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1 	 | 	 INTRODUCTION

Lynch	 syndrome	 (LS),	 also	 known	 as	 hereditary	 non-	
polyposis	 colorectal	 cancer	 (HNPCC),	 is	 an	 autosomal	
dominant	 cancer	 predisposition	 syndrome	 accounting	
for	approximately	1%–	5%	of	all	diagnosed	colorectal	can-
cers	(CRC)	(Hampel	et	al., 2005;	Rubenstein	et	al., 2015;	

Vasen,  2005).	 LS	 is	 characterized	 by	 a	 significantly	 in-
creased	 risk	 of	 developing	 endometrial	 cancer	 (EC)	 and	
CRC,	as	well	as	ovarian,	small	bowel,	stomach,	hepatobi-
liary,	urinary,	brain	or	central	nervous	system	cancer,	and	
sebaceous	tumors	(Cohen	&	Leininger, 2014).	LS	is	caused	
by	 a	 defect	 in	 the	 DNA	 mismatch	 repair	 (MMR)	 path-
way,	 (Kunkel	&	Erie, 2005;	Tamura	et	al., 2019),	or	by	a	
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Abstract
Background: Germline	 variants	 in	 the	 DNA	 mismatch	 repair	 (MMR)	 genes	
(MLH1,	MSH2,	MSH6,	and	PMS2)	cause	Lynch	syndrome,	an	autosomal	domi-
nant	hereditary	cancer	susceptibility	syndrome.	The	risk	for	endometrial	cancer	
is	significantly	higher	in	women	with	MSH6	pathogenic/likely	pathogenic	(P/LP)	
variants	compared	with	that	for	MLH1	or	MSH2	variants.
Methods: The	proband	was	tested	via	a	clinical	testing,	Memorial	Sloan	Kettering-	
Integrated	Mutation	Profiling	of	Actionable	Cancer	Targets	(MSK-	IMPACT).	RT-	
PCR	was	performed	using	patient's	blood	DNA	and	cDNA	was	analyzed	by	DNA	
sequencing	and	a	cloning	approach.
Results: We	 report	 a	 56-	year-	old	 female	 with	 endometrial	 cancer	 who	 carries	
a	 germline	 variant,	 MSH6	 c.4001G	>	C,	 located	 at	 the	 last	 nucleotide	 of	 exon	
9.	While	 the	pathogenicity	of	 this	variant	was	previously	unknown,	 functional	
studies	demonstrated	that	this	variant	completely	abolished	normal	splicing	and	
caused	exon	9	skipping,	which	is	expected	to	lead	to	a	prematurely	truncated	or	
abnormal	protein.
Conclusion: Our	 results	 indicate	 that	 this	variant	 likely	contributes	 to	 cancer	
predisposition	through	disruption	of	normal	splicing,	and	is	classified	as	 likely	
pathogenic.

K E Y W O R D S
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deletion	in	the	epithelial	cell	adhesion	molecule	(EPCAM)	
(OMIM#:	185535)	gene,	leading	to	a	transcriptional	read-	
through	which	silences	the	downstream	mutS	homolog	2	
(MSH2)	(OMIM#:	60309)	gene	(Goel	et	al., 2011;	Kuiper	
et	al., 2011;	Niessen	et	al., 2009).

The	MMR	proteins	MLH1,	MSH2,	MSH6,	and	PMS2	are	
encoded	 by	 MutL	 homolog1	 (MLH1)	 (OMIM#:	 120436),	
MSH2,	 mutS	 homolog	 6	 (MSH6)	 (OMIM#:	 600678)	 and	
post-	meiotic	 segregation	 increased	 2	 (PMS2)	 (OMIM#:	
600259)	 genes,	 respectively.	 MSH2	 couples	 with	 either	
MSH6	or	MSH3,	and	MLH1	interacts	with	PMS2	or	MLH3	
to	 form	 heterodimeric	 complexes	 (Jiricny,  2006).	 These	
complexes	are	responsible	for	surveillance	and	correction	
of	errors	made	during	DNA	replication,	repair,	and	recom-
bination	 (Jiricny,  2006).	 Germline	 P/LP	 variants	 in	 the	
MMR	 gene	 generally	 lead	 to	 tumors	 with	 characteristic	
mutational	signature,	microsatellite	instability	(MSI),	and	
loss	of	expression	of	one	or	more	MMR	proteins	detected	
by	 immunohistochemistry	 (IHC)	 (Boland	 et	 al.,  2008).	
Although	 EPCAM	 is	 not	 an	 MMR	 gene,	 germline	 dele-
tions	 of	 3′	 end	 of	 the	 EPCAM	 gene	 leads	 to	 epigenetic	
silencing	of	the	neighboring	MMR	gene	MSH2	by	hyper-
methylation	(Kuiper	et	al., 2011;	Ligtenberg	et	al., 2009).

Germline	variants	 in	MMR	genes	result	 in	a	cumula-
tive	risk	of	up	to	60%	to	develop	CRC	in	men,	and	up	to	
50%	in	women;	and	a	risk	of	up	to	50%	to	develop	EC	at	
75	years	of	age	(Dominguez-	Valentin	et	al., 2020).	MLH1	
and	MSH2	P/LP	variants	account	for	more	than	50%	of	all	
LS	colorectal	cancer	in	many	studies	(Hampel	et	al., 2008;	
Moller	 et	 al.,  2017;	 Sjursen	 et	 al.,  2016;	 Yurgelun	
et	al., 2015).	MSH6	and	PMS2	germline	P/LP	variants	are	
less	common,	accounting	for	about	6%–	17%	and	less	than	
15%	of	all	MMR	gene	deleterious	variants	in	LS	patients	
respectively	(Bonadona	et	al., 2011;	Hampel	et	al., 2008;	
Moller	 et	 al.,  2017;	 Sjursen	 et	 al.,  2016).	 However,	 more	
recent	 studies	 indicate	 MSH6	 and	 PMS2	 P/LP	 variants	
account	 for	 24%–	29%	 and	 22%–	24%,	 respectively,	 of	 all	
germline	P/LP	variants	associated	with	Lynch	syndrome	
which	is	much	more	prevalent	than	the	previous	studies	
(Espenschied	et	al., 2017;	Latham	et	al., 2019).	Germline	
EPCAM	deletions	occur	in	at	least	1%–	3%	of	the	LS	fami-
lies	(Tutlewska	et	al., 2013).	Individuals	with	MSH6	P/LP	
variants	tend	to	develop	CRC	at	an	older	age	than	those	
who	carry	MLH1	or	MSH2	P/LP	variants	and	have	reduced	
penetrance	 (Baglietto	 et	 al.,  2010;	 Berends	 et	 al.,  2002;	
Hendriks	et	al., 2004;	Wijnen	et	al., 1998).	In	women	har-
boring	MSH6	P/LP	variants,	the	risk	for	colorectal	cancer	
is	 significantly	 lower	 than	 that	 in	 individuals	 harboring	
MLH1	and	MSH2	P/LP	variants,	while	the	risk	for	endo-
metrial	cancer	is	significantly	higher	by	age	70	(Hendriks	
et	al., 2004).	The	cumulative	risk	for	diagnosis	of	endome-
trial	 cancer	 through	 lifetime	 is	 16%–	49%	 for	 individuals	
who	contains	MSH6	P/LP	variants	(Baglietto	et	al., 2010;	

Bonadona	et	al., 2011;	Moller	et	al., 2018).	The	incidence	
of	EC	is	26-	fold	higher	in	women	who	carry	MSH6	patho-
genic	 variants,	 compared	 with	 incidence	 for	 the	 general	
population	(Baglietto	et	al., 2010).	Therefore,	determining	
MSH6	variant	pathogenicity	is	of	significant	clinical	rele-
vance,	particularly	for	predicting	cancer	risks.

The	clinical	interpretation	of	variants	involving	the	last	
nucleotide	of	an	exon	is	difficult	due	to	uncertain	molecu-
lar	effects	of	such	alterations.	Variants	at	this	position	may	
result	in	missense	substitutions	(Kanai	et	al., 1999),	and/or	
disruptions	of	normal	splicing	leading	to	skipping	of	one	
or	more	exons	(Barreiros	et	al., 2018;	Vettore	et	al., 2010;	
Yamada	et	al., 2007).	Typically,	variants	in	the	last	nucle-
otide	 of	 an	 exon	 are	 classified	 as	 a	 variant	 of	 uncertain	
significance	(VUS)	according	to	the	American	College	of	
Medical	Genetics	and	Genomics/Association	for	Molecular	
Pathology	(ACMG/AMP)	guidelines	(Richards	et	al., 2015)	
in	 the	absence	of	additional	 functional,	 segregation,	and	
splicing	studies.	A	variant	in	the	last	nucleotide	of	exon	9	
of	MSH6	gene	(c.4001G	>	A)	has	been	reported	to	segregate	
with	disease	in	multiple	LS	families	(Hendriks	et	al., 2004;	
Klarskov	 et	 al.,  2011;	Wijnen	 et	 al.,  1999),	 and	 has	 been	
classified	as	pathogenic.	However,	there	are	no	functional	
data	 supporting	 the	 pathogenicity	 of	 the	 other	 variants	
affecting	 the	 same	 nucleotide,	 including	 c.4001G	>	C.	 In	
this	report,	we	demonstrated	that	the	MSH6	c.4001G	>	C	
variant,	 identified	 in	 56-	year-	old	 woman	 diagnosed	 with	
uterine	 endometrioid	 carcinoma	 with	 microsatellite	 in-
stability	high	 (MSI-	H)	and	 loss	of	MSH6	protein	expres-
sion,	disrupts	normal	splicing	and	results	in	complete	loss	
of	exon	9,	which	presumably	 leads	 to	premature	protein	
truncation	or	abnormal	protein.	Our	results	indicate	that	
this	 variant	 likely	 contributes	 to	 cancer	 predisposition	
through	disruption	of	normal	splicing,	and	can	be	classi-
fied	as	likely	pathogenic	based	on	ACMG/AMP	guidelines.

2 	 | 	 MATERIAL AND METHODS

2.1	 |	 Subject

Our	proband	is	a	58-	year-	old	woman	who	was	diagnosed	
with	 uterine	 endometrioid	 carcinoma	 at	 age	 56	 with	
MSI-	H	 and	 loss	 of	 MSH6	 protein	 expression.	 A	 four-	
generation	pedigree	(Figure 1)	indicated	that	at	least	three	
family	 members	 were	 affected	 with	 LS-	related	 cancers.	
The	 proband's	 maternal	 grandfather	 was	 affected	 with	
prostate	cancer.	The	proband's	mother	and	brothers	were	
diagnosed	with	LS.	The	proband	was	tested	via	a	clinical-	
grade	 testing	 using	 NYSDOH-		 and	 CLIA-	approved	
Memorial	 Sloan	 Kettering-	Integrated	 Mutation	 Profiling	
of	 Actionable	 Cancer	 Targets	 (MSK-	IMPACT)	 and	 was	
identified	to	carry	the	MSH6	(NM_000179.2)	c.4001G	>	C.	
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This	variant	was	classified	as	VUS	and	likely	pathogenic	by	
different	 laboratories	 in	 ClinVar	 (https://www.ncbi.nlm.
nih.gov/clinv	ar/varia	tion/23321	4/).	Given	 the	conflicting	
interpretations	of	pathogenicity	of	this	variant,	the	patient	
was	assigned	onto	an	 IRB-	approved	protocol	and	agreed	
to	provide	additional	blood	samples	for	further	characteri-
zation	of	this	variant	at	Memorial	Sloan	Kettering	Cancer	
Center	(MSKCC).	Peripheral	blood	samples	were	collected	
and	 submitted	 to	 the	 Diagnostics	 Molecular	 Genetics	
Laboratory	at	MSKCC.	Control	RNAs	were	from	unrelated	
cancer	patients	who	do	not	carry	the	MSH6	variant.

2.2	 |	 In silico analysis

Sequence	 data	 spanning	 the	 MSH6	 locus	 for	 Homo 
sapiens	 [Chromosome	 2:	 47,783,082.0.47,810,101]	
was	 obtained	 from	 the	 Ensembl	 Genome	 Browser	
(http://www.ensem	bl.org/index.html).	 Primers	 were	

designed	 using	 the	 Primer	 3	 software	 (http://bioin	
fo.ut.ee/prime	r3-	0.4.0/).	 In	 silico	 evaluation	 of	 the	
variants	 was	 performed	 through	 Alamut	 (Interactive	
Biosoftwar),	 which	 include	 SSF,	 MaxEnt,	 NNSPLICE,	
and	GeneSplicer	tools.

2.3	 |	 cDNA analysis

Total	 RNA	 from	 the	 patient	 was	 extracted	 using	 the	
PAXgene	BloodRNA	Kit	(PreAnalytiX,	Qiagen,	Valencia,	
CA)	 and	 was	 subsequently	 used	 for	 cDNA	 synthe-
sis	 (Superscript	 III	 First-	Strand	 Synthesis	 SuperMix,	
Invitrogen	Life	Technologies,	Carlsbad,	CA).	Control	RNA	
was	 extracted	 from	 another	 unrelated	 cancer	 individual	
who	 did	 not	 carry	 the	 MSH6	 variant.	 RT-	PCR	 was	 per-
formed	 through	 SuperScript™	 III	 First-	Strand	 Synthesis	
SuperMix	 (Invitrogen)	 for	 RT	 and	 then	 the	 JumpStart	
REDTaq	Ready	Mix	(Sigma)	for	PCR,	with	control	cDNA	
or	the	patient's	cDNA	in	the	presence	of	M13-	tagged	for-
ward	 and	 reverse	 primers	 (Forward,	 E7F:	 5′-	GTA	 AAA	
CGA	CGG	CCA	GT	TGAAACTGCCAGCATACTCAT-	3′;	
Reverse,	 E10R:	 5′-	CAG	 GAA	 ACA	 GCT	 ATG	 AC	
TCAACTCAAAGCTTCCAATG-	3′).	 Each	 PCR	 reaction	
contains	12.5 μl	 2×	 JumpStart	REDTaq	Ready	Mix,	2 μl	
10  μM	 primers	 (1  μl	 for	 each	 primer),	 2  μl	 cDNA,	 and	
water	to	make	a	final	volume	of	25	μl.	PCR	reactions	were	
performed	under	the	following	conditions:	96°C	for	5 min,	
94°C	for	30	s	(35×),	64°C	for	45	s	(35×),	and	72°C	for	60	s	
(35×)	with	a	final	extension	at	72°C	for	5 min	(1×).

2.4	 |	 Cloning

To	test	whether	the	mutant	allele	is	able	to	generate	any	
normal	 transcript,	 RT-	PCR	 products	 were	 cloned	 into	
pCR4	TOPO	vectors	(Invitrogen,	Carlsbad,	CA),	following	
procedures	of	the	pCR4	TOPO	TA	Cloning	Kit	(Invitrogen,	
Carlsbad,	CA).	DNA	from	colonies	was	amplified	using	the	
forward	E7F	and	the	reverse	primer	E10R,	and	subjected	
to	direct	DNA	sequencing	analysis	using	the	forward	PCR	
primer	(BigDye	Terminator	v3.1 Cycle	Sequencing	kit	and	
3730	DNA	Analyzer,	Applied	Biosystems,	Foster	City,	CA).

3 	 | 	 RESULTS

3.1	 |	 The MSH6 c.4001G > C variant 
disrupts normal splicing and presumably 
leads to premature protein truncation

This	 variant	 c.4001G  >	C	 affects	 the	 last	 nucleotide	 of	
exon	9	of	the	MSH6	coding	sequence,	which	is	part	of	the	

F I G U R E  1  Patient	pedigree.	The	patient	described	here	is	
a	58-	year-	old	female	who	was	diagnosed	with	endometrial	and	
ovarian	cancers	at	age	56.	Her	brother	who	also	carries	the	variant	
MSH6	NM_000179.2	c.4001G	>	C	was	affected	with	colon	cancer	at	
age	45	and	her	mother	was	diagnosed	with	endometrial	cancer	at	
her	60s.

https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
http://www.ensembl.org/index.html
http://bioinfo.ut.ee/primer3-0.4.0/
http://bioinfo.ut.ee/primer3-0.4.0/
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consensus	 splice	 site	 for	 this	 exon.	 To	 evaluate	 the	 po-
tential	effects	of	the	variant	on	splicing,	we	used	Alamut	
software,	which	incorporates	four	tools	to	predict	the	po-
tential	 effect	 of	 MSH6	 c.4001G  >	C	 on	 mRNA	 splicing.	
Three	out	of	the	four	tools	predicted	that	the	variant	sig-
nificantly	weakens	the	3′	splice	acceptor	site	with	two	of	
them	predicting	a	complete	loss	of	the	canonical	acceptor	
site	and	another	one	predicting	a	score	reduction	of	57%.	
The	last	tool	(GeneSplicer)	predicted	that	this	variant	may	
not	 affect	 splicing	 (Figure  2a).	 Another	 learning-	based	
splicing	 tool,	 SpliceAI	 (https://splic	eailo	okup.broad	insti	
tute.org/),	 predicts	 a	 loss	 of	 the	 canonical	 donor	 site	 at	
c.4001,	with	the	high	prediction	score	(0.88)	(Figure 2b).

The	effect	of	MSH6	c.4001G	>	C	variant	on	RNA	splic-
ing	was	evaluated	by	amplifying	relevant	regions	of	MSH6	
from	cDNA	derived	from	the	patient.	PCR	was	designed	
to	generate	a	fragment	that	spanned	exons	likely	to	be	af-
fected	by	this	variant,	including	a	part	of	exon	7,	and	the	
entire	coding	regions	of	exons	8,	9,	and	10.	Identification	
of	an	additional	PCR	product	 suggested	 the	presence	of	
an	aberrantly	spliced	MSH6	transcript	in	the	patient	sam-
ple	(Figure 3a).	Further	sequencing	analysis	revealed	that	
the	entire	coding	region	of	MSH6	exon	9	is	deleted	from	
the	 aberrantly	 spliced	 MSH6	 transcript	 (Figure  3b).	The	

deletion	of	MSH6	exon	9	 is	predicted	to	result	 in	an	ab-
sent	or	truncated	protein	product	NP_000170.1:	(p.?).	The	
truncation	 disrupts	 a	 significant	 C-	terminal	 portion	 of	
the	MSH2	interaction	domain	of	the	MSH6	protein	(res-
idues	 Ala1302-	Leu1360)	 (Guerrette	 et	 al.,  1998;	 Kariola	
et	al., 2002).

3.2	 |	 The variant MSH6 c.4001G > C 
completely disrupts normal splicing in the 
mutant allele

We	 used	 a	 cloning	 approach	 to	 determine	 whether	 the	
c.4001G	>	C	 variant	 completely	 abolishes	 normal	 splic-
ing.	 The	 RT-	PCR	 products	 were	 cloned	 into	 the	 TOPO	
sequencing	vector,	and	135	colonies	were	sequenced	to	as-
sess	the	effect	of	this	variant	on	splicing.	One	hundred	and	
nine	 out	 of	 135	 colonies	 (109/135;	 80.7%)	 contained	 the	
aberrantly	 spliced	 transcript	 lacking	 exon	 9	 (Figure  4b).	
The	 remaining	 26	 clones	 (26/135;	 19.3%)	 contained	 the	
full-	length	transcript	and	all	had	the	wild-	type	nucleotide	
at	the	c.4001	position	(i.e.,	G),	indicating	that	the	mutant	
allele	 was	 unable	 to	 generate	 any	 full-	length	 transcript	
(Figure 4a).

F I G U R E  2  In	silico	predictions	of	the	c.4001G	>	C	variant.	(a)	The	Alamut	software	was	used	to	evaluate	the	potential	effects	of	the	
variant	on	splicing.	Three	out	of	the	four	tools	predicted	that	the	variant	significantly	weakens	the	5′	donor	splice	site	with	two	of	them	
predicted	complete	loss	of	the	canonical	donor	site	and	another	one	predicted	a	score	reduction	of	57%.	The	other	tool	predicted	that	this	
variant	does	not	significantly	affect	splicing.	(b)	SpliceAI	predicts	a	loss	of	the	donor	site	with	a	high	prediction	score.

https://spliceailookup.broadinstitute.org/
https://spliceailookup.broadinstitute.org/
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4 	 | 	 DISCUSSION

Missense	changes	at	 the	 last	nucleotide	of	an	exon	have	
been	 reported	 to	 cause	 missense	 substitutions,	 as	 well	
as	 aberrant	 splicing	 leading	 to	 exon	 skipping	 (Kanai	
et	 al.,  1999;	 Vettore	 et	 al.,  2010;	 Yamada	 et	 al.,  2007).	
Therefore,	 the	 clinical	 significance	 of	 such	 variants	 re-
mains	 uncertain	 without	 further	 functional,	 and/or	 seg-
regation	analysis.	In	this	study,	we	report	that	a	missense	
substitution	c.4001G	>	C	located	in	the	last	nucleotide	of	
exon	9	of	MSH6	gene	completely	abolishes	normal	splic-
ing	of	the	MSH6	transcript,	and	is	predicted	to	lead	to	a	
prematurely	truncated	or	absent	protein.

The	c.4001G	>	C	variant	has	not,	to	our	knowledge,	been	
previously	 reported	 in	 the	 literature,	 and	 is	 absent	 from	
large	 reference	 population	 databases	 (e.g.,	 The	 Genome	
Aggregation	 Database)	 (PM2_supporting).	 Although	 the	
arginine	 residue	 is	 only	 moderately	 conserved,	 this	 sub-
stitution	 was	 classified	 as	 likely	 pathogenic	 in	 2019	 by	
Ambry	 and	 as	 a	 VUS	 by	 Invitae	 in	 2019	 (https://www.
ncbi.nlm.nih.gov/clinv	ar/varia	tion/23321	4/).	Of	note,	an-
other	variant	affecting	the	same	nucleotide	(c.4001G	>	A;	

p.Arg1334Gln)	is	a	well-	known	pathogenic	change	based	
on	 segregation	 data	 from	 two	 LS	 families	 (Hendriks	
et	al., 2004;	Klarskov	et	al., 2011;	Wijnen	et	al., 1999)	and	
observations	in	other	unrelated	individuals	affected	with	
LS-	associated	 cancers	 (Overbeek	 et	 al.,  2007;	 Susswein	
et	 al.,  2016;	 You	 et	 al.,  2010).	 The	 pathogenicity	 of	 the	
c.4001G	>	C	 variant	 was	 uncertain	 based	 on	 the	 current	
version	of	ACMG/AMP	variant	interpretation	guidelines	
due	to	 the	 lack	of	more	definitive	 functional	or	segrega-
tion	data.

A	 variety	 of	 software	 tools	 have	 been	 developed	 to	
predict	 the	 effect	 of	 an	 alteration	 on	 creation	 of	 novel,	
or	 changes	 to	 existing	 splice	 sites.	 Although	 these	 tools	
cannot	be	used	to	definitively	classify	variants	in	a	clini-
cal	laboratory	setting,	they	can	help	prioritize	variants	of	
uncertain	significance	for	further	investigation,	including	
in	vitro	splicing	studies.	Splicing	prediction	tools,	includ-
ing	SplinceSiteFinder-	like,	MaxEntScan,	NNSPLICE,	and	
SpliceAI,	 suggested	 that	 the	 MSH6	 c.4001G	>	C	 variant	
may	 affect	 RNA	 splicing,	 which	 inspired	 us	 to	 pursue	
further	analysis	of	patient-	derived	RNA.	The	c.4001G	>	C	
variant	 completely	 disrupted	 normal	 splicing	 leading	

F I G U R E  3  RT-	PCR	analysis	demonstrates	c.4001G	>	C	leads	to	exon	9	skipping.	(a)	RT-	PCR	products	run	on	QIAxcel.	Two	extra	bands	
were	observed	in	the	patient,	but	not	in	the	control.	(b)	Electropherogram	showing	that	the	variant	causes	exon	skipping.	The	boundary	of	
exons	is	marked	by	red	arrow.

https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
https://www.ncbi.nlm.nih.gov/clinvar/variation/233214/
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to	 skipping	 of	 exon	 9	 according	 to	 in	 vitro	 RT-	PCR	 re-
sults.	Since	exon	9	is	the	penultimate	exon	of	MSH6,	the	
c.4001G	>	C	variant	is	likely	to	escape	nonsense-	mediated	
decay	and	result	in	a	truncated	protein	(p.Ala1268Glyfs*6)	
(Karousis	&	Muhlemann, 2019;	Kurosaki	et	al., 2019).

The	 MSH6	 protein	 contains	 two	 interaction	 regions	
which	 help	 in	 forming	 a	 heterodimer	 with	 the	 MSH2	
protein	 (Guerrette	et	al., 1998;	Kariola	et	al., 2002):	 the	
amino-	terminal	interaction	region	(residues	326	to	575),	
and	 the	 carboxy-	terminal	 interaction	 region	 (residues	
1302	to	1360)	(Guerrette	et	al., 1998;	Kariola	et	al., 2002).	
Our	 RT-	PCR	 and	 cDNA	 sequencing	 analysis	 demon-
strated	 that	 the	 MSH6	 c.4001G	>	C	 variant,	 which	 may	
lead	 to	 a	 truncated	 protein	 (p.Ala1268Glyfs*6),	 is	 ex-
pected	to	disrupt	a	significant	portion	of	the	C-	terminal	
MSH2	 interaction	 domain	 (PS3).	 Notably,	 multiple	
truncating	 variants	 downstream	 of	 Ala1268	 have	 been	
reported	 in	 individuals	 with	 LS	 (Baglietto	 et	 al.,  2010;	
Barnetson	 et	 al.,  2006;	 Devlin	 et	 al.,  2008;	 Raskin	
et	al., 2011).	Furthermore,	MSH6	c.3984_3987dup	(p.Leu-
1330Valfs*12),	a	well-	characterized	LS	founder	mutation	

in	 the	 Ashkenazi	 Jewish	 population	 (Goldberg	 et	 al.,	
2010;	 Raskin	 et	 al.,	 2011),	 has	 been	 shown	 to	 segregate	
with	 disease	 in	 a	 family	 affected	 with	 colorectal	 cancer	
(Peterlongo	et	al.,	2003),	and	result	in	lack	of	MSH6	stain-
ing	and	tumor	microsatellite	instability	(Goldberg	et	al.,	
2010).	Taken	together,	these	reports	strongly	indicate	that	
the	last	31	amino	acid	residues	are	critical	for	MSH6	pro-
tein	 function	 (PM1),	 and	 the	 c.4001G	>	C	 variant	 likely	
results	in	a	loss-	of-	function.	It	is	worth	noting	that	tumor	
from	the	proband	exhibits	MSI-	H	and	loss	of	MSH2	and	
MSH6	protein	expression,	and	harbors	a	second	hit	with	
the	 variant	 c.3646+1G>A	 located	 in	 intron	 7	 of	 MSH6,	
but	 not	 in	 MSH2	 as	 tested	 by	 MSK-	IMPACT	 (Data	 not	
shown),	indicating	that	the	loss	of	MSH2	is	likely	due	to	
loss	of	MSH6.	The	proband's	brother	who	was	diagnosed	
with	colon	cancer	at	age	45	also	had	the	same	germline	
variant	(PP1).Taken	together,	the	strong	LS	family	history	
(PP4)	and	our	data	 indicate	 that	 the	MSH6	 c.4001G	>	C	
variant	results	in	a	likely	loss-	of-	function,	and	should	be	
classified	as	likely	pathogenic	according	to	ACMG/AMP	
guidelines.

F I G U R E  4  cDNA	cloning	demonstrates	that	the	mutant	allele	does	not	produce	any	wild-	type	transcript.	(a)	All	clones	(n = 26)	with	
the	full-	length	transcript	containing	the	normal	G	at	the	c.4001	position;	(b)	All	clones	(n = 109)	with	the	exon	9	deletion	are	generated	from	
the	mutant	C	allele.
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The	improved	understanding	of	this	variant	has	signif-
icant	impact	on	the	patient's	medical	management	and	for	
counseling	of	the	patient	and	family	members	regarding	
disease	risk	and	reproductive	planning.
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