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Abstract

The power law of learning has frequently been used as a
benchmark against which models of skill acquisition
should be measured. However, in this paper we show that
comparisons between model behavior and the power law
phenomenon are uninformative. Qualitatively different
assumptions about learning can yield equally good fit to
the power law. Also, parameter variations can transform a
model with very good fit into a model with bad fit.
Empirical tests of learning theories require both
comparative evaluation of alternative theories and
sensitivity analyses, simulation experiments designed to
reveal the region of parameter space within which the
model successfully reproduces the empirical phenomenon.
Abstract simulation models are better suited for these
purposes than either symbolic or connectionist models.

Evaluating Models of Learning

Since the seminal papers by Anderson, Kline and Beasley
(1979) and Anzai and Simon (1979), the study of complex
learning has seen an unprecedented explosion of theory
(Klahr, Langley & Neches, 1987; Chipman & Meyrowitz,
1993). A large number of computational processes with the
power to change and improve a knowledge base have been
proposed, covering a range of learning scenarios from skill
acquisition (Anderson, 1993; Ohlsson, 1996) to conceptual
change (Giere, 1992; Thagard, 1992).

The ratio of theory to data is now so high in this field that
further progress is dependent upon finding systematic
methodologies for evaluating the various theoretical models.
Because quantitative regularities are rare in psychology, the
field has followed Newell and Rosenbloom’'s (1981) lead in
using the so-called power law of learning as an explanatory
target for learning models.

The power law phenomenon consists in the fact that when
a learner's performance (measured in terms of the time to
complete a practice task or the numbers of errors made per
trial) is plotted as a function of trials, the result is a
negatively accelerated curve which, moreover, conforms to
the shape described by a power law equation. The diagnostic
hallmark of a power law curve is that it appears as a straight
line when plotted with logarithmic coordinates (as opposed
to other types of negatively accelerated curves, e. g.,
exponential curves, which do not have this feature).
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Because the power law phenomenon is quantitatively
precise, it appears 1o be a particularly powerful test of
models of learning. Indeed, it “has been accepied as a nearly
universal description of skill acquisition to such an extent
that it i1s trecated as a law, a benchmark prediction that
theories of skill acquisition must make to be serious
contenders™ (Logan, 1988, p. 495).

Attempts to use the power law of learning to evaluate a
learning model usually takes the following simple form:
The model is run and its learning curve plotted in log-log
space; if the resulting curve is a power law, i.e., if it appears
as a straight line, the model is considered validated.

In this paper, we argue that this methodology is too weak
to be informative, for two reasons. First, goodness of fit
between a theory and an empirical phenomenon is not in and
of itself particularly revealing. No theory ever accounts for
data completely or precisely. The issue is thus not whether a
theory can account for a phenomenon but whether it
accounts for the phenomenon better or worse than another
theory. Empirical validation must take the form of a
comparative evaluation in which multiple models are
compared with respect to how well they account for the
relevant data (Cooper, Fox, Farringdon & Shallice, 1996).

Second, any learning model has parameters (e. g.,
capacities, constants, thresholds). The possible values of all
the relevant parameters define a quantitative space called the
parameter space (for that model). No model accounts for an
empirical regularity (with equal precision) at every point in
its parameter space. It is always possible to assign values to
the relevant parameters in such a way as to deflect the
model’s behavior away from the empirical regularity that is
the target of the modeling effort. Empirical validation
attempts should provide information about how sensitive the
model is to such parameter variations, i.e., within which
region of parameter space the model accounts for the target
phenomenon.

The results of such sensitivity analyses (Schneider, 1988)
are interesting from two points of view. First, because the
parameters might themselves be interpretable in
psychological terms, their values might be testable against
data. Second, the width of the relevant region is an indicator
of robustness. If the region within which the model is
successful is narrow, the model's explanation for the
phenomenon is not robust. If the empirical phenomenon is
robust, this outcome ought to count against the model.
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In the following, the need for comparative evaluation and
sensitive analyses is illustrated in a series of simulations of
the power law of learning. It turns out that both success-
driven and failure-driven learning can account [or the power
law of learning, and so can a mixed model. Explorations of
the parameter space show that the degree of fit is sensitive (o
some parameters but not to others. These results required
extensive simulation experiments that would have been
difficult to carry out with either a symbolic or a
connectionist model, but were relatively easy to do with the
abstract computer model that we used. We conclude that
strict adherence to the sufficiency criterion originally
proposed by Newell, Shaw and Simon (1958) can be an
obstacle to cognitive modeling.

Basic Model and Method

All simulations were done with one and the same basic
model. Each simulation experiment conformed closely to the
procedure used in empirical studies of skill acquisition.

Basic Model

The basic model has two components: The task environment
and the performance module.

Task environment The task environment was a modified
tree structure with a depth of 20 and a branching factor of
10. The root node is the initial problem state and an
arbitrarily chosen terminal node is designated the goal node.
Nodes not on the path between the root and goal nodes are
labeled as errors. The tree was modified to allow more than
one path to the goal by the addition of extra links between
branches in the tree. This situation itree captures the
structural features of a 20-step task with multiple correct
solutions and 10 alternatives in each step. This level of
complexity is at or above the complexity of most tasks used
in learning experiments with human subjects. The main
simplification is the constant branching factor.

Performance module To perform the task represented by
the situation tree is to traverse the tree once, starting in the
root node and ending in the goal node. The performance
module processes each node by (a) retrieving all outgoing
links, (b) deciding probabilistically which link to traverse,
and (c) traversing the selected link to the next node.

All links have strengths. Strengths are initially set to
unity. The probability p of choosing link L is a function of
the current strength s of L. The decision rule is that p is
proportional to 5. This rule was implemented with an
algorithm that multiplies s with a random number between
0 and 1 and chooses the link with the highest product.

Method

The power law of learning is not a behavior. It is a
statistical entity constructed by applying operations on raw
data. In particular, empirical learning curves are typically
constructed by (a) letting several human subjects learn the
target task until some criterion of mastery has been reached,
(b) averaging performance measures across subjects but
within trials, and (c) plotting the resulting averages as a

function of trals. In simulating the learning curve, this
procedure should be followed as closely as possible

All simulations reported in this paper were run in the
following way. Each simulated subject was run until a
criterion of three consecutive error-free trials was met. Each
simulation experiment consists of 20 simulated subjects.

Time to complete the task is the most commonly used
empirical measure in research on skill acquisition. The
number of steps to solution is reported here as the closest
model equivalent.

Comparative evaluations were accomplished by adding or
deleting learning mechanisms to the basic model
Sensitivity experiments were done by varying parameters.

Comparative Evaluation

We compared success-driven and failure-driven learning with
each other and with a mixed model that learns both from
success and failure.

Success-Driven Learning

The basic model is initialized with a strength of 1.0 on all
options. This is equivalent to saying that the model does not
know what to do in any of the problem states. Success-
driven learning was implemented by incrementing the
strength s of a link L with a constant amount ds if traversal
of L does not encounter an error signal.

Figure 1 shows the result of success-driven learning when
the ds parameter is (arbitrarily) set to .20. The results are
plotted with logarithmic coordinates. The data points
represent the output from the simulation and the line is the
best-fitting straight line through those points.

As a simulation of the power law of learning, the
correspondence to human data is good. The fit to a power
law is near-perfect and the learning parameter is 1.027,
which is close to the values observed in empirical studies
(Lane, 1987; Newell & Rosenbloom, 1981).
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Figure 1. Learning curve for success-driven learning.
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In the standard methodology for companing models to
data, the outcome exhibited in Figure 1 would score as a
success in accounting for the power law of learning.

Failure-Driven Learning

Our failure-driven learning mechanism decrements the
strength of a link L by multiplying it with a constant
proportion fs if traversal of L encounters an error signal.

Figure 2 shows the result of failure-driven learning when
the fs parameter is (arbitrarily) set to .50, plotted with
logarithmic coordinates. The data points represent the output
of the simulation and the line is the best-fitting straight line
through those points.
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Figure 2. Learning curve for failure-driven learning.

The correspondence to the empirical phenomenon is once
again good. The points cluster along a straight line and the
learning parameter is .788, which is well within the range of
values observed in empirical studies (Lane, 1987; Newell &
Rosenbloom, 1981). As a comparison between Figures |
and 2 shows, the r’ measure of fit is very similar for
success-driven and failure-driven learning (.978 versus .974).

Interaction Between Two Types of Learning

It is reasonable to assume that human beings learn from
both success and failure, from both positive and negative
feedback. A mixed model was implemented with a success-
driven learning mechanism that was identical to the one
described above. The failure-driven learning mechanism
decremented the strength s of a link L by subtracting a
constant amount fs from s if traversal of L encounters an
error signal.

Figure 3 shows the result of the mixed model when the ds
parameter is (arbitrarily) set to .20 and the fs parameter is
(arbitrarily) set to the same number. Once again, logarithmic
coordinates are used. As before, the data points represent the
output of the simulation and the curve is the best-fitting
straight line through those points.
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Figure 3. Learning curve for mixed model.

The mixed model also produces a good fit to the power
law phenomenon, both in terms of the shape of the curve
and the value of the learning rate parameter. Hence, the
interaction between success-driven and failure-driven learning
is as good an explanation for the observed regularity as
cither type of learning by itself.

Sensitivity Analyses

In which regions of the parameter space do the above results
hold? An exhaustive answer would require a large number of
simulation experiments. The four experiments reported
below varied the ds parameter in the success-driven model,
the efficiency of learning, task complexity and the
decrementing algorithm in the failure-driven model.

Varying the ds parameter Figure 4 shows the result
of running the success-driven model with ds = .01 instead of
.20. The result is clear: The fit to the power law goes away.
The data points no longer cluster along a straight line and
instead show a distinct curvature.

Additional experiments showed that increasing the ds
parameter to absurdly large values (e.g., ds = 3.0) has a
similar effect, bending the scatter plot away from power law
fit in the opposite direction. The region in parameter space
for which success-driven learning produces power law
learning is narrow. Because ds is a likely individual
difference parameter, this finding implies that degree of fit to
a power law ought to vary across individuals in learning
environments that provide positive feedback. This is a novel
prediction.

Varying probability of learning People are not
always alert and learners do not always have the ability to
react correctly to feedback (positive or negative) during
learning. We can model these facts to a first approximation
by adding a parameter /p that stands for the probability that a
learner will learn, given the opportunity. Figure 5 shows the
result of running the success-driven model with pl = .50, i.
e., with the assumption that the learner makes effective use
of feedback on half the occasions on which it is available.
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Figure 4. Success-driven learning with ds=.01.
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Figure 5. Success-driven learning with Ip = .50.

As Figure 5 shows, the fit to the power law is unaffected
by halving the learning efficiency parameter. Our
explorations have shown that success-dniven learning
produces power law learning curves across a wide range of
values for this parameter. Thus, not every parameter affects
power law fit.

Varying task complexity It has been suggested that
power law learning is exponential learning slowed down by
some type of ‘mental friction’ (Newell & Rosenbloom,
1981). For example, one might expect an increase in task
complexity to slow down learning. Figure 6 shows the
result of running the success-driven model on two problems
with different complexity. The branching factor was 17 in

both problems, but the solution path was 10 steps long in
one problem and 40 steps in the other. As Figure 6 shows,
length of the solution path had no effect on the shape of the
learning curve, although it did cause a downward
displacement of the curve. Variations in task complexity
does not affect the model’s ability to account for the power
law of learning. This is a strength, because empirical power
laws have been obtained in tasks of such widely varying
cognitive complexity as pattern recognition (Seibel, 1963)
and book writing (Ohlsson, 1992).
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Figure 6. Effect of path length on success-driven learning.

Varying the decrementing mechanism Theoretical
principles such as success-driven and failure-driven learning
do not uniquely specify the models that we use to test them.
As Cooper et al. (1996) have argued, to evaluate the theory
underpinning a model we need to vary not only quantitative
parameters but also those components of the model that are
underspecified by the theory. For example, failure-driven
learning can be implemented in different ways. Figure 7
shows the result of running the failure-driven model with an
additive instead of multiplicative decrementing mechanism.
A fixed amount fs was subtracted from the strength of a link
when an error signal was encountered.

Once again, the fit to a power law goes away. Notice that
in Figure 7, the simulation results have been plotted in a
log-linear plot instead of the log-log plot used in the Figures
1-6. The results conform closely to a straight line in log-
linear space, the hall mark of an exponential curve (as
opposed to power law). Hence, the success of failure-driven
learning in accounting for the power law phenomenon is
essentially dependent on an implementation detail (the exact
decrementing rule) that is not specified by the theoretical
principle (failure-driven learning) supposedly being tested.
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Figure 7. Failure-driven learning with additive decrement.

Conclusions and Discussion

Our results show that the power law of learning is not, in
and of itself, particularly useful in discriminating between
alternative theories of learning. Indeed, it cannot discriminate
between success-driven learning, failure-driven learning and
learning that draws upon both success and failure.

It has been known for some time that alternative models,
build on qualitatively different assumptions can succeed in
accounting for the power law of learning (Anderson, 1993;
Logan, 1988; Newell & Rosenbloom, 1981; Shrager, Hogg
& Huberman, 1988). However, comparisons between past
models were obscured by the fact that the models differ in
many respects other than their assumptions about learning.
The comparisons presented here are more decisive, because
the models are exactly alike--indeed, identical--in all other
respects than their learning assumptions.

The results of the sensitivity analyses go further. They
show that implementation details (quantitative values of
parameters, exact algorithms used) that are not specified or
determined by the psychological hypotheses underpinning a
model can determine whether a model succeeds or fails in
accounting for an empirical regularity like the learning
curve. In other words, whether a theory is regarded as true or
false--as accounting for, or not accounting for, the relevant
data--can depend on technical decisions that have little to do
with the content of the theory, a long-standing concern with
computer simulation (Ohlsson, 1988) recently emphasized
by Cooper et al. (1996).

The implication is that successful tests of simulation
models against the power law of learning are meaningless,
unless appended with information about the parameter region
within which the positive outcome holds. In general, the
standard procedure of running (some version of) a cognitive
model and comparing its behavior with human behavior
generates little information about the psychological validity
of the assumptions and hypotheses that informed the design
of the model.

For a model (o be considered supported by data, it must be
demonstrated that (a) it accounts for the phenomenon as well
as, or better than, alternative models, and (b) it generates the
target phenomenon within the same region of parameter
space as do human subjects. If human subjects are affected or
unaffected, as the case might be, by variations in a
psychologically interpretable model parameter (e. g.,
strengthening increment, efficiency of learning), then the
model must be shown to exhibit a similar level of
robustness. In addition, if the theoretical assumptions behind
the model underspecify certain components, then the model
must be shown to generate the target phenomenon across
different implementations of those components.

Cooper et al. (1996) have recently performed such
component variations on an implementation of the Soar
model. Consistent with the results presented here, they
found that alternative implementations of supposedly
innocent model components can alter the quantitative
predictions of Soar (and hence its validity as a psychological
model, according to the standard canon of model testing).

This extension of the simulation methodology imposes
unfamiliar and perhaps unwelcome requirements on
cognitive modeling. The amount of work involved in
validating a simulation model increases. In principle, a
simulation experiment is required for each point in the
relevant parameter space. Even if the space is explored
selectively, a large number of experiments might be needed
to test a model.

More importantly, the requirements that we vary
parameters and implement alternative versions of
underspecified components require a robust simulation
technology. Brittle models are difficult to vary and
brittleness is an inherent feature of the programming
methodologies that cognitive psychology has inherited from
Artificial Intelligence (A. 1.). For example, it is unclear
whether a success-driven learning model like ACT
(Anderson, 1993) would work if it were augmented with a
mechanism for learning from failure. It is equally unclear
how a failure-driven model like HS (Ohlsson, 1996;
Ohlsson & Rees, 1991) would fare if augmented with a
success-driven learning mechanism. In general, comparative
evaluations, sensitivity analyses  and multiple
implementations of underspecified components are difficult
and cumbersome to carry out with the standard A. L
programming techniques that until recently were the main
tools for computer simulation of human cognition.

Cooper et al. (1996) have responded to this situation by
proposing that cognitive models should be stated in
executable specification languages. Such a language is
characterized by a high level of abstraction in the statement
of a model. In addition, the particular specification language
they describe, called Sceptic, allows the user to syntactically
distinguish between  theoretical principles and
implementation details.

Although Cooper et al. convincingly demonstrate that an
executable specification language like Sceptic is a useful
tool, we believe that their response does not go far enough.
The problem of distinguishing between theoretical principles
and implementation details hides a deeper point. The reason
why psychologists have this problem in the first place is
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that they have adopted the so-called sufficiency criterion as
the standard for computer simulation. The original
formulation of this criterion stated that “an explanation of an
observed behavior of the organism is provided by a program
.. that generates this behavior” (Newell, Shaw & Simon,
1958, p. 151). In order to constitute an explanation for
behavior X, a model has to be sufficient to mimic or
reproduce X. That is, a model of problem solving must be
able to solve problems; a model of learning must be able to
learn; and so on. This is the explanatory standard that has
governed cognitive modeling to date.

Although connectionist models are often contrasted with
symbolic models, the former also adopt the sufficiency
criterion. Some of the strongest arguments in favor of
connectionist models are their ability to perform certain
complex tasks (e. g., speech recognition, typing).
Connectionists strive to produce intelligent programs. In
this respect, connectionist modeling does not differ from
symbolic modeling.

However, the sufficiency criterion is not followed in other
sciences. Models in meteorology do not produce rain;
cosmological models do duplicate the Big Bang; simulations
of the economy do not perform monetary transactions; and
so on. Such examples suggest that the sufficiency criterion
confuses medium and message. A map is not a territory, so
why must a model of mind be a mind?

The models discussed in this paper are useful tools for
comparative cvaluation and sensitivity analyses precisely
because they do not attempt to duplicate the processes they
model. These abstract models are not A. 1. programs; they
have no knowledge base and no intelligence. These models
do what models in other sciences do: They capture as simply
as possible general properties of certain formally defined
classes of systems (success-driven and failure-driven adaptive
agents), and they generate the quantitative implications of
those assumptions with respect to observable events and
variables; that is all.

Three observations are pertinent here: First, abstract
models should be distinguished from the so-called minimal
models of the past, i. e., models that attempt to explain
behavior in particular experimental paradigms. A unified
theory of cognition can be implemented as an abstract
model. Second, our models are abstract in a different sense
than models stated in the specification languages advocated
by Cooper et al. (1996). In our case, low level
implementation details are missing, precisely because the
models do not carry out the processes they model. Third, we
are not arguing that sufficiency models should be abandoned.
The more tools we have in our tool kit, the better we can
perform the job of researching human cognition.

In conclusion, our experience indicates that abstract
models might reveal properties of cognition that are unlikely
to be uncovered by models that attempt to satisfy the
sufficiency criterion, whether the latter be connectionist or
symbolic.
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