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The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, 
Nanoparticle Delivery, and Pt(IV) Prodrugs

Timothy C. Johnstone, Kogularamanan Suntharalingam, and Stephen J. Lippard

Abstract

The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer,, but 

new platinum agents have been very slow to enter the clinic. Recently, however, there has been a 

surge of activity, based on a great deal of mechanistic information, aimed at developing non-

classical platinum complexes that operate via mechanisms of action distinct from those of the 

approved drugs. The use of nanodelivery devices has also grown and many different strategies 

have been explored to incorporate platinum warheads into nanomedicine constructs. In this 

review, we discuss these efforts to create the next generation of platinum anticancer drugs. The 

introduction provides the reader with a brief overview of the use, development, and mechanism of 

action of the approved platinum drugs to provide the context in which more recent research has 

flourished. We then describe approaches that explore non-classical platinum(II) complexes with 

trans geometry and with a monofunctional coordination mode, polynuclear platinum(II) 

compounds, platinum(IV) prodrugs, dual-treat agents, and photoactivatable platinum(IV) 

complexes. Nanodelivery particles designed to deliver platinum(IV) complexes will also be 

discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, 

upconversion nanoparticles, and polymeric micelles. Additional nanoformulations including 

supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and 

coordination polymers will then be described. Finally, the significant clinical progress made by 

nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a 

synthesis of disparate research efforts will not only help to generate new drug development ideas 

and strategies, but also reflect our optimism that the next generation of platinum cancer drugs is 

about to arrive.

1. Introduction

Platinum anticancer agents represent one of the great success stories in the field of medicinal 

inorganic chemistry. They highlight the confluence of serendipity and rational design in 

drug development. Three platinum-containing drugs are approved worldwide for treating 

cancer in humans, namely, cisplatin, carboplatin, and oxaliplatin (section 3.1). An additional 

three are approved for use in specific countries and they are nedaplatin, lobaplatin, and 

heptaplatin (section 3.1). Despite having been introduced to the market almost 40 years ago, 

platinum complexes remain among the most widely used anticancer chemotherapeutics. One 

important mark of the success of the platinum drugs is the fact that, since the introduction of 

cisplatin into the treatment regimen of testicular cancer patients, cure rates for this disease 

have exceeded 95%.1 The clinical relevance of these drugs is further underscored by the fact 

that carboplatin is listed as a complementary item on the World Health Organization’s 

Model List of Essential Medicines.2 Moreover, in the 2009 Ambulatory Care Drug Database 
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maintained by the U.S. Center for Disease Control and Prevention, platinum complexes as a 

class were listed in the medical charts of American patients with a frequency surpassed only 

by five other anticancer drugs (methotrexate, raloxifene, medroxyprogesterone, tamoxifen, 

and leuprolide).3 The clinical trials database maintained by the U.S. National Institutes of 

Health, which lists over 186000 clinical trials in over 180 countries, cites cisplatin as a 

component in more active clinical trials than any other anticancer agent (Figure 1).4 Similar 

trends hold for the European Union Clinical Trial Register, which is maintained by the EMA 

and lists over 25000 trials with a European clinical trials database (EudraCT) protocol,5 as 

well as the International Clinical Trials Registry Platform of the WHO.6 Despite the 

widespread use of these drugs, a new platinum agent has not received worldwide approval in 

over a decade. Research activity into new platinum anticancer agents has remained intense, 

however,7 as this review will demonstrate.

Our discussion begins with a brief description of the mechanism of action of the classical 

platinum drugs. For more comprehensive treatments, the reader is referred to several 

excellent reviews and monographs.7–12 Here we provide sufficient mechanistic background 

information for appreciating the discussions that follow. We then discuss platinum(II) 

complexes that lead to cancer cell death by the same mechanism as the three classical 

platinum drugs but which enjoy enhanced activity owing to molecular targeting. This section 

is followed by coverage of platinum(II) complexes that operate by different mechanisms. 

Because a very large number of complexes have been prepared that fall in these two 

categories, emphasis is given to those having validated targeting properties and/or well 

established mechanism. Coverage of platinum(IV) prodrugs that release cisplatin, 

carboplatin, oxaliplatin, or a close analogue upon reduction in the cell follows next. A subset 

of these complexes not only release an active platinum molecule, but also may also provide 

an additional bioactive substance that may function in a manner orthogonal to that of the 

platinum(II) agent, serving as “dual-threat” drug candidates. A small number of 

platinum(IV) complexes appear to act by mechanisms distinct from that of the prodrug 

family and they are covered next. An extensive treatment of the nanodelivery of platinum 

complexes is then provided, with a focus on two nanoparticulate formulations that have 

shown the greatest progress in clinical trials.13 The organization of this review thus reflects 

the structures and mechanisms of the compounds (Figure 2).

2. Mechanism of Action

The mechanism by which the classical platinum drugs elicit an anticancer effect has been 

the subject of decades of investigation. The synthesis of the multitudes of experiments and 

trials conducted by chemists, biologists, and physicians has produced a consistent 

framework under which we can explain the data that have been obtained from compounds 

analogous to cisplatin.14,15 The analogy extends to include those platinum complexes that 

are neutral and square-planar with cis am(m)ine ligands and cis anionic ligands. The 

am(m)ine ligands can be chelating or non-chelating and are referred to as the “nonleaving 

group ligands” because, as described below, they remain bound to the metal center 

throughout the course of the mechanism. In contrast, the anionic “leaving group” ligand(s), 

which can be monodentate anionic or chelating dianionic fragments, are so called because 

they leave the platinum(II) coordination sphere. We include the caveat that, like any 
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mechanism, the one presented below cannot be proved but rather has so far stood the test of 

time. The generalized mechanism of action involves four key steps (Figure 3): (i) cellular 

uptake, (ii) aquation/activation, (iii) DNA binding, and (iv) cellular processing of DNA 

lesions leading to apoptosis.15

The cellular uptake of cisplatin has long been investigated with oftentimes seemingly 

contradictory results.16 The two pathways by which this molecule is most likely to be taken 

up are passive diffusion through the plasma membrane and active transport mediated by 

membrane proteins. The small size of cisplatin, along with it planar shape, have long been 

cited as support for a passive diffusion mechanism and indeed other properties of its cellular 

accumulation are consistent with uptake via this pathway. For instance, the uptake does not 

saturate with increasing concentration and is proportional to the administered 

concentration.17–19 Moreover, structural analogues of cisplatin do not inhibit uptake of the 

drug.20 Conversely, data have also been obtained that support an active transport 

mechanism. For instance, cisplatin uptake can be specifically stimulated and has been linked 

to expression levels of copper transporters.16,21,22 In a similar manner, oxaliplatin efficacy 

has been linked to expression of organic cation transporters (OCTs).23 Also, reactive 

aldehydes can inhibit cisplatin uptake, presumably by interacting with membrane proteins.24 

The current model posits a combination of both passive and active transport, but the relative 

importance of these pathways and the extent to which they influence each other remains to 

be determined.

The square-planar geometry of cisplatin facilitates associative ligand substitution and, as 

will be discussed in the next section, such substitution is necessary for it to form the DNA 

lesions that characterize its activity. Cisplatin can undergo a ligand substitution event prior 

to DNA binding in which a chloride ligand is replaced with a water molecule. Such aquation 

is suppressed in the bloodstream, where the chloride ion concentration is high (≈100 mM) 

but occurs more readily in the cytoplasm, where the chloride ion concentration drops lower 

than 20 mM.25 In the presence of these lower salt concentrations, the half-life of the 

aquation reaction producing cis-[Pt(NH3)2Cl(H2O)]+ is approximately two hours. The 

positive charge on the platinum complex may help attract it to the negatively charged DNA 

molecule in the nucleus. Carboplatin and oxaliplatin feature chelating ligands opposite the 

firmly bound am(m)ine groups. These chelating ligands are substituted by water much more 

slowly and solutions of these two drugs are stable to aquation over a period of weeks to 

months.26–30

Aquated cisplatin can enter the nucleus and undergo substitution of the water ligand for a 

heterocylic DNA base. The strongest early evidence that confirmed DNA as the primary 

target of platinum drugs was the sensitivity of cells deficient in DNA repair to treatment 

with these compounds.31 Although decades of research have supported the hypothesis that 

nuclear DNA is the functional target of platinum drugs, other interactions, notably those 

with proteins and RNA, have been proposed to play a role as well.32–34 The most 

nucleophilic positions on DNA are the N7 sites of deoxyguanosine residues, and these are 

the residues that are preferentially platinated. 195Pt NMR spectroscopic monitoring 

experiments revealed that cisplatin first forms monofunctional adducts on DNA, that is, it 

forms only one covalent bond to the genomic polymer.35 In a distinct second reaction, the 
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remaining chloride ligand is substituted for a second guanine base, forming a cross-link on 

the DNA. Such cross-links can occur between deoxyguanosines on the same strand or on 

different strands, giving rise to intrastrand and interstrand DNA cross-links, respectively. 

The 1,2-d(GpG) intrastrand cross-link is the most prevalent lesion (65%), but 1,2-(ApG) 

(25%) and 1,3-d(GpTpG) (10%) intrastrand cross-links also form along with small amounts 

of GG interstrand cross-links.36,37 Similar cross-links are formed by carboplatin and 

oxaliplatin, although the relative proportions vary.38,39 These DNA adducts distort the 

structure of DNA in a drastic and characteristic manner. Early studies provided evidence of 

bending and unwinding of the double helix upon platination.40 Atomic level details of the 

structures of many of the adducts formed by different platinum anticancer are now known 

(Figure 3).

Cells whose DNA has been damaged in this way arrest at the G2/M transition of the cell 

cycle and attempt to repair this damage.10 Cisplatin lesions are most effectively removed by 

the nucleotide excision repair machinery and enhanced repair of this sort can lead cells to 

resist platinum treatment.42,43 The repair machinery must, however, be able to access the 

damage and binding of proteins to the lesion can shield it from repair. Curiously, the 

distortion that a cisplatin lesion induces in the DNA double helix fortuitously resembles that 

which is recognized by the high-mobility group (HMG) box proteins.44 The HMGB 

proteins, one of the most abundant proteins in the nucleus,45 display a particularly great 

affinity for the 1,2-d(GpG) intrastrand cross-link.46 The ability of these proteins to shield 

platinum adducts from repair may contribute to the sensitivity of certain cancer cells to 

cisplatin, but the previously ignored redox state dependence of the platinated DNA-protein 

interaction confounds an interpretation of the results present in the literature.47 Interestingly, 

the ability of cisplatin to cure testicular cancer may be related to the fact that testes cells 

express the HMGB4 isoform of this protein,48 and experiments along this line of 

investigation are ongoing. If the cell is unable to repair platinum-DNA damage, the 

expression of proapoptotic proteins increases, prompting the release of cytochrome c and the 

activation of intracellular caspases.10 These proteases effectively degrade the cell in a 

process of programmed cell death known as apoptosis. One of the main mechanisms by 

which the cell is signaled to trigger apoptosis in response to platinum treatment is the 

inhibition of transcription past platinum lesions.41

The ability of a platinum drug to elicit this ultimate cell-killing response relies on its ability 

to proceed through these mechanistic steps unhindered. In reality, a number of deactivation 

pathways exist that can sequester platinum complexes or otherwise prevent them from 

causing apoptosis (Figure 4).49 Because the current platinum drugs are all administered 

intravenously, blood components can interact with the metal centers. Notably, human serum 

albumin (HSA, the most abundant protein in the human bloodstream, contains a cysteine 

residue that can interact with systemically administered metal complexes.50 In accordance 

with hard-soft acid-base theory, the soft platinum(II) metal center will form stable 

complexes with ligands presenting soft donor atoms, such as sulfur. The main interaction of 

cisplatin with HSA, however, appears to involve sulfur-donors other than cysteine thiols, 

namely the thioether side chains of methionine residues.51
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Once inside the cell, sulfur-rich metallothioneins can sequester platinum complexes as can 

glutathione.42 As part of the cellular detoxification program, dedicated export pumps 

removed glutathione adducts from the cytoplasm. Overexpression of these pumps, such as 

ATP7B, has been implicated in cisplatin-resistance.

3. Platinum(II) compounds with a mechanism of action similar to that of 

cisplatin

3.1. Approved platinum drugs

The first experiments showing that platinum complexes could have anticancer activity are 

rooted in the serendipitous observations made by Rosenberg and coworkers when studying 

the influence of electric fields on bacterial cell division.52–55 We refer the interested reader 

to a detailed and highly readable account that Rosenberg compiled of the experiments and 

circumstances that led to the 20th century clinical use of cisplatin (Chart 1),56 a compound 

whose synthesis had been reported over a century earlier.57 These works led to the first 

human patient being treated with cisplatin in 1971 and approval for marketing in 1978, first 

in Canada and soon after in the United States and then elsewhere across the world.58 It is 

currently used primarily to treat testicular, ovarian, and bladder cancers, but has also been 

used in the treatment of head and neck cancers, lung cancer, malignant pleural 

mesothelioma, neuroblastoma, tumors of the brain, and esophageal and cervical cancers.59 

The subsequent discovery of newer platinum complexes that would come to be approved for 

clinical use relied less on serendipity and more on systematic, targeted investigations. It is 

interesting to note that the need for large amounts of precious metal starting materials, a 

situation atypical in traditional medicinal chemistry, led to the involvement of precious 

metal refining companies in the drug discovery process. For instance, the initial clinical 

development of cisplatin was fostered by a collaboration between the National Cancer 

Institute (NCI), Johnson Matthey, and Engelhard Industries, the latter two being precious 

metal companies based in the United Kingdom and Unites States, respectively.56 Johnson 

Matthey continued to pursue a research program into platinum anticancer agents and, in 

collaboration with Bristol-Myers, the Institute for Cancer Research, and the Royal Marsden 

Hospital, developed carboplatin (Chart 1).60 The success of carboplatin, originally known as 

JM8, has largely been driven by its favorable toxicity profile.61 This feature derives directly 

from alteration in reactivity at the metal center because of the chelating nature of the leaving 

group ligand and, potentially, the conformation that this ligand assumes.12 Carboplatin is 

used primarily to treat ovarian cancer but has also found use in treating retinoblastomas, 

neuroblastomas, nephroblastomas, and brain tumors, as well as cancers of the head and 

neck, endometrium, cervix, testes, breast, lung, and bladder.62

The discovery and development of nedaplatin (Chart 1) by Shionogi Pharmaceutical 

Company has been carried out entirely in Japan, and this is the only country in which it has 

regulatory approval, granted in 1995.58,63 This drug, initially referred to as 254-S, features 

cis ammine nonleaving group ligands as in the case of both cisplatin and carboplatin. The 

chelating leaving group ligand is glycolate, which confers greater water solubility (10 mg 

mL−1) than the two chloride ligands of cisplatin (2.5 mg mL−1). Nedaplatin is primarily used 

to treat cancers of the head and neck and esophagus as well as small cell lung cancer and 
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non-small cell lung cancer.13,61 A number of clinical trials exploring the expanded use of 

nedaplatin are ongoing.13,63

Heptaplatin was developed by Sunkyong Industry Research Center in Korea under the name 

SKI 2053R. It was entered into clinical trials in the 1990s and received approval from the 

Korean Food and Drug Administration in 1999. It is marketed under the name SunPla for 

the treatment of gastric cancer and was the first new drug to be developed in Korea. The 

compound features malonate as a chelating leaving group ligand, reminiscent of carboplatin, 

as well as a chelating 2-(1-methylethyl)-1,3-dioxolane-4,5-dimethanamine. The nonleaving 

group ligand forms a seven-membered chelate ring, giving the drug its generic name. The 

two stereocenters in the ligand have R stereochemistry, and although we have not been able 

to find any publications that describe the reason as to why this stereoisomer was chosen, by 

analogy to oxaliplatin (vide infra) the opposite enantiomer and meso compound likely have 

lower activity.

Lobaplatin can be viewed as a derivative of heptaplatin in which a cyclobutane ring is fused 

to the seven-membered chelate ring as opposed to a functionalized dioxolane. Lobaplatin, 

however, is formulated as a racemic mixture of the R, R and S, S enantiomers of the 

nonleaving group ligand. Because only S-lactate is used as the leaving group ligand, 

diastereomers are formed.64 The compound was initially developed by ASTA Medica in 

Germany under the name D-19466, but was later acquired by the German company Zentaris 

AG, a subsidiary of the Canadian biopharmaceutical company Æterna Zentaris. Zentaris 

eventually sold Hainan Tianwang (Chang’an) International Pharmaceutical the rights to 

manufacture and market the drug in China.65 Although clinical trials were initially carried 

out in Europe, the United States, Australia, Brazil, and South Africa examining patients with 

a range of different cancers, regulatory approval was only obtained in China. Lobaplatin is 

approved primarily for the treatment of chronic myelogenous leukaemia but is also used in 

patients suffering from small cell lung cancer and metastatic breast cancer.65 Although 

literature sources and press releases describing the sale of the rights to lobaplatin in 2003 

indicated that, at that time (2003), lobaplatin had already received regulatory 

approval,13,65,66 the Chinese FDA State Food and Drug Administration Database lists the 

approval year as 2010.67

Oxaliplatin is the most recent platinum anticancer drug to have gained international approval 

for marketing.68 This drug, occasionally referred to as l-OHP (note that the “l” refers to the 

use of the levorotatory chiral ligand in the preparation of the drug and is not an “L” 

indicating absolute stereochemistry) was first synthesized in Japan, but was subsequently 

developed in France. First approved in and subsequently in the United States, oxaliplatin is a 

component of the front-line combination chemotherapy treatment for colon cancer.7 

Oxaliplatin features a chelating oxalate leaving group ligand and a chelating R, R-

diaminocyclohexane (DACH) nonleaving group ligand.69 DACH ligands have long been 

investigated as components in platinum anticancer agents.60 In the case of oxaliplatin, 

empirical evidence revealed that the R, R stereoisomer was more effective than the 

enantiomeric S, S isomer or the related meso compound with cis amine groups.70 The origin 

of the greater activity of the R, R isomer came to light in later crystallographic studies that 

revealed this isomer preferentially forms a hydrogen bond between a pseudoequatorial NH 
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hydrogen atom of the R, R-DACH ligand and the O6 atom of the 3′-dG of the platinated 

d(GpG) lesion.71 The exceptional activity of oxaliplatin in colon cancer has been linked to 

the ability of this drug to act as a substrate for the OCTs and the overexpression of these 

membrane proteins is observed in a large proportion of colon cancer patients.23

It can be appreciated that there are many commonalities that exist between the approved 

platinum drugs. Accordingly, the mechanisms by which these complexes induce cancer cell 

death have broad parallels to the general mechanism outlined above.10,11,14 The differences 

in the molecular structures of these drugs induce slight modulations in the mechanism but 

the general path appears to be similar. For example, carboplatin aquates at a rate different 

from that of cisplatin, limiting off target toxicity, and activation by carbonate has been 

implicated in its activity, but {Pt(NH3)2}2+ adducts analogous to those formed by cisplatin 

ultimately lead to transcription inhibition and apoptosis. Oxaliplatin may exploit an 

alternative uptake pathway, viz. active transport by OCTs, but again forms DNA cross-links, 

inhibiting nucleic acid polymerases and initiating apoptosis. The difference in the 

nonleaving group ligand results in a structurally distinct class of DNA adducts that are 

repaired and recognized at different rates, contributing to a distinct spectrum of action, but 

the DNA lesions ultimately trigger the same cell killing pathways.

3.2. The next generation of cisplatin-like platinum(II) complexes

In designing the next generation of platinum anticancer agents, many researchers are seeking 

to make increasingly drastic perturbations to the general molecular framework shared by 

these drugs in the hopes of uncovering novel mechanisms of cell killing, altering the 

spectrum of activity and rendering new cancers susceptible to platinum therapy. Such 

endeavors will be described in subsequent sections of this review. In this section, we will 

describe efforts to create novel platinum(II) complexes that are structurally similar to the 

approved drugs and are expected to operate via a comparable mechanism of action. As 

described above, early medicinal chemistry efforts produced many compounds of the form 

cis-PtA2X2 where the A group is ammine or a substituted ammine and X is an anionic ligand 

or X2 is a chelating dianionic ligand. A comprehensive review of all of these compounds is 

beyond the scope of this review, for indeed the SciFinder search tool maintained by the 

Chemical Abstracts Service lists over 4700 distinct compounds with this general formulation 

that are classified as anti-tumor agents. We suspect that this number is most likely a 

significant underestimate of the true extent of development that has occurred across both 

academia and industry. In one single report, for instance, the products of over 3600 reactions 

that prepared square-planar diam(m)neplatinum(II) complexes were screened for 

transcription inhibition activity using high-throughput methods.72

As described above, the sheer number of cisplatin derivatives precludes a detailed and 

comprehensive discussion of all the strategies that have been explored. We have chosen 

instead to focus in depth on the inclusion of targeting units into a platinum(II) agent of 

known anticancer activity. Such efforts seek to finally realize the magische Kugel that 

Ehrlich sought over 100 years ago.73 This conception of a drug as a magic bullet that seeks 

out its target of its own accord is well-matched with constructs bearing targeting units that 

direct platinum warheads to cancer cells by interacting with receptors that are overexpressed 
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on the surfaces of these cells.74 The concept can be extended to encompass targeting of the 

tumor as a whole instead of cancer cells themselves by seeking proteins expressed on 

angiogenic blood vessels or allowing selective activation within the acidic or hypoxic tumor 

microenvironment.75 Finally, targeting can also take place at the subcellular level, whereby 

platinum can be directed to specific organelles to elicit distinct biological effects. Targeting 

of all of these sorts can also be applied to platinum(IV) complexes and nanoparticle delivery 

devices, as well, which will be discussed in subsequent sections.

3.2.1. Sugar targeting—Carbohydrates can engage in an intricate array of hydrogen 

bonding interactions, a feature of these molecules that is exploited in biological systems to 

achieve high fidelity recognition.76 This recognition has also been proposed as a paradigm 

for drug targeting.77 Another facet of sugar biology can be exploited for drug targeting, 

namely the enhanced uptake of glucose by cancer cells.78 In order to sustain the 

uncontrolled cell division that is characteristic of cancer, malignant cells require much 

greater levels of nutrients, in particular glucose.79 The need for glucose is further 

compounded by the altered metabolic state in which many cancer cells exist, a manifestation 

of the Warburg effect, more details of which are provided in Section 6.80 This enhanced 

uptake of glucose relies on the overexpression of glucose membrane transporters, such as 

GLUT1–4, and has been widely exploited in the use of 18F 2-fluoro-2-deoxy-D-glucose as 

an agent for positron emission tomography imaging of tumors.81,82 Although many example 

of platinum complexes bound to a variety of sugars are known, as will be described below, 

little evidence has been accumulated to suggest that these carbohydrate motifs have played a 

role in enhancing the activity of the anticancer agent by interacting with a specific receptor.

Using aminosugars, simple analogues of cisplatin were prepared in which the ammine 

ligands are replaced. Early studies demonstrated that complexes featuring coordination of 2-

amino-2-deoxy-D-glucopyranose to platinum could be synthesized, but demonstrated no 

significant anticancer activity.83–87 Using 2,3-diaminosugars, complexes analogous to 

oxaliplatin were formed and found to have promising activity in vitro and in animal models. 

For instance, PtCl2(2,3-diamino-2,3-dideoxy-D-glucose) (Chart 2A) was able to more than 

triple the survival time of mice bearing sarcoma 180 when given as a 50 mg kg−1 i.p. 

injection.88 Although cisplatin can have a similar effect at a much lower dose (8 mg kg−1) 

this latter value approached the MTD (13 mg kg−1). Substitution of the halide leaving group 

ligands in the diaminodideoxyglucose platinum(II) complexes for oxalate or malonate 

produced less active species and studies investigating the reactivity of these compounds with 

dGMP are consistent with the slower rate of reaction expected from a chelating leaving 

group ligand.89 A similar reduction in activity was observed by incorporating the CBDCA 

ligand of carboplatin into the platinum(II) complex of methyl 2,3-diamino-2,3-dideoxy-L-

xylopyranoside.90 Although one of the justifications for pursuing 2,3-diaminoglucose 

complexes is the similarity between the 2,3-diaminoglucose and the 1,2-

diaminocyclohexane of oxaliplatin, it is important to note that the conformation of the D-

glucopyranose ring results in the diamine chelate ring adopting a λ conformation. The 

stereochemistry of the R, R-DACH in oxaliplatin results in a δ conformation of this chelate 

ring.69 This feature of oxaliplatin has been suggested to be the origin of the greater activity 

of complexes of R, R-DACH as opposed to S, S-DACH.70,71,91 Although this discrepancy is 
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noted in passing in one publication,92 its effects are clearly seen, but not discussed, in later 

work.89 We anticipate that the use of L-glucose in the preparation of the diaminoglucose 

would result in a more active platinum complex as a result of its ability to more closely 

mimic oxaliplatin. We note that the use of L-glucose may appear to run contrary to the 

motivation of using a sugar that can be recognized by the cellular uptake machinery, but it 

can be inferred from the results of the experiments presented above and those that follow 

that modifications to the structure of the glucose as drastic as substitution of alcohols for 

amines and their chelation of a metal will most likely inhibit any specific recognition and 

transport to an equivalent or greater extent than the use of the mirror image of the natural 

glucose enantiomer.

We also note briefly that an interesting pair of enantiomeric platinum complexes bearing 

chiral 2,3-diaminocamphore ligands also investigated and one enantiomer was similarly 

found to be significantly more cytotoxic than the other in in vitro assays. The amino 

substituents were, however, arranged cis to one another (R, S; chirality at the camphor 1-

position prevents the cis-diamino compound from being a meso compound) precluding an 

analysis of whether the trend of greater activity for R, R persists in this system as well.93

A linker can also be inserted between the sugar unit and the platinum-binding amine, as in 

the case of cis-dichloro[(2-β-D-glucopyranosidyl)propane-1,3-diamine]platinum(II) (Chart 

2B).94 The glycosylation was found to increase water solubility without compromising 

anticancer activity. In an analogous system, a (2S)-2,3-diamino-1-propanol linker was 

attached to D-glucose (Chart 2C), L-glucose, D-galactose, D-xylose, or D-mannose.95 The 

authors found a distinct difference between the activities of the D and L glucose conjugates 

and suggest that interaction with a specific receptor may play a role in the greater activity of 

the D-glucose conjugate. Despite platinum-sugar conjugates having been explored for 

almost two decades by the time this report95 was published, it appears to be one of the 

earliest instances in which interaction of the sugar moiety with a specific receptor is 

proposed to enhance activity. Linkage through an ethylenediamine was also carried out with 

D-galactose and D-ribose, but the activity of the complexes was not investigated.96

Glucose can alternatively be incorporated into a leaving group ligand such as malonate, 

although in one early study no increase in activity was observed over the analogous 

carboplatin.97,98 A larger set of complexes with a ranges of different sugars similarly 

incorporated into a malonate leaving group ligand were prepared, but the results of the 

biological assays with these complexes have yet to be released.99 For the sake of brevity, the 

remainder of the discussion of sugar conjugates will focus on those complexes for which 

experiments have been done to characterize the mechanism of uptake. The reader interested 

in other platinum-glucose conjugates is referred to a recent excellent review.100

The first experimental evidence that inclusion of a glucose unit actually exploits the glucose 

receptor to enhance cellular uptake was presented for a platinum(II) complex bearing a 

DACH nonleaving group ligand and a glucose-functionalized malonate leaving group ligand 

(Chart 2D).101 In vitro cytotoxicity assays in the presence of phlorizin, an inhibitor of the 

glucose transporter GLUT1, indicated that the inhibitor decreased the efficacy of the 

platinum-glucose conjugate, consistent with a model in which GLUT1 mediates uptake of 
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the complex.101 In the studies listed above, glucose was never attached to the platinum 

center through the 6 position, perhaps because of the synthetic difficulty of carrying out this 

modification. Analysis of the crystal structure of a bacterial homologue of GLUT1 bound to 

D-glucose revealed, however, that the hydroxyl group at this position is the only one that 

does not have hydrogen bonding interactions with protein side chains.102 Platinum(II) 

complexes with a DACH nonleaving group ligand and a malonate leaving group ligand 

attached to glucose at the 6 position via a linker of variable length were prepared and shown 

to be taken up selectively by GLUT1 (Chart 2E).103 Studies with different GLUT1 inhibitors 

confirmed that cellular uptake was dependent on glucosylation and directly impacted cell-

killing efficacy. An interesting effect of chain length on uptake via GLUT1 was observed 

and modelling studies indicate that an overly long linker between the glucose and the 

platinum inhibits the ability of the protein to undergo the conformational change required to 

transport the construct across the cell membrane. The organic cation transporters were also 

found to play a role in the uptake and efficacy of the most potent of the glucoconjugates 

prepared.103

3.2.2. Steroid targeting: estrogen and testosterone—Another class of targeted 

platinum(II) complexes comprises those in which a steroid unit has been incorporated into 

the nonleaving group ligand. These steroids can act as targeting units that direct the platinum 

agent to tissues expressing the cognate steroid receptor. The estrogen receptor (ER), for 

instance, is an established oncology target because this protein is overexpressed on the 

surfaces of some cancers, particularly breast cancer, where it stimulates cell 

proliferation.104–107 The monoclonal antibody trastuzumab, also known as Herceptin, binds 

to and interferes with the signaling of this receptor.108 It is important to note that in addition 

to the classical estrogen receptor, now designated ERα, a novel estrogen receptor, ERβ, has 

been more recently discovered.109–111 This ERβ receptor may even play an important role in 

cancer progression by exhibiting antiangiogenic and antiproliferative properties.112 Linkage 

of a steroid unit capable of interacting with the ER to a platinum center can influence the 

anticancer activity of the metal complex by either interfering with the biological function of 

the receptor or by permitting enhanced uptake of the platinum complex, leading to an 

increase in DNA platination and a greater chance of apoptotic cell death. Several recent 

reviews have comprehensively summarized the early developments in this area.74,113,114 

One of the earliest studies that investigated platinum complexes conjugated to steroids 

involved platinum complexes with phosphine nonleaving group ligands and a leaving group 

catecholate ligand functionalized with steroids for use in metalloimmunoassays. Although 

tested in vitro for cell killing activity, they did not fare better than cisplatin.115–117 Although 

dozens of platinum(II) complexes bearing estrogen derivatives at either the leaving group or 

nonleaving group ligands have been reported,113 most have not been tested to ensure that an 

interaction with the ER is operative and leads to enhanced activity via one of the two 

mechanisms described above. In one report that does take such measures, two compounds 

cis-dichloro[N-(4-(17-ethynylestradiolyl)-benzyl)-ethylenediamine]platinum(II) (Chart 3A) 

and cis-diamino[2-(4-(17-ethynylestradiolyl)-benzoylamino)-malonato]platinum(II) (Chart 

3B), were found to agonize the ER at low concentrations, leading to enhanced proliferation, 

but exhibited cytotoxicity at higher concentrations.118 Such a bimodal effect renders these 

particular compounds unsuitable for further investigation as cytotoxic anticancer agents.
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A series of estradiol conjugates were prepared that were linked to the platinum center 

through a spacer attached to an N-functionalized 2-aminoalkylpyridyl chelate (Chart 3C). 

Although they did not show any apparent enhanced toxicity in ER+ cells as compared to 

those that are ER−, most compounds in the series bound to ERα with very high 

affinity.119–121 Some members of the series also demonstrated high affinity for ERβ.122 One 

difficulty with this series of complexes is that, as the length of the aliphatic chain that links 

the estradiol and the platinum complex is increased, the solubility of the complexes 

drastically decreases. Use of a poly(ethylene glycol) (PEG) chain (Chart 3D), however, 

allows the length to be varied without compromising solubility.123 Enhanced potency in ER

+ cell lines was observed for certain PEG chain lengths and these results were rationalized 

using molecular modeling methods. This steroid-targeting strategy was also applied to 

derivatives of carboplatin and oxaliplatin.124 Recently, this strategy was extended with the 

design and synthesis of a 17β-acetyl-testosterone conjugate linked to the platinum center 

through the 7α position.125 In the same way that estrogen units can target cancer cells 

expressing the ER, testosterone can target platinum to cancer cells expressing the androgen 

receptor (AR). Activity was observed in both androgen receptor AR+ and AR– prostate 

cancer cell lines.125 Mechanistic studies established that the compounds induce S-phase 

arrest and double-stranded DNA breaks. Antitumor studies using a chick chorioallantoic 

membrane xenograft assay confirmed the ability of these compounds to inhibit tumor 

growth.

Before leaving the discussion of estrogen- and testosterone-targeted platinum(II) agents, we 

highlight a study showing that a platinum(II) complex with an ethylenediamine nonleaving 

group ligand functionalized with a ligand for the ER could maintain its ability to interact 

with the estrogen receptor even after binding to a 16-mer DNA duplex (Chart 3E).126 

Although the steroid conjugate binds DNA with lesser facility than an analogue lacking an 

ER ligand, the former is more toxic to cells. Enhanced toxicity was observed in cell lines 

deficient in DNA repair, strongly suggesting that DNA damage is the means by which cell 

death is induced. The authors propose that DNA repair shielding or steroid receptor 

hijacking may be operative.

Non-steroidal estrogen mimics have also been linked to platinum compounds to elicit the 

same effect. The first compounds of this sort to be prepared, a series of seteroisomers of 

dichloro[1,2-bis(4-hydroxyphenyl)ethylenediamine]platinum(II), competed with estrogen 

for interaction with the ER, but were toxic to ER+ and ER− cells alike.127 Subsequent 

substitution at the 2 and 6 positions of the two phenyl rings with chlorine atoms, a 

substitution that had been shown to increase the affinity of the ligand for the ER,128 

produced a set of complexes that not only interacted with the ER but also selectively killed 

ER+ mammary carcinoma cells.129 Variations on the substitutions of the nitrogen atoms and 

ring carbon atoms can influence estrogenicity and cytotoxicity, but often in a mutually 

exclusive manner.130

3.2.3. Steroid targeting: bile acids—Platinum(II) complexes have also been conjugated 

to members of the steroid acids known as bile acids in an effort to target compounds to the 

liver because hepatic epithelial cells express a number of transport proteins that take up bile 

salts from the bloodstream.131 The first work in this area appears to be described in a set of 
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papers describing the preparation of a series of platinum(II) complexes bound by a DACH 

ligand and two bile acids (e.g. hyodeoxycholate, Chart 4A).132,133 The lability of 

monodentate carboxylates bound to platinum(II) complexes almost certainly assures that, 

upon dissolution, the complex will very rapidly form a distribution of aquated species in 

dynamic equilibrium. Although activity was observed in these studies, the research does not 

appear to have been pursued further by these authors.

A related series of compounds named Bamet, a portmanteau of bile acid and metal, was 

prepared that also features bile acids attached to a platinum warhead. The first generation 

complex, Bamet-H2 (Chart 4), was simply prepared by allowing sodium cholylglycinate to 

react with tetrachloroplatinate(II). The product, formulated as a sodium salt on the basis of 

conductivity data, was cytostatic against L1210 murine leukemia and demonstrated 

enhanced uptake by the liver as compared to cisplatin.134 The compounds known Bamet-R1 

and Bamet-R2 (Chart 4) were prepared by treating cisplatin with sodium 

cholylglycinate.135–137 The resulting complexes are presumably able to then form cisplatin 

cross-links following cellular uptake and shedding of the bile acid via aquation.138 Although 

active, the potencies of these compounds, and those of the related bis(ursodeoxycholate) 

complex Bamet-UD2 (Chart 4) and [(cis-dichloro(3,3-

amminepropylammine)propyl)glycocholamideplatinum(II)] (Bamet-D3, Chart 4), were less 

than that of cisplatin in cultured cell lines tested in vitro.139,140 Related complexes with 

trans geometry were even less active.141 Given the propensity of bile acids to form 

liposomes, it is not surprising that a liposomal formulation of Bamet-R2 was readily 

prepared.136 In a parallel line of investigation, the ethylenediamine analogues of these 

complexes were studied because they are fluorescent and have increased emission upon 

binding to DNA and release of the leaving group ligands.142–145 The mechanism of action 

and many of the in vivo properties of these compounds, notably those related to their special 

affinity for liver tissue (hepatic organotropism), have been reviewed.146 Early studies with 

rat hepatocytes and isolated rat livers confirmed that Bamet-R2 is taken up by the pathway 

naturally used for bile acid uptake and is secreted into the bile.147 These cholephilic 

characteristics were also observed in experiments with live rats.148 Close to a decade of 

subsequent preclinical experiments have produced a set of results suggesting that these 

compounds may merit clinical investigation for the treatment of hepatic malignancy.146

A bile acid with a chelating dicarboxylate motif bound to a cis-diammineplatinum(II) 

fragment was explored as an orally administered anticancer agent.149 Preliminary in vitro 

assays revealed activity in cultured murine hepatoma cells. A syngeneic orthotopic rat model 

of hepatocellular carcinoma confirmed that the complex had antitumor activity.149 An 

alternative means of linking a bile acid to a platinum(II) center involves conjugation to the 

nonleaving group ligands, a strategy that has afforded complexes demonstrating activity in 

cultured cells via a mechanism of action similar to that of cisplatin.150,151 Other terpenoids, 

the class of molecules to which steroids and bile acids belong, have also been conjugated to 

platinum(II) complexes in an effort to direct the cytotoxic agent to cancer cells,152–155 

although in some instances it remains to be determined whether the enhanced cellular uptake 

observed for these complexes arises from specific interactions with membrane receptors or 

if their inherent lipophilicity simply enhances passive membrane diffusion.
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3.2.4. Steroid-related targeting—The peripheral benzodiazepine receptor, also known 

as TSPO,156 is thought to be involved in regulating the transport of cholesterol and the 

synthesis of steroids, although recent evidence has called this latter role into question.157 

The protein has been suggested as a viable target for directing cancer therapeutics158 and it 

is overexpressed in a number of tumor tissues.159–161 Platinum(II) complexes chelated by a 

functionalized bidentate thiazolylimidazopyridine were found to interact strongly with this 

receptor.162 Although these complexes can be taken up by cultured cancer cells that express 

TSPO, they exhibit weak anticancer activity. Alteration of the thiazolyl ring to generate a 

monodentate ligand and addition of NH3 to the vacated coordination site, produced 

complexes with enhanced potency.163 Radioligand binding assays confirmed the ability of 

the complex to interact with, and presumably be taken up by, TSPO and microscopic studies 

confirmed that treatment with the platinum complex induced apoptosis.

3.2.5. Folate targeting—A number of different cancer cell lines and cells derived from 

the tumors of patients display an overexpression of a glycoprotein that acts as a folate 

receptor (FR)164. Folic acid contains the pteroic acid unit and is vital to a number of central 

biochemical pathways, including those related to DNA synthesis. In order to satisfy rapid 

cell growth, folate uptake is enhanced in cancer cells and the folate motif could conceivably 

be used to target a platinum complex to them.165 In comparison to the use of sugars and 

steroids, however, folates have seen significantly less use as targeting agents of platinum 

complexes. An early study of the interaction of cisplatin with cellular folates involved the 

isolation of the complex that results from substitution of the chloride ligands with 

tetrahydrofolate.166 Although this complex was found to be an inhibitor of dihydrofolate 

reductase and the folate transport system, the lack of labile coordination sites suggests that it 

will not be able to operate as a cytotoxic agent in a manner analogous to that of cisplatin.166 

This proposal is supported by that fact that L1210 cells were treated with concentrations of 

the complex in excess of 200 µM to observed inhibition of folate transport, but no 

significant cell killing was reported. A systematic preparation of a variety of cisplatin and 

carboplatin derivatives bearing a folate unit conjugated to either the nonleaving group 

ligands or the leaving group ligands (Chart 5A) established much of the chemistry required 

to prepared complexes with the capacity to target the FR.167 Unfortunately, the low water 

solubility of these molecules prohibited their use in biological experiments. The use of a 

PEG spacer between a dicarboxylate chelator and a folic acid unit (Chart 5B) affords 

enhanced water solubility and mechanistic studies showed that the conjugate is taken up by 

folate receptor-mediated endocytosis.168 The conjugate was, however, less potent than 

carboplatin, a feature that appears to stem directly from the formation of fewer platinum-

DNA adducts. As will be described in Section 8, folate targeting has been successfully used 

to direct platinum-loaded nanoparticle drug delivery vehicles to FR-expressing cancer cells.

3.2.6. Peptide targeting—The earliest report of a platinum(II)-peptide conjugate 

involved attaching a platinum warhead to derivatives of the minor groove binding agents 

netropsin and distamycin (Chart 6A).169 The peptide was able to enhance platination of 

poly(dA) tracts over poly(dG) tracts, the latter of which are preferentially platinated by 

cisplatin. The ability to explore a much wider range of platinum(II)-peptide conjugates arose 

when synthetic strategies compatible with solid-phase peptide systhesis were 
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developed.170–173 This chemistry involved linking the platinum complex to the peptide via a 

functionalized ethylenediamine nonleaving group ligand. The platinum chemistry could be 

performed on the solid support and the complex survived the deprotection and cleavage 

reactions. This technology was used to screen dozens of platinum(II)-peptide conjugates in 

vitro for anticancer activity, although no significant hits were obtained in this screen.174 

Although these peptide conjugates exhibit a reduced capacity to platinate DNA, and 

consequently reduced potency, the DNA sequence specificity of platination is generally 

unaltered with different peptide sequences.175 We note briefly, however, that use of 

individual charged amino acids, such as ornithine, lysine, or arginine, in place of the 

nonleaving group ligands can alter this specificity.176 Highly complex peptide architectures 

can be conjugated to platinum(II) using these methods, including conjugates octreotide 

analogues.177

Although the opportunities offered by peptide-based targeting are great, instances in which 

targeting has been successfully achieved with platinum(II) conjugates are few. More 

examples exist with platinum(IV) constructs and nanodelivery vehicles as described below. 

One well characterized example involves the use of a malonate nonleaving group ligand 

attached to a PEGylated cyclic peptide via a linker (Chart 6B).178 The cyclic peptide, 

c(CNRGC), presents the Asn-Gly-Arg sequence that targets the CD13 receptor 

overexpressed on the surface of certain cancer cells.179 The targeted complex was more 

toxic to prostate cancer cells expressing CD13 than non-targeted carboplatin and 

competition assays confirmed that the complex is taken up via interaction with CD13. 

Fluorescence microscopy studies and DNA fragmentation assays are consistent with an 

apoptotic mechanism of action.

Another example involves the subcellular targeting of active platinum(II) units to the 

mitochondria. Following work on the anticancer activity of cationic platinum(II) complexes 

with ammine nonleaving group ligands and β-diketonate leaving group ligands,180 an 

analogous complex with a succinylacetonate ligand was prepared. The pedant carboxylate of 

this complex was used to form an amide bond to the N-terminus of a mitochondrial 

penetrating peptide (Chart 6C).181 The decapeptide, r(Fxr)3 where r is D-arginine and Fx is 

L-cyclohexylalanine, is non-toxic, protease resistant, and should localize to mitochondria 

because of its lipophilic and cationic nature.182,183 The conjugation of the platinum complex 

to the peptide was carried out on the solid support and survived trifluoroacetic acid-mediated 

cleavage. Fluorescence microscopy confirmed localization of the conjugate to the 

mitochondria of cultured ovarian cancer cells and PCR amplification studies indicate that, in 

contrast to treatment with cisplatin, mitochondrial DNA is platinated while nuclear DNA is 

not. Even though the location of platination differs, the platinum-peptide conjugate was still 

able to induce apoptosis. Mouse embryonic fibroblasts that are deficient in their 

proofreading of mitochondrial DNA were more sensitive to the treatment, an observation 

consistent with a shift in the target of the platinum complex from nuclear DNA to 

mitochondrial DNA.

Although nucleic acids are not typically used to prepare targeted platinum(II) complexes 

because of the inherent reactivity of the platinum center with the nitrogenous DNA bases, a 

peptide nucleic acid (PNA)-plaintum(II) conjugate has been reported.184 The nucleic acid 
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sequence of the PNA conjugate, which lacks d(GpG) units, can target a complementary 

mRNA sequence in such a way as to present the pendant platinum(II) center to a GpG unit 

on the target mRNA sequence. Evidence supporting cross-linking of the PNA and the target 

mRNA were obtained suggesting that this strategy could be used to enhance antisense 

therapy.

4. Platinum(II) compounds with a mechanism of action different from that of 

cisplatin

Early structure-activity relationship (SAR) studies found that subtle modifications to 

cisplatin geometry led to drastic changes in chemotherapeutic activity. Whereas cisplatin 

displays excellent activity against some cancer types, trans-diamminedichloroplatinum(II), 

the trans isomer of cisplatin, lacks activity.60,185 Two major factors are thought to contribute 

to the contrasting activities of the cis and trans stereoisomers. The trans disposition of the 

two chloride ligands in trans-diamminedichloroplatinum(II) renders them kinetically labile 

in comparison to those of the cis isomer, and thus susceptible to undesirable side reactions 

with extra- and intra-cellular biomolecules.186–189 Additionally, the major cytotoxic DNA 

lesion formed by cisplatin, the 1,2-intrastrand cross-link between adjacent purine bases, is 

stereochemically inaccessible to trans-diamminedichloroplatinum(II). Instead, trans-

diamminedichloroplatinum(II) forms 1,3-intrastand cross-links (ca. 28%) and 

monofunctional adducts (ca. 60%), which undergo conversion to interstrand cross-links (ca. 

12%), preferentially between guanine and a complementary cytosine.190 In cells, however, 

very few interstrand cross-links are formed because of the slow transformation of 

monofunctional adducts and 1,3-intrastand cross-links to interstrand cross-links.191 DNA 

adducts formed by trans-diamminedichloroplatinum(II) do not halt DNA replication as 

efficiently as those formed by cisplatin and are prone to effective DNA repair.192

4.1. Trans complexes

The discrepancy in cisplatin and trans-diamminedichloroplatinum(II) activity led to the 

early belief that only platinum complexes with cis leaving groups were endowed with 

antitumor activity.60 The development of biologically active trans-

diamminedichloroplatinum(II) analogues, however, has dispelled this notion.186–189 There 

are now several examples in the literature of active trans-platinum complexes. These 

complexes can be divided into the following sub-types; (i) trans-platinum(II) complexes 

with heteroaromatic ligands, (ii) trans-platinum(II) complexes with iminoether ligands, and 

(iii) trans-platinum(II) complexes with asymmetric aliphatic amine ligands.

4.1.1. trans-Platinum(II) complexes with heteroaromatic ligands—Substitution of 

the ammine ligand(s) in trans-diamminedichloroplatinum(II) with bulky, planar N-donor 

ligands affords trans-platinum(II) complexes with high in vitro cytotoxicity, equivalent to 

their corresponding cis-isomers and cisplatin.193–195 Some analogues, such as trans-

[PtCl2(NH3)L] and trans-[PtCl2L2] where L = pyridine, quinolone, isoquinoline, thiazole, or 

benzothiazole (Chart 7), display therapeutically significant activities in cisplatin- and 

oxaliplatin-resistant cell lines.195,196 According to NCI human tumor panel screening 

studies and COMPARE algorithm197 analyses, trans-platinum(II) complexes of this type 
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exhibit a spectrum of activity that differs significantly from that of any other anticancer 

agent in the NCI database.196 Their unique cytotoxicity profiles are attributed to their 

structural and DNA-binding properties. For instance, the weakly trans-directing aromatic 

heterocyclic ligands reduce the kinetic liability of trans chloride groups and thus prevent 

deactivation by sulfur-rich biomolecules, a common detoxification pathway for cisplatin.186 

Additionally, the type and distribution of DNA lesions induced by such trans-platinum(II) 

complexes is distinctly different from those of cisplatin, trans-

diamminedichloroplatinum(II), and other cis-platinum(II) agents.198,199 The presence of 

bulky planar ligands increases the propensity for monofunctional adduct formation and 

subsequent interstrand cross-linking. Monofunctional adducts formed by members of the 

trans-[PtCl2(NH3)L] series depicted in Chart 7 on short duplex DNA induce conformational 

changes similar to those produced by cisplatin.200 In vitro studies in cultured breast cancer 

cells showed that the complexes formed DNA-topoisomerase I cross-links capable of 

triggering DNA strand breaks and apoptosis.186,201 Such ternary DNA-protein cross-links 

are not observed for cisplatin201 and therefore could explain, in part, the distinctive cellular 

response evoked by trans-platinum(II) complexes with bulky planar ligands.

4.1.2. trans-Platinum(II) complexes with iminoether ligands—trans-

Diamminedichloroplatinum(II) analogues with one or two iminoether ligands exhibit 

promising biological activity.202–204 Iminoether ligands exist as isomers because of different 

possible E and Z configurations about the C=N bond. As a result, iminoether complexes of 

platinum(II) produce not only cis and trans isomers, but also exhibit additional isomersism 

at the coordinated ligand.205,206 The trans-EE-[PtCl2(HN=C(OMe)Me)2] complex was the 

first member of the series to be studied in detail (Chart 8). This complex displays inhibitory 

effects against a panel of cancer cell lines comparable to those of cisplatin.206 Furthermore, 

this compound exhibits no cross-resistance with cisplatin in ovarian cancer cells and 

substantial in vivo activity in P388 leukemia-bearing mice.207,208 The cellular uptake and 

degree of DNA platination was significantly higher for iminoether bearing trans-

platinum(II) complexes compared to cisplatin, and suggested that DNA was the main 

intracellular target.208 The complexes form stable monofunctional adducts with duplex 

DNA,209,210 which bend the DNA backbone axis toward the minor groove.211 As a result of 

this form of conformational distortion, the monofunctional adducts were not recognized by 

HMGB proteins, and thus were readily removed by NER.211 Conversion of the 

monofunctional adducts into DNA-protein cross-links, however, produced lesions that were 

able to bypass NER, inhibit DNA polymerases, and lead to cell death. SAR studies 

established that trans-platinum(II) analogues with one iminoether ligand were less toxic than 

those with two such ligands.204 Within the trans-[PtCl2(HN=C(OMe)Me)(NH3)] series 

(Chart 8), the E configuration exhibited greater inhibitory potency against cancer cells than 

the Z configuration, indicating that iminoether ligand configuration is a major determinant of 

activity. To systematically study the effect of iminoether ligand conformation on trans-

platinum(II) activity, trans-platinum(II) complexes bearing cyclic iminoether ligands 

mimicking the E and Z configuration were prepared. Cyclic ligands avoid complications that 

arise from the isomerization between E and Z configurations encountered in acyclic 

iminoether compounds.212 Mechanistic studies found that, like trans-

diamminedichloroplatinum(II), the trans-[PtCl2(HN=C(OMe)Me)(NH3)] series formed 
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monofunctional adducts that developed into interstrand cross-links between adjacent 

guanine and cytosine bases.204,213 The trans-[PtCl2(HN=C(OMe)Me)(NH3)] lesions have 

been likened to a flexible hinge, inducing different structural effects on DNA than the more 

rigid trans-diamminedichloroplatinum(II) lesion.204 More recently another generation of 

platinum complexes mimicking iminoether derivatives were investigated. These trans-

platinum(II) complexes bearing one or two ketamine ligands (acetonimine) exhibited 

micromolar toxicity against cancer cells and circumvented cisplatin resistance in ovarian 

cancer cell lines (A2780cisR and 41McisR).214

4.1.3. trans-Platinum(II) complexes with asymmetric aliphatic amine ligands—
Aliphatic amine ligands have been employed to generate asymmetric platinum(II) agents 

such as trans-[PtCl2(isopropylamine)L] where L = dimethylamine, isopropylamine, or 

propylamine (Chart 9), that display potency against cancer cells with multifactorial cisplatin 

resistance and ras oncogene overexpression.215,216 In a similar fashion to trans-

diamminedichloroplatinum(II), trans-[PtCl2(isopropylamine)(dimethylamine)] forms 

interstrand cross-links between guanine and a complementary cytosine but the quantity of 

lesions formed is 3-fold higher for the former.217 The ability of this complex to form 

interstrand cross-links over a relatively short period of time is claimed to be the major 

contribution to overcoming cisplatin and ras-related resistance. trans-Platinum(II) 

complexes with one aliphatic amine ligand, such as trans-[PtCl2(NH3)L] where L = 2-

methyl-butylamine or sec-butylamine, have been prepared with the aim of improving the 

water solubility of the parent di-aliphatic amine complexes.218 The second generation 

complexes retained the cytotoxicity profile of the original series, including the ability to 

form efficient interstand cross-links and bypass cisplatin resistance.

4.2. Polynuclear compounds

Polynuclear platinum agents that share similarities with trans-platinum(II) complexes 

account for another class of pharmacologically active platinum-based anticancer 

agents.219–222 Such compounds contain trans-[Pt(NH3)2Cl] units with bridging 

alkanediamine linkers of various lengths, designed to facilitate long-distance, flexible 

intrastrand and interstrand cross-links, which are unattainable by traditional mononuclear 

platinum(II) agents like cisplatin and trans-diamminedichloroplatinum(II) (Chart 10). The 

di-platinum complex trans-[(PtCl(NH3)2)2µ-(H2N(CH2)4NH2)]Cl2 forms 1,2-, 1,3-, and 1,4-

interstand cross-links between guanines on opposite strands.223,224 In 1,3- and 1,4-cross-

links, the guanines are separated by one and two base pairs, respectively, whereas the 1,2-

cross-link is formed between guanines on neighboring base pairs.223 These unconventional 

DNA adducts enable the di-platinum complex to overcome cisplatin resistance in ovarian 

cancer cells.221 In order to improve the DNA binding ability of the di-platinum(II) complex, 

tri-nuclear platinum(II) complexes were prepared by incorporating a third platinum center 

within the alkanediamine linker.225 After systematic SAR studies, [trans-

diamminechloroplatinum(II)][µ-trans-diamminedihexanediamineplatinum(II)] nitrate 

(BBR3464) was selected for preclinical development. BBR3464 is taken up in large 

amounts by cancer cells, and forms characteristic DNA cross-links, which mediate its 

cytotoxic effect.226,227 The major DNA adduct formed is the 1,4-interstand cross-link. This 

lesion induces directional bending of the DNA helical axis and local unwinding of the helix. 
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Moreover, this lesion evades removal by NER. The DNA lesions formed by BBR3464 were 

not detected by antibodies raised against cisplatin-modified DNA but were recognized by 

antibodies raised against trans-diamminedichloroplatinum(II)-modified DNA, indicating 

that BBR3464 may exhibit greater mechanistic similarities with trans-platinum(II) 

complexes.225 Other studies claim that BBR3464 induces DNA damage by triggering B-to-

Z and B-to-A transitions in DNA conformation.228,229 In vitro and in vivo toxicity studies 

showed that BBR3464 is able to kill cancer cells up to three orders of magnitude better than 

cisplatin, and to overcome cisplatin resistance in several types of cancer.219,226, 230–232 The 

fact that BBR3464 acts independently of p53, a tumor suppressor protein that is mutated, 

defective, or inactivated in several cancers, suggested that it holds great therapeutic 

potential. The major drawback of BBR3464 is its inherent systemic toxicity. Phase I trials in 

humans revealed that the MTD is as little as 0.12 mg m−2 day−1 on a daily, five-dose 

schedule.233 Upon escalating the dose to 0.17 mg m−2 day−1, severe myelosuppression and 

gastro-intestinal toxicity were observed. On the other hand, low urinary excretion and low 

nephrotoxicity were reported. Phase II trials in patients with ovarian cancer, small cell lung 

cancer, non-small cell lung cancer, gastric, and gastro-esophageal adenocarcinoma, 

produced mixed results.234–237 Although BBR3464 displayed a distinct lack of activity in 

gastric and small cell lung cancers, it showed better activity in non-small cell lung cancer 

patients and advanced ovarian cancer patients failing platinum-taxane regimens. In the latter 

case, BBR3464 displayed hints of activity deserving of further evaluation (16 partial 

responses out of 79 patients). The results of two Phase II trials launched over 10 years ago 

by Theradex, for the treatment of patients with locally advanced or metastatic pancreatic 

cancer and small cell lung cancer have yet to be realeased. We would also like to highlight 

that BBR3464 was the most recent novel platinum complex to have begun clinical trials. No 

new small molecule platinum agents have been introduced into clinical trials since 1999.

Non-coordinating multinuclear platinum(II) agents, based on BBR3464, have been reported 

to exhibit strong DNA binding affinity and anticancer activity. These agents were generated 

by replacing the labile chloride ligands on BBR3464 with ammine groups (TriplatinNC) or 

extended amine groups (TriplatinNC-A) (Chart 10).238 X-ray crystallographic studies 

revealed that TriplatinNC and TriplatinNC-A bind non-covalently (via electrostatic and 

hydrogen-bonding interactions) to DNA. The terminal platinum units form discrete amine-

phosphate-ammine binding motifs called “phosphate clamps” within the minor groove, 

which induce B-to-A and B-to-Z conformational changes in canonical DNA 

sequences.238–240 The conformational change cooperatively enhances the interaction of 

minor-groove binders like Hoechst 33258, and remains unperturbed in the presence of 

intercalators, such as ethidium bromide.241,242 Recent work has shown that TriplatinNC and 

TriplatinNC-A can also condense DNA and induce aggregation of small transfer RNA 

molecules, owing to the highly cationic nature of the platinum complexes.243,244 

Furthermore, these agents inhibit topoisomerase-I-mediated relaxation of supercoiled DNA. 

In light of these findings, the biological mechanism of action of TriplatinNC and 

TriplatinNC-A is thought to involve nucleic acid condensation or aggregation, with 

inhibitory effects on topoisomerase-I enzymatic activity.243 Cellular studies showed that 

TriplatinNC and TriplatinNC-A display micromolar toxicity against cisplatin-sensitive and 

cisplatin-resistant ovarian cancer cells.245 The ability of the agents to overcome cisplatin-
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resistance was accredited to their high cellular accumulation, presumably because of their 

cationic nature, and their unique mode of binding to DNA. Molecular biology assays 

showed that the downstream cellular responses evoked by TriplatinNC and TriplatinNC-A 

in mastocytoma cells were markedly different.246 While TriplatinNC induces caspase-

mediated apoptosis reliant on p53 and BAX (a pro-apoptotic protein) function, in a similar 

manner to cisplatin and BBR3464, TriplatinNC-A induces cell death in a manner that is 

independent of p53- or BAX-status. Given the role of p53 and BAX in cisplatin-mediated 

cell death, TriplatinNC-A could hold significant clinical value if the results can be 

recapitulated with in vivo models.

4.3. Non-covalent binding

Mononuclear platinum(II) compounds that bind to DNA non-covalently have also shown 

promising antineoplastic properties and are gaining increasing support as potential 

alternatives to conventional platinum drugs.247–252 Metallointercalators with π-conjugated 

heterocyclic ligands, such as bipyridine, terpyridine, and phenanthroline, utilise π-π stacking 

and dipole-dipole interactions to intercalate between base pairs in double-stranded 

DNA.253–255 Metallointercalators can unwind, bend, and distort DNA topology, and it is 

their structural effect on DNA that is thought to mediate their antiproliferative properties. 

Systematic studies on charged platinum(II) complexes of general formula [Pt(IL)(AL)]2+, 

where IL is an intercalating ligand and AL is an ancillary ligand, have yielded some of the 

most promising results (Chart 11).251 Combinations of phenanthroline-based ligands (IL), 

and 1,2-diaminocycloalkane ligands (AL) gave impressive cytotoxicities against L1210 

murine leukaemia cells. Detailed SAR studies using different R, R- and S, S-ancillary 

ligands revealed that chirality was a major determinant of toxicity.252 In terms of 

metallointercalators with diaminocyclopentane (DACP) ligands, R, R enantiomers are more 

potent than S, S enantiomers whereas the reverse enantiomeric specificity was observed for 

metallointercalators with DACH ligands.248,252 The latter observation is in stark contrast to 

the activity of clinically administered oxaliplatin, which contains a R, R-DACH ligand.70 

Within the PHENSS/RR series (made up of 1,10-phenanthroline and DACH ligands), the S, 

S enantiomer (PHENSS) exhibited one order of magnitude greater toxicity against 

leukaemia cells than the corresponding R, R enantiomer and cisplatin. Given the 

encouraging biological activity of PHENSS, the compound was evaluated in PC3 xenograft 

mouse models. In vivo studies found that PHENSS was relatively non-toxic, and somewhat 

effective at reducing tumor growth over a period of 20 days as compared to saline 

controls.250 Unfortunately, statically significant results were not obtained because the 

studies were carried out with a small number of mice. More detailed studies are needed to 

determine the complete in vivo potential of PHENSS. Recently, the 56MESS/RR series, 

made up of 5,6-dimethyl-1,10-phenanthroline and DACH ligands, has emerged as a highly 

promising anticancer candidate. Strikingly, the S, S enantiomer (56MESS) displays nano-

molar toxicity toward leukaemia cells. Although this compound interacts with DNA, the 

significance of DNA as an important cellular target has been questioned.256,257 

Comprehensive mechanistic analysis of 56MESS in Madin Darby Canine Kidney (MDCK) 

cells revealed an increase expression of the mitochondria-associated protein labeled by 

MTC02, cell cycle arrest in synchronised and non-synchronised cells, and caspase-
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independent cell death. Collectively these observations suggest that the mechanism of 

cytotoxic action involves mitochondrial and cell cycle proteins rather than DNA.257

The cytotoxic potential of a planar platinum(II) complex bearing a tetradentate ligand, 

BDIQQH, was reported recently.258 In aqueous buffer, the platinum(II) complex 

[Pt(BDIQQ)]Cl (Chart 11), forms aggregates, but in the presence of DNA, the aggregates 

disperse yielding single molecules capable of intercalating between base pairs and 

unwinding DNA. [Pt(BDIQQ)]Cl exhibits selective toxicity for cancer cells over normal 

fibroblast cells, and no cross-resistance with cisplatin in ovarian cancer cells. In a manner 

uncharacteristic of platinum(II) complexes, [Pt(BDIQQ)]Cl acts in a dual-threat manner.259 

As well as attacking DNA in cells, which enriches p53 and BAX levels and subsequently 

induces mitochondria-mediated apoptosis, Pt(BDIQQ)]Cl also accumulates in mitochondria 

because of its lipophilic and cationic properties and causes direct mitochondrial damage. 

The latter mechanism proceeds independently of p53 and therefore allows [Pt(BDIQQ)]Cl to 

exhibit equal toxicity in p53-negative and p53-postive cells. Because p53 activity is 

abrogated in many cancers,260 the p53-independence of [Pt(BDIQQ)]Cl is thought to be 

highly desirable in terms of preclinical development.

4.4. Monofunctional complexes

Mononuclear monofunctional platinum(II) complexes represent another class of very 

propitious anticancer agents. These complexes contain only one labile ligand and are expect 

to form only one covalent bond to DNA. Unlike the complexes described above, which can 

form monofunctional adducts as well as bifunctional adducts, the class of compounds 

described here is designed to form at most one bond to DNA. Early studies found 

monofunctional platinum(II) complexes such as [Pt(NH3)3Cl]+ and [Pt(dien)Cl]+ to be 

inactive both in vitro and in vivo.60,261 These results were in agreement with the prevailing 

viewpoint at the time, which stated that only neutral, square-planar platinum(II) complexes 

with a pair of inert ligands in a cis arrangement could have anticancer activity. This belief 

was overturned, in part, by work conducted by Engelhard Industries, which showed that 

monofunctional platinum(II) complexes of the form cis-[Pt(NH3)2(Am)Cl]+, where Am is 

an aromatic N-heterocyclic amine, inhibited tumor cell growth in vitro and in L1210 and 

P388 mouse leukemia models.262 Two platinum(II) complexes, cis-[Pt(NH3)2(9-

aminoacridine)Cl]+ and cis-[Pt(NH3)2(chloroquine)Cl]+, capable of binding to DNA both in 

a monofunctional covalent manner and via intercalation were prepared following these 

studies,263 but unfortunately murine sarcoma 180 ascites (S180a) screens found both 

complexes to have high dose-limiting toxicity (5 mg kg−1), and any useful antineoplastic 

activity was masked by this systemic toxicity. The in vivo properties of these complexes 

were not investigated further.

Further studies with cis-[Pt(NH3)2(Am)Cl]+ complexes investigated the possibility that an 

ammine or Am group could be lost upon DNA binding, allowing bifunctional 

coordination.264 Careful analysis of NMR spectra and enzymatic digestion data on the 

products of the reaction of these complexes with d(GpG) and dG revealed the formation of 

monofunctional adducts only with no evidence for the release of the ammine or Am 

groups.264 This result was supported by the fact that monoclonal antibodies capable of 
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detecting bifunctional DNA lesions did not recognize cis-[Pt(NH3)2(Am)Cl]+ induced DNA 

adducts. Electrophoretic mobility shift assays showed that the adducts induced by cis-

[Pt(NH3)2(N3-cytosine)Cl]+ had minimal structural effects, in fact, the DNA helix remained 

rod-like after treatment.265 Subsequent studies on the interaction of a structurally similar 

complex, cis-[Pt(NH3)2(4-bromopyridine)Cl]+ with supercoiled DNA revealed that 

monofunctional adducts not only bent DNA less but also unwound DNA less than traditional 

bifunctional complexes.266 A further vindication of the differing structural effects of 

monofunctional and bifunctional adducts was shown by the ability of HMGB proteins to 

recognize cisplatin modified DNA but not cis-[Pt(NH3)2(N3-cytosine)Cl]+ platinated 

DNA.267

In spite of the aforementioned work on monofunctional platinum(II) complexes, no notable 

results of experiments with these compounds were reported for almost two decades, until a 

re-examination of these cationic monofunctional platinum(II) complexes arose unexpectedly 

from studies on the role of OCTs in the cellular uptake and activity of oxaliplatin.23,268 

These studies uncovered the fact that cis-[Pt(NH3)2(pyridine)Cl]+ (pyriplatin, Chart 12), a 

monofunctional, cationic platinum(II) compound, displayed excellent substrate compatibility 

with organic cationic transporters 1 and 2.269 Cells with high OCT expression were more 

sensitive to pyriplatin treatment than those with low OCT expression. Moreover, the 

differential toxicity in pairs of cell lines with high and low OCT expression was up to 137-

fold for pyriplatin as compared to toxicity enhancements of up to 53-fold for oxaliplatin.269 

Electrophoretic mobility shift assays showed that monofunctional DNA adducts formed by 

pyriplatin did not significantly unwind duplex DNA. Structural determination of a DNA 

dodecamer duplex site-specifically platinated with pyriplatin at the N7 site of a 

deoxyguanosine residue also revealed minimal perturbations to the structure of the DNA 

double helix. In fact, hydrogen bonding between the platinated guanine base and the 

complementary cytosine base was completely intact.269 In vitro studies in HOP-62 lung 

adenocarcinoma cells revealed that pyriplatin damages DNA, blocks cell cycle progression 

at the G2/M phase, and prompts apoptotic cell death.270 Monofunctional lesions formed by 

pyriplatin are repaired by NER, however, not with the same fidelity as bifunctional 

lesions.271 NCI cytotoxicity screening studies revealed that pyriplatin exhibits a novel 

spectrum of activity compared to other platinum agents in the NCI database. The poor 

potency of this compound relative to conventional platinum-based drugs, however, 

motivated a search for more active analogues. Elucidation of the X-ray crystal structure of 

RNA polymerase II stalled at a monofunctional pyriplatin-DNA adduct directed the strategy 

for making improved analogues.272 This crystal structure indicated that larger N-

heterocyclic ligands could more effectively block the progression of RNA polymerase II, 

leading to improved transcription inhibition and cytotoxicity. The pyridine in pyriplatin was 

therefore rationally substituted for more expansive N-heterocycles. This process eventually 

led to the development and discovery of cis-[Pt(NH3)2(phenanthridine)Cl]+ 

(phenanthriplatin, Chart 12).273

According to the NCI cytotoxicity screening assay, phenanthriplatin exhibited a unique 

cancer cell-killing profile compared to all other platinum agents held in the NCI archives.273 

Unlike pyriplatin, the potency of phenanthriplatin toward cultured cancer cells is 
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therapeutically relevant and significantly higher than that of cisplatin. Upon loss of the 

chloride ligand, phenanthriplatin forms monofunctional adducts with simple guanine bases 

as well as duplex DNA. Phenanthriplatin-DNA adducts introduce steric hindrance within the 

major groove and thus stall RNA polymerase II. Kinetic studies on site-specifically 

platinated DNA showed that the insertion of CTP opposite the platinated guanine by RNA 

polymerase II occurs in an error-free manner, but further mRNA synthesis along the 

template DNA strand is halted.274 Phenanthriplatin-DNA adducts also inhibit DNA 

polymerases. DNA polmerase η, a translesion synthase capable of bypassing 1,2-intrastand 

cross-links formed by cisplatin, is able to insert the correct nucleotide opposite the 

phenanthriplatin-bound guanine, but is unable to proceed any further.275 The detailed 

mechanism of DNA polmerase η inhibition was inferred from X-ray crystallographic data, 

which suggested that the diastereoselectivity imposed on the adduct by the phenanthridine 

ring may play a significant role in blocking polymerase progression.275,276 Studies with 

Escherichia coli resembling those conducted by Rosenberg, showed that akin to cisplatin 

treatment, phenanthriplatin induced filamentous cell growth.277 Monofunctional 

platinum(II) complexes with little biological activity in cultured cancer cells were not able to 

replicate this result. Phenanthriplatin-mediated filamentous E. coli growth resulted from the 

bacterial SOS response, indicative of DNA damage. So far, data acquired for 

phenanthriplatin in cultured systems suggest that its anticancer activity is exerted through 

interaction with DNA.

Platinum(II) complexes with tethered acridine units represent another important class of 

DNA-targeting anticancer agents. Such complexes contain a platinum moiety capable of 

forming monofunctional-DNA adducts and a planar acridine motif capable of intercalating 

between base pairs (Chart 12).278–280 A semi-rigid linker is usually employed to promote 

platination of DNA bases directly adjacent to the intercalation site. An early example of this 

series, Pt-ACRAMTU, [PtCl(ethane-1,2-diamine)(ACRAMTU)] where ACRAMTU=1-[2-

(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, contains a chloride leaving group and an 

ACRAMTU group coordinated via a Pt-S bond, disposed cis to each other.279 This 

arrangement was hypothesised to enable rapid DNA adduct formation without the need for 

rate-limiting aquation. The NMR solution structure of a site-specifically modified octamer 

containing a Pt-ACRAMTU adduct, revealed that platination of a guanine within the major 

groove did not result in large structural changes. Intercalation of the appended acridine unit, 

however, did lengthen (6.62 Å) and unwind (twist, 15.4°) DNA.281 The authors propose that 

rapid intercalation precedes platination, and that this mechanism is responsible for moving 

platinum away from DNA sites targeted by conventional platinum(II) agents. Clonogenic 

growth and cell proliferation studies showed that Pt-ACRAMTU and its derivatives were 

very active and display sub-micromolar IC50 values against several cancer cell lines.282–287 

Polymerase stop assays and flow cytometric assays showed that the hybrid adducts inhibited 

RNA polymerase II and DNA synthesis.285,286,288 Inhibition of DNA synthesis led to S 

phase cell cycle arrest as opposed to G2/M phase cell cycle arrest, as is customary following 

cisplatin treatment.288 Although Pt-ACRAMTU maintained sub-micromolar activity in cell 

lines with aberrant p53 and k-ras expression, because of their inability to stop tumor growth 

in corresponding tumor mouse models, preclinical development was halted and other Pt-

ACRAMTU analogues have been subsequently investigated.289 The most promising second 
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generation derivative was developed by replacing the thiourea donor on Pt-ACRAMTU with 

an amidine nitrogen.290,291 This modification accelerated DNA binding, increased cancer 

cell toxicity by two orders of magnitude (nanomolar IC50 values), and inhibited tumor 

growth in vivo.290,291 Studies in non-small cell lung cancer cells (NCI-H460) suggest that 

their impressive cytotoxicities can be attributed to rapid intracellular accumulation, DNA 

adduct formation, and less efficient removal of the DNA adducts. Unfortunately the 

amidine-based complexes exhibit extremely high systemic toxicity in vivo; the maximum 

tolerated dose determined for one of the most potent complexes being 0.5 mg kg−1. It is 

possible that the development of delivery agents could allow for safe delivery while 

maintaining potency.

4.5. Other examples

Bone and other calcified tissues show a great propensity to take up bisphosphonates, a 

property that has been exploited in the design of a number of drugs that target bone 

diseases.292–294 The ability of the bisphosphonate unit to chelate calcium confers this 

targeting ability. In an effort to develop cisplatin analogues that selectively target bone 

tissue, a series of platinum(II) complexes were prepared with the chelating 2-

amino(m)ethylpyridine ligand functionalized at the amine with a bisphosphonate unit.295 In 

vitro cytotoxicity assays reveal that these complexes are less active than cisplatin. Flow 

cytometric studies suggest that cisplatin and the bisphosphonate complexes differentially 

influence the membrane permeability that is assayed to probe apoptosis. In conjunction with 

a lack of observed DNA binding, the authors interpret these results to mean that an 

alternative cell killing mechanism may be operative. It is also possible to load platinum 

complexes with bisphosphonate leaving group ligands on a solid matrix for implantation and 

release at the site of disease. Many of the developments in this area have recently been 

reviewed.296

A series of platinum complexes with pyrophosphate ligands in place of the traditional 

nonleaving group ligands afforded complexes that did not bind to DNA but in some cases 

were more active that the parent drug from which they were derived.297 The authors 

accumulate evidence highlighting the distinctions between the biological effects of the 

classical platinum drugs and the pyrophosphate complexes, but no mechanistic model has 

yet to be proposed.298

Platinum(II) complexes with diethyl[(methylsulfinyl)methyl]phosphonate as the non-leaving 

group ligands demonstrate low potency killing but in addition to DNA binding, as revealed 

by replication mapping experiments, these complexes were also found to be potent inhibitors 

of matrix metalloproteinases.299 Similarly, inhibition of matrix metalloproteinase 3 

(MMP-3) was observed with other platinum complexes in which three labile ligands are 

present in the platinum coordination sphere. The authors present evidence indicating that the 

platinum binds to a key histidine residue of the enzyme.300 A crystal structure of matrix 

MMP-3, also known as stromelysin-1, confirmed binding to this histidine.301
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5. Platinum(IV) prodrugs that release classical platinum(II) anticancer 

agents

The anticancer potential of platinum(IV) agents has been recognized since the discovery of 

the medicinal potential of cisplatin,55 but their clinical significance has only been realized 

more recently. The physicochemical properties of platinum(IV) agents differ greatly from 

their platinum(II) counterparts. Unlike square-planar platinum(II) complexes, platinum(IV) 

complexes generally adopt octahedral geometries (Figure 5). The saturated coordination 

sphere of platinum(IV) is more resistant to ligand substitution than four-coordinate 

platinum(II) centers, and thus limits unwanted side reactions with biomolecules prior to 

DNA binding. The two extra ligands afforded by the low-spin d6 platinum(IV) center 

provide a means to impart and fine-tune desirable biological properties such as lipophilicity, 

redox stability, specific targeting, orthogonal bioactivity, and improved cellular uptake. The 

additional ligands also facilitate attachment to nanoparticles and other forms of carriers 

systems, a detailed discussion of which will be provided later.

Interpretation of the reactivity of platinum(IV) complexes with DNA and other biomolecules 

requires consideration of their rates of substitution and reduction. Although platinum(IV) 

complexes can platinate DNA in their oxidized form, the formation of cytotoxic lesions via 

ligand substitution requires weeks.303 Given that platinum agents are typically cleared from 

the body in a matter of hours, direct platinum(IV)-biomolecule coordination is unlike to be 

of clinical importance.304 Reduction of the platinum(IV) center to platinum(II), in concert 

with the loss of two ligands, is thought to be essential for the anticancer activity of these 

agents. Specifically, the canonical mechanism of reduction involves the loss of the two axial 

ligands (Figure 5). The resulting divalent form, usually cisplatin or a related derivative, 

binds to DNA, inhibits transcription and replication, and induces apoptosis. The reduction 

process is dependent on the composition of the platinum(IV) agents as well as the biological 

reducing agent involved. A convenient measure of reduction can be obtained from 

voltammetric experiments, but because the platinum(IV)-to-platinum(II) reduction is 

irreversible, a standard redox potential cannot be obtained as the mid-point potential from a 

typical cyclic voltammogram. Instead, the peak potential, Ep, for the cathodic wave obtained 

in a cyclic voltammetric measurement is typically quoted. Care must be taken in interpreting 

these values, however, because the cathodic peak potential of an irreversible process is not 

dictated solely by the thermodynamics of reduction, but also by the heterogeneous charge 

transfer rate constant at the electrode surface and is influenced by the scan rate.305 The 

relative cathodic peak potentials of structurally related complexes are, however, typically 

correlated to the relative facility with which the metal center is reduced and have been 

correlated with reduction rates in solution.306 Early quantitative SAR studies showed that 

the nature of the axial ligands has a stronger influence on reduction rates than the equatorial 

ligands.307 Within the cis-[Pt(en)Cl2X2] series where X is an anionic axial ligand, the 

chloride species (Ep = −4 mV) is much more susceptible to reduction than the carboxylate 

(Ep = −250–350 mV) or hydroxide (Ep = −664 mV) derivatives.308,309 On the other hand, 

systematic variation of equatorial amine ligands in complexes of general formula cis-

[PtCl4(NHR2)2] where R = alkyl and aromatic hydrocarbons, did not have a considerable 

effect on the reduction rates.310 Platinum(IV) reduction by small biomolecules such as 
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ascorbate and glutathione can occur by inner- or outer-sphere electron-transfer 

mechanisms.311–314 The reduction path taken is highly dependent on the nature of the 

ligands coordinated to the metal. Because inner-sphere electron-transfer requires the 

formation of a chemical bridge between the participating species, platinum(IV) agents with 

halide or hydroxide ligands trans to a good leaving group are particularly suited to undergo 

reduction by this mechanism.313 Differences in ability to form such bridges can even 

override trends in reduction rate expected on the basis of differences in ligand-to-metal 

electron donating ability.315 Bimolecular outer-sphere electron-transfer processes are 

generally slower than inner-sphere electron-transfers but can provide a viable reduction 

mechanism for platinum(IV) agents in which ligands that are capable of forming a bridge to 

an electron transfer agent are trans to firmly bound ligands.

Ormaplatin (also known as tetraplatin), tetrachloro(trans-1,2-

diaminocyclohexane)platinum(IV) (Chart 13) was one of the first platinum(IV) agents to 

undergo clinical trials. Ormaplatin is rapidly reduced to the corresponding 

dichloro(trans-1,2-diaminocyclohexane)platinum(II) form in tissue culture medium (t1/2 = 

5–15 min) and undiluted rat plasma (t1/2 = 3 s).316 The active platinum(II) species is similar 

to oxaliplatin, however, it contains both R, R and S, S isomers. Ormaplatin displayed in vitro 

and in vivo activity against some cisplatin-resistant cancers and was taken forward to 

clinical trials commissioned by NCI and UpJohn.317–321 Various doses, dose patterns, and 

modes of administration (intravenous and intraperitoneal) were investigated in six Phase I 

clinical trials, however, no Phase II clinical trials have been planned.321–323 Ormaplatin was 

found to induce severe neurotoxicity at the MTD, and in some cases a safe MTD could not 

be determined. Toxicity is thought to arise from fast reduction to the active platinum(II) 

form as a consequence of the axial chloride ligands.

Another notable platinum(IV) complex to have undergone clinical trials is iproplatin (also 

known as JM9 and CHIP), cis, trans, cis-

dichlororidodihydroxidobis(isopropylamine)platinum(IV) (Chart 13).324 Iproplatin is 

structurally similar to ormaplatin in the sense that it contains two equatorial chloride groups 

which are cis to each other. Carbon-14 labelling studies showed that the mechanism of 

action of iproplatin involves the reduction of the platinum(IV) center to platinum(II) 

followed by covalent bond formation with DNA.325 Iproplatin is less prone to reduction and 

deactivation by biological reducing agents than ormaplatin, presumably because of the 

presence of hydroxide axial ligands, allowing less hindered distribution throughout the body. 

Another advantage of iproplatin is its very high water solubility (44.1 mM), which allows 

simpler formulation and administration. Iproplatin is one of the most clinically studied 

platinum agents to have not been approved for marketing, with 38 clinical trials ranging 

from Phase I to III having been concluded, many of which were commissioned by Johnson 

Matthey and Bristol Myers. Phase I studies revealed that the dose-limiting toxic effect was 

myelosuppression, which, in one study involving children, was partly correlated with the 

amount of prior therapy chemo- and radiotherapy received.326 The same study 

recommended intravenous doses of 324 mg m−2 over 2 h every 3–4 weeks for Phase II trials 

in children. Other studies proposed doses of 45–65 mg m−2 and 95 mg m−2 for patients 

treated on a five-times daily schedule every three weeks and a four-times weekly schedule 

Johnstone et al. Page 25

Chem Rev. Author manuscript; available in PMC 2016 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with two-week break periods, respectively.327 Phase II trials were carried out in patients 

with a variety of different cancer types328–332 and Phase III trials were conducted in ovarian 

cancer patients and those with metastatic epidermoid carcinoma of the head and neck.333,334 

The ultimate conclusion of these studies was that iproplatin did not exhibit overall 

effectiveness that surpassed that of cisplatin or carboplatin and no further trials were 

undertaken.

Satraplatin, trans, cis,cis-bis(acetato)amminecyclohexylaminedichloroplatinum(IV) (Chart 

13) was the first orally active platinum agent to be reported.335,336 Satraplatin was rationally 

designed such that the lipophilicity and stability were suitable for oral administration. The 

half-life of reduction of satraplatin by 5 mM ascorbate is 50 min, which is an adequate time 

for absorption by the gastrointestinal mucosa in the platinum(IV) form once ingested.337 

Upon entry into the bloodstream, satraplatin undergoes reduction to give six distinct 

platinum(II) species. Ammine(cyclohexylamine)dichloroplatinum(II), derived from the loss 

of two acetate ligands, is the major metabolite and also exhibits the most potent anticancer 

activity.338 In preclinical studies, satraplatin exhibited a better toxicity profile than cisplatin, 

and showed activity in cisplatin-resistant human tumor cell lines.335 Similarly to cisplatin, 

satraplatin acts through the formation DNA cross-links, DNA distortion, and subsequent 

inhibition of DNA transcription and replication. The ability of satraplatin to overcome 

cisplatin resistance is thought to arise from the asymmetric nature of the DNA lesions, 

which unlike cisplatin adducts, can evade recognition by DNA repair proteins.339–341 In 

vivo studies in mice bearing murine ADJ/PC6 plasmacytoma, which we note was the same 

model used to identify carboplatin as a viable alternative to cisplatin,342 showed satraplatin 

to exhibit markedly superior antitumor efficacy relative to cisplatin, carboplatin, and 

ormaplatin.335 Furthermore, in four ovarian carcinoma xenograft models of varying cisplatin 

and carboplatin resistance, satraplatin displayed activity similar to that of cisplatin and 

carboplatin, which were administered intravenously, and far superior to intraperitoneal 

administration ormaplatin. In rodents, the dose-limiting toxicity of satraplatin was 

myelosuppression. Encouragingly, less hepatotoxicity and fewer gastrointestinal effects 

were observed as compared to treatment with cisplatin or carboplatin. The favorable toxicity 

profile and preclinical antitumor activity of satraplatin prompted several development 

companies to begin Phase I clinical trials. In the first Phase I study, satraplatin was 

administered at doses ranging from 60–170 mg m−2 as a single oral dose.343,344 The 

pharmacokinetics data suggested that gastrointestinal absorption was being saturated, 

preventing the MTD from being reached. To improve absorption into the bloodstream, 

patients were treated on a five-times daily schedule with lower doses (30–140 mg m−2).345 

The dose-limiting toxicities were thrombocytopenia and neutropenia and in about 10% of 

the patients treated, nausea, vomiting, and diarrhea were also observed. Based on the Phase I 

studies, doses of 100–120 and 45–50 mg m−2 were recommended for repeated daily dosing 

for 5 and 14 days, respectively, in Phase II/III trials.346–348 Several Phase II/III trials have 

been carried out to determine the efficacy of satraplatin alone and in combination other 

active agents. A Phase II study on metastatic NSCLC patients, in which satraplatin was 

administered as single daily 120 mg m−2 doses for 5 days on 3 week cycles failed to provide 

any objective responses.349 Nevertheless 46% of the patients were noted to express some 

palliation. A more advanced Phase II study on patients with small-cell lung cancer and 
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squamous cell head and neck cancer, with escalated doses of satraplatin produced a response 

rate of 38%, similar to that observed with cisplatin.343 Encouragingly this study found no 

signs of severe neurotoxicity or nephrotoxicity. Other Phase II studies in patients with 

relapsed ovarian cancer and advanced/recurrent squamous cancer of the cervix, produced 

clinically beneficial or partial rates of response in several patients.350,351 The former study 

noted that the most common form of toxicity was neutropenia and thrombocytopenia. 

Satraplatin has also been heavily studied as a potential second-line chemotherapeutic for 

patients with metastatic castration-resistant prostate cancer (CRPC).352,353 Treatment with 

120 mg m−2 satraplatin daily for 5 days, used in patients with CRPC that had undergone 

front-line hormone therapy, resulted in 62% of patients expressing stable disease or partial 

response. Follow-up Phase III trials commissioned by Bristol-Myers Squibb, assessed the 

capability of satraplatin as a front-line chemotherapeutic in combination with prednisone.354 

This study was terminated after only 50 of the intended cohort of 380 patients were treated 

because satraplatin in combination with prednisone was found to be less efficacious than 

prednisone alone. Following this setback, satraplatin was acquired by GPC Biotech, who set 

up a multicenter, multinational, double-blind, placebo-controlled Phase III trial called 

Satraplatin and Prednisone Against Refractory Cancer (SPARC) with 950 patients.355,356 

The aim of the trial was to compare treatments of satraplatin and prednisone against placebo 

and prednisone, as second-line therapy for patients who had received a cytotoxic agent, 

which in some cases was docetaxel. The study found that the satraplatin/prednisone 

combinations led to a 36% decrease in pain progression and an improvement in progression 

free survival rates. The positive outcome of the SPARC trial prompted GPC Biotech to file 

for FDA approval, however, this claim was rejected on the grounds that overall survive was 

not significantly improved and that more than half the patients in the study had received 

prior docetaxel treatment.357,358

6. Dual-threat platinum(IV) prodrugs that release classical platinum(II) 

anticancer agents

In all of the examples discussed above, the platinum(IV) agent undergoes intracellular 

reduction to produce an active platinum(II) species and two biologically innocent groups. 

The inclusion of one or two biologically active ligands within the platinum(IV) scaffold can 

produce dual-threat platinum(IV) agents. The biologically active ligands are typically 

chosen to have non-DNA targets to limit cross-resistance with the DNA-targeting 

platinum(II) species released.

Ethacraplatin comprises a cisplatin equatorial core axially coordinated to two ethacrynic 

acid ligands through their carboxylic acid groups (Chart 14).359,360 Ethacrynic acid and its 

glutathione adduct are a potent inhibitors of glutathione-S-transferase (GST), an enzyme 

which aids the detoxification of platinum agents by catalyzing their conjugation to 

glutathione.361 Upon intracellular reduction, ethacraplatin releases cisplatin and two 

equivalents of ethacrynic acid. Ethacrynic acid inhibits GST and reverses platinum drug 

resistance, enabling ethacraplatin to inhibit the growth of cisplatin-resistant breast, lung, and 

colon cancer cells more effectively than cisplatin alone. The platinum(IV) divalproate 

complex (VAAP) is another example of a dual-threat agent (Chart 14).362 Upon reduction, 
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VAAP generates cisplatin and two equivalents of valproic acid, a potent histone deacetylase 

(HDAC) inhibitor which stimulates differentiation and apoptosis in cancer cells. VAAP 

displays strong synergistic cytotoxicity, up to two orders of magnitude higher than cis, cis, 

trans-diaminedichlorodihydroxoplatinum(IV) alone or in combination with valproic acid. 

Furthermore, VAAP-loaded poly(ethylene glycol)-block-poly(caprolactone) nanoparticles 

(see Section 8) display pharmacologically relevant blood circulation times, with high tumor 

accumulation and significant inhibitory effects in lung adenocarcinoma xenograft mouse 

models. More recently, platinum(IV) derivatives of oxaliplatin with one or two valproate 

axial ligands have been prepared with the aim of developing VAAP derivatives with more 

favorable toxicity and tolerability profiles.363

Normal cells generate energy within the mitochondria, in the form of ATP, via the citric acid 

cycle and oxidative phosphorylation. Under the hypoxic conditions present in many tumor 

tissues, however, cancer cells obtain a larger proportion of their energy by aerobic 

glycolysis. This phenomenon is known as the Warburg effect.80 The difference in metabolic 

pathways operational in normal and cancer cells has been exploited by mitaplatin, a 

platinum(IV) complex designed to selectively kill cancer cells over non-malignant cells 

(Chart 14).364 Mitaplatin consists of two dichloroacetate (DCA) ligands appended to a 

cisplatin core. Upon reduction in cancer cells, DCA inhibits pyruvate dehydrogenase kinase 

(PDK), which in turn, reduces the flux of metabolites through aerobic glycolysis and 

restores normal mitochondrial function. This process promotes apoptosis by releasing 

cytochrome c from mitochondria and translocating apoptosis-inducing factor (AIF) to the 

nucleus. At the same time, free cisplatin induces DNA damage in the usual manner and 

prompts apoptotic cell death. The concerted action of cisplatin and DCA allows mitaplatin 

to kill lung carcinoma cells (A549) more readily than normal lung fibroblasts (MRC5) in co-

cultured in vitro systems. Subsequent work showed that this mechanism of action was able 

to overcome cisplatin-resistance in human epidermoid adenocarcinoma and hepatoma cancer 

cells.365 Detailed biophysical studies investigating the aqueous chemistry of mitaplatin and 

related platinum(IV) complexes with axial haloacetate ligands, found that, contrary to the 

typical dogma that platinum(IV) prodrugs are inert to ligand substitution, these the axial 

ligands of these complexes can be substituted for hydroxide under biologically relevant 

conditions.366 Isotopic labelling studies revealed that the hydrolysis proceeds via the attack 

of a hydroxide ion on the platinum(IV) center, and not at the carbonyl of the haloacetate. 

Importantly, at physiological pH, however, the half-life of hydrolysis is much longer than 

the rate at which mitaplatin is cleared from the blood of rodents367 and so this process likely 

has little influence on the in vivo effects of this compound.

One of the major disadvantages of mitaplatin is the widely differing effective doses of the 

reduced products, DCA and cisplatin, which alone exhibit their characteristic activities at 

millimolar and micromolar concentrations, respectively. In order to achieve a better match 

in activity between the intracellular reduction products, DCA was replaced with a vitamin E 

analog, α-tocopherol succinate (α-TOS).368 α-TOS inhibits the anti-apoptotic proteins Bcl-2 

and Bcl-xL in the micromolar range, thereby inducing mitochondria-mediated apoptotic cell 

death at comparable concentrations to cisplatin. Platinum(IV) complexes comprising 

cisplatin attached to one or two α-TOS ligands were prepared. The di-substituted derivative 
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was non-toxic, presumably because of its high lipophilicity and susceptibility to entrapment 

inside the cell membrane. Contrastingly, the mono-substituted derivative (Chart 15A) 

exhibited potency 7–25 times greater than that of cisplatin across several tumor cell lines. 

Mechanistic studies revealed that this complex induces nuclear DNA damage and 

simultaneous mitochondrial membrane depolarization because of inhibition of Bcl-xL-Bax 

protein-protein interactions.

In ER+ breast cancer cells, addition of estrogen increases HMGB1 expression. HMGB1 

inhibits repair of cisplatin-induced DNA lesions by preventing DNA repair proteins from 

accessing the site of damage.369 Thus, co-treatment of unconjugated estrogen and cisplatin 

enhances the activity of cisplatin.370 Incorporation of two axially coordinated estrogen 

moieties into cisplatin enabled the preparation of cisplatin-estrogen conjugates capable of 

concurrently releasing both groups (Chart 15B).371 Given that the estrogen units were 

modified with ester groups, hydrolysis to generate free estradiol is a prerequisite for activity. 

ER+ MCF-7 cells treated with the platinum(IV)-estrogen complex displayed an increase in 

HMGB1 expression to a degree similar to that observed following treatment with estradiol. 

The activity of the estradiol potentiates the activity of cisplatin. As predicted based on the 

construct design, HMGB1 levels in ER− HCC-1937 cells were less affected and the IC50 

values were comparatively higher (up to 1.8-fold).

Platinum(IV) agents with axially coordinated bioactive peptides have been designed and 

prepared with the aim of targeted drug delivery to tumors. Several mono- and di-

functionalized platinum(IV) complexes with tri- and pentapetides capable of binding to αvβ3 

and αvβ5 integrins and aminopeptidase N (APN) on the surface of cancer cells have been 

prepared.372 Integrins and APN are highly expressed in tumor-induced angiogenesis, and 

thus the platinum(IV) conjugates are able to selectively target angiogenic tumor cells over 

primary proliferating endothelial cells. The anti-proliferative effect of the platinum(IV)-

peptide conjugates decreased upon co-incubation with αvβ3- and αvβ5-specific peptides and 

transfection with β3 integrin siRNA, confirming that their activity was mediated by the 

recognition of specific integrins on the cancer cell membrane surface. A very recent report 

describes the enhancement that can be obtained by using an axial ligand that displays 

multiple units of the cyclic c(RGDfK) integrin-targeting peptide.373 In this work, a 

picoplatin prodrug displaying a tertrameric c(RDGfK) motif was able to accumulate in cells 

overexpressing αVβ3 and αVβ5 integrins resulting in a 10-fold enhancement in cytotoxicity 

over cells that do not express these membrane proteins. A cyclic RGD motif was also used 

in the construction of a theranostic platinum(IV) complex capable of targeting αVβ3 

integrins, releasing cisplatin upon reduction, and reporting on the activation of apoptosis 

using an aggregation-induced emission fluorophore conjugated to a caspase-3 sensitive Asp-

Glu-Val-Asp (DEVD) peptide.374 The two different peptides were attached to the two axial 

positions of a cisplatin prodrug.

Platinum(IV) complexes with analogues of neurotensin and somatostatin have also been 

reported with the aim of targeting cancer cell lines expressing the corresponding 

receptors.375 Cytotoxicity studies revealed that, although potency was improved compared 

to the non-targeting platinum(IV) precursor, cellular uptake was non-specific, presumably 

because the receptors were unable to recognize the peptides once tethered to platinum(IV). 
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Fusion of cell penetrating peptides (CPPs) such as a TAT (Trans-acting Activator of 

Transcription) protein fragment with platinum(IV) centers has yielded very active 

conjugates. The oxaliplatin-TAT monoconjugate displays 39-fold higher potency against 

cultured cancer cells than the corresponding platinum(IV) analogue with no targeting 

peptide(s).376 Large peptides like chlorotoxin (CTX) have also been attached to 

platinum(IV) in a 1:1 ratio for targeting purposes.377 CTX, a 36-amino-acid peptide found in 

the venom of the deathstalker scorpion,378 binds to functional proteins like matrix 

metalloproteinase 2 (MMP2), annexin A2, and chloride ion channels, which are 

overexpressed on certain cancer cell surfaces. The platinum(IV)-chlorotoxin conjugate 

exhibits higher in vitro toxicity against human cervical HeLa cells than the non-targeted 

platinum(IV) building block. The difference in potency is attributed to the targeting of 

annexin A2 and chloride ion channels present on the cell surface of HeLa cells.

7. Platinum(IV) complexes with non-cisplatin-like mechanisms of action

Before it became established that most anticancer-active platinum(IV) complexes function 

as prodrugs that undergo reduction to release active platinum(II) agents, alternative 

mechanisms of action for platinum(IV) were envisioned. Because of the steric restraints 

imposed by the DNA double helix, it seemed unlikely that DNA cross-linking of the 

cisplatin type was operative,15 although modelling studies suggest that such adducts may be 

able to form.379 Monofunctional adducts could also conceivably form,380,381 but the 

generally slow kinetics of ligand substitution at platinum(IV) argue against this process 

being of great biological relevance. A series of studies have, however, appeared describing 

the platinum(IV)-mediated oxidation of guanine to 8-oxo-guanine. The first report of this 

reactivity came from the observation that incubation of Pt(DACH)Cl4 with GMP or dGMP 

led to the formation of Pt(DACH)Cl2.382 The oxidation of guanine was confirmed as was 

the ability of the oxidation to occur with guanine bases in double-stranded oligonucleotides. 

The reactions typically occurred on the order of days and theoretical calculations suggest 

that the reaction proceeds via a cyclic 5′,8-phosphodiester intermediate.383,384 Analysis of 

kinetic data revealed that platinum(II) centers can catalyze the reaction, which is initiated by 

intermolecular nucleophilic attack, e.g. by phosphate.385,386 The platinum(IV) complex 

cis,cis,trans-[Pt(NH3)2Cl2(OH)2] was reported to cleave double-stranded DNA but this 

reactivity was subsequently shown to arise from molecules of H2O2 that co-crystallized with 

the platinum(IV) complex.387,388

Photoactivated chemotherapy offers temporal and spatial control over drug activation and 

has shown potential for the treatment of several cancers including those of the skin, lung, 

brain, and esophagus. The activated toxic species is produced by irradiation only where it is 

required, allowing tumors to be targeted specifically. This approach is advantageous over 

other therapies such as surgery, radiotherapy, and conventional chemotherapy because, 

ideally, normal tissue is not affected and the treatment can be repeated as often as required. 

In an attempt to increase selectivity and lower systemic toxicity of platinum agents, 

photoactivatable platinum(IV) prodrugs have been developed.389,390 Two main classes of 

photoactivatable platinum(IV) have been reported in the literature thus far, diiodo- and 

diazido-platinum(IV) complexes.
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The first generation of photoactivatable platinum(IV) complexes were based on iodide as the 

reducing ligand and ethylenediamine as the nonleaving group (Chart 16).391,392 A bidentate 

ligand was chosen to prevent photo-induced isomerisation, which could lead to the 

formation of thermodynamically stable but potentially inactive trans congeners. cis-

Diiodoplatinum(IV) complexes exhibit dissociative LMCT/d-d excited states that can be 

populated by excitation from visible light. It was postulated that population of these states 

could trigger photoreduction and photosubstitution at the platinum(IV) center. The resulting 

platinum(II) species were then expected to coordinate to DNA bases and induce apoptosis. 

The first diiodo-platinum(IV) complex reported was prepared with axial chloride ligands.391 

Although this complex was able to irreversibly platinate DNA upon irradiation at 375 nm, a 

similar effect was also observed in the dark, probably because of facile reduction owing to 

the poor ability of chloride ligands to stabilize the 4+ oxidation state of the metal. In order to 

prevent chemical reduction in the dark, hydroxide-, acetate- and methysulfonate-based 

ligands were introduced at the axial position.392 As anticipated, the modified platinum(IV) 

complexes had better dark-stability, the methylsulfonate complex being the most stable with 

a half-life of 72h. Upon irradiation at 375 nm, the complexes underwent photoreduction, 

giving platinum species with differing DNA platination propensities. Photolysis of the 

platinum(IV)-acetate complex generated the highest number of platinum-DNA adducts. 1D- 

and 2D-NMR experiments indicated that photoreduction to the corresponding platinum(II) 

species was necessary for DNA binding.393 In vitro studies with TCCSUP bladder cancer 

cells with and without 1.5 h of irradiation showed that the photolysis products were more 

cytotoxic that the parent platinum(IV) complexes, however, the toxicity differential was not 

as high as expected.391,392 A statistically significant difference between dark and light IC50 

values was only observed for the platinum(IV)-acetate complex. To understand the 

underlying reasons for the high toxicity of the diiodo-platinum(IV) complexes in the dark, 

biophysical studies were conducted with sulfur-rich biomolecules.394 NMR analysis showed 

that glutathione and N-acetylcysteine rapidly reduced the complexes to the reactive 

platinum(II) form via an inner-sphere mechanism similar to ormaplatin reduction. Given 

their fast reduction rates in the presence of biologically relevant thiols, diiodo-platinum(IV) 

complexes were deemed unsuitable for development as photoactivable drugs.

Because several transition metal azide complexes are known to be light-sensitive and 

undergo photosubstitution and photoreduction reactions, the iodide ligands in the 

aforementioned complexes were substituted for azide ligands to prepare a second generation 

of photoactivatable platinum(IV) prodrugs. The earliest example was trans-

[Pt(N3)2(CN)4]2−, which upon irradiation into the 302 nm LMCT band led to trans 

elimination of the azide ligands via azidyl radical formation and reduction to 

platinum(II).395 The two radicals can rapidly decompose in aqueous solution to produce 

molecular nitrogen. This process prevents re-oxidation of the platinum center, unlike 

halogen-based radicals that do not decompose in water and instead interact with the metal 

center to regenerate the starting material. Early biologically active platinum(IV)-diazide 

complexes were prepared with the aizde ligands disposed cis to one another, trans to 

ammine or ethylenediamine non-leaving groups, and cis to axially-coordinated hydroxide 

ligands (Chart 17).396 Unlike the diiodo-platinum(IV) complexes, the azide-bearing 

complexes were stable toward hydrolysis for up to 90 days and did not react readily with 
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glutathione, in the dark, over the course of several weeks. Sophisticated NMR and 

biophysical experiments showed that photoreduction was dependent on the non-leaving 

groups present and the wavelength of light used for irradiation.397,398 Irradiation with blue 

and UV light triggered the formation of many platinum(II) and platinum(IV) species, 

indicating that photoreduction was not the sole photochemical process taking place. Indeed, 

in this system, irradiation is thought to promote photosubstitution, photoisomerisation, and 

photoaquation. Cytotoxicity studies with 5637 human bladder cancer cells showed that 

irradiation significantly enhanced the potency of the complexes, from > 300 µM to ca. 50 

µM.397 Experiments with cisplatin-resistant 5637 cells indicated that the diazido-

platinum(IV) complexes displayed no cross-resistance with cisplatin. Although in vitro 

assays indicate that the diazido-platinum(IV) complexes can bind DNA upon irradiation and 

inhibit RNA synthesis,399 fluorescence microscopy studies showed none of the typical signs 

of apoptosis. This finding implies that the irradiated diazido-platinum(IV) complexes may 

induce cell death in a manner different from cisplatin.

Diazido-platinum(IV) complexes containing azide ligands in a trans arrangement displayed 

more favorable electronic properties than their cis congeners (Chart 17).398,400 For instance, 

within the [Pt(N3)2(OH)2(NH3)2] series, the LMCT band was shifted toward the visible 

region for the trans isomer, allowing activation with tissue-penetrating light. Also, 

trans,trans,trans-[Pt(N3)2(OH)2(NH3)2] is stable under biological conditions and upon 

irradiation with red light binds readily to DNA bases and induces toxicity in human HaCaT 

keratinocytes to a degree similar to cisplatin. Impressive phototoxicity was also observed 

against cisplatin-resistant cell lines. More recently, diazido-platinum(IV) complexes with 

higher photocytotoxicity have been prepared by replacing one or two NH3 ligands with 

pyridine, methylamine, or thiazole (Chart 17).401–403 These complexes are resistant to 

hydrolysis and reduction in the dark and only become active upon irradiation with UVA or 

blue light. The photolysis products are highly toxic toward cancer cells and display no cross-

resistance with cisplatin in ovarian carcinoma cells. Toxicity is attributed to the formation of 

a novel combination of mono- and bi-functional DNA adducts, primarily with guanine and 

cytosine, that unwind DNA. In depth biophysical studies showed that the trans,trans,trans-

[Pt(N3)2(OH)2(methylamine)(pyridine)] complex induced oxidation of guanine upon 

irradiation.404 This unexpected result is thought to arise from the reaction of singlet oxygen 

and platinum-nitrene intermediates. Extensive fluorescence experiments ruled out singlet 

oxygen generation from dissolve dioxygen or water. The most plausible source of singlet 

oxygen was the axially coordinated hydroxide groups. Guanine oxidation is a form of 

mutagenic DNA damage and so this process could be a contributing factor in the mechanism 

of action of trans-diazido-platinum(IV) complexes. As singlet oxygen generation and 

subsequent guanine oxidation do not require any exogenous source of oxygen in this system, 

it could be applied to target cancer cells that reside in hypoxic niches.

8. Nanodelivery of platinum(IV) complexes

As described above, one prominent paradigm in the design of platinum(IV) anticancer 

agents is that of a prodrug bearing equatorial ligands identical to those of a platinum(II) 

complex with established anticancer activity and axial ligands chosen to either modulate the 

physicochemical properties of the compound or confer additional biological activity. The 
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main impetus for altering the physicochemical properties of the complex is the attendant 

change that occurs in pharmacological activity. An alternative motive that guides the 

development of some platinum(IV) prodrugs is the desire to incorporate the complex into a 

drug delivery device, particularly those with nanoscale dimensions.

Nanodelivery of biologically active agents is a blossoming field at the intersection of 

materials science, engineering, medicine, and chemistry. The advantages to be gained from 

any drug delivery system, macroscopic or nanoscale, include the ability to reduce the 

systemic dose but increase the amount of active agent that reaches the target site. A needle 

used to inject a drug intratumorally is an example of a macroscopic drug delivery system. 

Broadly defined, nanoscale drug delivery is the use of any object with dimensions in the 

nanometer regime to transport pharmaceutically active agents. Nanoparticles can often be 

engineered to have properties such as sustained circulation, affording any cargo that they 

transport an enhanced retention in the bloodstream.405 In the nanodelivery of anticancer 

agents, the main advantages of using nanoparticles relates to their ability to target tumor 

tissue in either an active or passive manner.406,407 Active targeting can be realized in a 

manner similar to that described above for small molecules. If the surface of the nanoparticle 

is decorated with a ligand for a receptor expressed selectively on the surface of cancer cells, 

then the particle is more likely to be taken up by those cells via receptor-mediated 

endocytosis.408 Multivalent effects that arise from the presence of multiple targeting unit on 

the surface of a nanoparticle can also enhance this mode of uptake.409 Passive targeting 

arises directly from the ability of nanoscale object in sustained circulation to accumulate in 

tumor tissue over time. This phenomenon, known as the enhanced permeation and retention 

(EPR) effect, occurs because the tumor vasculature is inherently leaky and the tumor tissue 

is poorly irrigated by the lymphatic system (Figure 6).410 As a result, nanoparticles with 

dimensions in the 50–200 nm range can readily extravasate into the tumor interstitial space 

(permeation) and remain there (retention) releasing their contents into the extracellular space 

of the tumor microenvironment or being taken up by cancer cells.

One broad strategy in the nanodelivery of platinum anticancer agents involves the use of 

platinum(IV) synthons similar to those used to conjugate platinum(IV) centers to peptides or 

bioactive small molecules, as described above. In particular, cisplatin prodrugs with axial 

succinate ligands have enabled the functionalization of a variety of nanoscale objects using 

simple ester- and amide-bond forming reactions. A range of different platinum(IV) 

complexes and nanomaterials have been used for this purpose.405,409,412 The following is a 

review of the sytems that have appeared in the peer-review literature grouped according to 

the nanomaterial that is used as the delivery vector.

8.1. Carbon-based materials

Carbon nanotubes have been extensively investigated as drug delivery vehicles and a 

number of platinum(IV) prodrug-containing constructs have been prepared.413 One early 

example of such platinum(IV) prodrug delivery was the use of single walled carbon 

nanotubes (SWCNTs) to ferry a cytotoxic platinum payload into cancer cells.414 The 

SWCNTs were rendered biocompatible and water dispersible via the non-covalent binding 

of phospholipid-PEG-amine groups. The phospholipid interacted with the nanotube surface, 
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the PEG chain acted as a spacer, and the pendent amine functional group provided a reactive 

handle through which to couple the pendent carboxylic acid of cis, cis, trans-

[Pt(NH3)2Cl2(OEt)(O2CCH2CH2CO2H)] via an amide-bond forming reaction (Chart 18). 

An average of 65 platinum centers could be conjugated to each SWCNT. Fluorescence 

microscopy was used to confirm that cultured testicular cancer cells take up the SWCNTs 

conjugated to both the platinum(IV) prodrug and a fluorescent reporter molecule, and trap 

the nanotubes within endosomes. The platinum is then released into the rest of the cell. 

Subsequent studies with this nanotube system used the disuccinate complex, cis, cis, trans-

[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] to allow conjugation to not only the functionalized 

carbon nanotube, but also a targeting unit, folic acid (Chart 18).415 A number of human 

cancer cells, including those forming tumors in patients with ovarian, breast, lung, kidney, 

and colon cancer, overexpress the folate receptor. Indeed, immunohistochemical methods 

were used to establish that < 90% of ovarian cancers overexpress the folate receptor;416 a 

result which was more recently confirmed using a quantitative radioligand binding assay.417 

Inclusion of the targeting unit was able to selectively direct the platinum-bearing SWCNT 

longboats to FR+ human choriocarcinoma (JAR) and nasopharyngeal carcinoma (KB) cells 

as opposed to FR− human testicular carcinoma cells, which typically display marked 

sensitivity to cisplatin.415

In addition to conjugation to the nanotube surface, the internal cavities of these structures 

provide attractive opportunities for drug delivery. Multi-walled carbon nanotubes 

(MWCNTs), which typically have larger internal diameters than SWCNTs, were loaded 

with the hydrophobic cisplatin prodrug cis,cis,trans-[Pt(NH3)2Cl2(O2CC6H5)2] via nano-

extraction over a period of multiple days (Chart 18).418,419 After extensive washing, the 

surface of the nanotubes bore no platinum, as confirmed by energy dispersive X-ray 

spectroscopy, but the tubes had been loaded with the platinum complex to a degree 

quantified by atomic emission spectroscopic measurements of incinerated samples. The 

construct did not release any platinum unless a reducing agent was present. Ascorbic acid, 

for instance, is capable of reducing the prodrug, reversing its hydrophobicity and allowing 

release of cisplatin. The activity of this construct was further enhanced by functionalizing 

the surface of the nanoparticle with a fluorescent rhodamine dye prior to loading with the 

prodrug.420 This dye served as a targeting agent, directing the nanotubes to mitochondria. 

Although unloaded rhodamine-functionalized multi-walled nanotubes had little effect on the 

viability of cultured cells and did not appear to disrupt mitochondrial function, 

coencapsulation of the cisplatin prodrug with axial benzoate ligands and 3-bromopyruvate, a 

compound used to perturb the altered metabolism of cancer cells,421 afforded enhanced 

anticancer activity in vitro. A decrease in the mitochondrial membrane potential was 

observed. In vivo studies of the biodistribution of the platinum-loaded multi-walled 

nanotubes without any surface modification revealed that, in mice, the platinum(IV)-loaded 

construct decreased levels of platinum in the liver and kidney as compared to treatment with 

cisplatin.422 Accumulation in the lungs, however, was increased. Analysis of histological 

slices and cytokine levels indicate that no inflammation or abnormal immune response 

occurred.
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As mentioned above, multi-walled nanotubes were chosen for these encapsulation-based 

constructs because they typically have larger internal cavities than SWCNT. The explicit 

dependence of platinum(IV) prodrug release on the diameter of the MWCNTs was recently 

probed.423 Smaller MWCNTs, once loaded with the prodrug, release platinum more slowly, 

as expected given the smaller size of the opening through which it must diffuse in order to 

escape. In addition to delivering a prodrug that only releases cisplatin, dual-threat prodrugs 

can also be loaded into MWCNTs. A prodrug was designed that is capable of releasing one 

equivalent of doxorubicin for every equivalent of cisplatin released (Chart 18).424 This feat 

was achieved by forming an amide bond between the amine group of doxorubicin and the 

succinate of cis,cis,trans-[Pt(NH3)2Cl2(O2CC6H5)(O2CCH2CH2CO2H)]. The final complex 

is sufficiently hydrophobic to be encapsulated within the nanotubes and importantly releases 

the two chemotherapeutic agents at relative concentrations close to those administered 

during combination chemotherapy. The integrin-targeting peptide c(RGDfK) was used to 

functionalize the nanotubes to provide an active targeting mechanism. One potential 

complication observed by the authors is that reduction of the platinum(IV) center does not 

release doxorubicin, but rather the succinyl amide derivative of the drug, which alters it 

subcellular distribution.

Carbon nanoparticles are a recent addition to repertoire of carbon-based nanoscale objects. 

This fluorescent material was first isolated as a side product in the arc-discharge synthesis of 

SWCNTs,425 but subsequent studies have led to their production by a variety of methods 

including the hydrothermal treatment of orange juice426 and nitric acid digestion of candle 

soot.427 Upon surface passivation, these materials exhibit striking photophysical 

properties428 and they have been exploited for a variety of biological applications.429 Very 

recently, the photoactivatable platinum(IV) azide complex cis, trans, cis-

[Pt(N3)2(OH)2(NH3)(3-NH2py)] was conjugated to a carboxylate-functionalized carbon 

nanoparticle (Chart 18).430 Folic acid was also conjugated to the particle via a 

diaminoethane linker. These surface modifications did not alter the structure of the 

nanoparticles as revealed by transmission electron microscopy and photoelectron 

spectroscopy confirmed the elemental composition of the construct. UV irradiation leads to 

photoreduction of the platinum(IV) species, which was proposed to arise not just from direct 

population of the excited state of the platinum complex, but also via photoinduced electron 

transfer from the carbon nanoparticles. In vitro studies exploited the inherent luminescence 

of these nanoparticles to monitor preferential cellular uptake by FR+ cells. Cytotoxicity 

assays confirmed the capacity of this construct to kill cultured cancer cells upon irradiation 

with UV light.

A related carbon-based nanoparticle delivery system comprised PEGylated nanosized 

graphene oxide conjugated to cis, cis, trans-[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)] and an 

apoptosis sensing peptide.431 One motivation for using nanosized graphene oxide as the 

delivery platform was the established ability of this material to absorb near-IR light and 

release the energy as heat, a property that has been explored for photothermal therapy 

applications.432,433 In vivo studies involving a murine breast cancer xenograft model 

confirmed that near-IR irradiation of tumors following intravenous administration of the 

construct completely inhibited tumor growth.
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8.2. Gold nanoparticles

Gold nanoparticles provide another nanodelivery platform to which platinum(IV) prodrugs 

can be covalently conjugated. The pendent carboxylate of a platinum(IV)-succinate complex 

similar to those described above can be conjugated via amide-bond-forming reactions to 

gold nanoparticles that are functionalized with thiolated, dodecylamine-terminated 28-mer 

oligonucleotides.434 The specific platinum complex delivered was cis,cis,trans-

[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)] (Chart 19A) and the characteristic surface plasmon 

visible absorption band of the nanoparticles was used to confirm that they remained 

dispersed and did not aggregate. Fluorescence microscopy was used in conjunction with 

fluorescently labelled nanoparticles to monitor the progression of the constructs from 

vesicles to the cytosol. The R-C18 antibody, which was raised against the 1,2-d(GpG) 

intrastrand DNA cross-link,435 was then used to detect the formation of this cytotoxic 

adduct, confirming that the platinum released from the nanoparticle construct is able carry 

out the steps of the cell killing mechanism of cisplatin.

Another system employing gold nanoparticles involved the use of a cisplatin prodrug 

functionalize with an axial ligand bearing a terminal adamantly unit capable of interacting 

with β-cyclodextrin. Using this characteristic non-covalent interaction, cis, cis, trans-

[Pt(NH3)2Cl2(OH)(O2CCH2CH2C(O)NHCH2(C10H14))] (Chart 19C) was loaded onto gold 

nanoparticles that had been surface-functionalized with thiolated β-cyclodextrin.436 The 

host-guest interaction was studied in solution using NMR spectroscopy but in vitro 

cytotoxicity studies revealed that the nanoconstruct was less active than cisplatin itself, 

perhaps reflecting an inhibition of the platinum(IV) reduction event that is required for 

cyctoxicity.

Glutathione-stabilized gold nanoparticles were used to prepare a platinum-bearing, targeted 

drug delivery system. The use of glutathione as the surface passivating agent of the 

nanoparticles allow for conjugation to the pendent reactive groups of this tri-peptide. The 

cisplatin prodrug cis, cis, trans-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] (Chart 19B) was 

conjugated to the surface, as was the neuropilin-1 receptor-targeting peptide, CRGDK. In 

vitro studies confirmed that delivery was enhanced in cells that express high levels of the 

neuropilin-1 receptor as compared to those that express low levels of it.

Gold nanorods, particles with one dimension significantly longer than those of gold 

nanoparticles, have also been investigated for their drug delivery capabilities.437 The 

cisplatin prodrug cis, cis, trans-[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)] (Chart 19A) was 

conjugated to the surface of PEGylated gold nanorods, whose PEG chains were terminally 

modified with amine groups.438 The conjugation afforded a stable construct, as determined 

by probing the surface plasmon electronic absorption, and provided enhanced cellular 

uptake and cytotoxicity in cultured cancer cells. Subsequent studies showed that this 

nanoparticle delivery strategy circumvents resistance that arises from lowered expression 

levels of the copper transporter CTR1 and decreases the interaction of the platinum 

complexes with biological deactivation agents, such as metallothionein and glutathione.439
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8.3. Inorganic nanoparticles

Conjugation of a platinum(IV) prodrug to a nanoparticle can provide benefits that extend 

beyond those simply related to delivery. The photoactivatable trans platinum(IV) complexes 

described above are often limited by the need to absorb high energy light in order to be 

activated, although as described earlier, advancements have been made in this regard 

through judicious ligand choice. In an alternative strategy, trans, trans, trans-[Pt(N3)2(NH3)

(py)(O2CCH2CH2CO2H)2] (Chart 20A) was conjugated to a core-shell upconversion 

nanoparticle.440 These nanoparticles, composed of a core of NaYF4 doped with 

ytterbium(III) and thulium(III) surrounded by a shell of NaGdF4 doped with ytterbium(III), 

are capable of absorbing 980 nm laser light and emitting radiation with wavelengths of 291, 

346, and 363 nm. Irradiation of buffered suspensions of the platinum-bearing, PEGylated 

nanoparticle construct for only 30 min was able to release approximately half of the 

conjugated platinum. In vitro cyctotoxicity studies confirmed that the platinum released by 

980 nm irradiation is competent to kill cancer cells. In a mouse xenograft model of murine 

hepatocarcinoma, tumor-bearing mice received an intratumoral injection of the nanoparticle 

construct. The tumor site was then irradiated with no light, UV-light, or 980 nm light. The 

UV light is capable of activating the platinum complex but has weaker tissue penetration 

than the near-IR light, which is able to activate the platinum(IV) complex via upconversion 

luminescence. Consequently, the tumors in the mice irradiated with UV light grew to a 

greater extent than those irradiated with 980 nm light. In fact, the average tumor size in the 

latter group did not increase, even over the course of two weeks. In a related system, silica-

coated upconversion nanoparticles of NaYF4 doped with ytterbium(III) and thulium(III) 

were conjugated to trans, trans, trans-[Pt(N3)2(OH)(O2CCH2CH2CO2H)(py)2] (Chart 20B), 

through a bridging peptide, as well as a fluorescent apoptosis-sensing peptide.441 Near-IR 

irradiation of this construct was able to activate the platinum(IV) prodrug and induce 

apoptosis in cultured cancer cells that were both cisplatin-sensitive and cisplatin-resistant.

Platinum(IV) prodrugs with cis or trans azide ligands are designed to exhibit photoreactivity, 

which has been exploited in the constructs described above. It is widely known, however, 

that many platinum(IV) complexes without azide or iodide ligands are sensitive to 

photodecomposition. In order to exploit this reactivity as a route toward photoactivation of 

general platinum(IV) prodrugs, quantum dots were investigated as photosensitizers. 

Quantum dots, semi-conductor nanoparticles, have exceptional electronic properties that 

vary with the size of the nanostructure and have been extensively explored as 

photosensitizers for photodynamic therapy.442 In a proof-of-concept study, PtCl4(bpy), 

where byp is 2,2′-bipyridine, was suspended in organic solvent with CdSe/ZnS core-shell 

quantum dots and irradiated with 530 nm light.443 PtCl2(bpy) was released as monitored by 

electronic absorption spectroscopy. 1H NMR spectroscopic measurements indicate that the 

hydrophobic platinum complex interacts with the hydrophobic surface of the quatum dots 

and the authors suggest that this interaction facilitates a photoinduced electron transfer from 

the dot to the platinum complex.

To render the system more biologically relevant, micelles packed with the CdSe/ZnS 

quantum dots were prepared by addition of phospholipids and PEG2000.444 The 

photosensitized reduction of a more relevant prodrug, namely cis, cis, trans-
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[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] (Chart 20C), was investigated. As in the earlier study, 

NMR spectroscopic measurements revealed an interaction between the prodrug and the 

quantum dots. When a colloidal suspension of the self-assembled micellar structures in an 

aqueous solution of the prodrug was irradiated with either 480 or 630 nm light, the 

platinum(IV) complex was reduced with loss of the two axial ligands. Control studies 

confirmed that the presence of the quantum dots was required for efficient photoreduction 

and X-ray photoelectron spectroscopic studies of the platinum 4f5/2 and 4f7/2 peaks 

confirmed that after irradiation the platinum was pesent in the 2+ oxidation state. In vitro 

cytotoxicity assays showed that neither the prodrug (IC50 ≈ 500 µM) nor the quantum dot-

filled micelles alone displayed significant toxicity but that nanomolar concentrations of the 

dots combined with irradiation led to an IC50 of 25 µM. Extensive theoretical calculations 

were carried out to probe the mechanism photoactivation of cisplatin prodrugs by quantum 

dots. The results were consistent with a model in which the platinum(IV) complex interacts 

with the nanoparticle surface and computation of the electronic coupling between the donor 

and acceptor indicates that the electrons injected into the platinum(IV) complex produce an 

excited state that leads specifically to dissociation of the succinate ligands.445

Although we have not found any reports of platinum(IV) prodrugs conjugated to quantum 

dot drug-delivery vehicles, we anticipate that such a development is forthcoming. The 

authors of these quantum dot photoactivation studies, have however, prepared a lanthanide 

upconversion nanoparticle construct in which cis, cis, trans-

[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] (Chart 20C) is conjugated to a phospholipid-

functionalized PEG chain. This platinated polymer was used to prepare stable aqueous 

suspensions of thulium(III)-doped NaYF4:Yb(III) upconversion nanoparticles that are 

functionalized with the platinum(IV) complex.446 Irradiation of this construct with 980 nm 

light not only led to release of succinate, as expected because of the photolabilization of the 

axial ligands, but also reduced all of the platinum centers to the platinum(II) oxidation state 

as determined by XPS.

Upconversion nanoparticles have also been used as a nanodelivery vehicle in which the 

lanthanide-based luminescence is not implicated in the release or activity of the platinum 

agent. A cisplatin-releasing platinum(IV) prodrug was conjugated to the surface of a 

poly(ethyleneimine)-coated NaYF4 nanoparticle doped with ytterbium(III) and erbium(III) 

via a succinate axial ligand.447 The nanoparticle was further functionalized with a folic acid 

targeting group. Cellular uptake of the nanoparticles was monitored using the inherent 

luminenscent properties of the nanoparticles and cisplatin was released upon intracellular 

reduction.

Hydrophobic iron oxide nanoparticles can be encapsulated in gelatin to enhance their water 

solubility. The amine functionalities on gelatin allowed the platinum (IV) prodrug cis, cis, 

trans-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] (Chart 20C) to be conjugated to the surface along 

with a fluorescent marker, fluorescein isothiocyanate.448 Release of platinum was not 

explicitly measured but rather was inferred from the photometrically quantitated release of 

the fluorophore. The release could be enhanced by the presence of an undefined pancreatic 

enzyme, which we suppose to be trypsin. The superparamagnetic properties of the 
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nanoparticles could be used to generate T2-weighted magnetic resonance images showing 

contrast in the tumor region following intratumoral injection.

Layered double hydroxides are inorganic materials in which positively charged layers are 

interspersed with loosely associated charge-balancing anions.449 These anions in the 

interlayer space can often be readily exchanged. Indeed, cis, cis, trans-

[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2] (Chart 20C) was loaded into layered double hydroxide 

nanoparticles of the formula [Mg2+
0.66Al3+

0.34(OH)2][Cl− 0.34]·2.7H2O simply by 

incubating the material in an pH 8 aqueous solution of the prodrug for one day. Platinum 

loading did not change the morphology of the particles, although it did cause an approximate 

doubling in the average diameter of the particles as determined by dynamic light scattering. 

Platinum incorporation was measured using atomic absorption spectroscopy and a slight 

decrease in the zeta potential of the material was taken as corroborating evidence of the 

inclusion of the negatively-charged succinate-bearing prodrug into the material. The 

nanoparticle construct was more effective at killing cancer cells than cisplatin alone and the 

former demonstrated reduced toxicity in non-cancerous immortalized cell lines. Mechanistic 

studies confirmed that the construct acted via a mechanism analogous to that of cisplatin.

8.4. Coordination Polymers

In an alternative strategy, the disuccinate complex described above in the preparation of the 

folate-targeted SWCNT was used to create coordination polymers that precipitated from 

solution as nanoparticles.450 The unit cross-linking the carboxylate functional groups of 

different platinum complexes was the Tb3+ ion (Chart 21A). ICP-MS and thermal 

gravimetric analysis measurements confirmed that the empirical formula of the coordination 

polymer was Tb2(PtIV)3(H2O)12 where PtIV represents cis, cis, trans-

[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2]. The stability of the nanoparticles in suspension could 

be significantly enhanced with a silica shell coating. Moreover, a silyl-derived c(RGDfK) 

could be grafted to the silica surface of the coated nanoparticles, which targeted the 

construct to cells that express the αVβ3 integrin, such as HT-29, preferentially over those 

that do not, such as MCF-7.

A variation on this theme appeared in the report of nanoscale coordination polymers formed 

from platinum(IV) prodrugs bearing pendent phophonates and Zn2+ ions.451 The 

platinum(IV) prodrugs featured either a cisplatin or oxaliplatin equatorial core and axial 

phosphonylcarbamate ligands. The phosphonate moiety permits self-assembly with Zn2+ to 

form the extended coordination polymer network which precipitates from solution in 

nanoparticulate form (Chart 21B). The particles were stabilized and rendered biocompatible 

by PEGylation using a phospholipid, cholesterol, and a PEGylated phospholipid. 

Fluorescently labelled analogues of these particles were observed to enter into the cell by 

fluorescence microscopy and in vitro experiments with cultured cancer cells confirmed the 

ability of the construct to induce the DNA damage characteristic of the parent platinum 

drugs and trigger apoptosis. Further in vitro studies with inhibitors of endocytosis and 

fluorescent dyes that selectively localize to endosomal and lysosomal compartments 

confirmed that uptake occurred through energy-dependent endocytotic processes. 

Pharmacokinetics studies in mice revealed that the nanoparticle formulation provided blood 
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circulation times that were more than 40-fold greater than those of the parent drugs. In 

mouse xenograft models of non-small cell lung cancer and pancreatic cancer, these 

constructs were able to inhibit tumor growth significantly more than the parent platinum(II) 

drugs. In a very recent development in this delivery platform, the cisplatin-delivering 

nanoconstruct was prepared using an alternative lipid to afford nanoparticles with an overall 

positive charge concentrated near the surface of the particle but below the surface of the 

outer PEG layer.452 Negatively charged siRNAs were then loaded into the particle via 

electrostatic interactions. Three distinct genes were targeted by the siRNAs for silencing: 

survivin, bcl-2, and p-gp. The construct demonstrated the ability to release active platinum 

agents and the siRNAs in a controlled fashion, all of which were able to carry out their 

intended biological functions in vitro. In a mouse xenograft model of ovarian cancer, the co-

delivery enhanced the anticancer activity of the platinum agent as evidence by inhibition of 

tumor growth, reduced expression of the silenced proteins in tumor tissue, and increased 

evidence of apoptosis in tumor cells.

8.5. Metal-organic frameworks

As an extension of the Pt-Tb coordination polymer work that was described above, platinum 

conjugates of nanosized metal-organic frameworks (MOFs) were prepared.453 In these 

instances, the platinum complex does not act as a structural component of the coordination 

polymer, which is instead formed from a first-row transition metal and an amino-

functionalized terephthalate. The non-platinum metal center combines with the aromatic 

dicarboxylate to form the extended 3-dimensional MOF structure. Iron was used to form a 

nanoparticulate MOF and the same platinum-(IV) prodrug used to for the initial SWCNT 

conjugates, cis, cis, trans-[Pt(NH3)2Cl2(OEt)(O2CCH2CH2CO2H)], was attached to the 

pendent amine following activation with 1,1-carbonyldiimidazole.454 As with the Pt-Tb 

coordination polymer, aqueous stability of the nanoparticles was enhanced with a coating of 

amorphous silica, although an alternative chemistry using Na2SiO3 as the silica source 

needed to be employed to avoid decomposition of the particles. The silica shell also 

provided a more controlled release of platinum from the particle. No significant 

enhancement in activity was obtained, however, in in vitro cytotoxicity tests. In a 

subsequent iteration of this drug-delivery strategy, a zirconium(IV) containing MOF from 

the UiO series was prepared using aminotriphenyldicarboxylate.455 The similarity of the 

organic bridging ligands to the amino-functionalized terephthalate in the system above, 

would suggest that the nanoscale MOF could be post-synthetically modified with cis, cis, 

trans-[Pt(NH3)2Cl2(OEt)(O2CCH2CH2CO2H)] using amide bond forming reactions, but the 

authors instead simply incubate the platinum complex with the MOF to load the 

nanostructure through non-covalent interactions. This mode of encapsulation was confirmed 

using 1H NMR spectroscopy. The survivin/Bcl-2/P-gp siRNA cocktail described above was 

also loaded into the nanoscale MOF and the encapsulation was proposed to proceed through 

coordination of the sugar-phosphate backbone to the zirconium centers. Protection of the 

encapsulated siRNAs from degradation by nucleases was observed and the combined 

delivery of the platinum agent and the siRNAs provided a chemotherapeutic enhancement of 

over 10-fold in in vitro cytotoxicity assays.
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8.6. Polysiloxane

One research effort that seeks to maintain the philosophy of using the platinum(IV) prodrug 

as an integral constituent of the polymer that forms the nanoparticle, while improving upon 

the stability of the systems that feature the nanoscale coordination polymers, involves the 

preparation of polysilsesquioxane nanoparticles.456 These nanoparticles are formed from the 

anionic reverse microemulsion base-catalyzed sol-gel polymerization of platinum(IV) 

prodrugs bearing axial ligands with pendent trialkoxysilanes (Chart 22). The nanoparticles 

functioned as effective controlled-release agents of oxaliplatin, releasing 80% of the 

encapsulated payload over the course of two days upon incubation with cysteine. 

PEGylation was used to enhance biocompatibility of the nanoparticles, which were further 

functionalized with anisamid to target the sigma receptor. This opioid receptor is 

overexpressed on the surfaces of many types of cancers cells.457 An integrin-targeting RGD 

unit could also be attached to the nanoparticle surface. These targeting agents were 

successful in enhancing efficacy both in vitro and in vivo. A cisplatin-delivering analogue of 

this construct was also developed and tested for its ability to improve upon cisplatin-

mediated tumor growth inhibition when administered in conjunction with radiation 

therapy.458 In vitro and in vivo studies, the latter in a xenograft model of non-small cell lung 

cancer, suggest that this cisplatin-delivering polysilsesquioxane nanoparticle can offer 

significant improvements over conventional chemoradiation therapy using cisplatin.

8.7. Polymeric micelles

A highly successful platform that has been exploited in the nanodelivery of platinum(IV) 

prodrugs comprises polymeric micellar nanoparticles that are formed from the self-assembly 

of amphiphilic block copolymers. When an organic solution of such polymers, which 

contain a hydrophobic block and a hydrophilic block, is added to water, the hydrophobic 

portions of the chains cluster to form a hydrophobic core, which is surrounded by a shell 

formed from the hydrophilic portions of the copolymer chains. If this self-assembly process 

occurs in the presence of a hydrophobic drug-like molecule, it can be encapsulated within 

the core of the nanoparticle, which then serves as a controlled-release drug delivery device. 

As opposed to the constructs described above, in which the axial ligands of the platinum(IV) 

prodrug were chosen so as to permit covalent conjugation, the axial ligands of the prodrug 

can be used to tune hydrophobicity, a key parameter in nanoencapsulation. An alternative 

strategy, more akin to that used in the delivery devices described in previous subsections, 

involves covalent conjugation of the platinum(IV) complex to the polymer backbone and 

subsequent nanoparticle formation. Examples of these two strategies will now be treated 

sequentially.

8.7.1. Polymer micelles: Non-covalent encapsulation—One copolymer system that 

has been extensively investigated is poly(lactic-co-glycolic acid)-block-poly(ethylene 

glycol) or PLGA-PEG (Chart 23), in which the statistical copolymer PLGA serves as the 

hydrophobic block and PEG as the hydrophilic block. PLGA is a biocompatible, 

biodegradable polymer that is approved for use by the FDA for a variety of biomedical 

devices.459 The safety of PEG has long been investigated and the FDA has declare that it is 

generally recognized as safe.460,461 PLGA nanoparticles have been widely explored for drug 

delivery applications459 and the current popularity of the PLGA-PEG block copolymer has 
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led a number of commercial vendors to offer PLGA-PEG with a variety of block sizes and 

variations in the relative ratio of lactic acid to glycolic acid in the PLGA block. These 

parameters influence the properties of the nanoparticles formed from the polymer and recent 

work has even investigated the influence that the ordering of the lactic acid and glycolic acid 

units within the PLGA block.462,463

The platinum(IV) prodrug cis,cis,trans-[Pt(NH3)2Cl2(O2CCH2CH2CH2 CH2CH3)2] (Chart 

23A), which bears an equatorial cisplatin core and axial hexanoate ligands, was successfully 

encapsulated within the hydrophobic core of a nanoparticle formed from PLGA-PEG-

COOH. This polymer is a derivative of PLGA-PEG in which the exposed end of the PEG 

chain is functionalized with a carboxylic acid. This pendent carboxylic acid was then used to 

conjugate a targeting unit to the surface of the platinum-loaded nanoparticle. An RNA 

aptamer that could recognize the prostate-specific membrane antigen (PSMA) was used and 

provided selective targeting of the construct to LNCaP prostate cancer cells that abundantly 

express this membrane protein. PSMA is highly expressed in many prostate tumors, 

particularly in the metastatic and hormone-refractory forms.464 Fluorescence microscopy 

confirmed that the construct was taken up by endocytosis and immunofluorescence imaging 

using the R-C18 antibody confirmed formation of 1,2-d(GpG) intrastrand DNA cross-links. 

The construct exhibited sub-micromolar IC50 values in cultured human prostate cancer cells. 

Subsequent studies with Swiss albino mice and Sprague Dawley rats demonstrated that this 

prodrug-loaded nanoparticle construct has enhanced pharmacokinetics, biodistribution, and 

tolerability as compared to cisplatin.465 Using a murine model of prostate cancer in which 

BALB/c nude mice were injected with cultured LNCaP cells to form a subcutaneous 

xenograft, the nanoparticle construct was able to provide an equivalent degree of reduction 

in tumor size as a three-fold higher molar dose of cisplatin. The enhanced activity was 

attributed to a combination of passive targeting of tumor tissue via the EPR effect, active 

targeting of the PMSA expressing LNCaP cells by the aptamer conjugated to the surface, 

and prolonged residence of the platinum species in the blood. This nanoparticle platform 

was also used to prepare platinum-loaded constructs that were functionalized with the cyclic 

pentapeptide c(RGDfK).466 This unit allowed the nanoparticles to target angiogenic blood 

vessels in an orthotopic breast cancer xenograft model. In this model, the nanoparticle was 

more efficacious and better tolerated than cisplatin.

A series of complexes of the form cis,cis,trans-[Pt(NH3)2Cl2(O2C(CH2)nCH3)2] (Chart 

23A), of which the hexanoate complex described above is a member, was prepared to 

systematically investigate the effect of the length of the methylene chain of the alkyl 

carboxylate axial ligands on nanoencapsulation.467 This study revealed that increasing the 

length of the chain increases platinum loading into the nanoparticle but also increases the 

propensity for aggregation and macroscopic precipitation. An optimal balance was struck 

using a 4:6 w/w mixture of the PLGA-PEG polymer and the decanoate complex 

cis,cis,trans-[Pt(NH3)2Cl2(O2C(CH2)8CH3)2]. This complex was then used as the prodrug 

component of a nanoparticle platform designed to deliver cisplatin and siRNAs capable of 

suppressing the function of REV1 and REV3L, which are involved in the process of error-

prone translesion DNA synthesis.468 Such translesion synthesis can contribute to cisplatin 

resistance in tumors.469 The nanoparticle construct was formed from an interaction of 
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PLGA-PEG, a cationic lipid, the platinum prodrug, and the siRNA. The PLGA block 

interacted with the cationic lipid to form a polymer matrix in which the prodrug was 

suspended and the PEG block provided an outer shell. The nanoparticles were formulated 

using a double emulsion strategy (vide infra) that allowed the PLGA-lipid matrix to 

surround an aqueous core in which the siRNA molecules were dissolved. Sustained release 

of the platinum and RNA was achieved and the released siRNAs were able to decrease 

expression of their target genes both in vitro and in vivo. In a LNCaP xenograft model, 

inclusion of the siRNA was able to successfully render the tumors more susceptible to 

platinum-based therapy.

A platform for preparing platinum(IV) prodrugs that can be readily conjugated to another 

chemical moiety using strain-promoted azide-alkyne cycloaddition, one of the so-called 

“copper-free click chemistries,” was recently developed.470 As a proof of principle, a 

platinum(IV) prodrug with axial ligands displaying pendent azide units was coupled to a 

functionalized azadibenzocyclooctyne (ADIBO) (Chart 23D). The significant increase in 

lipophilicity upon reaction with the strained cyclooctyne prompted the authors to investigate 

the nanoencapsulation of this complex in PLGA-PEG-based nanoparticles. The ADIBO-

functionalized cisplatin prodrug encapsulated far better than the unmodified, azide-

terminated platinum complex. This platform also holds significant promise with regards to 

conjugation of platinum prodrugs to a variety of other nanodelivery devices, targeting units, 

bioactive molecules, and reported beacons. Indeed, coupling of the platinum(IV) azide-

bearing complex to a cyclooctyne-modified triphenylphosphonium salt afforded a 

platinum(IV) prodrug that targets the mitochondria.471 This complex was then encapsulated 

with a PLGA-PEG nanoparticle which was itself functionalized with a 

triphenylphosphonium salt. In vitro studies confirmed the ability of this construct to 

accumulate in the mitochondria of cultured cancer cells, disrupt their altered mitochondrial 

metabolism, and induce cell death. The ability of the triphenylphosphonium-derivatized 

nanoparticles to penetrate the blood-brain barrier led the authors to investigate the potency 

of this construct in neuroblastoma cells and they found that it was approximately 17-fold 

more active than cisplatin.

Instead of using synthetic high polymers, nanoparticles formed from polymers of natural 

origin have also been explored for the delivery of platinum(IV) prodrugs. The association of 

platinum(IV) complexes with discrete folded proteins will be dealt with below. Silk fibroin 

(Chart 23) is the fibrous protein component of the silk made by spiders, silkworks, and other 

insects. This biocompatible, biodegradable material has been successfully employed in a 

range of biomedical applications from sutures to three-dimensional tissue scaffolding,472,473 

and silk fibroin can be formed into nanoparticles for drug delivery.474 In order to improve 

upon an initial nanoparticle design in which cisplatin was loaded into silk fibroin 

nanoparticles via coordination of the platinum(II) complex to the polymer,475 a new 

construct was very recently reported in which the hydrophobic prodrug cis,cis,trans-

[Pt(NH3)2Cl2(O2CC6H5)2] (Chart 23G) was encapsulated within such nanoparticles.476 

Unlike many of the other polymer-based delivery systems described here, the platinum 

loading is not accomplished simultaneously with nanoparticle formation, but rather a dried 

sample of preformed nanoparticles are suspended in DMSO solution of the platinum 
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complex to load the prodrug into the nanoparticles. TEM images support the internalization 

of the nanoparticle constructs and in vitro assay indicate that the construct is effective at 

killing cultured cancer cells. Flow cytometric methods were used to carry out cell cycle 

analyses and propidium iodide straining assays that confirm a mechanism of action similar 

to that of cisplatin is operative.

Although increasing the lipophilicity of a platinum(IV) prodrug by increasing the 

hydrophobic character of the axial ligands is an effective way to influence 

nanoencapsulation, this strategy may not be applicable to dual-threat complexes in which the 

axial ligands, selected to elicit a particular biological response, render the complex 

hydrophilic. For instance, mitaplatin (Chart 23A) is relatively water soluble and does not 

readily encapsulate within PLGA-PEG using conventional nanoprecipitation techniques. 

Moreover, changing any of the ligands to increase lipophilicity could compromise the 

activity of the platinum(II) or DCA species released. Instead, an alternative encapsulation 

strategy, which had previously been employed to encapsulate hydrophilic species like 

proteins, was investigated.477 Using a water-in-oil-in-water double-emulsion solvent 

evaporation strategy, mitaplatin could be encapsulated within nanoparticles formed from 

PLGA-PEG.367 This nanoencapsulation formulation afforded mitaplatin an increased 

residence time in the bloodstream and decreased accumulation in the kidneys without 

negatively impacting anticancer activity in a mouse xenograft model of triple-negative 

breast cancer.

It is possible that a dual-threat complex may fortuitously have properties such that the axial 

ligands permit facile incorporation within the hydrophobic core of a polymeric micelle. Such 

is the case for canthaplatin (Chart 23B),478 a cisplatin prodrug in which the axial ligands are 

derivatives of the protein phosphatase 2A inhibitor demethylcantharidin.479 The Boc-

protected pipirazinyl groups on the axial canthaplatin-derived ligands allow the prodrug to 

be readily encapsulated in PLGA-PEG nanoparticles affording a construct that is taken up 

via endocytosis, decreases the efficiency of DNA repair by inhibiting protein phosphatase 

2A, and releases cisplatin. The enhancement of the efficacy of the cisplatin as a result of the 

inhibited DNA repair was confirmed in vitro and in vivo with a mouse xenograft model of 

lung cancer.

In another instance, a cisplatin prodrug in which a paclitaxel derivative was installed at one 

axial position through a platinum-coordinated glutaric acid (Chart 23F), but no significant 

enhancement over co-treatment with the un-encapsulated species was observed.480 The 

platinum(IV) prodrug VAAP (see Section 8) was encapsulated within the a 

poly(caprolactone)-PEG polymeric nanoparticle (Chart 23E).362 The hydrophobic valproate 

axial ligands not only permit encapsulation, but upon reductive release are capable of acting 

as histone deacetylase inhibitors. This enzyme inhibitory activity, which can potentiate the 

activity of cisplatin,481 was observed in in vitro experiments using VAAP, as described 

above. In mice, the nanoparticle formulation significantly enhanced retention of platinum in 

the bloodstream. Murine xenograft studies with a human lung cancer model, did not reveal 

any significant enhancement in tumor reduction in the nanoparticle-treated branch as 

compared to tumor-bearing animals treated with un-encapsulated VAAP, but encapsulation 
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did result in enhanced platinum accumulation in the tumor and reduced kidney toxicity, as 

assessed by histological analysis of renal tissue.

8.7.2. Polymer micelles: Covalent conjugation—Instead of relying on non-covalent 

interactions to associate a platinum complex with a polymer nanoparticle, the axial ligands 

of a platinum(IV) prodrug can be covalently linked to a polymer chain using well-

established coupling chemistry. The first example of covalent conjugation of a platinum(IV) 

complex to a polymer chain for subsequent formation of a polymeric micelle exploited the 

ability of a cisplatin prodrug with axial levulinate ligands to react with the end group of a 

hydrazine-terminated poly(ethylene glycol)-block-poly(L-lactic acid) (PLA-PEG).482 The 

hydrazine group caps the hydrophobic block and in the resulting platinated polymer the 

complex is linked to the macromolecule through a hydrazone. The polymer chains can self-

assemble into micelles with the platinum buried in the hydrophobic core. The rate of 

platinum release from the nanoparticle construct varied with pH because of the acid-lability 

of the hydrazone linkage and efficacy was demonstrated in vitro using cultured cancer cells.

In a very recent variant on this theme, the termini of the hydrophobic blocks of a PLA-PEG 

copolymer were cross-linked via esterification with the succinate ligands of cis, cis, trans 

[Pt(NH3)2Cl2(O2CCH2CH2CO2H)2].483 These conjugates formed micelles in aqueous 

solution that were observed to undergo a thermoreversible sol-gel transition, forming 

hydrogels at 37 °C. These semi-solids were capable of releasing platinum in a controlled 

fashion, without an initial burst, over the course of two months. The platinum is mainly 

released in a micellar form, which was shown to be taken up by endocytosis and 

demonstrates enhanced toxicity in cultured cancer cells as compared to cisplatin.

The use of platinum(IV) complexes with succinate axial ligands to conjugate prodrugs to the 

polymer backbone via ester- or amide-forming reactions is a recurring theme within this 

class of constructs. In the first report of this strategy, cis,cis,trans-[Pt(NH3)2Cl2(OH)

(O2CCH2CH2CO2H)] was conjugated to a PLA derivative bearing pendent hydroxyl 

functional groups.484 Using hydrodynamic flow focusing,485 nanoparticles comprising a 

blend of this platinated polymer and PLGA-PEG-COOH were formed. If the nanoparticle 

formation was carried out in the presence of docetaxel, then this molecule was encapsulated 

within the hydrophobic core of the nanoparticles, affording a construct that can deliver two 

chemotherapeutics via orthogonal release mechanisms. The docetaxel is released by passive 

diffusion from the nanoparticle, whereas the stable covalent bond of the platinum complex 

to the polymer chain permits release of the platinum only upon reduction of the metal center. 

Surface modification of the assembled nanoparticle with a PSMA-targeting aptamer allowed 

for enhanced uptake by cultured prostate cancer cells. A similar construct was developed in 

which the drug delivered along with the platinum was irinotecan.486 A particularly low 

polydispersity among the nanoparticles was again achieved by carrying out the 

nanoprecipitation using microfluidic devices. Targeting with the PSMA aptamer, again 

allowed for enhanced cellular uptake in cells expressing this antigen. Inclusion of irinotecan 

in the particles provided an enhancement over nanoparticles containing only the cisplatin 

prodrug.
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A similar covalent conjugation strategy was used to prepare a nanoparticle construct that 

delivers the monofunctional complex phenanthriplatin.487 A platinum(IV) derivative of 

phenanthriplatin bearing a single pendent carboxylate was prepared and conjugated to the 

hydroxyl-modified PLA. Standard nanoprecipitation techniques were used to prepare 

nanoparticles of this platinated polymer blended with PLGA-PEG. Using in vitro assays, 

this nanoparticle construct was shown to protect the platinum species from deactivation by 

biological nucleophiles. In a mouse xenograft model of prostate cancer, the construct 

outperformed both treatment with an equimolar dose of a double-emulsion nanoparticle 

formulation of the parent platinum(II) complex, i.e. unmodified phenanthriplatin, and 

treatment with a 10-fold higher molar dose of cisplatin.

In the study described above in which PLGA-PEG particles were designed to release both 

cisplatin and docetaxel, the cisplatin prodrug was covalently conjugated to the polymer 

backbone and the docetaxel was non-covalently encapsulated within the nanoparticle core. 

In an alternative strategy, two separate polymer chains were covalently modified with 

different anticancer agents, an oxaliplatin prodrug bearing a pendent carboxylate and 

daunomycin.488 The former can be released by reduction and the latter by hydrolysis. The 

novel amphiphilic block copolymer used for this study was poly(lactide-co-2-methyl-2-

carboxyl-propylene carbonate)-block-poly(ethylene glycol). Composite nanoparticles were 

formed from combinations of the two polymer chains, with the ratio of the two anticancer 

agents tuned by changing the relative amounts of the two modified chains during 

nanoparticle formation. Facile variation of this ratio allowed the authors to readily 

interrogate synergistic effects in vitro and in vivo. A similar construct was investigated in 

which the platinum agent was a cisplatin prodrug and the second anticancer agent was a 

paclitaxel conjugate.489 This polymer platform was also be used to prepare a conjugate with 

cis,cis,trans-[Pt(NH3)2Cl2(OH)(O2CCHCl2)], a platinum(IV) prodrug designed to release 

cisplatin and DCA, much like mitaplatin. This strategy provides an alternative to the double 

emulsion strategy described above to permit nanodelivery of the hydrophilic complex.490

Using the same poly(lactide-co-2-methyl-2-carboxyl-propylene carbonate)-block-

poly(ethylene glycol), a nanoparticle construct was prepared in which the platinum(IV) 

prodrug conjugated to the polymer backbone displays the photoactivatable cis-diazide 

motif.491 Fluorescence microscopy studies were used to confirm that the nanoparticles were 

taken up via endocytosis and the authors emphasize that this route of cellular uptake 

provides a means of circumventing resistance related to expression levels of copper 

transporters, proteins whose role in the activity of and resistance to cisplatin has been 

extensively studied.21 The particles, which are stable in the dark, exhibit fast release of 

platinum upon irradiation with UV light. A variety of pharmacokinetic parameters were 

evaluated in Chinese KM mice, which indicated that treatment with the nanoparticle 

construct followed by UV irradiation resulted in much lower systemic toxicity that treatment 

with cisplatin.

In addition to the diblock copolymers described above, a triblock amphiphilic copolymer 

was also developed to deliver platinum(IV) prodrugs as micellar nanoparticles. This 

polymer is non-toxic and biodegradable, comprising a methoxy-terminated poly(ethylene 

glycol) block, a poly(ε-caprolactone) block, and a poly(L-lysine) block.492,493 This polymer 
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can be platinated with cis,cis,trans-[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)] through amide 

bond forming reactions with the lysine side chains and the platinated polymer self-assembles 

into micellar nanoparticles. These particles can release platinum(IV) complexes upon 

exposure to acidic conditions or platinum(II) complexes upon reduction. In vitro assays 

confirmed that the nanoparticles are taken up via endocytosis affording enhanced 

intracellular platinum accumulation and cytotoxicity. A series photoactivatable platinum(IV) 

complex with cis azide ligands trans to either cis amines or a chelating R, R-

diaminocyclohexane (DACH) were also conjugated to the polymer.494 These constructs 

were stable in the dark, but upon irradiation with UV light they released cytotoxic 

platinum(II) species. Following studies with cultured cancer cells that verified the light-

induced cytotoxic activity of the construct, the nanoparticle functionalized with cis,trans-

[Pt(DACH)(N3)2(OH)(O2CCH2CH2CO2H)], the most active compound from the in vitro 

studies, was carried forward for testing in a xenograft model of murine hepatocarcinoma. 

Enhanced tumor growth inhibition was observed when mice were injected intratumorally 

with the construct and the tumor was irradiated with UV light for 1 h. An additional hour of 

UV irradiation was carried out 5 day post-injection. The combination of nanoparticle 

treatment and UV irradiation was found to cause less of an effect on body weight than 

treatment with an equivalent dose of oxaliplatin.

Using this same polymer system, a nanoparticle construct was developed that is capable of 

releasing carboplatin upon reduction of the platinum(IV) center.495 The carboplatin prodrug 

was attached to the polymer backbone through an axial succinate ligand. In the same report, 

an alternative method of nanoparticle-mediated co-delivery of cisplatin and DCA was 

described. As opposed to mitaplatin, which bears axial DCA ligands, a platinum(IV) 

complex was prepared by hydrogen peroxide oxidation of cis-[Pt(NH3)2(DCA)2]. 

Subsequent derivatization afforded an axial succinate, through which the complex could be 

tethered to the polymer backbone using amide bond forming reactions. An enhancement in 

the activity is reported as compared to the carboplatin delivering polymer or co-treatment 

with unencapsulated carboplatin and DCA, but this result is unsurprising given the great 

kinetic inertness of the chelating cyclobutanedicarboxylate ligand of carboplatin as 

compared to the monodentate carboxylate DCA. Dinulcear platinum complexes, analogous 

to those described in Section 4,496 were also delivered via covalent conjugation of the 

corresponding platinum(IV) prodrugs to the polymer backbone.497 Compounds with both 

ammine and R, R-DACH non-leaving group ligands were prepared bearing axial 

carboxylates. Coupling to the polymer was achieved though amide bond forming reactions 

with the lysine amines.

Very recently, another construct based on this polymer was reported.498 Camplatin, a 

platinum(IV) prodrug derived from oxidized cisplatin and camphoric anhydride, was 

conjugated to the pendent amine groups of the poly(L-lysine) block. Quantification of the 

mRNA levels of Bcl-2 and Bax, revealed that treatment with the nanoparticle encapsulated 

camplatin decreased production of these proteins in culture ovarian cancer cells.

Although micellar nanoparticles formed from amphiphilic block copolymers of the types 

described above appear to be stable enough to maintain their structural integrity and elicit 

characteristic biological responses, particularly in vivo, the classical theory of micelles states 
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that in solution an equilibrium is present between the self-assembled structure and de-

assembled unimers. Chemical cross-linking of the polymer chain within the core or the shell 

can be carried out to improve micellar stability.499 Overly stable micelles, however, can 

prevent efficient release of encapsulated active agents, and so stimuli-responsive cross-

linked micelles have been developed that are able to release a cytotoxic payload upon, for 

instance, entry into the acidic microenvironment of the tumor.500 A platinum-delivering 

polymeric micelle based on a poly[(2-(2-methoxyethoxy)ethyl methacrylate)-co-(N-

methacryloxy-3-azidopropylamide)]-block-poly(N-(2-hydroxypropyl)methacrylamide) 

block copolymer was prepared.501 The pendent azide groups were functionalized with both 

a platinum(IV) prodrug, cis, cis, trans-[Pt(NH3)2Cl2(OH)(O2CCH2CH2CONHCH2CCH)], 

and a near-IR dye, cypate, for combination platinum/photothermal therapy. The attachment 

of the warheads to the polymer backbone was accomplished using Cu-catalyzed alkyne-

azide cycloaddition. The authors of the study described above in which strain-promoted 

alkyne-azide cycloaddition was used to functionalize platinum(IV) complexes noted that 

their use of the strain-promotion strategy was because of the propensity for Cu-catalyzed 

click reactions to reduce the platinum(IV) centers. In this instance, the successful use of the 

latter coupling strategy may stem from the use of pentamethyldiethylenetriamine as a Cu-

chelating agent. Chemical cross-linking of the cores of the micelles formed from these 

functionalized polymers was carried out using a cystamine cross-linker, producing a 

construct that is sensitive to reducing environments, such as the cytoplasm of cancer cells. In 

vitro studies confirmed the ability of the construct to release its cargo in a controlled fashion 

and elicit chemotherapy/photothermal therapy synergy.

The platinum complex itself can act as the chemical cross-linking agent. Following 

functionalization of the axial succinate ligands of cis, cis, trans-

[Pt(NH3)2Cl2(O2CCH2CH2CONHCH2CCH)2] with ethylenediamine, the platinum complex 

was used to cross-link the cores of polymeric micelles formed from poly(oligo(ethylene 

glycol)methyl ether methacrylate)-block-poly(styrene-co-3-isopropenyl-α,α-dimethylbenzyl 

isocyanate).502 The facile reaction between the isocyante groups on the polymer and the 

pendent amine groups of the platinum complex afforded controlled-release nanoparticles. 

The same complex was used without ethylenediamine functionalization to cross-link the 

core of the biodegradable polymer monomethoxyl poly(ethylene glycol)-block-poly(L-

lysine) via reaction of the lysine amine groups with the carboxylic acids of the prodrug.503 

Analogously, the core-cross-linked micelles formed from the triblock copolymer 

monomethoxyl poly(ethylene glycol)-block-poly(ε-caprolactone)-block-poly(L-lysine) were 

also prepared.504

As a variation on tethering a platinum(IV) complex to a polymer backbone, the metal 

complex can itself act as a monomer for polymerization. In one instance, cis, cis, trans-

[Pt(NH3)2Cl2(O2CCH2CH2CONHCH2CCH)2] was used as a monomer for condensation 

polymerization with ethylenediamine or piperazine.505 The corresponding condensation 

with diols proved unfruitful, but reaction of cis, cis, trans-[Pt(NH3)2Cl2(OH)2] with a 

bifunctional anhydride, such as cyclobutane tetraacetic anhydride, was able to give 

polyesters that could be furthers PEGylated to greatly enhance water solubility. The lack of 

blocky character in these polymers precluded their self-assembly into micellar nanoparticle 
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structures. Another example of this strategy was the use of a cisplatin prodrug with pendent 

norbornenyl units at the axial positions that could serve to cross-link norbornene-terminated 

PEG chains, some of which were functionalized with either camptothecin or doxorubicin.506 

The linkages to the three drug-derivatives were all chosen so as to release their payload 

under different circumstance, viz. reduction, hydrolysis, or UV-irradiation. The platform 

design also readily allows for variation in the relative amounts of the three different 

chemotherapeutics.

A less common motif for platinum(IV) delivery using polymer nanoparticles is that in which 

the platinum complexes are not buried within the particle, but rather are displayed on the 

surface in a manner somewhat analogous to that exhibited by the non-polymeric constructs 

described in this section (e.g. SWCNTs, gold nanoparticles, etc.). Conjugation of cis, cis, 

trans-[Pt(NH3)2Cl2(OH)2] to the succinate terminus of the amphiphilic molecule α-

tocopheryl-PEG1000-succinate, which is conceptually identical to conjugation of cis, cis, 

trans-[Pt(NH3)2Cl2(OH)(O2CCH2CH2CO2H)] to the hydrophilic portion of α-tocopheryl-

PEG1000, produces a polymer that can self-assemble into micelles that will present the 

platinum(IV) complex on its surface. As observed in many other systems, even though the 

platinum center is putatively attached to the nanostructure through a stable covalent linkage, 

a substantial burst release is observed followed by a longer period of more sustained 

controlled release. In a subsequent development, this nanoparticle platform was stabilized by 

addition of α-tocopheryl-PEG1000-succinylpoly(lactic acid). Inclusion of α-tocopheryl-

PEG1000-succinate in the formulation provides surface-exposed carboxylic acids to which 

the monoclonal antibody trastuzumab (Herceptin) could be conjugated.507 This targeted 

nanoparticle, perhaps because of the difference in nanoparticle formation, shows a much 

more controlled release profile than its predecessor. The nanoparticle could also be prepared 

with docetaxel encapsulated. In in vitro assays the combination-delivering nanoparticle was 

more efficacious than either of the drugs in isolation.

8.8. Other supramolecular systems

The cisplatin-releasing platinum(IV) prodrug cis, cis, trans-[Pt(NH3)2Cl2(OH)

(O2CCH2CH2CO2H)] was conjugated to a phosphorylated oligopeptide that can act as a 

substrate for phosphatases.508 The molecule is designed to remain monomeric in circulation 

but upon entering the tumor, whose cells overexpress various phosphatases, enzyme-

catalyzed dephosphorylation will trigger self-assembly into supramolecular nanofibers. This 

self-assembly process is proposed to enhance retention of the prodrug at the site of disease. 

In vitro studies of the construct confirmed its ability to self-assemble into β-sheet-like 

structures following action of alkaline phosphatase. The hydrogel formed by these 

nanofibers provided controlled release of active platinum(II) species upon incubation with 

chemical reductants. In vitro cytotoxicity studies confirmed that the compound can kill 

cultured murine and human cancer cells via induction of apoptosis. Mouse xenograft studies 

with subcutaneously grown murine breast cancer tumors demonstrated that the construct 

exhibited enhanced tumor accumulation, comparable tumor growth inhibition, and lower 

systemic toxicity as compared to treatment with cisplatin.
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Supramolecular cages formed from metal center vertices and rigid organic linkers have long 

been investigated as for their interesting chemical properties.509 These constructs are related 

to the MOFs described above, but form discrete structures as opposed to extended networks. 

An octahedral hexanuclear cage was formed from six platinum(II) ethylenediammine units 

and four 2,4,6-tris(2-pyridyl)-s-triazine molecules (Figure 7). The metal centers form the 

vertices of octahedron and the triazine units cover four faces of the polyhedron. The 

remaining four faces are open and provide access to the interior of the structure. The 

platinum(IV) prodrug cis, cis, trans-[PtCl2(NH3)2(OC(O)NHC10H15)(O2CCH2CH2CO2H)] 

(Figure 7) was designed to have one axial adamantyl unit and one trans succinate in order to 

act as a guest for the cage because four adamantyl groups can be loaded into the cage 

through the four open faces.510 The succinate ligand extends to the solvent and may provide 

enhanced water solubility and a reactive handle for further functionalization, although such 

functionalization was not explored in this proof-of-principle study. The host-guest complex 

exhibited significantly enhanced intracellular accumulation and DNA platination as 

compared to the un-encapsulated prodrug.

8.9. Proteins

In addition to the peptide targeting systems described in Section 6, entire proteins have been 

used as drug delivery devices. The α-helical right handed coiled coil (RHCC) is a 20 kDa 

portion of the tetrabrachion surface complex of Staphylothermus marinus.511 This 

extremophile colonizes exceedingly harsh environments, and the RHCC is correspondingly 

able to withstand extreme pH, boiling temperatures, high pressures, and high salt 

concentrations.512 The hydrophobic pockets of this tetramer were found to bind cisplatin 

and this platinum-loaded sell-assembled polypeptide structure was investigated as a drug-

delivery vehicle.513 The protein-based construct did not elicit a significant immune response 

in mice, but the short half-life of the construct posed a significant challenge to further 

development. The authors subsequently investigated the ability of platinum(IV) species to 

be delivered by this tetramer.514 The chemical identity of the platinum species used is not 

indicated in the paper but it is referred to as “PtCl4” and we surmise that it is cis-

[Pt(NH3)2Cl4] as an extension of the earlier cisplatin work. The construct is taken up by 

clathrin-mediated endocytosis and shown to be effective in propagated cell lines and in 

primary glioblastoma cells obtained from adult glioblastoma patients. Immunoblotting 

analyses indicated that apoptotic pathways were triggered by the construct. As compared to 

treatment with the un-encapsulated platinum(IV) complex, intratumoral injection of the 

construct was better able to inhibit the growth of subcutaneous xenograft and intracerebral 

orthotopic tumors in mice.

Serum albumin is the most abundant protein in human blood and any intravenously 

administered drug will inevitably encounter it. In many cases this interaction may serve to 

sequester and deactivate the compound. In an effort to capitalize on the ability of human 

serum albumin (HSA) to act as a drug delivery vehicle, a platinum(IV) prodrug was 

designed to mimic the form of the fatty acids that this protein is known to bind. The 

complex cis, cis, trans-[Pt(NH3)2Cl2(O2CCH2CH2CO2H)(OC(O)NH(CH2)15)CH3] interacts 

with HSA in a non-covalent, well-defined manner (Figure 8).515 A 1:1 complex of the 

platinum(IV) prodrug and HSA forms spontaneously on mixing and is sufficiently robust 
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that is can be purified by fast protein liquid chromatography. Fluorescence quenching and 

modelling studies suggest that the complex is buried beneath the surface of the protein and 

this encapsulation inhibits reduction by ascorbic acid. Significant enhancement in blood 

stability as compared to cisplatin or satraplatin was consequently realized.

9. Nanodelivery of platinum(II)

A great number of nanoconstructs designed to deliver platinum(II) complexes have also 

been described. These have recently been reviewed extensively by a number of different 

authors74,114,516–522 and so we will not give an exhaustive account of such constructs here. 

We would be remiss, however, if in a review of the next generation of platinum anticancer 

drugs we did not provide an overview of the significant clinical progress that has been made 

with certain macromolecular or self-assembled construct that directly incorporate 

platinum(II) species.

9.1. ProLindac

A number of platinated polymers have been prepared in which the leaving group ligands of 

either cisplatin/carboplatin or oxaliplatin have been replace by a chelating motif attached to 

the polymer backbone.520 In one such construct, the chloride ligands of cisplatin were 

replaced by an O-N chelate from the pendent tetrapeptide arms of a functionalized poly(N-

(2-hydroxypropyl)methacrylamide) (HPMA), a hydrophilic, non-toxic, non-immunogenic 

polymer that persists for extended periods of time in circulation.523 The resulting platinum-

conjugate, AP5280, was enrolled in a Phase I clinical trial by Access Pharmaceuticals, but 

the lack of significant response led the company to discontinue its development.524 AP5346, 

also known as ProLindac, is the oxaliplatin analogue of this construct in which the platinum 

is chelated by an amidomalonate attached to the HPMA via a triglycine spacer.525 Following 

promising preclinical studies,526 ProLindac was used in a Phase I clinical trial in which 

treatment was tolerated well and patients experienced no significant impact on blood cell 

counts.527 A subsequent Phase I/II trial in patients with advanced ovarian cancer showed 

that ProLindac treatment was again tolerated well and able to elicit an effect similar to that 

of oxaliplatin alone.526 In the ProLindac treated patients, no signs of acute neurotoxicity 

were observed, a significant finding given that this toxicity is dose-limiting in most 

oxaliplatin regimens. A Phase II trial in which ProLindac and pactitaxel are together used 

the second-line treatment of pre-treated advanced ovarian cancer began in 2010.526 The 

complete results of this study have not yet been released.

9.2. Lipoplatin

Liposomes are self-assembled vesicular structures composed of a lipid bilayer. They are 

attractive vehicles for drug delivery because they can encapsulate hydrophilic compounds in 

their aqueous lumen or hydrophobic compounds within the bilayer itself.528 Surface 

functionalization with PEG can produce so-called Stealth® liposomes,529 which 

demonstrate enhanced circulation by avoiding clearance from the bloodstream. The typical 

size of liposomes, approximately 100 nm diameters, suggests that these objects can 

accumulate in tumor tissue via the EPR effect.530 Clinical validation of the liposomal drug 

delivery strategy was realized with the approval of a liposomal formulation of doxorubicin. 
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More recently, a liposomal formulation of vincristine also received approval for use in the 

United States. The first liposomal formulation of cisplatin to be tested in clinical trials was 

initially developed by SEQUUS Pharmaceuticals. The earliest preclinical data for the 

construct, referred to either as SPI-77 or SPI-077, appear in a press release from 1996 and 

the first published clinical data appeared in 1998.531–533 The data acquired in Phase I and 

Phase II clinical trials, concluding in 2001, showed a lack of improved efficacy as compared 

to treatments using standard cisplatin.521 In that same year, however, another liposomal 

cisplatin preparation with a different formulation began clinical trials. Known as lipoplatin, 

this 110 nm diameter nanoparticle has an aqueous core loaded with cisplatin that is 

contained by a liposomal vesicle comprising soy phosphatidyl choline, cholesterol, 

dipalmitoyl phosphatidyl glycerol, and methoxy-poly(ethylene glycol)-distearoyl 

phosphatidylethanolamine (Figure 9).534

Lipoplatin was first validated in preclinical models and subsequently in a range of clinical 

studies including three Phase III trials. Lipoplatin has been used in a clinical setting on non-

small cell lung cancer but has also been investigated in cancers of the breast, pancreas, and 

head and neck. A recent review by the developers of lipoplatin provides a comprehensive 

overview of the clinical progress that this investigational drug has made.534 Most recently, 

the results of a Phase III clinical trial with 202 patients were analysed and the authors 

concluded that lipoplatin in combination with paclitaxel produces a response rate in non-

squamous NSCLC patients that statistically greater than treatment with cisplatin and 

paclitaxel. Moreover, nephrotoxicity, the dose-limiting toxicity of cisplatin, was greatly 

reduced. Regulon, the company developing lipoplatin has announced that the EMA has 

granted it approval to launch a Phase III clinical trial with 884 patients testing the efficacy of 

lipoplatin and pemetrexed versus cisplatin and pemetrexed as a first-line therapy against 

non-squamous non-small cell lung cancer. Two other Phase III trials are underway in 

Europe. One, started in 2006, is comparing lipoplatin and paclitaxel versus cisplatin and 

paclitaxel as front line treatment of advanced epithelial ovarian cancer. The other, launched 

in 2012, is investigating lipoplatin and gemcitabine versus gemcitabine as a first-line 

treatment in inoperable, locally advanced or metastatic pancreatic cancer. With the progress 

that lipoplatin has already made, it seems poised on the brink of becoming the next platinum 

drug and could serve as an excellent validation and motivation for those researchers and 

companies seeking to develop nanodelivery devices to enhance platinum-based anticancer 

therapy. The trajectory of satraplatin, however, provides a cautionary tale highlighting that 

even encouraging progress made during clinical trials does not guarantee regulatory 

approval.

10. Summary and outlook

In this review we have highlighted the work done to generate the next generation of 

platinum drugs. Although the scientific literature presents evidence that a significant effort 

continues in the area of preparing cisplatin derivatives that are expected to function via a 

similar mechanism of action, the research efforts of the community have been turning 

steadily towards the development of molecules that deviate increasingly in structure and 

mechanism. The efforts we have highlighted here include the incorporation of targeting 

agents into the molecular scaffolds of classical platinum(II) complexes, non-classical 

Johnstone et al. Page 52

Chem Rev. Author manuscript; available in PMC 2016 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



platinum(II) scaffolds that elicit biological effects distinct from those of the approved 

platinum drugs, and oxidation of active the platinum(II) complexes to platinum(IV) 

prodrugs that can be reductively released. The axial ligands of the platinum(IV) prodrug can 

be chosen so as to tune physico-chemical properties, unleash an orthogonal biological 

response, or facilitate incorporation into a drug delivery device. The use of nanoscale drug 

delivery devices is a particularly explosive area of research. Liposomes were one of the 

earliest nanoscale platforms to be developed for drug delivery, and the clinical approval of 

doxorubicin and vincristine liposomal formulations validates these research efforts. 

Lipoplatin, a liposomal formulation of cisplatin, has also progressed well in clinical trials 

and may indeed become the next platinum-based drug. We anticipate that the renewed 

interest in developing platinum agents, particularly in nanoparticle formulations, by 

researchers around the world will generate an increased flow of these platinum drug 

candidates into the development pipeline, ushering in the next generation of platinum drugs.
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Figure 1. 
NIH-registered clinical trials involving cisplatin in various parts of the world as of 2015. 

The numbers reflect only those trials that are open and whose activity has been verified by 

the NIH within the past two years. Graphic generated using search tools from 

www.clinicaltrials.gov.
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Figure 2. 
Schematic summary of the topics discussed in this review.
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Figure 3. 
The four steps of the mechanism of cisplatin and, by extension, related platinum anticancer 

drugs. (i) Cellular uptake, (ii) aquation/activation, (iii) DNA binding, and (iv) cellular 

processing of DNA lesions leading to apoptosis. Reproduced from reference 15. Copyright 

© 2015, The Royal Society.
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Figure 3. 
The structures of double-stranded DNA adducts of different platinum anticancer agents as 

determined by X-ray crystallography or NMR spectroscopy. (a) Cisplatin 1,2-d(GpG) 

intrastrand cross-link (PDB 1AIO). (b) Cisplatin 1,3-d(GpTpG) intrastrand cross-link (PDB 

1DA4). (c) Cisplatin interstrand cross-link (PDB 1A2E). (d) Oxaliplatin 1,2-d(GpG) 

intrastrand cross-link (PDB 1PG9). (e) Satraplatin 1,2-d(GpG) intrastrand cross-link (PDB 

1LU5). (f) cDPCP monofunctional adduct (PDB 3CO3). Reproduced from reference 41. 

Copyright © 2009, The Royal Society of Chemistry.
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Figure 4. 
The paths travelled by cisplatin before and after entering the cell. Attention is drawn to 

instances where deactivation/sequestration can occur. Reproduced from 49. Copyright © 

2013, The American Chemical Society.
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Figure 5. 
The composition of platinum(IV) prodrugs. Adapted from reference302. Copyright © 2014, 

The American Chemical Society.
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Figure 6. 
Schematic representation of the accumulation of nanoparticles in tumor tissues as a result of 

the enhanced permeation and retention effect. Reproduced from reference411. Copyright © 

2014, A. M. Jhaveri and V. P. Torchilin (Creative Commons Attribution License).
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Figure 7. 
Formation of a supramolecular drug delivery device driven by host-guest interactions 

between a platinum(IV) prodrug and a platinum(II) cage. Reproduced from reference510. 

Copyright © 2015, The Royal Society of Chemistry.
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Figure 8. 
A) A platinum(IV) prodrug designed to mimic a fatty acid. B) The modelled complex of the 

platinum(IV) prodrug in human serum albumin. Adapted from reference515. Copyright © 

2014, The American Chemical Society.
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Figure 9. 
Artistic rendition of lipoplatin. The cisplatin core is shown as a blue, roughly spherical ball 

surrounded by a vesicular lipid bilayer. PEG chains protrude from the surface of the 

liposome. Adapted from reference534. Copyright © 2012, G. P. Stathopoulos and T. 

Boulikas (Creative Commons Attribution License).
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Chart 1. 
Chemical structures of clinically-approved and marketed platinum anticancer drugs.
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Chart 2. 
Chemical structures of cugar-conjugated platinum(II) complexes.
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Chart 3. 
Chemical structures of estrogen receptor ligands tethered to platinum(II) complexes.
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Chart 4. 
Chemical structures of bile-acid tethered platinum(II) agents.
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Chart 5. 
Chemical structures of folate-targeted platinum(II) complexes.
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Chart 6. 
Chemical structures of platinum(II) complexes tethered to peptides.
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Chart 7. 
Chemical structures of biologically inactive and active trans-platinum(II) agents.
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Chart 8. 
Chemical structures of trans-platinum(II) agents with one or two iminoether ligands.
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Chart 9. 
Chemical structures of trans-platinum(II) agents with one or two aliphatic amine ligands.
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Chart 10. 
Chemical structures of di- and tri-nuclear platinum agents. The pendent aliphatic groups of 

TriplatinNC-A are shown in the protonated state, raising the overall charge of the complex 

to 8+.

Johnstone et al. Page 90

Chem Rev. Author manuscript; available in PMC 2016 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chart 11. 
Chemical structure of platinum(II) complexes that bind to DNA through non-covalent 

interactions.
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Chart 12. 
Chemical structures of monofunctional platinum(II) complexes.
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Chart 13. 
Chemical structures of platinum(IV) agents that have undergone clinical trials.
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Chart 14. 
Chemical structure of dual-treat platinum(IV) agents.
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Chart 15. 
Chemical structure of dual-treat platinum(IV) agents bearing vitamin E (A) or estrogen (B) 

derivatives.
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Chart 16. 
Chemical structures of photoactivable platinum(II)-diiodo complexes.
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Chart 17. 
Chemical structures of photoactivable cis- and trans-platinum(II)-diazido complexes.
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Chart 18. 
Carbon-based delivery systems for platinum(IV) prodrugs including single-walled carbon 

nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), and spherical carbon 

nanoparticles.
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Chart 19. 
Chemical structures of platinum(IV) prodrugs used in the preparation of gold nanoparticle 

delivery constructs.

Johnstone et al. Page 99

Chem Rev. Author manuscript; available in PMC 2016 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chart 20. 
Chemical structures of platinum(IV) complexes conjugated to inorganic nanoparticles 

including lanthanide-based upconversion nanoparticles, quantum dots, iron oxide 

nanoparticles, and layered double hydroxides.
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Chart 21. 
Depiction of the formation of coordination polymers using metal units to link platinum(IV) 

prodrugs bearing axial ligands with coordinating motifs.
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Chart 22. 
Depiction of the polymerization of platinum(IV) prodrugs bearing axial ligands with 

pendent trialkoxysilanes to form platinum-containing polysilsesquioxane nanoparticles.
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Chart 23. 
Platinum complexes encapsulated within polymeric micelles using non-covalent 

interactions. The complexes are shown next to the polymer (blue) that was used to make the 

nanoparticle. In the case of the PLGA nanoparticle, PEGylated lipids were used to stabilize 

the particles formed from the non-amphiphilic polymer.
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Table 1

Clinically approved platinum anticancer agents.

Generic
Name

Research
Name

Trade
Name

Approval
Granted

Tenure
of approval

Cispatin CDDP Platinol 1978 Global

Carboplatin JM8 Paraplatin 1989 Global

Oxaliplatin l-OHP Eloxatin 2002 Global

Nedaplatin 254-S Aqupla
アクプラ

1995 Japan

Heptaplatin SKI 2053R Sunpla
선플라

1999 Korea

Lobaplatin D-19466 洛鉑 2010† China

†
See main test for discussion
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