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Efficiency of learning vs. processing: Towards a normative theory of multitasking
Yotam Sagiv (ysagiv@princeton.edu), Sebastian Musslick (musslick@princeton.edu),

Yael Niv (yael@princeton.edu), Jonathan D. Cohen (jdc@princeton.edu)
Princeton Neuroscience Institute

Princeton University

Abstract

A striking limitation of human cognition is our inability to ex-
ecute some tasks simultaneously. Recent work suggests that
such limitations can arise from a fundamental trade-off in net-
work architectures that is driven by the sharing of representa-
tions between tasks: sharing promotes quicker learning, at the
expense of interference while multitasking. From this perspec-
tive, multitasking failures might reflect a preference for learn-
ing efficiency over parallel processing capability. We explore
this hypothesis by formulating an ideal Bayesian agent that
maximizes expected reward by learning either shared or sep-
arate representations for a task set. We investigate the agent’s
behavior and show that over a large space of parameters the
agent sacrifices long-run optimality (higher multitasking ca-
pacity) for short-term reward (faster learning). Furthermore,
we construct a general mathematical framework in which ratio-
nal choices between learning speed and processing efficiency
can be examined for a variety of different task environments.
Keywords: multitasking; cognitive control; Bayesian infer-
ence; capacity constraints;

Introduction
The human brain’s ability to simultaneously perform distinct
tasks contains a curious tension. On one hand, we are able to
concurrently carry out a large number of actions (e.g. breathe,
speak, chew gum, etc.) seemingly without exerting any effort.
In contrast, some behaviors defy parallel execution (e.g. solv-
ing calculus problems and constructing shopping lists) and
require serialization to successfully execute.

The distinction between sets of tasks that can be executed
concurrently and those that cannot is often referred to in terms
of a fundamental distinction between controlled and auto-
matic processing (Posner & Snyder, 1975; Shiffrin & Schnei-
der, 1977). Early theories attributed the inability to carry out
multiple control-demanding tasks in parallel to reliance on
a single, limited-capacity, serial processing mechanism – a
hypothesis that has continued to dominate major theories of
cognition (e.g., Anderson, 2013). The “multiple-resource hy-
pothesis” presents a challenge to this view, arguing that mul-
titasking limitations may reflect competition for the use of
local resources (e.g., shared task-specific representations) by
sets of tasks, rather than common reliance on a central con-
trol mechanism (Allport, Antonis, & Reynolds, 1972; Navon
& Gopher, 1979; Meyer & Kieras, 1997). Under this view,
the role of cognitive control is to resolve such conflicts when
they arise by limiting processing to only a single task at a time
(Cohen, Dunbar, & McClelland, 1990; Botvinick, Braver,
Barch, Carter, & Cohen, 2001). That is, limiting processing is
the purpose of control, rather than a reflection of a constraint
on the control system itself. Recent computational work has
provided a formal grounding for this argument, showing that
even modest amounts of overlap between task representations

can drastically limit the number of tasks a network can engage
at the same time without invoking interference among them
(Feng, Schwemmer, Gershman, & Cohen, 2014; Musslick et
al., 2016). Critically, this number appears to be relatively in-
sensitive to the size of the network.

The findings above raise an important question: insofar
as shared representation between tasks impose limitations on
multitasking, why would a neural system prefer shared rep-
resentations over separate ones? Insights into this question
can be gained from the machine learning literature, where
the learning of shared representations between tasks is con-
sidered a desirable outcome (Baxter, 1995; Caruana, 1998;
Bengio, Courville, & Vincent, 2013). For instance, work on
multi-task learning1 suggests that shared representations be-
tween tasks promote faster learning, as well as better general-
ization performance across tasks (Caruana, 1997; Collobert
& Weston, 2008). Moreover, learning dynamics in neural
networks themselves promote the learning of shared repre-
sentation based on shared structure in the task environment
(Hinton, 1986; Saxe, McClelland, & Ganguli, 2013). Thus,
there appears to be a fundamental trade-off in neural networks
between the efficiency of learning (and generalization) on the
one hand, and the efficiency of processing (i.e. multitasking
capability) on the other hand (Musslick et al., 2017).

The trade-off between learning and processing efficiency
constitutes an optimization problem that is dependent on the
demands of the task environment. The work described here
examines this optimization problem as a function of critical
parameters, such as the differences in rate of learning for
shared vs. separated representations, and the benefits gained
by parallel over serial task performance. Analysis of this
problem may help provide a formally rigorous, and even nor-
mative account of longstanding, well-characterized psycho-
logical phenomena, such as the common trajectory in skill
acquisition from controlled to automatic processing (Shiffrin
& Schneider, 1977; Logan, 1980).

Ideally, our analysis would build on formal characteriza-
tion of the learning rate for different types of representations,
given a specified learning algorithm (e.g. backpropagation).
However, since this is not immediately available, to con-
struct a probabilistic generative model we begin by assuming
simple functional forms for the learning trajectory associated
with shared vs. separated task representations in a multitask-
ing environment, and then use the generative model to define

1Note that the term ’multi-task’ differs from the term ’multitask-
ing’. The former refers to the paradigm of training the same network
on multiple tasks, whereas the latter refers to the process of carrying
out multiple tasks concurrently.
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an ideal Bayesian agent that behaves optimally inside that en-
vironment. Taken together, the environment and agent mod-
els provide a simple, normative framework in which ques-
tions about the learning-processing trade-off can be explored.

A rational model of multitasking
We begin our analysis of the optimal balance between learn-
ing and processing efficiency by formalizing the task envi-
ronment. We then describe how the agent model chooses be-
tween the use of shared vs. separate representations in that
environment to optimize performance, which we define as
maximizing reward over the entire horizon of performance.

Task Environment
We consider an environment in which a task can be defined as
a process (e.g. naming the color of a stimulus) that maps the
dimension of a stimulus (e.g. color) to a particular response
modality (e.g. verbal response). Here we assume that stimuli
consist of N dimensions (e.g. color, shape, and texture) and
that responses are carried out over K response modalities (e.g.
naming, pointing, or looking), resulting in NK possible tasks
in any environment. We adopt a formal definition of multi-
tasking from earlier work (Musslick et al., 2016; Alon et al.,
2017), in which a multitasking condition is defined as the re-
quirement to execute multiple tasks at the same time, none of
which share a stimulus or response dimension. Consequently,
at most min{N,K} tasks can be carried out concurrently.

The agent is asked to optimize performance over a series
of τ multitasking trials. On each trial, the agent is asked to
perform α tasks, where α is drawn from a latent multinomial
distribution. We introduce multitasking pressure by specify-
ing a reward schedule that favors concurrent performance of
tasks. For every task answered correctly, the agent receives
1 unit of reward, resulting in α rewards if the agent is able
to perform all tasks with maximal accuracy at the same time.
However, if the agent chooses instead to perform all tasks
sequentially, it loses jC reward units on task j, where j in-
dexes the tasks from 0 to α− 1 (so that the agent receives
∑

α−1
j=0 1− jC rewards given maximal accuracy). C is termed

the “serialization cost” or “time cost”. The per-task loss is
linear in time taken, making the per-trial (cumulative) loss
over all assigned tasks quadratic.

Optimization is defined as the choice, on each trial, of
a performance strategy that maximizes total future reward;
that is, summed over the current trial and the potentially dis-
counted reward anticipated for each future trial. This requires
estimating and convolving the expected multitasking require-
ments over trials, performance for executing the tasks concur-
rently vs. individually as a function of the estimated learning
rate for each (see below), and the serialization costs associ-
ated with performing tasks sequentially.

Agent
The agent is considered to be a rational decision-maker
that chooses between two independent, trainable processing
strategies that result from two extremes of how multiple tasks

can be represented in a single network. The first represen-
tation strategy is as a minimal basis set, in which all tasks
relying on the same stimulus dimension encode the stimuli
using the same (shared) set of hidden representations (i.e. N
sets of hidden representations) that are then mapped to the
output dimensions for each of the tasks. The second strategy
uses tensor product representations, in which each task en-
codes its stimuli using its own set of (separated) hidden rep-
resentations (resulting in NK sets of hidden representations)
that are mapped to the output dimension for the task. While
the minimal basis set provides a more efficient encoding of
the stimuli, it does not permit multitasking since the use of
shared representations introduces crosstalk between any pair
of simultaneously activated tasks (see Figure 1; Feng et al.,
2014; Musslick et al., 2016; Alon et al., 2017). Thus, use of
the minimal basis set forces a serialization cost of jC reward
units for task j = 1,2, . . . ,α−1. Conversely, the tensor prod-
uct representation permits multitasking without interference,
since each task is assigned its own set of hidden representa-
tions that comprise independent processing pathways in the
network. We assume that the agent has the potential to de-
velop both forms of representation, but these must be learned.

Figure 1: Schematic of network schemes that maximize rep-
resentation overlap (a) vs. multitasking capability (b). C, S,
T designate the stimulus dimensions (”color”, ”shape”, and
”texture”), while W, K, P designate the output modalities
(”word”, ”keyboard”, ”point”). The hidden-layer representa-
tion of the stimulus in (a) is shared for all three tasks involving
the same input dimension (minimal basis set representation),
whereas in (b) a separate hidden-layer representation is dedi-
cated to each task (tensor product representation).

Previous work has shown that, for a set of tasks that are
in principle multitaskable, training using shared representa-
tions (such as a minimal basis set) leads to faster acquisition
than learning separate representations for each task (such as a
tensor product), as the former enables the sharing of learning
signals across tasks (Musslick et al., 2017). We implement
these effects by assuming that 1) the agent learns these two
types of representations (i.e. processing strategies) by select-
ing and executing one or the other on each trial; 2) perfor-
mance for each strategy improves as a function of the number
of trials selected, and 3) learning is faster for the minimal ba-
sis strategy than for the tensor product strategy, as described
below.
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To model the learning of tasks, we define a probability of
success function (aka “training function”) for each of the two
processing strategies. Let fB, fT : N≥0 → [0,1] denote these
training functions for the minimal basis set and tensor product
strategies, respectively. These serve as explicit characteriza-
tions of the agent’s learning dynamics; fX (t) implements the
learning curve by evaluating the probability of success on a
given task after representation X has been selected t times.
That is, every time the agent chooses to process the tasks in
the trial using strategy X , the success probability for the task
under strategy X increases for the next time step. More for-
mally, let x1,x2, . . . ,xn be a sequence of n choices of repre-
sentation. We define the probability that an agent succeeds
when employing strategy X on a task in trial t as:

PX (success on a task in trial t) = fX (
t−1

∑
i=0

1xi=X )

For convenience, we use the logistic function fX (t| k, t0) =
1

1+e−k(t−t0)
. However, our analysis applies to any learning

function that is monotonically increasing and bounded be-
tween fX (0) ≈ 0 and limt→∞ fX (t) = 1. As noted above, we
assume that learning occurs at a faster rate for the minimal
basis set strategy as compared to tensor product strategy, and
examine the influence of this difference by exploring a range
of values for k, t0 that together determine the rate of learning.

The agent uses standard Bayesian machinery to infer the
expected reward given each representation, and then selects
the representation that maximizes total discounted future re-
ward. Specifically, let EX [R] denote the expected reward for
strategy X , EX [R|t] denote the expected reward on trial t, and
µ(t) be the temporal discounting function. Then we have that
EX [R] = ∑

τ
t=0 µ(t)EX [R|t]. Though temporal discounting can

be irrational in many contexts, we note that a fully rational
agent can be achieved with µ(t) = 1.

Recall that α is the randomly assigned number of tasks re-
quired to be performed on a given trial. By marginalizing
over α, we get that the expected reward on each individual
trial is EX [R|t] = ∑

min{N,K}
i=1 P(α = i)EX [R|t,α = i]. Thus, the

expected rewards for the minimal basis set and tensor product
strategies correspond to

EB[R|t] =
min{N,K}

∑
i=1

P(α = i)
i−1

∑
j=0

PB(success)(1− jC)

ET [R|t] =
min{N,K}

∑
i=1

P(α = i)
i−1

∑
j=0

PT (success)(1)

(1)

In order to compute the expected reward terms in Equa-
tion (1), the agent must be able to evaluate P(α = i) and
PX (success) by inferring the multinomial task distribution,
as well as the training function fX . The first can be inferred
using Bayes’ theorem, by keeping track of the number of
times each particular α value was seen, in conjunction with
a Dirichlet prior (we start from a uniform prior, implying ab-
sence of strong a priori belief about the distribution).

Inferring the parameters for the two training functions
fB, fT can similarly be done by tracking the history of suc-
cesses and failures and then performing a Bayesian logistic

regression (intuitively, this can be understood as the agent in-
ferring how fast it will learn). In this model, k and t0 have
independent normal priors centered on their true values with
high variance. Finally, we assume that the agent already
knows τ, the sequential processing cost C, and the tempo-
ral discounting function µ(t).

Once the expected values are computed, the agent must
select an action. We assume this is done using a standard
explore-exploit algorithm, the ε-greedy rule, in which the
agent picks the action associated with greatest value with
probability 1− ε, and uniformly otherwise.

Formal analysis of equilibrium
We begin by analyzing an agent that has perfect knowledge
about the task environment and learning rate, in order to as-
sess performance independently of noise that might be gener-
ated by an inference process over these factors. This allows us
to analytically derive equilibrium conditions under which the
agent should be indifferent between the minimal basis set and
the tensor product strategies. For this section, we let N < K
so that N = min{N,K} without loss of generality.

Observe that the expressions in Equation (1) reduce to:
EB[R|t] = fB(t)E[g(α,C)]

ET [R|t] = fT (t)E[α]
(2)

where g(i,C) = ∑
i−1
j=0(1− jC). Note that g(i,C) encodes the

amount of reward accrued by the agent for completing i tasks
in a serial fashion with time cost C. Plugging Equation (2)
into the expression for the expected reward of both strategies
we can express the condition for which the agent should be
indifferent between them:

E[α]
E[g(α,C)]

=
∑

τ
t=0 µ(t) fB(t)

∑
τ
t=0 µ(t) fT (t)

(3)

An interesting property of this result is that agent-related
and environmental parameters are analytically separable. Ob-
serve that the expectation terms on the left correspond to
the agent’s expected reward at asymptotic performance lev-
els, and that the sum terms on the right denote the number
of expected successes in a critical time period specified by
the conjunction of the temporal discounting function and the
training function. The indifference point can be understood
intuitively as a surface over which the ratio of expected even-
tual rewards is equal to the ratio of times at which they are
likely to be accrued (discounted by time). That is, the left side
contains the ratio of the rewards the agent expects to earn if it
is always correct, whereas the right side is a ratio of functions
that weight when the agent prefers to receive the rewards.

Recall that E[g(α,C)] corresponds to E[∑i−1
j=0(1− jC)] =

E
[

α

2

(
1+ [1− (α− 1)C]

)]
. Since C is a constant, it can be

isolated from the expectation in Equation (3) to get an expres-
sion for the precise value of the serialization cost that charac-
terizes the indifference surface. That is:

Ceq =
2E[α]

(
1− ∑

τ
t=0 µ(t) fT (t)

∑
τ
t=0 µ(t) fB(t)

)
E[α(α−1)]

(4)
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Equation (4) provides a rigorous characterization of the
trade-off between basis set and tensor product learning in
multitasking environments described in the Introduction:

1. As the average number of parallel tasks increases, the cost
of serialization must vanish for minimal basis set represen-
tations to remain preferable: E[α]→ ∞ =⇒ Ceq→ 0.

2. As the learning benefit of shared representations dimin-
ishes, the value of shared representations disappears. That
is, as the ratio between the (discounted) tensor product and
basis set training functions approaches unity, for the lat-
ter to remain preferable the cost of serialization must tend
toward zero: ∑

τ
t=0 µ(t) fT (t)

∑
τ
t=0 µ(t) fB(t)

→ 1 =⇒ Ceq→ 0.

3. ∑
τ
t=0 µ(t) fT (t)

∑
τ
t=0 µ(t) fB(t)

→ 0 =⇒ Ceq → 2E[α]
E[α(α−1)] : As the ratio of

the discounted training functions for the tensor product
and minimal basis set representations approaches 0, the
equilibrium-defining serialization cost becomes a function
of the number of tasks required to be performed. Partic-
ularly, Ceq is the serialization cost that sets expected re-
ward for the minimal basis set representation to 0. This
implication is not immediately obvious. Consider the task
distribution P[α = 1] = P[α = 2] = 1/2. In this environ-
ment, Ceq = 3 and at asymptotic performance levels, the
agent expects to win 1 reward unit when α = 1, or win −1
when α = 2. This makes sense; if learning tensor prod-
uct representations is so much slower than minimal basis
set representations that the ratio of the sums goes to 0, the
agent is indifferent only if the expected earnings are 0.

Finally, we note that we have used arbitrary reward func-
tions for the analyses above. However, it is possible to gen-
eralize the equilibrium condition in Equation (3) to any sta-
tionary reward function (i.e. does not change over the course
of the experiment). Let gB(α, j,C) denote a reward function
with arbitrary dependence on the number of tasks currently
being executed α, the index of the task currently being ex-
ecuted j, or the serialization cost C; specifically, gB is the
reward function used when the tasks are being executed seri-
ally. Furthermore, let hB(i,C) be the total reward gathered
when gB is applied to each of the i assigned tasks so that
hB(i,C) = ∑

i−1
j=0 gB(i, j,C). Finally, define gT ,hT analogously

for the case the tasks are being processed concurrently. Then
a generalized equilibrium condition is:

E[hT (α,C)]

E[hB(α,C)]
=

∑
τ
t=0 µ(t) fB(t)

∑
τ
t=0 µ(t) fT (t)

(5)

Observe that for gB = 1− jC and gT = 1, hB = g and hT =α

from Equation (3). The existence of this generalized equilib-
rium condition allows a large set of questions to be phrased
within this framework. For example, it is easy to include an
explicit cost of cognitive control (e.g. Shenhav et al., 2017)
by adding a term to the basis set reward function that imple-
ments a cost that increases with the number of tasks executed.

Numerical analysis with parameter inference
The analysis above characterized the behavior of an agent
with perfect knowledge of the task environment and its learn-

ing functions. Here we relax these assumptions, and use nu-
merical simulations2 to evaluate the behavior of an agent that
must infer these parameters. We assess the agent’s perfor-
mance across a series of task environments and learning spec-
ifications by crossing a set of reasonable parameter ranges.

We let τ = 1000. We set C ∈ [0,1], varying from no pun-
ishment to receiving no reward for a correct answer. We
use an exponential discounting scheme µ(t) = γ−0.025t for
γ∈ [0.5,1.0]. This covers the range from extreme discounting
to no discounting at all. We characterize the training func-
tions as logistic with fX (t) = 1

1+e−0.1(t−tX ) . This allows us to
precisely characterize difference in learning rates through the
ratio tT/tB. To that end, we set tB = 200, reflecting the speed
of minimal basis set learning, and let tT vary in [200,600].
We let N = K = 4 and define the distribution over tasks as
P(α = 1) = 0.7, P(α = 2) = P(α = 3) = P(α = 4) = 0.1 so
that the intensity and frequency of multitasking trials is suf-
ficient to permit either strategy given appropriate parameters.
We set ε = 0.1 to facilitate early exploration of the tensor
product option in the face of immediate rewards due to the
minimal basis set option. Finally, we quantify the agent’s
strategy preference as P(pick X) = number of times X was picked

τ
,

and track how P(pick basis set) varies with the parameters3.

Figure 2: Simulation results for the inference model. tT/tB
refers to the midpoint ratio of the tensor product and minimal
basis set training functions. Time cost denotes the value of C.
Note that the agent increases their preference for the minimal
basis set representation when the time cost is decreased, the
learning rate ratio is increased, or gamma is decreased.

The results (see Fig. 2) show that there is a broad range
of parameterizations under which the agent will opt for se-
lecting the minimal basis set strategy over the tensor prod-
uct strategy (P(pick basis set) > 0.5). These preferences
align with the normative analysis of how the parameters
should affect overall preference: preference for the mini-

2code available at https://github.com/yotamSagiv/thesis
3We can use Equation (4) to show that even with weak discount-

ing (γ = 0.90) and a modest learning rate ratio tT /tB = 2, the impor-
tance of fast training is such that the time cost must nearly equal the
reward value (Ceq ≈ 0.75) for indifference in this environment.
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mal basis set strategy increases with relative speed of learn-
ing, decreases with serialization cost, and increases with the
strength of temporal discounting as indicated by the linear
model fit P(select basis set)∼ b1× tT

tB
+b2× timeCost+b3×

γ (b1 = 0.25, t(78) = 47.26, p < 0.001; b2 = −0.52, t(78) =
−49.38, p < 0.001; b3 =−0.64, t(78) =−35.78, p < 0.001).

Discussion
The constraints on human multitasking abilities present an
interesting puzzle given the enormous processing capability
of the brain. Here, we explored the hypothesis that this re-
flects a fundamental trade-off between learning and process-
ing efficiency (Musslick et al., 2017), in which preference for
learning to perform a set of tasks faster, which relies on the
use of shared representations (Caruana, 1998; Baxter, 1995),
comes at the expense of multitasking efficiency (Allport et
al., 1972; Navon & Gopher, 1979; Meyer & Kieras, 1997;
Feng et al., 2014; Musslick et al., 2016). This trade-off
between the value of shared vs. separated representations is
reminiscent of the complementary learning systems hypoth-
esis (McClelland, McNaughton, & O’Reilly, 1995), which
proposes the existence of two independent learning mecha-
nisms. The first relies on shared representations to support in-
ference, and the second uses separate representations to avoid
the cost of catastrophic interference for memory encoding
and retrieval. Thus, the trade-off between shared and sepa-
rated representations appears to a fundamental one, that has
different consequences in different processing contexts. Here,
we have provided a normative analysis of this trade-off in the
context of task performance that, under various assumptions,
defines the conditions under which limitations in multitasking
ability can be viewed as a result of optimal decision-making.

Agent behavior in our model was governed by several fac-
tors: the distribution of multitasking opportunities within the
environment, the cost of serial vs. parallel performance, the
rate at which each strategy is learned, and the discount rate for
future rewards. The broad range of these factors over which
the minimal basis set strategy was optimal suggests that the
theory provides a plausible account of why so many skills
(e.g. driving a car, playing an instrument) seem to rely on
cognitive control and serial execution during acquisition.

Theories of bounded rationality (Simon, 1955, 1982;
Gigerenzer, 2008) assume that suboptimalities in human be-
havior arise from the use of heuristics rather than full deliber-
ation, given the bounds of limited multitasking capacity and
limited available information. Research in artificial intelli-
gence has suggested that such behavior is normative; that is,
it may reflect bounded optimality, in which an agent maxi-
mizes reward per unit time given intrinsic limitations in its
computational architecture (Russell & Subramanian, 1995).
The principles of bounded optimality are reflected in psycho-
logical models of cognition, in which humans perform opti-
mally within the constraints of the cognitive system (Griffiths,
Lieder, & Goodman, 2015; Gershman, Horvitz, & Tenen-
baum, 2015). Yet, these accounts do not explain why com-
putational limitations exist in the first place, other than the

assumption of limited processing power/speed. The work
here suggest that the bounds may arise from a normative re-
sponse to constraints imposed by trade-offs intrinsic to any
network architecture, whether neural or artificial – specifi-
cally, the trade-off between the advantages of faster learning
and generalization provided by shared representations, and
the advantages of concurrent parallelism and processing effi-
ciency provided by separated representations (Musslick et al.,
2017). Under this framework the source of the limitation is
not in the brain/computing device, but rather in the fact that
time in life is finite (i.e. the benefits of learning a task quickly
far outweigh the value of learning it “optimally”).

Of course, the model we described is relatively simple, and
can be extended in a number of ways. Rather than using
a logistic function to characterize learning, it may be more
reasonable to scale the benefit of shared representations by
the number of tasks (e.g. as in Musslick et al., 2017), or to
implement the learning dynamics of actual neural networks
on similar task spaces. Additionally, a cost of control pa-
rameter could be incorporated that scales with the number of
tasks being executed and/or the complexity of the task en-
vironment (Shenhav, Botvinick, & Cohen, 2013). It is also
plausible to consider the transfer of learning between the two
strategies (i.e. generalization). This may be an important fac-
tor in shaping how representations evolve from the minimal
basis set to tensor product forms over the course of training,
as suggested by some neural evidence (Garner & Dux, 2015).

One might also consider meta-learning. The simulated
agents learned about their task environment and learning
functions, but always began with the same predetermined,
static priors. It is possible that repeated experience over dif-
ferent task domains could inform these priors, improving the
initial estimates of the learning functions. This would in-
duce a higher rate of convergence to the optimal decision for
cases in which the agent’s prior experiences are relevant, and
might also explain any reluctance to switch away from sub-
optimal decision-making in contexts where its experience is
misleading. Such effects could be informative to similar lines
of inquiry regarding separate mechanisms for goal-directed
and habitual responding in mammals undergoing instrumen-
tal conditioning (Yin & Knowlton, 2006).

In sum, the results presented here strongly support the
proposal that constraints in multitasking observed in human
performance may arise from a normative approach to an in-
escapable trade-off between the value of rapidly acquiring a
set of novel skills, and optimizing the efficiency with which
these skills can be exercised. Such a normative theory of
multitasking may have value not only for understanding hu-
man performance, but also for the design of artificial systems.
Having a formal language with which to consider the trade-
off between learning efficiency and multitasking capability
(and the closely related constructs of controlled vs. automatic
processing) will facilitate precise analysis of the design of
autonomous agents that are capable not only of guiding their
own actions, but also of learning the best ways of doing so.
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