale

training. We experiment different number of scale levels and input image size. For smaller input

image of Lmax = 512, we build 4-scale features [3] {P2,P3,P4,P5} (as shown in Figure 4.2) with

valid ranges {[0, 322], [322, 642], [642, 1282], [1282, 5122]}; for larger input image of Lmax = 1024

(shorter edge is at least Lmin = 640), we use 5-scale features [104, 160] {P3,P4,P5,P6,P7} with

area ranges {[0, 642], [642, 1282], [1282, 2562], [2562, 5122], [5122, 10242]}. If there is still more

80

than one target at the same location, we simply choose the smallest object for regression.

In terms of the multi-scale RAFs training, the GT assignment is based on the distances

between object centers. For high-level semantic features like P5, the feature map can capture large

objects, as well as relationships among distant objects. We select the relationships of “length”

ϵei→j ∈ [lk,uk] as valid samples for training the k-th scale. The exact ranges for 4-scale or 5-scale

RAFs are the same as the settings for bounding boxes. Finally, the weights of detection heads are

shared across different feature scales for efficiencies and performance improvements. During infer-

ence, we gather outputs from each scale based on the corresponding valid range, then merge and

rank all relationship triplets. Figure 4.2 illustrates the details of our proposed architecture using a

four-scale feature setup as an example with shared detection heads. Our experiments (Section 4.6)

show that the multi-scale GT and scale-aware training resolve the aforementioned ambiguity prob-

lem thus improve the results over single-scale prediction.

4.6 Experiments

Dataset. We use the Visual Genome (VG) [1] dataset to train and evaluate our models.

We followed the widely-used preprocessed subset of VG-150 [138] which contains the most fre-

quent 150 object categories (C = 150) and 50 predicate categories (P = 50). The dataset contains

approximately 108k images, with 70% for training and 30% for testing. Different from previous

works [176, 148, 149], we do not filter non-overlapping triplets for evaluation.

General settings. We experiment on two settings, one for small input size (Lmax = 512)

and one for larger size (Lmax = 1024). The model is trained end-to-end using SGD optimizer with

81

Table 4.1: Recall and no-graph constraint recall @K evaluation results on VG-150. ⋆ denotes the
methods evaluated on other datasets, such that VTransE is evaluated on VG-200 [5] and Factor-
izableNet on a smaller set following [6]. † denotes the methods with updated re-implementation
results. - denotes the results that are not reported in the corresponding work.

Recall @K /
AP50

Predicate Classification Scene Graph Classification Scene Graph Detection

No-graph Constraint Recall @K R@20/50 /100 ng-R@20/50/100 R@20/50/100 ng-R@20/50/100 R@20/50/100 ng-R@20/50/100

E
xt

er
na

l

K
no

w
le

dg
e VCTree [148] - 60.1/ 66.4/ 68.1 - 35.2/ 38.1/ 38.8 - 22.0/ 27.9/ 31.3 -

KERN [146] - - / 65.8/ 67.6 - / 81.9/ 88.9 - / 36.7/ 37.4 - / 45.9/ 49.0 - / 27.1/ 29.8 - / 30.9/ 35.8

GPS-Net [173] - 67.6/ 69.7/ 69.7 - 41.8/ 42.3/ 42.3 - 22.3/ 28.9/ 33.2 -

MOTIFS-TDE [147, 149] 28.1 33.6/ 46.2/ 51.4 - 21.7/ 27.7/ 29.9 - 12.4/ 16.9/ 20.3 -

GB-NET-β [151] - - / 66.6/ 68.2 - / 83.5/ 90.3 - / 37.3/ 38.0 - / 46.9/ 50.3 - / 26.3/ 29.9 - / 29.3/ 35.0

V
is

ua
lO

nl
y

VTransE⋆ [5] - - - - - - / 5.5/ 6.0 -

FactorizableNet⋆ [158] - - - - - - / 13.1/ 16.5 -

IMP† [138, 149] 20.0 58.5/ 65.2/ 67.1 - 31.7/ 34.6/ 35.4 - 14.6/ 20.7/ 24.5 -

Pixels2Graphs [174] - - - / 68.0/ 75.2 - - / 26.5/ 30.0 - - / 9.7/ 11.3

Graph R-CNN [159] 23.0 - / 54.2/ 59.1 - - / 29.6/ 31.6 - - / 11.4/ 13.7 -

VRF [154] - - / 56.7/ 57.2 - - / 23.7/ 24.7 - - / 13.2/ 13.5 -

CISC [168] - 42.1/ 53.2/ 57.9 - 23.3/ 27.8/ 29.5 - 7.7/ 11.4/ 13.9 -

FC
SG

G

(O
ur

s)

HRNetW32-1S 21.6 27.6/ 34.9/ 38.5 32.2/ 46.3/ 56.6 12.3/ 15.5/ 17.2 13.5/ 19.3/ 23.6 11.0/ 15.1/ 18.1 12.4/ 18.2/ 23.0

HRNetW48-1S 25.0 24.2/ 31.0/ 34.6 28.1/ 40.3/ 50.0 13.6/ 17.1/ 18.8 14.2/ 19.6/ 24.0 11.5/ 15.5/ 18.4 12.7/ 18.3/ 23.0

ResNet50-4S-FPN×2 23.0 28.0/ 35.8/ 40.2 31.6/ 44.7/ 54.8 13.9/ 17.7/ 19.6 14.8/ 20.6/ 25.0 11.4/ 15.7/ 19.0 12.2/ 18.0/ 22.8

HRNetW48-5S-FPN×2 28.5 28.9/ 37.1/ 41.3 34.0/ 48.1/ 58.4 16.9/ 21.4/ 23.6 18.6/ 26.1/ 31.6 13.5/ 18.4/ 22.0 15.4/ 22.5/ 28.3

HRNetW48-5S-FPN×2-f 28.5 33.4/ 41.0/ 45.0 37.2/ 50.0/ 59.2 19.0/ 23.5/ 25.7 19.6/ 26.8/ 32.1 16.1/ 21.3/ 25.1 16.7/ 23.5/ 29.2

the batch size of 16 for 120k iterations. The initial learning rate is set to 0.02 and decayed by the

factor of 10 at 80kth and 100kth iteration. We adopt standard image augmentations of horizontal flip

and random crop with multi-scale training. During testing, we keep the top 100 detected objects for

path integral.

Metrics. We conduct comprehensive analysis following three standard evaluation tasks:

Predicate Classification (PredCls), Scene Graph Classification (SGCls), and Scene Graph Detec-

tion (SGDet). We report results of recall@K (R@K) [136], no-graph constraint recall@K (ng-

R@K) [174, 149], mean recall@K (mR@K) [146, 148], no-graph constraint mean recall@K (ng-

82

Table 4.2: The SGG results on mean recall@K and no-graph constraint mean recall@K.

Mean Recall @K / Predicate Classification Scene Graph Classification Scene Graph Detection

Ng Mean Recall @K mR@20/50/100 ng-mR@20/50/100 mR@20/50/100 ng-mR@20/50/100 mR@20/50/100 ng-mR@20/50/100

VCTree [148] 14.0 / 17.9 / 19.4 - 8.2 / 10.1 / 11.8 - 5.2 / 6.9 / 8.0 -

KERN [146] - / 17.7 / 19.4 - - / 9.4 / 10.0 - - / 6.4 / 7.3 -

GPS-Net [173] - / - / 22.8 - - / - / 12.6 - - / - / 9.8 -

MOTIFS-TDE [147, 149] 18.5 / 25.5 / 29.1 - 9.8 / 13.1 / 14.9 - 5.8 / 8.2 / 9.8 -

GB-NET-β [151] - / 22.1 / 24.0 - - / 12.7 / 13.4 - - / 7.1 / 8.5 -

HRNetW32-1S 4.0 / 5.5 / 6.3 5.4 / 9.7 / 13.6 1.9 / 2.5 / 2.8 2.7 / 4.4 / 6.2 1.7 / 2.4 / 2.9 2.2 / 3.6 / 4.9

HRNetW48-1S 3.7 / 5.2 / 6.1 5.2 / 9.5 / 14.7 2.2 / 2.9 / 3.4 3.5 / 6.3 / 9.4 1.8 / 2.6 / 3.1 2.7 / 4.7 / 6.9

ResNet50-4S-FPN×2 4.2 / 5.7 / 6.7 6.5 / 11.3 / 16.6 2.2 / 2.9 / 3.3 3.6 / 6.0 / 8.3 1.9 / 2.7 / 3.3 3.0 / 4.9 / 6.8

HRNetW48-5S-FPN×2 4.3 / 5.8 / 6.7 6.1 / 10.3 / 14.2 2.6 / 3.4 / 3.8 4.1 / 6.4 / 8.4 2.3 / 3.2 / 3.8 3.7 / 5.7 / 7.4

HRNetW48-5S-FPN×2-f 4.9 / 6.3 / 7.1 6.6 / 10.5 / 14.3 2.9 / 3.7 / 4.1 4.2 / 6.5 / 8.6 2.7 / 3.6 / 4.2 3.8 / 5.7 / 7.5

mR@K), zero-shot recall@K (zsR@K) [136] and no-graph constraint zero-shot recall@K (ng-

zsR@K) [147] for all three evaluation tasks. We do not train separate models for different tasks.

4.6.1 Implementation Details

We conduct experiments on different backbone and neck networks. Each of the detection

heads consists of four 3 × 3 convolutions followed by batch normalization and ReLU, and one

1×1 convolution with the desired number of output channels in all our experiments unless specified

otherwise. For convenience, our models are named as BACKBONE - # OF OUTPUT SCALES - NECK -

OTHER OPTIONS.

ResNet [2, 3]. We start by using ResNet-50 as our backbone and build a 4-scale FPN for

multi-scale prediction. Since the tasks of object detection and RAFs prediction are jointly trained,

the losses from the two tasks could compete with each other. We implement a neck named “FPN×2”

with two parallel FPNs, such that one FPN is used for constructing features for object detection

83

heads (center, size and offset), and the other is for producing features for RAFs. We name this

model as ResNet50-4S-FPN×2.

HRNet [8]. We then experiment on a recent proposed backbone network called HRNet

that consists of parallel convolution branches with information exchange across different scales. For

single-scale experiments, we use HRNetV2-W32 and HRNetV2-W48; and for multi-scale predic-

tion, we adopt its pyramid version called HRNetV2p. We omit their version number for the rest

of the paper. We test several models: HRNetW32-1S, HRNetW48-1S and HRNetW48-5S-FPN×2.

We also experiment on adding frequency bias for inference as discussed in Section 4.5.1, and the

model used is called HRNetW48-5S-FPN×2-f.

4.6.2 Quantitative Results

Table 4.3: Comparisons of SGG results on zero-shot Recall@K, and our results on no-graph con-
straint zero-shot Recall@K.

Zero-shot Recall @K PredCls SGCls SGDet

Method zsR@50/100 zsR@50/100 zsR@ 50/100

MOTIFS-TDE [147] 14.4 / 18.2 3.4 / 4.5 2.3 / 2.9

VTransE-TDE [147] 13.3 / 17.6 2.9 / 3.8 2.0 / 2.7

VCTree-TDE [147] 14.3 / 17.6 3.2 / 4.0 2.6 / 3.2

Knyazev et al. [157] - / 21.5 - / 4.2 - / -

FCSGG (Ours)
zsR ng-zsR zsR ng-zsR zsR ng-zsR

@50/100 @50/100 @50/100 @50/100 @50/100 @50/100

HRNetW32-1S 8.3 / 10.7 12.9 / 19.2 1.0 / 1.2 2.3 / 3.5 0.6 / 1.0 1.2 / 1.6

HRNetW48-1S 8.6 / 10.9 12.8 / 19.6 1.7 / 2.1 2.9 / 4.4 1.0 / 1.4 1.8 / 2.7

ResNet50-4S-FPN×2 8.2 / 10.6 11.7 / 18.1 1.3 / 1.7 2.4 / 3.8 0.8 / 1.1 1.0 / 1.7

HRNetW48-5S-FPN×2 7.9 / 10.1 11.5 / 17.7 1.7 / 2.1 2.8 / 4.8 0.9 / 1.4 1.4 / 2.4

HRNetW48-5S-FPN×2-f 7.8 / 10.0 11.4 / 17.6 1.6 / 2.0 2.8 / 4.8 0.8 / 1.4 1.4 / 2.3

84

Figure 4.4: FCSGG per-predicate PredCls@100 results for selected predicates using HRNetW48-
5S-FPN×2-f.

We first compare results of R@K and ng-R@K with various of state-of-the-art (SOTA)

models, and divide them into two categories:

1. models that only use visual features derived from the input image like our proposed model

2. models that not only use visual features, but also use features like language embeddings,

dataset statistics or counterfactual causality, etc.

The results are shown in Table 4.1. Our best model achieves 28.5 average precision at IoU = 0.5

(AP50) for object detection. Though our SGG results do not outperform the SOTA approaches,

we achieve the best scene graph detection results among visual-only models. Specifically, Pix-

els2Graphs [174] and our models are the only models without using Faster R-CNN [19] as object

detector, and we achieves 13.8 / 17.9 gain on SGDet ng-R@50 / 100 compared with their results

using RPN [19]. We then report mean recall and no-graph constraint mean recall results shown in

Table 4.2. We still obtain competitive results, especially on ng-mR. By comparing (m) R@K and

ng-(m) R@K directly, we observe more gain on our results than other methods’.

85

Zero-shot recall (zsR) [155, 156, 157, 136, 170, 147, 177] is a proper metric for evaluating

the model’s robustness and generalizability for generating scene graphs. It computes recall on those

subject-predicate-object triplets that do not present during training. There are in total of 5971 unique

zero-shot triplets from the testing set of VG-150. The results and comparisons are listed in Table 4.3.

We also compute the per-predicate recall@100 for predicate classification task using HRNetW48-

5S-FPN×2-f, and show the comparisons in Figure 4.4. We observe similar behavior with our results

on recall, such that the results on no-graph constraint zero-shot recall are significantly better than

zero-shot recall. Even for unseen triplets, purely based on visual features, FCSGG is still capable

of predicting meaningful RAFs which proves its generalization capability. In other words, when

constructing scene graphs from RAFs, our approach does not highly depend on the object classes

but only focuses on the context features between the objects. When comparing with other reported

results on zsR, we achieve slightly lower results than those much larger models. For example

of PredCls task, ResNet50-4S-FPN×2 achieves 10.6 zsR@100 with only 36 million (M) number

of parameters and inference time of 40 milliseconds (ms) per image, while VCTree-TDE [147]

achieves 17.6 zsR@100 with 360.8M number of parameters and inference time of 1.69 s per image.

For comparison, ResNet50-4S-FPN×2 is 10 times smaller and 42 times faster than VCTree-TDE.

Limitations. It should be noticed that FCSGG also has some “disadvantages” over Faster

R-CNN-based methods on easier tasks such as PredCls and SGCls. During evaluations with given

GT bounding boxes or classes, our RAFs features will not change, while R-CNN extracted object/union-

box features will change which leads to better results. When using visual-only representation of

relationships, it is hard for the network to distinguish predicates between WEARS / WEARING (by

comparing R and ng-R in Figure 4.4) or LAYING ON / LYING ON, which is common in VG

86

dataset. In this sense, incorporating external knowledge gives FCSGG a large potential in im-

proving results. Comparing the model HRNetW48-5S-FPN×2 and its frequency-biased counterpart

HRNetW48-5S-FPN×2-f, we find noticeable improvement by using training set statistics. This sim-

ple cost-free operation can improve R@20 by 2.6, and we expect better results from fine-tuning

hyper-parameters. However, the focus of this work is not perfectly fitting on a dataset, but improv-

ing generalization of relationship based on visual features. More sophisticated ensemble methods

or extensions are beyond the scope of this paper.

4.6.3 Ablation Study

4.6.3.1 RAF regression Loss

We experience the same difficulty of training from sparsely annotated scene graphs as

discussed by Newell et al. [174]. The network has the potential of generating reasonable triplets

not covered in the ground-truth, and our results on zero-shot recall prove the argument. To reduce

the penalty on these detections, we investigate the design methodology of RAF regression loss Lraf

(Equation 4.5).

We refer the loss applied at locations having GT RAFs defined as positive loss L+raf , and

we test different regression losses. As for locations where Fp,x,y = 0, we apply so called negative

loss L−raf using L1 for regression. L−raf will be multiplied by a factor β for adjusting the penalty.

Spatially, Lraf can be re-written as Lraf = L+raf + βL−raf . Table 4.4 shows the effects of different

losses and penalty factor on the performance. We observe better performance using L1 and β = 10.

However, when only supervise on L+raf loss, the model has comparable mean recall results and it

can detect more semantic and rare relationships. On the other hand, adding L−raf loss will push the

87

Table 4.4: Ablations on losses used for positive samples and regularization factor on negative sam-
ples of RAFs. AP50 and SGDet results are reported using HRNetW32-1S.

L+raf β AP50 R@50 zR@50 mR@50

L1 0 21.57 6.22 0.40 2.28

L1 1 21.52 9.80 0.56 2.33

L1 10 21.56 15.05 0.60 2.36

Smooth L1 0 20.15 5.00 0.30 2.51

Smooth L1 1 19.65 7.46 0.57 2.45

Smooth L1 10 20.63 11.82 0.61 2.83

L2 0 19.62 4.82 0.26 2.34

L2 1 21.60 10.76 0.68 2.57

L2 10 21.62 2.89 0.57 2.50

model more biased to dominating predicates like ON and HAS.

4.6.3.2 Architecture Choices

Table 4.5: Comparisons of FPN s FPN×2, and Multi-scale batch normalization s group normaliza-
tion. AP50 and SGDet results are reported using ResNet50-4S.

Neck Norm AP50 R@50 zR@50 mR@50

FPN GN 22.75 11.29 0.71 2.95

FPN MS-BN 22.10 13.23 0.75 2.67

FPN×2 GN 22.74 11.96 0.78 3.00

FPN×2 MS-BN 22.60 12.01 0.80 2.88

By comparing our results between single-scale and multi-scale models, we see substan-

tial performance gain on both object detection and scene graph generation from Table 4.1 4.2 4.3.

88

We also observe HRNet has better results over ResNet due to its multi-scale feature fusions. For

investigating the entanglement of object features and contextual features producing RAFs, we com-

pare the results of FPN and FPN×2 using ResNet-50 as backbone shown in Table 4.5. As observed

in [160], the regression range differs across different levels. Therefore, to improve the performance

of shared fully-convolutional heads, we replace each batch normalization (BN) [122] layer in the

head with a set of BN layers, each of which is only applied for the corresponding scale. We name

this modified BN as multi-scale batch normalization (MS-BN). We also experiment on group nor-

malization (GN) [123] which stabilizes the training as well. We show the comparisons of MS-BN

and GN (Section 4.5.2) in the same table. We observe better mR by using FPN×2 and better recall

and zsR by using MS-BN. We expect more improvement with a larger batch size with MS-BN.

89

Table 4.6: Model size and speed comparisons for SGDet.

Method #Params (M) Input Size s / image

Pixels2Graphs [5] 94.8 512× 512 3.55

VCTree-TDE [147] 360.8 600× 1000 1.69

MOTIFS-TDE [147] 369.5 600× 1000 0.87

KERN [146] 405.2 592× 592 0.79

MOTIFS [147] 367.2 600× 1000 0.66

FactorizableNet [158] 40.4 600× 1000 0.59

VTransE-TDE [147] 311.6 600× 1000 0.55

GB-NET-β [151] 444.6 592× 592 0.52

Graph R-CNN [159] 80.2 800× 1024 0.19

FCSGG (Ours)

HRNetW32-1S 47.3 512× 512 0.07

HRNetW48-1S 86.1 512× 512 0.08

ResNet50-4S-FPN×2 36.0 512× 512 0.04

HRNetW48-5S-FPN×2 87.1 640× 1024 0.12

HRNetW48-5S-FPN×2-f 87.1 640× 1024 0.12

4.6.3.3 Model Size and Speed

We also conduct experiments on the model size and inference speed. Few work bench-

marked on efficiency of scene graph generation previously [158, 151]. Though scene graphs are

powerful, it is almost not possible to perform SGG and down-stream tasks in real-time due to sig-

nificantly increased model complexity. FCSGG alleviates the computational complexity effectively.

Our experiments are performed on a same NVIDIA GeForce GTX 1080 Ti GPU with inference

batch size of 1. For comparisons, we include several previous work by running corresponding

open-source codes under the same settings. The results are shown in Table 4.6. Both the number of

parameters and inference time are considerably lower for FCSGG models. It is worth noting that the

90

computation overhead is from the backbone network. The path integral (Algorithm. 2) is performed

pair-wisely for all 100 kept objects across five scales, which results in
(
100
2

)
× 2 × 5 = 49500

maximum number of candidate relationships for an image. The inference time for path integral is

almost invariant over the number of instances as analyzed by Cao et al. [175]. We believe that object

relationships exist universally, especially geometric ones. By grounding the full graph in RAFs as

intermediate features, richer semantics can be retained for down-stream tasks. More importantly,

convolution is hardware-friendly, and the model size is kept small for deployment on edge devices.

We anticipate that real-time mobile SGG can be performed in the near future.

91

Chapter 5

RepSGG: Novel Representations of

Entities and Relationships for Scene

Graph Generation

5.1 Introduction

To understand a scene, it is important to infer underlying properties of entities and the

relationships between them. For a computer vision system to explicitly represent and reason about

the detailed semantics, Johnson [139] et al. adopt and formalize scene graphs from computer graph-

ics community. A scene graph is an explicit graph representation for modeling a visual scene,

where entities are the nodes, and pairwise relationships are represented as edges. A relation-

ship between two entities is denoted as a triplet of <subject, predicate, object>. In

92

attn maxembed

K queries

n
en

tit
ie

s

K keys

......

nK
 q

ue
rie

s

P predicates

nK keys

...

...

...

...

cat1

floor

cat2

on

along

Figure 5.1: Illustration of RepSGG. For n detected entities, each entity is represented by K subject
queries and K object keys. The attention weights between queries and keys are projected as the
predicate classification scores in the shape of P × nK × nK, where P is the number of predicates
in a dataset. The final predicate classification is reduced to the shape of P ×n×n by max-pooling,
and top predictions are collected as the scene graph. K = 3 and n = 3 in the example.

the context of this paper, the term “entity” denotes an instance of an object, while the term “ob-

ject” specifically indicates an entity with semantic significance. Serving as a powerful represen-

tation, scene graph enables many down-stream high-level reasoning tasks such as image caption-

ing [140, 141], image retrieval [142, 139], Visual Question answering [143, 144, 178] and image

generation [142, 145]. Since SGG is built upon object detection where many off-the-shelf detec-

tors [39, 19, 179, 20, 103, 180] can be used, limited attention has been directed towards the inves-

tigation of better feature representations for entities and relationships. Currently, there are mainly

three types of entity visual feature representations:

1. Box-based: spatially-pooled features extracted from bounding boxes. Most SGG meth-

ods [138, 147] are based on R-CNN detectors [39, 19, 20] which use RoIPooling [39] or

RoIAlign [20] for feature extraction.

93

2. Point-based: single-pixel features extracted from bounding box centers. These methods [174,

7, 9] utilize anchor-free detectors [179, 103, 180] to ground entities and relationships in a

regression fashion.

3. Query-based: fixed-size learnable embeddings. These methods [181, 182, 183] build upon

DETR [184] where message passing and matching are performed between entity and rela-

tionship embeddings.

Each type has its own merits and drawbacks. While preserving the spatial appearance

of entities, box-based features are computationally expensive and use more memory. Point-based

features are often regressed and extracted at the center of an entity’s bounding box (referred to as

entity center for the rest of the paper). Although such models achieve fast inference speed, their per-

formance is relatively low due to the fact that point-based features are less semantically meaningful

with limited cardinality. Query-based representation relies on a fixed number of learnable embed-

dings for decoding entities or relations, which considerably simplifies the SGG tasks. However, it

suffers from training difficulties and lower performance compared to box-based methods.

Another issue of box-based, point-based and query-based entity representations lies in

their predetermined granularities. Box-based features could be coarse and redundant, while point-

based and query-based features are insufficient to represent entities with different semantics. For

example, if there are two relation for the same entity person, <person, eating, pizza>

and <person, on, street>, it is important to capture the context around the mouth and hands

of the person for the first triplet, and around the feet and street for the second one. Box-based repre-

sentation keeps the information of the entity person, but loses the fine-grained features around the

mouth, hands and feet due to the low pooling resolution (e.g. 7 × 7). The same issue will arise for

94

point-based and query-based representations. Increasing the pooling resolution, feature dimension,

or number of queries could help, but the computation complexity will increase dramatically.

Regarding the relation representations, most works use compositional contextual features

to perform predicate classification. Few researchers [9, 7] have explored different ways to represent

relations in a regression fashion. These methods represent entities as keypoints (e.g., entity centers),

and relationships as points [174] or vectors [7, 9]. By regressing and grounding entities and relations

geometrically, these methods achieve faster inference speed which is useful for down-stream tasks.

However, regression with handcrafted targets [7, 9] is deficient, especially on sparsely-annotated

datasets [1]. Consequently, the performance of regression is inferior compared to predicate classifi-

cation.

In this work, we seek new insights into alternative representations of entities and relation-

ships for scene graph generation. We propose a novel architecture called RepSGG that is built upon

the FCOS [180] entity detector with a specialised transformer-based [185, 184, 186] relationship

encoder. As shown in Fig. 5.1, an entity class is represented with a set of learnable subject and

object embeddings, named rep-embeddings, to learn diverse semantics. The subject and object em-

beddings are progressively augmented by dynamically sampled visual features and inter-embedding

attentions. First, each embedding is updated by visual features sampled at semantically-dependent

representative points (rep-points); then, a two-way cross-attention (subject-to-object and vice-versa)

is performed to update both subject and object embeddings. For relationship prediction, subject and

object embeddings are treated as queries and keys, with relationships quantified as the projected

attention weights between these queries and keys.

Besides the proposed architecture, we also investigate the long-tailed problem in SGG.

95

Inspired by logit adjustment [187], we propose a run-time performance-guided logit adjustment

(PGLA) to achieve per-instance label-dependent loss modification. We measure and update the

performance (e.g., recall or precision) of predicate predictions per mini-batch, per iteration during

training. Instead of adding a bias term to logits as in [187], we perform the affine transformation on

the logits. We also measure run-time logit differences among predicates, named confusion logits,

to further enlarge inter-class logit margins. For each predicate, the among of the adjustment will be

determined by its frequency in the training set, run-time performance, and confusion logits.

5.2 Related Work

The task of scene graph generation involves numerous aspects, and our focus lies on entity

and relation representations, as well as the long-tailed problem.

5.2.1 Feature Representations

As discussed in Section 5.1, the entity representation is either box-based, point-based,

or query-based. Traditional SGG methods [138, 149, 148] utilize a pre-trained detector [19, 20]

to extract a set of entity bounding boxes and their corresponding feature maps via feature pooling

(RoIPool [19] or RoIAlign [20]). The visual features for each entity, commonly referred to as

appearance features, are represented as a tensor of shape c × h × w, where c is the number of

channels of the feature, and h × w is the feature spatial size. Those features are used to construct

visual context for predicate classification. To incorporate the relative position between entities,

researchers use the geometric layout encoding [167], union of bounding boxes mask encoding [166],

or geometric constraints [168] for a better visual representation.

96

One-stage anchor-free entity detectors [102, 103, 180] have recently gained popularity

due to their simplicity and efficiency. In these works, entities are directly regressed at pixels in

feature maps, where the entity center or corners are selected as the ground-truth targets. Instead

of pooling features of various shapes, extracting features at multiple pixels is much faster and con-

sumes less memory. Several works [174, 7, 9] explore such point-based entity representation for

SGG. Pixel2Graph [174] grounds edges at the midpoints between the bounding box centers of sub-

jects and objects (referred to as subject and object centers for the rest of the paper). FCSGG [7]

uses relation affinity fields to encode the relations as 2D vectors “flow” from the subject to object

centers. CoRF [9] extends the concept of fields by composing more regression targets per pixel.

Recent works in scene graph generation have explored transformer-based models to im-

prove the performance. Several works [147, 188, 189] start to replace the RNN-based context de-

coders [149, 148] with multi-head self-attention [185]. Subsequently, other works [190, 191, 192]

explore ways to construct subject, object and predicate queries with variants of transformers. With

the success of DETR [184], more works [181, 182, 183] study the query-based representations of

entities and relations. For DETR-like approaches, there are a fixed number of learnable entity and

predicate queries, which will be decoded as output triplets in an end-to-end manner.

The strengths and weaknesses of different types of entity representation vary based on

their granularity and flexibility. For example, box-based features are extracted via RoIAlign [20]

with a fixed shape of d× h× w, such as 256× 7× 7 for SGG tasks. Although preserving entities’

spatial configuration, box-based features may lose semantic details due to the pooling operation.

Furthermore, the fact that features are pooled into the same shape regardless of actual sizes of

entities may result in the loss of semantic details in relationship inference. Another drawback of

97

the box-based representation is that it is computationally expensive to computeO(n2) relationships

for n entity proposals. Sampling candidate entities and relationships is commonly used during

training. On the other hand, the point-based methods significantly reduce the computational cost by

using features of shape d × 1. By reformulating the SGG in a per-pixel regression fashion, point-

based methods [7, 9] achieve much faster inference speed. However, the performance is relatively

lower due to the coarse entity representations and handcrafted relationship targets. The query-

based entity representation provides a way to perform object detection and SGG in an end-to-end

manner. It exhibits greater capability in capturing semantics compared to convolutional regression,

achieving better performance than point-based methods. Nevertheless, challenges arise for query-

based methods due to factors like feature cardinality, the constraint of a fixed number of learnable

queries, and increased complexity in both model design and post-processing. It is also difficult for

query-based methods to perform predicate classification and scene graph classification due to the

end-to-end prediction manner.

This work proposes a novel entity representation by using a set of semantically representa-

tive embeddings, which are augmented by visually representative points (rep-points) [193, 161] pro-

gressively. Different sets of rep-points are sampled dynamically w.r.t. entity reference points (cen-

ters) to update subject and object embeddings, respectively. Cross-attention between subject and

object embeddings are also performed to achieve message passing. This approach allows for each

entity instance to be represented as distinct queries and keys, which is more flexible than box-based

representation and more fine-grained than point-based and query-based representations. Addition-

ally, the proposed method eliminates the need for composite or predicate queries [190, 183, 181],

as the predicate of a relationship can be computed as the multi-head attention weights between the

98

subjects (as queries) and objects (as keys). Unlike triplet classification, modeling relationships as

attention weights preserves the directional information among subjects and objects, and captures

more semantics.

5.2.2 Long-tailed Distributions

Long-tailed data distribution has been a key challenge in visual recognition [194], and it

has been addressed in the recent literature on SGG [195]. In order to tackle this problem, various

approaches have been proposed, such as data re-sampling [196, 197, 198, 199], de-biasing [200,

147, 201, 202, 203], and loss modification [204, 205, 173, 206, 207, 208, 209]. De-biasing methods

require pre-trained biased models for initialization and then finetune the model. Loss modification

methods generally assign a weight vector to the cross-entropy loss for predicate classification, with

higher weights to tail classes and lower weights to head classes.

In this work, instead of re-weighting the loss function, another type of approach is applied

by directly modifying the classification logits [187, 210, 211, 212]. A run-time performance-guided

logit adjustment strategy is presented which offers a dynamic and effective control over the relative

contributions of labels in the loss.

5.3 Contributions of this Chapter

1. We introduce RepSGG, a novel SGG paradigm in which entities are expressed as queries

and keys, and relationships are represented as their attention weights. Significantly different

from most existing SGG approaches, it explores a natural approach of capturing visual and

semantic features progressively, and encapsulating relationships as attention weights which

99

encode the edge confidence and directionality effectively.

2. We propose a run-time performance-guided logit adjustment (PGLA) strategy to mitigate the

long-tailed problem. PGLA is a simple, yet effective, model-agnostic, and cost-free solution

that achieves a more balanced performance on unbalanced data. The choice of loss (e.g.,

binary cross-entropy or cross-entropy) and performance metric (e.g., recall or precision) are

task-dependent, and this adaptability can extend to a range of settings and tasks.

3. We perform extensive experiments on the Visual Genome and Open Images V6 datasets to

demonstrate the effectiveness of the proposed approach. Beyond standard SGG metrics, we

also report the zero-shot mean recall (zs-mR) for our method and several state-of-the-art

methods. RepSGG exhibits superior robustness and generalization capabilities on out-of-

distribution data.

5.4 Technical Approach

In this section, we first provide the preliminaries of modeling entity detection in a per-

pixel prediction fashion. We then introduce the RepSGG architecture, consisting of an entity de-

tector, an entity encoder, a relationship encoder, and a relationship output layer. An illustration

of RepSGG is shown in Fig. 5.2. Finally, we present several training strategies, including PGLA,

addressing the challenges posed by long-tailed distributions and sparsely annotated data.

100

FCOS

Encoder
+

rock

bird

V⁰

Qb Kb

V⁰

KbQb

E 0
s E 0

o E 0
oE 0

s

...

µ2

µ1

µ2

µ3µ3

µ1µ3

µ1 µ2
µ1 µ2

µ3

Subject
Reppoint
Sampler Repara-

meterizeObject
Reppoint
Sampler

QbQb

KbKb

µ1

µ2

µ3

σ1

σ3

σ2

µ1

µ2

µ3

σ1

σ3

σ2

µ1

µ2

µ3

σ1

σ3

σ2

µ1

µ2

µ3

σ1

σ3

σ2

GCA RCA

× Ld

Attn

Linear

KbKb

Linear

QbQb

Max

Predicates

Subjects

O
bj

ec
ts < bird, on, rock >

< rock, under, bird >

(c)

(b)

(a)

< bird, standing on, rock >

···

Relationships

Figure 5.2: An illustration of RepSGG. (a) Entity detection and encoder: firstly, the FCOS entity
detector detects a bird (colored in red) and rock (colored in blue). For each entity, K subject and
object rep-embeddings (K = 3 in this illustration) are retrieved based on the entity’s class label as
E0

s (shaped as a rounded rectangle) and E0
o (shaped as a hexagon), respectively. The entity encoder

generates entities’ visual features as V0, and semantic-specific bounding box embeddings Qb and
Kb. (b) Relationship encoder: the initial queries Q0 (representing subjects) are generated by adding
V0 and E0

s with Qb acting as positional embeddings, and likewise for the keys K0 (representing
objects). Semantic-specific visual features are sampled around entities dynamically based on input
queries and keys via rep-point samplers (5 samples per rep-embedding in this illustration), and then
utilized to update queries and keys via a GCA layer to gather more visual context. Subsequently,
the cross-attention between queries and keys are performed via a RCA layer to further capture
semantic features. (c) Relationship output layer: the pair-wise relationship scores are computed as
the sigmoid activation of raw attention weights between the linear projections of queries and keys.
The group-wise maximum scores are then taken as the predicate classification scores.

5.4.1 Entity Detection

Our model is built upon a one-stage anchor-free detector, namely FCOS [180]. Different

from commonly used anchor-based R-CNN approaches for generating object proposals and fea-

tures, entity detections are decoded from regressed dense features. Specifically, an input image

I ∈ RH0×W 0×3 will go through a backbone CNN (e.g., ResNet-50 [2]) followed by a feature pyra-

mid network (FPN) [3] to generate 5 scale levels of visual feature maps. Feature maps of different

levels have different down-sampled spatial size w.r.t. the original image size, and thus are used for

detecting entities of different sizes. To generate entity outputs, 3 fully convolutional detection heads

shared between 5 scale levels are used, generating dense feature maps that provide entity classifi-

101

cation, bounding box regression, and center-ness scores, respectively. At each spatial location on

feature maps of each level, FCOS directly predicts the entity category and the relative offsets from

the four sides of the bounding box to the location. Locations with a final score weighted by the

classification and center-ness scores over 0.2, followed by a non-maximum suppression (NMS) op-

eration, are considered as positive detections. The entity detections are gathered as B : {bi}ni=1,

where bi = (xi0, y
i
0,x

i
1, y

i
1, z

i, ci), (xi0, y
i
0) and (xi1, y

i
1) denote the coordinates of the top-left and

bottom-right corners of the bounding box, zi ∈ {0, 1, 2, 3, 4} is the scale level at which the detec-

tion is decoded, ci ∈ {0, ...,C − 1} is the predicted entity label for a dataset containing C classes,

and n is the number of detected entities. For SGG tasks, the top 100 detections are kept. Since the

positive training targets are defined around the center of bounding boxes, the center is considered

as the reference point of an entity in this paper. We maintain the FCOS architecture and train-

ing/testing settings unchanged, focusing instead on grounding entity features in a compact form to

enable efficient relationship inference.

5.4.2 Entity Encoder

To encourage information exchange among different spatial locations and scales, a de-

formable transformer encoder [186] is used to further encode entity features. It consists of Le de-

formable transformer encoder layers, which transform the backbone FPN features without changing

their shapes. At each location, the deformable attention is performed by querying the FPN features

at that location to features dynamically sampled around the location across all 5 scale levels. Such

mechanism allows efficient multi-level feature aggregation, which is important for relationship in-

ference as it requires more spatial context around entities. The output features of the entity encoder

are considered as the visual features of the image. Following [186], the 2D positional embed-

102

dings [185] are generated and added with a learnable scale-level embedding. Note that the visual

features and positional embeddings are multi-scale features. To merge levels of features, they are re-

sized via bilinear interpolation to the shape of the largest feature map respectively. The interpolated

features are then stacked along the level dimension, producing the visual features V ∈ R5×H×W×d

and positional embeddings PE ∈ R5×H×W×d, where H = ⌊H0/8⌋, W = ⌊W 0/8⌋ and d = 256.

Entities can have different characteristics and roles depending on the context. For in-

stance, detecting the relationship <man, on, street> requires the visual context around the

feet of the man to determine the predicate on. While for <man, holding, apple>, it relies

on the visual context surrounding the hands of the man. To account for such contextual variations,

we initiate the representation of an entity with a distinct set of representative embeddings (rep-

embeddings) in the semantic space, which we subsequently employ for relationship inference. Con-

cretely, we construct subject rep-embeddings Es and object rep-embeddings Eo of shapeC×K×d,

where K is the number of entity’s class-specific embeddings. Es and Eo are fixed-size learnable

parameters initialized randomly, and are learnt through training. For every entity class, there are K

distinct subject embeddings and K distinct object embeddings, respectively. These class-specific

and semantic-specific embeddings serve as feature prototypes to characterize an entity from a par-

ticular class being a subject or object. By having distinct embeddings for entities being subjects and

objects, our method can better capture the nuanced relationships and contextual information present

in complex scenes. We conduct an ablation study using identical rep-embeddings for subjects and

objects (Es = Eo) in Section 5.5.5, where we show having distinct rep-embeddings achieves better

results compared with identical ones.

103

5.4.3 Relationship Encoder

In this section, we describe the process of constructing semantic-specific entity features

based on rep-embeddings (Es and Eo), visual features V, positional embeddings PE, and entity

detections B. For each detected entity, the relationship encoder generates a subject and object

feature representations, respectively. Then, it employs the attention mechanism [185] to aggregate

local visual features and capture dependencies between all subjects and objects.

The relationship encoder is composed of a stack of Ld encoder layers, where the ini-

tial inputs are formed by fusing visual features and bounding box embeddings with subject rep-

embeddings and object rep-embeddings, respectively. The outputs are encoded subject and object

features of the same shape as inputs. Each layer has a rep-point sampler, two group cross-attention

layers, and a two-way relational cross-attention layer. To simplify the terms and make them com-

patible with the attention mechanism, we refer to the subject embeddings as queries, and object

embeddings as keys for the rest of the paper.

5.4.3.1 Initial Queries and Keys

Rep-embeddings only provide identities of entity classes and semantics, without consid-

ering visual and spatial contexts. To integrate such information, the entity-specific visual and spatial

features are sampled from the entity reference points, and fused with rep-embeddings to create sub-

ject and object features as the initial queries and keys to the relationship encoder.

Let the reference point p ∈ [0, 1]3 be the normalized coordinates, where (0, 0, 0) and

(1, 1, 1) indicate the top-left corner at the lowest scale level, and bottom-right corner at the highest

scale level of the features, then for n × m reference points P = {pi,1, . . . ,pi,m}ni=1, the point

104

sampler function is defined as

T (· ,P) : R5×h×w×d × Rn×m×3 → Rn×m×d, (5.1)

which is achieved by bilinear interpolation. To prepare semantic-agnostic entity features, the nor-

malized centers of bounding boxes P0 ∈ Rn×1×3 are used as the reference points derived from the

entity detections B. The point sampler is applied on V and PE to get the corresponding features at

the entities’ reference points as:

V0 = T (V,P0)

PE0 = T (PE,P0)

P0 =

{(
xi0 + xi1
2W

,
yi0 + yi1
2H

,
zi

4

)}n

i=1

.

(5.2)

For assigning semantics to entities, the subject and object embeddings are gathered from the cor-

responding indices of predicted entity labels {ci}ni=1 as E0
s ∈ Rn×K×d and E0

o ∈ Rn×K×d. The

subject and object embeddings are class-dependent learnable parameters which capture the seman-

tics of an entity class being the subject and object. Subject queries Q0 and object keys K0 are then

constructed by adding the corresponding embeddings with the visual features V0:

Q0 = E0
s +V0

K0 = E0
o +V0.

(5.3)

By merging instance-specific visual features with class-specific embeddings, the queries (or keys)

retain semantic similarities within their entity classes while also diversifying the instance-wise entity

representations.

The bounding box also plays a crucial role in determining the spatial relationship between

entities. Hence, the bounding box coordinates are mapped into embeddings. First, the positional

105

embeddings PE of the top-left and bottom-right corners are sampled via (5.1). Two learnable

embeddings indicating “top-left corner” and “bottom-right corner” are added with the corresponding

corners’ positional embeddings, respectively. The two corner embeddings are then concatenated and

fed to a fully-connected layer, resulting in the box embeddings. Lastly, two learnable embeddings

are added with the box embeddings to construct subject and object box embeddings respectively,

denoted as Qb ∈ Rn×d and Kb ∈ Rn×d.

5.4.3.2 Rep-point Sampler

For rep-embeddings to capture more visual context, we propose a dynamic approach for

sampling features from representative points (rep-points) and message passing via attentions. Two

rep-point samplers are implemented to sample subject and object rep-points, since queries and keys

serve distinct roles in conveying subject and object semantics respectively. Specifically, a multi-

layer perceptron (MLP) is used as the sampler to predict the points of interest for each entity. To

achieve semantic-specific sampling, the MLP weights are split into K groups (in practice, group

1D convolution is used), and k-th group is applied on the k-th slice of the inputs (queries or keys)

along theK dimension of rep-embeddings. To further increase the diversity of sampling and prevent

overfitting on few points, instead of directly predicting the coordinates, the distribution parameters

of offsets w.r.t. the reference points are predicted, following the variational autoencoder (VAE) and

reparameterization trick [213]. Let the input queries to the l-th layer be Ql−1, the subject rep-point

offsets are defined as

∆Pl
s = µl

s + σl
s ⊙ ϵ,

µl
s,σ

l
s = MLP(Ql−1 +Qb)

(5.4)

106

where means µl
s ∈ Rn×K×3 and standard deviations (stds) σl

s ∈ Rn×K×3 are the outputs of the

subject rep-point sampler, ⊙ is the element-wise product, and ϵ ∼ N (0, I3). To estimate robust

parameters,m points are randomly sampled per parameter during training, namely ϵ ∈ Rn×K×m×3.

Similarly, the object rep-point offsets are obtained as ∆Pl
o. By adding the sampled rep-points offsets

to the reference points, the sampled points are obtained as

Pl
s = Pl−1

s +∆Pl
s, l = 1 . . . L

Pl
o = Pl−1

o +∆Pl
o, l = 1 . . . L,

(5.5)

where P0
s = P0

o = P0 with expanded shapes of n×1×1×3. The offsets are accumulated through

encoder layers from the original entity centers P0, so relevant features can be aggregated as the

encoder layer goes deeper. Accordingly, rep-point visual features and positional embeddings are

sampled via (5.1):

Vl
s = T (V,Pl

s), PEl
s = T (PE,Pl

s),

Vl
o = T (V,Pl

o), PEl
o = T (PE,Pl

o).

(5.6)

The rep-point sampler provides a probabilistic mapping from visual cues to the semantic

space, which helps finding visually relevant features with semantic significance. Since our task is

prediction rather than generation, to achieve deterministic SGG evaluation results, the stochastic

behavior of rep-point samplers is transformed into a deterministic one by sampling within a range

with a fixed step size during inference. In particular, the random noise vector ϵ for each offset

is replaced by a set {−ξ,−ξ + 1, ..., 0, ..., ξ}3, where ξ is the range of consideration which is set

to 3 by default. In other words, rep-points are sampled within the “3σ” range with a step size

of “σ” along the width, height, and scale dimensions in a combinatorial manner. For a subject

rep-point sampler for the k-th rep-embedding, at layer l, the rep-points are derived the Cartesian

product
∏3

dim=1(µ
l,k,dim
s − 3σl,k,dim

s , · · · ,µl,k,dim
s + 3σl,k,dim

s). In total, there are 73 = 343 rep-

107

points sampled per mean. Comparisons of performance and inference speed w.r.t. ξ are provided in

Section 5.5.

5.4.3.3 Group Cross-Attention

The group cross-attention (GCA) captures the visual features that correspond to each

subject and object rep-embedding by computing their attention scores, respectively. The application

of GCA involves performing separate interactions between queries and subject rep-point features,

as well as between keys and object rep-point features. The subject GCA for the i-th entity is defined

as

Ql,i = GCA(q,k,v)

= softmax(qkT /
√
dG) v

q = Linear(Ql−1,i +Qi
b) ∈ RhG×K×dG

k = Linear(Vl,i
s +PEl,i

s) ∈ RhG×K×m×dG

v = Linear(Vl,i
s) ∈ RhG×K×m×dG ,

(5.7)

where i indexes the entity, Linear(·) is a fully-connected layer (q, k, and v are projected with differ-

ent parameters), hG is the number of attention heads, and dG is the dimension of each head. GCA

is performed independently among groups in parallel, where the cross-attention between a rep-

embedding and its corresponding sampled rep-point features are performed. Following the trans-

former architecture [185], multi-head outputs are concatenated and projected with a fully-connected

layer, and a residual connection [2] with layer normalization [214] is added. Likewise, another

GCA layer with different parameters is performed for keys as Kl = GCA(Linear(Kl−1 + Kb),

Linear(Vl
o + PEl

o),Linear(Vl
o)). GCA allows each rep-embedding to focus on different visual

features, carrying the relevant ones along the way.

108

5.4.3.4 Two-Way Relational Cross-Attention

In GCA, queries and keys are updated by their corresponding sampled features. In a two-

way relational cross-attention (RCA) layer, queries are updated by keys, and vice versa. Firstly,

the raw attention weights Al are computed between flattened Ql and Kl. Since the projections of

queries and keys are different, the attention weights are not symmetric and can be normalized along

different dimensions. Softmax is then applied on Al along the dimension of keys, and along the

dimension of queries to obtain two-way attention weights. Finally, queries and keys are updated by

multiplying the corresponding attention weights with values. The two-way relational cross-attention

is formally defined as following:

Ql,Kl = RCA(q,k,vq,vk)

q = Linear(Ql +Qb)

k = Linear(Kl +Kb)

vq = Linear(Ql)

vk = Linear(Kl)

Al = qkT /
√
dR ∈ RhR×nq×nk

Al
k = softmax(Al) s.t.

∑nk

j=1
Al,∗,∗,j

k = 1

Al
q = softmax(Al) s.t.

∑nq

i=1
Al,∗,i,∗

q = 1

Ql = Al
kvk, K

l = (Al
q)

Tvq,

(5.8)

where nq = nk = n × K, hR is the number of attention heads, and dR is the dimension of each

head, “∗” denotes any index along the specific dimension. Additionally, two MLPs are used for

projecting the output queries and keys respectively, following the feed-forward network design in

109

[185]. Without abuse of notation, the notations of output queries Ql and keys Kl of RCA layers

remain the same. After Ld relationship encoder layers, the outputs QLd and KLd are obtained

which are used for predicate prediction.

5.4.4 Relationships as Attention Weights

For most SGG methods using either box-based, or query-based representation, predicate

classification is performed on triplet features in different forms of feature fusions. For example,

box-based methods use the concatenation of pairwise entity features and their union-box features,

and query-based methods use learnable triplet embeddings to perform classification directly. Nei-

ther of them can capture the directional information of scene graphs explicitly which could cause

learning bias and overfitting on dominant visual configurations. A very simple case is that there is

a common triplet <man, on, street> in the dataset, the learnt model will likely predict on if

it detects man and street concurrently. Conversely, triplets such as <man, standing on,

street> and <street, under, man> are considered as incorrect predictions and are treated

as negative examples during training, despite being semantically valid triplets. The presence of rare,

bidirectional [215], and unannotated relationships [199] hinders the learning of representative se-

mantics for SGG methods.

Similar to the RCA discussed in Section 5.4.3.4, QLd and KLd are projected with hA

heads, and each head has dA dimensions. Unnormalized attention weights ALd ∈ RhA×nq×nk

are computed between projected queries and keys. Different from RCA, the multi-head attention

weights are not multiplied by projected values. The asymmetric nature of dot-product attention

serves as a natural metric for quantifying the relationship between subjects and objects. Moreover,

attention weights of each head captures distinct semantics, similar to the way feature channels oper-

110

ate. Therefore, the attention weights can be mapped to the predicate classification Y ∈ RP×nq×nk

via a fully-connected layer, where P is the number of predicate classes of a dataset. In parallel, a

binary relation mask H ∈ Rnq×nk is also predicted to classify if a relationship exists between a pair

of rep-embeddings. The relation mask is used for suppressing low-quality predictions. Formally, Y

and H are obtained as

Y = Linear(ALd)

H = Linear(ALd)

ALd = qkT /
√
dA + bA

q = Linear(QL +Qb)

k = Linear(KL +Kb),

(5.9)

where bA is an added bias term. Y represents relationships between subject and object rep-embeddings

instead of subjects and objects. To get pairwise relationships between entities, Y is re-arranged to

RP×n×n×K2
. During training, Gumbel-Softmax [216] is applied over the last dimension of Y to

sample the rep-embedding pairs with the largest logits, and Y is reduced to the shape of RP×n×n.

The attention matrices Y now represent the raw edge (relationship) scores of a fully-connected

scene graph between all n entities over P predicates. An annealing schedule is applied that changes

the Gumbel-Softmax temperature from 10 to 0.5 gradually through the first 30% iterations. During

inference, the maximum logits over the last dimension are chosen. The relation mask H undergoes

the same re-arrangement operation, followed by selecting the maximum value for both training and

inference. The final predicate classification score is defined as (σ(H)·σ(Y))ζ , where σ(·) is the sig-

moid function, and ζ is a hyper-parameter to balance between predicate scores and entity detection

scores. During evaluation, the triplet score is computed by multiplying the predicate classification

111

score, subject detection score, and object detection score. We empirically set ζ = 2 for evaluating

on the Visual Genome [1] dataset where recall is the primary metric. For the Open Images [217]

dataset where precision is the main metric, we find that assigning more weights to entity detection

scores yields improved results, effectively lowering the ranking of false positive detections. We set

ζ = 0.1 for evaluation on the Open Images dataset.

5.4.5 Training

In this section, we discuss the training losses and strategies to address the challenges

posed by long-tailed sparsely-annotated data. The hyper-parameters and losses for entity detection

remain the same as in FCOS [180].

5.4.5.1 Losses

Due to the potential existence of multiple relationships (directional or bidirectional) be-

tween two entities, the scene graph frequently exhibits a multi-graph structure. The predicate clas-

sification is considered as a multi-label multi-class classification problem. Consequently, we use

the binary cross-entropy (BCE) instead of softmax to supervise the predicate classification and re-

lation mask. To balance well-learned and hard examples, the focal loss (FL) [104] for BCE is used.

Specifically, given the predicted logits Ŷ and ground-truth labels Y ∈ {0, 1}P×n×n, the focal BCE

is defined as

FL(Ŷ,Y) =

− α

Npos

∑
p,i,j

(1− σ(Ŷp,i,j))γ log(σ(Ŷp,i,j)), Yp,i,j = 1

− 1−α
Npos

∑
p,i,j

σ(Ŷp,i,j)γ log(1− σ(Ŷp,i,j)), Yp,i,j = 0,

(5.10)

112

where α is a class-balance weighting factor, γ is the focal factor, p indexes the predicate classes, i

indexes subjects, j indexes objects, and Npos =
∑

p,i,j Y
p,i,j is the number of ground-truth triplets.

As the predicate prediction forms a fully-connected graph among n entities, the ground-truth Y is

inherently sparse with few ones. We select α = 0.75 to prioritize generating larger logits for positive

predicates, rather than penalizing negative predicates. For the focal factor γ, we set it differently

based on the predicate frequency of training data. Let the predicate priors be η, e.g., the empirical

predicate class frequencies in the training dataset, we compute a predicate-specific γ to replace γ in

(5.10) as

γ = γ · η −min(η)

max(η)−min(η)
, (5.11)

where γ = 2, min(·) and max(·) are operations to get the minimum and maximum value respec-

tively. For the tail predicates, γp is small so that it encourages the logits to be larger. For the head

predicates, γp becomes larger and down-weights the loss. For supervising the relation mask, we

empirically select α = 0.75 and γ = 2.

As discussed in [174, 7, 199], the sparsity of data annotations for relations, coupled with

the presence of numerous unannotated ones, leads to semantic ambiguity and poses challenges

during training. Therefore, simply considering triplets without ground-truth annotations as negative

is not optimal. For training the relation mask Ĥ ∈ Rn×n among n entities, we sub-sample the

negative triplets with a ratio of 10:1 in proportion to the number of ground-truth triplets. Additional,

we employ a margin ranking loss for predicted relation classification Ŷ. Instead of supervising

negative samples (where Yp,i,j = 0,∀p) with labels of zero in BCE, per-predicate margins are

calculated and used as the upper bounds for negative samples’ logits. The margin ranking loss Lη

113

is defined as

Lη(Ŷ,Y) =
1

Nneg

∑
p,i,j

max(σ(Ŷp,i,j)− ηp), 0),

ηp = min{σ(Ŷp,i,j) | Yp,i,j = 1, ∀ i, j},

(5.12)

whereNneg is the number of negative samples, and ηp is the margin for predicate p between positive

and negative samples. To ensure a normalized effect across different scenes (images), the margins

are computed on a per-image basis. By employing this loss, unannotated triplets are neither exces-

sively penalized, which could lead to training ambiguity, nor overly encouraged, which could result

in lower ranks for positive triplets.

For sampling useful subject and object rep-points, margin ranking losses are applied to

the subject and object offset means µl
s and µl

o, for l = 1, ...,L. For the rep-point coordinates

reparameterized by the mean, their margins are the top-left and bottom-right corner coordinates of

union bounding boxes of triplets involving the entity. Consequently, the loss is nonzero when a

mean rep-point is outside of a corresponding union bounding box.

5.4.5.2 Performance-Guided Logit Adjustment

Building upon the concept of the logit adjustment (LA) [187], we introduce the run-time

performance-guided logit adjustment (PGLA) as a novel approach to enhance the performance on

long-tail problems. In logit adjusted softmax cross-entropy [187], the logits from a classifier are

added with a bias term log η to create pairwise margins between classes. Due to the intricacies

involved in entity detection and scene graph generation, employing a fixed bias throughout the

training process is suboptimal. Hence, we extend the logit adjustment to a more general form

of affine transformation by adding a weight term, and leveraging the training statistics to more

114

−6 −4 −2 0 2 4 6
0

2

4

6

Logits Ŷp,i,j

−
lo
g
σ
(Ŷ

p
,i
,j

PG
L

A
)

(a) For positive targets, PGLA assigns more loss on tail predicates over head predicates in general.
It also assigns more loss on hard predicates (e.g., low recall observed during training), and less on
well-classified predicates (e.g., high recall regardless of being a head or tail predicate).

−6−4−2 0 2 4 6
0

2

4

6

Logits Ŷp,i,j

−
lo
g
σ
(Ŷ

p
,i
,j

PG
L

A
)

−6−4−2 0 2 4 6

Logits Ŷp,i,j

(b) Left: individual loss effects of W, where a positive predicate with a relatively high recall re-
ceives less loss when misclassified (logits less than 0), but more loss to suppress over-confident
predictions. Right: individual loss effects of B, where predicates of lower frequencies or perfor-
mance receive more loss.

accurately quantify the class margins.

In the context of the scene graph generation task, recall is used to guide the strength of

adjustment, and PGLA is only applied to logits of positive relations. For the pair of subject i and

object j, the predicted logits are adjusted as

Ŷ:,i,j
PGLA =

W ⊙ Ŷ:,i,j +B (∃ p) Yp,i,j = 1

Ŷ:,i,j otherwise,

(5.13)

115

−6 −4 −2 0 2 4 6
0

2

4

6

head

tail

Logits Ŷp,i,j

−
lo
g
(1
−
σ
(Ŷ

p
,i
,j

PG
L

A
)) − log σ(Ŷp,i,j)

− log(1− σ(Ŷp,i,j))
ηp = 0.34 ∆rp = 0.5
ηp = 0.34 ∆rp = 0.0
ηp = 0.34 ∆rp = −0.5
ηp = 0.01 ∆rp = 0.5
ηp = 0.01 ∆rp = 0.0
ηp = 0.01 ∆rp = −0.5

(c) BCE loss on PGLA-adjusted logits. (a) Loss on a positive predicate p where Yp,i,j = 1. (b)
Loss on a positive predicate p with B = 0 (left), and with W = 1 (right). (c) Loss on a negative
predicate p where Yp,i,j = 0. The legend in (c) is shared across (a) - (c), and gray lines in figures
represent the BCE loss on original logits.

Figure 5.3: BCE loss on PGLA-adjusted logits. (a) Loss on a positive predicate p where Yp,i,j = 1.
(b) Loss on a positive predicate p with B = 0 (left), and with W = 1 (right). (c) Loss on a negative
predicate p where Yp,i,j = 0. The legend in (c) is shared across (a) - (c), and gray lines in figures
represent the BCE loss on original logits.

where W ∈ RP and B ∈ RP are the weight and bias factors, respectively, and the operation denoted

by “:” selects all elements along the specified dimension. By setting W = 1 and B = log η, (5.13)

yields logit adjustment [187]. The weight and bias factors for (5.13) are calculated as

W = − tanh(∆r) + 1,

B = − tanh(∆r/λ) · log(P−1) + log η,

(5.14)

where ∆r = r− r̄, r is the measured recall, r̄ is the mean of the recall, λ is a hyper-parameter set to

1 by default, and log(P−1) is the log probability of the uniform distribution over P predicates. The

hyper-parameter λ controls the sensitivity of PGLA w.r.t. the recall differences. A smaller value of

λ increases the sensitivity, and more losses are enforced for predicates with low recall. The tanh(·)

function limits ∆r or ∆r/λ within the range of [-1, 1], and there exist alternative functions that

serve the same purpose.

116

The effect of the long-tailed problem on losses can be described as follows: tail predicates

play the role of negative classes when training head predicates, and constantly receive losses for

being classified as negatives during training; on the other hand, head predicates receive more losses

for being positive and less losses for being classified as negatives during training. To address this

effect, there are various considerations to be taken into account regarding W and B. Overall, the

impacts of W and B w.r.t. the BCE loss with adjusted logits ŶPGLA are illustrated in Fig. 5.3. In

the case where a predicate p achieves a relatively higher recall (∆rp > 0), we decrease the value of

Wp to encourage the network to generate larger logits when p is positive (Yp,∗,∗ = 1), and smaller

logits when p is negative (Yp,∗,∗ = 0). This adjustment of W tries to push the predictions towards

the saturation regions of the sigmoid function so that it is easier to distinguish between positive and

negative classes. Simultaneously, as the recall rp increases relatively, Bp increases and less loss is

assigned to predicate p, allowing us to focus on other predicates with lower recall. In addition to

utilizing the recall, the bias factor per predicate will be adjusted based on its prior distribution as

well. A tail predicate is assigned with a smaller bias factor, and receive larger losses when being

positive and smaller loss when being negative.

Despite achieving the goal of assigning class margins dynamically to address the long-

tailed problem, it is critical to note that the similarities between predicates have not been taken

into account. Therefore, we introduce a training statistic named “confusion logits”, denoted as

D ∈ RP×P , which tracks pairwise predicate logit differences if the predictions are incorrect. The

117

confusion logit between the ground-truth predicate p and an arbitrary predicate p̂ is computed as

Dp,p̂ = mean
(p,i,j)∈Ω

{di,j
logits · d

p,p̂
η }

Ω := {(p, i, j) | Yp,i,j = 1}

di,j
logits =ReLU(Ŷp̂,i,j − Ŷp,i,j)

dp,p̂
η =tanh(ReLU(log ηp̂ − log ηp)),

(5.15)

where ReLU(·) [218] is used for selecting positive values only. The confusion logits for a GT

predicate p are computed only with respect to incorrectly-predicted predicates (Ŷp̂,i,j > Ŷp,i,j)

with larger priors (dp,p̂
η > 0 if ηp̂ > ηp). Large value of Dp,p̂ means that p is often mis-classified

as p̂. The confusion logits not only quantify the effects of long-tailed data, but also the semantic

similarities between predicates. For similar tail predicates like across and along, their confusion

logits can be large as well. During training, per-instance PGLA is applied instead by utilizing the

corresponding confusion logits of a specific ground-truth predicate p, and (5.13) is modified as

Ŷ:,i,j
PGLA =

W ⊙ Ŷ:,i,j +B+Dp,: (∀ p) Yp,i,j = 1

Ŷ:,i,j otherwise.

(5.16)

Ideally, recall of each predicate should be close to the mean recall for a balanced classifier.

However, head classes tend to exhibit significantly higher recall compared to tail classes due to long-

tailed training data. Therefore, we evaluate the recall per predicate differently. The exponential

moving average (EMA) of predicate recall per mini-batch is computed to estimate the performance

change over time. For each image in the mini-batch, the histogram of ground-truth relationships

per predicate is obtained as n. Next, based on the top sum(n) triplets and predicate priors, ranking

targets κ are set differently per predicate. For a predicate p, the top-κp triplets is used for computing

the recall, where tail predicates are assigned with smaller κp while head predicates are assigned with

118

larger values. As an illustration, the ranking target κp0 for the rarest predicate p0 is np0 , where the

predicate should be ranked within the top-np0 in a mini-batch. For the second rarest predicate p1, it

should be ranked within the top-(np0+np1), and so forth. By setting distinct ranking targets for each

predicate, it forces tail predicates to rank higher than head ones. Finally, the per-predicate recall r is

calculated. A EMA momentum specific to each predicate is assigned as ρ = 0.9999− logη. Assume

the batch size is 1, the process of calculating recall at iteration t is detailed in Algorithm 3. The

confusion logits Dt is calculated and updated per iteration via EMA as well. Consequently, the

PGLA can be performed given the run-time values of Wt, Bt, and Dt in (5.16).

119

Algorithm 3 Recall Calculation at training iteration t

Input: Ŷ, Y, rt−1, η

Output: rt

1: rt← 0P

2: ν ← arg sort(η) ▷ indices of sorted predicate

3: n←
∑

i,j Y
:,i,j ▷ No. of GTs per predicate

4: κ← cumsum(n[ν]) ▷ cumulative sum of No. of GTs

5: for p← ν1 to νP do

6: R̂top−κp ← argmaxκp(Ŷ) ▷ top κp triplets

7: Rp← nonzero(Yp) ▷ GT triplets

8: rpt ← rpt +match(R̂top−κp , Rp) ▷ accumulate matches

9: end for

10: rt← rt ⊘ n ▷ element-wise division

11: rt← (1− ρ) · rt + ρ · rt−1 ▷ EMA

12: return rt

5.5 Experiments

5.5.1 Datasets and Evaluation

Datasets. We evaluate our methods on the Visual Genome (VG) [1] dataset. We use the

widely-used pre-processed subset VG150 introduced by [138] for evaluation, which contains the

most frequent 150 entities (C = 150) and 50 predicates (P = 50). The VG150 dataset contains

120

Table 5.1: Comparisons of R@K and mR@K results on VG150 between the proposed methods and SOTA methods. Methods are grouped
from top to bottom as: point-based, query-based, and box-based methods. FCSGG [7] uses HRNet [8] as backbone, and CoRF [9] uses
Swin-S [10]. The best results are bold, and the second-best results are underlined.

Predicate Classification Scene Graph Classification Scene Graph Detection

R@20/50/100 mR@20/50/100 R@20/50/100 mR@20/50/100 R@20/50/100 mR@20/50/100

FCSGG [7] 33.4 41.0 45.0 4.9 6.3 7.1 19.0 23.5 25.7 2.9 3.7 4.1 16.1 21.3 25.1 2.7 3.6 4.2

CoRF [9] - 45.4 - - 10.1 - - 18.7 - - 3.9 - - 18.6 - - 3.9 -

RelTR [183] ‡ 63.1 64.2 - 20.0 21.2 - 29.0 36.6 - 7.7 11.4 - 21.2 27.5 - 6.8 10.8 -

TraCQ [182] ‡ - - - - - - - - - - - - 19.7 28.3 35.7 12.0 13.8 14.6

SGTR [181] § - - - - - - - - - - - - - 24.6 28.4 - 12.0 15.2

SGTR [181, 196] § * - - - - - - - - - - - - - 20.6 25.0 - 15.8 20.1

VCTree [148] || 60.1 66.4 68.1 - - - 35.2 38.1 38.8 - - - 22.0 27.9 31.3 - - -

BGNN [196] † * - 59.2 61.3 - 30.4 32.9 - 37.4 38.5 - 14.3 16.5 - 31.0 35.8 - 10.7 12.6

PPDL [208] † * - 41.6 43.6 - 33.3 36.2 - 24.8 26.2 - 20.2 22.0 - 13.6 16.5 - 12.2 14.4

PCPL [206] || * - 50.8 52.6 - 35.2 37.8 - 27.6 28.4 - 18.6 19.6 - 14.6 18.6 - 9.5 11.7

RTPB [212] † * - 45.6 47.5 30.3 36.2 38.1 - 24.5 25.5 19.1 21.8 22.8 - 19.7 23.4 12.7 16.5 19.0

DT2-ACBS [197] § * - 23.3 25.6 27.4 35.9 39.7 - 16.2 17.6 18.7 24.8 27.5 - 15.0 16.3 16.7 22.0 24.4

IETrans [199] † * - 48.0 49.9 - 37.0 39.7 - 30.0 30.9 - 19.9 21.8 - 23.6 27.8 - 12.0 14.9

FGPL [209] † * - - - 30.8 37.5 40.2 - - - 21.9 26.2 27.6 - - - 11.9 16.2 19.1

RepSGG ‡ 55.2 62.7 65.0 16.8 22.2 24.4 34.7 44.0 49.9 10.5 14.5 17.3 23.6 31.1 36.3 7.2 10.0 12.3

RepSGGPGLA, λ=0.1
‡ * 40.3 46.7 48.7 23.1 29.8 33.1 23.5 30.6 35.0 12.6 17.5 21.5 16.1 21.8 26.0 9.4 13.1 16.1

RepSGGPGLA
‡ * 24.3 27.8 28.8 29.2 39.7 43.7 13.8 17.9 20.3 16.7 22.9 28.0 9.0 12.4 14.9 11.1 15.6 19.2

Backbone network: †ResNeXt-101-FPN §ResNet-101 ||VGG-16 ‡ResNet-50 * debiasing technique is used

approximately 108k images, with 70% for training (≈ 82k) and the remaining 30% for testing (≈

26k), following the same protocols [149, 148, 206, 197, 196, 208, 212, 199, 209, 181, 182, 183]. We

also evaluate on the Open Images V6 dataset (OIV6) [217], which contains 126k training images,

5k testing images, 301 entities and 30 predicates for SGG tasks [196, 181, 191, 219]. For OIV6, as

some entity and predicate classes are absent from the testing set, we exclusively train on the classes

121

that are actually present. Consequently, we use 212 entities and 21 predicates that remain in the

training set.

Evaluation. We evaluate our methods following three standard evaluation tasks: 1) pred-

icate classification (PredCls): predict predicates given ground-truth entity classes and bounding

boxes; 2) scene graph classification (SGCls): predict predicates and entity classes given ground-truth

entity bounding boxes; 3) scene graph detection (SGDet): predict predicates, entity classes, and

entity bounding boxes. For VG150, we report results of recall@K (R@K) [136], mean recall@K

(mR@K) [146, 148], zero-shot recall@K (zs-R@K) [136] for all the three evaluation tasks. In addi-

tion, we further evaluate zero-shot mean recall@K (zs-mR@K) to assess methods’ ability to gener-

alize to unseen long-tailed testing distributions. For OIV6, following previous works [220, 196], we

report results of R@K, weighted mean AP of relationship detection (wmAPrel), weighted mean AP

of phrase detection (wmAPphr), and the weighted score as scorewtd=0.2×R@50+0.4×wmAPrel+

0.4 × wmAPphr. Considering the down-weighting effect of these metrics on tailed predicates, we

also provide mean recall@K results.

5.5.2 Implementation Details

ResNet-50 [2] is used as the backbone network and the same hyper-parameters are used

following [110, 180]. The entity detector is initialized with the weights pre-trained on COCO

dataset [48, 221]. Specifically, the pre-trained weights are trained for 90k iterations with a batch size

of 16, an initial learning rate of 0.01 which is decreased at the 60k-th and 80k-th iteration by a factor

of 0.1 sequentially, and the weight decay of 0.0001. Images are resized such that their shorter edge

is sampled from [640, 800] with a step of 32, and their longer edge does not exceed 1333 pixels.

Random horizontal flip with a probability of 0.5 and random crop are used for data augmentations.

122

Specifically, a relative random ratio is selected from [0.9, 1] to crop along each axis respectively.

To train RepSGG, the same multi-scale training is adopted following FCOS [180], except that we

set the shorter edge range as [480, 800], and random crop ratio range as [0.8, 1]. The repeat factor

sampling [222] with the factor of 0.02 is applied to sample more images that contain tail predicates.

We first train the FCOS detector on VG150 or OIV6 for 90k iterations. The whole architecture is

then trained for additional 90k iterations while freezing the backbone and entity detection heads.

Finally, the entire model is jointly trained for 10k iterations, and this procedure is referred to as

fine-tuning throughout the rest of the paper. Training is performed on 4 Nvidia A100 GPUs with a

batch size of 32. The AdamW [223] optimizer is used with a initial learning rate of 10−5 which is

decayed at the 80k-th iteration by a factor of 0.1, and the weight decay of 10−4. The learning rates

of the backbone and rep-point samplers are multiplied by a factor of 0.1. A single model is trained

for all tasks, rather than separate models for each task. For the encoder, Le is set to 1 with the

same hyper-parameter setting as used in [186]. The relationship encoder is configured with Ld = 1,

K = 4, hG = hR = 8, hA = 128, dG = dR = 32, and dA = 64 as the default settings. For the

rep-point samplers, m is uniformly sampled from [1, 100].

5.5.3 Quantitative Results

5.5.3.1 Visual Genome

To compare with methods using different entity representations and those using debiasing

techniques respectively, we train one model without PGLA (RepSGG) and another with PGLA

(RepSGGPGLA). In addition, since RepSGG and RepSGGPGLA are two extreme cases of using

debiasing methods, we also add a 3rd model RepSGGPGLA, λ=0.1 with balanced R@K and mR@K

123

on ha
s

wea
rin

g of in ne
ar

be
hin

d
0

20
40
60

head

RepSGG RepSGGPGLA FGPL

with

ho
ldi

ng
ab

ov
e

sit
tin

g on
un

de
r

wea
rs

in
fro

nt
of

rid
ing

sta
nd

ing
on at

att
ac

he
d to

walk
ing

on

ca
rry

ing ov
er for

loo
kin

g at

watc
hin

g

ha
ng

ing
fro

m

pa
rke

d on

be
lon

gin
g to an

d
0

20
40
60

R
ec

al
l@

10
0 body

lay
ing

on

co
ve

rin
g

be
tw

ee
n

ea
tin

g
alo

ng
us

ing

co
ve

red
in

pa
rt

of to

on
ba

ck
of

lyi
ng

on

mou
nte

d on

walk
ing

in
ac

ros
s

ag
ain

st
fro

m

gro
wing

on

pa
int

ed
on

pla
yin

g

mad
e of say

s

flyin
g in

0
20
40
60

tail

RepSGG RepSGGPGLA FGPL

head 31.3 15.3 24.7

body 11.2 21.8 21.2

tail 5.3 17.3 13.2

Group R@100.

Figure 5.4: Per-predicate SGDet R@100 comparison between RepSGG, RepSGGPGLA, and FGPL
on VG150 dataset. RepSGGPGLA performs better on body and tail groups. The overall standard
deviation of R@100 is 14.6 (RepSGG), 12.3 (RepSGGPGLA), and 13.6 (FGPL) respectively, which
also implies that RepSGGPGLA achieves a more balanced performance.

results for comparison. R@K is the main metric when comparing methods without debiasing, while

mR@K is the main one for debiasing methods. We compare our methods with the state-of-the-

art (SOTA) scene graph generation models as shown in Table 5.1. We divide the methods for

comparison into 3 groups in Table 5.1 from top to bottom: point-based, query-based, and box-

based, regardless of whether long-tailed techniques are used. Notably, point-based methods seek

faster inference, and often do not involve debiasing techniques. Query-based methods inherently

possess a certain level of debiasing capability due to the direct triplet prediction design. However,

they are typically limited to performing only on SGDet. Box-based methods focus on designing

debiasing methods with off-the-shelf entity detectors.

First of all, RepSGG and RepSGGPGLA attain state-of-the-art performance across 8 out

of 18 metrics, surpassing other methods (VCTree, DT2-ACBS, FGPL) that achieve state-of-the-

art results over only 3 metrics. Solely comparing methods that have different entity or predicate

representations, RepSGG outperforms point-based methods FCSGG [7] and CoRF [9] on all metrics

124

by a large margin. Comparing with query-based methods, RepSGG outperforms RelTR [183],

TraCQ [182], and SGTR [181] on most R@K metrics across all 3 tasks, while RepSGGPGLA also

outperforms RelTR and TraCQ on mR@K metrics. As query-based methods like SGTR and TraCQ

directly predict triplets consisting of entity and predicate predictions, they typically perform better

on the SGDet task. Nevertheless, RepSGGPGLA, λ=0.1 achieves comparable performance on R@K

and mR@K w.r.t. SGTR, with higher mR@K and slightly lower R@K. Under the condition of no

debiasing, the performance improvements on R@K for RepSGG indicates that the proposed entity

and predicate representations are superior to point-based and query-based methods. Compared

with box-based VCTree [148], RepSGG achieves higher R@K on SGCls and SGDet tasks with

slightly lower recall on PredCls. In terms of debiasing methods, RepSGGPGLA outperforms the

SOTA methods on PredCls mR@50, PredCls mR@100, and SGCls mR@100, while achieving

comparable results on other metrics. RepSGG achieves 43.7 mR@100 on PredCls, which is 3.5

higher than the box-based FGPL [209]. FGPL is a complicated long-tail learning technique which

requires a biased model with several fine-tuned hyper-parameters, while PGLA is much simpler yet

effective for mitigating the long-tailed problem.

We further compare the per-predicate and group R@100 with FGPL for the SGDet task

as shown in Fig. 5.4. Predicates are sorted in descending order based on their frequency in the train-

ing set, and divided into 3 groups following [196]. RepSGGPGLA achieves higher recall on body

and tail classes, resulting in a more balanced performance over FGPL. In VG150 testing set, there

are only 29, 37, and 12 triplets involving playing, made of, and says, respectively. While

FGPL failed retrieving these triplets, our method achieves significantly better results, even thought

these triplets are extremely rare both during training and testing. Moreover, we observe consider-

125

ate improvements on fine-grained predicates with similar semantics. RepSGGPGLA achieves better

recall over predicates sitting on, standing on, parked on, laying on, lying on,

and painted on. It reveals the discriminatory capability of our model among hard-to-distinguish

predicates. We conjecture that the rep-point samplers and the GCA layers capture more visual con-

text compared with box-based methods. Furthermore, by comparing the results of RepSGGPGLA

and FGPL on a pair of visually indistinguishable predicates, wearing and wears, it becomes

evident that FGPL still exhibits the bias towards the more frequent predicate wearing, resulting

in significantly lower performance on wears. In contrast, RepSGGPGLA achieves comparable re-

sults on wearing and wears, indicating that the proposed PGLA strategy offers a more effective

and balanced learning process. Notably, without debiasing techniques, RepSGG achieves excel-

lent performance on those tail predicates (across, playing, made of, and says) as well.

It demonstrates that the proposed entity and relationship representations inherently capture more

informative semantics.

We further conduct analysis on zero-shot performance. In this setting, the objective is to

retrieve triplets that are not encountered during training, but are present during testing. The zero-

shot performance in scene graph generation is essential for achieving generalizability, robustness,

adaptability, and cost-effectiveness in real-world applications, while also serving as a key metric

for model evaluation and benchmarking. In Table 5.2, we report the zero-shot recall and zero-

shot mean recall results on the PredCls task and compare with the SOTA methods. We collect the

results by implementing the zs-mR@K evaluation following [147]. RepSGGPGLA outperform the

SOTA methods on mR@50 and mR@100 by a large margin. Among methods for comparison,

IETrans [199] achieves good results by re-labeling predictions and labeling unannotated samples

126

Table 5.2: PredCls results of zero-shot mean recall (zs-mR@K) and zero-shot recall (zs-R@K) on
VG150 compared to state-of-the-art methods. The best results are bold, and the second-best results
are underlined.

PredCls Zero Shot Relationship Retrieval

mR@20/50/100 R@20/50/100

BGNN [196] 1.9 3.2 4.9 2.0 3.5 4.6

BA-SGG [202] 3.1 5.3 6.7 3.0 6.0 8.0

Motifs-TDE [147] 5.3 9.3 11.4 8.3 14.3 18.0

FGPL [209] 11.0 14.3 15.9 9.4 13.0 14.6

IETrans [199] 11.0 14.5 17.0 6.5 10.0 12.0

RepSGG 4.1 7.1 8.9 8.9 14.6 18.0

RepSGGPGLA 10.3 17.2 20.0 6.3 9.3 11.1

from biased models for training. Without extra data for training, RepSGGPGLA outperforms IETrans

by 3.0 on zs-mR@100. RepSGG also achieves the SOTA zero-shot recall performance over zs-

R@50 and zs-R@100. Motifs-TDE employs a debiasing technique to achieve a zs-R@100 of 18.0,

whereas RepSGG achieves the same results without using debiasing techniques. It demonstrates

that RepSGG generalizes significantly better to compositions of entities and relationships in unseen

contexts.

5.5.3.2 Open Images

Since the precision is one of the evaluation metrics for OIV6, we conduct experiments

using precision as the PGLA metric besides recall. The model trained with precision-guided logit

127

Table 5.3: Comparisons with the state-of-the-art methods on OI V6. R@50 in the table is micro-
Recall@50 [11]. The best results are bold, and the second-best results are underlined.

mR@50 R@50 wmAPrel wmAPphr scorewtd

Motifs [149] 32.68 71.63 29.91 31.59 38.93

RelDN [220] 33.98 73.08 32.16 33.39 40.84

VCTree [148] 33.91 74.08 34.16 33.11 40.21

G-RCNN [159] 34.04 74.51 33.15 34.21 41.84

GPS-Net [173] 35.26 74.81 32.85 33.98 41.69

BGNN [196] 40.45 74.98 33.51 34.15 42.06

SGTR [181] 42.61 59.91 38.73 36.98 42.28

CSL [219] 41.72 75.44 34.30 35.38 42.86

SS R-CNN [191] 50.73 75.70 41.14 43.24 48.89

RepSGG 62.68 77.70 30.01 29.58 39.38

RepSGGPGLA/R 64.26 76.40 31.64 31.27 40.44

RepSGGPGLA/P 53.87 70.25 32.53 32.47 40.05

RepSGGX101 56.32 77.83 36.73 36.61 44.90

adjustment is denoted as RepSGGPGLA/P, and the model trained with recall-guided logit adjustment

is renamed to RepSGGPGLA/R. We also train a model with the ResNeXt-101-32×8d [43] backbone,

denoted by RepSGGX101 without using PGLA. The experimental results on OIV6 [217] are shown

in Table 5.3. We observe that all RepSGG models outperforms other methods on mR@50 by a large

margin. RepSGGPGLA/R achieves a mR@50 of 64.26, marking a 13.53-point increase, or a 26.7%

improvement over the previous SOTA method SS R-CNN [191]. RepSGGPGLA/P achieves better

results on wmAPrel and wmAPphr in comparison to RepSGG and RepSGGPGLA/R, highlighting

the effectiveness of precision-guided PGLA for precision-oriented tasks. As a compromise, the

recall performance is lower compared with PGLA/R. With a larger backbone network, RepSGGX101

128

achieves the highest R@50 performance of 77.83, and the second-best scorewtd of 44.90, which

is a 2.62-point improvement over SGTR. Our methods achieves lower precision-oriented metrics

like wmAPrel and wmAPphr. This is because OIV6 has very sparse annotations, while our model

has great generalization power as shown in Table 5.2. OIV6 has 2.76 relationship annotations per

image on average in the training set, while VG150 has 5.97. As a result, most detections will be

considered as false positives, leading to lower precision. We then collect the results on other SGG

tasks to further analyze the performance as shown in Table 5.4. The results on R@50, mR@50, and

wmAPrel show significant improvements on PredCls and SGCls tasks. In the PredCls setting, all

RepSGG models achieve R@50 and wmAPrel over 90. Both Table 5.1 and 5.3 demonstrate that our

model’s primary bottleneck lies in entity detection rather than predicate prediction. Consequently,

there are fewer improvements observed in SGDet and SGCls tasks compared to PredCls.

Table 5.4: Comparisons of RepSGG models without PGLA, with recall-guided LA, and with
precision-guided LA on PredCls and SGCls tasks.

PredCls SGCls

mR@50 R@50 wmAPrel mR@50 R@50 wmAPrel

RepSGG 69.40 97.33 93.19 66.59 90.56 54.21

RepSGGPGLA/R 80.33 96.69 89.08 71.95 90.06 55.46

RepSGGPGLA/P 73.44 95.36 92.51 55.09 74.99 51.30

RepSGGX101 66.97 97.48 93.60 63.04 85.81 52.09

129

lady
toilet

arm
pot

beach
cow

logo
man

flower

player

bananatowel

curtain
plane

bear
rock

handle
seat

building

skateboard

k-th rep-embeddings
entity class

Figure 5.5: The t-SNE visualization of subject rep-embeddings Es, projected to RC×K×2 with
pairwise cosine similarity. There are C × K = 150 × 4 = 600 points in total, and each point
represents a subject rep-embedding in the projected 2D space. The top-10 similar pairs are labeled.
Rep-embeddings of the same entity class share a color. Only the entity classes involved in the top-
10 pairs are colored, while the others are displayed in gray.

5.5.4 Qualitative Analysis

We want to qualitatively examine what the model learns from the data, especially on the

rep-embeddings and rep-points. We visualize the weights of subject rep-embeddings Es of the

trained RepSGGPGLA (with K = 4, Le = 1, and Ld = 1) via t-SNE [224] as shown in Fig. 5.5.

The top 10 pairs of similar rep-embeddings are highlighted, while the remaining rep-embeddings

belonging to the involved entities are colored. We use the pairwise cosine similarity as the distance

metric for t-SNE where distances represent the similarities between rep-embeddings. It reveals that

the rep-embeddings between different entity classes are well separated. Rep-embeddings of the

same entity class are distinctly separated as well. Interestingly, most pairs do not exhibit explicit

130

man
person

window
tree

shirt
building

head
woman

sign
leg

Figure 5.6: The t-SNE visualization results on the output subject queries of the relationship encoder
(QLd) for 10 frequent entity classes.

semantic part affinities. We hypothesize that the initial rep-embeddings serve as “anchors” which are

evenly distributed in the embedding space, and capture more semantic information as they progress

through the relationship encoder.

We further validate the hypothesis by visualizing the output queries QLd . To eliminate

entity mis-classification, we collect the output queries on the PredCls task from the first 1000 test-

ing images. As shown in Fig. 5.6, the inter-class rep-embeddings are distinguishable. Entities with

similar semantics, such as woman, man, and person, form more compact clusters. The compact-

ness and distinctness of rep-embeddings differ within an entity class. For building, 4 types of

rep-embeddings are well-separated with high variance where each type is responsible for a different

semantic concept. For sign, the distribution of rep-embeddings is more compact, indicating that

131

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

banana

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

railing

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

bird

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

room

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

man

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

sign

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

pant

− 0.5 0.0 0.5
− 0.5

0.0

0.5

− 0.5 0.0 0.5
− 0.5

0.0

0.5

0.103 0.115
0.103

0.115

0.103 0.115
0.103

0.115

1st rep-embeddings 2nd rep-embeddings 3rd rep-embeddings 4th rep-embeddings -0.22 0.35 scale mean offset range 0.07 0.09 scale std offset range

tail

Figure 5.7: Visualizations on predicted subject and object rep-point mean and std offsets. For each
entity class, the offsets of subject means, object means, subject stds, and object stds are shown on
the top-left, top-right, bottom-left, and bottom-right of the sub-figure. The coordinates represent
spatial offsets w.r.t. the ground-truth centers, while the color saturation denotes the scale offsets
w.r.t. the entity feature scale. The more saturated the color is, the larger the scale offset is, and vice
versa.

the semantics and relationships associated with sign are mostly homogeneous.

We also collect the subject and object rep-point offset parameters µ1
s, σ1

s , µ1
o, and σ1

o ,

which are shown in Fig. 5.7. The variation in parameters is evident, primarily between different

entity classes, and between subject and object offsets. The distribution of parameters implies the

locations of relevant semantic features to a certain extent. It is likely that the spatial means follow

a bivariate Gaussian distribution especially for man and sign, which suggests that rep-points are

sampled around the bounding box centers. Entities with larger location variances within bounding

boxes, such as banana, bird, and railing, exhibit more dispersed distributions of spatial mean

offsets. The distributions of subject and object mean offsets for man are noticeably distinct. The

subject means are more tightly clustered around centers, indicating that when man is a subject, the

features representing the entirety of a man are more significant. Conversely, when man is an object,

132

the features representing semantic parts become more important as object means are much more

distributed. The scale mean offsets also reveal different patterns among entities. For entities with

large bounding boxes like room, the scale means are primarily negative, indicating that the sampled

rep-points are from lower scales of features. For entities in medium and small sizes, the sampled

rep-points are mostly from the same or higher scales of features. In terms of the standard deviations

(stds) of offsets, we observe the spatial collinearity, which is a natural occurrence in training data

with diverse entity sizes. It is notable that railing has larger spatial and scale stds, reflecting the

uncertainty associated with the varying lengths of railings. The scale stds normally remain within a

narrower range (0.07 to 0.09) compared to the spatial stds (0.103 to 0.115).

5.5.5 Ablation Studies

To further investigate the proposed methods, we perform ablation studies on VG150

dataset. Unless specified, we use the same hyper-parameters as discussed in Section 5.5.2, and

PGLA is applied but fine-tuning is not applied.

5.5.5.1 Analysis of RepSGG

We investigate the effects of different numbers of rep-embeddings, deformable encoder

layers, and relationship encoder layers. The results on mR@100 and zs-mR@100 are listed in

Table 5.5. First, adding the deformable encoder or relationship encoder improves the overall per-

formance. It is also important to note that similar behaviors can be observed when increasing the

values of K, Le, or Ld, as the performance improves and then plateaus at certain values of K, Le,

or Ld, respectively. The combination of K = 4, Le = 1, and Ld = 1 achieves a balanced trade-off

133

Table 5.5: Ablation studies of number of rep-embeddings K, number of encoder layers Le, and
number of decoder layers Ld in RepSGGPGLA. Results on mR@100 and zs-mR@100 are collected
for three SGG tasks.

K Le Ld

PredCls @100 SGCls @100 SGDet @100

mR zs-mR mR zs-mR mR zs-mR

1 1 1 42.5 18.5 20.0 6.5 15.7 5.5

4 1 1 42.0 20.6 19.9 6.0 15.9 5.4

7 1 1 41.1 18.8 19.6 6.2 15.7 5.6

10 1 1 40.7 20.0 19.1 6.6 15.4 5.9

4 0 0 39.1 16.2 18.0 5.9 13.8 5.0

4 1 0 39.8 18.2 19.1 6.3 15.0 5.1

4 0 1 41.0 16.8 19.4 6.1 15.7 5.5

4 2 2 40.7 18.2 19.5 5.9 15.2 5.4

10 3 3 41.0 19.6 20.0 7.1 15.1 5.5

Table 5.6: Ablation studies of GCA and RCA.

PredCls @100 SGCls @100 SGDet @100

GCA RCA mR zs-mR mR zs-mR mR zs-mR

39.8 18.2 19.1 6.3 15.0 5.1

✓ 40.3 17.3 19.0 5.5 14.4 4.8

✓ 41.8 18.7 19.9 6.6 15.7 5.7

✓ ✓ 42.0 20.6 19.9 6.0 15.9 5.4

between the performance and model complexity. Based on our experiments, four rep-embeddings

per entity class (K = 4) are sufficient to capture possible relationships, and using K = 10 po-

134

Table 5.7: Ablation studies on using separate subject and object rep-embeddings (Es ̸= Eo) vs.
identical rep-embeddings (Es = Eo).

Le Ld Separate
PredCls @100 SGCls @100 SGDet @100

mR zs-mR mR zs-mR mR zs-mR

0 0 39.1 15.5 18.2 5.5 13.8 5.1

0 0 ✓ 39.1 16.2 18.0 5.9 13.8 5.0

1 1 40.2 17.0 19.1 4.6 14.4 5.0

1 1 ✓ 42.0 20.6 19.9 6.0 15.9 5.4

tentially causes overfitting on few re-embeddings. Likewise, increasing the number of deformable

encoder or relationship encoder layers does not lead to significant performance improvement. When

both deformable encoder and relationship encoder are removed, ReSGGPGLA still achieves a high

PredCls mR@100 of 39.3, which outperforms many state-of-the-art box-based methods listed in

Table 5.1. This suggests the advantage of our proposed relationship representation over traditional

softmax classification. Treating relationships as attention weights naturally incorporates more se-

mantic information, effectively capturing the distinction between subject and object entities.

We further conduct the analysis of GCA and RCA modules in the relationship encoder.

We use the model with K = 4, Le = 1, and Ld = 1. The model without either GCA or RCA is

equivalent to the one with hyper-parameters K = 4, Le = 1, and Ld = 0 as shown in Table 5.5.

We further train 3 separate models, one with GCA only, one with RCA only, and one with both

modules. When GCA is not equipped, we use the visual features sampled at entity centers as the

inputs to RCA, without using rep-point samplers. The ablation results are shown in Table 5.6.

When both GCA and RCA are not used, the model achieves relatively lower results compared with

when both are used except SGCls zs-mR@100. No significant performance drop is observed when

135

removing GCA or RCA. RCA is more important than GCA based on the results, as the RCA-only

model achieves better performance on most metrics. We conjecture that RCA exchanges semantic

information among rep-embeddings, while GCA only exchanges visual features locally. When

both GCA and RCA are applied, we obtain the best results on most metrics except on SGDet zs-

mR@100.

We also investigate the effectiveness of using separate rep-embeddings to represent sub-

jects and objects. Specifically, we keep K = 4 for this experiment, and conduct 2 groups of

ablation studies, with either Le = Ld = 0 or Le = Ld = 1, and train with separate rep-embeddings

(Es ̸= Eo) or identical rep-embeddings (Es = Eo). The results are shown in Table 5.7. In the

absence of both the entity encoder and relationship encoder, there is minimal performance differ-

ence observed between the two settings. It is difficult for the model to predict relationships without

the entity encoder and relationship encoder, which are responsible for capturing more visual and

semantic context. However, upon adding a single layer of both the entity encoder and relation-

ship encoder, significant performance improvements are observed across all metrics and tasks. This

clearly illustrates the benefits of using separate rep-embeddings for subjects and objects in distin-

guishing semantics in relationship inference. We hypothesize that predicting certain relationships

becomes challenging for the model when it lacks information about which entities serve as subjects

or objects.

5.5.5.2 Analysis of PGLA

To investigate the effects different loss-related configurations proposed in the paper, we

conduct the ablation experiments on Logit Adjustment [187], the proposed PGLA, the margin rank-

136

Table 5.8: Ablation studies of loss and training configurations.

LA PGLA Lη finetune
PredCls @100 SGCls @100 SGDet @100

mR zs-mR mR zs-mR mR zs-mR

27.1 9.7 15.9 5.1 11.4 4.1

✓ 39.4 16.2 19.4 5.5 13.7 4.4

✓ 40.3 18.4 21.4 5.8 15.0 5.1

✓ ✓ 41.2 20.1 21.4 6.6 15.3 5.6

✓ ✓ ✓ 43.7 20.1 27.7 7.1 18.7 5.9

ing loss Lη proposed in Section 5.4.5.1, and fine-tuning. As shown in Table 5.8, RepSGGPGLA

achieves higher mean recall on all metrics compared with RepSGG trained with LA, which con-

firms the effectiveness of PGLA. RepSGGPGLA also achieves a more significant improvement on

zs-mR@100, providing evidence that PGLA is more resilient to under-fitting or over-fitting. Using

Lη with PGLA brings more improvements, as it effectively suppresses unlikely relationships and

avoids excessively penalizing potentially unannotated ones. Finally, with additional fine-tuning the

entire model, we manage to further increase the performance on mean recall.

We study the individual and combinatorial effects of W, B, and D in (5.16). We simply

set W = 1 when W is not applied, and B or D to zero when they are not applied. As shown

in Table 5.9, introducing either component improves the performance on mean recall. The bias

term B has the most significant effect over the results with the largest improvement compared with

individual application of W or D. This can be attributed to the fact that class margins are primarily

determined by the bias. Similarly, D serves as an additional adjustment for class margins, which has

more effect over W as a result. Applying B alone already yields the highest mR, but considering

137

Table 5.9: Effects of W, B, and D in PGLA.

PredCls @100 SGCls @100 SGDet @100

W B D mR zs-mR mR zs-mR mR zs-mR

27.1 9.7 15.9 5.0 11.4 4.3

✓ 28.5 9.4 17.4 5.4 12.8 4.5

✓ 42.0 17.7 21.3 6.5 15.2 5.8

✓ 30.5 10.0 18.8 5.7 13.6 4.8

✓ ✓ 40.5 16.8 20.5 6.9 15.3 5.7

✓ ✓ 30.5 10.2 17.8 5.9 13.5 4.7

✓ ✓ 41.6 18.7 21.4 7.0 16.0 5.9

✓ ✓ ✓ 41.2 20.1 21.4 7.1 15.3 5.8

zs-mR is also crucial for real applications of scene graphs. Combing W and B enhances the zs-

mR performance, and combing all 3 components further improves the zs-mR performance with a

slightly decrease on mR.

The hyper-parameter λ in (5.14) allows for adjusting the sensitivity to run-time recall,

and we explore its effects on recall and mean recall. We evaluate on all 3 SGG tasks with different

values of λ, and the results are shown in Fig. 5.8. As anticipated, increasing λ results in higher

mR@100 but lower R@100, whereas decreasing λ leads to lower mR@100 but higher R@100.

Although better trade-offs may exist, exploring them falls beyond the scope of this paper.

138

10 20 30 40 50 60 70

10

20

30

40

0

0.1

0.40.71.0

0

0.1

0.40.71.0

0

0.1
0.40.71.0

R@100

m
R

@
10

0

PredCls
SGCls
SGDet

Figure 5.8: Effects of λ in (5.14) on R@100 and mR@100. The value of λ used for each model is
annotated, where λ = 0 denotes “PGLA is not applied”, and λ = 1 denotes the default PGLA.

0 2 4 6 8 10 12 14 16 18

4

6

8

10

12

14

16

18

SGTR

RelTRBGNN

FPGL

IETrans

Motifs-TDE

KERN

FCSGG CoRF

RepSGG

µ1σ2σ3σ
(default)

frames per second (FPS)

m
R

@
50

Query-based: Box-based: Point-based:
ResNet-50 ResNeXt-101 HRNet-W48
ResNet-101 VGG-16 Swin-S

Figure 5.9: Inference speed and mR@50 benchmark on the SGDet task.

139

5.5.5.3 Analysis of Inference Speed

Beside performance improvements, another set of benefits of RepSGG are its fast infer-

ence speed and flexible inference configurations. In Section 5.4.3.2, the details of inference are

discussed where we sample rep-points within “3σ”. We have the option to perform inference with

fewer samples by changing the hyper-parameter ξ during inference. We conduct experiments using

samples within 3σ, 2σ, σ, and just the samples at the means µ. We also benchmark several meth-

ods discussed in Section 5.2 as comparisons. We measure the average of frames per second (FPS)

over all testing images for all selected models, which is evaluated on a single Nvidia GTX 1080

Ti GPU with a batch size of 1. The settings from different models follow their original papers and

implementations, so the inference speed depends on not only the architectures, but also inference

configurations such as image size, mixed precision, etc.

The results of mR@50 and FPS are collected on the SGDet task as shown in Fig. 5.9.

Remarkably, the proposed methods achieve better trade-offs between performance and speed. No

crucial performance drop is observed when less rep-points are sampled. By sampling within 3σ,

our model achieves competitive results compared to the state-of-the-art box-based FPGL and query-

based SGTR methods, while being approximately 4.1× and 1.6× faster, with only 4.9% and 2.5%

mR@50 performance drop, respectively. By only sampling at the means, RepSGGPGLA achieves

14.8 mR@50 with a nearly real-time inference speed of 18 FPS, a speedup of approximately 6.8×

and 2.7×, with only 8.6% and 6.3% mR@50 performance drop, compared to FPGL and SGTR,

respectively.

140

5.6 Limitations and Future Work

RepSGG excels on PredCls and SGCls tasks, showcasing an advantage over query-based

methods [181, 182, 191]. Nevertheless, its performance on SGDet does not outperform the state-of-

the-art methods, because neither it fully leverages ground-truth information as effectively as box-

based methods, nor it is directly optimized on the SGDet task like query-based methods. Giving the

GT bounding boxes, we must map the corner coordinates to appropriate feature levels and identify

the best-matched pixels responsible for the detections. However, the best-matched features do not

correspond as accurately to actual ground-truth features as achieved by RoIAlign [20]. A hybrid

representation of box, point, and query features could help improve the performance. Additionally,

it is important to note that our model is exploratory and primarily focuses on visual features. The

integration of multi-modal features, such as depth maps [225], language [136], video [226], and

knowledge graph [151], can be seamlessly incorporated into our RepSGG architecture as additional

queries and keys. The architecture also offers potential for extension to other relationship-related

tasks, such as human-object interaction (HOI) detection [227], video-based HOI detection [228],

video SGG [229], panoptic SGG [230], and panoptic video SGG [231].

The proposed PGLA serves as a general approach for leveraging performance evaluation

to attain a more balanced performance. It can also be adapted for addressing other long-tailed prob-

lems (e.g., in visual recognition), utilizing different metrics (such as accuracy), and incorporating

other loss functions (such as cross-entropy) with minor adjustments.

141

Chapter 6

Dynamically Throttleable Neural

Networks

6.1 Introduction

Recently, deep neural networks (DNNs) are prevailing in computer vision applications on

edge devices and autonomous vehicles where real-time response is needed. The computation power

and memory budget are drastically different across devices. Even on the same device, the runtime

performance varies given different battery conditions, operation temperatures, etc. Researchers try

to design lightweight neural networks [232, 233, 234, 235, 236, 237] or perform neural architecture

search (NAS) [238, 239, 240, 241, 242] with computation complexity constraints. Others seek ways

of network pruning [243, 244, 245, 246], model distillation and compression [247, 248, 249, 250]

or quantization [251, 252, 253, 254, 255] to reduce the memory footprint. These approaches typ-

ically provide offline-trained static models with a constant allocation of computation and memory

142

resource. After training and deploying, the model is fixed such that the whole network has to be

executed. However, the conditions in real-world setting are often different, whereby the run-time

inference is neither optimal from an accuracy or efficiency perspective. The problem lies in that

the naive training approaches can only produce static models with a specialized trade-off between

performance and resource utilization. By leveraging run-time filter selection inspired from Dropout

[256, 257], this paper presents an adaptive system named dynamically throttleable neural network

(DTNN) to tackle challenges in highly dynamic deployment environments. DTNN consists of a

context-aware controller and a throttleable neural network. We use the term “throttleable” to sug-

gest the ability of the model to adaptively balance performance and resource use in response to a

control signal named utilization. TNNs flexibly support diverse and dynamic configurations under

different resource constraints without re-training or re-deploying. The contextual controller learns

the policy to generate the input-dependent utilization as the control signal for TNNs. For example,

the controller predicts lower utilization for “easy” input data (e.g., video sequences of static ob-

jects), and higher utilization for “challenging” one (e.g., video sequences of moving pedestrians).

Optimizing the best trade-off between performance metrics and utilization is carried out via deep

contextual reinforcement learning [258, 259, 260]. In short, the controller determines how much to

throttle, and the TNN determines how to throttle.

A major benefit of DTNN is the separation of the controller and TNN. Any controller

that provides a single scalar can be used, such as heuristic and learnable policies. That is, the con-

troller can be as simple as a fixed utilization parameter, or a state-machine with trainable policies.

Moreover, by using a single utilization parameter u to conditionally gate part of the network, the

complexity of the controller is much reduced while retaining highly flexible inference paths. In

143

input

Gater NNBinary vectors

output

Layer 1 (0,1,…,1)
Layer 2 (1,1,…,1)

… …
Layer K (0,1,…,0)

Layer 1 … Layer K

(a) An example diagram of network with conditional gating mechanism [261, 262]. The “gater”
generates the gating functions as binary masks and applies for all computation nodes.

input

Dynamic NN

output

(b) An example diagram of adaptive control of neural networks [259, 260, 263, 264]. The execution
of a computation node is determined by a control node . As a result, only a subset of the inference
graph is executed.

u = 0.3
“cat”

Controller TNN“easy”
input

“challenging”
input Controller TNN

u = 0.9 “cat”

(c) Our proposed dynamically throttleable neural network. Based on the contextual information
of the input data, the controller decides how much utilization of TNN is needed. Different from
Figure 6.1a, gating is controlled by one scalar, the utilization u, instead of vectors. The dynamic
execution is decoupled instead of entangled as in Figure 6.1b. Our DTNN enables much more robust
and flexible configurations.

Figure 6.1: Conceptual architectures: (a) an ordinary gating network, (b) an ordinary dynamic
network, (c) the proposed DTNN. A computation node can represent a single kernel, a group of
kernels, a layer or a group of layers based on different designs. An executed computation node is
drawn as while an unexecuted or gated node is drawn as .

addition to the input data, TNN only takes an extra input, the utilization, for task-specific predic-

tions. In comparison, standard gating networks (Figure 6.1a) produce a large number of vectors as

control signals that make it hard to train and fine-tune the gating network. Another advantage of

144

DTNN is its high flexibility and modularity. TNN consists of neural kernels which are structured

into “blocks”, while conditional computation is applied at the level of individual block. The gating

strategies consider different dimensions of the network (“width-wise” or “depth-wise”) as well as

the order of gating (“independent” or “nested”). The training approach for TNNs essentially en-

forces sparsity in the kernels such that there is no catastrophic accuracy loss as run-time utilization

decreases in comparison to a naively trained network. TNNs are trained by maximizing task perfor-

mance metric over all the utilization settings, while optionally minimizing the computational cost

for an application under conditions that can change over time.

6.2 Related Work

We focus on the research related to conditional computation and adaptive control of

DNNs [265]. Design of efficient architectures [233, 234, 266, 267, 268], NAS [238, 240, 269, 270],

and static model compression [243, 244, 245, 247, 248, 249, 250, 271, 272, 273, 274, 275] are dif-

ferent from our approach such that we have multiple operational points within a single architecture

for performance and efficiency trade-off, rather than a single static model. In fact, most architec-

tures can be easily converted into a throttleable one without losing the peak performance which will

be demonstrated later in Section 6.5 and 6.5.6.2.

6.2.1 Conditional Computation

Our work builds on conditional computation [280] where portions of the model are ex-

ecuted for prediction to reduce overall computational load. Different from static or post-training

pruning, sub-models are generated on the fly to achieve dynamic model size or computation re-

145

Table 6.1: Theoretical comparisons of the DTNN and related work on conditional computation. The
proposed method supports both width-wise and depth-wise gating. It can achieve static inference
using fixed utilization, or per-input dynamic inference with a learnable contextual controller without
fine-tuning or re-training the throttleable neural network.

Architecture Support Reported Experimental Results

Width-wise Depth-wise Inference Image
classification

Object
detection

Video
classification Embedded

#OP #OP Static Dynamic

DTNN O(2CL) O(2L) ! ! ! ! ! !

DEN [276] O(2CL) O(2CL) ! !

GaterNet [262] O(2CL) O(2CL) ! !

Slimmable [277] O(N) ! ! !

NestedNet [278] O(N) ! !

Spasov & Liò [260] O(2CL) ! !

RNR [263] O(2CL) ! !

D2NN [259] O(N) ! !

BlockDrop [261] O(2L) ! !

SkipNet [279] O(2L) ! !

ConvNet-AIG [264] O(2L) ! !

#OP: the theoretical maximum number of operational

points or sub-models within the architecture (the actual

#OP depends on implementations).

Static: the sub-model is manually selected from several

available configurations. Dynamic: the sub-model is se-

lected dynamically based on the input.

C: the maximum number of channels among all layers.

L: the number of layers within the architecture.

N : the number of configurations within the architecture.

DTNN can have at most O(2CL) operational points when

applying both width-wise and depth-wise gating within the

architecture.

146

source. An intuitive idea is the early prediction where the inference stops at an early stage of the

network once a criterion or “confidence” is satisfied. Such examples include Adaptive Computa-

tion Time (ACT/SACT) [281], BranchyNet [282], and Dynamic Time Recurrent Visual Attention

(DT-RAM) [283], where essentially gating is applied for all the kernels after the decision layer. Con-

volutional neural mixture model (CNMM) [284], as an example, is the ensemble of convolutional

neural networks (CNNs) that are sampled during inference with “early-exit” classifiers. However,

vision tasks in real-world environments are challenging and complex, depending only on low-level

features is not practical. This work leans more towards encouraging sparse activations throughout

the entire network rather than discarding high-level semantic features.

Beyond early prediction, there are other methods that reduce computations conditionally.

Shazeer et al. [285] proposed the Mixture-of-Experts layer that learns to rank and select the top

several sub-networks. Similarly, in [286], a gating module is proposed to select among multiple

branches of networks of features for each input. NestedNet [278] constructs a nested architecture

with several levels of sparsity. Stochastic Depth [287], Skipnet [279], ConvNet-AIG [264] and

BlockDrop [261] are similar approaches that learn to bypass ResNet [2] blocks based on the input.

Similar ideas also appear in recent work on neural architecture search, such as EfficientNet [288]

that studies the model scaling of depth, width and resolution, and OFA [242] that searches sub-

networks for specialized edge devices. Dynamic channel pruning [289, 290, 263] can also be cate-

gorized as conditional computation which performs selective convolutions during run-time.

6.2.2 Adaptive Control

More recently, the research is moving towards dynamically configuring the network topol-

ogy at run-time based on input. In this line of research, no parallel networks are explicitly defined,

147

instead, a single sub-network is selected from the super-network by partially activating model com-

ponents such as filters and layers for each input. For example, Slimmable Neural Networks [277]

can scale the network width to pre-defined configurations. GaterNet [262] uses a separate gating

network to generate sparse binary masks for the backbone network in an input-dependent manner.

Odena et al. [291] introduce a “Composer” module to select the computational graph. D2NN [259]

uses reinforcement learning to jointly learn the parameters of computation nodes and control nodes.

Similarly, Spasov et al. [260] propose a channel based selection method by casting the gating

function as a multi-armed bandit problem. Ahn et al. [276] consider the dynamic network as an

estimator-selector framework for multi-task learning such that the candidate network is optimized

for one specialized task.

6.2.3 Summary

The key difference for TNNs as compared to previous work is the flexible integration of

the network modules with the control decision nodes. Compared with recent work theoretically,

the TNN itself provides a much more flexible model selections and applications (Table 6.1). TNNs

subsume these models [261, 278, 277]. In particular, [277, 278] are subsumed under our nested

width-wise gating strategy with limited number of operational levels. BlockDrop [261] is only ap-

plicable to ResNet-type networks with skip-connections which can be summarized as our nested

depth-wise gating strategy. In terms of adaptive control, [259, 260, 262, 291] generate sequences of

control nodes as a form of vectors. The control and backbone networks are tightly coupled before

fine-tuning training is further applied. Our approach, on the other hand, introduces the single-

scalar utilization parameter to control the backbone network that is user-friendly and semantically

meaningful. With the utilization parameter, the control and backbone network can be trained and

148

optimized independently. Furthermore, our two-phase training does not require fine-tuning the net-

work jointly. The TNN backbone can work by itself and preserve a monotonic performance without

the controller. Other adaptive control approaches can not guaranteed this performance since their

control is either integrated into the network or limited by complicated gating functions. Whereas

most previous papers show results for image classification only, we demonstrate our approach with

insights and provide results for object detection, video classification, and hardware performance.

6.3 Contributions of this Chapter

We are contributing to the body of research on conditional computation and adaptive

control (Section 6.2) with DTNN to improve model performance and address efficient inference

with tight resource budgets such as memory, power, and compute capability. For vision-based

systems, this is particularly important, as the workload and processing throughput are demanding

and dynamic. To the best of our knowledge, we offer the following contributions in this chapter:

1. A novel architecture called throttleable neural networks with plug-and-play throttleable blocks

comprised of convolutional or fully-connected filters, and the usage of model capacity is con-

trolled by a single utilization parameter.

2. A lightweight context-aware controller trained to regulate TNNs’ performances and comput-

ing needs with learnable control policies.

3. Comprehensive experimental results on image classification, object detection and video-based

hand gesture recognition tasks that demonstrate the effectiveness of TNNs, while most of the

previous work only shows results for image classification.

149

4. A use case of DTNN for hand gesture recognition system which outperforms the vanilla

architectures and all fixed utilization settings.

5. Physical power and run-time measurements on an embedded GPU that demonstrate the effi-

cacy and practicality of TNNs.

6.4 Technical Approach

6.4.1 Objective and problem setting

Our goal is to enable TNN with dynamic performance during inference while having the

same or similar number of parameters with vanilla ones. Furthermore, TNN should be modular such

that (1) they are easily trained with gating policies that can be fixed or learned, (2) the controller can

be trained separately without re-training the TNN, (3) the framework is largely model-agnostic.

A neural network is a function TΦ(x) parameterized by Φ that maps an input data x to

an output ŷ. For example, x can be an image or a video sequence, and ŷ is the prediction of class

label for a classification problem. We define a throttleable neural network as a function of two

variables, TΦ(x,u), where u ∈ (0, 1] is a control utilization parameter that indicates how much

“computational effort” the network should exert. We emphasize that u is an additional input to the

network; after training is complete, the network parameters Φ are fixed but u can change.

The problem is then formulated as the minimization of the “task loss” under all utilization

settings, and the general objective of training TNNs is

minEu∼Uniform(0,1) [Ltask(y, ŷ;u)] , (6.1)

where y is the ground-truth label of x, and the utilization u is uniformly drawn from [0, 1]. The loss

150

Ltask is a task-specific performance measure. We use cross-entropy loss for classification tasks, and

smooth L1 loss [39] for bounding box regression in object detection tasks.

6.4.2 Throttleable Neural Networks

6.4.2.1 Throttleable Block

We consider the building block of TNN architectures that we call throttleable block (TB).

A TB consists of arbitrary number of filters within one convolutional and fully-connected layer, or

across several layers with skip-connections. Most CNN architectures can be converted into TNNs

by replacing their layers with TBs.

Let x, y denote the input and output features to the throttleable block t parameterized

by a set of transformations ϕ = {ϕi | i = 1, . . . ,D} ⊂ Φ, where D is the size of the set which

is called “cardinality”. The transformation ϕi could be anything from individual neurons to entire

networks, and we focus on an intermediate level of granularity. It can be arbitrary NN modules

like convolutional or fully-connected layers, as long as they have the same input space and their

outputs can be aggregated appropriately. We define the gating functions g = {gi | i = 1, . . . ,D}

to determine whether to execute each transformation. Then the throttleable block has the functional

form as

y = tϕ(x,u)

= aggr (g(x,u)⊙ ϕ(x))

= aggr (g1(x,u) · ϕ1(x), . . . , gD(x,u) · ϕD(x)) ,

(6.2)

where gi(x,u) : x × (0, 1] 7→ {0, 1} is the gating function generating a scalar of either

0 or 1, ⊙ denotes element-wise multiplication, and aggr is the aggregation function that maps the

151

1 0 1 0 1 1 1 0

generate gating function

gate selected filters

aggr
(a)

1 0 1

generate gating function

gate selected layers

+ + +

is gated

(b)
,

gate last few

(c)

,

gate randomly

(d)

Figure 6.2: Selective gating strategies. The colored blocks are activated groups while white groups
are gated. (a) and (b) are gating strategies along different dimensions, while (c) and (d) have differ-
ent ordering of gating.

set of transformations to the appropriate output space by feature concatenation or summation. The

gating function gi is computed first and determines whether to execute ϕi in practice. For example,

if gi = 0, the component ϕi is effectively disabled and replaced with zero tensors. Our exposition

focuses on a single gated module for simplicity, but in practice we compose multiple TBs in a

typical TNN. Let x(l) denote the input feature to the l-th layer, then the output feature x(l+1) has

the functional form as x(l+1) = tϕ(l)(x(l),u), and x(l+1) is directly fed as input to the next layer.

152

6.4.2.2 Gating Strategies

For simplicity and comparison, we use convolutional layers for illustrating different gating

strategies. Let ϕ denote a convolutional layer with C filters. It can be decomposed into D groups

of transformations {ϕi ∈ RC/D×h×w | i = 1, . . . ,D}, each of which consists of at most C/D

filters. Each group can be gated selectively. The decomposition and gating is performed along the

first dimension (channel) of ϕi, and we name this gating strategy as WIDTHWISE gating. Then

we apply the non-gated transformations on the input features and perform aggregation following

Equation 6.2. An example of WIDTHWISE gating is shown in Figure 6.2a.

Optionally, we can chose to skip the whole layer or block if we have shortcut connections

between layers such as in ResNet [2], DenseNet [292], and their variants, then we call this gating

strategy as DEPTHWISE gating. Formally, we consider a residual block of the form as y = ϕ(x)+x

where x and y have the same shape, and a DEPTHWISE throttleable block can be represented as

y = tϕ(x,u) + x

= ϕ(x) · g(x,u) + x

=

ϕ(x) + x if g(x,u) = 1

x otherwise.

(6.3)

In DEPTHWISE gating, ϕ can be any block that consists of either a single layer or several layers,

and the gating function g is applied to the whole block. An example of DEPTHWISE gating is

shown in Figure 6.2b. It is worth noting that WIDTHWISE and DEPTHWISE gating can also be

used concurrently within the same network.

153

6.4.2.3 Mapping Utilization to Gating Functions

For each throttleable block, the mapping g(x,u) from the utilization to binary gating vec-

tors needs to be defined. We consider INDEPENDENT and NESTED gating strategies to determine

which transformations should be gated off, or the order of gating. In previous conditional compu-

tation research, the components of each gated module are viewed as independent of one another

with few constraints on their pattern of activation. This INDEPENDENT gating strategy (Figure

6.2d) works for each component to model different features, such as in [261, 285]. For our goal of

throttling over a range of set points, however, this specialization produces redundancies in the rep-

resentation. We propose a different method that we call NESTED gating. In the NESTED strategy,

the gating function g is constrained such that gi = 1⇒ gj = 1 ∀j < i (Figure 6.2c). In our experi-

ments, we employ a training scheme designed to maximize the useful range of u. For each training

sample, we draw u ∼ Uniform[0, 1]. Then, for each throttleable block, we select d group of trans-

formations to be activated, where d = min(D, ⌊u · (D + 1)⌋) and D is the total number of groups

in the block (cardinality). For NESTED gating strategy, we set g1, . . . , gd to 1 and gd+1, . . . , gD to

0, while for INDEPENDENT gating strategy we choose d indices at random without replacement.

Empirically, we observe that the NESTED strategy gives superior throttling performance given the

same architecture.

6.4.2.4 Learnable Gating Function

Equation 6.1 only considers the task performance under all the utilization settings. Op-

tionally, we can add model complexity constraints while maximizing the task performance, and the

154

overall loss is then defined as

L(x,u,y, ŷ) = Ltask(y, ŷ;u) + λC(x,u), (6.4)

where C is a function that measures the resources used (FLOPs, energy, latency, etc.) for data x

at utilization u, and λ controls the balance of the two components in the loss. The utilization u is

used as the ground-truth for computing the complexity. We enforce the constraint that the actual

complexity of the TNN should not exceed the target complexity u by optimizing the combined loss

function (Equation 6.4). We experimented with variants of C of the two functional forms, namely

the hinge penalty

Cphinge(x,u)
def
= max(0, c(Φ;x,u)− u)p, (6.5)

and the distance penalty

Cpdist(x,u)
def
= |c(Φ;x,u)− u|p, (6.6)

where p ∈ {1, 2}, and c(Φ;x,u) is the complexity of a TNN. In practice, we found that using

the distance penalty with p = 1 achieves a higher accuracy for the same resource constraint. The

complexity of a TNN is defined as the macro-average of the complexities over all modules:

c(Φ;x,u) =
1

L

∑
l

c(ϕ(l);x(l),u), (6.7)

where c(ϕ(l);x(l),u) denotes the complexity of a block, L is the total number of blocks in a TNN,

and we set c(ϕ(l)) = 1 for non-throttleable blocks. A natural measure of the complexity of a TB is

its cardinality of active transformations which is defined as

c(ϕ;x,u) = ∥ϕ∥−1
1

∑
i

1 (gi(x,u) = 1) · ∥ϕi∥1, (6.8)

where ∥ϕ∥−1
1 is the total number of transformations in a TB, 1(·) is the indicator function, and

∥ϕi∥1 is the number of transformations in a group of the TB.

155

Learning the gate controller is complicated by the “rich get richer” interaction between g

and ϕ, in which only the subset of ϕ selected by g receives training, which improves its performance

and reinforces the tendency of g to select it. To address this, we adopt a two-phase training strategy

similar to [281]. In the first phase, we train the “data path” with random utilization to optimize only

Equation 6.1 for being compatible with throttling. In the second phase, we train the gate to optimize

the full objective (Equation 6.4) while keeping the data path fixed.

6.4.2.5 Training the Data Path

The data path is referred to as the TNN for specific tasks without any form of learnable

gating functions or controllers. For classification problem, the data path is the network consisting

of the feature extractor and multi-class classifier. During phase-1 of training, we train the feature

representations of the TNN to be robust to varying amounts of gating. Therefore, the utilization

is randomly sampled from a uniform distribution (Equation 6.1). The choice of how u is sampled

during training is important for obtaining the desired performance profile. From an empirical risk

minimization perspective, we can interpret the training-time distribution of u as a prior distribution

on the values of u that we expect at test-time. Naı̈ve training without gating can be viewed as one

extreme, where we always set u = 1. Either NESTED or INDEPENDENT gating function can be

used in phase-1 training.

6.4.2.6 Training the Gate

Besides the fixed gating functions NESTED and INDEPENDENT, we propose two learn-

able gating functions called CONCRETE and REINFORCE. Our objective is to learn all the gating

functions G = (g(1), · · · , g(L)) during the phase-2, where we freeze the data path parameters Φ and

156

optimize the gate function parameterized by Ψ. To make the output of a gating function gi either 0

or 1, it is modeled as a Bernoulli random variable parameterized by ψi:

gi(x,u;ψi) ∼ Bernoulli(P(x,u;ψi)), (6.9)

and our task is to learn the parameters ψi for minimizing C(x,u) while maintaining the task per-

formance. It is worth noting that the utilization for each TB could vary and the average utilization

reaches u approximately. We minimize the difference of the actual utilization and the target utiliza-

tion u for each TB instead of enforcing an exact utilization value. Since the complexity estimate

C is discontinuous and non-differentiable, we need to employ a gradient estimator for training. We

evaluated two existing methods of training networks with stochastic discrete neurons for this pur-

pose.

Score function estimator: The most common approach [261, 279, 293, 294] is to treat

g as the output of a stochastic policy and train it with a policy gradient method such as the score

function (REINFORCE) estimator,

∇ΨE[C] = ExEu[C · ∇Ψ log P(G(x,u; Ψ))], (6.10)

where P(G(x,u; Ψ)) is the probability density of random variables G. Since each gi is an indepen-

dent Bernoulli random variable (Eqn 6.9), the log probability is given by

log P(G) =
∑
l

log P(g(l))

=
∑
l

∑
i

log[g
(l)
i pi + (1− g(l)i)(1− pi)],

(6.11)

where pi = P(gi;x,u,ψi) is the probability of gating determined by the learnable gating functions.

Continuous relaxations: Relaxation methods soften the discrete gate vector into a contin-

uous vector of “activation strengths”. In particular, we use Concrete random variables (CONCRETE)

157

[295] to stand in for discrete gating during training. Concrete distributions have a temperature pa-

rameter τ where the limit τ → 0 recovers a corresponding discrete distribution. The Bernoulli

distribution is replaced by the binary Concrete distribution,

gi ∼ Sigmoid((Z + log
pi

1− pi
)−τ), (6.12)

where Z ∼ Logistic(0, 1). We set τ = 0.1 during training to make the network differentiable, and

use τ = 0 during testing to recover the desired hard-gated network.

6.4.3 Context-Aware Controller

Trained TNNs take an input and a single control parameter u. However, using a fixed con-

trol parameter at run-time may not provide optimal trade-off between performance and utilization.

The goal of incorporating the context-aware controller is to adjust the control parameter for TNNs

dynamically, and there are many methods to achieve this functionality in a heuristic or learned man-

ner. In this paper, we investigate a trainable input-dependent controller via solving a contextual

bandit problem. Such a controller for the hand gesture recognition task is elaborated later, which

we believe offers a generalizeable example for a wide variety of vision-based applications.

6.4.3.1 Input-dependent Contextual Bandit

A simplified approach to learn the controller is to frame it as a contextual bandit problem.

Hypothetically, for a classification problem, the fact that different inputs or classes require different

amount of computational resources is demonstrated in [261, 262]. Based on this assumption, in

order to determine what is the best utilization parameter for each input, the prediction of it can

be formulated as a sub-problem using contextual bandits. To derive the optimal controller, we

158

develop the controller network FΘ which is parameterized by weights Θ. The controller outputs the

probabilities of choosing a pre-defined set of actions. During training, a reward is given considering

the actual FLOPS and confidence of the prediction.

6.4.3.2 State

Given input image or video sequence x, the state representation is simply defined by the

input itself as s. The goal of the controller is to receive current input signal and select actions

in a way that maximizes rewards for all similar input signals. It will learn appropriate utilization

parameters u for different states. The controller network will extract a dense feature representation

of input, as well as produce the probabilities for taking each action. The state reflects the contextual

information associated with input x.

6.4.3.3 Action

The action is the selection of the utilization parameter u from the action set U . Let K =

|U| denote the size of the action set. The actions resemble the definition of “arms” in multi-armed

contextual bandit problems. The learner pulls an arm according to information provided by input

x. As a result, the prediction of an action is context-dependent. The size of the action set depends

on how u is discretized, namely the step between the adjacent selections of utilization. As long

as the number of possible actions is determined, the action set is defined as U = {uk = k
K | k =

1, . . . ,K}. There can be as many as actions in the set, but K should correlate with the cardinality

D of the throttleable blocks. Larger K requires larger D to differentiate TNN sub-models if the

differences among actions are small. The context-aware controller is relatively small, it is much

more difficult to train with larger K. For the rest of the paper, we simply set K = 10 since we have

159

at most 16 filters in each TB.

6.4.3.4 Reward

Only the throttleable blocks that are not gated off according to u and gating strategy will

be evaluated in the forward pass. The actual percentage of computations over the maximum of being

full-throttled does not always equal to the utilization. Therefore, the true utilization is measured in

the forward pass where the ratio of actual number over the maximum of Multiply–Accumulate

Operations (MACs). One can also simply use u as an approximation for simplicity which is shown

below. Given the prediction ŷ with confidence c (softmax of the prediction logits) from the TNN,

the reward of taking u is defined as:

r(u|y, ŷ, c) =

exp(1− u) · (1− u) if y = ŷ

−(c+ γ1) · (u+ γ2) otherwise,
(6.13)

where γ1 and γ2 are constant parameters for balancing the reward. Larger γ1 gives more penalty

if we use more computations, and larger γ2 gives more penalty if the network is too confident of a

wrong prediction. Their values are empirically selected so that no over-optimization occurs during

training, which may make the controller only predict the same utilization value. In experiments,

they are empirically set to 0.5 and 1.5 respectively. Such design of reward encourages to achieve

higher accuracy while retaining low utilization. And more penalty is given if the prediction is wrong

but takes a high utilization parameter.

6.4.3.5 Optimization

Formally, we define the policy of choosing the utilization as πΘ(uk|x) = [FΘ(x)]k, where

Θ denotes the learnable weights of the controller network FΘ, and [FΘ(x)]k ∈ [0, 1] is the k-th entry

160

of the output vector produced by the controller network which represents the probability of choosing

the particular utilization uk. Then the utilization is determined by the optimal action with the highest

probability such as

u∗ = argmax
uk∈U

πΘ(uk|x). (6.14)

In order to encourage exploration, ϵ-greedy is applied where a random utilization is selected with

probability ϵ. The contextual bandit network is trained via a policy gradient approach [296] that

maximize the expectation of rewards. The loss function for training the controller is defined as

LΘ = −r(u) log πΘ(u|x), (6.15)

where the conditions of the reward are omitted for the simplicity of presentation. There are other

designs of such a context-aware controller network. For example, we can utilize more complex

interactions between the physical environment and the state of our system if we frame the controller

as a full Markov Decision Process. In our formulation of the controller, we treat the TNN as a fixed

model, but they can also be fine-tuned by end-to-end training.

6.4.3.6 Training and Testing

Training the TNN is a two-phase procedure as discussed in Section 6.4.2.5 and 6.4.2.6.

The context-aware controller is considered as a learnable gating function decoupled from the TNN,

hence only the phase-1 TNN training (Eqn 6.1) is adopted via curriculum learning [297]. Specifi-

cally, the TNN is firstly trained with a low utilization, and then with a higher utilization as training

epochs increases. By starting with easier tasks and less learnable parameters, training the TNN is

more stable with faster convergence. After training the TNN, we freeze its parameters and train the

context-aware controller via Eqn 6.15. The entire procedure for training a DTNN is illustrated in

161

Algorithm 4.

Algorithm 4 Context-aware TNN training

Input: Training set X = {(xn,yn)}Nn=1

Output: TNN TΦ, Controller network FΘ

1: Let u← u0, step ∆u, learning rates α1, α2

2: for iteration← 1, 2, · · · ,NTNN do ▷ TNN training

3: (x,y)← Sample data from X

4: ŷ← TΦ(x,u)

5: Φ← Φ− α1∇Ltask(y, ŷ)

6: if reach the iteration of increasing u then

7: u← u+∆u

8: end if

9: end for

10: Freeze parameters of TΦ ▷ Controller training

11: for iteration← 1, 2, · · · ,Ncontroller do

12: (x,y)← Sample data from X

13: u← Forward FΘ via ϵ−greedy

14: ŷ, c← Forward TΦ

15: r ← Compute via Equation 6.13

16: Θ← Θ− α2∇LΘ

17: end for

18: return TΦ, FΘ

162

One of the advantages of DTNN is that the controller is replaceable after deployment.

There are many methodologies to design controllers, such as heuristic rule-based approaches [298,

299], data-driven model-based approaches using reinforcement learning (RL) [259], etc. Heuristic

rule-based approaches are intuitive, hand-crafted, but not context-aware. Data-driven model-based

approaches are capable of making context-aware decisions. For example, the controller is imple-

mented as a much smaller neural network than the data network that takes in the input and predicts a

proper control parameter. This is another advantage of a single controllable parameter as it is more

feasible to learn.

6.5 Experiments

6.5.1 Experimental Setup

To examine the generality of our TNN concept, we implemented throttleable convolu-

tional and fully-connected layers to directly replace the vanilla layers. Then, we created throttleable

variants of several popular CNN architectures. All experiments are implemented with the same de-

fault architecture and training hyper-parameters for each dataset unless explicitly mentioned. We

use suffix to indicate specific gating strategies such as “-W” for WIDTHWISE, “-D” for DEPTH-

WISE, “-N” for NESTED and “-WN” for WIDTHWISE NESTED gating, etc. All experiments are

implemented using PyTorch [111] (versions 0.3.1, 0.4, 1.0 and 1.3), and run on Nvidia GTX 2080

Ti or GPUs. We generate all of the performance curves by evaluating each model on the full test set

using fixed values of u. We refer to the vanilla model that do not have gating applied during training

as the baseline. Each data point in each chart is the result of a single evaluation run for a single

instance of the trained model.

163

VGG-W: VGG [42] is a typical example of a “single-path” CNN. We apply WIDTHWISE

gating with concatenation aggregation to groups of convolutional filters in each layer and combine

the outputs by concatenation. Because VGG lacks skip-connections, we enforce that at least one

group must be active in each layer, to avoid making the output zero.

ResNet-D: We also experimented with a depthwise-gated version of standard ResNet

with summation aggregation, similar to BlockDrop and SkipNet [279, 261]. In this architecture,

a throttleable block is converted from an entire ResNet block that can be skipped when gated off.

ResNeXt-W: ResNeXt [43] is a modification of ResNet [2] that structures each ResNet

block into groups of filters then aggregates the results by summation. We created a widthwise-gated

version of ResNeXt (“ResNeXt-W”) by considering each group as a throttleable block.

DenseNet-D/-W: In the DenseNet architecture [292], each dense block contains multiple

narrow layers that are combined via concatenation. These narrow layers make natural units for

gating. We view this architecture as both widthwise and depthwise gating due to the nature of dense

blocks and skip connections.

C3D-W: The throttleable block used in C3D is of the NESTED widthwise gating strategy

with concatenation aggregation, which is applied to 3D convolutional and fully-connected layers.

We only apply the widthwise gating along the channel dimension, and it is worth noting that it can

also be applied along the temporal dimension.

164

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5
u

=
0.

5

u
=

1

FLOPs (×108)

A
cc

ur
ac

y
D

ro
p

(%
)

TNN (Ours)
BlockDrop [261]
RNR [263]
ConvNet-AIG [264]
SkipNet [279]
Chen et al . [290]
Spasov & Liò [260]

Figure 6.3: Comparisons of relative accuracy drop (%) w.r.t. the peak accuracy on CIFAR-10 for
DenseNet-WN with recent dynamic computation methods. Green shaded area denotes the utiliza-
tion range of [0.5, 1] for the TNN, which has 3 × 108 FLOPs at u = 1 and 0.79 × 108 FLOPs at
u = 0.5.

6.5.2 Image Classification Task

6.5.2.1 CIFAR-10

We evaluate the proposed TNNs on CIFAR-10 [300] and ImageNet [301] datasets fol-

lowing the standard settings of dataset split and pre-processing [2, 42, 300, 301], and report the

corresponding top-1 classification accuracy.

The TNNs are based on following architectures: DenseNet-WN, the DenseNet-BC (a

compressed DenseNet) with 3 dense blocks with a growth rate k = 12, where each dense block is of

WIDTHWISE NESTED gating with cardinalityD = 16; ResNeXt-WN, the ResNeXt-50 architecture

as described in [43] with cardinality D = 16 in each of the 4 stages; VGG, the VGG-D architecture

truncated to the first 3 convolution stages followed by a 4096-dimensional fully-connected layer,

where all three convolutional stages and the fully-connected layer are throttleable with cardinality

D = 16. The learnable gating function (REINFORCE or CONCRETE) is implemented as a Multi-

165

layer Perceptron (MLP) network (FC→ ReLU→ FC) that maps the control input u to gate vectors

g for each throttleable block. We show results for the C2
dist complexity penalty (Equation 6.6) where

p = 2 and λ = 10.

We compare DenseNet-WN with some state-of-the-art models described in Section 6.2

on CIFAR-10. Due to the diversity of the ideas, implementations, and reported metrics, we only use

methods that report computation complexity (e.g. FLOPs) and accuracy across multiple operational

points for comparison. The FLOPs for other methods are directly obtained from their papers. For

every operational point of each method, we compute its FLOPs and accuracy drop between the

corresponding peak accuracy, namely the increase of error. It is important to note that utilization

controls the ratio of active filters instead of ratio of FLOPs (low-level filters will have more FLOPs).

The FLOPs of other methods are obtained from their papers. As shown in Figure 6.3, our throttleable

DenseNet achieves the most robust performance across a wide range of utilization (only a few

operational points are drawn for clear visualization) . We also have the largest number of operational

points that can be adjusted under different computational constraints in a single model without

fine-tuning. For all dynamic inference models [260, 261, 262, 263, 264, 279, 290], re-training or

fine-tuning is required to obtain each individual model shown in Figure 6.3.

6.5.2.2 ImageNet

Our second set of experiments examines image classification on the 1000-class ImageNet

dataset [301] based on DenseNet-169, ResNeXt-50, and ResNet-50 architectures. For ImageNet, we

use pre-trained weights to initialize the data path, then fine-tuned the weights with gating. In these

166

0 2 4 6 8 10 12 14 16

0

5

10

15

u
=

0.
5

u
=

1

FLOPs (×109)

A
cc

ur
ac

y
D

ro
p

(%
)

TNN (Ours)
BlockDrop [261]
RNR [263]
ConvNet-AIG [264]
SkipNet [279]
Chen et al . [290]
Slimmable [277]

Figure 6.4: Comparisons of relative accuracy drop (%) w.r.t. the peak accuracy on ImageNet for
ResNeXt-WN with recent dynamic computation methods. Green shaded area denotes the utilization
range of [0.5, 1] for the TNN, which has 4.2 GFLOPs at u = 1 and 1.1 GFLOPs at u = 0.5.

u
DenseNet-169
DenseNet-169 WN

ResNeXt-50
ResNeXt-50 WN

Figure 6.5: TNNs are robust to test-time dropout for object detection on VOC2007 using Faster
R-CNN with throttleable “backbones”.

experiments, we consider WIDTHWISE and DEPTHWISE NESTED gating. For the DEPTHWISE

NESTED strategy, we repeatedly iterate through the stages of the network from output to input and

turn on one additional block in each stage, unless the proportion of active residual blocks in that

stage exceeds u, and stop when the total utilization exceeds u.

We compare ResNeXt-WN with methods described in Section 6.2 on ImageNet, and per-

form the same comparison as described in Section 6.5.2.1. As shown in Figure 6.4, our TNN model

still achieves the best trad-off between accuracy and efficiency across a wide range of utilization.

167

active conv3D gated conv3D active FC gated FC

pr
ed

ic
tio

n

C3D-WController

Input

Figure 6.6: A DTNN framework consisting of a light-weight context-aware controller and WIDTH-
WISE throttleable 3D convolutional neural network (C3D-W) for video-based hand gesture recog-
nition. The first layer tϕ(1) of C3D-W is non-throttleble.

ResNeXt-WN achieves its peak accuracy of 75.66% at utilization u = 1 (4.2G FLOPs), and 71.72%

at u = 0.5 (1.13G FLOPs). As comparisons, Slimmable [277] achieves similar peak accuracy of

76%, but degenerates more with only four pre-defined operational points; the best pruned model

from Chen et al. [290] achieves 68.62% accuracy with 1.6G FLOPs, where our model outperforms

it by 3.1% while having 0.47G less FLOPs.

6.5.3 Object Detection

We experiment TNNs for object detection task on the PASCAL-VOC2007 dataset [302].

To create a throttleable object detector, Faster R-CNN [19] is adopted without changing its hyper-

parameters and the backbone network is converted into a TNN. We use WIDTHWISE NESTED

DenseNet-169 and ResNeXt-50 in this experiment. Following the approach of [2] for combining

ResNet with Faster R-CNN, we use the TNN as the feature extractor, followed by a region proposal

network (RPN) and a detection “head” for object proposal classification and regression. The vanilla

models are trained on ImageNet and then fine-tuned on VOC2007. The throttleable models are

pre-trained TNNs on ImageNet and fine-tuned on VOC2007 with uniform sampling of u.

We evaluate the above-mentioned models and report the mean average precision (mAP

[.5, .95]) in Figure 6.5. Similar to the results on image classification, we observe that the baseline

168

methods degenerate quickly when any gating is applied and reduce to zero at u = 0.55 approx-

imately. For throttleable DenseNet and ResNeXt, the detection performance is well maintained.

DenseNet-169-WN achieves 0.61 mAP at u = 1 and 0.58 mAP at u = 0.5, saving approximately

60% FLOPs with only 0.03 mAP drop. ResNeXt-50-WN achieves even higher mAP in a broader

range of utilization (0.6 mAP at u = 0.375). Though the TNN have little lower peak MAP, it

degrades more gracefully and achieves exceptional trade-offs between performance and computa-

tions. TNNs achieve higher tolerance to test-time dropout because of learning robust features under

different utilization levels.

6.5.4 Video-based Hand Gesture Recognition

To showcase the TNN architecture for more complex vision applications, we implemented

a TNN architecture based on C3D [303] to perform hand gesture classification referred as C3D-W. It

takes a fixed number of frames and a control parameter as input and outputs the gesture classification

results. The controller is a deep contextual bandit network that follows the design discussed above.

The proposed DTNN framework is shown in Figure 6.6.

C3D-WN: We implement a C3D-W architecture with WIDTHWISE NESTED gating strat-

egy. Experiments are performed for the hand gesture recognition task on the 20BN-JESTER dataset

[304]. There are a total of 148,092 videos of which 118,562, 14,787 and 14,743 are in training,

validation and test set, respectively. Since the ground-truth of test dataset is not publicly available,

we use the validation dataset for testing and report the results. The class distribution of the dataset

is well balanced except for the class Doingotherthings which represents activities other than

hand gestures. We resize the input video spatial size (height × width) to 100× 160, and sample 16

continuous frames with random starting index from each video. For C3D-W training, we use four

169

Nvidia RTX 2080 Ti graphic cards with the batch size of 20 for each GPU. Adam optimizer [305]

is applied with an initial learning rate of 5 × 10−5, β1 = 0.5 and β2 = 0.999. The learning rate

is reduced by 10 with the patience of 3 epochs if the loss is not decreasing. The network is trained

for 20 epochs with the curriculum learning schedule where u is set to 0.1, and then increased by 0.1

every two epochs. No further fine-tuning is carried out for training the TNN.

Average Accuracy Doingotherthings DrummingFingers Nogesture PullingHandIn PullingTwoFingersIn PushingHandAway

PushingTwoFingersAway RollingHandBackward RollingHandForward ShakingHand SlidingTwoFingersDown SlidingTwoFingersLeft SlidingTwoFingersRight

SlidingTwoFingersUp StopSign SwipingDown SwipingLeft SwipingRight SwipingUp ThumbDown

ThumbUp TurningHandClockwise TurningHandCounterclockwise ZoomingInWithFullHand ZoomingInWithTwoFingers ZoomingOutWithFullHand ZoomingOutWithTwoFingers

82.67%

u

Figure 6.7: Classification accuracy on validation set over utilization parameter u for each gesture
class. The top-left facet shows the average accuracy of 81.10% across all classes ,while a vanilla
C3D achieves an accuracy of 82.67%.

6.5.4.1 Context-Aware Controller

We experiment a 3D version of ShuffleNet architecture [234, 306] as the controller net-

work. The specifications of the DTNN are presented in the Appendix Table 6.4 and 6.5. The design

of the controller network is computation-efficient such that the total number of parameters is only

0.955M with 0.255G MACs. Note that the controller network is not a TNN architecture. For con-

troller training, we use a smaller batch size of 16 for handling both the data path and controller

network at the same time. We use RMSprop optimizer [307] with a learning rate of 1× 10−7. The

controller is trained for 10 epochs while freezing the parameters of the data path.

Figure 6.7 shows the various utilization levels for each gesture class. We verify our

170

earlier hypothesis (Section 6.4.3.1) that some classes require more resources than others. For in-

stance, the classification performance remains almost constant for each tested utilization parameter

u for Doingotherthings, while it is linear with u for Shakinghand. This demonstrates

that we can use less resources (e.g., set u = 0.1) and still achieve high classification accuracy for

Doingotherthings. Practically, DTNN can run with low utilization (“idle”) when detecting

non-gesture activities, and with higher utilization when detecting gestures (“throttle”). Given this

trained TNN, the classification results of each test video for every u parameter are collected. Then a

performance oracle is derived by collecting the lowest u where the TNN makes the correct predic-

tion for each testing data. The oracle has an accuracy of 96.14% and an average utilization of 0.27.

It is important to note that the performance oracle is just an ideal case for a particular TNN which

is impossible to achieve.

The effectiveness of this context-aware controller is confirmed with Figure 6.8a. The

learned controller achieves an accuracy of 85.24% with an average utilization of 0.41, which outper-

forms the vanilla C3D by 2.57%. It manifests that the controller learns the input-specific utilization

for each input. In Figure 6.8b, by comparing utilization distributions with the oracle, the controller

learns a sparse selection of u where u = 0.1, u = 0.2 and u = 0.8 are chosen more often. Al-

though the controller has 0.14 more utilization on average and 10.90% accuracy drop compared to

the oracle, it outperforms all the fixed utilization configurations as well as the vanilla C3D. It further

demonstrates how the system can operate within different utilization levels with a learned control

policies. Regarding the time of processing a 16-frame clip, we compute the number of parame-

ters, MACs and inference time (clip per millisecond) as shown in Table 6.6. The controller adds a

very little computation cost (0.52% more MACs), but reduces much more overall computations by

171

dynamically predicting per-input utilization for the TNN.

Controller

85%

80% 79% 78% 76% 75% 72%

65%

57%

48%

32%

96%

Oracle

Utilization u

0.41

0.27

A
cc

ur
ac

y

0.20.30.40.60.70.80.9 0.11.0 0.5

The higher the better

The lower the better30%

40%

50%

60%

70%

80%

90%

100%

(a) Utilization s accuracy for the learned controller, performance oracle, and fixed u configurations.
The area of a circle denotes the average utilization, and the accuracy for each configuration is shown
below the circle.

Controller Oracle

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Percentage (%)
353025201510 50

U
til

iz
at

io
n

u

(b) A comparison of utilization distributions.

Figure 6.8: Hand gesture recognition results on 20BN-Jester validation set (as test set). With the
context-aware controller, DTNN achieves the best accuracy-computation trade-off comparing to
TNN with fixed utilization.

172

0.85

0.80

0.75

0.70

0.65
A

cc
ur

ac
y

1.0 0.8 0.6 0.4 0.2
Utilization u

24

22

20

18

16

10

9

8

7

P
ow

er
 (W

)

Ti
m

e
(S

)

run time

mean power

accuracy

Figure 6.9: Measured throttling performance on NVIDIA Jetson AGX Xavier.

Algorithm 5 WIDTHWISE NESTED Conv2D
Function: Conv2D-WN(x, u, W, b)

1: Let C ← OUT CHANNELS(W)

2: Let n← ⌈u · C⌉

3: Ŵ, b̂←W[0 : n],b[0 : n] ▷ Slice parameters

4: ŷ← CONV2D(x, Ŵ, b̂)

5: z← ZEROS(n− C, size(ŷ))

6: y← CONCATENATE(ŷ, z) ▷ Pad with zeros

7: return y

6.5.5 Hardware Implementation

We examine the performance of TNN on embedded systems. We implement and mea-

sure the computational benefits of TNNs on a NVIDIA Jetson AGX Xavier processor [308], using

a throttleable VGG-WN model trained on the CIFAR-10 dataset. Relative savings in run-time and

power rather than actual peak values are shown because the results highly depend on the provided

hardware mechanisms. We replace the convolution operations in VGG with throttleable 2D convo-

lution by tensor slicing described in Algorithm 5 where W and b are the weights and bias for the

convolution kernel. To perform a gated convolution, we form truncated weights and bias tensors by

173

removing channels corresponding to nonactive groups, then perform an ordinary convolution with

the truncated weights, and finally restore the output to its original shape by padding with zeros. In

the case of NESTED gating, the implementation is highly efficient, requiring only two tensor slice

operations and one concatenation.

Figure 6.9 shows accuracy, mean power draw, and run time for classifying the entire

CIFAR-10 test set on the Xavier GPU in “MAXN” power mode. The shaded regions show standard

deviation of 3 experiments. Salient aspects of this result is the linear ramp-down of the power and

run-time while accuracy remains high at lower utilization settings. Compared to no throttling where

u = 1, the TNN at u = 0.1 uses 70% of the power, 74% of the run time, and 52% of the total

energy (103J s 197J). We anticipate similar gains in TNN inference efficiencies for other TNN

models described in this paper. The key is having an effective control-policy to guide the utilization

settings to match application needs.

6.5.6 Analysis

TNNs enable a general framework for conditional computation, whereby the overall com-

putational load and model accuracy can be determined dynamically at inference time. In this section,

we offer in depth analysis of our results to best evaluate the proposed architecture and methodology.

6.5.6.1 Ablation Study on Gating Strategies

The experimental results on CIFAR-10 are shown in Figure 6.10. The most noticeable

result is that all TNNs are much more robust to various utilization configurations, while the naı̈ve

models degrade dramatically (less than 50% accuracy when applying 25% dropout). By comparing

the three architectures, DenseNet-DW achieves the best peak accuracy of 91.19% at u = 0.8125,

174

and maintains the accuracy over 91% in the utilization range of [0.5, 1]. The other two TNN

architectures also demonstrate strong and consistent performance in the same utilization range.

Among all gating strategies, NESTED gating substantially outperforms all variations over

INDEPENDENT for all 3 architectures. The difference is especially pronounced for VGG, and we

attribute this to that VGG or similar architectures learn more “entangled” representations than archi-

tectures with skip connections, which could make it more sensitive to exactly which transformations

are gated off. For depth-wise gating, the performance difference between applying NESTED and

INDEPENDENT is smaller than it is for width-wise. This observation indicates that there are more

dependencies among features when using width-wise gating. Depth-wise gating is more tolerant of

losing features when applying INDEPENDENT due to the short connection between adjacent TBs.

Among models with INDEPENDENT gating strategy, learnable gating models (REINFORCE

[309] and CONCRETE [295]) are consistently better than random gating. By training with INDEPEN-

DENT gating, the TNN is robust to different levels of utilization. With learnable gating functions, the

learned gating pattern achieves better performance by allocating computation non-uniformly across

different stages of the network (shown in Figure 6.11). Blocks in the later stages (higher-numbered)

are used preferentially over components in earlier stages. Note that the learned gating functions do

not cover the entire range of possible utilization [0, 1]. The useful range of u is larger for higher λ

and for complexity penalties with p = 1. We observe that learnable gating functions do not outper-

form fixed gating since it is hard to train with very few learnable parameters using MLPs. Thus, we

derive the context-aware controller for improving the results by decoupling the control from TNNs.

The ImageNet classification results are shown in Figure 6.12. All TNNs are smoothly

175

Naive

Independent

Independent + REINFORCE

Independent + CONCRETE

Nested

Nested+ REINFORCE

Utilization u

A
cc

ur
ac

y

DenseNet-W ResNeXt-W VGG-W

1 0.75 0.50 0.25 0 1 0.75 0.50 0.25 0 1 0.75 0.50 0.25 0

0.9

0.8

0.7

0.6

0.5

Figure 6.10: Comparison of classification accuracy with different gate control methods for three
standard CNN architectures on the CIFAR-10 dataset.

Target utilization u

A
ct

ua
l u

til
iz

at
io

n

0.250 0.375 0.500 0.625 0.750

0.8

0.6

0.4

0.2

Layer
Block 1

Block 2

Block 3

Uniform

Figure 6.11: The learned gating pattern for selected blocks of DenseNet-DW on CIFAR-10 with the
REINFORCE training. The dotted line shows uniform utilization.

u
DenseNet-169
DenseNet-169 WN

ResNeXt-50
ResNeXt-50 WN

ResNet 50
ResNet-50 DN

Figure 6.12: Comparisons of results between throttleable and vanilla architectures for image classi-
fication on ImageNet-1K.

176

throttleable through the full range of utilization whereas the pre-trained models degrade rapidly with

increased throttling. The ResNeXt-50 model is the best in terms of both peak accuracy (75.66% at

u = 1) and area-under-curve. It maintains at least 71% accuracy in the utilization range of [0.5, 1].

6.5.6.2 Full-throttle TNN vs. Vanilla Architecture

Table 6.2: Comparisons of accuracy (%) on CIFAR-10 between full-throttle TNNs and vanilla
architectures.

Vanilla
Vanilla
u=0.5

TNN
u=0.5

TNN
u=1.0 Peak u

DenseNet-W
92.09 0.10 90.99 90.89 91.19

0.81
(0.00) (91.99) (1.10) (1.20) (0.90)

ResNeXt-W
89.99 0.10 89.55 90.20 90.50

0.88
(0.00) (89.89) (0.44) (0.21) (0.51)

VGG-W
86.43 0.09 86.77 86.39 87.79

0.75
(0.00) (86.34) (0.34) (0.04) (1.37)

For each architecture, the second row shows the relative change (increase

or decrease) compared to the vanilla baseline. The peak performance of

a TNN could be achieved with a lower utilization.

To evaluate and emphasize the effectiveness of TNNs, we summarize and show the re-

sults comparisons on CIFAR-10 between the TNNs and the corresponding vanilla architectures in

Table 6.2. We consider the vanilla architectures as the baselines, and all the throttleable variants

are applied with NESTED gating strategy without learnable gates. Applying a 50% dropout on the

177

vanilla architecture (Vanilla u = 0.5) will result in catastrophic accuracy drop. Instead, TNNs at

u = 0.5 only have a relative decrease within 1.1%. As for the full-throttle models, we observe an

increase of 0.21% for ResNeXt-W. Remarkably, TNNs can achieve the peak performance at a lower

utilization instead of full-throttling. The peak accuracy of TNNs is competitive or even superior to

the baselines’. For example, the accuracy on CIFAR-10 for VGG-W at u = 0.75 has 1.36% accu-

racy improvement, and for ResNeXt-W at u = 0.88 improves by 0.51%. The trivial performance

difference between the full-throttle TNN and baseline reveals that most CNN architectures can be

converted into throttleble ones while maintaining the peak performance.

It can be observed that generic TNN architectures achieve better performance. VGG

consists of several basic convolutional layers; ResNeXt consists of groups of convolutional layers;

and DenseNet consists of convolutional layers that are connected with previous layers. Without

more complex designs of gating strategies, we expect that VGG and ResNeXt perform better than

DenseNet as shown in Table 6.2. It is worth noting that no fine-tuning or data augmentation is

applied, and we can always fine-tune a trained TNN at any level of utilization. More importantly,

the task performance can be retained or even improved with lower utilization as demonstrated in

Table 6.2.

6.5.6.3 Controller Efficacy

For experiments discussed in Section 6.5.4. The controller network only has 3% parame-

ters and 0.05% MACs compared with the TNN. The detailed architectures and their computational

costs are shown in the Appendix 6.6.2.

178

6.5.6.4 Advantages and Potential Applications

One important benefit of the proposed DTNN is to leverage different groups of features

in a single architecture for robust prediction, which is controlled dynamically by a single utilization

parameter. Decoupling DTNN into two modules alleviates the training difficulty, and enables more

flexible architectures and applications. In a TNN, how much to throttle and how to throttle are also

disentangled while existing approaches [259, 261, 262, 263, 279] focus on more complex methods

that are not practical in real-world deployment.

Having a single control signal u also allows us to enable dynamic throttling to additional

constraints beyond those are presented during training. For example, a deployed application may

run differently based on environmental conditions (such as battery charge, illumination levels, tem-

perature, etc.), as a result, may require alternative operating conditions for the TNN. Because of

decoupled design of DTNN, we can still throttle TNN based on application inputs. For example, a

system with low battery charge may impose a lower utilization u, and thereby dynamically adjust the

quality of services based on system capability. Moreover, the controller behaviour can be changed

to any other handcrafted or learnable policies at any time. This modularized design of DTNN offers

a user-friendly and domain-agnostic learning system for a wide range of real-world applications

such as the presented video-based hand gesture recognition, object detection and tracking, video

analytics and monitoring.

179

6.6 Additional Analysis

6.6.1 FLOPs Calculation

We use the the codes from [310] for computing the FLOPs. The table below summarizes

how to compute the FLOPs for some common layers: For computing FLOPs of a convolutional

Table 6.3: FLOPs calculation for common layers.

Layer FLOPs

Convolutional layer 2 × No. kernels × kernel shape × output shape

Fully-connected layer 2 × input size × output size

2D Pooling layer 2 × No. output channels × output size

layer in the TNN, we count how many activated kernels within each layer, and the FLOPs are

calculated as 2 × No. activated kernels × kernel shape × output shape. For fully-connected layers,

the input size will change, and the FLOPs are calculated as 2 × activated input size × output size.

6.6.2 Detailed Architectures

Table 6.4 presents the exact specification of the C3D-W used for hand gesture recog-

nition. The conv-block consists of a 3D convolutional layer with ReLU activation. Stride of all

convolutional layers is 1× 1× 1. Stride of max-pool-1 is 1× 2× 2, and other max-pool layers are

2 × 2 × 2. Padding of all conv-blocks is one, and padding of all max-pool layers is zero. In total,

C3D-WN has 2.654G FLOPs of non-gated operations, and 94.752G FLOPs of throttleable opera-

tions. The detailed architecture of the controller is illustrated in Table 6.5. The network begins with

a convolutional layer followed by 16 ShuffleNet units grouped into 3 stages (conv2 x to conv4 x).

Each ShuffleNet unit is a residual block where the residual branch consists of one 1× 1× 1 group

180

convolution, channel shuffle operation, 3× 3× 3 depthwise convolution [232], and 1× 1× 1 group

convolution. A cost comparison of the TNN and controller is shown in Table 6.6, indicating that the

controller is much more computationally efficient.

6.6.3 Class distribution of 20BN-JESTER

The class distribution of the 20BN-JESTER training set is shown in Figure 6.13.

9592

4370 4278 4323 4267 4357 4291 4032 4132 4258 4348 4292 4206 4219 4337 4259 4162 4084 4220 4390 4373
3216 3398

4251 4302 4281 4323

0

2000

4000

6000

8000

10000

12000

Doin
g o

the
r th

ing
s

Drum
ming

 Fing
ers

No g
es

tur
e

Pulli
ng

 Han
d I

n

Pulli
ng

 Two F
ing

ers
 In

Pus
hin

g H
an

d A
way

Pus
hin

g T
wo F

ing
ers

 Away

Rolli
ng

 Han
d B

ac
kw

ard

Rolli
ng

 Han
d F

orw
ard

Sha
kin

g H
an

d

Slidi
ng

 Two F
ing

ers
 Dow

n

Slidi
ng

 Two F
ing

ers
 Le

ft

Slidi
ng

 Two F
ing

ers
 Righ

t

Slidi
ng

 Two F
ing

ers
 Up

Stop
 Sign

Swipin
g D

ow
n

Swipin
g L

eft

Swipin
g R

igh
t

Swipin
g U

p

Thu
mb D

ow
n

Thu
mb U

p

Turn
ing

 Han
d C

loc
kw

ise

Turn
ing

 Han
d C

ou
nte

rcl
oc

kw
ise

Zoo
ming

 In
 W

ith
 Full

Han
d

Zoo
ming

 In
 W

ith
 Two F

ing
ers

Zoo
ming

 O
ut

With
 Full

 Han
d

Zoo
ming

 O
ut

With
 Two F

ing
ers

Figure 6.13: Class distribution of 20BN-JESTER training set.

181

Table 6.4: Detailed architectures of the DTNN for video-based hand gesture recognition on the
Jester dataset.

layer kernel size C D output size

conv1 3× 3× 3 64 1 16× 100× 160

MaxPool 1× 2× 2 64 1 16× 50× 80

conv2 3× 3× 3 128 16 16× 50× 80

MaxPool 2× 2× 2 128 1 8× 25× 40

conv3 3× 3× 3 256 32 8× 25× 40

conv4 3× 3× 3 256 32 8× 25× 40

MaxPool 2× 2× 2 256 1 4× 12× 20

conv5 3× 3× 3 512 32 4× 12× 20

conv6 3× 3× 3 512 32 4× 12× 20

MaxPool 2× 2× 2 512 1 2× 6× 10

conv7 3× 3× 3 512 32 2× 6× 10

conv8 3× 3× 3 512 32 2× 6× 10

MaxPool 2× 2× 2 512 1 1× 3× 5

fc1 - 512 16 1× 1× 1

fc2 - 512 16 1× 1× 1

fc class - 27 1 1× 1× 1

Sizes are expressed as depth × height × width.

C denotes the output number of channels.

D denotes the cardinality of a TB, and D=1 sug-

gests a non-throttleable layer.

182

Table 6.5: The contextual controller architecture based on 3D-ShuffleNet.

Stage* kernel size stride repeat output size

conv1 3× 3× 3 1× 2× 2 1 24× 16× 50× 80

MaxPool 3× 3× 3 2× 2× 2 1 24× 8× 25× 40

conv2 x
- 2× 2× 2 1

240× 4× 13× 20
- 1× 1× 1 3

conv3 x
- 2× 2× 2 1

480× 2× 7× 10
- 1× 1× 1 7

conv4 x
- 2× 2× 2 1

960× 1× 4× 5
- 1× 1× 1 3

AvgPool 1× 4× 5 1× 1× 1 1 960× 1× 1× 1

fc action - - 1 10× 1× 1× 1

* each stage from conv2 x to conv4 x consists of one or several

ShuffleNet units (the number of repetition is shown in the 4th

column).

Table 6.6: Cost comparison between the data path network (C3D-WN) and controller (3D-
ShuffleNet).

params. (M) FLOPs (G) Speed (cpms)

C3D-W 31.865 97.406 137.55

3D-ShuffleNet 0.955 0.510 17.03

183

Chapter 7

Conclusions

In this work, a pose-guided R-CNN multi-task framework is proposed as an all-in-one

solution for person detection, body keypoints prediction and jersey number recognition. It produces

the best digit accuracy of 94.09% comparing with related literature. Three insights are used to

achieve this performance: 1. re-designed three-class RPN for anchor association; 2. implementation

of pose-guided localization network that can impose proposal refinement for jersey number location

through human pose; 3. the generality of region-based CNN model. By combining the three com-

ponents, the proposed approach is end-to-end trainable and can be easily extended to other sports.

In this work, a universal jersey number detector (JEDE) was proposed as an end-to-end solution for

automated sports analysis that performs player detection, human pose estimation, jersey digit de-

tection, and jersey number detection simultaneously. A dataset was collected that consists of 4477

images from soccer and basketball matches with annotations of 6054 player bounding boxes, 5406

poses, and 9075 digit bounding boxes. Exhaustive evaluations and comparisons were performed on

this dataset. By conditioning digit detection on player’s features and pose information, JEDE out-

184

performed the state-of-the-art methods by a large margin. Moreover, to overcome the problem of

insufficient data, data augmentation techniques CopyPasteMix and SwapDigit were proposed

that significantly improved the results without extra inference cost. Extensive ablation studies were

performed that showed how individual modules, hyper-parameters, and augmentations affect the

performance of jersey number detection. Finally, the strong generalization capability of the pro-

posed framework was demonstrated by showing the superior qualitative results across many sport

domains.

Scene graph generation is a critical pillar for building machines to visually understand

scenes and perform high-level vision and language tasks. In this paper, we introduce a fully con-

volutional scene graph generation framework that is simple yet effective with fast inference speed.

The proposed relation affinity fields serve as a novel representation for visual relationship and pro-

duce strong generalizability for unseen relationships. By only using visual features, our exploratory

method achieves competitive results over object detection and SGG metrics on the VG dataset. We

expect that FCSGG can serve as a general and strong baseline for SGG task, as well as a vital build-

ing block extending to down-stream tasks. We have explored novel representations of entities and

relationships for scene graph generation, and introduced a performance-guided logit adjustment

strategy for long-tailed learning. The proposed RepSGG architecture models entities as subject

queries and object keys, and relationships as the attention weights between subjects and objects. The

proposed PGLA significantly mitigates the long-tailed problem in SGG. Our experiments demon-

strate that RepSGG trained with PGLA compares favourably against box-based, query-based, and

point-based SGG models with considerably less design complexity. Our methods also achieve the

state-of-the-art performance with fast inference speed. Due to its effectiveness and efficiency, we

185

envision RepSGG to serve as a strong and simple alternative to current mainstream SGG methods.

In this paper, we presented a novel run-time dynamically throttleable neural network

(DTNN), as an adaptive model with flexible topology whose performance can be varied dynam-

ically to produce a range of trade-offs between task performance and resource consumption. A

DTNN is composed of a throttleable neural network and a contextual controller for dynamically

adjusting TNN’s inference path. Comprehensive results on image classification and object detec-

tion show that TNNs can be effectively throttled across a range of operational points, while having

peak accuracy comparable to their vanilla architectures. The experimental results on hand gesture

recognition task demonstrate that the proposed DTNN achieves dynamic execution of TNNs with

a context-aware controller, outperforming the vanilla architecture and all fixed configurations of

utilization.

186

Bibliography

[1] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li,
D. A. Shamma, et al., “Visual genome: Connecting language and vision using crowdsourced
dense image annotations,” IJCV, vol. 123, no. 1, pp. 32–73, 2017.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
CVPR, pp. 770–778, 2016.

[3] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid
networks for object detection,” in CVPR, pp. 2117–2125, 2017.

[4] S. Gerke, K. Muller, and R. Schafer, “Soccer Jersey Number Recognition using Convolu-
tional Neural Networks,” in ICCVW, pp. 17–24, 2015.

[5] H. Zhang, Z. Kyaw, S.-F. Chang, and T.-S. Chua, “Visual translation embedding network for
visual relation detection,” in CVPR, pp. 5532–5540, 2017.

[6] Y. Li, W. Ouyang, B. Zhou, K. Wang, and X. Wang, “Scene graph generation from objects,
phrases and region captions,” in ICCV, pp. 1261–1270, 2017.

[7] H. Liu, N. Yan, M. Mortazavi, and B. Bhanu, “Fully convolutional scene graph generation,”
in CVPR, pp. 11546–11556, 2021.

[8] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang,
et al., “Deep high-resolution representation learning for visual recognition,” IEEE TPAMI,
2020.

[9] G. Adaimi, D. Mizrahi, and A. Alahi, “Composite relationship fields with transformers for
scene graph generation,” in WACV, pp. 52–64, January 2023.

[10] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer:
Hierarchical vision transformer using shifted windows,” in ICCV, pp. 10012–10022, 2021.

[11] N. Gkanatsios, V. Pitsikalis, P. Koutras, and P. Maragos, “Attention-translation-relation net-
work for scalable scene graph generation,” in ICCVW, pp. 0–0, 2019.

[12] H. Liu and B. Bhanu, “Pose-guided R-CNN for Jersey Number Recognition in Sports,” in
CVPRW, pp. 2457–2466, 2019.

187

[13] H. Liu and B. Bhanu, “Jede: Universal jersey number detector for sports,” IEEE TCSVT,
vol. 32, no. 11, pp. 7894–7909, 2022.

[14] H. Liu and B. Bhanu, “Repsgg: Novel representations of entities and relationships for scene
graph generation,” IEEE TPAMI, 2024.

[15] H. Liu, S. Parajuli, J. Hostetler, S. Chai, and B. Bhanu, “Dynamically throttleable neural
networks,” Machine Vision and Applications, vol. 33, no. 4, p. 59, 2022.

[16] T. Gupta, H. Liu, and B. Bhanu, “Early wildfire smoke detection in videos,” in ICPR,
pp. 8523–8530, IEEE, 2021.

[17] B. X. Guan, B. Bhanu, R. Theagarajan, H. Liu, P. Talbot, and N. Weng, “Human embryonic
stem cell classification: random network with autoencoded feature extractor,” Journal of
biomedical optics, vol. 26, no. 5, pp. 052913–052913, 2021.

[18] H. Liu, K. Min, H. A. Valdez, and S. Tripathi, “Contrastive language video time pre-training,”
arXiv preprint arXiv:2406.02631, 2024.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” in NeurIPS, 2015.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in ICCV, pp. 2961–2969, 2017.

[21] M. Šari, H. Dujmi, V. Papi, and N. Roži, “Player number localization and recognition in
soccer video using hsv color space and internal contours,” in ICSIP, 2008.

[22] Q. Ye, Q. Huang, S. Jiang, Y. Liu, and W. Gao, “Jersey number detection in sports video for
athlete identification,” in Visual Communications and Image Processing, vol. 5960, pp. 1599–
1606, 2005.

[23] C.-W. Lu, C.-Y. Lin, C.-Y. Hsu, M.-F. Weng, L.-W. Kang, and H.-Y. M. Liao, “Identification
and tracking of players in sport videos,” in Proceedings of the Fifth International Conference
on Internet Multimedia Computing and Service, pp. 113–116, ACM, 2013.

[24] G. Li, S. Xu, X. Liu, L. Li, and C. Wang, “Jersey Number Recognition with Semi-Supervised
Spatial Transformer Network,” in CVPRW, pp. 1864–18647, 2018.

[25] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer net-
works,” in NeurIPS, pp. 2017–2025, 2015.

[26] D. Delannay, N. Danhier, and C. D. Vleeschouwer, “Detection and recognition of
sports(wo)men from multiple views,” in ACM/IEEE International Conference on Distributed
Smart Cameras (ICDSC), pp. 1–7, Aug 2009.

[27] S. Gerke, A. Linnemann, and K. Müller, “Soccer player recognition using spatial constel-
lation features and jersey number recognition,” Computer Vision and Image Understanding,
vol. 159, pp. 105–115, 2017.

188

[28] W.-L. Lu, J.-A. Ting, K. P. Murphy, and J. J. Little, “Identifying Players in Broadcast Sports
videos using Conditional Random Fields,” in CVPR, pp. 3249–3256, IEEE, 2011.

[29] A. Y. Ng, “Feature selection, l1 vs. l2 regularization, and rotational invariance,” in ICML,
p. 78, ACM, 2004.

[30] W.-L. Lu, J.-A. Ting, J. J. Little, and K. P. Murphy, “Learning to track and identify players
from broadcast sports videos,” IEEE TPAMI, vol. 35, no. 7, pp. 1704–1716, 2013.

[31] A. Senocak, T.-H. O. J. Kim, and I. S. Kweon, “Part-based player identification using deep
convolutional representation and multi-scale pooling,” in CVPRW, pp. 1732–1739, 2018.

[32] J. Poignant, L. Besacier, G. Quenot, and F. Thollard, “From text detection in videos to person
identification,” in Proceedings of the 2012 IEEE International Conference on Multimedia
and Expo, pp. 854–859, IEEE Computer Society, 2012.

[33] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit number recognition
from street view imagery using deep convolutional neural networks,” in ICLR, 2014.

[34] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Reading text in the wild with
convolutional neural networks,” IJCV, vol. 116, no. 1, pp. 1–20, 2016.

[35] C. Bartz, H. Yang, and C. Meinel, “See: towards semi-supervised end-to-end scene text
recognition,” in AAAI, 2018.

[36] B. Shi, X. Wang, P. Lyu, C. Yao, and X. Bai, “Robust scene text recognition with automatic
rectification,” in CVPR, pp. 4168–4176, 2016.

[37] M. Busta, L. Neumann, and J. Matas, “Deep textspotter: An end-to-end trainable scene text
localization and recognition framework,” in ICCV, pp. 2204–2212, 2017.

[38] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional networks for
accurate object detection and segmentation,” IEEE TPAMI, vol. 38, no. 1, pp. 142–158, 2016.

[39] R. Girshick, “Fast r-cnn,” in ICCV, pp. 1440–1448, 2015.

[40] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and X. Xue, “Arbitrary-oriented scene
text detection via rotation proposals,” IEEE Transactions on Multimedia, vol. 20, no. 11,
pp. 3111–3122, 2018.

[41] Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,” in
CVPR, pp. 6154–6162, 2018.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in ICLR, 2015.

[43] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for
deep neural networks,” in CVPR, pp. 1492–1500, 2017.

[44] D. B. West et al., Introduction to graph theory, vol. 2. Prentice hall Upper Saddle River, NJ,
1996.

189

[45] R. Alp Güler, N. Neverova, and I. Kokkinos, “Densepose: Dense human pose estimation in
the wild,” in CVPR, pp. 7297–7306, 2018.

[46] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using
part affinity fields,” in CVPR, pp. 7291–7299, 2017.

[47] A. Dutta, A. Gupta, and A. Zissermann, “VGG image annotator (VIA).” http://
www.robots.ox.ac.uk/˜vgg/software/via/, 2016. Version: 2.0.0, Accessed:
7.1.2018.

[48] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick,
“Microsoft coco: Common objects in context,” in European Conference on Computer Vision,
pp. 740–755, Springer, 2014.

[49] W. Abdulla, “Mask r-cnn for object detection and instance segmentation on keras and tensor-
flow.” https://github.com/matterport/Mask_RCNN, 2017.

[50] Sportlogiq.

[51] S. Spectrum.

[52] F. Chen and C. De Vleeschouwer, “Formulating Team-Sport Video Summarization as a Re-
source Allocation Problem,” IEEE TCSVT, vol. 21, no. 2, pp. 193–205, 2011.

[53] M. Tavassolipour, M. Karimian, and S. Kasaei, “Event Detection and Summarization in Soc-
cer Videos using Bayesian Network and Copula,” IEEE TCSVT, vol. 24, no. 2, pp. 291–304,
2013.

[54] Z. Wang, J. Yu, and Y. He, “Soccer Video Event Annotation by Synchronization of At-
tack–Defense Clips and Match Reports with Coarse-Grained Time Information,” IEEE
TCSVT, vol. 27, no. 5, pp. 1104–1117, 2016.

[55] R. Li and B. Bhanu, “Fine-Grained Visual Dribbling Style Analysis for Soccer Videos with
Augmented Dribble Energy Image,” in CVPRW, pp. 2439–2447, 2019.

[56] J. Wang, S. Tan, X. Zhen, S. Xu, F. Zheng, Z. He, and L. Shao, “Deep 3D Human Pose
Estimation: A Review,” Comput. Vis. and Image Underst., vol. 210, p. 103225, 2021.

[57] Y. Yuan, S.-E. Wei, T. Simon, K. Kitani, and J. Saragih, “SimPoE: Simulated Character
Control for 3D Human Pose Estimation,” in CVPR, pp. 7159–7169, 2021.

[58] L. Jin, C. Xu, X. Wang, Y. Xiao, Y. Guo, X. Nie, and J. Zhao, “Single-Stage Is Enough:
Multi-Person Absolute 3D Pose Estimation,” in CVPR, pp. 13086–13095, 2022.

[59] X. Shu, L. Zhang, G.-J. Qi, W. Liu, and J. Tang, “Spatiotemporal Co-attention Recurrent
Neural Networks for Human-skeleton Motion Prediction,” IEEE TPAMI, 2021.

[60] R. Zhang, X. Shu, R. Yan, J. Zhang, and Y. Song, “Skip-attention Encoder-decoder Frame-
work for Human Motion Prediction,” Multimedia Syst., vol. 28, no. 2, pp. 413–422, 2022.

190

[61] P. Shukla, H. Sadana, A. Bansal, D. Verma, C. Elmadjian, B. Raman, and M. Turk, “Auto-
matic Cricket Highlight Generation using Event-Driven and Excitement-Based Features,” in
CVPRW, pp. 1881–1889, 2018.

[62] R. Theagarajan, F. Pala, X. Zhang, and B. Bhanu, “Soccer: Who Has the Ball? Generating
Visual Analytics and Player Statistics,” in CVPRW, pp. 1830–1838, 2018.

[63] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, et al., “Mastering Atari, Go, Chess and Shogi by
Planning with a Learned Model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[64] K. Tuyls, S. Omidshafiei, P. Muller, Z. Wang, J. Connor, D. Hennes, I. Graham, W. Spearman,
T. Waskett, D. Steel, et al., “Game Plan: What AI can do for Football, and What Football can
do for AI,” Journal of Artif. Intell. Res., vol. 71, pp. 41–88, 2021.

[65] H.-C. Shih, “A Survey of Content-aware Video Analysis for Sports,” IEEE TCSVT, vol. 28,
no. 5, pp. 1212–1231, 2017.

[66] M. Beetz, S. Gedikli, J. Bandouch, B. Kirchlechner, N. v. Hoyningen-Huene, and A. Perzylo,
“Visually Tracking Football Games Based on TV Broadcasts,” in Proc. of the Int. Joint Conf.
on Artif. Intell., pp. 2066–2071, 2007.

[67] M. Bertini, A. Del Bimbo, and W. Nunziati, “Player Identification in Soccer Videos,” in Proc.
of the ACM SIGMM Int. Workshop on Multimedia Inf. Retr., pp. 25–32, 2005.

[68] M. Bertini, A. Del Bimbo, and W. Nunziati, “Matching Faces with Textual Cues in Soccer
Videos,” in IEEE Int. Conf. on Multimedia and Expo, pp. 537–540, IEEE, 2006.

[69] M. Bertini, A. Del Bimbo, and W. Nunziati, “Automatic Detection of Player’s Identity in
Soccer Videos using Faces and Text Cues,” in Proc. of the ACM Int. Conf. on Multimedia,
pp. 663–666, 2006.

[70] L. Ballan, M. Bertini, A. D. Bimbo, and W. Nunziati, “Soccer players identification based on
visual local features,” in Proceedings of the 6th ACM international conference on Image and
video retrieval, pp. 258–265, ACM, 2007.

[71] Z. Mahmood, T. Ali, S. Khattak, L. Hasan, and S. U. Khan, “Automatic Player Detection and
Identification for Sports Entertainment Applications,” IEEE TPAMI, vol. 18, no. 4, pp. 971–
982, 2015.

[72] S. Messelodi and C. M. Modena, “Scene Text Recognition and Tracking to Identify Athletes
in Sport Videos,” Multimedia Tools and Appl., vol. 63, no. 2, pp. 521–545, 2013.

[73] K. Akila, S. Chitrakala, and S. Vaishnavi, “Survey on Illumination Condition of Video/Image
under Heterogeneous Environments for Enhancement,” in Int. Conf. on Adv. Comput. and
Commun. Syst., vol. 1, pp. 1–7, IEEE, 2016.

[74] K. Okuma, D. G. Lowe, and J. J. Little, “Self-Learning for Player Localization in Sports
Video,” arXiv preprint arXiv:1307.7198, 2013.

191

[75] A. Lehuger, S. Duffner, and C. Garcia, “A Robust Method for Automatic Player Detection in
Sport Videos,” Orange Labs, vol. 4, 2007.

[76] D. Acuna, “Towards Real-Time Detection and Tracking of Basketball Players using Deep
Neural Networks,” in NeurIPS, pp. 4–9, 2017.

[77] J. L. Keyu Lu, Jianhui Chen and H. He, “Light Cascaded Convolutional Neural Networks for
Accurate Player Detection,” in BMVC, pp. 173.1–173.13, BMVA Press, September 2017.

[78] A. Deliege, A. Cioppa, S. Giancola, M. J. Seikavandi, J. V. Dueholm, K. Nasrollahi,
B. Ghanem, T. B. Moeslund, and M. Van Droogenbroeck, “SoccerNet-v2: A Dataset and
Benchmarks for Holistic Understanding of Broadcast Soccer Videos,” in CVPR, pp. 4508–
4519, 2021.

[79] A. Nady and E. E. Hemayed, “Player Identification in Different Sports,” in VISIGRAPP (5:
VISAPP), pp. 653–660, 2021.

[80] Q. Liang, W. Wu, Y. Yang, R. Zhang, Y. Peng, and M. Xu, “Multi-player Tracking for Multi-
view Sports Videos with Improved K-shortest Path Algorithm,” Appl. Sci., vol. 10, no. 3,
p. 864, 2020.

[81] M. Liao, G. Pang, J. Huang, T. Hassner, and X. Bai, “Mask TextSpotter V3: Segmentation
Proposal Network for Robust Scene Text Spotting,” in ECCV, pp. 706–722, Springer, 2020.

[82] Z. Raisi, M. A. Naiel, G. Younes, S. Wardell, and J. S. Zelek, “Transformer-Based Text
Detection in the Wild,” in CVPRW, pp. 3162–3171, June 2021.

[83] M. Huang, Y. Liu, Z. Peng, C. Liu, D. Lin, S. Zhu, N. Yuan, K. Ding, and L. Jin, “Swin-
TextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recog-
nition,” in CVPR, pp. 4593–4603, 2022.

[84] S. Gerke, S. Singh, A. Linnemann, and P. Ndjiki-Nya, “Unsupervised Color Classifier Train-
ing for Soccer Player Detection,” in Vis. Commun. and Image Process., pp. 1–5, IEEE, 2013.

[85] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” in IEEE
Comput. Soc. Conf. on Comput. Vis. and Pattern Recog., vol. 1, pp. 886–893, IEEE, 2005.

[86] L. Zhang, Y. Lu, G. Song, and H. Zheng, “RC-CNN: Reverse Connected Convolutional
Neural Network for Accurate Player Detection,” in Pacific Rim Int. Conf. on Artif. Intell.,
pp. 438–446, Springer, 2018.

[87] T. Guo, K. Tao, Q. Hu, and Y. Shen, “Detection of Ice Hockey Players and Teams via a
Two-Phase Cascaded CNN Model,” IEEE Access, vol. 8, pp. 195062–195073, 2020.

[88] M. Pobar and M. Ivasic-Kos, “Active Player Detection in Handball Scenes Based on Activity
Measures,” Sensors, vol. 20, no. 5, p. 1475, 2020.

[89] M. Şah and C. Direkoğlu, “Review and Evaluation of Player Detection Methods in Field
Sports,” Multimedia Tools and Appl., pp. 1–25, 2021.

192

[90] M. Manafifard, H. Ebadi, and H. A. Moghaddam, “A Survey on Player Tracking in Soccer
Videos,” Comput. Vis. and Image Underst., vol. 159, pp. 19–46, 2017.

[91] R. Zhang, L. Wu, Y. Yang, W. Wu, Y. Chen, and M. Xu, “Multi-camera Multi-player Tracking
with Deep Player Identification in Sports Video,” Pattern Recog., vol. 102, p. 107260, 2020.

[92] R. Theagarajan and B. Bhanu, “An Automated System for Generating Tactical Performance
Statistics for Individual Soccer Players from Videos,” IEEE TCSVT, vol. 31, no. 2, pp. 632–
646, 2020.

[93] K. Vats, P. Walters, M. Fani, D. A. Clausi, and J. Zelek, “Player Tracking and Identification
in Ice Hockey,” arXiv preprint arXiv:2110.03090, 2021.

[94] S. Baysal and P. Duygulu, “Sentioscope: A Soccer Player Tracking System using Model
Field Particles,” IEEE TCSVT, vol. 26, no. 7, pp. 1350–1362, 2015.

[95] T. Feng, K. Ji, A. Bian, C. Liu, and J. Zhang, “Identifying Players in Broadcast Videos using
Graph Convolutional Network,” Pattern Recog., p. 108503, 2021.

[96] A. Chan, M. D. Levine, and M. Javan, “Player Identification in Hockey Broadcast Videos,”
Expert Syst. with Appl., vol. 165, p. 113891, 2021.

[97] D. Delannay, N. Danhier, and C. De Vleeschouwer, “Detection and Recognition of
Sports(wo)men from Multiple Views,” in ACM/IEEE Int. Conf. on Distrib. Smart Cameras,
pp. 1–7, IEEE, 2009.

[98] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate
Object Detection and Semantic Segmentation,” in CVPR, pp. 580–587, 2014.

[99] A. Kirillov, R. Girshick, K. He, and P. Dollár, “Panoptic Feature Pyramid Networks,” in
CVPR, pp. 6399–6408, 2019.

[100] Wikipedia contributors, “Number (sports).”

[101] Z. Wang and J.-C. Liu, “Translating Math Formula Images to LaTeX Sequences using Deep
Neural Networks with Sequence-level Training,” Int. Journal on Doc. Anal. and Recog.,
vol. 24, no. 1, pp. 63–75, 2021.

[102] H. Law and J. Deng, “CornerNet: Detecting Objects as Paired Keypoints,” in ECCV, pp. 734–
750, 2018.

[103] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as Points,” arXiv preprint arXiv:1904.07850,
2019.

[104] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Object Detec-
tion,” in ICCV, pp. 2980–2988, 2017.

[105] D. Dwibedi, I. Misra, and M. Hebert, “Cut, Paste and Learn: Surprisingly Easy Synthesis for
Instance Detection,” in ICCV, pp. 1301–1310, 2017.

193

[106] N. Dvornik, J. Mairal, and C. Schmid, “Modeling Visual Context is Key to Augmenting
Object Detection Datasets,” in ECCV, pp. 364–380, 2018.

[107] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix: Regularization Strategy to
Train Strong Classifiers with Localizable Features,” in ICCV, pp. 6023–6032, 2019.

[108] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accuracy
of Object Detection,” arXiv preprint arXiv:2004.10934, 2020.

[109] G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le, and B. Zoph,
“Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation,” in
CVPR, pp. 2918–2928, 2021.

[110] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2.” https://github.
com/facebookresearch/detectron2, 2019.

[111] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., “PyTorch: An Imperative Style, High-Performance Deep
Learning Library,” NeurIPS, vol. 32, pp. 8026–8037, 2019.

[112] Z. Cai and N. Vasconcelos, “Cascade R-CNN: High Quality Object Detection and Instance
Segmentation,” IEEE TPAMI, 2019.

[113] Y. Li, Y. Chen, N. Wang, and Z. Zhang, “Scale-Aware Trident Networks for Object Detec-
tion,” in ICCV, pp. 6054–6063, 2019.

[114] S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Comput., vol. 9, no. 8,
pp. 1735–1780, 1997.

[115] M. Schuster and K. K. Paliwal, “Bidirectional Recurrent Neural Networks,” IEEE Trans.
Signal Process., vol. 45, no. 11, pp. 2673–2681, 1997.

[116] B. Shi, X. Bai, and C. Yao, “An End-to-End Trainable Neural Network for Image-Based
Sequence Recognition and Its Application to Scene Text Recognition,” IEEE TPAMI, vol. 39,
no. 11, pp. 2298–2304, 2017.

[117] J. Baek, G. Kim, J. Lee, S. Park, D. Han, S. Yun, S. J. Oh, and H. Lee, “What Is Wrong
with Scene Text Recognition Model Comparisons? Dataset and Model Analysis,” in ICCV,
pp. 4715–4723, 2019.

[118] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist Temporal Classifi-
cation: Labelling Unsegmented Sequence Data with Recurrent Neural Networks,” in ICML,
pp. 369–376, 2006.

[119] J. Quiñonero-Candela, M. Sugiyama, N. D. Lawrence, and A. Schwaighofer, Dataset Shift in
Machine Learning. MIT Press, 2009.

[120] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A Comprehensive
Survey on Transfer Learning,” Proc. of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

194

[121] M. Wang and W. Deng, “Deep Visual Domain Adaptation: A Survey,” Neurocomputing,
vol. 312, pp. 135–153, 2018.

[122] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift,” in Int. Conf. on Mach. Learn., pp. 448–456, PMLR,
2015.

[123] Y. Wu and K. He, “Group Normalization,” in ECCV, pp. 3–19, 2018.

[124] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: Synthetic Minority
Over-sampling Technique,” Journal of Artif. Intell. Res., vol. 16, pp. 321–357, 2002.

[125] M. McCloskey and N. J. Cohen, “Catastrophic Interference in Connectionist Networks: the
Sequential Learning Problem,” in Psychol. of Learn. and Motiv., vol. 24, pp. 109–165, Else-
vier, 1989.

[126] W. Benjamin and E. Leslie, On Photography. Reaktion Books, 2015.

[127] N. Chomsky, Language and Mind. Cambridge University Press, 3 ed., 2006.

[128] C. Lewis, The Poetic Image (Clark Lectures). Cambridge, 1946.

[129] G. Ryle, The Concept of Mind. U of Chicago Press, 1949.

[130] J. Berger, Ways of Seeing. Penguin Modern Classics, Penguin Books Limited, 2008.

[131] S. Sontag, On Photography. Kushiel’s Legacy, Picador, 2001.

[132] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov, “Devise:
A deep visual-semantic embedding model,” in NeurIPS, pp. 2121–2129, 2013.

[133] D. Harwath, W.-N. Hsu, and J. Glass, “Learning hierarchical discrete linguistic units from
visually-grounded speech,” in ICLR, 2020.

[134] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for generating image descrip-
tions,” in CVPR, pp. 3128–3137, 2015.

[135] M. Mortazavi, “Speech-image semantic alignment does not depend on any prior classification
tasks,” in Proceedings of InterSpeech, 2020.

[136] C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei, “Visual relationship detection with language
priors,” in European conference on computer vision, pp. 852–869, Springer, 2016.

[137] H. Wu, J. Mao, Y. Zhang, Y. Jiang, L. Li, W. Sun, and W.-Y. Ma, “Unified visual-semantic
embeddings: Bridging vision and language with structured meaning representations,” in
CVPR, pp. 6609–6618, 2019.

[138] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by iterative message
passing,” in CVPR, pp. 5410–5419, 2017.

195

[139] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei, “Image
retrieval using scene graphs,” in CVPR, pp. 3668–3678, 2015.

[140] X. Yang, K. Tang, H. Zhang, and J. Cai, “Auto-encoding scene graphs for image captioning,”
in CVPR, pp. 10685–10694, 2019.

[141] T. Yao, Y. Pan, Y. Li, and T. Mei, “Exploring visual relationship for image captioning,” in
ECCV, pp. 684–699, 2018.

[142] J. Johnson, A. Gupta, and L. Fei-Fei, “Image generation from scene graphs,” in CVPR,
pp. 1219–1228, 2018.

[143] D. A. Hudson and C. D. Manning, “Gqa: A new dataset for real-world visual reasoning and
compositional question answering,” in CVPR, pp. 6700–6709, 2019.

[144] D. Teney, L. Liu, and A. van Den Hengel, “Graph-structured representations for visual ques-
tion answering,” in CVPR, pp. 1–9, 2017.

[145] T. Xu, P. Zhang, Q. Huang, H. Zhang, Z. Gan, X. Huang, and X. He, “Attngan: Fine-
grained text to image generation with attentional generative adversarial networks,” in CVPR,
pp. 1316–1324, 2018.

[146] T. Chen, W. Yu, R. Chen, and L. Lin, “Knowledge-embedded routing network for scene graph
generation,” in CVPR, pp. 6163–6171, 2019.

[147] K. Tang, Y. Niu, J. Huang, J. Shi, and H. Zhang, “Unbiased scene graph generation from
biased training,” in CVPR, pp. 3716–3725, 2020.

[148] K. Tang, H. Zhang, B. Wu, W. Luo, and W. Liu, “Learning to compose dynamic tree struc-
tures for visual contexts,” in CVPR, pp. 6619–6628, 2019.

[149] R. Zellers, M. Yatskar, S. Thomson, and Y. Choi, “Neural motifs: Scene graph parsing with
global context,” in CVPR, pp. 5831–5840, 2018.

[150] R. Yu, A. Li, V. I. Morariu, and L. S. Davis, “Visual relationship detection with internal and
external linguistic knowledge distillation,” in ICCV, pp. 1974–1982, 2017.

[151] A. Zareian, S. Karaman, and S.-F. Chang, “Bridging knowledge graphs to generate scene
graphs,” arXiv preprint arXiv:2001.02314, 2020.

[152] A. Zareian, H. You, Z. Wang, and S.-F. Chang, “Learning visual commonsense for robust
scene graph generation,” arXiv preprint arXiv:2006.09623, 2020.

[153] V. S. Chen, P. Varma, R. Krishna, M. Bernstein, C. Re, and L. Fei-Fei, “Scene graph predic-
tion with limited labels,” in ICCV, pp. 2580–2590, 2019.

[154] A. Dornadula, A. Narcomey, R. Krishna, M. Bernstein, and F.-F. Li, “Visual relationships as
functions: Enabling few-shot scene graph prediction,” in ICCVW, pp. 0–0, 2019.

[155] N. Gkanatsios, V. Pitsikalis, and P. Maragos, “From saturation to zero-shot visual relationship
detection using local context,” in BMVC, 2020.

196

[156] Z.-S. Hung, A. Mallya, and S. Lazebnik, “Contextual translation embedding for visual rela-
tionship detection and scene graph generation,” IEEE TPAMI, 2020.

[157] B. Knyazev, H. de Vries, C. Cangea, G. W. Taylor, A. Courville, and E. Belilovsky, “Graph
density-aware losses for novel compositions in scene graph generation,” arXiv preprint
arXiv:2005.08230, 2020.

[158] Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang, “Factorizable net: an efficient
subgraph-based framework for scene graph generation,” in ECCV, pp. 335–351, 2018.

[159] J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh, “Graph r-cnn for scene graph generation,” in
ECCV, pp. 670–685, 2018.

[160] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,”
in ICCV, pp. 9627–9636, 2019.

[161] Z. Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “Reppoints: Point set representation for object
detection,” in ICCV, pp. 9657–9666, 2019.

[162] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neural
machine translation: Encoder–decoder approaches,” Syntax, Semantics and Structure in Sta-
tistical Translation, p. 103, 2014.

[163] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[164] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from tree-
structured long short-term memory networks,” in Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), pp. 1556–1566, 2015.

[165] Y. Li, W. Ouyang, X. Wang, and X. Tang, “Vip-cnn: Visual phrase guided convolutional
neural network,” in CVPR, pp. 1347–1356, 2017.

[166] B. Dai, Y. Zhang, and D. Lin, “Detecting visual relationships with deep relational networks,”
in CVPR, pp. 3076–3086, 2017.

[167] S. Woo, D. Kim, D. Cho, and I. S. Kweon, “Linknet: Relational embedding for scene graph,”
in NeurIPS, pp. 560–570, 2018.

[168] W. Wang, R. Wang, S. Shan, and X. Chen, “Exploring context and visual pattern of relation-
ship for scene graph generation,” in CVPR, pp. 8188–8197, 2019.

[169] N. Gkanatsios, V. Pitsikalis, P. Koutras, and P. Maragos, “Attention-translation-relation net-
work for scalable scene graph generation,” in ICCVW, Oct 2019.

[170] B. A. Plummer, A. Mallya, C. M. Cervantes, J. Hockenmaier, and S. Lazebnik, “Phrase
localization and visual relationship detection with comprehensive image-language cues,” in
ICCV, pp. 1928–1937, 2017.

197

[171] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural
network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[172] J. Gu, H. Zhao, Z. Lin, S. Li, J. Cai, and M. Ling, “Scene graph generation with external
knowledge and image reconstruction,” in CVPR, pp. 1969–1978, 2019.

[173] X. Lin, C. Ding, J. Zeng, and D. Tao, “Gps-net: Graph property sensing network for scene
graph generation,” in CVPR, pp. 3746–3753, 2020.

[174] A. Newell and J. Deng, “Pixels to graphs by associative embedding,” in NeurIPS, pp. 2171–
2180, 2017.

[175] Z. Cao, G. H. Martinez, T. Simon, S.-E. Wei, and Y. A. Sheikh, “Openpose: Realtime multi-
person 2d pose estimation using part affinity fields,” IEEE TPAMI, 2019.

[176] L. Chen, H. Zhang, J. Xiao, X. He, S. Pu, and S.-F. Chang, “Counterfactual critic multi-agent
training for scene graph generation,” in ICCV, pp. 4613–4623, 2019.

[177] X. Yang, H. Zhang, and J. Cai, “Shuffle-then-assemble: Learning object-agnostic visual re-
lationship features,” in ECCV, pp. 36–52, 2018.

[178] Q. Li, F. Xiao, B. Bhanu, B. Sheng, and R. Hong, “Inner knowledge-based img2doc scheme
for visual question answering,” ACM TOMM, vol. 18, no. 3, pp. 1–21, 2022.

[179] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for human pose estimation,”
in ECCV, pp. 483–499, Springer, 2016.

[180] Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: A simple and strong anchor-free object detec-
tor,” IEEE TPAMI, vol. 44, no. 4, pp. 1922–1933, 2020.

[181] R. Li, S. Zhang, and X. He, “SGTR: End-to-end scene graph generation with transformer,”
in CVPR, pp. 19486–19496, 2022.

[182] A. Desai, T.-Y. Wu, S. Tripathi, and N. Vasconcelos, “Single-stage visual relationship learn-
ing using conditional queries,” NeurIPS, vol. 35, pp. 13064–13077, 2022.

[183] Y. Cong, M. Y. Yang, and B. Rosenhahn, “RelTR: Relation transformer for scene graph
generation,” IEEE TPAMI, pp. 1–16, 2023.

[184] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end
object detection with transformers,” in ECCV, pp. 213–229, Springer, 2020.

[185] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” NeurIPS, vol. 30, 2017.

[186] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable DETR: Deformable trans-
formers for end-to-end object detection,” in ICLR, 2021.

[187] A. K. Menon, S. Jayasumana, A. S. Rawat, H. Jain, A. Veit, and S. Kumar, “Long-tail learning
via logit adjustment,” in ICLR, 2021.

198

[188] Y. Lu, H. Rai, J. Chang, B. Knyazev, G. Yu, S. Shekhar, G. W. Taylor, and M. Volkovs,
“Context-aware scene graph generation with seq2seq transformers,” in ICCV, pp. 15931–
15941, 2021.

[189] N. Dhingra, F. Ritter, and A. Kunz, “BGT-Net: Bidirectional GRU transformer network for
scene graph generation,” in CVPR, pp. 2150–2159, 2021.

[190] Q. Dong, Z. Tu, H. Liao, Y. Zhang, V. Mahadevan, and S. Soatto, “Visual relationship de-
tection using part-and-sum transformers with composite queries,” in ICCV, pp. 3550–3559,
2021.

[191] Y. Teng and L. Wang, “Structured sparse R-CNN for direct scene graph generation,” in CVPR,
pp. 19437–19446, 2022.

[192] J. Chen, A. Agarwal, S. Abdelkarim, D. Zhu, and M. Elhoseiny, “RelTransformer: A
transformer-based long-tail visual relationship recognition,” in CVPR, pp. 19507–19517,
2022.

[193] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable convolutional
networks,” in ICCV, pp. 764–773, 2017.

[194] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-tailed learning: A survey,”
IEEE TPAMI, 2023.

[195] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, “A comprehensive survey of
scene graphs: Generation and application,” IEEE TPAMI, vol. 45, no. 1, pp. 1–26, 2021.

[196] R. Li, S. Zhang, B. Wan, and X. He, “Bipartite graph network with adaptive message passing
for unbiased scene graph generation,” in CVPR, pp. 11109–11119, 2021.

[197] A. Desai, T.-Y. Wu, S. Tripathi, and N. Vasconcelos, “Learning of visual relations: The devil
is in the tails,” in ICCV, pp. 15404–15413, 2021.

[198] L. Li, L. Chen, Y. Huang, Z. Zhang, S. Zhang, and J. Xiao, “The devil is in the labels: Noisy
label correction for robust scene graph generation,” in CVPR, pp. 18869–18878, 2022.

[199] A. Zhang, Y. Yao, Q. Chen, W. Ji, Z. Liu, M. Sun, and T.-S. Chua, “Fine-grained scene graph
generation with data transfer,” in ECCV, pp. 409–424, Springer, 2022.

[200] T.-J. J. Wang, S. Pehlivan, and J. Laaksonen, “Tackling the unannotated: Scene graph gener-
ation with bias-reduced models,” in BMVC, BMVA, 2020.

[201] M.-J. Chiou, H. Ding, H. Yan, C. Wang, R. Zimmermann, and J. Feng, “Recovering the
unbiased scene graphs from the biased ones,” in ACM MM, pp. 1581–1590, 2021.

[202] Y. Guo, L. Gao, X. Wang, Y. Hu, X. Xu, X. Lu, H. T. Shen, and J. Song, “From general to
specific: Informative scene graph generation via balance adjustment,” in ICCV, pp. 16383–
16392, 2021.

199

[203] T. He, L. Gao, J. Song, J. Cai, and Y.-F. Li, “Learning from the scene and borrowing from
the rich: tackling the long tail in scene graph generation,” in IJCAI, pp. 587–593, 2021.

[204] N. Gkanatsios, V. Pitsikalis, and P. Maragos, “From saturation to zero-shot visual relationship
detection using local context.,” in BMVC, 2020.

[205] B. Knyazev, H. de Vries, C. Cangea, G. W. Taylor, A. Courville, and E. Belilovsky, “Graph
density-aware losses for novel compositions in scene graph generation,” in BMVC, 2020.

[206] S. Yan, C. Shen, Z. Jin, J. Huang, R. Jiang, Y. Chen, and X.-S. Hua, “PCPL: Predicate-
correlation perception learning for unbiased scene graph generation,” in ACM MM, pp. 265–
273, 2020.

[207] M. Suhail, A. Mittal, B. Siddiquie, C. Broaddus, J. Eledath, G. Medioni, and L. Sigal,
“Energy-based learning for scene graph generation,” in CVPR, pp. 13936–13945, 2021.

[208] W. Li, H. Zhang, Q. Bai, G. Zhao, N. Jiang, and X. Yuan, “PPDL: Predicate probability
distribution based loss for unbiased scene graph generation,” in CVPR, pp. 19447–19456,
2022.

[209] X. Lyu, L. Gao, Y. Guo, Z. Zhao, H. Huang, H. T. Shen, and J. Song, “Fine-grained predicates
learning for scene graph generation,” in CVPR, pp. 19467–19475, 2022.

[210] S. Zhang, Z. Li, S. Yan, X. He, and J. Sun, “Distribution alignment: A unified framework for
long-tail visual recognition,” in CVPR, pp. 2361–2370, June 2021.

[211] H. Wei, R. Xie, H. Cheng, L. Feng, B. An, and Y. Li, “Mitigating neural network overconfi-
dence with logit normalization,” in ICML, pp. 23631–23644, PMLR, 2022.

[212] C. Chen, Y. Zhan, B. Yu, L. Liu, Y. Luo, and B. Du, “Resistance training using prior bias:
toward unbiased scene graph generation,” in AAAI, vol. 36, pp. 212–220, 2022.

[213] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[214] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[215] D. Abou Chacra and J. Zelek, “The topology and language of relationships in the visual
genome dataset,” in CVPRW, pp. 4859–4867, IEEE, 2022.

[216] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,” in
ICLR, OpenReview.net, 2017.

[217] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov,
M. Malloci, A. Kolesnikov, et al., “The open images dataset v4: Unified image classification,
object detection, and visual relationship detection at scale,” IJCV, vol. 128, no. 7, pp. 1956–
1981, 2020.

200

[218] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in
ICML, pp. 807–814, 2010.

[219] D. Liu, M. Bober, and J. Kittler, “Constrained structure learning for scene graph generation,”
IEEE TPAMI, 2023.

[220] J. Zhang, K. J. Shih, A. Elgammal, A. Tao, and B. Catanzaro, “Graphical contrastive losses
for scene graph parsing,” in CVPR, pp. 11535–11543, 2019.

[221] Z. Tian, H. Chen, X. Wang, Y. Liu, and C. Shen, “AdelaiDet: A toolbox for instance-level
recognition tasks.” https://git.io/adelaidet, 2019.

[222] A. Gupta, P. Dollar, and R. Girshick, “LVIS: A dataset for large vocabulary instance segmen-
tation,” in CVPR, pp. 5356–5364, 2019.

[223] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in ICLR, 2018.

[224] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” JMLR, vol. 9, no. 11, 2008.

[225] S. Sharifzadeh, S. M. Baharlou, M. Berrendorf, R. Koner, and V. Tresp, “Improving visual
relation detection using depth maps,” in ICPR, pp. 3597–3604, IEEE, 2021.

[226] J. Ji, R. Krishna, L. Fei-Fei, and J. C. Niebles, “Action genome: Actions as compositions of
spatio-temporal scene graphs,” in CVPR, pp. 10236–10247, 2020.

[227] Y.-W. Chao, Y. Liu, X. Liu, H. Zeng, and J. Deng, “Learning to detect human-object interac-
tions,” in WACV, pp. 381–389, IEEE, 2018.

[228] M.-J. Chiou, C.-Y. Liao, L.-W. Wang, R. Zimmermann, and J. Feng, “ST-HOI: A spatial-
temporal baseline for human-object interaction detection in videos,” in ICDARW, pp. 9–17,
2021.

[229] X. Shang, T. Ren, J. Guo, H. Zhang, and T.-S. Chua, “Video visual relation detection,” in
ACM MM, pp. 1300–1308, 2017.

[230] J. Yang, Y. Z. Ang, Z. Guo, K. Zhou, W. Zhang, and Z. Liu, “Panoptic scene graph genera-
tion,” in ECCV, pp. 178–196, Springer, 2022.

[231] J. Yang, W. Peng, X. Li, Z. Guo, L. Chen, B. Li, Z. Ma, K. Zhou, W. Zhang, C. C. Loy, et al.,
“Panoptic video scene graph generation,” in CVPR, pp. 18675–18685, 2023.

[232] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in CVPR,
pp. 1251–1258, 2017.

[233] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted
residuals and linear bottlenecks,” in CVPR, pp. 4510–4520, 2018.

[234] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolutional
neural network for mobile devices,” in CVPR, pp. 6848–6856, 2018.

201

[235] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for efficient
cnn architecture design,” in ECCV, pp. 116–131, 2018.

[236] L. Yang, Z. Qi, Z. Liu, H. Liu, M. Ling, L. Shi, and X. Liu, “An embedded implementa-
tion of cnn-based hand detection and orientation estimation algorithm,” Machine Vision and
Applications, vol. 30, no. 6, pp. 1071–1082, 2019.

[237] K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, and C. Xu, “Ghostnet: More features from cheap
operations,” in CVPR, pp. 1580–1589, 2020.

[238] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang,
and K. Murphy, “Progressive neural architecture search,” in ECCV, pp. 19–34, 2018.

[239] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable architecture search,” in ICLR,
2019.

[240] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le, “Mnasnet:
Platform-aware neural architecture search for mobile,” in CVPR, pp. 2820–2828, 2019.

[241] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architecture search on target task
and hardware,” in ICLR, 2019.

[242] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train one network and
specialize it for efficient deployment,” in ICLR, 2020.

[243] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, and L. S. Davis,
“Nisp: Pruning networks using neuron importance score propagation,” in CVPR, pp. 9194–
9203, 2018.

[244] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance estimation for neural
network pruning,” in CVPR, pp. 11264–11272, 2019.

[245] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter pruning via geometric median for deep
convolutional neural networks acceleration,” in CVPR, pp. 4340–4349, 2019.

[246] H. Wu, Y. Tang, and X. Zhang, “A pruning method based on the measurement of feature
extraction ability,” Machine Vision and Applications, vol. 32, no. 1, pp. 1–11, 2021.

[247] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for model compression
and acceleration on mobile devices,” in ECCV, pp. 784–800, 2018.

[248] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in ICCV, pp. 1365–
1374, 2019.

[249] T. Li, B. Wu, Y. Yang, Y. Fan, Y. Zhang, and W. Liu, “Compressing convolutional neural
networks via factorized convolutional filters,” in CVPR, pp. 3977–3986, 2019.

[250] Y. Li, S. Gu, C. Mayer, L. V. Gool, and R. Timofte, “Group sparsity: The hinge between filter
pruning and decomposition for network compression,” in CVPR, pp. 8018–8027, 2020.

202

[251] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda, “Understanding the impact of
precision quantization on the accuracy and energy of neural networks,” in Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017, pp. 1474–1479, IEEE, 2017.

[252] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,” in ICLR, OpenRe-
view.net, 2017.

[253] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko,
“Quantization and training of neural networks for efficient integer-arithmetic-only inference,”
in CVPR, pp. 2704–2713, 2018.

[254] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, “Differentiable soft quanti-
zation: Bridging full-precision and low-bit neural networks,” in ICCV, pp. 4852–4861, 2019.

[255] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “Hawq: Hessian aware
quantization of neural networks with mixed-precision,” in ICCV, pp. 293–302, 2019.

[256] B. F. Jimmy Ba, “Adaptive dropout for training deep neural networks,” in NeurIPS, pp. 3084–
3092, 2013.

[257] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from overfitting,” Journal of Machine Learning Re-
search (JMLR), vol. 15, no. 1, pp. 1929–1958, 2014.

[258] C. Riquelme, G. Tucker, and J. Snoek, “Deep bayesian bandits showdown: An empirical
comparison of bayesian deep networks for thompson sampling,” in ICLR, 2018.

[259] L. Liu and J. Deng, “Dynamic deep neural networks: Optimizing accuracy-efficiency trade-
offs by selective execution,” in AAAI, 2018.

[260] P. S.E.Spasov, “Dynamic neural network channel execution for efficient training,” BMVC,
2019.

[261] Z. Wu, T. Nagarajan, A. Kumar, S. Rennie, L. S. Davis, K. Grauman, and R. Feris, “Block-
drop: Dynamic inference paths in residual networks,” in CVPR, pp. 8817–8826, 2018.

[262] Z. Chen, Y. Li, S. Bengio, and S. Si, “You look twice: Gaternet for dynamic filter selection
in cnns,” in CVPR, pp. 9172–9180, 2019.

[263] Y. Rao, J. Lu, J. Lin, and J. Zhou, “Runtime network routing for efficient image classifica-
tion,” IEEE TPAMI, vol. 41, no. 10, pp. 2291–2304, 2018.

[264] A. Veit and S. Belongie, “Convolutional networks with adaptive inference graphs,” in ECCV,
pp. 3–18, 2018.

[265] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic neural networks: A
survey,” IEEE TPAMI, 2021.

[266] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classification
using binary convolutional neural networks,” in ECCV, pp. 525–542, Springer, 2016.

203

[267] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural net-
works,” in ICML, pp. 6105–6114, 2019.

[268] H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu, “Addernet: Do we really need
multiplications in deep learning?,” in CVPR, pp. 1468–1477, 2020.

[269] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in ICLR,
2017.

[270] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda, Y. Jia, and K. Keutzer,
“Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture
search,” in CVPR, pp. 10734–10742, 2019.

[271] P. Nayak, D. Zhang, and S. Chai, “Bit efficient quantization for deep neural networks,” arXiv
preprint arXiv:1910.04877, 2019.

[272] T. Dinh, A. Melnikov, V. Daskalopoulos, and S. Chai, “Subtensor quantization for mo-
bilenets,” in European conference on computer vision Workshops (ECCVW) (A. Bartoli and
A. Fusiello, eds.), vol. 12539 of Lecture Notes in Computer Science, pp. 126–130, Springer,
2020.

[273] S. Wiedemann, K.-R. Müller, and W. Samek, “Compact and computationally efficient rep-
resentation of deep neural networks,” IEEE Transactions on Neural Networks and Learning
Systems (TNNLS), vol. 31, no. 3, pp. 772–785, 2020.

[274] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A framework for empirical
study of resource-efficient inference in convolutional neural networks,” IEEE Transactions
on Neural Networks and Learning Systems (TNNLS), vol. 29, no. 11, pp. 5784–5789, 2018.

[275] S. Ghamari, K. Ozcan, T. Dinh, A. Melnikov, J. Carvajal, J. Ernst, and S. Chai, “Quantization-
guided training for compact tinyml models,” CoRR, vol. abs/2103.06231, 2021.

[276] C. Ahn, E. Kim, and S. Oh, “Deep elastic networks with model selection for multi-task
learning,” in ICCV, pp. 6529–6538, 2019.

[277] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” in ICLR, 2019.

[278] E. Kim, C. Ahn, and S. Oh, “Nestednet: Learning nested sparse structures in deep neural
networks,” in CVPR, pp. 8669–8678, 2018.

[279] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, and J. E. Gonzalez, “Skipnet: Learning dynamic
routing in convolutional networks,” in ECCV, pp. 409–424, 2018.

[280] Y. Bengio, “Deep learning of representations: Looking forward,” in International Conference
on Statistical Language and Speech Processing, pp. 1–37, Springer, 2013.

[281] M. Figurnov, M. D. Collins, Y. Zhu, L. Zhang, J. Huang, D. Vetrov, and R. Salakhutdinov,
“Spatially adaptive computation time for residual networks,” in CVPR, pp. 1790–1799, IEEE,
2017.

204

[282] S. Teerapittayanon, B. McDanel, and H. Kung, “Branchynet: Fast inference via early exiting
from deep neural networks,” in International Conference on Pattern Recognition (ICPR),
pp. 2464–2469, IEEE, 2016.

[283] Z. Li, Y. Yang, X. Liu, F. Zhou, S. Wen, and W. Xu, “Dynamic computational time for visual
attention,” in ICCVW, pp. 1199–1209, IEEE, 2017.

[284] A. Ruiz and J. Verbeek, “Adaptative inference cost with convolutional neural mixture mod-
els,” in ICCV, October 2019.

[285] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer,” in ICLR, 2017.

[286] R. Teja Mullapudi, W. R. Mark, N. Shazeer, and K. Fatahalian, “Hydranets: Specialized
dynamic architectures for efficient inference,” in CVPR, pp. 8080–8089, 2018.

[287] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep networks with stochastic
depth,” in ECCV, 2016.

[288] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural architecture search via
parameter sharing,” in ICML, pp. 4092–4101, 2018.

[289] X. Gao, Y. Zhao, Łukasz Dudziak, R. Mullins, and C. zhong Xu, “Dynamic channel pruning:
Feature boosting and suppression,” in ICLR, 2019.

[290] Z. Chen, T.-B. Xu, C. Du, C.-L. Liu, and H. He, “Dynamical channel pruning by conditional
accuracy change for deep neural networks,” IEEE Transactions on Neural Networks and
Learning Systems (TNNLS), vol. 32, no. 2, pp. 799–813, 2021.

[291] A. Odena, D. Lawson, and C. Olah, “Changing model behavior at test-time using rein-
forcement learning,” in International Conference on Learning Representations Workshops
(ICLRW), 2017.

[292] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected convolu-
tional networks,” in CVPR, pp. 2261–2269, 2017.

[293] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through
stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.

[294] J. Peng and B. Bhanu, “Closed-loop object recognition using reinforcement learning,” IEEE
TPAMI, vol. 20, no. 2, pp. 139–154, 1998.

[295] C. J. Maddison, A. Mnih, and Y. W. Teh, “The Concrete distribution: A continuous relaxation
of discrete random variables,” in ICLR, 2017.

[296] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient methods for
reinforcement learning with function approximation,” in NeurIPS, pp. 1057–1063, 2000.

[297] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in ICML,
pp. 41–48, 2009.

205

[298] H. Tann, S. Hashemi, R. Bahar, and S. Reda, “Runtime configurable deep neural networks
for energy-accuracy trade-off,” in Proceedings of the Eleventh IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, p. 34, ACM, 2016.

[299] S. Ganapathy, S. Venkataramani, G. Sriraman, B. Ravindran, and A. Raghunathan,
“Dyvedeep: Dynamic variable effort deep neural networks,” ACM Transactions on Embed-
ded Computing Systems (TECS), vol. 19, no. 3, pp. 1–24, 2020.

[300] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” tech.
rep., University of Toronto, Department of Computer Science, 2009.

[301] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” IJCV,
vol. 115, no. 3, pp. 211–252, 2015.

[302] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.” http://www.
pascal-network.org/challenges/VOC/voc2007/workshop/index.html.

[303] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal fea-
tures with 3d convolutional networks,” in ICCV, pp. 4489–4497, 2015.

[304] twentybn, “The 20bn-jester dataset v1.” https://20bn.com/datasets/jester,
2019. Version: 1.0, Accessed: 8.1.2019.

[305] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.

[306] O. Kopuklu, N. Kose, A. Gunduz, and G. Rigoll, “Resource efficient 3d convolutional neural
networks,” in ICCVW, pp. 0–0, 2019.

[307] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning lecture 6a
overview of mini-batch gradient descent,” Cited on, vol. 14, no. 8, 2012.

[308] NVIDIA, “Nvidia jetson agx xavier module,” 2019.

[309] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” Machine learning, vol. 8, no. 3-4, pp. 229–256, 1992.

[310] Facebook, “fvcore.” https://github.com/facebookresearch/fvcore/
blob/main/fvcore/nn/flop_count.py, 2019.

206

