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GENETICS | INVESTIGATION

Transition Densities and Sample Frequency Spectra
of Diffusion Processes with Selection and Variable

Population Size
Daniel Živković,*,1 Matthias Steinrücken,†,‡ Yun S. Song,†,§ and Wolfgang Stephan*

*Section of Evolutionary Biology, Department of Biology, Ludwig-Maximilian University Munich, 82152 Munich, Germany,
†Department of Statistics and §Computer Science Division and Department of Integrative Biology, University of California, Berkeley,
California 94720, and ‡Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts 01003

ABSTRACT Advances in empirical population genetics have made apparent the need for models that simultaneously account for
selection and demography. To address this need, we here study the Wright–Fisher diffusion under selection and variable effective
population size. In the case of genic selection and piecewise-constant effective population sizes, we obtain the transition density by
extending a recently developed method for computing an accurate spectral representation for a constant population size. Utilizing this
extension, we show how to compute the sample frequency spectrum in the presence of genic selection and an arbitrary number of
instantaneous changes in the effective population size. We also develop an alternate, efficient algorithm for computing the sample
frequency spectrum using a moment-based approach. We apply these methods to answer the following questions: If neutrality is
incorrectly assumed when there is selection, what effects does it have on demographic parameter estimation? Can the impact of
negative selection be observed in populations that undergo strong exponential growth?

KEYWORDS demography; diffusion; frequency spectrum; selection; transition density

ADVANCES in empirical population genetics have pointed
out the need for models that simultaneously account for

selection and demography. Studies on samples from various
species including humans (e.g., Williamson et al. 2005;
Tennessen et al. 2012) and Drosophila melanogaster (Glinka
et al. 2003; Duchen et al. 2013) have shown that demographic
processes, such as population size changes, shape in large part
the patterns of polymorphism among genomes and estimated
the impact of selection on top of such underlying neutral con-
ditions. Thus far, most theoretical articles considered selective
and demographic forces independently of each other for the
sake of simplicity (e.g., Stephan and Li 2007).

Theoretical studies of neutral models of time-varying
population size have been accomplished within the diffusion
and the coalescent frameworks. Kimura (1955a) derived the
transition density of the Wright–Fisher (WF) diffusion with
a constant population size that characterizes the neutral
evolution of allele frequencies over time. Shortly thereafter,

Kimura (1955b) noted how to rescale time to generalize this
result to a deterministically changing population size. Nei
et al. (1975) derived the average heterozygosity under this
general condition by applying a differential equation method,
before studies on time-varying population size started to utilize
the coalescent. Watterson (1984) derived the probability dis-
tribution and the moments of the total number of alleles in a
sample usingmodels of one or two sudden changes in population
size. Slatkin and Hudson (1991) considered the distribution of
pairwise differences in exponentially growing populations, before
Griffiths and Tavaré (1994) provided the coalescent for arbitrary
deterministic changes in population size. The allele frequency
spectrum, which is the distribution of the number of times a mu-
tant allele is observed in a sample of DNA sequences, has been
utilized in many theoretical and empirical studies. It can be fur-
ther distinguished into the allelic spectrum and the sample fre-
quency spectrum (SFS) according to whether absolute or relative
frequencies are meant. Fu (1995) derived the first- and second-
order moments of the allelic spectrum for a constant population
size, which has been generalized to time-varying population size
by Griffiths and Tavaré (1998) and Živkovíc and Wiehe (2008).
Although deterministic fluctuations in population size are
commonly considered for the interpretation of biological
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data, studies have also examined stochastic changes in
population size (e.g., Kaj and Krone 2003).

The mathematical modeling of natural selection is mostly
carried out within the diffusion framework, whereas coalescent
approaches have proved to be analytically challenging (e.g.,
Krone and Neuhauser 1997). Fisher (1930) derived the equi-
librium solution for the allelic spectrum of a population, which
became particularly useful when Sawyer and Hartl (1992)
modeled the frequencies of mutant sites via a Poisson random
field approach. Kimura (1955c) employed a perturbation ap-
proach to obtain a series representation of the transition den-
sity that is accurate for scaled selection coefficients smaller
than one. However, as noted in Williamson et al. (2005), an
appropriate use of this result with respect to the analysis of
whole-genome data is even difficult for a constant population
size. In a recent article, Song and Steinrücken (2012) devised
an efficient method with which to accurately compute the
transition density of the WF diffusion with recurrent mutations
and general diploid selection. This nonperturbative approach
that can be applied to scaled selection coefficients substantially
greater than one finds the eigenvalues and the eigenfunctions
of the diffusion generator and leads to an explicit spectral
representation of the transition density. The results for this
biallelic case have been extended to an arbitrary number of
alleles by Steinrücken et al. (2013). The process dual to this
multiallelic diffusion has been analyzed earlier by Barbour
et al. (2000). While providing theoretical insight, their ap-
proach does not straightforwardly allow computation of the
transition density.

In recent years, several researchers have started to
investigate the combined effect of natural selection and
demography. The majority of these studies have utilized
finite difference schemes to enable tractable computation.
Williamson et al. (2005) employed such a scheme to obtain
a numerical solution of the SFS for a model with genic selec-
tion and one instantaneous population size change. The
authors applied this result within a likelihood-based method
to infer population growth and purifying selection at nonsy-
nonymous sites across the human genome. Evans et al. (2007)
investigated the forward diffusion equation with genic selec-
tion and deterministically varying population size and incor-
porated the effect of point mutations via a suitable boundary
condition. They derived a system of ordinary differential equa-
tions (ODEs) for the moments of the allelic spectrum, but had
to resort to a numerical scheme to make their results applica-
ble. Gutenkunst et al. (2009) considered population substruc-
ture and selection to obtain the joint allele frequency spectrum
of up to three populations by approximating the associated
diffusion equation by a finite difference scheme as well. Lukíc
and Hey (2012) applied spectral methods that even account
for a fourth population in the otherwise same setting as
Gutenkunst et al. (2009). Recently, and again with respect
to a single population, Zhao et al. (2013) provided a numerical
method with which to solve the diffusion equation for random
genetic drift that can incorporate the forces of mutation and
selection. The authors illustrated the accuracy of their

discretization approach by determining the probability of fixa-
tion in the presence of selection for both an instantaneous
population size change and a linear increase in population size.
In general, such methods require an appropriate discretization
of grid points, which may depend strongly on the parameters.
This makes it difficult, however, to predict if a particular dis-
cretization will produce accurate results.

In this study, we use the polynomial approach by Song
and Steinrücken (2012) to obtain the transition density for
genic selection and instantaneous changes in population
size. First, we focus on a single time period during which
the population has a different size relative to a fixed refer-
ence population size. We compute the eigenvalues and the
eigenfunctions of the diffusion operator with respect to the
modified drift term of the underlying diffusion equation.
Similarly to a constant population size, the eigenfunctions
are given as a series of orthogonal functions. The eigenvalues
and eigenfunctions facilitate a spectral representation of the
transition density describing the change in allele frequencies
across this time period. Such transition densities for single time
periods can then be folded over various instantaneous popula-
tion size changes to obtain the overall transition density for
such a multi-epoch model with genic selection. After illustrat-
ing the applicability of this approach, we derive the SFS by
means of the transition density. While the transition density
proves useful for the analysis of time-series data that are mostly
gathered from species with short generation times as bacteria
(e.g., Lenski 2011) but also from species with long generation
times (Steinrücken et al. 2014), the SFS can also be applied to
whole-genome data collected at a single time point. As an
alternative approach to employing the transition density for
the SFS, we modify the moment-based approach by Evans
et al. (2007) to efficiently compute allele frequency spectra
for genic selection, point mutations, and piecewise changes
in population size.

We then employ a maximum-likelihood method with which
to estimate the demographic and selective parameters of a given
bottleneck model. After examining the accuracy of parameter
estimation, we discuss how the estimates change when selection
is ignored or a simpler demographic model is assumed. We
investigate the demography of an African population of
D. melanogaster (Duchen et al. 2013), allowing for selec-
tion coefficients that either are constant or vary according
to a given distribution of fitness effects. Furthermore, we
answer another, important question arising in human pop-
ulation genetics (Tennessen et al. 2012): Can the impact of
negative selection be observed in populations that undergo
strong exponential growth? We investigate how strong se-
lection would have to be to leave a signature in the SFS.

The Transition Density for Genic Selection and Piecewise-
Constant Population Sizes with K Epochs

Model and notation

We assume that the diploid effective population size changes
deterministically, with NðtÞ denoting the size at time t. Here,
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time is measured in units of 2Nref generations, where Nref

is a fixed reference population size. Unless stated other-
wise, the initial population size will be used as the refer-
ence population size in the various numerical examples.
In the diffusion limit, the relative population size NðtÞ=Nref

converges to a scaling function, which we denote by
rðtÞ.

We assume the infinitely-many-sites model (Kimura
1969) with A0 and A1 denoting the ancestral and derived
allelic types, respectively. The relative fitnesses of A1=A1 and
A1=A0 genotypes over the A0=A0 genotype are, respectively,
given by 1þ 2s and 1þ s. The population-scaled selection
coefficient is denoted by s ¼ 2Nref � s. The frequency of the
derived allele A1 at time t is denoted by Xt. Let f be a twice
continuously differentiable, bounded function over ½0; 1�.
The backward generator of a time-inhomogeneous one-
dimensional WF diffusion process on ½0; 1� is denoted by
L , which acts on f as

L   fðxÞ ¼ 1
2
bðx; tÞ @2

@x2
ffðxÞg þ aðxÞ @

@x
ff ðxÞg; (1)

where the diffusion and drift terms are given by bðx; tÞ ¼
xð12 xÞ=rðtÞ and aðxÞ ¼ sxð12 xÞ, respectively. While se-
lection operates on a natural time scale as represented by
the drift term, changes in population size require an ap-
propriate rescaling of time within the diffusion term.
Thus, the relative strength of natural selection and ge-
netic drift is time inhomogeneous. This prohibits classical
time-rescaling approaches and introduces considerable
challenges in obtaining analytic results. To gain insights,
we here focus on the case in which r is piecewise con-
stant. In this case, the diffusion and drift terms differ by
a constant factor within each piece, thus simplifying the
analysis.

Throughout, we assume that r has K constant pieces
(or epochs) in the time interval ½t0; tÞ. The change points
are denoted by t1; . . . ; tK21, and for convenience we de-
fine t0 ¼ t0 and tK ¼ t. Then, for ti # t, tiþ1, with
0# i#K2 1, we assume rðtÞ ¼ ci, where ci is some posi-
tive constant. For the epoch ti # t, tiþ1, the diffusion
term is thus given by biðxÞ ¼ xð12 xÞ=ci and the corre-
sponding generator is denoted by L i. The scale density
ji (Karlin and Taylor 1981, Chap. 15) for the epoch is
given by

jiðxÞ ¼ exp
�
2

Z x

0

2aðzÞ
biðzÞ dz

�
¼ expð22cisxÞ;

while the speed density pi is given (up to a constant) by

piðxÞ ¼ ½biðxÞjiðxÞ�21 ¼ ciexpð2cisxÞ
xð12 xÞ : (2)

Given real-valued functions f and g on ½0; 1� that satisfy
appropriate boundary conditions and are square integrable

with respect to some real positive density h, we use h f ; gih to
denote

hf ; gih ¼
Z 1

0
f ðxÞgðxÞhðxÞdx:

The transition density within each epoch [ti , ti11)

For the epoch ½ti; tiþ1Þ, let the transition density be denoted
by piðt; x; yÞ, where t 2 ½ti; tiþ1Þ, Xti ¼ x, and Xt ¼ y. Under
the initial condition piðti; x; yÞ ¼ dðx2 yÞ, the spectral repre-
sentation of piðt; x; yÞ is given by

piðt; x; yÞ ¼
XN
n¼0

exp
h
2Li

nðt2 tiÞ
i
piðyÞFi

nðxÞFi
nðyÞ

1D
Fi

n;F
i
n

E
pi

;

(3)

where 2Li
n and Fi

n are the eigenvalues and eigenfunctions
of L i, respectively. That is,

L iFi
nðxÞ ¼ 2Li

nF
i
nðxÞ:

It can be shown that the eigenvalues are all real and
nonpositive. Furthermore,

0#Li
0 ,Li

1 ,Li
2 ,⋯;

with Li
n/N as n/N. The associated eigenfunctions

fFi
nðxÞgNn¼0 form an orthogonal basis of L2ð½0; 1�;piÞ, the

space of real-valued functions on ½0; 1� that are square in-
tegrable with respect to the speed density pi, defined in (2).

Song and Steinrücken (2012) recently developed
a method for finding Li

n and Fi
n in the case of ci ¼ 1. We

give a brief description of their method and modify it ac-
cordingly to incorporate an arbitrary ci . 0. Let L i

0 denote
the diffusion generator under neutrality (i.e., s ¼ 0). The
eigenfunctions of L i

0 are modified Gegenbauer polynomials
fGnðxÞgNn¼0 (cf. Appendix), and the corresponding eigenval-
ues are 2lin, with

lin ¼
�
nþ 2
2

�
1
ci
: (4)

Similar to Song and Steinrücken (2012), define Hi
nðxÞ as

Hi
nðxÞ ¼

expð2cisxÞffiffiffiffi
ci

p GnðxÞ: (5)

Then, fHi
nðxÞgNn¼0 form an orthogonal system with respect to

the weight function piðxÞ. By directly applying the full gen-
erator L i to Hi

nðxÞ, we observe that Hi
nðxÞ are not eigenfunc-

tions of L i. Instead, we obtain

L iHi
nðxÞ ¼ 2

�
lin þ ciQðx;sÞ

�
Hi
nðxÞ; (6)

where Qðx;sÞ ¼ 1=2 � s2xð12 xÞ. However, since both
fHi

nðxÞgNn¼0 and fFi
nðxÞgNn¼0 are orthogonal with respect to
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the same weight function piðxÞ and fHi
nðxÞgNn¼0 form a basis

of L2ð½0; 1�;piÞ, we can represent Fi
nðxÞ as a linear combina-

tion of Hi
mðxÞ:

Fi
nðxÞ ¼

XN
m¼0

uin;mH
i
mðxÞ: (7)

Furthermore, the fact that Fi
nðxÞ is an eigenfunction of L i

with eigenvalue 2Li
n implies that fuin;mgNm¼0

and Li
n satisfy

the equation0BBBBBBBBBBB@

li0 þ cia
ð0Þ
0 0 cia

ð22Þ
2 0 0 ⋯

0 li1 þ cia
ð0Þ
1 0 cia

ð22Þ
3 0 ⋯

cia
ðþ2Þ
0 0 li2 þ cia

ð0Þ
2 0 cia

ð22Þ
4 ⋯

0 cia
ðþ2Þ
1 0 li3 þ cia

ð0Þ
3 0 ⋯

0 0 cia
ðþ2Þ
2 0 li4 þ cia

ð0Þ
4 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

1CCCCCCCCCCCA

3

0BBBBBBBBBB@

uin;0
uin;1
uin;2
uin;3
uin;4
⋮

1CCCCCCCCCCA
¼ Li

n

0BBBBBBBBBB@

uin;0
uin;1
uin;2
uin;3
uin;4
⋮

1CCCCCCCCCCA
; (8)

where lin is as defined in (4) and að22Þ
m ; að0Þm ; aðþ2Þ

m are known
constants that depend on s and m (cf. Song and Steinrücken
2012 for details).

The transition density expansion (3) can be obtained by
numerically solving the eigensystem (8). Denote the infinite-
dimensional matrix on the left-hand side of (8) by Wi.
The eigenvalues Li

n of Wi correspond (up to a sign) to the
eigenvalues of L i, and the associated eigenvectors
ui
n ¼ ðuin;0; uin;1; uin;2; . . .ÞT of Wi determine the eigenfunctions

of L i via (7). Let W ½D�
i denote the D3D matrix obtained by

taking the first D rows and D columns of Wi, and let Li;½D�
n

and ui;½D�
n ¼ ðui;½D�n;0 ; u

i;½D�
n;1 ; ui;½D�n;2 ; . . .ÞT denote the eigenvalues

and eigenvectors of W ½D�
i , respectively. The truncated

eigensystem

W½D�
i ui;½D�n ¼ Li;½D�

n ui;½D�n (9)

can then be used to approximate (8). This finite-dimensional
linear system can be easily solved numerically. Since the
truncated versions of the eigenvalues and eigenvectors
converge rapidly as D increases, an accurate approximation
of the transition density (3) can be efficiently obtained.
The truncation level D required for convergence is higher
when modeling a large population compared to the basic
selection model and lower when the population size is
small. The reason for this is that the necessary truncation
level depends on the effective strength of selection, which
is higher in large populations and lower in small popula-
tions. Therefore, for a fixed selection coefficient s, large
populations are computationally more demanding than
small populations. Furthermore, we observed that positive

selection coefficients require higher values for D than neg-
ative ones.

The transition density for the entire period [t0, t)with K
epochs

Suppose Xt0 ¼ x and Xt ¼ y. The transition density
pðt0; t; x; yÞ for the entire period ½t0; tÞ is obtained by com-
bining the transition densities for the K epochs as

pðt0; t; x; yÞ ¼
Z
½0;1�K21

p0ðt1; x; x1Þ
" YK22

i¼1

piðtiþ1; xi; xiþ1Þ
#

3 pK21ðt; xK21; yÞ  dx1 . . . dxK21; (10)

where xi denotes the allele frequency at the change point ti.
Using (3), we can write (10) as

pðt0; t; x; yÞ ¼ F0ðxÞTE0S0E1S1⋯EK22SK22EK21FK21ðyÞpK21ðyÞ;
(11)

where FiðxÞ ¼ ðFi
0ðxÞ;Fi

1ðxÞ;Fi
2ðxÞ; . . .ÞT is an infinite-

dimensional column vector, while Ei and Si are infinite-
dimensional matrices defined as

Ei ¼ diag
e2Li

0ðtiþ12tiÞD
Fi

0;F
i
0

E
pi

;
e2Li

1ðtiþ12tiÞD
Fi

1;F
i
1

E
pi

; . . .

0B@
1CA

and

Si ¼
Z 1

0
piðzÞFiðzÞFiþ1ðzÞTdz:

In general, Si is not a diagonal matrix since Fi
nðzÞ and

Fiþ1
m ðzÞ are not orthogonal with respect to piðzÞ if

ci 6¼ ciþ1. In Appendix, we show that the entry ðn;mÞ of Si

is given byR 1
0 piðzÞFi

nðzÞFiþ1
m ðzÞdz

¼
ffiffiffiffiffiffiffiffi
ci
ciþ1

r XN
k¼0

XN
l¼0

uin;ku
iþ1
m;l

Xkþlþ2

j¼1

ð21Þjþ1 esðci2ciþ1Þ 2 ð21Þkþlþj

½sðci2ciþ1Þ� jþ1

3
ðkþ 1Þðlþ 1Þj!
ðkþ 2Þðlþ 2Þ

Xj21

r¼0

 
kþ 2

j2 r

! 
kþ j2 r

j2 r2 1

! 
lþ rþ 2

rþ 1

! 
l

r

!
:

(12)

Note that the last line of (12) does not depend on n or m, so
it needs to be computed only once. The overall computa-
tional time for evaluating pðt0; t; x; yÞ scales linearly with
the number K of epochs.

To better understand the joint impact of selection and
demography on the transition density, we consider two
scenarios, where pð0; t; x; yÞ is simply denoted as pðt; x; yÞ.
Figure 1 illustrates the density in a scenario in which the
selection coefficient is fixed and various K-epoch demo-
graphic models are considered. In comparison to the case
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of a constant population size (cf. Figure 1A), an instanta-
neous expansion (cf. Figure 1B) narrows the distribution
around the mean, whereas an additional phase of a reduced
population size (cf. Figure 1C) increases the variance relative to

a population of a constant size. Figure 2 illustrates the same
scenarios with a fixed transition time and varying selection
coefficients. Note that all theoretical results and the corre-
sponding applications in this article were implemented in
Mathematica. The implementation is available from the
authors upon request.

The Sample Frequency Spectrum

The transition density approach

The transition density derived in the previous section can be
employed to obtain the SFS of a sample. Consider a sample
of size n obtained at time t ¼ t. The probability that the A1

allele with frequency x at time t ¼ t0 is observed b times in
the sample is (Griffiths 2003)

pn;bðx; t0; tÞ ¼
Z 1

0

�
n
b

�
ybð12yÞn2bpðt0; t; x; yÞdy: (13)

For piecewise-constant population size models with K
epochs, a spectral representation of pðt0; t; x; yÞ can be
found via (11) and evaluating (13) involves computing
the integral

R 1
0 ybð12yÞn2bpK21ðyÞFK21ðyÞdy. For l$0, us-

ing (2), (5), and (7), we obtainZ 1

0
ybð12yÞn2bpK21ðyÞFK21

l ðyÞdy

¼
XN
m¼0

ffiffiffiffiffiffiffiffiffiffi
cK21

p
uK21
l;m

Z 1

0
yb21ð12yÞn2b21ecK21�syGmðyÞdy

¼
XN
m¼0

ffiffiffiffiffiffiffiffiffiffi
cK21

p
uK21
l;m

1
bþ 1

Xm
h¼0

ð21Þhþ1

3

" 
mþ 1

hþ 1

! 
hþmþ 2

h

!, 
nþ hþ 1

bþ 1

!#

3 1F1ðbþ 1; nþ hþ 2; cK21 � sÞ;
(14)

where 1F1ða; b; zÞ ¼
P

j$ 0aðjÞ=bðjÞz
j=j! is the confluent hyper-

geometric function of the first kind. The descending facto-
rials dðjÞ are defined in Appendix.

The SFS qn;bðtÞ is the probability distribution on the num-
ber b of mutant alleles in a sample of size n taken at time t,
conditioned on segregation. For 1# b# n2 1, qn;bðtÞ is
given by

qn;bðtÞ ¼ lim
x/0

R t
2N pn;bðx; t0; tÞdt0R t

2N

Pn21
a¼1pn;aðx; t0; tÞdt0

: (15)

In (15), the SFS at a single site is obtained by averaging over
sample paths. This is equivalent to the frequency spectrum
distribution over a large number of independent mutant
sites in the Poisson random field model of Sawyer and Hartl

Figure 1 Transition densities for various transition times t and a fixed
selection coefficient s ¼ 21. In all cases, we set x ¼ 1=2 and D ¼ 100.
(A) A single-epoch model (K ¼ 1), a constant population size with c0 ¼ 1.
(B) A two-epoch model (K ¼ 2), with an instantaneous expansion
(c0 ¼ 1; c1 ¼ 10, t1 ¼ t=2). (C) A three-epoch model (K ¼ 3), with a pop-
ulation bottleneck followed by an expansion (c0 ¼ 1; c1 ¼ 1=10, c2 ¼ 10,
t1 ¼ t=4; t2 ¼ t=2).
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(1992). Using (11), (12), (13), and (14), we can approx-
imate (15) numerically. If it is unknown which allele is
derived, a folded version of (15) can be obtained as

½qn;b þ qn;n2b�=ð1þ db;n2bÞ, where db;n2b denotes the Kro-
necker delta.

A moment-based approach

As detailed above, the transition density can be employed
to obtain the SFS. However, the specific solution for the
transition density is not required to obtain the less complex
and thus computationally less demanding SFS. Here, we
utilize the work of Evans et al. (2007) to develop an efficient
algorithm for computing the allele frequency spectrum in
the case of genic selection and piecewise-constant popula-
tion sizes.

Suppose mutations arise at rate u=2 (per sequence per
2Nref generations) and according to the infinitely-many-
sites model (Kimura 1969). Evans et al. (2007) use the
forward diffusion equation to describe population allele
frequency changes and introduce mutations by an ap-
propriate boundary condition. Slightly modifying their
notation, we use f ðy; tÞdy to denote the expected number
of sites where the mutant allele has a frequency in
ðy; y þ dyÞ, with 0, y, 1, at time t. The forward equation
is

@

@t
f ðy; tÞ ¼ 1

2
@2

@y2
fbðy; tÞfðy; tÞg2 @

@y
faðyÞf ðy; tÞg; (16)

where the diffusion term bðy; tÞ ¼ yð12 yÞ=rðtÞ, the drift
term aðyÞ ¼ syð12 yÞ, and the scaled selection coefficient
s and the population size function rðtÞ are defined as be-
fore. The influx of mutations is incorporated into this pro-
cess via the boundary conditions

lim
yY0

yfðy; tÞ ¼ urðtÞ and lim
y[1

f ðy; tÞ  finite: (17)

The resulting polymorphic sites follow the dynamics of (16)
thereafter. Note that this differs from the diffusion process
studied in the previous section, as the influx of mutations is
now explicitly modeled.

Again, it is analytically more practical to consider the
corresponding backward equation, which is obtained by
setting gðy; tÞ :¼ yð12 yÞf ðy; tÞ. This substitution trans-
forms the forward equation for f ðy; tÞ into a backward equa-
tion for gðy; tÞ, which is essentially given by (1) up to the
sign of the drift term. Evans et al. (2007) derived a coupled
system of ODEs for the moments mjðtÞ ¼

RN
0 yjgðy; tÞdy:

m 90ðtÞ ¼
u

2
2

1
rðtÞm0ðtÞ þ s½m0ðtÞ2 2m1ðtÞ�; (18)

m 9j ðtÞ ¼ 1
rðtÞ

" 
jþ 1

2

!
mj21ðtÞ2

 
jþ 2

2

!
mjðtÞ

#

þ s
�ðjþ 1ÞmjðtÞ2 ðjþ 2Þmjþ1ðtÞ

�
; j$ 1;

(19)

Figure 2 Transition densities for various selection coefficients s and
a fixed transition time t ¼ 1=2. In all cases, we set x ¼ 1=3 and D ¼ 100.
(A) A single-epoch model (K ¼ 1), a constant population size with c0 ¼ 1.
(B) A two-epoch model (K ¼ 2), with an instantaneous expansion
(c0 ¼ 1; c1 ¼ 10, t1 ¼ t=2). (C) A three-epoch model (K ¼ 3), with a popu-
lation bottleneck followed by an expansion (c0 ¼ 1; c1 ¼ 1=10, c2 ¼ 10,
t1 ¼ t=4; t2 ¼ t=2).
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where m 9j ðtÞ ¼ dmjðtÞ=dt. A similar system of ODEs was
derived and solved by Kimura (1955a) for a neutral sce-
nario with a constant population size and without muta-
tions. For s ¼ 0, the above system is finite and can be
solved explicitly (Živković and Stephan 2011). In the case
of selection (s 6¼ 0), on the other hand, the system is
infinite and obtaining an explicit solution for an arbitrary
r is a challenging problem, even if the system is truncated
by setting mjðtÞ ¼ 0 for j$D.

From now on, assume mjðtÞ[ 0 for j$D and rewrite the
truncated system of ODEs in matrix form as

M9ðtÞ ¼ 1
rðtÞBþ sA
� �

MðtÞ þQ; (20)

where MðtÞ ¼ 	m½D�
0 ðtÞ;m½D�

1 ðtÞ; . . . ;m½D�
D21ðtÞ


T, M9ðtÞ ¼
dMðtÞ=dt, Q ¼ ðu=2; 0; . . . ; 0ÞT are D-dimensional column
vectors, and B ¼ ðbklÞ and A ¼ ðaklÞ are D3Dmatrices with
entries

bkl ¼

8>>>>><>>>>>:
2

�
kþ 2

2

�
; if   l ¼ k;�

kþ 1

2

�
; if   l ¼ k2 1;

0; otherwise;

and

akl ¼

8><>:
kþ 1; if   l ¼ k;
2ðkþ 2Þ; if   l ¼ kþ 1;

0; otherwise;

for 0# k; l#D2 1. The formal solution of (20) cannot be
written in terms of a matrix exponential but only as
a Peano–Baker series (Baake and Schlägel 2011) for arbi-
trary r, which can be numerically quite demanding. There-
fore, we focus on the case of piecewise constant r and
develop an efficient method to solve the truncated system
of ODEs.

We first consider rðtÞ[ c0 (i.e., a constant population
size), for which the solution of (20) takes the form of a ma-
trix exponential given by

Figure 3 (A) The relative population size, rðtÞ, is initially 1 and changes instantaneously to 1=10 and 5 at times 6=10 and 9=10, respectively. The SFS of
a sample of size 20 are plotted for this demography (B) without selection, (C) negative selection of s ¼ 22, and (D) positive selection of s ¼ 10. The
times of sampling are illustrated in A and the bars are accordingly displayed from the left to the right. Truncation levels D = 100 and D = 500 were
respectively applied for (C) negative and (D) positive selection, while the SFS was explicitly calculated for (B) neutrality.
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MðtÞ ¼ exp
�R t

0

�
B
c0

þ sA
�
ds
�
Mð0Þ

þ
(R t

0
exp

�R t

s

�
B
c0

þ sA

�
du

�
ds

)
Q

¼ exp
B
c0

þ sA
� �

t
� �

Mð0Þ

þ
(
exp

B
c0

þ sB
� �

t
� �

2 I

)
B
c0
þ sA

� �21
Q:

(21)

Let 2lk; ðlk;0; . . . ; lk;D21Þ, and ðr0;k; . . . ; rD21;kÞT, respectively,
denote the eigenvalues, row eigenvectors, and column
eigenvectors of B=c0 þ sA. Then, (21) implies

m
½D�
j ðtÞ ¼

XD21

i¼0

m
½D�
i ð0Þ

XD21

k¼0

rjklkie
2lkt þ u

2

XD21

k¼0

rjklk0
12 e2lkt

lk
:

(22)

It is intractable to find closed-form expressions of 2lk; lki,
and rjk, but, for a given truncation level D, they can be
computed numerically. Depending on the details of the model
under consideration, it might be more efficient to solve (21)
numerically rather than applying the more analytic form given
in (22).

We now investigate the equilibrium solution of (22),
since it can be applied as an initial condition in a model in
which the population size remains constant over a longer
period of time before instantaneous population size changes
occur. Assuming that all alleles are monomorphic at time
zero, i.e., m

½D�
i ð0Þ[0, and letting t/N, we obtain the

moments at equilibrium as

bm½D�
j ¼ u

2

XD21

k¼0

rjklk0
lk

:

For D sufficiently large, this result is numerically close to the
exact solution bmj. The latter can also be obtained as follows.

The equilibrium population frequency spectrum is given by
(Fisher 1930)

bf ðyÞ ¼ uc0
�
12 e22c0sð12yÞ�

yð12 yÞð12 e22c0sÞ: (23)

The sampled version can be easily found via binomial
sampling as in (13):

bf n;b ¼ uc0
n

bðn2 bÞ
121F1ðb; n; 2c0sÞe22c0s

12 e22c0s
: (24)

For s 6¼ 0, the moments bmj of bgðyÞ ¼ yð12 yÞbfðyÞ are given
by

bmj ¼ uc0
1

12 e22c0s

(
e22c0s½Gðjþ 1; 22c0sÞ2 j!�

ð22c0sÞjþ1 þ 1
jþ 1

)
;

where Gða; zÞ ¼ RNz ta21e2tdt is the incomplete gamma
function.

Now, consider the piecewise-constant model with K
epochs in the time interval ½t0; t� defined earlier. For
ti # t, tiþ1,

M9ðtÞ ¼ B
ci
þ sA

� �
MðtÞ þQ; (25)

which can be solved as in (21). For t. tK21,

MðtÞ ¼ exp
B

cK21
þ sA

� �
ðt2 tK21Þ

� �
MðtK21Þ

þ fexp B
cK21

þ sA
� �

ðt2 tK21Þ
� �

2 Ig B
cK21

þ sA
� �21

Q;

(26)

where MðtiÞ, for 1# i#K2 1, is recursively given by

MðtiÞ ¼ exp
B

ci21
þ sA

� �
ðti 2 ti21Þ

� �
Mðti21Þ

þ fexp B
ci21

þ sA
� �

ðti 2 ti21Þ
� �

2 Ig B
ci21

þ sA
� �21

Q:

The initial condition Mðt0Þ is chosen as either the equilib-
rium solution described above or the zero vector, which cor-
responds to the case of all loci being monomorphic at time
t0 ¼ t0.

The accuracy of the above framework depends on how
fast the truncated moments m½D�

j ðtÞ converge to zero as D
increases. Similar to the transition density approach, the
truncated moments converge faster for negative than for
positive s, and for instantaneous declines compared to
instantaneous expansions. For a large positive s, a higher
truncation level D may be required to achieve the de-
sired accuracy. Finally, the allelic spectrum fn;bðtÞ, for
1# b# n2 1, of a sample of size n taken at time t can

Figure 4 The population is constant in size before being instantaneously
changed to relative size cB at time zero. Then, another jump to relative population
size cS follows at time tB, before a sample is taken at time t ¼ tB þ tS.
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be obtained from the moments mjðtÞ by using the
relationship

fn;bðtÞ ¼
�
n
b

� Xn2b21

l¼0

ð21Þl
�
n2 b21

l

�
mlþb21ðtÞ: (27)

The SFS qn;bðtÞ at time t is then given by

qn;bðtÞ ¼
fn;bðtÞPn21
a¼1 fn;aðtÞ

: (28)

Substituting the truncated moments obtained from (26) into
(27) provides numerical approximations of (27) and (28).

The joint impact of a population bottleneck and selection
on the SFS is illustrated in Figure 3 for various points in
time. As expected, negative and positive selection result in
a skew of the SFS toward low- and high-frequency derived
variants, respectively, when compared to a model without
selection, across all sampling times. Moreover, this skew
varies in intensity at different points in time. In the neutral
demographic model (cf. Figure 3B), the relative frequency of
singletons at time t3 is higher than at time t4, whereas under
the same demographic model with negative selection (cf. Fig-
ure 3C), this relation is inverted. This is because the amount of
singletons that is caused by demographic forces decreases after
the expansion from t3 to t4, while negative selection is still
increasing the low-frequency derived classes in this time
interval.

Applications

Here, we discuss biologically relevant questions that can be
addressed using our theoretical framework. This section
consists of the following parts:

1. We first consider models with negative selection and bot-
tlenecks of medium strength at different time points. We
examine the SFS under such models and try to estimate
the demographic parameters while taking selection into
account. We also carry out demographic inference ignor-
ing selection. Whereas the former demonstrates how well
the demographic and selective parameters can be esti-
mated jointly, the latter mimics the common practice of
assuming genome-wide polymorphic sites as putatively
neutral (due to the difficulty of jointly estimating the
impact of selection and demography using existing
tools). We finally examine the consequences of assuming

a too simple underlying demography on parameter
estimation.

2. We then analyze an African sample of D. melanogaster to
investigate its demographic history and possible selective
effects.

3. Finally, we examine a model of strong exponential pop-
ulation growth (mimicking human evolution) and su-
perimpose negative selection of various strengths to
understand if and when selection can be inferred for
such a model.

Throughout, the first population size change will occur
after the allele frequencies have reached an equilibrium
according to (24).

Joint inference of population bottleneck and
purifying selection

A maximum likelihood approach: Under the assumption
that the considered sites are independent, the log-
likelihood of a model M given data D is log½LðD;MÞ� ¼Pn21

i¼1 dilogðqiÞ þ constant, where di is the observed number
of sites at which the derived allele occurs i times in the
sample, and qi is the probability that the derived allele
occurs i times in the sample at a segregating site under
model M (e.g., Wooding and Rogers 2002). Recall that qi
can be obtained via either the transition density or the
moment-based approach. The latter is preferable here, since
the transition density is not explicitly required.

Consider the bottleneck model illustrated in Figure 4.
Note that the present relative size cS is fixed to 1; i.e., here
the present population size is used as the reference popula-
tion size Nref . First, we consider the scenario where the
ancestral population size c0 prior to the bottleneck is
allowed to vary. In this case, the model has five free param-
eters: c0, the initial population size; cB, the population size
during the bottleneck; tB, the duration of the bottleneck;
tS ¼ t2 tB, the time since recovery from the bottleneck;
and s, the scaled selection coefficient. We then also consider
the scenario where the ancestral population size is the same
as the present population size, i.e., c0 ¼ cS, resulting in
a model with four free parameters.

We adopted a grid search in our estimation procedure,
with s 2 ½210; 0� and cB; tB; tS 2 ½0:001; 1�. For the five-
parameter model, c0 was chosen from the range ½0:01; 10�.
In total, 110,000 grid points were chosen in the selected
case and 10,000 in the neutral case. Note that the grid
search also accounts for models of one or two successive

Table 1 Grid values chosen for each parameter in our optimization procedure

c0 0.011 0.023 0.05 0.1 0.224 0.5 1 2.154 4.642 10

s 210 25.848 23.420 22 21.260 20.79 20.5 20.292 20.171 20.1 0
cB 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1
tB 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1
tS 0.001 0.0022 0.005 0.011 0.023 0.05 0.1 0.224 0.5 1

The underlying bottleneck model is illustrated in Figure 4. Grid values c0 were considered for the five-parameter model, whereas c0 ¼ cS in the four-parameter model. The
grid values for the remaining parameters were applied in both scenarios. The ratio of two consecutive values remains constant between (and including the) two subsequent
bold entries.
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instantaneous population expansions. For the four-parameter
model, 11,000 grid points were chosen in the selected case and
1000 in the neutral case. The grid points are summarized in
Table 1.

Estimation of bottleneck and selection parameters: We
first evaluated the SFS for a sample of size n ¼ 50
in the following 12 scenarios, all with cS ¼ 1 and
s 2 f0;21=2; 22g:
1. constant population size (i.e., c0 ¼ cB ¼ cS ¼ 1).
2. bottleneck models with c0 ¼ 1=2; cB ¼ 1=10, tB ¼ 1=10,

and tS 2 f1=200; 1=20; 1=2g.
First, to test how well the demographic and selective

parameters can be estimated jointly from sampled data, we
focused on the bottleneck demography with tS ¼ 1=20 and
considered two scenarios: The neutral case (s ¼ 0) and the
selected case with s ¼ 2 2. To mimic the limited availabil-
ity of independent polymorphic sites across the genome,
we sampled 10,000 sites according to the SFS for the two
chosen scenarios and repeated this procedure 200 times.
For each of these 200 data sets, we maximized the log-
likelihood over the grid of parameter values described earlier,
assuming (A1) neutrality when the true model has s ¼ 0, (A2)
neutrality when the true model has s ¼ 2 2, (A3) presence of
selection when the true model has s ¼ 2 2, and (A4) pres-
ence of selection when the true model has s ¼ 0.

The estimated parameters are shown in Table 2. For in-
ference under correct model assumptions (A1 and A3), the
median estimates are equal to the true parameters. When
selection is ignored although present in the data set (A2),
the ancestral population size (c0) and the duration of the

bottleneck (tB) are underestimated, whereas the bottleneck
size (cB) and the time since the bottleneck (tS) are accurately
estimated. When the true model is neutral but the inference
procedure allows for selection (A4), a neutral demographic
model is accurately inferred. We calculated likelihood-ratio
statistics for each of the 200 data sets to compare the two
nested models of selection and neutrality. The null hypothesis
of neutrality can be rejected at the 5% significance level with
a power of 55%.

We further analyzed all 12 scenarios using the expected
SFS directly, assuming that the amount of data are suffi-
ciently large such that the observed SFS closely approx-
imates the expected value. Our goal in this case is to study
the effect of model misspecification on parameter estima-
tion; specifically, assuming selection when the true model is
neutral or assuming neutrality when there is selection. In
the former case, the maximum likelihood estimates (MLEs)
always coincided with the true parameters. Therefore, it is
useful to allow for selection in an analysis even when
putatively neutral regions are considered. In the latter case,
our results are summarized in Table 3. For a constant pop-
ulation size, two rather old instantaneous expansions are
estimated. For the bottleneck models, ignoring selection leads
to the largest errors for the most recent bottleneck and
s ¼ 21=2 and the least recent bottleneck and s ¼ 2 2,
for which an instantaneous expansion is estimated. The time
since the bottleneck was robustly estimated in many cases.

To assess the impact of assuming a slightly simplified
model for parameter estimation, we carried out an analo-
gous study in which the ancestral population size c0 was
incorrectly assumed to equal the current size cS ¼ 1, while
the true model had c0 ¼ 1=2 and cS ¼ 1. For the resampling
analysis, we considered the same bottleneck scenarios as
before with s ¼ 0 or 22, and maximized the log-likelihood
values over a grid in the parameter space (as described
earlier) for each of the 200 simulated data sets each con-
taining 10,000 polymorphic sites. The parameter estimates
are shown in Table 4. The time since the bottleneck (tS) is
accurately estimated irrespective of correct or wrong assump-
tions regarding selection. Incorrectly assuming c0 ¼ cS results
in either an overestimation of the duration of the bottleneck
(tB) in most of the cases (A1–A3) or an inference of selec-
tion when s ¼ 0 (A4). Selection was poorly estimated even
under (A3).

Again, we also analyzed all 12 scenarios under the
assumption that the observed SFS is a close approximation
to the expected value, to study the effect of model
misspecification on parameter estimation. The results are
shown in Table 5. The biases caused by incorrectly assuming
c0 ¼ cS are largest for the scenario that captures the youn-
gest bottleneck (tS ¼ 1=200). Here, not only the selection
coefficients are strongly misestimated but also the time since
the bottleneck (tS) is largely underestimated. In all the other
scenarios, at least the time since the bottleneck (tS) is accu-
rately estimated. The estimation accuracy of the other de-
mographic parameters and selection coefficients increases

Table 2 Parameter estimation results based on 10,000 sampled
sites

ĉ0 ŝ ĉB t̂B t̂S

True parameters 0.5 0 or −2 0.1 0.1 0.05

5% 0.5 0.1 0.1 0.05
(A1) Median 0.5 0.1 0.1 0.05

95% 0.5 0.1 0.1 0.05

5% 0.22 0.02 0.005 0.05
(A2) Median 0.22 0.1 0.05 0.05

95% 0.22 0.1 0.05 0.05

5% 0.22 −2 0.05 0.01 0.05
(A3) Median 0.5 −2 0.1 0.1 0.05

95% 0.5 0 0.1 0.1 0.05

5% 0.5 −0:5 0.1 0.001 0.05
(A4) Median 0.5 0 0.1 0.1 0.05

95% 2.15 0 0.1 0.1 0.05

SFS were computed for the true parameters and the demography illustrated in Figure 4
(c0 ¼ 1=2, cS ¼ 1). Then, 10,000 sites were sampled according to the SFS of the neutral
and the selective scenario, and this procedure was repeated 200 times each. The log-
likelihood values were maximized over the parameter spaces as specified in the main
text, and the table reports the median, the 0.05, and the 0.95 quantiles. The four cases
correspond to assuming (A1) neutrality when s ¼ 0, (A2) neutrality when s ¼ 22, (A3)
presence of selection when s ¼ 22, and (A4) presence of selection when s ¼ 0.
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with bottleneck age and the concomitant decreasing impact
of the ancestral population size on the SFS. In summary, we
note that assuming a too simplistic demographic model can
lead to large errors in parameter estimation.

Testing a data set of D. melanogaster: Here, we apply our
method to analyze a data set that has been recently used to
estimate the joint demographic history of several popula-
tions of D. melanogaster (Duchen et al., 2013). The data set
consists of 12 sequences from a Zimbabwe population com-
prising 197 noncoding loci, and within each locus there are
between 1 and 41 segregating sites (3234 polymorphic sites
in total). We focused on the effects of weak selection and
used all segregating sites in our analysis, treating them as
independent. We note that whereas the 197 loci are scat-
tered over the genome, at least tens of thousands of bases
apart, the sites within each locus are tightly linked and
hence not independent. We have tried a bootstrap resampling
procedure to study the effect of assuming independence, but
the strong stochasticity among the small subsets of presumably
independent sites, which were generated by sampling one site
from each locus, prevented a reliable inference.

The empirical SFS of the data shows an uptick of high-
frequency derived alleles (cf. Figure 5A). As explained in
Discussion, this is likely to be caused by ancestral misidenti-
fication, not by positive selection. This effect is also unlikely
to be caused by linkage, since the uptick is still observed in
the previously mentioned subsamples of widely separated
sites. To assess the effect of presumably misoriented sites
on inference, we compare results for the unfolded SFS with
those obtained from a partly folded version, where only
singletons and doubletons are folded with their high-
frequency counterparts, since these classes appear to be
affected the most (cf. Baudry and Depaulis 2003).

We carried out our analysis based on the bottleneck
model of the previous section allowing the current and the
ancestral population size to differ. To account for varying
selection pressures across the genome, sites are usually
subdivided into various genomic categories (e.g., exons,
introns, UTRs), often assuming a constant selection coeffi-
cient for each category. Alternatively, or even combined with
such a categorization, selection coefficients are assumed to
follow some distribution; a gamma distribution (Kimura
1979) is a popular choice due to its flexibility to fit empirical

data. Since neutrality and purifying selection are considered
to be prevalent in intronic and intergenic regions of African
Drosophila, we focused on negative selection coefficients in
our analysis. A noncoding data set can be classified as a sin-
gle functional category. Therefore, we analyzed the data set
first by either assuming constant selection or neutrality, fol-
lowed by an analysis where the selection coefficients were
allowed to vary according to a given distribution.

We initially computed an MLE for the unfolded and the
partly folded SFS under the constant selection and the
neutral bottleneck model on the coarse parameter grid given
in Table 1. For each model, we investigated the accuracy of
the parameter estimates via parametric bootstrap, using 200
bootstrap samples each consisting of 3234 polymorphic
sites. We obtained rather narrow confidence intervals for
the selection coefficient and the time since the bottleneck,
whereas the other details of the bottleneck were less confi-
dently estimated. To improve the parameter estimates, we
further refined the grid as follows: Nine values for c0 were
chosen from the range ½0:5; 10�, 20 values for s from ½22; 0�,
10 values for cB from ½0:001; 0:1�, 25 values for tB=cB from
½0:84; 3:31�, and 25 values for tS from ½0:05; 0:22�. This gives
in total 1,125,000 parameter combinations for selection and
56,250 for neutrality. As before, the ratio of two consecutive
values in each parameter range was kept roughly constant.
Focusing on rescaled time tB=cB instead of tB relies on the
observation that tB and cB correlate strongly and has the ad-
vantage that unlikely combinations of tB and cB can be omitted.
More values were chosen for time parameters, since these are
more sensitive than the population size parameters.

The MLEs are given in Table 6 and both versions of the
SFS are illustrated in Figure 5. The analysis based on the
partly folded SFS shows a better fit than the unfolded version,
since negative selection combined with any demographic
model is incompatible with the uptick of high-frequency de-
rived variants in the empirical SFS. Interestingly, a neutral
model was inferred for the unfolded SFS, while the model with
selection fits better for the partly folded version. Since an ex-
cess of high-frequency derived variants favors demographic
models that capture a strong population decline, a much
smaller estimate of the bottleneck population size (cB) was
obtained for the unfolded SFS. In accordance with the previous
section, the time since the bottleneck (tS) was robustly
estimated in both cases, as illustrated by the 10 and 100 most

Table 3 Parameter estimation results based on the expected SFS assuming neutrality when the true model is under selection

Selection coefficient s ¼ 21=2 s ¼ 22
Demographic model ðĉ0; ĉB; t̂B; t̂SÞ ðĉ0; ĉB; t̂B; t̂SÞ
Constant population size ð0:500; 1:00;1:102 t̂S; t̂SÞ ð0:100;1:000;0:5232 t̂S; t̂SÞ
Bottleneck with tS ¼ 1=200 ð0:224; 0:05;0:05; 0:002Þ ð0:224;0:100;0:050;0:005Þ
Bottleneck with tS ¼ 1=20 ð0:500; 0:10;0:10; 0:050Þ ð0:224;0:100;0:050;0:050Þ
Bottleneck with tS ¼ 1=2 ð1:000; 0:05;0:10; 0:500Þ ð0:100;1:000;0:3242 t̂S; t̂SÞ
SFS were computed for the following demographic scenarios and selection coefficients. In terms of the demography, either a constant population size or a bottleneck model
according to Figure 4 with parameters c0 ¼ 1=2, cB ¼ 1=10, cS ¼ 1, tB ¼ 1=10 and tS ¼ 1=200, 1=20 or 1=2 was assumed. The selection coefficients are s ¼ 21=2 and22.
The parameter estimates were obtained according to the procedure and the parameter spaces described in the main text and by assuming neutrality in each case. In the first
row and in the fourth row, second column, we obtained ĉB ¼ 1; i.e., an instantaneous expansion occurs as the only size change t̂B þ t̂S before sampling.
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likely parameter estimates. However, partially folding the SFS
led to a smaller estimate btS. A further refinement of the grid
barely changed the estimates btS and bcB. The estimates of
bottleneck duration (tB) and ancestral population size (c0)
appeared to be strongly correlated.

We now relax the assumption of a fixed s for all sites
and allow a distribution of fitness effects by introducing
gamma-distributed selection coefficients. For s. 0, the proba-
bility density of the gamma distribution with shape and rate
parameters a and b is given by gðsÞ ¼ bðbsÞa21e2bs=GðaÞ,
where Gð�Þ denotes the gamma function. The allelic spectrum
for gamma-distributed selection coefficients is then obtained by
integrating the allelic spectrum for constant selection coefficients
given by (27) against a gamma distribution, i.e.,

~f n;bðtÞ ¼
Z 0

2N
fn;bðt;sÞgð2sÞds: (29)

The SFS for gamma-distributed selection coefficients is then
given by

~qn;bðtÞ ¼
~f n;bðtÞPn21
a¼1

~f n;aðtÞ
:

Even when the allelic spectrum is in equilibrium and the
population size is constant, the integral in (29) cannot be
solved explicitly, so we needed to employ numerical in-
tegration. Previous studies (e.g., Boyko et al. 2008; Racimo
and Schraiber 2014) on the distribution of fitness effects in
the presence of population size changes first inferred a de-
mographic history using putatively neutral sites and then
estimated the parameters a and b based on that fixed demog-
raphy. Since we do not have a separately inferred demographic
model here, we considered several s values along a variety of
demographic parameter combinations. We used a coarser grid
for the demographic parameters due to the larger number of s
values needed for the numerical integration step, which adds
additional computational burden. While the evaluation of the
allelic spectrum takes less than half a second for a given s value
with high numerical precision, the numerical integration over
the range of s values according to (29) takes a few seconds.
Thus, to further reduce computational cost, we restricted the
analysis to exponentially distributed selection coefficients by set-
ting a ¼ 1 and compared the MLEs for various values of b. See
Table 7 for results. TheMLEwas found for b ¼ 1, so the average
s equals 2a=b ¼ 2 1. This finding and the associated demo-
graphic estimates are consistent with the result found for a fixed
selection coefficient. However, this result may change if one
allows for more general shape and rate parameters.

A model of human exponential population growth

We now demonstrate the utility of our method to investigate
population-size histories containing epochs of exponential
growth in combination with selection. To this end, we

Table 4 Parameter estimation results based on 10,000 sampled sites
when the ancestral population size c0 is incorrectly assumed to equal
the current size cS, while the true model has c0 ¼ 1=2 and cS ¼ 1

c0 ŝ ĉB t̂B t̂S

True parameters 0.5 0 or 22 0.1 0.1 0.05

5% 0.1 0.22 0.02
(A1) Median 0.1 0.22 0.05

95% 0.22 0.5 0.05

5% 0.1 0.22 0.05
(A2) Median 0.1 0.22 0.05

95% 0.22 1 0.05

5% 20:79 0.1 0.22 0.05
(A3) Median 20:79 0.1 0.22 0.05

95% 20:5 0.1 0.22 0.05

5% 21:26 0.01 0.01 0.05
(A4) Median 21:26 0.05 0.05 0.05

95% 20:79 0.1 0.1 0.1

SFS were computed for the true parameters and the demography illustrated in Figure 4
(c0 ¼ 1=2, cS ¼ 1). Then, 10,000 sites were sampled according to the SFS of the neutral
and the selective scenario, and this procedure was repeated 200 times each. The log-
likelihood values were maximized over the four-parameter space (where c0 ¼ cS is as-
sumed), and the table reports the median, the 0.05 and the 0.95 quantiles. The four cases
correspond to assuming (A1) neutrality when s ¼ 0, (A2) neutrality when s ¼ 2 2, (A3)
presence of selection when s ¼ 2 2, and (A4) presence of selection when s ¼ 0.

Table 5 Parameter estimation results based on the expected SFS when the ancestral population size c0 is incorrectly assumed to equal the
current size cS, while the true model has c0 ¼ 1=2 and cS ¼ 1

Selection coefficient s ¼ 0 s ¼ 21=2 s ¼ 22
Demographic model ðŝ; ĉB; t̂B; t̂SÞ ðŝ; ĉB; t̂B; t̂SÞ ðŝ; ĉB; t̂B; t̂SÞ

ðĉB; t̂B; t̂SÞ ðĉB; t̂B; t̂SÞ ðĉB; t̂B; t̂SÞ
Bottleneck with tS ¼ 1=200 ð23:420; 0:023; 0:050; 0:001Þ ð20:171; 0:224;0:224;0:011Þ ð25:848;0:023;0:050;0:001Þ

ð0:224; 0:224; 0:011Þ ð0:224; 0:224; 0:011Þ ð0:023;0:100;0:001Þ

Bottleneck with tS ¼ 1=20 ð21:260; 0:050; 0:050; 0:050Þ ð22:;0:050;0:050;0:050Þ ð20:794;0:100;0:224;0:050Þ
ð0:100; 0:224; 0:050Þ ð0:100;0:224;0:050Þ ð0:100;0:224;0:050Þ

Bottleneck with tS ¼ 1=2 ð20:292; 0:224; 0:500; 0:500Þ ð0; 0:050; 0:100;0:500Þ ð22:;0:224;0:500;0:500Þ
ð0:224; 0:500; 0:500Þ ð0:050;0:100; 0:500Þ ð0:050;0:224;0:500Þ

SFS were computed for the following demographic scenarios and selection coefficients. In terms of the demography, a bottleneck model was assumed according to Figure 4
with parameters c0 ¼ 1=2, cB ¼ 1=10; tB ¼ 1=10 and tS ¼ 1=200, 1=20, or 1=2. The selection coefficients were chosen as s ¼ 0, 21=2, and 22. The parameter estimates
were obtained according to the model assuming c0 ¼ cS (the grid for the four-parameter space being a subset of the grid for the five-parameter space) and by assuming
either selection or neutrality in each case.
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adopted the following demographic history of a sample of
African human exomes that had been estimated by Tennessen
et al. (2012) as a modification of a model by Gravel et al.
(2011). The population had an ancestral size of 7310 individ-
uals until 5920 generations ago (assuming a generation time of
25 years), when it increased instantaneously in size to 14,474
individuals. After this increase, the population remained con-
stant in size until 205 generations ago, when it started to grow
exponentially until reaching 424,000 individuals at present.
The relative population size function for this model can be
described by

rðtÞ ¼
8<: 1; t, 0;

c; 0# t, te;
cexp½Rðt2 teÞ�; te# t# t;

(30)

where c is the ratio of population sizes after and before the
instantaneous expansion, which can be dated arbitrarily, so
we set the time of this expansion to zero. R is the scaled
exponential growth rate, te is the time at which the expan-
sion started, and t is the time of sampling (the present).
Times are given in units of 2Nref , where the reference population

size Nref is the initial size before time zero (the ancestral
size). Since the theoretical framework presented above
assumes a history of piecewise constant population sizes,
the phase of exponential growth in this model had to be
adequately discretized to obtain a suitable piecewise approx-
imation. The following piecewise function can be chosen to
approximate the exponential growth phase via a geometric
growth function,

qðtÞ ¼
8<:1; t, 0;

c; 0# t, t1;
cð1þ dÞi; ti # t, tiþ1;

(31)

with times ti ¼ te þ log½ð1þ dÞi21ð2þ dÞ=2�=R, i ¼ 1; . . . ; it.
Here, the number of population size changes during the
phase of exponential growth is given by

it:¼ ⌊Rðt2 teÞ2 logðd=2þ 1Þ
logðdþ 1Þ ⌋þ 1:

Varying the growth rate d determines the number of discre-
tization intervals used.

Figure 5 (A) SFS for the observed data and the most likely selective and neutral parameter estimates from left to right. (B) The same as A except that the
allelic classes 1 and 2 were respectively folded with 11 and 10.

Table 6 Parameter estimation results based on the unfolded and the partly folded SFS and constant selection coefficients

ŝ ĉ0 ĉB t̂B=ĉB t̂S L

Unfolded SFS

MLE 0 3.162 0.001 2.633 0.164 −5962:96
Top 10 ½−0:008; 0� 3.162 ½0:001;0:003� 2.633 0.164 ½−5963:01;−5962:96�
Top 100 ½−0:063; 0� ½1:468;6:813� ½0:001;0:013� ½1:867; 3:310� ½0:154; 0:174� ½−5963:37;−5962:96�

Partly folded SFS

MLE −0:906 0.5 0.1 1.181 0.106 −5098:29
0.5 0.1 1.402 0.113 −5098:51

Top 10 ½−1:32;−0:67� ½0:5;4:642� 0.1 ½1:181; 1:763� ½0:106; 0:113� ½−5098:31;−5098:29�
Top 100 ½−1:74;−0:50� ½0:5;10:00� ½0:013; 0:1� ½0:837; 2:348� ½0:099; 0:136� ½−5098:39;−5098:29�
The demographic histories were estimated with and without constant selection for the demographic model illustrated in Figure 4 for the entire data set of 3234 polymorphic
sites. The estimates and their likelihood values are based on a refined grid described in the main text and shown for the unfolded and a partly folded SFS. In addition to the
MLEs, the sets of the 10 and the 100 likeliest parameter combinations were also estimated. From these sets, the two outermost estimates were chosen for each single
parameter and for the likelihood value L to obtain the outlined parameter ranges.
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The SFS (28) of the discretized version is obtained
straightforwardly from (26) and (27). For the demographic
parameters given above, we computed the SFS for various
sample sizes up to 200 and we used d ¼ 1=4, which was
chosen large enough to provide reasonably fast computation
times but sufficiently small to provide a good approximation
of the exponential growth model. In the neutral case, the
goodness of the approximation can be verified via the ex-
plicit solution of the SFS (Živković and Stephan 2011),
which can be applied to the continuous and the discretized
model. As shown in Figure 6A, where a sample size of
n ¼ 200 is chosen, the spectra of both continuous and piece-
wise-constant models agree very well with each other; the
percentage error is 0.57% based on the l2-norm, while the
Kullback–Leibler divergence is about 1:763 1027.

Using our method, selection can then be incorporated
into the piecewise-constant population-size model. The
effect of various negative selection coefficients (scaled with
respect to the ancestral population size) is illustrated again

for sample size n ¼ 200 in Figure 6B, and the same trend
can be observed for smaller sample sizes as well. It is prob-
ably not surprising that the resolution in distinguishing the
selective and the neutral model rises with s. More interest-
ingly, differences between the neutral and the selective models
are apparently more pronounced among derived alleles in in-
termediate to high frequency. Therefore, for large data sets
where intermediate- to high-frequency derived alleles are pres-
ent in sufficient numbers, one may focus more strongly on
these allelic classes than on low-frequency derived ones for
the statistical analysis of purifying selection.

Discussion

In this article, we extended the approach of Song and Steinrücken
(2012) to develop a method for finding the transition density
of a WF diffusion under genic selection and piecewise-constant
effective population sizes. It can be used to obtain the SFS, but
explicit knowledge of the transition density is actually not re-
quired for the computation of the SFS. To that end, we revis-
ited and simplified the moment-based method by Evans et al.
(2007) in the case of a constant population size and utilized
the result to obtain an efficient method for computing the SFS
for a model with piecewise-constant population sizes.

The transition density for a variable population size can
be incorporated into a hidden Markov model framework to
analyze time series genetic data, as done by Steinrücken
et al. (2014) in the case of a constant population size. How-
ever, in this article we focused on biological questions that
can be investigated using the SFS and sampling at a single
time point. The SFS has been employed into a maximum
likelihood framework that can be applied to simultaneously
infer selection coefficients and the parameters of a multi-epoch
demographic model. The importance of methods that enable
the joint estimation of selective and demographic parameters
becomes particularly apparent in large populations, for
which the scaled selection coefficient can take considerable
values across large regions of the genome, so that demog-
raphy and selection cannot be estimated independently.

Table 7 Parameter estimation results for partly folded SFS and
exponentially distributed selection coefficients

b ĉ0 ĉB t̂B=ĉB t̂S L

0.1 2 0.01 0.631 0.126 25101.36
0.2 2 0.05 1 0.158 25098.59
0.5 1 0.1 1.584 0.1 25098.50
1 0.5 0.1 1.259 0.1 25098.43
2 2 0.1 2.508 0.126 25098.69
5 0.5 0.1 1.259 0.126 25098.67

10 0.5 0.1 1.259 0.126 25098.73
20 0.5 0.1 1.259 0.126 25098.79
50 0.5 0.1 1.259 0.126 25098.84

100 0.5 0.1 1.259 0.126 25098.86

The demographic histories were estimated based on exponentially distributed
selection coefficients and for the demographic model illustrated in Figure 4 for the
entire data set of 3234 polymorphic sites. First, allelic spectra were evaluated for
12,600 different demographic parameter combinations and 100 s values each.
Then, polynomial curves of degree 3 were fitted between successive s values and
for every single demographic parameter combination, before a numerical integration
against a gamma distribution with a ¼ 1 and 10 different values of b was applied.
From the allelic spectra, now being corrected for varying selection coefficients, the SFS
were obtained. The resultant MLEs are shown for the various choices of b.

Figure 6 (A) Log–log plots for the SFS of the continuous and the discretized version of the estimated human African demography and neutral evolution.
(B) Log–log plots for the SFS of the discretized version under various selection coefficients. The selection coefficients in the legend are ordered from top
to bottom according to the function values of the high-frequency derived alleles. The sample size is given by n ¼ 200 in both subfigures and a truncation
level D = 300 was applied in B.
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We tested our inference method on simulated data,
generated by sampling a large number of sites from the
SFS of a bottleneck model for a range of selection strengths.
In our parameter estimation procedure, we assumed the
same model as the one used in simulations, as well as
a slightly less complex model. We demonstrated that our
method can accurately estimate the parameters in the
majority of the bottleneck scenarios, but less so when the
simpler model is assumed. The time since the bottleneck
was retrieved in most of the cases even when assuming the
simpler model or when the data sets simulated with
selection were analyzed under neutrality. This result is
encouraging for the many published demographic esti-
mates that have been obtained assuming neutrality, but
further investigation is warranted to consider more realistic
models, e.g., including phases of exponential growth. Our
results encourage the application of not too simple demo-
graphic models anyway.

In the African Drosophila sample, no or barely any nega-
tive selection was inferred when the possible impact of
misoriented sites was ignored. To account for ancestral mis-
identification while maintaining sufficient information for
inference, we applied a partly folded spectrum, where only
the first two classes were folded with the corresponding last
two classes. Using this partly folded spectrum, a negative
selection coefficient of about s ¼ 21 was estimated, irre-
spective of assuming constant or exponentially distributed
selection coefficients.

Our analyses were performed based on the bottleneck
model illustrated in Figure 4. The maximum number of
piecewise changes that can be incorporated into a demo-
graphic model is a function of sample size (cf. Bhaskar and
Song 2014 for the neutral case), so more elaborate demo-
graphic models would have been barely accessible for this
data set, especially given the limited amount of segregating
sites. It indeed turned out to be difficult to pinpoint the
ancestral population size and the duration of the bottleneck,
whereas the time since the bottleneck was again robustly
estimated. Comparing both versions of the SFS obtained
using our parameter estimates and the ones given in Duchen
et al. (2013), we obtained an improved goodness-of-fit to
the observed SFS from the data and date the bottleneck as
about half as old (in rescaled, but also in calendar time)
based on the partly folded SFS. This discrepancy is not sur-
prising, since primarily summary statistics of the SFS were
used in their study while accounting for linkage to some
extent.

We also applied a grid search to test if weak positive
selection could explain the uptick of high-frequency derived
variants in the unfolded empirical SFS. However, we did not
obtain estimates being plausible from a biological point of
view. When, as in this example, an excess of low- and high-
frequency derived variants is simultaneously observed in
comparison to a standard neutral model, unrealistically
large estimates for s are needed to explain the data. Positive
selection on its own (and of some appreciable strength)

causes a decline of low-frequency derived variants and an
excess of high-frequency derived alleles, whereas an expan-
sion (as embedded in the bottleneck model) acts in the
opposite way. Therefore, both forces have to severely coun-
teract each other so that the requirements of both ends of
the SFS can be met.

We analyzed an example of exponential human popula-
tion growth (Tennessen et al. 2012) to see the effect of
purifying selection in the context of this model. As illus-
trated in Figure 6B for a sample of size 200 and various
selection coefficients, intermediate- and high-frequency de-
rived variants are more affected by exponential growth and
negative selection than the low-frequency derived ones. A
plausible explanation is that both exponential growth and
negative selection enforce an increase of low-frequency de-
rived variants until these classes are saturated and their
impact can be observed in the complimentary high-frequency
allelic classes. In general, this example illustrates nicely that
even more elaborate models that include various phases of
exponential growth and population declines can be computa-
tionally efficiently treated via an appropriate discretization of
phases of continuous population size change, using the meth-
ods presented in this article.
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Appendix
Here, we derive the expression shown in (12). Using (2), (5), and (7), note thatZ 1

0
piðzÞFi

nðzÞFiþ1
m ðzÞdz ¼

Z 1

0

cie2cisz

zð12 zÞ
XN
k¼0

uin;kH
i
kðzÞ

XN
l¼0

uiþ1
m;l H

iþ1
l ðzÞdz

¼
ffiffiffiffiffiffiffiffi
ci
ciþ1

r XN
k¼0

XN
l¼0

uin;ku
iþ1
m;l

Z 1

0

eszðci2ciþ1Þ

zð12 zÞ GkðzÞGlðzÞdz:
(A1)

Without loss of generality, assume ci 6¼ ciþ1. [If ci ¼ ciþ1, the integral in (A1) is trivial to evaluate using orthogonality.] Since
z21ð12zÞ21GkðzÞGlðzÞ is a polynomial of order kþ lþ 2, its jth derivative vanishes for j$ kþ lþ 3. Using integration by parts
recursively kþ lþ 2 times, we obtainZ 1

0

eszðci2ciþ1Þ

zð12 zÞ GkðzÞGlðzÞdz ¼
Xkþlþ2

j¼0

ð21Þj
h

eszðci2ciþ1Þ

½sðci2ciþ1Þ�jþ1
@ j

@zj fGkðzÞGlðzÞ
zð12zÞ gi1

0

:

Note that the summand for j ¼ 0 in the previous equation is equal to zero and will be omitted in the remainder. Since
Gkð12 zÞ ¼ ð21ÞkGkðzÞ, we have

@ j

@zj fGkðzÞGlðzÞ
zð12zÞ g

z¼0
¼ ð21Þkþlþj @

j

@zj fGkðzÞGlðzÞ
zð12zÞ g

z¼1
;

so that

Z 1

0
eszðci2ciþ1ÞGkðzÞGlðzÞ

zð12 zÞ dz ¼
Xkþlþ2

j¼1

ð21Þ j e
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fsðci2ciþ1Þgjþ1
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The modified Gegenbauer polynomials are defined as

GnðxÞ ¼ 2 xð12 xÞðnþ 1Þ�2F1ð2n; nþ 3; 2; 12 xÞ;

where 2F1ða; b; c; zÞ ¼
P

j$0aðjÞbðjÞ=cðjÞz
j=j! is the Gauss hypergeometric function, dð0Þ ¼ 1, and dðjÞ ¼ dðdþ 1Þ⋯ðdþ j2 1Þ,

j$1. Applying this definition, we obtain

@ j
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:

Note that the sums are finite, since ð2aÞðbÞ ¼ 0 for integers a, b. It is simple to show that

@j

@zj

n
zð12zÞuþvþ1

o
z¼1

¼
8<: ð21Þjj!; j ¼ uþ vþ 1;

ð21Þj21j!; j ¼ uþ vþ 2;
0; otherwise:

By applying this result we obtain, after some algebra,
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(A3)

Finally, combining (A3), (A2), and (A1) yields the desired result.
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