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Review of Hair Cell Synapse Defects in Sensorineural
Hearing Impairment

*†‡Tobias Moser, *Friederike Predoehl, and §Arnold Starr

*InnerEarLab, Department of Otolaryngology, University of Göttingen Medical School; ÞSensory Research
Center SFB 889, þBernstein Center for Computational Neuroscience, University of Göttingen, Göttingen,

Germany; and §Department of Neurology, University of California, Irvine, California, U.S.A.

Objective: To review new insights into the pathophysiology of
sensorineural hearing impairment. Specifically, we address defects
of the ribbon synapses between inner hair cells and spiral ganglion
neurons that cause auditory synaptopathy.
Data Sources and Study Selection: Here, we review original
publications on the genetics, animal models, and molecular
mechanisms of hair cell ribbon synapses and their dysfunction.
Conclusion: Hair cell ribbon synapses are highly specialized to
enable indefatigable sound encoding with utmost temporal precision.
Their dysfunctions, which we term auditory synaptopathies, impair
audibility of sounds to varying degrees but commonly affect
neural encoding of acoustic temporal cues essential for speech
comprehension. Clinical features of auditory synaptopathies

are similar to those accompanying auditory neuropathy, a group
of genetic and acquired disorders of spiral ganglion neurons.
Genetic auditory synaptopathies include alterations of glutamate
loading of synaptic vesicles, synaptic Ca2+ influx or synaptic
vesicle turnover. Acquired synaptopathies include noise-induced
hearing loss because of excitotoxic synaptic damage and subse-
quent gradual neural degeneration. Alterations of ribbon synapses
likely also contribute to age-related hearing loss. Key Words:
GeneticsVIon channelVSensorineural hearing impairmentV
Sound codingVSynapsesVSynaptopathy.

Otol Neurotol 34:995Y1004, 2013.

Mechanisms of Sensorineural Hearing Impairment
Sensorineural hearing impairment encompasses various

pathologies of the cochlea and auditory nerve. Based on
human temporal bone histology Schuknecht and Igarashi
(1) proposed a nosology for slowly progressing sensori-
neural hearing loss. They distinguished conditions affect-
ing stria vascularis (disrupting cochlear ion homeostasis and
energetics), organ of Corti (disrupting hair cell function),
and neurons (disrupting transmission of auditory informa-
tion to the brain). Recent advances in the identification of
human deafness genes and their physiological characteriza-
tion in mouse models have helped to elucidate specific cel-
lular mechanisms contributing to sensory and neural hearing
loss. Combining genetic, physiologic, and psychophysical
approaches to human sensorineural hearing loss one aims
to differentiate primary defects of cochlear ionic homeo-
stasis and endolymph production, mechanoelectrical trans-
duction at the hair bundle, electromechanical amplification
of basilar membrane vibration by the electromotile outer

hair cells, synaptic transmission at the inner hair cell syn-
apses, and action potential generation and conduction by
spiral ganglion neurons.

Figure 1A illustrates a physiology-based classification
of sensorineural hearing loss. Transduction defects as well
as disruption of cochlear ionic homeostasis and endolymph
production cause a global dysfunction of the cochlea.
For example, the most common hereditary deafness caused
by mutations in the gene coding for Connexin 26 impair
the endocochlear potential (2,3), which is a prerequi-
site for the function of hair cells. Defects of outer hair cell
electromotility or loss of outer hair cells altogether disrupt
cochlear amplification and present primarily with loss of
audibility, abnormal loudness gain (recruitment), and
impaired frequency discrimination (4,5). Otoacoustic
emissions (OAEs), acoustic signals produced by outer
hair cell amplification of sound-induced vibrations in the
cochlea, are reduced or absent. However, suprathreshold
stimuli still evoke synchronized neural potentials in audi-
tory nerve and brainstem pathways identified as audi-
tory brainstem responses (ABRs). These subjects typically
have impairments of speech reception affecting mainly
consonants and their performance benefit from hearing aids.

Disorders of inner hair cell synapsesVauditory
synaptopathiesVcause evoked potentials of the early
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auditory pathway to be absent or abnormal (6,7). How-
ever, as cochlear amplification is functional, at least ini-
tially, OAEs and/or cochlear microphonic potentials are
often present (7Y10). Psychophysical findings in auditory
synaptopathy vary from normal pure tone audiograms to
complete deafness (6,8Y14). Still, even when audibility is
normal or minimally affected, speech comprehension is
impaired and is often not improved by hearing aids (15).
Defects of the auditory nerve (16) have similar findings
as auditory synaptopathies rendering their differentiation
difficult (15,16). Examination of temporal bones in subjects
with neural disorders have shown both loss of auditory
ganglion cells as well as demyelination of auditory nerve
fibers (17). The effects of these changes are to seriously
compromise the magnitude of auditory nerve activity, neu-
ral conduction speed, and to cause conduction block in af-
fected fibers.

‘‘Synaptopathy’’ is a recently introduced term for a
long-known nosological concept. Myasthenic disorders
such as Myasthenia gravis and Lambert-Eaton syndrome
are long established synaptopathies of the neuromuscular
junction (18Y21). Recently, synaptic dysfunction has re-

ceived much attention as a potential disease mechanism in
neuropsychiatric diseases such as Huntington’s disease
(22) and autism spectrum disorders (23,24). Although evi-
dence indicates an important role of synaptic alterations in
the pathophysiology of major brain diseases, their rele-
vance as primary disease mechanism is an active topic of
research (25).

Strong alterations of neuromuscular junction and synap-
ses of the central nervous system are not compatible with
life (e.g., ref. [26,27]). This is very different for ribbon
synapses formed by sensory cells in the ear and retina.
They are molecularly and structurally specialized and,
to some extent, distinct from other synapses, such that
mutations can specifically affect hearing and/or vision
by impairing ribbon synapse function while sparing other
synapses. The synaptic ribbon is an electron-dense struc-
ture that extends into the cytosol and tethers a halo of syn-
aptic vesicles (Fig. 1B). Depending on the position of an
inner hair cell along the tonotopic cochlear axis, it forms
between 5 and 20 ribbon synapses (28) with the un-
branched peripheral axons of spiral ganglion neurons (29).
The exact role of this multi-protein nanomachinery is

FIG. 1. Hair cell ribbon synapseVmolecules affected in genetic auditory synaptopathies. A, Physiology-based classification of sensori-
neural hearing loss. Defects or loss of outer hair cells (OHC) disrupt cochlear amplification, defects or loss of inner hair cells (IHC) or their
synapses disrupt synaptic encoding of sound, defects or loss of spiral ganglion neurons (SGN) disrupt encoding and/or conduction of
auditory information. Defects of cochlear electrolyte homeostasis or mechanoelectrical transduction cause global dysfunction. B, Normaski
image of the mouse organ of Corti with hair bundles of IHCs and schematic representation of a patch-clamped IHC and one of its ribbon
synapses. Inset: model of a normal mouse IHC ribbon synapse obtained from electron tomography. C, Molecular anatomy of a normal
mouse IHC ribbon synapse as derived from immunohistochemistry and molecular physiology. Otoferlin, VGLUT3, and CaV1.3 are the
molecules so far identified to be the defect in human synaptopathy.
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subject of current studies (30Y33). It is hypothesized to
support a large pool of readily releasable vesicles and its
replenishment after exocytosis. Its main molecular con-
stituent is the protein Ribeye (34) (Fig. 1C) that is spe-
cific to ribbon synapses and thought to build the ribbon
in a brick-stone like manner interacting with itself (35)
and other proteins such as bassoon (36). Bassoon is a
big scaffold protein (37), common to many synapses, and
organizes the active zone of photoreceptors (38) and hair
cells (30,33). While sharing some of the common scaffold
proteins of the active zone, the hair cell ribbon synapse
seems to otherwise employ different proteins than most
other synapses (39Y44) (Fig. 1C), some of which have
been shown to be affected in hereditary synaptopathic
hearing impairment.

GENETIC SYNAPTOPATHIES

Defects of Presynaptic Calcium Influx Into
Inner Hair Cells

Unlike in other synapses, hair cell ribbon synapses use
CaV1.3 L-type Ca

2+ channels for stimulus-secretion coupling
(45Y47). Their active zones cluster tens of CaV1.3 L-type
Ca2+ channels (33,48Y52) (Fig. 2) that activate rapidly
already at hyperpolarized potentials (53) and show only
mild inactivation during ongoing stimulation (54,55).
These functional properties arise from the unique molecular

composition of the channel complex that involves interac-
tion with numerous other proteins such as Ca2+ -binding
proteins (56Y58) (Fig. 2A). Recently, a loss of function
mutation in the CACNA1D gene has been identified in a
family with congenital deafness and bradycardia, signifying
the importance of CaV1.3 for hearing and atrial pacemaking
(12). Recently, a mutation of the CABP2 gene has been
demonstrated to cause a moderate sensorineural hearing
impairment, which may be related to the lower potency of
the mutant CaBP2 protein to inhibit calmodulin-mediated
calcium dependent inactivation of the calcium current (57).
Moreover, we note for a comparison that mutations in the
genes coding for the poreforming >1F (CACNA1F) subunit
(59,60) of the presynaptic CaV1.4 Ca2+ channels, the aux-
iliary >2C4 subunit (61) and the interacting Ca2+ binding
protein 4 (62) (CaBP4) cause human retinal disease such as
night blindness probably by disturbing synaptic transmis-
sion at the photoreceptor ribbon synapses.

The human phenotype related to the loss of function
CACNA1D mutation (12) is very closely resembled in
Cacna1d knock-out mice, displaying both deafness and
bradycardia (45,47). The mouse model allows for analysis
of Ca2+ influx and the ensuing exocytosis in inner hair
cells, which were both reduced by 90% (46) (Fig. 2C, D).
This defect of hair cell transmitter release readily explains
the lack of ABRs (Fig. 2E). The dramatic reduction of pre-
sensory and sensory afferent neural activity leads to

FIG. 2. Molecular physiology and pathology of hair cell calcium influx. A, Top: a defect in Ca2+ influx disrupts stimulus-secretion coupling,
bottom: domain structures of the subunits forming the hair cell CaV1.3 Ca2+ channel: pore-forming >1D subunit, auxiliary Q2, >2C, and F

subunits (adapted from Caterall, Pharmacol Rev 2005). B, Left: nanoanatomy of presynaptic CaV1.3 Ca2+ channel clusters resolved by
STED microscopy after immunolabeling (taken from Frank et al., Neuron 2010); right: 5 presynaptic Ca2+ microdomains visualized as
fluorescence hotspots of Fluo-5N indicator at the ribbon-occupied active zones (marked by a fluorescent Ribeye-binding peptide; taken from
Frank et al., PNAS 2009). C, Representative Ca2+ currents and (D), membrane capacitance increments ($Cm, reflecting exocytic fusion of
vesicles to the plasma membrane) of a normal IHC (black) and an IHC lacking the CaV1.3 Ca2+ channel (gray): near-complete block of Ca2+

influx and exocytosis (taken from Brandt et al., 2003). E, Deafness of CaV1.3 deficient mice is indicated by lack of ABRs (representative
recordings in response to 100 dB clicks).
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substantial neurodevelopmental alterations in the audi-
tory pathway (63Y65) and to a progressive loss of hair cell
afferent synapses, hair cells and spiral ganglion neurons
(63,66), respectively. Interestingly, neither affected humans
nor mice seem to have vestibular disorders. This is
consistent with the finding of a sizable remaining Ca2+

current in vestibular hair cells of Cacna1d knock-out
mice (47).

Genetic Alteration of Vesicular Glutamate Uptake in
Hair Cells Disrupt Hearing

The glutamatergic ribbon synapses of hair cells use the
transporter VGLUT3 to load their synaptic vesicles with
glutamate (42,43,67), whereas all other glutamatergic
synapses studied so far use VGLUT1 or 2 (68,69). In-

stead, in the CNS VGLUT3 is used by monaminergic and
cholinergic neurons that co-release glutamate. Genetic
ablation of Vglut3 function caused deafness in mice
(42,43) and zebrafish (67) because of abolition of gluta-
mate release (Fig. 3). Hair cell synapses remained sur-
prisingly intact. They display robust Ca2+ influx and
exocytosis of glutamate-devoid vesicles (43) (Fig. 3B),
and spiral ganglion neurons exhibited robust postsynaptic
receptor currents in response to application of exogenous
glutamate (42). Loss of synapses, hair cells and spiral
ganglion neurons proceeded at relatively slow pace (weeks
rather than days as found for otoferlin mutants, see below)
perhaps because of preserved release of trophic factors.
Interestingly, no overt vestibular dysfunction was observed
in Vglut3 knock-out mice.

FIG. 3. VGLUT3-deficient hair cells lack glutamate releaseVhuman vglut3 mutations are responsible for progressive deafness DFNA25.
A, Left: representative patch-clamp recording of excitatory postsynaptic currents (EPSCs) from a SGN terminal (black), which are stimulated
by superfusion with 40 mM K+ and blocked by the AMPA receptor blocker NBQX (gray); middle: lack of EPSCs in a representative recording
from Vglut3-knockout mice (taken from Seal et al., Neuron 2008); right: genetic ablation Vglut3 function abolishes vesicular glutamate
uptake and release. B, Despite ablation of Vglut3 IHCs undergo Ca2+ influx (top panel) and exocytic fusion of vesicles (lower panel, taken
from Ruel et al., Am J Hum Genet, 2008). Exocytosis of trophic factors potentially contributes to maintaining synaptic and neural integrity,
such that degeneration proceeds more slowly than in CaV1.3 or otoferlin mutants. C, While both acoustically evoked ABR (aABR, top panel)
and electrically evoked ABR (eABR, lower panel) are regularly recorded in control mice, only eABR but not aABR are observed in Vglut3-
knockout mice (adapted from Ruel et al., Am J HumGenet, 2008). D, pure tone audiogram of a DFNA25 affected boy displaying a moderate
hearing impairment at 6 years of age (taken from Thirlwall et al., Head Neck Surg 2003).
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First efforts toward virus-mediated transfer of Vglut3
DNA into inner hair cells of Vglut3 knock-out mice have
yielded promising results: normal thresholds were restored
for several weeks following viral injection into the cochlea

(70). Vglut3 knock-out mice and heterozygotes littermates
showed EEG abnormalities indicative of a neocortical
hyperexcitability, but myoclonic activity has not been
detected (42). The human hearing impairment DFNA25

FIG. 4. OTOF mutations cause prelingual deafness DFNB9Votoferlin regulates replenishment and fusion of vesicles in IHCS. A, Domain
structure of the multi-C2-domain protein otoferlin (left) and amino acid changes caused by pathogenic mutations as published so far (right),
modified from Rodriguez-Ballesteros et al., Hum Mutat 2003. B, Top: the CM is preserved in DFNB9, representative cochlear microphonic
(CM) potentials of a control subject (left) and a deaf DFNB9 subject (right) in response to a 120-dB click stimulus. Lower: intact summating
potentials (SPs) but strongly reduced compound action potentials (CAPs) in DFNB9, representative SP and CAP recorded from one control
and DFNB9 subject in response to clicks of the designated sound pressure level. (modified from Santarelli et al., JARO 2009). C, (a),
Projections of confocal images of IHC immunolabeled for otoferlin, which show a distribution similar to Vglut3. Reduced immunofluores-
cence in Pachanga mice (b, Otof pga/pga) and lack of immunofluorescence in knock-out mice (c, Otof -/-). D, Enhanced paired-pulse de-
pression in a representative Otof pga/pga IHC assayed by measurements of exocytic membrane capacitance increments, indicating reduced
recovery of the RRP from depletion (vesicle replenishment after stimulation). E, Exocytic membrane capacitance increments as a function of
stimulation time for IHCs of normal mice (Otof +/+), of Otof pga/pga mice (in elevated (10 mM) and normal [Ca2+] in the bath), Otof pga/- mice
(carrying only one Pachanga allele) and Otof -/- mice: progressive reduction of sustained exocytosis indicating reduced vesicle replen-
ishment during ongoing stimulation (after 20 ms, i.e., exocytosis of the readily releasable pool (RRP). F, Poststimulus time histograms of
extracellularly recorded spikes of auditory nerve fibers and principal cells of the cochlear nucleus of normal mice and Otof pga/pga mice
(lumping all units together for the mutants) in response to tone burst stimulation 30 dB above threshold at 10 Hz: very low spike rates in
Otof pga/pga mice. Reduction in stimulus rate restores an onset response in Otof pga/pga mice, which, however, is still lower than in control
mice. This is consistent with strongly reduced vesicle replenishment limiting the RRP available for responses to transient stimuli. Spon-
taneous rate is less strongly reduced in Otof pga/pga mice. G, summary of otoferlin’s roles in hair cell exocytosis: docking was found to be
normal in all Otofmutants studied so far; therefore, defective replenishment is attributed to impaired vesicle priming. Vesicle replenishment
does not suffice build-up of a standing RRP in the presence of substantial spontaneous release in vivo. In addition, a role of otoferlin in fusion
is proposed. Panels CYF were taken from Pangrsic et al., Nat Neurosci 2010.
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was first described in 2003 (13) and was then linked to
a VGLUT3 mutation in 2008 (43). Affected subjects
become progressively hearing impaired starting during
adolescence (Fig. 3D) and apparently lack other symptoms.
Future studies are needed to address the precise mechanism
of the progressive synaptopathy DFNA25.

Mutations in OTOF Cause Prelingual Deafness
DFNB9 and Temperature-Sensitive Synaptic

Hearing Impairment
Mutations in the OTOF gene coding for otoferlinVa

member of the ferlin family of transmembrane multi-C2-
proteins (71,72), which is expressed in hair cells (73)Vcause
the prelingual deafness DFNB9 (6,8,10,74,75) and a
temperature-sensitive hearing impairment (76,9,14)
(Fig. 4). Since its identification, more than 50 pathogenic
mutations of OTOF have been published (11) (Fig. 4A).
Most mutations cause loss of otoferlin function and
profound prelingual deafness (Fig. 4B), and affected
individuals seem to benefit from cochlear implantation
(77,78). Otoferlin is considered a synaptic vesicle pro-
tein because a direct association to synaptic vesicles
was found by immuno-electron microscopy (73) and its
distribution in hair cells is similar to that of the synap-
tic vesicle protein Vglut3 (79) (Fig. 4B). Ablation of
Otof function in mice revealed a near complete aboli-
tion of hair cell exocytosis as the mechanism underlying
DFNB9. Synapses were rapidly lost postnatally probably
because of degeneration. However, the ultrastructure of
the remaining synapses was well preserved, displaying
a normal supplement of synaptic vesicles. Therefore, a
role of otoferlin in a late step of exocytosis (priming
and/or fusion) was postulated (73). A role of otoferlin as
Ca2+ sensor of vesicle fusion was further suggested by
the Ca2+ and phospholipid binding of some C2 domains
(73,80), interaction with neuronal SNARE proteins
(73,80,81) and facilitation of fusion of SNARE-tagged
liposomes (80). These properties are shared by the neuronal
Ca2+ sensor of fusion synaptotagmin 1, which is lacking from
mature inner hair cells (82,83). However, synaptotagmin 1 if
introduced as a transgene cannot replace otoferlin in hair cell
exocytosis (83). Otoferlin’s role in Ca2+ regulated fusion
should be further addressed by site-directed mutagenesis of
the putative Ca2+ binding sites (84).

Mutations that do not fully inactivate function have
helped further studies of the physiologic role of otoferlin
and otoferlin-related synaptopathy. Three mutations were
associated with a temperature-sensitive hearing impair-
ment (9,14,76). The affected individuals become deaf
when core temperature rises. ABRs at this time are ab-
sent. When afebrile, these subjects have a mild elevation
of threshold. Speech perception in quiet is normal but
impaired in noise. The mechanism underlying the tem-
perature effect still awaits clarification. It might involve
protein instability and subsequent degradation possibly
leading to a shortage of functional otoferlin. Such a re-
duction of otoferlin levels (Fig. 4C) was considered as a
candidate mechanism for a missense mutation in the re-
gion coding the C2F domain in the Pachangamouse (85).

Ca2+ dependent vesicle fusion was surprisingly found
intact, but a reduced rate of vesicle replenishment was
observed (79). In physiology, synapses of inner hair cells
replenish hundreds of vesicles per second to enable high
rates of transmission and auditory nerve fiber spiking
over prolonged periods of time. Interestingly, an addi-
tional reduction of vesicle replenishment was found with
mice carrying only 1 mutant allele (Fig. 4D, E), in which
otoferlin levels were reduced even further. Deafness of these
mice was proposed to result from the lack of a sufficient
pool of readily releasable vesicles in vivo, when spontane-
ous release steadily consumes vesicles in excess of the re-
duced capacity for vesicle replenishment (Fig. 4G). Hence,
auditory nerve fibers of these mice could barely respond to
sound stimulation (Fig. 4F). In conclusion, aside from being
a candidate Ca2+ sensor of fusion in hair cells, otoferlin has a
function in vesicle replenishment (Fig. 4G). Additional
general cell biological functions have been proposed based
on protein interaction studies and the broad distribution of
otoferlin in hair cells also outside the presynaptic active
zones (86Y88).

Noise-Induced and Age-Related Hearing Loss
Recent findings indicate that cochlear synaptic mech-

anisms may contribute to these 2 most common forms
of hearing impairment. Changes in synapse number and
structure have been implied in noise-induced (89Y91) and
age-dependent hearing loss (92). Interestingly, a human as-
sociation study suggests polymorphisms in the gene coding
for the metabotropic glutamate receptor mGluR7 to con-
tribute to susceptibility for age-dependent hearing loss (93).
Excitotoxic synaptic and neural damage is a key candidate
mechanism for noise-induced and age-dependent hearing
loss (Fig. 5A). It may result from excessive presynaptic
release of glutamate, which has long been discussed for
noise-induced hearing loss (see below) and has recently
been implied for a human progressive hearing loss caused
by mutations in the gene GIPC3 (94,95). Susceptibility to
excitotoxic damage could also arise from abnormally high
numbers or sensitivity of postsynaptic glutamate receptors
(96), alterations of efferent innervation (97) and from in-
terference with glutamate uptake (98,99), but the relevance
of these mechanisms for human disease has not yet been
demonstrated.

Excitotoxic synaptic damage due to excessive presynaptic
release of glutamate has long been indicated to contribute to
noise-induced hearing loss (89Y91). Immunohistochemical
quantification of ribbon synapse number (28,30) has now
been used to establish the loss of ribbon synapses during
noise exposures (100,101). Strikingly, even noise exposures
that caused only temporary threshold loss were accompanied
by a permanent loss of approximately 50% of the hair cell
synapses and subsequent slow degeneration of spiral gan-
glion neurons in the high frequency region of the cochlea
(Fig. 5C, D, F, G). Themorphologic damage was reflected by
a reduced spiral ganglion compound action potential. Mea-
sured as Jewett wave I of the auditory brainstem responses, a
permanent reduction was found (Fig. 5E), despite full re-
covery of the physiologic threshold (Fig. 5B). One possible
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hypothesis explaining this discrepancy of functional findings
is that the noise-induced insult hits the low-sensitivity spiral
ganglion neurons, which signal loud sounds, but spares the
high-sensitivity neurons, which are responsible for sound
perception near threshold. This hypothesis can well explain
the finding of poor speech recognition in noisy background.
Not surprisingly synaptic insult occurs also during noise
exposures that cause a permanent threshold increase (100).

Current research aims to understand the presynaptic
and postsynaptic changes that occur during noise damage.
Moreover, studies explore the reasons why excitotoxic
synapse loss is not followed by de novo synapse forma-
tion during the weeks after the insult when the discon-
nected inner hair cells and spiral ganglion neurons are
still present. The extent, irreversibility, and functional
consequences of excitotoxic synapse loss had not yet
appreciated and now require studies of the relevance of
this disease mechanism for human noise-induced hear-
ing loss. If comparable to the animal findings, which is
likely the case, noise exposure is much more dangerous
than we have assumed. We will then have to acknowl-

edge that noise induces synapse and progressive neuron
loss and thereby impairs speech reception in noisy
environments. We will need to revise noise exposure
guidelines, diagnostic procedures and clinical evaluation
of occupational hearing loss. In summary, excitotoxic
synaptic damage is likely a disease mechanism of noise-
induced and possibly also of age-dependent hearing loss
(101,102).

DISCUSSION

Identification and Characterization of Auditory
Synaptopathy

Auditory synaptopathy-impaired synaptic sound encoding
has only recently been appreciated as a disease mechanism of
both genetic and acquired hearing impairments. The simi-
larity of clinical expression to auditory neuropathy (15,16):
preserved otoacoustic emissions and/or cochlear microphonic
potentials reflecting cochlear outer hair cell function but
absent or abnormal auditory brainstem responses due

FIG. 5. Excitotoxic irreversible loss of IHC ribbon synapses during noise-induced temporary threshold loss. A, Cartoon illustrating
excitotoxic synaptic insult: loud noise induces excessive presynaptic glutamate release that causes overexcitation and massive sodium
influx into the postsynaptic terminal of the SGN. The ensuing osmotic load causes swelling and finally disruption of the terminal. Work by
Kujawa and Liberman (2009) in animals suggests that the SGN do not re-establish synaptic connections with IHCs after the insult and are
finally lost. B, Induction and recovery of ABR threshold loss following a 100 dB octave band noise for 2 h. C, Irreversible loss of half of the
synaptic ribbons in high-frequency IHCs in the same mice, despite threshold recovery after 2 weeks. D, Representative projections of
confocal images of the immunolabeled IHC ribbons in control and noise-exposed mice: reduction of ribbon number. Long-term percentage
reduction of (E) the amplitude of ABR wave 1 reflecting the loss of synchronously firing SGN, (F) ribbon synapse number in high frequency
IHCs and (G) SGN somata: simultaneous loss of synapses and synchronously firing neurons, delayed physical loss of SGN. (BYG) were
taken with permission from Kujawa and Liberman, J Neurosci 2009.
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to impaired sound coding led to the initial denomination
as auditory neuropathy or auditory neuropathy spectrum
disorder. This review describes specific disease mechanisms,
focusing on presynaptic alterations at the inner hair cell
synapse. Human genetics has uncovered that monogenic
defects and complex genetic diseases also affect sound
encoding at the hair cell synapses. Starting with the identifi-
cation of otoferlin (10), an increasing number of defects in
genes that code for synaptic proteins and ion channels have
been identified, and the list is expected to still increase.
Molecular physiology in genetically manipulated mice has
provided insights into gene function at the synapse and
the synaptic mechanisms underlying the human disease.
These studies unambiguously demonstrate the synapse
as a primary site of lesion and hence support the use
of auditory synaptopathy as the precise nosologic cate-
gory. However, severe auditory synaptopathy sooner or
later leads to degeneration of the spiral ganglion neurons
and, thus, has a common final path with primary neural
disorders such as hereditary motor and sensory neuropathy.

Understanding Mechanisms and Phenotypes of
Auditory Synaptopathies Based on Detailed Analysis

of Mouse Models
Mouse models serve as powerful tools for dissecting

the precise disease mechanisms, for predicting onset and
progression of degeneration and for devising therapeutic
approaches. Different from the described mouse models
of human auditory synaptopathy, other ‘‘synaptic’’ mouse
mutants allow one to study the consequences of more
subtle synaptic deficits for auditory systems function.
Genetic disruption of the presynaptic protein Bassoon
causes a mild synaptic hearing impairment (30,103) because
of a reduction in the number of releasable synaptic vesicles
and Ca2+ channels (33). ABR are present but display a
massive reduction in wave 1 amplitude (30,103) because
of reduced auditory nerve fiber spiking rates and increased
jitter of first spike latency (103). Although no human
mutations have been described so far, this mouse line
has gained considerable interest as a model for auditory
synaptopathy.

Otoferlin: Synergistic Research on Human Subjects
and Animal Models Advance Our Understanding of

Otoferlin Function and Dysfunction
The genetics, structure, and function of otoferlin in

the context of hearing and deafness define a hot topic
of auditory research. After identifying OTOF about a
decade ago as the gene defect underlying autosomal
recessive, nonsyndromic profound deafness DFNB9 (10),
work now encompasses molecular, cellular, and systems
level approaches. The presence of human subjects with
temperature-sensitive OTOF mutations enables advanced
electrophysiologic and psychophysical studies and promises
to contribute to our understanding of otoferlin-related hear-
ing impairment and auditory synaptopathy in general. Ge-
netic manipulations in mice combined with comprehensive
structural and functional analysis will continue to contribute.
In particular, these studies will help to further test the

Ca2+ sensor of vesicle fusion and vesicle replenishment
hypotheses.

Presynaptic and Postsynaptic Mechanisms
of Synaptopathy

Here, we have reviewed exemplary presynaptic and
postsynaptic mechanisms of synaptic hearing impairment
with much emphasis on the presynaptic dysfunction.
Future research will reveal further genetic and acquired
synaptopathies, which will likely also include other
alterations of postsynaptic function. Combining specific
clinical and genetic testing will likely help to distinguish
primarily presynaptic and postsynaptic dysfunctions.

Acknowledgments: The authors thank Nicola Strenzke,
Martin Canis and Charles M. Liberman for the comments on the
manuscript. The authors also thank Regis Nouvian and Linda
Hsu for contributing graphical illustrations.

REFERENCES

1. Schuknecht HF, Igarashi M. Pathology of slowly progressive
sensori-neural deafness. Trans Am Acad Ophthalmol Otolaryngol
1964;68:222Y42.
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