
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
System Software Support for FPGA-based Multi-Accelerator Architectures in Edge
Computing Systems

Permalink
https://escholarship.org/uc/item/8519c5r7

Author
Ting, Hsin-Yu

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8519c5r7
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

System Software Support for FPGA-based Multi-Accelerator Architectures in Edge
Computing Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Hsin-Yu Ting

Dissertation Committee:
Professor Eli Bozorgzadeh, Chair

Professor Alex Nicolau
Professor Ian G. Harris

2023

Chapter 2 © 2020 IEEE
Portion of Chapter 3 © 2022 IEEE

All other materials © 2023 Hsin-Yu Ting

DEDICATION

To my wife, Allison, and my family.
Your love and support have been the foundation of my achievements.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

VITA x

ABSTRACT OF THE DISSERTATION xii

1 Introduction 1
1.1 Edge Computing in IoT Systems . 3
1.2 Deep Neural Network Applications in Edge Computing 6
1.3 Hardware Acceleration of DNN applications on the Edge 10

1.3.1 Deep Neural Network Models and Accelerators on FPGAs 12
1.4 System Software Support in Edge Computing 14

1.4.1 Multi-tenancy Support on the FPGA-based Multi-Accelerator Edge . 16
1.5 Overview and Contributions of this dissertation 18

2 Dynamic Sharing in Multi-accelerators of Neural Networks on an FPGA
Edge Device 23
2.1 Introduction . 23
2.2 Edge FPGA-based DNN Accelerator Sharing System 25
2.3 SharedDNN/PlanAhead: Offline Out-of-Order DNN-Accelerator Sharing Policy 29

2.3.1 Graph Representation of Tasks and Accelerators 31
2.3.2 Mixed Integer Linear Programming Formulation 33

2.4 Evaluation . 37
2.4.1 Platform Setup . 37
2.4.2 Workload and Application Characteristics 38
2.4.3 Experimental Results . 40

2.5 Conclusion . 45

iii

3 On Exploiting Patterns For Robust FPGA-based Multi-accelerator Edge
Computing Systems 46
3.1 Introduction . 46
3.2 System Framework . 48
3.3 Pre-Deployment Phase (Offline) . 49

3.3.1 Pattern Extraction . 49
3.3.2 Static Scheduling and Accelerator Allocation 59

3.4 Deployment Phase (Online) . 62
3.4.1 Adaptive Online Scheduler . 62

3.5 Evaluation . 65
3.5.1 Platform Setup . 65
3.5.2 Evaluation Scenario . 66
3.5.3 Result and Discussion . 67

3.6 Related work to increase the robustness of patterns 73
3.7 Conclusion . 74

4 Learning-based Multi-Accelerator Management for Deep Learning
Applications on the FPGA Edge 75
4.1 Introduction . 75
4.2 Multi-Accelerator FPGA Edge Platform Overview 78

4.2.1 FPGA-based Multi-Accelerator Edge Hardware 79
4.2.2 Learning-based Multi-Accelerator Management Software 79

4.3 Reinforcement Learning Model . 81
4.3.1 State Space . 82
4.3.2 Action Space . 83
4.3.3 Reward . 84
4.3.4 Problem Formulation . 86

4.4 Asynchronous Learning Architecture for Multi-Accelerator Management . . . 87
4.5 Evaluation . 92

4.5.1 Experimental Setup . 92
4.5.2 Experimental Results . 94

4.6 Related Works . 100
4.7 Conclusion . 103

5 Conclusions and Future Directions 104
5.1 Conclusion . 104
5.2 Directions for Future Work . 106

5.2.1 Efficiency and Adaptability for the mixed offline/online approach . . 106
5.2.2 Reliability and Resilience in the learning-based framework 106

Bibliography 108

iv

LIST OF FIGURES

Page

1.1 Applications of IoT in diverse fields (Source from [118]) 2
1.2 The edge nodes collaborated between themselves, end devices, and cloud nodes

(Source from [74]) . 4
1.3 Variety of CNN-based models. (The size of the blobs is proportional to the

number of network parameters) (Source from [8]) 7
1.4 Some of the Popular DNN applications (Source from [98]) 8
1.5 Design Space created when combining CNN model pruning and hardware

parameters (Source from [59]) . 13
1.6 The Theme of This Dissertation . 18

2.1 Overview: FPGA Edge Serving Multiple IoT Applications 24
2.2 Example Pattern of Receiving Tasks at The Edge from Applications #1-3.

(#1 at 2 fps, #2 at 5 fps, and #3 at 3 fps) 26
2.3 Overview: Edge FPGA-based DNN Accelerator Sharing System 28
2.4 Graph Representation of Tasks And Accelerators 30
2.5 Speedup each Application Sets #1-4 with HIGH/MEDIUM/LOW Workloads

(Baseline: FixedDNN/FCFS policy) . 41
2.6 Overall Speedup with HIGH/MEDIUM/LOW Workloads (Baseline:

FixedDNN/FCFS policy) . 42
2.7 Runtime Distribution: Fixed/Shared/PlanAhead 43
2.8 DNN Library Usage . 44

3.1 System Overview . 48
3.2 Illustration of the regularity of the temporal order of tasks at the edge from

a1 to a4 . 50
3.3 The sequence-based pattern extraction approach extracts the dominant

pattern P and clusters remaining tasks in the hyperperiod as I and output
P + I as the representative pattern . 52

3.4 The clustering-based pattern extraction module calculates the distances
between pattern candidates and finds the cluster that covers the majority of
the Q history . 57

3.5 Dendrogram Example of the clustering-based pattern extraction approach on
a 7-end-device input Q information with 30 fps in total 58

3.6 Dendrograms for fixed input workloads . 68
3.7 Dendrogram for dynamic input workloads 71

v

3.8 Integration with the Task Arrival Time Staggering module [106] 73

4.1 System Model . 76
4.2 Multi-Accelerator FPGA Edge Platform . 79
4.3 Asynchronous Learning Architecture for Multi-Accelerator Management . . . 87
4.4 Scheduling Performance over time with two to sixteen Exploration actors

(Experiment: A 2). Each number in the x-axis is the average throughput in
every 10-minute interval. 95

4.5 Scheduling Sequence Snapshot (The blue painted/cross-hatch/blank area
denotes batched execution (of which accelerator)/accelerator
configuration/idle state.) . 98

vi

LIST OF TABLES

Page

2.1 Definitions of Input Tasks/Parameters and Decision Variables for MILP
Formulation . 34

2.2 DNN Library Information (Data1/Data2/Data3 are
CIFAR10/CIFAR3/MNIST Datasets) . 38

2.3 Application Sets: sharing accelerators/parameters 39

3.1 Accelerator Models . 60
3.2 Responsiveness Analysis of the purposed framework with and without

deployment phase . 69
3.3 Comparison (Tout/Rsp denotes the number of timeout tasks/the average

response time.) . 70
3.4 Comparison of the proposed framework using the sequence-based or

clustering-based pattern extraction approaches on dynamic-input-workload
experiments . 72

4.1 DNN Accelerator Library: Inference Latency (ms) for DNN models under
different accelerator slot sizes . 88

4.2 Average Throughput (accelerator access per second) and Task Drop Rate
Comparison . 96

vii

LIST OF ALGORITHMS

Page
1 Sequence-Based Pattern Extraction . 51
2 Clustering-Based Pattern Extraction . 55
3 Adaptive Online Scheduler . 63
4 Learning-Based Dynamic Scheduling with Asynchronous Learning 89
5 Actor Process of Interacting with the Multi-accelerator Edge Environment . 91
6 Learner Process for Asynchronous Learning 91

viii

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Eli Bozorgzadeh, for
her invaluable insights and dedicated mentorship throughout my doctoral journey.

I would like to thank Professor Alex Nicolau and Professor Ian G. Harris for their time,
support, and feedback in serving as members of my dissertation committee.

It has been a great pleasure collaborating with Professor Ardalan Amiri Sani, Dr. Ahmad
Razavi, Tootiya Giyahchi, Mihnea Chirila, and Leming Cheng. I extend my sincere thanks
for their significant contributions to our endeavors.

I thank the Institute of Electrical and Electronics Engineers (IEEE) and the Association for
Computing Machinery (ACM) for giving me permission to include my previously published
papers in this dissertation.

Finally, the endeavor would not have been possible without the support of my wife and my
family. I would especially like to thank my wife, Allison. Her encouragement has been the
driving force behind my accomplishments, and I’m grateful for her presence throughout this
journey.

ix

VITA

Hsin-Yu Ting

EDUCATION

Doctor of Philosophy in Computer Science 2023
University of California, Irvine Irvine, California

Master of Science in Computer Science 2013
National Tsing Hua University HsinChu, Taiwan

Bachelor of Science in Computer Science 2011
National Yang Ming Chiao Tung University HsinChu, Taiwan

RESEARCH EXPERIENCE

Graduate Research Assistant 2016–2023
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2016–2023
University of California, Irvine Irvine, California

x

PUBLICATIONS

S. A. Razavi, H.-Y. Ting, T. Giyahchi, and E. Bozorgzadeh. On exploiting patterns for
robust fpga-based multi-accelerator edge computing systems. In 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 116–119. IEEE, 2022

M. Chirila, P. D’Alberto, H.-Y. Ting, A. Veidenbaum, and A. Nicolau. A heterogeneous
solution to the all-pairs shortest path problem using fpgas. In 2022 23rd International
Symposium on Quality Electronic Design (ISQED), pages 108–113. IEEE, 2022

H.-Y. Ting, T. Giyahchi, A. A. Sani, and E. Bozorgzadeh. Dynamic sharing in
multi-accelerators of neural networks on an fpga edge device. In 2020 IEEE 31st
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), pages 197–204. IEEE, 2020

H.-Y. Ting, A. A. Sani, and E. Bozorgzadeh. System services for reconfigurable hardware
acceleration in mobile devices. In 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–6. IEEE, 2018

xi

ABSTRACT OF THE DISSERTATION

System Software Support for FPGA-based Multi-Accelerator Architectures in Edge
Computing Systems

By

Hsin-Yu Ting

Doctor of Philosophy in Computer Science

University of California, Irvine, 2023

Professor Eli Bozorgzadeh, Chair

Edge computing plays a key role in providing low latency and high availability services for

emerging Internet of Things (IoT) applications. Recently, IoT devices are harnessing Deep

Neural Networks (DNNs) to empower intelligence capability. With the increasing

computing demands on IoT DNN applications, edge computing systems have evolved and

adapted to employ hardware accelerators to enhance the processing power alongside the

multi-core processors. Among hardware accelerators, Field Programmable Gate Arrays

(FPGAs) have gained increased attention due to their reconfigurability, high performance,

and power efficiency. The FPGA resource allows multiple workloads spatially co-locating

and concurrently executing on the shared FPGA resource. With the performance

variability due to application requirements and contention for the limited shared

computing resources, the edge system poses significant challenges for efficiently scheduling

and allocating resources for application tasks. In the absence of proper management, the

system could turn to sub-optimal resource partitioning and utilization, and increase

latency for completing applications. Therefore, modern edge systems require a flexible and

efficient mechanism to dynamically partition shared resources and schedule tasks based on

application requirements and available resources. However, in various IoT monitoring

systems, sensing occurs at a fixed rate, and, hence, the data is sent to the edge for

xii

acceleration periodically. When multiple IoT devices continuously send acceleration

requests to the edge, characteristics of applications in patterns can be observed. Such

regularity in patterns provides optimization opportunities for the system to support

multi-tenancy in sharing computing resources.

In the first part of the dissertation, I discuss the emerging edge computing systems that

facilitated IoT end devices’ compute-intensive tasks, i.e. DNNs, to be offloaded to the

edge. I address the efforts to the integration with FPGAs and the deployment of DNNs

on the resource-constrained edge. While efficiently managing task scheduling and resource

allocation among various concurrent DNN applications co-locating on a multi-accelerator

edge system becomes challenging, I discuss the current efforts made in the related resource

management approaches for the multi-tenant FPGA-based edge system and their limitations.

Given that DNN applications often have similar or shared types of requirements, e.g. dataset

types and accuracy, I focus on developing a DNN-Accelerator sharing system at the FPGA

edge device, that serves various DNN applications from multiple end devices simultaneously.

The proposed SharedDNN/PlanAhead policy exploits the regularity among requests for

various DNN accelerators and determines which accelerator to allocate for each request and

in what order to respond to the requests that achieve maximum responsiveness for a queue

of acceleration requests. My proposed framework exploits a priori known pattern of input

task arrivals and matches the suitable accelerators to the tasks according to the utilization

of shared FPGA resources and application’s requirements.

When multiple end devices are consistently sending tasks to the edge, there exist patterns

of applications in the task queue on the edge. I, then, present a systematic approach that

exploits the characteristics of applications in patterns and employs a mixed offline/online

multi-queue scheduling method to optimize responsiveness by reducing response time and

minimizing task drops for consistent IoT DNN workloads. The proposed framework not

only exploits the regularity of the historical data and extracts patterns but also provides

xiii

an adaptive online scheduler to mitigate the effect of noises and fluctuation due to network

delays and system workload congestion.

Lastly, considering that IoT applications can be event-driven, characterized by varying task

rates changing over time, the input workload experiences dynamic and uncertain changes.

To dynamically adapt to uncertainty and changes in input workloads, I demonstrate a

learning-based multi-accelerator management framework that asynchronously learns the

scheduling and allocation policy and dynamically partitions shared resources to maximize

system performance through interaction with the edge.

In this dissertation, I investigate the FPGA-based multi-accelerator management system

software to schedule and allocate tasks onto FPGA edge systems in the presence of various

IoT DNN workloads. The experimental results show significant improvements in response

time and task drops by exploiting the regularity of input workloads and deploying the

mixed offline/online-phase system software. In addition, when the workload experiences

dynamic and uncertain changes where the regularity of workloads becomes unpredictable

and hard to extract and generalize, I present a learning-based FPGA-based

multi-accelerator management framework that allows the system to capture these dynamics

and find an adaptive scheduling policy to accommodate the uncertainty. The experimental

results show improved average throughput and task drop rates compared to other

state-of-the-art heuristic and learning-based approaches.

xiv

Chapter 1

Introduction

In recent years, the Internet of Things (IoT) techniques have become widely adopted.

Internet of Things (IoT) refers to a network of devices, embedded with sensors and

software and connected to the internet, that, hence, can communicate and coordinate

between them and their users. This integration of IoT technologies spans various sectors,

encompassing smart homes, healthcare, industrial automation, smart cities, and more (See

Figure 1.1). These smart connected devices have the capability to collect, share, and

analyze information and may take relevant actions based on the insights accordingly. To

achieve this, IoT devices utilize sensors and processors to gather and analyze data acquired

from their environments. The collected data will be shared by sending to either a gateway

or other IoT devices. Subsequently, the data can be analyzed locally or sent to the cloud

for further processing [62, 114]. For instance, smart surveillance cameras, integrated into

the parking structures and streets, for smart cities can utilize IoT capabilities to monitor

public spaces. These cameras can not only capture real-time footage but also analyze the

data locally to identify potential security threats or unusual activities. The collected data

can also be transmitted to a centralized cloud infrastructure for more in-depth analysis and

long-term storage.

1

Figure 1.1: Applications of IoT in diverse fields (Source from [118])

2

Moreover, according to recent statistics reported by Statista [92], the number of IoT devices

in the world will reach over 15 billion by 2023, which has surpassed the current number

of people on Earth. It is forecast to be close to 30 billion by 2030 and would be a nearly

double increase from the IoT installed base in 2023. Another report on Statista [43] shows

the forecast of more than 75 billion IoT-connected devices in use by 2025. These numbers

are forecast differently. Getting the statistics on the actual numbers is difficult, but from all

these varying stats we can at least establish facts that the era of IoT technology is becoming

and the market is growing. While IoT devices heavily rely on cloud computing for processing

data, the surge in IoT devices presents challenges in managing and scaling centralized cloud

infrastructures. On the other hand, the surge in IoT devices is generating an unprecedented

amount of data, expected to reach 175 zettabytes (ZB) by 2025, according to a report by

IDC [40]. While this data holds immense potential for insights and innovation, the volume of

data poses significant challenges in terms of management and analysis. This data surge also

places a substantial burden on traditional cloud computing infrastructures where centralized

cloud servers deal with the vast volume and variability of data, leading to increased latency

and potential bottlenecks. In addition, the data generated by IoT devices can be sensitive

and personal, raising concerns about privacy and security. Therefore, there is a pressing

need for more efficient approaches to alleviate the strain on centralized servers and process

and analyze such vast and sensitive data.

1.1 Edge Computing in IoT Systems

Over the years, various concepts, such as VM-based cloudlets [115], and fog/edge computing

[35, 113, 32, 1], have been proposed from different perspectives to mitigate reliance on remote

cloud infrastructure. Since the VM-based cloudlets [115] was proposed, there have been great

efforts made to explore CPU-based edge offloading across various types of applications.

3

Figure 1.2: The edge nodes collaborated between themselves, end devices, and cloud nodes
(Source from [74])

4

Edge computing has emerged as a promising solution to address this challenge. The technique

involves decentralized processing, which is a distributed computing paradigm that brings

analysis and data storage closer to the data source, reducing the amount of data that needs

to be transmitted to the cloud [99, 147, 69]. As reference in [74], Figure 1.2 illustrates how

edge computing can coordinate between the IoT end, edge devices, and the cloud.

In edge computing, an edge node is a generic term that refers to any device, server, or gateway

that performs edge computing. According to IBM’s definition [38], an edge device may simply

have ARM or x86 class CPUs with 1 or 2 cores, and 128 MB of memory for special-purpose

work. Or it can be constructed with an industrial PC with 8, 16, or more cores of compute

capacity, and 16 GB of memory, which is typically used to run compute-intensive application

workloads and share services. For a use case example, consider a smart warehouse security

system that relies on cloud-based processing for analyzing video feeds from multiple cameras.

In a traditional setup, each camera captures footage and sends data to the cloud 24 hours

per day for analysis. The cloud servers process the video data, perform object detection, and

generate alerts for any suspicious activities. Using edge computing, the data are analyzed

directly at the local edge. The edge devices may only send relevant information, such as

detected anomalies or objects, to the cloud. This significantly reduces the amount of data

that needs to be transmitted to the cloud, which can help alleviate the burden on the cloud

and reduce network congestion. This approach can also help improve response times and

reduce latency, which can be critical in such security monitoring applications.

5

1.2 Deep Neural Network Applications in Edge

Computing

While edge computing enables real-time analysis of data, the IoT applications that run

Deep neural networks (DNNs) approaches benefit significantly from edge computing given

its capability of analyzing data in a timely manner. Deep neural networks, which are a subset

of machine learning algorithms, have been widely used since DNNs are capable of processing

big data and identifying complex patterns, making them ideal for applications that require

predictive analysis and decision-making in real-time. The fusion of IoT technologies with

the power of DNNs has led to great advancements in various domains [112]. For instance,

in smart healthcare, DNNs can be used to detect and diagnose early signs of skin cancer

and Alzheimer’s disease [126]. In smart cities, the intelligent traffic monitoring system uses

DNNs to monitor traffic flows [75, 140] and detect objects, such as pedestrians, on-road

vehicles, and unattended objects [77], or road accidents [17, 123]. Various methodologies of

using DNNs are studied to detect anomalies in intelligent video surveillance [96].

In DNN applications, the evolution of computer vision tasks has come to big accomplishment,

particularly following the success of a CNN-based model, called AlexNet [61], for image

classification. Subsequent advancements are like VGG [122], GoogLeNet [124], ResNet [30],

MobileNet [34], Inception [125], as well as other types of models tailored for object detection,

such as YOLO [108, 109], SSD [71]. These DNN models, resulting in a variety of accuracy and

compute complexity (which affects performance and resource utilization), have created a huge

design space. Figure 1.3 (Source from [8]) shows the representative neural networks in recent

years regarding their inference accuracy, compute complexity (i.e. amount of operations

required for a single forward pass), and the number of network parameters.

Also, there is a variety of neural network architectures proposed, including Convolutional

Neural Network (CNN) [64], Recurrent Neural Network (RNN) [121], Long Short Term

6

Figure 1.3: Variety of CNN-based models. (The size of the blobs is proportional to the
number of network parameters) (Source from [8])

7

Memory (LSTM) [121], etc. Each of them has demonstrated significant advancements in

their respective application domains. For example, CNNs excel in image processing tasks,

RNNs prove effective in sequential data analysis, and LSTMs address challenges in

modeling long-term dependencies. The variability of DNNs allows them to surpass in

diverse application scenarios, each benefiting from the strengths of specific neural network

architectures.

Figure 1.4: Some of the Popular DNN applications (Source from [98])

These DNN techniques are applied in IoT systems and have demonstrated exceptional

accuracy across many other domains, including image analysis, speech analysis,

recommendation systems, medical data analysis, etc [138, 69, 117, 98]. As referred in [98],

some of the main deep learning applications are visualized in Figure 1.4.

In recent years, the evolution of DNNs has led a trend towards increasingly larger models,

driven by the pursuit of enhanced accuracy and the ability to handle more complex tasks.

As the demand for pattern extraction, natural language processing, and sophisticated

decision-making grows, researchers are developing larger DNN architectures with higher

numbers of parameters to capture more features within data and provide complex data

analysis.

While DNN techniques are known powerful and growing more complex in processing big

data, the computational demands and memory overhead associated become concerns for

8

resource-constrained devices, which leads to efforts in investigating lightweight modelings.

Hyperdimensional Computing (HDC) is an emerging computational model, that utilizes

high-dimensional patterns for learning tasks, differing from traditional deep neural

networks that rely on layered architectures. The technique exhibits advantages such as

energy efficiency and smaller model size; however, it still has limitations and currently

achieves sub-par capability in complex applications compared to neural networks [76]. We

agree that HDC has the potential to address the challenge of learning tasks on limited

computation resources, but it’s still a relatively new field and has not yet been widely

adopted. DNNs are still dominant in edge computing. Therefore, in this dissertation, we

are focusing on the variants of optimized Deep Neural Network models. To optimize DNN

models, various techniques such as model compression, pruning, quantization,

generalization, and weight-sharing have been explored [56]. These approaches aim to

enhance the efficiency of deep learning models and may sacrifice accuracy, making them

more suitable for deployment on devices with limited computational resources and memory

capacity.

The combination of DNN model optimization techniques causes a larger and more

expansive design space, depending on other choices in architectures, hyperparameter

tuning, and training methodologies. This huge design space provides opportunities for a

wide range of DNN models to accommodate any specific application requirements. A

designer can decide DNN models according to the metrics of their application domains,

architectural types, and configurations, and adjust hyperparameters, such as learning rates,

layer size, and activation functions, to further optimize the model. However, such a wide

range of possibilities introduces challenges for the designer to find an optimal fit for DNN

models in IoT systems.

In addition to the data explosion, increased compute intensity, and expansive design

spaces, recent IoT applications also place a growing demand for near-real-time processing.

9

Many applications, such as those in autonomous vehicles, industrial automation, and

immersive experiences (e.g. augmented reality), require instant insights for timely

decision-making. This near-real-time demand enhances the challenges associated with

transmitting vast amounts of data to centralized cloud servers, as it introduces latency that

can impact the effectiveness of these applications. The demand on the IoT network and the

unreliable prolonged latency may not consistently meet the latency requirements for IoT

applications [5].

1.3 Hardware Acceleration of DNN applications on the

Edge

Rrunning compute-intensive DNN applications, even with reduced models, on a

general-purpose edge with a multi-core CPU may still fail to meet performance

requirements. To increase the computation capability and accommodate the real-time

demand of DNN applications, modern edges (also, clouds in data centers) are often

extended to incorporate accelerators, such as Field Programmable Gate Arrays (FPGAs)

[47, 48, 158], Graphics Processing Units (GPUs) [150, 145], and Application-Specific

Integrated Circuits (ASICs) [25], to increase the computation capability of

resource-constrained edge nodes and improve the processing power aligned with the

multi-cores [144]. Among these accelerators, ASICs are designed to perform specific logic

functions and can be optimized for that function. This makes them faster and more

efficient. However, they cannot perform any other task. This makes them less versatile

than GPUs and FPGAs. GPUs employ a Single-Instruction, Multiple-Data (SIMD)

architecture, offering high performance for highly parallel tasks and floating-point

operations. However, due to the nature of SIMD architecture, GPUs lack heterogeneity in

processing tasks, as all processing elements execute the same instruction on different data.

10

This limitation prevents fine-tuning for individual concurrent tasks and may result in high

power consumption. On the other hand, FPGAs provide high customization, allowing for

the selection of hardware parallelism and pipelining to achieve lower latency and better

energy efficiency. Despite that deploying applications on FPGAs demands a deeper

understanding of the hardware design process and requires expertise in FPGA

programming, there have been works and solutions to facilitate the application deployment.

For instance, the advancement of high-level synthesis (HLS) tools and development

toolkits, like Xilinx Vitis HLS [2], Intel OneAPI [42], LegUp [7], has been eased the

development of FPGA accelerators.

As Microsoft deploys FPGAs in its Bing search engine and Azure cloud [102] and Intel’s

significant acquisition of Altera for $16.7 billion [100], the integration of FPGAs into edges

and datacenters is recognized as a highly promising strategy for ensuring ongoing growth

in future computing infrastructure. The flexibility of the hardware architecture enables the

customization and reconfiguration of all on-chip logic blocks, which allows the adaption of

hardware to diverse workloads.

In most IoT systems, tasks are heterogeneous and come from a variety of data sources,

which results in high diversity but low latency requirement cases. The integration of

FPGAs also facilitates customized computation to meet the specific needs of diverse

applications. This is especially important given the escalating demand for computing

power and the diverse requirements of data processing within the limited-resource edge

nodes. Note that the resources on the edge node could be still limited compared to cloud

nodes in data centers. Besides, the edge computing workloads are prone to be unbalanced

and dynamically evolving [142, 41, 78] where tasks exhibit variability and may require

customized acceleration. FPGAs offer a distinctive advantage through the ability to

dynamically reconfigure individual accelerators and the entire FPGA fabrics in real-time

where, in contrast to the relatively fixed architecture of GPUs, GPUs are known for their

11

capabilities in highly parallel processing. The dynamic adaptability of FPGAs makes it a

well-suited solution that not only accommodates the diverse computation tasks inherent in

edge computing workloads but also enhances the overall efficiency and responsiveness of

edge computing systems. In IoT systems, Computer Vision (CV) applications stand as a

prime example of this dynamics. In IoT systems, devices equipped with cameras or sensors

capture and offload visual data to the edge, enabling tasks such as object detection, facial

recognition, and further object analysis. The workload dynamically fluctuates based on the

environment, events, or the number of connected devices. Furthermore, the end device may

occasionally preprocess data locally before transmission to the edge, which adds an

additional layer of complexity and dynamism to the edge computing environment.

In this dissertation, we are considering the edge device, incorporating the multi-core and

FPGA-based accelerators, that serve multiple end devices and share with task offloading

services for hardware acceleration on computer vision applications using DNNs, as our target

platform.

1.3.1 Deep Neural Network Models and Accelerators on FPGAs

In IoT systems, where the edge node is in closer proximity, DNN applications are executed

efficiently. For instance, a study in [51] implements a digital edge computing layer over a

Zynq board, serving as an edge, to achieve efficient image processing.

Modern DNNs involve millions of floating-point parameters and billions of floating-point

operations for one inference on the image. However, when deploying the DNN models to

hardware acceleration, the design and implementation of hardware for algorithms, as well as

the utilization of lightweight algorithms, are equally crucial for the practical operation on

resource-constrained edge devices.

12

Figure 1.5: Design Space created when combining CNN model pruning and hardware
parameters (Source from [59])

Since FPGAs provide high flexibility in customized hardware acceleration for neural

networks, there have been efforts to design low-complexity DNN models that are dedicated

to the custom accelerator architectures in various aspects, such as lower-precision

arithmetic with quantization and small memory footprint [157, 110, 132, 97, 91], and model

compression/pruning [31, 6, 59], where low latency and energy efficiency are achieved on

FPGA-based accelerators. In Figure 1.5, AdaServ [59] shows the design space that explores

the CNN model pruning and hardware parameters with a trade-off in accuracy versus

throughput (i.e. FPS) or energy. For highly low-cost DNN applications, the bit

quantization strategy can reduce computation to binarization, that is 1-bit in weight

parameters as Binarized Neural Network (BNN). [15, 105, 157] has been shown to achieve

high throughput (and minimized resource utilization) and still keep considerable accuracy.

Besides, a variety of FPGA-based hardware architectures [132, 155, 90, 67, 23, 149, 20, 49]

are also investigated to provide scalability toward different degrees of performance

requirement, resource utilization, and the depth of the neural network. CHaiDNN [9]

provides the DNN accelerator library that partitions DNN workloads into software and

hardware layers and runs them in parallel to improve inference throughput.

Other than fine-tuning the customized architecture, for exploring huge design space,

researchers have developed to systematically and efficiently explore the tradeoff between

accuracy and efficiency for hardware-efficient DNN models [28, 66, 50, 143].

While research in the field is still rapidly growing, the current emphasis on DNN in FPGA

13

acceleration primarily revolves around optimizing and deploying a single DNN accelerator

on the FPGA. This focus, while valuable for the specific application itself, may not be

sufficient in the context of edge computing scenarios where multiple tasks are currently

requested, leading to competition for shared computing resources. The complexity arises

with simultaneous task execution and resource contention, and, hence, developing an efficient

FPGA-based Multi-Accelerator management framework for the dynamic demands becomes

crucial for such FPGA-based edge computing environments.

1.4 System Software Support in Edge Computing

As discussed above, the edge computing technique not only alleviates the burden on the

centralized cloud infrastructure and reduces the cost of data transmission to the cloud but

also enhances real-time processing capabilities when it’s crucial for applications requiring

low latency. However, while edge computing offers significant advantages, it also comes with

its own set of limitations and challenges. One key challenge is the limited processing power

and storage capacity of edge devices compared to cloud servers. This constraint can impact

the complexity and scale of computations that can be performed at the edge. Additionally,

it poses another challenge in the increased complexity of managing layers of heterogeneous

computing nodes, networks, and storage infrastructures collaboratively.

For the aforementioned challenges, to still meet the low latency requirements, researchers

have investigated computation partitioning strategies among end devices, the edge nodes,

and the data center cloud [150, 52, 11, 57, 146]. The entire neural network (NN) can be

partitioned into parts or layers, with partial models deployed at various locations that could

be shared vertically between cloud-edge-end or among edges. Intermediate results from

one partial model are then forwarded to the subsequent higher layers of the overall model.

Neurosurgeon [52] is one work that evaluates each design point based on end-to-end latency

14

or mobile energy consumption. Then, it intelligently partitions DNN workloads layer-wise

into segments and decides whether each segment should be deployed on the end, the edge,

or the cloud while achieving the best latency and energy consumption of end devices.

In addition to task partitioning approaches in DNN applications, efficient task scheduling

and resource allocation on the edge node itself are also critical for optimizing system

performance and ensuring resource efficiency on the limited computational resources.

Through task scheduling and resource management strategies, the edge device can

prioritize DNN tasks based on their criticality, allocate resources dynamically, and adapt to

changing workloads. For example, DjiNN [29] investigates the DNN-as-a-Service support

for running multiple DNN services on a single-GPU server that achieves 100x throughput

gain compared to the CPU-only baseline, and, in addition, explores the scalability on

multiple GPUs. Clipper [16] provides a low-latency online prediction serving system that

features caching, adaptive batching, and model abstraction for DNN applications on a

single GPU server. In addition to GPU-based edge devices, our initial work [129] proposes

the service infrastructures of obtaining DNN-as-a-Service and allows multiple applications

to access accelerators simultaneously on an FPGA-based mobile edge prototype.

AmorphOS [55] provides the system support for FPGA acceleration in different modes to

improve performance and efficiency.

Other related works, like MCDNN [27], propose approximation-based DNN execution

systems on GPU-accelerated devices to determine selected DNN models in compromised

accuracy and performance/resource and initiate execution either remotely or locally.

In this dissertation, we are investigating the system software that provides efficient task

scheduling and resource allocation on a single edge node, that obtains multi-core and

FPGA-based accelerators. The edge node communicates and coordinates with multiple end

devices, and the system software on the edge aims to maximize the resource efficiency of

the shared DNN offloading services. The focus is on efficiently managing and processing

15

the offloaded DNN applications from end devices with accelerators on the edge device

itself, which doesn’t partition tasks and rely on remote computing in the cloud. The

system software not only dynamically allocates resources based on application demands

and accelerator availability but also schedules tasks regarding factors like task

dependencies and real-time workloads.

1.4.1 Multi-tenancy Support on the FPGA-based

Multi-Accelerator Edge

Deploying DNNs onto FPGA hardware acceleration is proven to be a promising approach

to improve the performance of DNN inference on edge devices. Existing works have shown

promising solutions for deploying DNNs onto FPGA hardware acceleration for enhancing

computational efficiency in real-time applications [3]. These efforts primarily concentrate on

deploying a single DNN accelerator on a dedicated FPGA device.

In edge computing, the computing resources are shared among multiple end devices,

requesting all sorts of accelerators to deploy for acceleration. In software processes,

time-multiplexing is a common technique for sharing CPU resources, where the CPU time

is divided into small time intervals known as time slices or quantum. Each user or process

is allocated a time slice during which it can execute its tasks, and the operating system

rapidly switches contexts between processes. However, applying a similar approach to

share FPGA resources in a temporal manner, such as switching FPGA accelerators

between applications, incurs overheads in setting up the FPGA fabrics for subsequent

hardware acceleration. Consequently, the benefits of hardware acceleration are

compromised by repetitive overhead in changing accelerators. Similarly, in hardware

accelerators, sharing FPGA resources on a First-Come, First-Serve (FCFS) basis for task

scheduling may involve significant overheads in switching FPGA accelerators between

16

applications as well. In addition to sharing resources in a temporal aspect, it’s also

common to co-locate different tenants’ workloads on the same server (e.g. hyper-threading

in multi-core CPUs) to increase utilization. However, sharing an FPGA is more complex

because applications will allocate physical spaces for accelerators on the chip, tenants can

have diverse requirements, and the demand can also fluctuate over time. As a result, the

FPGA edge can lead to contention and be fragmented in FPGA resources, impacting

overall performance, when there are concurrent executions of multiple accelerators and

diverse tasks on a shared FPGA edge. And the incurred transition overhead for the

re-configuration and re-allocation of accelerators increases dramatically. Some works

[70, 111] focus on directly reducing the overhead in reconfiguration operations to reduce

the transition overheads of reconfiguring and re-allocating accelerators.

To tackle the contention in FPGA resources and support multi-tenant DNN acceleration,

related works investigate time-multiplexing the DNN accelerator across multiple tasks for

temporal multi-tenancy supports. István et al. [45] apply a single-pipeline design principle

and state-machine-based logic to a multi-tenant approach for sharing an FPGA in the

cloud among tenants. However, they are limited to the same type of application with

different workloads and quality of service requirements. PREMA [14] introduces a

preemptive execution scheduling algorithm for DNNs on a monolithic accelerator, which

employs time-sharing techniques to facilitate multi-tenancy. AI-MT [4] focuses on

re-structuring the layer’s operations orchestrated with the proposed architecture that

enhances the resource efficiency of the accelerator to achieve multi-tenancy. Other related

works look into spatial multi-tenancy support where compute resources or memory

resources are spatially partitioned across applications, e.g. Planaria [24], GAMMA [53],

Mbongue, et al [82], etc.

Existing works in this domain tend to concentrate on either temporal or spatial multi-tenancy

support, presenting a limitation in achieving comprehensive global optimization.

17

In this dissertation, our targeted edge computing system is on the FPGA edge that has

multi-core CPUs and multiple FPGA-based accelerators. During runtime, the FPGA edge

system can reconfigure individual accelerators independently and re-partition the entire

FPGA resource into various numbers and sizes of DNN accelerators accordingly. The focus

is on scheduling tasks, which allows out-of-order execution, aligned with accelerator

allocation from a library of DNN accelerators where the tasks are in diverse workloads and

various demands. (See Figure 1.6)

Figure 1.6: The Theme of This Dissertation

1.5 Overview and Contributions of this dissertation

As discussed, multi-tenancy support on FPGAs is an emerging topic that has captured

researchers’ attention. This approach focuses on sharing FPGA resources among multiple

applications simultaneously. From the spatial multi-tenancy perspective, partitioning

FPGA resources into multiple accelerator slots allows various applications to concurrently

utilize FPGAs. These efforts improve the resource efficiency of FPGA and the system

throughput to process multiple tasks to some extent. However, they encounter limitations

in effectively sharing the same accelerators and managing various accelerator re-allocations

among multiple applications or tenants. On the other hand, the temporal multi-tenancy

support requires the capability of partitioning tasks into pipelined workloads orchestrated

18

with the customized hardware architecture, and tasks are preemptive and multiplexing

according to the time slice. In addition, existing multi-tenant platforms bind workloads to

specific accelerators or sub-arrays [24, 45, 65], which lacks the flexibility in exploiting the

regularity and dynamically allocating accelerators for diverse application requirements.

This leads to high transition overheads when migrating workloads between applications

during accelerator resource reallocation. Existing FPGA-based Multi-Accelerator system

software lacks joint consideration and optimization in both spatial and temporal

multi-tenancy support on FPGAs for dynamic workloads.

Moreover, current DNN serving systems process tasks from user-specified DNNmodels within

pre-allocated computing resources, which result in either unnecessary constraints or wasted

computing power. And the lack of dynamically sharing computing resources can even lower

resource utilization and efficiency. There are works [10, 58, 101] formulate the mapping search

as an optimization problem that models applications into a graph of dependent tasks for an

FPGA-based multi-accelerator system. The accelerator allocation is not determined by the

task itself from the user, which becomes flexible to map in compatible accelerators from

the system perspective; however, they are not considering the share of accelerators between

tasks, which could lead to unbalanced utilization of accelerators, and lack the consideration

for the migration of workloads.

In edge computing, the edge computing workloads are diverse and vary over time. While

processing various DNN workloads on the edge, the performance variability due to the

design of DNN models and contention for the limited shared computing resources poses

significant challenges to the edge system for efficiently scheduling and allocating resources

on application tasks. In the absence of proper management, the system could turn to

sub-optimal resource partitioning and utilization, and increase latency for completing

applications. Thus, edge systems require a flexible and efficient mechanism to dynamically

partition shared resources and schedule tasks based on diverse application requirements

19

and available resources. However, in IoT systems, e.g. smart surveillance systems, data are

often sampled periodically to monitor environments in a certain rate. These types of input

become more predictable and can have some patterns for us to exploit and enhance the

system support. while there are some patterns that can be exploited, there is always some

uncertainty and unexpected load that has to be considered, such as the event-based data or

noises under network congestion. Therefore, it’s worth investigating approaches to exploit

input workload characteristics to help the system in task scheduling and accelerator

allocation. And, so far, there have been quite some efforts studied in resource management

on general-purpose edge. However, they are not designed with compute resource scarcity or

custom acceleration in mind. In addition, due to the lack of consideration for the

heterogeneity and restriction in allocating computing resources, they are not suited for

multi-accelerator FPGA edge systems. For efforts on the FPGA edge, most are online

heuristic methods that find approximately optimal decisions and fail to exploit the input

workload characteristics.

The focus of this dissertation is on sharing FPGA-based accelerators and dynamically

allocating FPGA resources among user applications on an FPGA-based Multi-Accelerator

Edge. It is important to note that the system support is not restricted to FPGA

accelerators. The versatility of the proposed approach lies in its capability to model various

accelerator characteristics, e.g. CPUs and GPUs, ensuring efficient resource allocation and

sharing across diverse computing platforms.

Our target application is computer vision applications in IoT systems that utilize DNN

models. The FPGA edge serves various concurrent DNN applications requesting hardware

acceleration from diverse end devices. All devices send their tasks for acceleration

simultaneously, forming queues of requests that require real-time responsiveness. Our

application models are heterogeneous and do not bind the specific physical accelerator to

the edge. Due to the limited number of resources and time-consuming process of

20

accelerator re-allocation, sharing FPGA accelerators among different applications is crucial.

Also, scheduling multi-tenant executions and flexibly orchestrating available accelerators

based on applications’ requirements becomes significantly important since resources must

be dynamically reallocated to meet the distinct demands of concurrent workloads.

Therefore, we need system software support on the FPGA edge that exploits input

workload characteristics and jointly addresses both task scheduling and accelerator

allocation for the concurrent DNN execution. The system software aims to enhance

accelerator sharing and optimize overall FPGA resource utilization to accommodate diverse

input workloads originating from multiple end devices.

Given those challenges, in Chapter 2, I first propose the DNN accelerator sharing service

on the edge system. The framework uses the offline phase to determine the optimal policy

on task scheduling and each task’s corresponding allocated accelerator (referred to as

SharedDNN/PlanAhead). At runtime, our results show an overall 2.20x performance

gain at best and utilization improvement by reducing up to 27% of DNN library usage

while staying within the requests’ requirements and resource constraints. The DNN

accelerator sharing service, SharedDNN/PlanAhead, shows the benefit of temporal and

spatial sharing for the potential of optimization.

When the deployment environment is not sufficiently well-controlled, noises and uncertainties

can happen due to network delays and system workload congestion. Therefore, we can’t

assume a fixed pattern since an exact task order and arrival time can’t be forced. However, for

the computer vision applications in IoT systems, the data are consistently sampled and tasks

are sent periodically from end devices. When there are multiple end devices concurrently

sending tasks to the edge, there exist patterns of applications, formed in the task queue

on the Edge. In this case, I investigate data-driven approaches that exploit input workload

characteristics to further enhance the system. Therefore, in Chapter 3, I present a two-phase

systematic approach that not only exploits the characteristics of applications in patterns

21

and balances the multi-tenant execution but also employs a mixed offline/online multi-queue

scheduling method to optimize responsiveness by reducing response time and minimizing task

drops for consistent IoT DNN workloads. We proposed a clustering-based pattern extraction

approach that extracts characteristics for consistent input workloads and allows the variants

in workloads as well. For the online phase, we propose an adaptive online scheduler to

accommodate the network variation and mitigate the deviation from our planned schedule

from the offline phase. With this two-phase approach, the edge system can significantly

improve the responsiveness and robustness in serving multiple end devices where the task

drops are improved to zero.

Other than the stable monitoring system, there are more challenges. Considering IoT

applications mostly operate in an event-driven paradigm, characterized by varying task

rates changing over time, the input workload experiences dynamic and uncertain changes.

Then, the patterns of tasks become unpredictable and hard to extract and generalize in

sequences or clusters. To effectively capture these dynamics and find an adaptive

scheduling policy, in Chapter 4, I present a learning-based multi-accelerator management

framework. This framework asynchronously learns the scheduling and allocation policy,

dynamically partitioning shared resources to optimize system performance through

continuous interaction with the edge. The experimental results show that our proposed

framework outperforms related learning-based approaches and heuristic scheduling

schemes. It surpasses in terms of average throughput and task drop rates, showcasing its

efficiency in adapting to the dynamic workload changes inherent in IoT applications.

22

Chapter 2

Dynamic Sharing in

Multi-accelerators of Neural Networks

on an FPGA Edge Device

2.1 Introduction

Edge computing provides efficient data processing by minimizing the amount of

long-distance communication between IoT devices and the cloud server. Therefore, edge

nodes can reduce bandwidth occupation, latency, and energy consumption [147]. Hence,

edge devices have become a hub for real-time DNN applications and many

application-specialized DNN accelerators have been developed on the edge. In this context,

FPGAs are attractive accelerators due to their low power consumption and

reconfigurability, which makes them shareable as edge accelerators. Since the edge is a

shared commodity, there are various applications requesting access to the edge accelerators.

Figure 2.1 shows an overview of such an edge device: The FPGA edge can deploy different

23

Figure 2.1: Overview: FPGA Edge Serving Multiple IoT Applications

DNN accelerators and receive tasks from different end devices. All devices send their

requests for acceleration simultaneously and form a queue of requests demanding real-time

responsiveness. Given limited computing resources at the edge, sophisticated strategies for

edge devices are required to prioritize the tasks and to allocate the best acceleration

options that meet the task requirements, and yet, maximize the edge responsiveness.

We develop a DNN accelerator sharing system on the FPGA edge device such that

multiple users can access various DNN accelerators during runtime. We present an optimal

offline policy for accelerator allocation to each request. In this policy, the system software

determines which accelerator to use for each task given the user DNN model parameters.

In addition, we assume that requests to access accelerators are received at the edge with a

periodic pattern that knows a priori (using simple less-congested network models or

real-time wireless networks). We present a graph representation G to represent the tasks

and accelerators and show that the optimal policy is obtained by solving the min-cost

k-disjoint paths to this graph in an offline pre-deployment phase. To solve it, we present a

mixed-integer linear programming formulation of this problem. During deployment, while

each end device periodically sends requests to the edge , the runtime task manager maps

the tasks to the accelerators following the proposed offline policy (referred to as

SharedDNN/PlanAhead). Our proposed framework is applied on a set of end devices

sending requests to access FPGA-based DNN accelerators for vision applications such as

24

object detection and classifications. The requests are all sent wirelessly at fixed periodic

rates and each request includes user DNN model parameters. The framework develops an

acceleration service both at offline pre-deployment and runtime deployment phases on the

FPGA edge. Hence, using the offline phase of our framework, we determine the optimal

policy on accelerator allocation and execution of the tasks on those accelerators. At

runtime, our results show that at best the overall speedup can achieve 2.20x performance

gain and utilization improvement by reducing up to 27% of DNN library usage.

In this chapter, we are targeting an edge equipped with a library of FPGA-based binarized

DNN accelerators. Applications send their acceleration requests and our proposed DNN

acceleration service efficiently determines which accelerators and slots to select for each

request and in which order the requests are responded to. To the best of our knowledge,

our proposed DNN accelerator sharing service is the first effort in edge-based

DNN-accelerator sharing service where we exploit FPGA reconfigurability and consider the

trade-off between performance and accuracy of DNN models to share the accelerators on

an FPGA edge to respond to a queue of incoming requests to access the accelerators from

multiple applications.

2.2 Edge FPGA-based DNN Accelerator Sharing

System

Many IoT applications monitor the environment by regularly sensing and processing the data

in real-time. For example, in vision applications, various end devices capture the images from

the environment and apply vision algorithms such as object detection/classifications or object

tracking. While multiple end devices send their data to the edge to run vision algorithms at a

fixed periodic rate, the edge receives a stream of requests from multiple end devices to access

25

the edge computational resources at the same time. Given that each end device submits

their request at a fixed rate, under stable and simple wireless communication, we observed

periodic patterns in the arrival of the requests at the edge. (Figure 2.2, for example, if a DNN

accelerator is requested by an end device for object classification at 3 fps and another device

requests access to a DNN accelerator at 2 fps, and another one at 5 fps, we observe patterns

in the arrival of the tasks at the edge). In this chapter, given a simple network model,

we assume this pattern is extracted empirically. The pattern of requests to access FPGA

accelerators is then used at the pre-deployment phase to dynamically allocate accelerators to

each request and re-order the execution, if necessary, to enhance the edge responsiveness to

the queue of requests to access edge FPGA accelerators. This work develops an acceleration

service both at the pre-deployment and deployment phases of IoT systems to access multiple

DNN accelerators on the FPGA edge.

1

2

3

A
p

p
lic

at
io

n
 ID

Time

Figure 2.2: Example Pattern of Receiving Tasks at The Edge from Applications #1-3. (#1
at 2 fps, #2 at 5 fps, and #3 at 3 fps)

DNN algorithms with significantly reduced computational loads have shown to be

promising solutions in the real-time response of vision algorithms in IoT systems with

acceptable accuracy [28]. As mentioned in related work, there are several state-of-the-art

FPGA designs such as binarized DNN algorithms on FPGA, making them viable

candidates as accelerators on FPGA edge devices. As resource-efficient accelerators,

multiple DNN accelerators can fit on an FPGA device, hence, enabling parallelism. While

26

reconfiguring an FPGA-based DNN accelerator requires only a few milliseconds, it allows

the system to switch accelerators between applications at runtime.

Many users request their specific FPGA-based DNN accelerator to perform inference for

vision applications, e.g. object detection, based on various factors, such as performance,

inference accuracy, target dataset, and DNN model of the accelerators. To perform DNN

acceleration, such DNN models have to be trained in advance, which determine inference

accuracy and the target dataset for inference. The DNN model’s network topology will

influence compute complexity as well as inference speed. The same network topology can

also apply to other DNN models and train for other target datasets, which results in various

inference accuracies. Then, the DNN topology can be implemented in different architectures

for hardware acceleration, which also affects the performance. Hence, different DNN models’

hardware acceleration may share the same DNN accelerator but acquire different DNN model

parameters. However, this can still lead to requests to access a large diverse set of accelerators

by various applications and users at the edge while FPGA resources are shared to access

those accelerators. In order to have more effective utilization of FPGA resources, we propose

the system software to allocate the accelerators to each task instead of users. Each user

request, instead, contains the target dataset and accuracy requirement along with the DNN

model, not a specific DNN accelerator. While the acceleration request is received on the edge

device, it is sent to the common task queue. Since the patterns of incoming requests are

known a priori, the expected requests in the queue along with their DNN model parameters

are deployed during the offline phase to find a matching accelerator for each task while

effectively enhancing responsiveness to all requests. In order to achieve this, it aims to avoid

too many FPGA acceleration reconfiguration and accelerator swapping.

In Figure 2.3, the edge sharing system is applied to the FPGA edge, containing embedded

processors and multiple accelerator slots. As mentioned earlier, we assume that input task

arrivals in a finite time horizon T come with a priori known expected pattern. Hence, the

27

Edge Sharing System
End

Devices

Data&Request

Parameter

Library

Deployed DNN

Library

Configuration

Library

Runtime Task

Manager

Configuration

Manager

H
a
rd

w
a
r
e

Scheduling

Decision

Parameter

Manager

S
o
ft

w
a
re

Peripherals

(USB, Network, etc)

APU Quad Core

Cortex-A53+OCM

DRAM Memory

Controller

Processing System

Programmable Logic

 Accelerator Slot #0 Acc. Slot #1

AXI System Bus

Acc. Slot #2

Task Queue

Figure 2.3: Overview: Edge FPGA-based DNN Accelerator Sharing System

28

offline pre-deployment phase will determine the expected order to run the incoming requests

to access the accelerators. In addition, it determines which accelerator and which accelerator

slot is used for each task request. Given that each request from an application is considered

independent from the next requests, the consecutive requests from the same user or end

device to access DNN accelerators may be mapped to different accelerators and slots. Also,

the requests can respond totally out of order of their arrivals in the queue. That is why we

call this phase ”Static Out-of-order DNN-accelerator Sharing systems” or simply referred to

as SharedDNN/PlanAhead.

During deployment, while each end device periodically sends requests to the edge to access

FPGA DNN accelerators, the runtime task manager maps the tasks to the accelerators

following the offline policy determined by the SharedDNN/PlanAhead phase. The

configuration bitstreams of each utilized DNN model are stored in a configuration library,

and the configuration manager reconfigures the individual accelerator slots in the FPGA

accordingly, driven by the runtime task manager. The weight/threshold parameters of each

DNN model are stored in a parameter library, and the parameter manager loads to the

corresponding accelerator slots, driven by the runtime task manager as well.

2.3 SharedDNN/PlanAhead: Offline Out-of-Order

DNN-Accelerator Sharing Policy

The problem of Shared-DNN static scheduling is stated as follows: We are given a queue of

requests to access DNN accelerators on the edge FPGA device from multiple end users or IoT

end devices. Each request includes a set of requirements of DNN models such as accuracy,

datasets, etc. The FPGA edge has a rich collection of binarized DNN configurations to select

from, to implement, and to run the accelerator in response to each request while meeting

29

the user DNN model requirements. We assume that multiple accelerators can be potentially

placed and implemented on the FPGA and hence, multiple accelerators can be deployed in

parallel. If the accelerator requested by the user does not exist on the FPGA accelerator slots,

the FPGA invokes a runtime partial reconfiguration to allocate a new accelerator. Given the

queue of requests in a given order, the problem is how to allocate DNN accelerators for each

request and in what order to execute the accelerators such that the total execution time of

all accelerators corresponding to all the requests are minimized.

Assume there are k accelerator slots on FPGA. Each slot can be reconfigured to implement

a subset of DNN accelerators from the libraries if the resources in the slot are sufficient for

the implementation of those accelerators (one at a time). We are also given a queue of tasks

(or requests) T = T1, T2,, Tn and would like to map each task Ti to a DNN accelerator

Accj such that the total elapsed time to finish execution of all requested accelerations is

minimized. The tasks are allowed to be re-ordered (or partially) and do not necessarily

follow their temporal ordering in the ready queue. We first present a graph representation

and map the problem to find the min-cost k disjoint paths problem in this graph. We

present a mixed-integer linear programming (MILP) formulation of the problem to be solved

by mathematical programming solvers such as IBM CPLEX® Optimizer [39].

End

Deployed DNN Library

Acc#4 Acc#5 Acc#6

Acc#1 Acc#2 Acc#3

Acc#7 Acc#8 Acc#9

T1T2T3T4…

T1
T2

T3 T4

Acc

#1-1

Acc

#2-1

Acc

#4-1

Acc

#5-1

Acc

#6-1

Acc

#3-1

Acc

#1-1

Acc

#2-1

Acc

#4-1

Acc

#3-1

Acc

#4-2

Acc

#5-2

Acc

#6-2

Acc

#7-3

Acc

#8-3

Acc

#9-3

Begin

(a) Input Task/Parameter and

Graph Representation

Acc

#1-2

Acc

#2-2

Acc

#4-2

Acc

#3-2

Acc

#1-3

Acc

#2-3

Acc

#4-3

Acc

#3-3

(b) Example directed edges associated with Acc #4-2

in subgraph T3 and other Acc #7-3 in subgraph T4

T3

T4

Acc

#4-2

Acc

#5-2

Acc

#6-2

Acc

#7-3

Acc

#8-3

Acc

#9-3Peripherals

(USB, Network,

etc)

APU Quad Core

Cortex-A53+OCM

DRAM Memory

Controller

Processing System

Programmable Logic

 Accelerator

Slot #0

Acc. Slot

#1

AXI System Bus

Acc. Slot

#2

Figure 2.4: Graph Representation of Tasks And Accelerators

30

2.3.1 Graph Representation of Tasks and Accelerators

We introduce graph G to represent all the tasks in the request queue within time interval

T . This graph requires not only to reflect the mapping and allocation of each task to

an accelerator but also to provide an ordering of execution of the tasks on the designated

accelerators. Graph G = (V,E) is composed of a set of nodes V and an edge set E. Each

node represents a task being mapped to an accelerator. Given each user’s requested DNN

model parameters such as dataset, accuracy, etc., various DNN accelerators are qualified to

execute this task. Hence, in graph G, we introduce subgraph Ti associated with each task i

in the queue. The nodes in such a subgraph represent all the potential eligible accelerators

to execute task Ti.

Figure 2.4(a) shows an example of graph G for a given set of tasks T = {T1, T2, T3, T4}, DNN

library, and the hardware configuration setting (see Section 2.4.1). Let’s assume a node

labeled as ”Acc. #i-j” represents a DNN accelerator with ID i using dataset j. For example,

in Figure 2.4(a), accelerator #1 using dataset #1, named Acc. #1-1, which satisfies the

requirements of task T1, will be included in subgraph T1. Since accelerator #1 using dataset

#1 can also meet task T2’s requirement, it’s also included in the subgraph T2. Hence, Graph

G is composed of N such subgraphs (Ti) representing all the tasks in the queue.

In this graph, directed edges are introduced between the nodes across subgraphs Ti, i =

1, 2..., N . The edges between the subgraphs are defined as follows: A directed edge between

any node from one subgraph to another represents the ordering of execution of the two

tasks in one accelerator slot. For example, an edge from the node labeled as ”Acc. #1-1”

(from subgraph T1) to a node labeled as ”Acc. #1-1” (from subgraph T2) means that task

2 executes on a DNN accelerator with ID 1 and with dataset 1 after the execution of task 1

on the same accelerator with the same dataset in the same accelerator slot. Given that both

nodes have the same accelerator and dataset, there is no need for partial reconfiguration

31

and parameter reload. Besides, there might be no directed edges between any two nodes

from one subgraph to another if the corresponding accelerator slot can’t fit either one of the

accelerators, e.g., in Figure 2.4(b), no directed edges between Acc. #5-2 in subgraph T3 and

Acc. #7-3 in subgraph T4.

The cost on the directed edge reflects the transition delay overhead between the two task

execution, including the partial reconfiguration overhead (to replace with a new accelerator)

and/or time overhead to re-load DNN parameters. For example, in Figure 2.4(b), the cost

on the edge from Acc. #4-2 in subgraph T3 to Acc. #7-3 in subgraph T4 includes both the

partial reconfiguration overhead and the time overhead since the FPGA slot is reconfigured

to implement accelerator ID 7 after execution on accelerator ID 4 is finished. On the other

hand, the transition overhead on the edge from Acc. #1-1 in subgraph T1 to Acc. #1-2 in

subgraph T2 includes only the time overhead to reload the new parameters for DNN. Since

an edge imposes the ordering between the two tasks, the subgraph associated with each task

Ti is an independent set in the graph.

Directed path in graph G: A directed path in graph G that covers a subset of subgraphs

represents the consecutive execution of those tasks on the accelerators corresponding to

their nodes along the path. Covering a subgraph means to cover at least one node in each

subgraph. The execution time for each task can be considered as the cost of the node and

the reconfiguration time overhead is the cost of the edges along the paths. Hence, the total

cost of the path is the total elapsed time to execute those tasks and the transition time

overhead to reconfigure the accelerators when necessary. Each task is only executed on one

accelerator and hence, exactly one node from each subgraph associated with each task has

to belong to a directed path. This is referred to as uniqueness in path selection.

Since the directed path refers to the sequential execution of the tasks along the path, it refers

to the ordering of runtime accelerator implementation and task execution in only one FPGA

accelerator slot. If there is only one slot (one accelerator at a time), then the problem of

32

allocating each task to an accelerator is to find a directed path that covers exactly one node

from each subgraph.

When there is more than one slot for accelerators on FPGAs and more than one accelerator

can run in parallel, the tasks do not need to all belong to one directed path. In this case,

each directed path represents one slot. Each directed path represents the sequence of tasks

execution on the accelerators placed in that slot. Hence, for 3 slots on FPGAs, we need to

find 3 directed paths in graph G such that all the subgraphs associated with each task is

covered. In addition, we have to make sure only one node from each subgraph is selected.

Finding k disjoints path in this graph solves the problem and allocates an accelerator to each

task. In Figure 2.4(a), the FPGA edge contains two accelerator slots (L and M). Therefore,

we need to find two disjoint paths and cover all the subgraphs to provide a feasible ordering

for all the tasks. If we find two disjoint paths with minimum total cost (minimizing the

maximum cost of the paths), we have identified the optimal solution.

Since the directed paths do not keep the initial ordering of the tasks in the queue, we call

it out-of-order responsiveness to user requests to access accelerators on an FPGA edge. If

the partial temporal ordering of the tasks in the queue needs to be preserved, we remove

the direct edges between the nodes of those subgraphs that result in violating the ordering

imposed by the user or application policy.

In the next section, we present a mathematical problem formulation of this problem using

mixed-integer linear programming.

2.3.2 Mixed Integer Linear Programming Formulation

We present a mixed integer linear programming (MILP) formulation of the problem. We have

a set of N tasks, representing N={1, 2, ..., N} and a set of accelerator slots K={1, 2, ..., K}.

33

Table 2.1: Definitions of Input Tasks/Parameters and Decision Variables for MILP
Formulation

Input Task/Parameter
dsi Target dataset for inference of

task i
aci Accuracy requirement for

inference of task i
tai, tpi Arrival time and relative period

of task i

tempi,j Indicate if task i and j are
sensitive to the temporal order

dnni Selected accelerator from DNN
library satisfying the requirement
of task i

dnn2dsu,p Inference accuracy on DNN u
using dataset p

dnn2slotu,k Indicate if DNN u can fit in Slot
k

dpd(dsi, p) Indicate if target dataset of task
i is dependant to dataset p

opri:u,jv,k Reconfiguration overhead from
DNN u running task i to DNN v
running task j in Slot k

oreli:p,j:q,k Parameter reload overhead from
task i using dataset p to task j
using dataset q in Slot k

tei:u,k Execution time on DNN u
running task i in Slot k

Decision Variable
consi:u:p,j:v:q,k Indicates if DNN u running task

i using dataset p and DNN v
running task j using dataset q
in Slot k are executed in a
consecutive order.

impi:u:p,k Indicates if DNN u running task i
using dataset p is implemented
in Slot k

tssi:u:p,k Scheduled start time of DNN u
running task i using dataset p in
Slot k

34

Table 2.1 lists the input tasks, task parameters, and decision variables for the proposed

MILP formulation.

1. Uniqueness and Disjoint Path Constraint: Each task is executed exactly once

and allocated to an accelerator from the DNN library.

∑
j∈N

∑
v∈dnnj

∑
q∈dsj

consi:u:p,j:v:q,k = impi:u:p,k,

∀i ∈ N,∀u ∈ dnni,∀p ∈ dsi, ∀k ∈ K

(2.1)

∑
u∈dnni

∑
p∈dsi

∑
k∈K

impi:u:p,k = 1,∀i ∈ N (2.2)

2. Flow Constraint: If on path k, there is an edge to the node of the DNN w running

task i using dataset o, then there is an edge starting from this node to another node

on the same path k.

∑
i∈N

∑
u∈dnni

∑
p∈dsi

consi:u:p,h:w:o,k =
∑
j∈N

∑
v∈dnnj

∑
q∈dsj

consh:w:o,j:v:q,k,

∀h ∈ N, ∀w ∈ dnnh,∀o ∈ dsh,∀k ∈ K

(2.3)

3. Timing Constraint: When there are two consecutive nodes on the same path k,

the second node will not start until the accomplishment of the first one. And each

scheduled node will never start before its arrival.

consi:u:p,j:v:q,k == 1 =⇒ tssi:u:p,k + opri:u,j:v,k + oreli:p,j:q,k + tei:u,k ≤ tssj:v:q,k,

∀i, j ∈ N, ∀u, v ∈ dnn{i,j},∀p, q ∈ ds{i,j},∀k ∈ K

(2.4)

35

impi:u:p,k == 1 =⇒ tai ≤ tssi:u:p,k,

∀i ∈ N,∀u ∈ dnni, ∀p ∈ dsi,∀k ∈ K

(2.5)

4. Accelerator Slot Constraint: The FPGA fabric each accelerator slot can vary,

which might not be able to fit large DNN accelerators. This constraint makes sure

such accelerators will not be allocated to the slot.

dnn2slot(u, k) == 0 =⇒ impi:u:p,k = false,

∀i ∈ N,∀u ∈ dnni, ∀p ∈ dsi, k ∈ K

(2.6)

5. Dependent Dataset Constraint: While some targeted dataset is related or a subset

of other datasets due to the less need of classes for IoT devices. This constraint will

make sure the migration of the target dataset to other dependent datasets can still

meet the accuracy requirement.

dpd(dsi, p) == 0 OR (dnn2dsu,p < aci) =⇒ consi:u:p,j:v:q,k = 0,

∀i, j ∈ N,∀u, v ∈ dnn{i,j},∀p, q ∈ ds{i,j}, k ∈ K

(2.7)

6. Temporal Ordering Constraint: Some tasks are sensitive to temporal ordering,

such as human actions for applications. Tasks with such constraints will be processed

in chronological order.

tempi,j == 1 =⇒ tssi:u:p:k ≤ tssj:v:q:k,

∀i, j ∈ N,∀u, v ∈ dnn{i,j},∀p, q ∈ ds{i,j}, k ∈ K

(2.8)

36

7. Objective: To achieve maximum responsiveness, the objective function is to

minimize the maximum elapsed time to the end node while all the tasks are

scheduled on the given accelerator slot configuration. The formula is in the following:

min(max(tssend,,k,∀k ∈ K))

2.4 Evaluation

2.4.1 Platform Setup

The edge FPGA-based DNN accelerator sharing system is deployed on a Xilinx Ultrascale+

MPSoC ZCU104 board. We partitioned the FPGA fabric into multiple various-size

accelerator slots. Each accelerator slot can be occupied by different DNN accelerators. The

bigger accelerator slots, obtaining more amount of FPGA fabric, can fit bigger and then

more powerful DNN accelerators. Considering the resource utilization of our deployed

DNN library, the FPGA edge is allowed to have one of the three configuration settings:

• One large and one medium accelerator slots (LM)

• One large and two small accelerator slots (LSS)

• One small and two medium accelerator slots (MMS)

The time to reconfigure individual L/M/S slots varies in 120/105/90 milliseconds related to

the amount of FPGA fabric. Our edge-sharing system then provides multiple accelerators

serving vision applications simultaneously and applies different DNN accelerators to each slot

by downloading partial bitstream files as well as partial reconfiguration. The edge-sharing

system can dynamically share the FPGA while the system is still operational among multiple

tasks without interruption.

37

Based on our FPGA edge’s computing resources and configuration settings, Table 2.2 shows

nine accelerators in our DNN library before deployment for our experiments. The listed

accelerators are modified versions of Binarized Neural Network accelerators, e.g. [132], with

different optimizing factors so they can be accommodated properly given the size limitations

of slots and also to meet the required performance, e.g. accelerator 1 to 3 are obtaining the

same DNN topology but different hardware architectures, same as accelerator 4 to 6, and

7 to 9. Since Dataset1 (cifar10) and Dataset2 (cifar3) are dependent datasets, they can be

trained with the same DNN topology and maintain decent accuracy. However, the target

dataset in accelerator 7 to 9 is independent to the dataset in accelerator 1 to 6, so the DNN

model for other datasets are not trained for those accelerators.

Table 2.2: DNN Library Information (Data1/Data2/Data3 are CIFAR10/CIFAR3/MNIST
Datasets)

Accelerator Perf. (fps)† Data1 Data2 Data3 Slots
1 33 80.10 90.42 - (L)
2 20 80.10 90.42 - (L, M)
3 10 80.10 90.42 - (L, M, S)
4 20 84.33 92.91 - (L)
5 10 84.33 92.91 - (L, M)
6 5 84.33 92.91 - (L, M, S)
7 33 - - 98.55 (L)
8 20 - - 98.55 (L, M)
9 10 - - 98.55 (L, M, S)

† the frame resolution is 640 × 480 pixels

2.4.2 Workload and Application Characteristics

In our experiments, we assumed four end devices periodically sending requests for

acceleration to the FPGA edge. Four end devices and the FPGA edge communicate

through a dedicated wireless router access point. There are three different workloads:

HIGH, MEDIUM, and LOW representing an average of 60, 46.6, and 30 fps in total for the

four end devices respectively.

38

Each workload explores four application sets that individual applications are targeting

different fps, datasets, and accuracy to leverage utilizing different DNN libraries. Table 2.3

shows different settings for applications that result in sharing DNN

accelerators/parameters or not. Application set 1 allows sharing the DNN accelerator

between Application #1, #2, and #3. The target dataset running on application #2 and

#3 can also be migrated to the dependent dataset, Data1, within the accuracy

requirement. Sharing the DNN accelerator happened in Set 2 as well, but not the share of

DNN parameters; thus, the reload overhead was compromised. Set 3 and 4 both are in the

tradeoff between sharing accelerators with less performance, or dedicated accelerators with

transition overheads, including reconfiguration and reload overhead.

Table 2.3: Application Sets: sharing accelerators/parameters

Application#1 Application#2 Application#3 Application#4
Set (Data, Accuracy) (Data, Accuracy) (Data, Accuracy) (Data, Accuracy)
1 (Data1, 80) (Data2, 80) (Data2, 80) (Data3, 90)
2 (Data1, 80) (Data2, 80) (Data2, 90) (Data3, 90)
3 (Data1, 80) (Data2, 80) (Data2, 92) (Data3, 90)
4 (Data1, 84) (Data2, 80) (Data2, 80) (Data3, 90)

We generate the synthetic benchmark in the offline phase of our framework to perform the

scheduling decisions. While the edge-sharing system, Figure 2.3, is receiving acceleration

requests from the end devices in a wireless network, there is network congestion, TCP/IP,

or other indeterministic network policies, and uncertainty to the wireless communication.

Therefore, the requests from applications are not received at the edge with a fixed expected

pattern; hence we assume a 30% randomized deviation in the continuous task requests

from the four applications using the synthetic benchmark. We evaluate the end-to-end

performance on the FPGA edge and average the result of one hundred times randomly

deviated input for each application set. Although the proposed SharedDNN/PlanAhead

policy has proceeded to a static scheduling decision from the given synthetic benchmark,

our runtime task manager handles the deviation of continuous task requests in respect of

39

the static scheduling decision.

2.4.3 Experimental Results

To evaluate the efficiency of our proposed framework and sharing policy,

SharedDNN/PlanAhead, we measured its improvements in performance and utilization

in comparison with two other methods: FixedDNN/FCFS, and SharedDNN/FCFS.

Here are the descriptions of these three methods that we ran against each other:

1. FixedDNN/FCFS allocates one individual accelerator slot and selects the qualified

DNN library only for the first acceleration request from each application. That is,

tasks within each application will be fixed to the assigned accelerator and slot. Any

task assigned to the same individual slot will be executed in order of their arrival, i.e.

First-Come-First-Serve (FCFS).

2. SharedDNN/FCFS allocates one individual accelerator slot, that is currently in an

idle state, and selects the qualified DNN library for each acceleration request in the task

queue. As a result, tasks within each application might not be fixed to one accelerator

and the slot. In the SharedDNN/FCFS policy, accelerators and slots are shared

among tasks and applications. All tasks will be still executed in order of their arrival,

i.e. FCFS.

3. SharedDNN/PlanAhead is our proposed offline-scheduling policy that not only allows

sharing accelerators and slots among tasks but also prioritizes the task scheduling to

achieve maximum responsiveness within the target dataset and accuracy requirement.

For simplicity, we use Fixed, Shared, and PlanAhead to represent FixedDNN/FCFS,

SharedDNN/FCFS, and SharedDNN/PlanAhead policies.

40

0

0.5

1

1.5

2

2.5

Application Set #1

0

0.5

1

1.5

2

2.5

Application Set #2

0

0.5

1

1.5

2

2.5

HIGH MED LOW HIGH MED LOW HIGH MED LOW

LM LSS MMS

Application Set #3

Fixed Shared PlanAhead

0

0.5

1

1.5

2

2.5

HIGH MED LOW HIGH MED LOW HIGH MED LOW

LM LSS MMS

Application Set #4

Fixed Shared PlanAhead

Figure 2.5: Speedup each Application Sets #1-4 with HIGH/MEDIUM/LOW Workloads
(Baseline: FixedDNN/FCFS policy)

We evaluate the above three scheduling policies with the exploration of HIGH, MEDIUM,

and LOW workload, and three configuration settings, {LM, LSS, MMS}, together with the

deployed DNN library in Table 2.2. We assume four end devices continuously sending task

requests to the FPGA edge. Although the proposed PlanAhead policy performs the

scheduling decision from the synthetic benchmark, the runtime task manager refers to the

static scheduling and is flexible to accommodate task requests considering the network

congestion. Our runtime task manager halts the individual accelerator slot when the

expected task from static scheduling is delayed due to the deviation of continuous task

requests, which is introduced by the network congestion.

Figure 2.5 shows the average speedup of application sets #1-4. In application set #1,

the application characteristic implies sharing DNN accelerators and parameters between

applications #1-#3 due to their low accuracy requirements and dependent datasets. As a

result, the Shared policy obtains little performance gain in application set #1 compared to

41

the Fixed policy, which has applications fixed to the assigned accelerators. However, our

proposed PlanAhead policy can still acquire up to 2.35x speedup via well-distributing tasks

among accelerator slots on application set #1. Also, application sets #3 and #4 involve

the trade-off between sharing large accelerators and allocating dedicated accelerators that

our proposed PlanAhead policy considers the correlation of sharing accelerators and the

application characteristic, as a result, achieves up to 2.49x speedup.

0

0.5

1

1.5

2

2.5

HIGH MED LOW HIGH MED LOW HIGH MED LOW

LM LSS MMS

Fixed

Shared

PlanAhead

Figure 2.6: Overall Speedup with HIGH/MEDIUM/LOW Workloads (Baseline:
FixedDNN/FCFS policy)

The overall average speedup on each workload and configuration setting is shown in Figure

2.6. In the LM configuration setting, the Shared policy marginally improves the performance

compared to the Fixed policy since the two slots are already highly shared with multiple

individual tasks. On the other hand, in the LSS, MMS configuration settings, the Shared

policy obtains slightly better speedup due to the increase of individual slots for sharing. But,

in all workloads and configuration settings, our proposed PlanAhead policy outperforms the

Fixed and Shared policy.

42

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LM LS
S

M
M
S

LM LS
S

M
M
S

LM LS
S

M
M
S

HIGH MED LOW

Fixed

LM LS
S

M
M
S

LM LS
S

M
M
S

LM LS
S

M
M
S

HIGH MED LOW

Shared

LM LS
S

M
M
S

LM LS
S

M
M
S

LM LS
S

M
M
S

HIGH MED LOW

PlanAhead

Idle

Relo

Recf

Exec

Figure 2.7: Runtime Distribution: Fixed/Shared/PlanAhead

The benefit of sharing in Shared is amortized due to the recurring transition overhead,

including reconfiguration and reload overhead. While, in Fixed, the applications and slots

are one-to-one paired, the edge system is not compromised to the recurring

reconfiguration/reload overhead. Figure 2.7 demonstrates the time distribution across

idle/reload/reconfigure/execution. The Fixed policy has shown less transition overhead;

however, it failed to balance the load among each application for various sizes of slots,

which results in more idle states of slots.

In contrast, the Shared policy shares the accelerator slots to reduce the idle state of slots.

It, instead, suffers from spending the most time on the transition overhead, updating the

accelerators and parameters, which massively penalizes the use of sharing accelerators. In

terms of the conflict between sharing and transition overhead, our proposed PlanAhead

policy considers sharing accelerators, slots, and characteristics of acceleration requests in a

task queue that prioritizes the schedule and allocation for each task. Especially in a highly

43

shared configuration setting, LM, when the workload is high, the average speedup achieves

2.20x. And the runtime distribution shows that the transition overhead has greatly reduced.

Our current runtime task manager is simply halting the accelerator slot for the delayed

tasks, which come from the injected deviation under the network congestion. As a result, the

edge-sharing system is subjected to a 10%-23% idle state but still obtains great performance

gain.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

HIGH MED LOW HIGH MED LOW HIGH MED LOW

LM LSS MMS

Fixed

Shared

PlanAhead

Figure 2.8: DNN Library Usage

While we have manually reduced the design space for deployed DNN library based on the

compute resources and slots to our FPGA edge, in Figure 2.8, the Shared policy still adopts

most accelerators for the sack of sharing DNN accelerators and slots. In our proposed

PlanAhead policy, the use of the deployed DNN library can be reduced and achieve maximum

responsiveness to a queue of acceleration requests. We can also facilitate the deployment of

the DNN library to other larger FPGA edge or more diverse acceleration requests. Similarly,

to limit the use of DNN accelerators, we can change the objective function in our proposed

PlanAhead policy to find the minimum use of total DNN accelerators.

44

2.5 Conclusion

In this chapter, we present a dynamic DNN accelerator-sharing system in FPGA edge devices.

Given a queue of requests to access binarized DNN accelerators on FPGA, our proposed

offline phase obtains the optimal policy to determine which accelerator to allocate for each

request and in what order to respond to the requests. Our proposed framework exploits an

a priori known pattern of input task arrivals and matches the suitable accelerators to the

tasks according to the utilization of FPGA shared resources and the application’s DNN model

parameters. The framework achieves maximum responsiveness for a queue of acceleration

requests.

Considering the fluctuation in task arrivals, in the next chapter, we’ll exploit the regularity

of patterns to the input workloads and extend the runtime task manager to include a more

sophisticated scheduling scheme to adapt the uncertainty and deviation under various

network congestions.

45

Chapter 3

On Exploiting Patterns For Robust

FPGA-based Multi-accelerator Edge

Computing Systems

3.1 Introduction

An FPGA-based multi-accelerator edge serves various DNN applications from multiple end

devices simultaneously for hardware acceleration. The DNN application can be processed

by a set of DNN accelerators from a library of DNN accelerator architectures, each

optimized for a certain objective, such as accuracy and performance on the edge. If the

system software at the edge processes the acceleration requests on a First-Come,

First-Serve (FCFS) basis, the FPGA edge will incur dynamic reconfiguration overhead and

degrade the system responsiveness. Researchers have proposed batching the requests

during runtime to reduce the overhead, e.g. DeepRT [145], but this can lead to starvation

and timed-out requests. In addition, in many edge computing platforms, there is only an

46

online scheduler without any prior knowledge on any periodic nature or some regularity in

the arrival time of the tasks such as [83, 72, 48, 18, 63, 133, 153]. However, in various CPS

and IoT monitoring applications, sensing occurs at a fixed rate, and hence, the data is sent

to the edge for acceleration periodically. When multiple end devices continuously send

acceleration requests at a fixed rate, a pattern in the sequence of requests can be observed.

In my previous chapter, I adopted an ideal fixed pattern of arrival times of tasks under a

set of periodic tasks for scheduling. In a well-controlled environment without noises, the

sequence of tasks can be predicted and formulated without historical data, and, hence, the

proposed method takes advantage of the static scheduling method and has shown the

potential of optimization [128]. However, noises and uncertainties can happen in the

deployment environment due to network delays and system workload congestion. The

sequence of tasks becomes less predictable and this pattern is not unique and might change

over time. Therefore, instead of assuming the regularity for an ideal fixed pattern, we look

into a more sophisticated approach that exploits the historical data and extracts patterns

aligned with the deployment environment.

In this chapter, I present a systematic approach to extract the pattern in a sequence of

requests to access various accelerators at the pre-deployment phase and exploit it for

pre-deployment planning on accelerator allocation and tasks’ execution ordering. In

addition, at the deployment phase, I propose an adaptive online scheduler to accommodate

the network delay variation and mitigate the effect of task arrival time noise.

This system framework leverages the characteristics of input workloads to assist the system in

task scheduling and accelerator allocation, acknowledging both predictable patterns and the

presence of uncertain or unexpected factors. The experimental results show that using our

proposed framework, the responsiveness of response time and timeout tasks is significantly

improved, and the timeout tasks are even reduced to zero.

47

The summary of the contributions is as follows:

• The proposed framework provides a hybrid two-step approach that, during the

pre-deployment time, creates optimization opportunities throughout the pattern

extraction and static scheduling and accelerator allocation; and, during the

deployment time, employs an adaptive online scheduler for the variation in

workloads. The results show significantly improving responsiveness and robustness in

serving multiple end devices.

• The pre-deployment phase comprises the clustering-based method to extract patterns

and the static scheduling and resource allocation, creating optimization opportunities.

• The runtime dynamic exploitation of the static optimization accommodates the

network delay variation and alleviates resource contention: An adaptive online

scheduler that handles and mitigates uncertainties.

3.2 System Framework

Pre-deployment (Cloud)

Deployment (End ↔ Edge)

Pattern

Extraction

Static Scheduling

& Acc. Allocation

End

Devices

Frame&Request

Input

Tasks

Extracted

Pattern/Timing

Acc. Slot

#1

Acc. Slot

#N

...

Offline Schedule Table

System Framework

Acc. Slot

#0

...
...

...

A
d
ap

ti
v

e

O
n
li

n
e

S
ch

ed
u
le

r

Accelerator

Models

Task Queue

a2a4 a3 a1...

Figure 3.1: System Overview

48

Figure 3.1 shows my proposed framework. At the pre-deployment phase, pattern extraction

is presented to observe the behavior of the tasks’ arrival at the edge and find the most

dominant pattern in the task queue. Such that the regularity and characteristics of tasks are

exploited. Next, I propose a static task scheduling and accelerator allocation, that acquires

the extracted pattern, and then generates the offline schedule table. The table includes

the tentative ordering of the task and selected DNN accelerators to be implemented on the

FPGA.

During runtime, strictly following the Offline Schedule Table might lead to system

performance degradation due to random parameters such as network jitter. Therefore, for

the deployment phase, I propose a soft real-time scheduler that uses the Offline Schedule

Table as a guideline but properly adapts the schedule based on the task arrival times and

task queue status.

3.3 Pre-Deployment Phase (Offline)

To extract system characteristics and exploit them to improve the system performance, I

propose a pre-deployment phase including two steps 1- pattern extraction, and 2- static

scheduling. The output of this phase is expected arrival times and a static schedule that will

be used in the deployment phase. The static schedule is an optimized schedule based on the

calculated timings from the pattern extraction step.

3.3.1 Pattern Extraction

Figure 3.2 shows an overview of the setup and where pattern extraction plays its role. a1

to an are different applications represented as multiple end devices that simultaneously send

tasks to an edge node for acceleration. Each end device periodically sends tasks (ti) to the

49

Figure 3.2: Illustration of the regularity of the temporal order of tasks at the edge from a1
to a4

edge node continuously, and the edge node receives a queue of incoming tasks (Q). The

timeline illustrates how the order of the arriving tasks from different applications varies in

different time intervals and yet the pattern extraction approach can be applied to capture

regularity over the sequence. To exploit any regularity in receiving acceleration requests

at the edge, we use the pattern extraction module to understand the characteristics of the

network’s behavior. Due to noises and uncertainties in the environment, such a pattern is

challenging to extract.

Sequence-based Pattern Extraction: Challenges and Limitations

A standard pattern extraction algorithm identifies sub-sequences that appear frequently

within the larger sequence. This most frequently occurring sub-sequence is then recognized

as the pattern. The concept of a dominant sub-sequence is crucial in many applications. For

example, the sequential pattern mining algorithms in data mining [21] can be used in finding

patterns in DNA sequence analysis. In DNA sequences, the identification of these patterns is

vital because they can represent common genetic markers, and conserved sequences that have

remained unchanged throughout evolution. By identifying these dominant sub-sequences,

50

researchers can gain valuable insights into the characteristics of the historical data. To

use these patterns for task scheduling, if the pattern repeats mostly in the historical data,

the pattern can be used by a scheduling approach, e.g. SharedDNN/PlanAhead, in our

previous chapter, to plan ahead and optimize the system performance.

Algorithm 1 Sequence-Based Pattern Extraction

Intput: Q ▷ historical queue data
Intput: min seq, win size ▷ min sequence size, window size per pattern
Output: rep pattern ▷ sequence-based representative pattern

1: Create a dictionary dict seq for sequence patterns
2: for p len = min seq to win size do
3: sequence, occurrence = find sequence pattern(Q, p len)
4: if occurrence ≥ OCC THRESHOLD then
5: dict seq[sequence] = occurrence

6:

7: /* Extract the pattern P and Cluster irregular tasks I */
8: P = calc max pattern(Q, dict seq)
9: I = calc irregular tasks(Q,P,win size)
10: rep pattern = P + I
11: RETURN rep pattern

Here, in Algorithm 1, I show how a sequence-based pattern extraction approach can be

applied to find a representative pattern over the historical queue information, i.e. Q, for

task scheduling. The input min seq is defined as the minimum sequence length for the

sequence-finding algorithm and the input win size as the target window size for the

representative pattern. The above sequence-based approach, firstly, iterates to find various

sizes of sequences that occur dominantly in the input Q, and the sequence results are saved

in a dictionary (Line 1-5 in Algorithm 1). Then, calc max pattern finds and calculates

timing for a dominant pattern P according to the sequence result dictionary dict seq and

the historical queue data Q (Line 8 in Algorithm 1). The find sequence pattern function

can be implemented with any sequence mining or event-analysis algorithms, e.g. [79, 22],

that analyze sequences. In our previous collaborated work [106], EMMA [36], one of the

episode mining algorithms, was used to find the pattern. The pattern P is, then, composed

of the temporal order and the average arrival time of tasks.

51

However, when there exists noise and uncertainty in the environment and the temporal order

of tasks becomes irregular, the dominant pattern P may not capture enough sequences to

meet the target window win size requirement. Those irregular tasks within the win size

are not extracted by the sequence-finding algorithm, but these task workloads should still be

taken into account for the static scheduling and accelerator allocation. To address the issue

of shortage in identifying dominant sequences, the algorithm has to additionally find and

cluster the remaining irregular tasks, that follow pattern P , within the win size (Line 9 in

Algorithm 1) and attach them to the dominant pattern to form the representative pattern

P + I (Line 10 in Algorithm 1).

Figure 3.3: The sequence-based pattern extraction approach extracts the dominant pattern
P and clusters remaining tasks in the hyperperiod as I and output P+I as the representative
pattern

Figure 3.3 includes an example of the incoming task IDs sequence of 4 devices with

sampling rates of 2,3,4 and 5 fps below the Q. The historical queue information is

visualized by arranging blocks in chronological order, from left to right and top to bottom.

The yellow-highlighted blocks denote the pattern P = [a4, a3, a2, a4, a3, a1, a4, a2, a3, a4, a4],

which is the output of line 8 in Algorithm 1 that finds the maximum pattern and meets the

occurrence threshold. Pattern P represents an ordered sub-sequence that occurs frequently

from the historical data. The remaining application IDs are tasks that arrive closely to

52

each other and/or, due to network congestion, irregularly deviate in arrival time. within

the target window size, there exist some partial deviations from P for the remaining tasks.

We average the relative arrival times over those leading-P intervals to find I (i.e.

green-highlighted blocks) and create the representative pattern as P + I, which includes

the pattern and timing information. As the resulting pattern shows in Figure 3.3, the

sequence-based approach finds the exact “order” of objects as the sequence P where the

sequence failed to represent the pattern within the target window size. Even with the

addition of irregular tasks, the representative pattern, P + I, is still unable to cover the

majority of the example historical data.

Such sequence-based approaches bring the following challenges and limitations. Whenever

tasks arrive in an out-of-order manner because of, for example, noises and fluctuation under

network congestion, the approach will identify these variations as different sequences and may

fail to find the pattern that covers the majority. In addition to the noise and uncertainty,

if the end devices’ sending rate isn’t periodically fixed and tasks are sent in a burst in the

deployment environment, the sequence-based approach will suffer in extracting the temporal

order of tasks. The sequence of tasks becomes limited in size to extract, and, hence, fails

to represent input workload characteristics. As a result, the optimization is compromised

due to the difference in task patterns between the pre-deployment and deployment (runtime)

phases. The effectiveness of the sequence-based approach can be influenced by several factors,

including the quality of the historical data, the chosen frequency threshold, and the specific

characteristics of the historical data being analyzed.

Moreover, it’s important to note that while sequences may appear different in temporal

order, this is not always significant in task scheduling. In task scheduling, the order of tasks

can often be flexible, and it’s the characteristics of the tasks themselves that hold more

importance. This is particularly true when considering the workload to plan ahead, where

the exact ordering of tasks is less critical than their general temporal characteristics. This

53

highlights the importance of focusing on the inherent attributes of tasks rather than their

order in the sequence. Therefore, I propose the clustering-based approach that doesn’t fully

rely on the restricted temporal order of tasks (i.e. sequence) but identifies the similarity of

patterns where the similarity measurement can be further customized.

Clustering-based Pattern Extraction

The noises and uncertainties in the environment can cause tasks to be received with delay or

irregularity. When the system is handling high rates of arrival tasks and large numbers of end

devices, tasks tend to arrive irregularly in clusters or bursts. Also, the rates of arrival tasks

can be dynamic or non-periodical if other interrupt events happen. As a result, the sequences

of tasks vary significantly. The sequence-based approach focuses on the sequence (i.e. the

temporal order) of tasks such that it becomes challenging to find a specific representative

pattern that covers the majority of sequences. However, there still exists regularity if the

data are examined based on the presence and arrival time of tasks. Hence, we propose

a clustering-based pattern extraction approach that focuses on the similarity of sequences

in terms of task occurrence and arrival time and then obtains the clustered representative

pattern.

The similarity measurement method we apply is Jaccard Index [46] (a.k.a. Jaccard

Similarity), which is especially effective when the order of items is less important and the

presence of items is used for examination. The Jaccard index determines the similarity

between two data points by considering the union and intersection of the two points. Such

Jaccard index can be defined as the ratio of intersection by the union of the two points.

Since our pattern includes (1) the presence and (2) the arrival time of tasks, we define our

similarity function that considers both the of the aforementioned metrics such that the

measurement method becomes less sensitive to the variant of the order of tasks.

54

Algorithm 2 Clustering-Based Pattern Extraction

Intput: Q,win size ▷ historical queue data, window size per pattern
Output: rep pattern ▷ clustered representative pattern

1: list patterns = split q by win(Q,win size)
2: n = len(list patterns)
3: Create n× n matrix DIST MAT
4: for i = 0 to n-1 do
5: for j = 0 to n-1 do
6: DIST MAT[i][j] = 1 - find similarity(list patterns[i], list patterns[j])

7:

8: Z = linkage(DIST MAT) ▷ Calculate the linkage matrix
9: clusters = form flat cluster(Z, DIST THRESHOLD)
10: rep pattern = cal rep pattern(clusters, list patterns)
11: return rep pattern
12:

13: function find similarity(pattern1, pattern2)
14: /* Find intersection based on task occurrence and arrival time */
15: list intersection = []
16: for task in pattern1 do
17: if task in pattern2 and diff arrival time ≤ TIME THRESHOLD then
18: Add task to list intersection
19:

20: intersection = len(list intersection) ▷ Calculate the size of intersection
21: union = size of union(pattern1, pattern2) ▷ Calculate the union of pattern1/2
22: similarity = intersection / union ▷ Calculate the Jaccard similarity
23: return similarity

55

Algorithm 2 shows the details of the proposed clustering-based pattern extraction method.

To extract the clustered pattern, we first pre-process and split the historical queue data Q

into multiple pattern candidates by the interval of the time window win size. Then, we

use our pattern similarity measurement function find similarity to calculate the similarity

between two pattern candidates (Line 13-22 in Algorithm 2). The similarity index is the

value between 0 to 1. Therefore, the distance matrix can be computed by 1− similarity for

every pair of these pattern candidates (Line 4-6 in Algorithm 2).

Once we obtain the similarity matrix of our pattern candidates, we use the agglomerative

hierarchical clustering solution [136], a bottom-up approach, to cluster the similar pattern

candidates based on the distance. The approach starts with the linkage function to decide

on the linkage criterion where it takes the distance information and decides pairs of patterns

into clusters. Then, these newly formed clusters are linked to each other to create bigger

clusters. This process is iterated until all the pattern candidates in the original data set are

linked together in a hierarchical tree. Note that, in each iteration of the clustering process,

the two smallest-linkage-distance clusters are linked together. We set the distance threshold

DIST THRESHOLD to determine the partition of our data (Line 8-9 in Algorithm 2).

Then, we select the cluster that covers the majority of our data and extract the clustered

representative pattern (Line 10 in Algorithm 2).

Figure 3.4 includes the flow of the clustering-based pattern extraction approach which uses

the same example input Q history as in the sequence-based one. There is an incoming task

ID and arrival time sequence of 4 devices with sampling rates of 2,3,4 and 5 fps below the

Q and we visualize the historical queue information (including application IDs and arrival

times) by arranging blocks in chronological order, from left to right and top to bottom.

The clustering-based approach finds similarity based on the task occurrence and arrival

time. Therefore, despite that the temporal orders (i.e. sequences) are different, the pattern

candidates in yellow/green/orange/gray-highlighted blocks are considered similar and in the

56

Figure 3.4: The clustering-based pattern extraction module calculates the distances between
pattern candidates and finds the cluster that covers the majority of the Q history

same cluster. Therefore, the clustering-based pattern extraction is more tolerant to the

fluctuation of task arrival while still being able to capture the regularity in the majority of

the Q information.

Next, we show a more complex example and demonstrate the capability of handling a higher

range of fps and number of devices. The example is also adopted and shown in the evaluation

section of this chapter.

Figure 3.5 shows the dendrogram on a 7-end-device input Q sequence which has a total of 30

fps. The dendrogram is a branching diagram that represents the relationships of similarity

among a group of pattern candidates. The x-axis represents the indexes of the pattern

candidate. As shown, we can find the clustered representative pattern that covers 97.4% of

pattern candidates within the distance 1. The dendrogram can be used to determine the

threshold for cutting off pattern candidate selection in the trade-off between pattern coverage

and accuracy.

Once the representative pattern is extracted, the system proceeds to explore static scheduling

and accelerator allocation, which seeks to maximize the responsiveness based on the extracted

57

Figure 3.5: Dendrogram Example of the clustering-based pattern extraction approach on a
7-end-device input Q information with 30 fps in total

58

pattern and timing.

3.3.2 Static Scheduling and Accelerator Allocation

Each task in the representative pattern is a request for inference acceleration under certain

requirements, such as applications (i.e. dataset), accuracy, and performance. Given these

requirements, tasks might be compatible with various types of accelerators, and mapping

them to these accelerators depends on the schedule and available resources.

An FPGA can be partitioned into multiple reconfiguration regions, called accelerator slots,

that are able to execute accelerators simultaneously and independently. In each slot, there

is a time overhead for reloading (and potentially partial reconfiguration) if the accelerator

needs to be changed during runtime. Therefore, for each task, the system must decide

when (timestamp) to start the task on which slot using what accelerator. As a target

application, we applied the accelerator models in [128] that adopts the Binarized Neural

Network accelerator, e.g. [6], with different factors in DNN models and hardware

optimization so they can be accommodated properly given the size of the slots and

application’s requirements, i.e. performance and inference accuracy. For instance, the DNN

topology will affect the inference performance. In addition, the same DNN topology can be

deployed into different accelerators in various optimization parameters, such as speed and

size, without compromising inference accuracy, for example, in Table 3.1, Acc1 to Acc3 are

different accelerators but the same DNN topology. And some accelerators may not be able

to fit in all slots. A high-performance accelerator might require more FPGA fabrics and

not fit in a small accelerator slot. On the other hand, a DNN topology could be trained for

different applications (i.e. datasets), which results in different coefficients (i.e. weight files).

Therefore, an accelerator for a certain DNN topology can be shared among different

applications with the same DNN topology, and it just needs weights reloading. There are

59

Table 3.1: Accelerator Models

Exec Time † Weight Files Slot {Large, Medium, Small}
Accelerator (ms) (Dataset/Accuracy) Compatibility

Acc1 30 {cifar10/80, cifar3/90, $} {", $, $}
Acc2 50 {cifar10/80, cifar3/90, $} {", ", $}
Acc3 100 {cifar10/80, cifar3/90, $} {", ", "}
Acc4 50 {cifar10/84, cifar3/92, $} {", $, $}
Acc5 100 {cifar10/84, cifar3/92, $} {", ", $}
Acc6 200 {cifar10/84, cifar3/92, $} {", ", "}
Acc7 30 {$, $, mnist/98} {", $, $}
Acc8 50 {$, $, mnist/98} {", ", $}
Acc9 100 {$, $, mnist/98} {", ", "}

† the frame resolution is 640 × 480 pixels

trade-offs between accelerator performance, inference accuracy, DNN topology, and the size

of the slot. Therefore, we can acquire a set {Acc1, Acc2, ..., Accn} of accelerator models,

where each accelerator Acci has a set {wt1, wt2, ..., wtn} of weight files wti, trained for

different datasets. For example, in Table 3.1, Acc1 can run the cifar10 or cifar3 dataset

(with the same DNN topology), but it needs to load wt1 or wt2. Note that cifar3 is a

subset of cifar10 trained for detecting less number of objects, but with higher inference

accuracy. Thus, an accelerator slot can simply load the weight files into BRAMs for other

applications if they use the same DNN topology other than re-configuring the accelerator

slot. If the DNN topology changes, the slot has to change to support the new topology

(new accelerator), which has a partial reconfiguration overhead. We use the variables opri

and oreli to denote the overhead of partial reconfiguration and weight files reloading for

each accelerator. We represent the elapsed time of inference on the Acci accelerator as tei

and the timestamp to start the task i as tsi.

I formulate the above temporal and spatial scheduling and accelerator allocation problem

for tasks in the extracted pattern as a mixed-integer linear programming (MILP) problem

and optimize it to maximize the system responsiveness, i.e. minimize the average response

60

time among all tasks in the extracted pattern. Response time includes time to wait for

available slots, time for execution on FPGA, and time for reconfiguring/reloading

accelerators if necessary. In addition to the primary scheduling equations [128], I added

two extended constraints to consider the regularity and workload between hyper-periods as

follows:

1. Cross-Pattern Constraint: The schedule will repeat after every hyper-period, a

potential reconfiguration/reload overhead across its head and tail should be considered.

opru,v + orelp,q ≤ tshead | (u, p)tail! = (v, q)head,

∀head, tail ∈ N,∀u, v ∈ Acc, ∀p, q ∈ Weight

(3.1)

2. Load-Balance Constraint: The maximum duration constraint is set to make sure

that all individual slots’ schedule for the pattern will not exceed the hyper-period;

thus, preventing the growing tasks in the queue and risks of timeout.

tstail − tshead ≤ HY PER− PERIOD,∀head, tail ∈ N (3.2)

To maximize the responsiveness, I formulate the objective in minimizing the average response

time for all the tasks that are scheduled on the given accelerator slot configuration,

min(
1

N

∑
i∈N

respi),

respi = {tsi + teu − ArrivalT imei|∀i ∈ N,∀u ∈ Acc}
(3.3)

Our goal is to provide a static scheduling and accelerator allocation for each task in the

extracted pattern. We seek to minimize the average response time which, as a result, can

efficiently use the shared computing resource on all available accelerator slots in temporal

61

and spatial aspects. We formulate the above optimization problem as a mixed-integer linear

programming (MILP) problem and solve it using mathematical programming solvers such

as IBM CPLEX© Optimizer [39].

3.4 Deployment Phase (Online)

The Offline Schedule Table determines the schedule of accelerators on each slot of the FPGA

based on the expected arrival times of tasks. However, because of various factors such as

network delay variation, the task arrival times will drift from the expected arrival times

after a while which will negatively affect the response time. We propose an adaptive Online

scheduler to handle these uncertainties during runtime.

3.4.1 Adaptive Online Scheduler

Task arrival time varies from one task to another due to random parameters such as

network jitter. We have obtained the optimal scheduling from the extracted patterns and

timing of tasks in the pre-deployment phase. To exploit this knowledge, and also reduce

the effect of tasks’ arrival time fluctuation on the response time, we propose a lightweight

Online scheduler, which approximately follows the Offline Schedule Table while

accommodating the uncertainties. The adaptive online scheduler we are proposing follows

the accelerator allocation from the offline result but allows additional out-of-order

execution of tasks to accommodate the uncertainties of task arrivals. By doing these, our

proposed online scheduler uses Offline Schedule Table as a guideline and adaptively reacts

to the arbitrary arrival of tasks to increase the system’s responsiveness.

To achieve that, there are multi-accelerator-task-queue buffers allocated per accelerator slot.

Based on the assignment in the offline schedule table, every arrived task will be placed into

62

Algorithm 3 Adaptive Online Scheduler

Input: taskQueue ▷ Task queue on the edge
Input: AccSchedule ▷ Offline Schedule Table for all slots
Input: AccQueue ▷ Accelerators’ task buffers for all slots

1: /* Run in parallel using multi-threading */
2: assign task(taskQueue,AccSchedule, AccQueue) ▷ Assigning tasks into AccQueue
3: for slot id = 1 to N do ▷ N = number of slots
4: slot scheduler(AccSchedule[slot id], AccQueue[slot id]) ▷ One thread per slot

5:

6: function slot scheduler(AccScheduleSlot, AccQueueSlot) ▷ Running as a thread
7: while sys terminate != True do
8: while not (AccQueueSlot[AccIndx]).empty() do
9: if Check AccT ime End(AccIndx) and Check Over Borrow() then
10: break
11: Task=AccQueueSlot[AccIndx].pop()
12: if not timed out(Task, WaitTime Threshold) then
13: run(Task);

14: if Check Pre Fetch(Task) or Check AccT ime End(AccIndx) then
15: AccIndx=fetch next accel(AccScheduleSlot,’roundrobin’)

the corresponding buffer. Tasks will be processed when the accelerator is on the scheduled

time. Algorithm 3 shows the pseudocode for Online scheduler. The inputs to the algorithm

are (1) a queue (taskQueue) which holds all arrived tasks in the order they arrive, (2) the

Offline Schedule Table (AccSchedule), and (3) the buffers for assigned acceleration tasks

(AccQueue).

All incoming tasks in taskQueue are assigned in an FCFS order to the corresponding

accelerator’s queue (AccQueue) based on the Offline Schedule Table (AccSchedule). Note

that each accelerator has its accelerator task queue. There are N independent accelerator

slots on the edge. Therefore, each slot has its own schedule for processing accelerator tasks.

We run the task assignment and the scheduler for each slot in parallel using

multi-threading (Line 2-4 in Algorithm 3).

Online scheduler has two main policies to mitigate the effect of tasks’ arrival time fluctuation:

1. Extensive Batching Policy: it processes all the tasks in the current accelerator’s

63

queue, even if the time for the currently loaded accelerator has passed the scheduled

duration in Offline Schedule Table. To prevent starvation from excessively ’borrowing’

time from the next accelerator in line, if there is any task in the next accelerator’s task

queue that is being timed out due to the delay of execution, the scheduler will proceed

to fetch the next accelerator task (Line 8-13 in Algorithm 3).

2. Early-End Pre-Fetching Policy: if the currently loaded accelerator finishes the

scheduled batch of tasks earlier than it was expected, the next accelerator will be

pre-fetched, earlier than the scheduled time in Offline Schedule Table. Therefore, the

slot can start to process the tasks in the next queue earlier (Line 14-15 in Algorithm

3).

Using these two policies, Online scheduler utilizes Offline Schedule Table as a guideline rather

than strictly following it, and accommodates the task arrival time fluctuations.

The Offline Schedule Table can include various accelerator task schedules on each slot;

However, only one accelerator can be deployed at a time. We call the accelerator that is

currently loaded on the slot the current accelerator and name the accelerator type as

AccIndx. For each task in the current accelerator queue AccQueue[AccIndx], the

scheduler pulls tasks in an FCFS order and runs on the FPGA’s slot if the task is not

timed out, i.e. waiting in the queue for more than a certain time threshold

WaitT ime Threshold. The accelerator call is non-preemptive. The scheduler keeps

running the tasks in AccQueue[AccIndx] on the current accelerator till there is no task left

in the queue, or the scheduler is overly ’borrowing’ time from the next accelerator and

causes any tasks in the next accelerator task queue to be timed out. The scheduler will,

then, fetch the next accelerator. When there are no tasks in the current accelerator queue

AcTskQs[AccIndx], the online scheduler checks if proceeding to the next accelerator using

the following two conditions (Line 14) as follows:

64

1. Check Pre Fetch returns if the last processed task is the ending task for the current

accelerator schedule in AccSchedule[AccIndx]. For example, if the

AccQueue[AccIndx] is assigned to process a batch of tasks t1, t2, .., ti based on

expected arrival times, Check PreF etch returns if the last processed task in Line

8-13 is ti. Using this flag, if the final task execution finishes early, the slot scheduler

takes advantage of the idle time, proceeding to fetch the next accelerator, which will

reduce the overhead in switching accelerators and increase the slot utilization.

2. Check AccT ime End returns if the current accelerator’s time is over based on

AccSchedule.

If both conditions #1 and #2 are false, it means that there exist expected tasks arriving in

AccQueue[AccIndx], hence, the scheduler keeps the current accelerator on the slot.

Otherwise, Online scheduler fetches the next schedule on a round-robin basis based on

Offline Schedule Table, which provides fairness and prevents starvation.

3.5 Evaluation

3.5.1 Platform Setup

We used a Xilinx Ultrascale+ MPSoC ZCU104 board as the FPGA Edge, partitioned into

three accelerator slots, and multiple Raspberry Pi 3B+/4B as the End devices. The End

devices (Edge) are connected to a wireless access point through 5GHz WiFi (Ethernet),

and communicate using TCP/IP socket in an office environment. For each experiment, end

devices, starting at a random time, periodically send requests for acceleration to the FPGA

edge for 10 minutes. We set the timeout threshold for tasks to 1 second. The accelerator

models we applied are from [128], which perform DNN inference for vision applications, such

65

as object detection and classifications. We measured and reported the time interval between

the task arrival at the edge and the beginning (end) of execution on the FPGA edge as the

wait (response) time.

3.5.2 Evaluation Scenario

Input Wokrload Characteristics

We explore seven end devices periodically sending requests for acceleration to the Edge. Two

types of input workloads are deployed for evaluation as follows:

• Fixed Input Workloads: There are three different workloads representing 34/30/26

fps in total. We also explore the variants of fps per end device. For example, in

Table 3.3, w34d2, w34d1, and w34d0 achieve a total FPS of 34 but in different fps

distribution per end device, and, for the former one, the FPS for individual end devices

are {2, 2, 5, 5, 6, 6, 8}. Other workloads of 30/26 fps in total follow the same naming

rule.

• Dynamic Input Workloads: Compared to the aforementioned fixed workload, the

sending rate for each end device will dynamically change between every interval.

Therefore, the total input workload on the edge could vary at every interval. The

total input workload is set to be about 32 fps on average to avoid having workloads

beyond the compute capacity on the FPGA edge. We also explore the variants of fps

per end device. For example, in Table 3.4, w32d2dyn, w32d1dyn, and w32d0dyn achieve

a total FPS of 32, and for the former one, the FPS for individual end devices starts

with {1, 2, 4, 5, 6, 7, 7} and varies at every interval. We set the interval as 1 minute

which results in a change of the total workload on the edge every 1 minute.

66

Since the WiFi noise level in an office environment is limited, in both types of workloads,

during runtime, we add various levels of extra delays with normal distribution [148] (X ∼

N (µ, σ) where 0 < µ < 70, and 0 < σ < 10) to the end devices to evaluate the performance

of the proposed framework in tackling the changes in network delay and end device timing.

Note that, in the fixed input workload, there are marginal differences in responsiveness for

using sequence-based or clustering-based approaches during the pre-deployment phase in

our evaluation. That is, the reported results in Table 3.3 are based on the clustering-based

pattern extraction approach.

Baseline Algorithms

We compared our proposed method with two other scheduling methods, FCFS and

SCY LLA [48] as the baseline.

• FCFS: accelerators and slots are shared among tasks and applications, and tasks in

the task queue are processed in an FCFS order.

• SCY LLA [48]: a heuristic scheduling scheme that involves multiple decision phases,

including task division, scheduling determination, and model selection. We took the

scheme and customized it for our accelerator models and environments; thus, tasks

(accelerators) can be dynamically scheduled/allocated to our three heterogeneous

accelerator slots.

3.5.3 Result and Discussion

Experimental Results in fixed input workloads

Input Regularity Analysis: we now analyze how our pattern extraction approach works

67

efficiently in the fixed-input-workload experiments. Figure 3.6 shows the dendrogram of

the input workload, which is profiled by the clustering-based pattern extraction approach

(Section 3.3.1). As it is shown, there exists the dominant cluster which covers the majority

of the pattern candidates within the range of distance one for all our experiments. The result

demonstrates that, in a fixed input workload of such IoT monitoring applications, there exists

regularity and patterns to exploit and improve the system performance/responsiveness.

Figure 3.6: Dendrograms for fixed input workloads

Responsiveness Analysis for the proposed framework:

Given the regularity of the input workloads shown in the previous section, we, next,

analyze the responsiveness improvement in our proposed framework which involves the

pre-deployment and deployment phases. Exploiting the pre-deployment knowledge from

68

the pattern extraction and static scheduling approach, the system has provided enhanced

responsiveness to various fixed input workloads ranging from 26 to 34 fps and their

variants. However, strictly following the Offline Schedule Table makes the system

vulnerable to task arrival time fluctuations. As shown in Table 3.2, some tasks have timed

out in Ours when only the offline method is applied.

Table 3.2: Responsiveness Analysis of the purposed framework with and without deployment
phase

Ours (Offline Only) Ours (Offline+Online)
WL. FPS Tdrop Rsp Tdrop Rsp
w34d2 2,2,5,5,6,6,8 0 245 0 218
w34d1 3,4,5,5,5,6,6 4 198 0 220
w34d0 4,5,5,5,5,5,5 57 335 1 230
w30d2 2,2,3,4,5,7,7 4 198 0 184
w30d1 2,4,4,4,5,5,6 0 149 0 201
w30d0 4,4,4,4,4,5,5 0 188 0 180
w26d2 2,2,3,3,3,5,8 0 135 0 122
w26d1 2,3,3,4,4,5,5 15 180 0 168
w26d0 3,3,4,4,4,4,4 0 132 0 159

⋆ There are 10mins× 60× FPS tasks in total in each experiment.

In addition to the pre-deployment phase, we utilize the system knowledge and handle the

random arrival times by using Online scheduler during the deployment phase. As a result, the

responsiveness of the response time and timeout tasks has improved, and timeout tasks are

even reduced to zero. Note that the computation overhead of Online scheduler is negligible

(the relative CPU utilization on the Edge was under 5% during our experiments). Tasks

assigned to the accelerator are based on Offline Schedule Table, the same in both analyses.

The execution times are the same for both with and without the deployment phase.

In our proposed framework, combining both the pre-deployment and deployment phases, the

system achieves great responsiveness and tolerates the task arrival time variation.

Evaluation with Baseline Methods: In the previous section, we have shown and analyzed

69

Table 3.3: Comparison (Tout/Rsp denotes the number of timeout tasks/the average response
time.)

FCFS SCY LLA [48] Ours
WL. FPS Tdrop Resp. Time Tdrop Resp. Time Tdrop Resp. Time
w34d2 2,2,5,5,6,6,8 8343 872 1190 341 0 218
w34d1 3,4,5,5,5,6,6 7789 881 3088 377 0 220
w34d0 4,5,5,5,5,5,5 8074 873 2787 303 1 230
w30d2 2,2,3,4,5,7,7 5836 876 631 301 0 184
w30d1 2,4,4,4,5,5,6 5915 880 604 296 0 201
w30d0 4,4,4,4,4,5,5 6464 876 2307 317 0 180
w26d2 2,2,3,3,3,5,8 4348 859 189 278 0 122
w26d1 2,3,3,4,4,5,5 4474 864 600 285 0 168
w26d0 3,3,4,4,4,4,4 4577 866 1233 296 0 159

⋆ There are 10mins× 60× FPS tasks in total in each experiment.

the responsiveness improvement in cooperation with the pre-deployment and deployment

phases in our proposed framework. In Table 3.3, we compare the result against the baseline

methods in terms of response time and the number of timeout tasks. For the FCFS, there

are large amounts of timeout tasks and high response time. FCFS shares slots to all

applications; however, processing tasks in an FCFS order lacks the consideration of

overhead in re-allocating accelerators, which results in recurring reconfiguration/reload.

Unlike the FCFS method, SCY LLA batches and runs execution sequences when tasks per

slot are allocated with the same accelerator, and, therefore, avoids intermittent accelerator

reconfiguration and achieves improved responsiveness.

In our proposed framework, tasks not only run on an out-of-order basis to avoid changing

accelerators intermittently but also are dynamically batched to improve the throughput. The

pre-deployment phase uses the schedule and accelerator allocation module which considers

sharing accelerators, and slots, together with the extracted patterns/timing. As a result,

Ours significantly improves both response time and the number of timeout tasks compared

to FCFS and SCY LLA.

70

Experimental Results in dynamic input workloads

Input Regularity Analysis: When IoT applications are event-based and/or change at every

interval. the patterns in the task queue on the edge can differ over time. We profile the

similarity of patterns in these dynamic input workloads. Figure 3.7 shows the dendrogram

of the dynamic input workloads. Compared to the analysis in fixed input workload (Figure

3.6), both the variants of clusters and distances between pattern candidates/clusters increase,

which becomes challenging in extracting the representative pattern.

Figure 3.7: Dendrogram for dynamic input workloads

Responsiveness Analysis for the proposed framework using variants of pattern extraction

approaches: In the previous section, we have seen an increase in irregularity in the

historical queue information. We now analyze the impact of pattern extraction approaches

on responsiveness in the dynamic input workload experiments. We apply different

implementations for the pattern extraction module: (1) the sequence-based pattern

extraction approach from our previous work [106], (2) the fine-tuned sequence-based

pattern extraction approach (Algorithm 1), and (3) the clustering-based one (Algorithm 2

in Section 3.3.1). Note that (1) and (2) are both sequence-based pattern extraction

approaches. When the pattern sub-sequence has been determined, the former adopts the

hyperperiod time as the window size for clustering the remaining irregular tasks where the

occurrence of the sub-sequence affects the cluster. Hence, the representative pattern

becomes biased to the sub-sequence. We update the mechanism to adopt the specified

71

target window size as the input where we set the size of the average workload in our

experiments. So that the expected load of tasks can be kept and planned in static

scheduling.

Our framework w/ Our framework w/ Our framework w/
Sequence-based Pattern Sequence-based Pattern Clustering-based

Extraction in [106] Extraction (fine-tuned) Pattern Extraction

Tdrop Resp. Time Tdrop Resp. Time Tdrop Resp. Time
w32d2dyn 4080 265.1 1387 304.7 142 279.6
w32d1dyn 2244 199.8 694 328.0 0 235.1
w32d0dyn 2876 226.2 82 373.5 61 292.9
⋆ fps(w32d2dyn) = {1, 2, 4, 5, 6, 7, 7}
⋆ fps(w32d1dyn) = {2, 4, 4, 5, 5, 5, 7}
⋆ fps(w32d0dyn) = {4, 4, 4, 4, 5, 5, 6}

Table 3.4: Comparison of the proposed framework using the sequence-based or
clustering-based pattern extraction approaches on dynamic-input-workload experiments

Table 3.4 shows the result of using the above three different pattern extraction approaches to

our proposed framework. In such dynamic workloads, the clustering-based pattern extraction

approach outperforms both the sequence-based ones. Since the number of sequence variants

increases, the sequence-based pattern extraction approach exhibits much less efficiency in

finding the exact order of the pattern; as a result, the irregular tasks become dominant to

the pattern. The regularity of the pattern is not extracted anymore, and those noises and

task arrival time fluctuations are concluded in the representative pattern. However, the

clustering-based approach is capable of finding the clustered representative pattern that can

cover the majority of pattern candidates, where the similarity doesn’t simply rely on the

order of tasks. Therefore, in such dynamic workloads, using the clustering-based pattern

extraction approach for the proposed framework is recommended.

72

3.6 Related work to increase the robustness of patterns

In the pre-deployment phase, the representative pattern will be used for static scheduling

and accelerator allocation. However, given that the noise and uncertainty happen in the

deployment environment, the optimization could be deduced due to the discrepancy in task

patterns between the pre-deployment and deployment (runtime) phases. The reason is that

the result of the static scheduling module determines an optimal schedule of accelerators on

each slot of the FPGA. If a task arrives when the corresponding accelerator is not loaded,

it has to wait in the queue till the accelerator becomes available. Therefore, the task arrival

time will affect the task response time. If the task arrival times do not match the timing that

the static scheduling module used to optimize the schedule, the response time will increase.

On the other hand, because of variations in network delay for reasons such as mobility of the

device, change in the network traffic, and environment change, the arrival times will drift

from the expected arrival times after a while.

Figure 3.8: Integration with the Task Arrival Time Staggering module [106]

In our collaborated work [106], we propose to integrate a task arrival time staggering module

that adjusts the end device sending time during the deployment phase, so the edge receives

tasks close to expected arrival times (See Figure 3.8). The proposed module is a feedback

73

loop that monitors the task arrival time during runtime and guides end devices to adjust

their sending time, so the arrival times of the incoming future tasks become aligned with the

expected arrival times. By applying Staggering module, the edge sends ’Wait’ commands to

the end nodes to adjust the sending time which, as a result, increases the regularity of task

arrival. However, not all end devices allow the change of sending/sampling time, and, also,

this falls outside the scope of the dissertation.

3.7 Conclusion

In this chapter, we present a system framework that extracts patterns of tasks at the edge for

static scheduling and accelerator allocation, and, during runtime, employs a soft real-time

scheduler to improve the responsiveness on a multi-tenant FPGA-based DNN acceleration

system.

However, considering IoT applications are mostly event-driven, characterized by varying task

rates changing over time, the input workload experiences dynamic and uncertain changes.

In the next chapter, I’ll extend the two-step approach to include a learning-based scheme to

learn insights into task scheduling and accelerator allocation such that the system adapts to

the dynamic of changing edge conditions.

74

Chapter 4

Learning-based Multi-Accelerator

Management for Deep Learning

Applications on the FPGA Edge

4.1 Introduction

In the previous chapter, we focus on the exploitation of regularity in input workloads with

pattern extraction and offline scheduling modules and the integration of an adaptive online

scheduler. While the offline phase leverages regular patterns, the online scheduler serves as

a responsive mechanism. This mixed offline/online method has proven effective in handling

consistent DNN workloads under noise and uncertainty due to network congestions.

However, other than the stable monitoring system, there are more challenges in IoT systems

where IoT applications mostly operate in an event-driven paradigm, characterized by various

task rates that evolve over time The input workload characteristics can drastically change

from one state to another. And, usually, the event is not predictable and the system may

75

not be able to make its sample data for the above offline/online approach. Even though

collecting and making sample data is possible, the approach still takes days to update the

scheduling and allocation. So the system is not resilient and flexible to the changes in input

workloads. Therefore, We need a fully online runtime system software that exploits the

current input workload characteristic and can adapt to the changes as well, which brings the

following work, the learning-based approach.

Existing works on FPGA-based accelerator management at the edge are mostly online

heuristic methods [48, 72, 59, 60] that offer solutions to make locally optimal decisions and

they fail to observe and capture the input workload characteristics, hence, leading to poor

accelerator utilization. In contrast, mixed offline/online methods [128, 106], while effective

in handling consistent workload scenarios, may exhibit limitations in capturing the

patterns of dynamic and evolving workloads. They rely on predetermined offline strategies

and might result in sub-optimal performance when faced with unexpected changing

conditions. It also becomes challenging to extract a diverse range of dynamic input

patterns and plan ahead accordingly. Additionally, the pre-defined nature of offline

methods may struggle to adapt to real-time fluctuations, leading to potential inefficiencies

in resource utilization. As a result, the mixed offline/online approach lacks the adaptability

of managing resources in non-static computing environments.

Figure 4.1: System Model

76

In recent years, deep reinforcement learning methods have shown the potential and

superiority of decision-making in dynamic environments. There has been quite an amount

of effort in applying reinforcement learning for resource management in general-purpose

edge and cloud computing [12, 37, 131, 159, 119, 81, 141, 156, 120]. Most of the works are

not designed with compute resource scarcity or custom acceleration in mind. In addition,

due to the lack of consideration for the heterogeneity and restriction in allocating

computing resources, they are not suited for multi-accelerator FPGA edge systems. Sheng

et al. [120] is related work in this category that can adapt to the FPGA accelerator model.

However, the proposed neural network model and architecture cannot fully support

hardware-acceleration-specific needs such as the heterogeneity in custom hardware

accelerators, the hardware configuration overhead, and the accelerator sharing mechanism.

In [44], an ML-based approach is proposed for power management on an FPGA edge

during accelerator allocation. However, it cannot support out-of-order execution and

heterogeneous sets of accelerators, hence, not applicable for scheduling and accelerator

allocation.

In this chapter, we propose a learning-based multi-accelerator management framework in

an FPGA-based edge system, where the dynamic scheduling for DNN applications and

accelerator allocation on the shared FPGA resource are jointly optimized on the fly. In

order to reduce configuration overhead on competing accelerators, we promote the

accelerator-sharing policy and exploit the dynamic accelerator/slot configuration. The goal

is to maximize the system throughput and minimize the task drop rate on the edge. The

proposed model provides dynamic slot configuration on the FPGA edge during runtime to

improve resource efficiency and enhance overall system performance. In order to monitor

the workloads for each acceleration type, we propose a multi-queue module in which there

is a separate queue for each acceleration type.

An asynchronous learning mechanism is proposed in order to continuously and

77

concurrently make scheduling and allocation decisions while improving the policy through

learning, and, hence, the system adapts to changes in input workloads. The Exploration

actors are proposed to expedite exploration during the deployment time and are still

lightweight enough to process on a single edge node. In our proposed framework, both the

learning process and interactions with the environment (actors) are adequately lightweight

that they can run entirely within the target resource-constrained edge system and provide

nearly real-time data processing.

We apply DNN-based vision applications to our FPGA edge system. Experimental results

show that the proposed framework can achieve significant improvement of up to 2.1×/1.9× in

average throughputs and 45.5%/41.0% lower in the task drop rates compared to state-of-art

heuristic [48] and learning-based [120] approaches.

4.2 Multi-Accelerator FPGA Edge Platform Overview

In this work, the underlying edge node comprises an FPGA-based multi-accelerator hardware

connected to a multi-core CPU. Multiple end devices send DNN acceleration tasks to the

edge; therefore, the edge receives a stream of requests to accelerate DNN-based tasks, such

as image classification and object detection in vision applications.

The goal is to provide efficient task scheduling and a dynamic accelerator allocation on the

multi-accelerator edge that seeks to maximize the system throughput in processing

acceleration tasks while satisfying the required accuracy and performance. Figure 4.2 shows

an overview of the system platform that consists of the FPGA-based multi-accelerator edge

hardware infrastructure and our proposed multi-accelerator management system software.

78

Figure 4.2: Multi-Accelerator FPGA Edge Platform

4.2.1 FPGA-based Multi-Accelerator Edge Hardware

The DNN accelerators are implemented on the FPGA programmable hardware. The edge

node is allowed to re-partition the FPGA during runtime to generate accelerator slots with

different sizes to host a heterogeneous set of accelerators. This will cause slot re-partitioning

delay overhead. Thereafter, each accelerator slot is configured to run the designated DNN

accelerator. Such an operation will introduce accelerator configuration delay overhead.

4.2.2 Learning-based Multi-Accelerator Management Software

We present the learning-based multi-accelerator management system software that

schedules tasks, dynamically reconfigures accelerator slots, and allocates accelerators. The

system software is composed of Multi-Queue-Input-Task, DNN Accelerator Library, and

Learning-based Scheduling-and-Allocation modules:

Multi-Queue-Input-Task Module: The input acceleration tasks are distributed in the

multi-queue module in which there is a separate queue for each acceleration type. The

system monitors the workload for each acceleration type and accordingly, considers this

79

distribution during scheduling and accelerator allocation. By separating tasks in

multi-queue, characteristics of input workloads for each acceleration type could be easily

observed and captured by the system software.

when the input tasks cannot be processed in time, they will accumulate in the task buffer.

However, the size of the task queue buffer is always limited in real systems. We set the size

of each accelerator queue to 3x the average number of task requests per second. When the

task queue is full, the new incoming tasks to this queue will be dropped.

DNN Accelerator Library: We are given a rich library of DNN accelerators for the

applications. When a DNN model is trained, the specified NN topology can be deployed

with different hardware architectural block types (e.g. dataflow, pipeline) and sizes (e.g.

hardware parallelism) of accelerators. And, under the same NN topology, the model can

also be trained for different target object types, i.e., dataset, and, as a result, it achieves

different inference accuracy, where the inference varies by loading different weight and

activation parameters propagated throughout the NN topology.

Learning-based Scheduling-and-Allocation Module: This module makes scheduling

decisions based on the observation from the current tasks in queues and the underlying

FPGA hardware resources. We apply the learning-based method to allow the system to

acquire knowledge and improve the scheduling policy during runtime. We adopt Deep

Q-Network (DQN) [87] and deliberately design it to be lightweight so that the learning

model is fully contained in a single edge node.. The primary role of this module is to

provide a control policy that maximizes system throughput. We consider minimizing the

maximum queue utilization as the objective, which reflects on the throughput of processing

acceleration tasks.

Sharing accelerators reduces accelerator reconfiguration overhead, and hence we promote

accelerator-sharing policy in our scheduling to further improve the system throughput. For

80

example, in DNN vision applications, task requirements are typically the accuracy constraint

and the target object type. An accelerator with higher accuracy can be downward compatible

with those DNN applications with lower inference accuracy. A request to access an AlexNet

accelerator with 55.5% accuracy on ImageNet dataset can be processed via SqueezeNet (with

57.5% accuracy) or GoogleNet accelerator (with 67.4% accuracy) on ImageNet dataset.

The asynchronous-learner process learns policies from gathered experiences, which are

collected during the interaction with the environment. The Asynchronous-Learner is

decoupled with the scheduling process, the learning process can learn and update policies

asynchronously. Given the limited computing resources of embedded cores on the FPGA

edge, we run the asynchronous-learner process on a multi-core CPU edge node as the

computing node for learning.

4.3 Reinforcement Learning Model

We propose a Reinforcement Learning model for our learning-based multi-accelerator

management system. In our work, the multi-accelerator edge node is considered as the

environment. The Scheduling-and-Allocation module plays the role of an agent with

learned knowledge in decision-making based on the observation on the environment, e.g.,

the current tasks in the queues and the current allocated accelerators on the FPGA

resources. Our Scheduling-and-Allocation module acts as a mapping unit from the state to

an action that consists of task scheduling and accelerator allocation; therefore, it becomes a

task-processing unit for the dynamic input workload. Given that only the current states of

FPGA edge node and the scheduling action determine the future state and expected

rewards, we formulate this problem as a Markov Decision Process (MDP). The Markov

Decision Process contains three major components, i.e. state, action, and reward, which

are defined as follows.

81

4.3.1 State Space

To capture the characteristics of the system and workloads, the state S contains the status

information of accelerators and queues on the edge, which is formulated as:

S = SS × SI ×QS (4.1)

, where SS denotes the runtime status of accelerator slots, SI determines the size of each

accelerator slot, and QS denotes the status of multi-acceleration queues. SS is formally

presented as [ss1, ss2, ..., ssns]. Each vector ss ∈ SS consists of observed parameters for

each accelerator slot, which includes: (a) the estimated time to finish, (b) the idle state,

and (c) the current accelerator on the slot. Each accelerator is assigned a unique identifier,

which is a categorical, not continuous, value. Given that there are nm supported models

of applications on the edge, we convert the parameter to a one-hot vector of size nm and

concatenate it with the rest observed parameters. Therefore, the SS can be formed as a

(ns× (3+nm)) matrix. In addition to the parameters for each individual slot, to distinguish

the size of the accelerator slots, we adopt a SI vector to indicate the use of FPGA resources.

In this work, we provide three kinds of slot sizes, i.e., Large, Medium, and Small slots. There

are at most ns slots, Hence, SI becomes a (ns × 3) matrix.

There are up to nq task queues. The status of each acceleration task queue can be presented

as QS = [qs1, qs2, ..., qsnq]. The system receives and distributes tasks to individual queues

according to their task requirements. Each qs ∈ QS is composed of observation on the

corresponding queue, which includes the queue utilization. As a result, the QS can be

formed as a vector of size nq.

82

4.3.2 Action Space

The action space A represents the interaction with the task and/or accelerator slots. Since

the FPGA resources are reconfigurable, actions are: EXE- execution of a task on an existing

accelerator on the slot, SW CFG- accelerator software configuration on the corresponding

FPGA accelerator slot,HW CFG- FPGA hardware configuration for a new set of accelerator

slots, and NOP -no operations. Therefore, we divide the action space A into four categories:

A = EXE ∪ SW CFG ∪HW CFG ∪NOP (4.2)

In the EXE category, there are nq individual task queues held for scheduling and ns

accelerator slots serving the computation. The execution action category is formed as a

(ns × nq) matrix. For a certain exei,j ∈ EXE, it indicates the action value for the

execution of the j-th queue’s task on the i-th accelerator slot. The scheduler can choose to

first carry out software configuration on the slot rather than task execution. Thus, for

SW CFG, the configuration action can be modeled as a (ns × nm) matrix. For a certain

sw cfgi,j ∈ SW CFG, it indicates the action value for the configuration of the i-th

accelerator slot with the j-th DNN accelerator. In addition to configuring a single

accelerator slot, the FPGA resource is also allowed to re-partition during runtime. There

are three slot sizes in our setup. HW CFG becomes a (ns × 3) matrix. For a certain

hw cfgi ∈ HW CFG, it indicates the action value for reconfiguring the hardware

resources, i.e. FPGA fabric, into i− th accelerator slot set. And, lastly, NOP is simply one

action for doing nothing on the edge. These actions are discrete and we model them in

vectors to indicate each specific action; therefore, the size of the actions A becomes

[ns × (nq + nm + 3) + 1] in total.

However, in a given state s, not all actions in A are necessarily valid, e.g., performing actions

83

of execution on a slot is not valid when the slot is already in use. Only a subset of actions

is valid in a state s, which can be denoted as Avalid(s) ⊆ A. Since the unconstrained action

space A cannot be directly used for scheduling and allocation decisions, we add the action

mask AM to ”filter” out the invalid actions. Thus,

Avalid(s) = A ∩ AM(s) (4.3)

For simplicity, the rules of AM are as follows: (1) If the slot is not idle, any actions to the

slot are invalid, (2) If the existing accelerator on the slot cannot fulfill a task requirement,

the execution action for such a task on this accelerator slot is invalid, (3) If the task queue

is empty, any action related to the task queue is invalid.

4.3.3 Reward

The reward is feedback from interaction with the environment. The reward r(s, a) can be

constructed as a value function of state s ∈ S and action a ∈ A, which is generated in

each scheduling decision along with the state transition, s
a,r(s,a)−−−−→ s′, where s′ denotes the

next state. As described in the action space, A, the operations onto the environment can

be divided into four categories, EXE, SW CFG,HW CFG,NOP . To guide the agent

in maximizing the objective function, we give different metrics of rewards for each action

category.

The goal is to maximize the system throughput in processing acceleration tasks, which we

model as a min-max optimization problem on queue utilization. We design the reward to

guide the agent to consider the system’s overall queue utilization. When a queue is full and

can easily lead to overflow, we give a penalty, a negative reward of -1, to discourage such

”high-load” queue utilization. Otherwise, the reward is designed to have the main, Rbase,

84

and auxiliary reward, RQi
. The reward of execution is, then, composed of two cases, which

are shown in the following:

Rexe(s, a) =


− 1, if any Q is FULL

α ·Rbase(s) + β ·RQ(s, a), otherwise

(4.4)

The Rbase is designed to be state-dependent and aligns with the system’s primary objective

of minimizing the maximum queue utilization. That is, the less maximum queue utilization

the system achieves, the higher reward the state transition generates. The reward range of

Rbase is [0, α]. Thus,

Rbase(s) = (1−MAX(Util(Qi)|∀i ∈ QS)) (4.5)

We added RQ to direct the agent to take actions on specific queues. A queue in high

utilization should be prioritized to take action, which can substantially reflect on decreasing

the maximum queue utilization and reduce risks of task drops. The RQ is action-dependent,

where a positive reward is given if the queue, Qi, for actions is in high utilization. The

reward range of RQi
is [0, β]. Then, it can be formed in the following:

RQi
(s, a) =


1, if Qi ∈MAX(Util(QS))

0, otherwise

(4.6)

In other categories of actions, i.e., accelerator software and hardware (i.e. re-partitioning

hardware resources) configuration, and no-operation, we use penalties (negative rewards)

for such ”non-execution” actions, noted as PSW , PHW , and PNOP . PSW is the penalty for

making accelerator software configuration. PHW is the penalty for making FPGA hardware

configuration, that re-partitions the FPGA into a new set of accelerator slots. Both the

amount of penalty PSW and PHW are based on the delay overhead over an accelerator slot

85

and the FPGA platform, and normalized into a range of [-2, -1]. PNOP is the penalty for

doing no-op in scheduling and leaving tasks accumulated in the queues, which is defined as

the negated value of the maximum utilization of tasks in queues. The PNOP is normalized

into a range of [-1, 0], where 0 in penalty means no tasks (0% utilization) in queues.

PNOP (s) = −1 ·MAX(Util(Qi)|∀i ∈ QS) (4.7)

Note that the SW CFG actions will follow any HW CFG action in order to initialize new

accelerators.

Therefore, the reward function r(s, a) for a given state s and a valid action a ∈ Avalid(s) is

denoted as follows:

r(s, a) =



REXE, a ∈ EXE

PSW , a ∈ SW CFG

PHW , a ∈ HW CFG

PNOP , a ≡ NOP

(4.8)

4.3.4 Problem Formulation

According to the above reward functions, we can further obtain the expected return Gt at

the t-th decision epoch, which is defined as the cumulative sum of discounted future rewards

from the current time step over the long run.

Gt =
∞∑
k=0

γkRt+k+1 =
∞∑
k=0

γkr(sk, ak) (4.9)

, where γ, 0 < γ ≤ 1, is the discount rate, and Rt denotes the reward at the t-th decision

epoch. In the learning model, we maximize the expected return Gt, which is equivalent

86

to maximizing the cumulative rewards at the t-th step; thus, minimizing the maximum queue

utilization in the long run.

4.4 Asynchronous Learning Architecture for

Multi-Accelerator Management

Asynchronous Learning
Module

for Multi-Accelerator Management

Replay Memory
(Experiences)

Dueling DDQN model

Learner

Sampled

Experience

Updated

Priorities

Exploration Actor
Exploration Actor

Exploration Actor

Environment
(Simulation)

Implementation Actor

Scheduling and Allocation Module

Network Parameters

Generated Experience

Streaming

Multi-Queue-Input-Task

Module

New Tasks

Agent

Dueling
DDQN model

Environment
(Multi-

Accelerator
FPGA Edge
Hardware)

Agent

Dueling
DDQN model

Figure 4.3: Asynchronous Learning Architecture for Multi-Accelerator Management

We apply Deep Reinforcement Learning methods to solve our MDP problem. We adopt

the commonly-used Deep Q-Network (DQN) algorithm [87] due to its low computational

demand and enhanced data efficiency by recycling valuable experiences, which is favorable

for resource-constrained environments. Since our action value comprises not only the value

of states, i.e., the current queue and system status (action-independent), but also the effect

of actions, i.e., execution, configuration, re-partitioning, and no-op (action-dependent), we

incorporate the Dueling Double DQN (Dueling DDQN) model [134, 139] to consider both

types of action values in our system. Also, Prioritized Experience Replay [116] is applied in

the learning algorithm to focus its efforts on newly discovered action spaces.

87

Table 4.1: DNN Accelerator Library: Inference Latency (ms) for DNN models under different
accelerator slot sizes

Classification
General Car Type Human Face

Accelerator AlexNet SqueezeNet ZynqNet GoogleNet ResNet18 ResNet50 GoogleNet CaffeNet GoogleNet

Slot Size (M1, (M2, (M3, (M4, (M5, (M6, (M7, (M8, (M9,

55.5%) 57.5%) 63.0%) 67.4%) 69.1%) 72.9%) 91.2%) 54.3%) 56.2%)

Large 8.0 7.8 7.9 21.9 17.5 55.8 21.9 8.0 21.9
Medium 11.9 14.2 13.4 41.9 44.1 180.5 41.9 11.9 41.9
Small 29.3 27.8 29.5 85.4 95.2 308.2 85.4 29.3 85.4

Detection
General License Plate

Accelerator MobileNetSSD VGGSSD MobileNetSSD
Slot Size (M10, 72.7%) (M11, 78.2%) (M12, 72.7%)
Large 26.0 752.1 26.0

Medium 57.5 1009.0 57.5
Small × × ×

Inspired by the asynchronous methods in [33, 19], we decouple the learning (learner) and

acting (actor) processes from the deep reinforcement learning method. Then, we use actors

to select actions (i.e. scheduling decisions) and collect experience along with the learner to

learn policies from sampling gathered experience. When the learning and acting processes

run asynchronously and concurrently, the actors can continuously step through the

environment and gather experience from up-to-date workloads, rather than the outdated

ones. Asynchronous learning is suitable for our near real-time scenario in processing a

stream of requests. Thus, in our framework, our asynchronous learning architecture

includes the learner, actors, and a shared prioritized replay memory. We run actors in the

Scheduling-and-Allocation module and the learner in the Asynchronous-Learning module.

(See Figure 4.3)

On the actor side, there are two types of actors, named Implementation and Exploration

actors. Both Exploration and Implementation actors make decisions based on current

learned knowledge, task loads, and resource utilization. The Implementation actor

88

interacts with the multi-accelerator edge hardware and makes the “greedy” action, which

the actor believes to be optimal based on its existing knowledge, to maximize the efficiency

of the system. On the other hand, the Exploration actor interacts with a simulated

environment, designed to simulate task processing and acceleration activities. In the

Exploration actor, a static time model (measured and averaged time on the DNN

accelerator library) is used in the simulated environment to act as the accelerator

execution/configuration. The Exploration actors explore and may make random actions on

the simulated environment. So actors collect different solution spaces of experiences for the

learner to improve the understanding of the environment. In order to capture the input,

the new tasks from the Streaming Multi-Queue-Input-Task module are replicated to the

Exploration actors. The interface between actors and the learner is asynchronous, allowing

modules to run concurrently. The action spaces are exploited and explored in parallel to

provide a more time-efficient decision-making process and, meanwhile, to explore action

spaces to allow the learning module to asynchronously improve decisions over time.

In our work, with the constrained computing resources of embedded cores on the FPGA

edge, we can run a limited number of Exploration actors on embedded CPU cores on an

FPGA device. We run the asynchronous-learning module, i.e., the learner process, on the

multi-core CPU platform at the edge.

Algorithm 4 Learning-Based Dynamic Scheduling with Asynchronous Learning

1: Create one learner, Learner, one implementation actor, Actorimp, and multiple
exploration actors, Actorexp

2:

3: /* Run in parallel using multi-threading */
4: STREAM TASK() ▷ streaming tasks to all Actors’ Environment
5: Actorimp.RUN THREAD()
6: ASYNCHRONOUS LEARNING()
7:

8: function ASYNCHRONOUS LEARNING
9: while sys terminate != True or not sys qos met do
10: Actorexp.RUN THREAD()
11: Learner.RUN THREAD()

89

A summary of the system flow for the asynchronous learning method is shown in

Algorithm 4. In Line 4-6, these procedures are created in multiple threads; thus, the

system learns and exploit the information asynchronously. When the system starts, the

multi-queue-input-task module starts to collect tasks into multi-queues and sends them to

actors. Then, the implementation actor Actorimp makes the optimal scheduling decision

based on the current knowledge whenever any slot becomes available and there are tasks on

hold in the queues. Meanwhile, the asynchronous learning module launches threads for

multiple exploration actors Actorexp and the learner Learner (Line 9-11 in Algorithm 4).

Note that the multi-queue-input-task module replicates tasks for the simulation

environment. The Actorexp explores the information and gathers experiences to the replay

memory Replay for Learner to learn asynchronously. Therefore, the system provides

efficient scheduling decisions on the edge computing resources and asynchronously improves

decisions through the asynchronous learning process.

Algorithm 5 shows the actor flow of interacting with the multi-accelerator edge environment.

There are mainly two scenarios for the actor to take actions. When the system is busy, i.e. all

slots are either executing acceleration or configuring slots for the subsequent acceleration, the

actor takes NOP operation, and then the actor process is blocked waiting for the environment

until any slot becomes available (Line 8 - 10 in Algorithm 5). On the other hand, depending

on the actor type, the actor process chooses to make the optimal or random decision with

the ϵ− greedy policy (Line 13 - 17 in Algorithm 5). The experiences of interactions with the

environment will be collected and stored in the shared replay memory buffer. The knowledge

of actors is asynchronously updated in every interval Intervalsync.

Algorithm 6 shows how the learner process learns insights and updates knowledge

asynchronously. Given that we are applying the D3QN algorithm in our model, there are

two networks, i.e. online and target network, in the learner process. The learner process

randomly samples a batch of experiences from the replay memory, which helps break the

90

Algorithm 5 Actor Process of Interacting with the Multi-accelerator Edge Environment

Input actor type ▷ Actor Type is either Implementation or Exploration

1: /* Assume global shared Replay */
2:

3: Initialize local environment, Env ▷ Reset states s, flush task queue and accelerator slots
4: Obtain online network Q(s, a; θ) with Learner’s latest weights θ+

5:

6: for t = 1 to ∞ do
7: if Env.no idle slot then
8: at = NOP
9: r = 0
10: st+1 ←− Env.WAIT FOR IDLE SLOTS()
11: Replay.ADD((st, at, r, st+1))
12: else
13: if actor type == Implementation then
14: Select action at = argmaxaQ(st, a; θ) // Exploitation
15: else
16: Select action at with decayed ϵ-greedy policy based on Q(st, a; θ)

17: (st+1, r)←− Env.STEP(at)
18: Replay.ADD((st, at, r, st+1))
19:

20: if t % Intervalsync == 0 then
21: Update online network weight θ from Learner’s latest weights θ+

Algorithm 6 Learner Process for Asynchronous Learning

1: /* Assume global shared Replay */
2: Initialize online network Q(s, a; θ) with weights θ
3: Initialize target network Q(s, a; θ−) with weights θ− = θ
4: for i = 1 to ∞ do
5: Replay.SAMPLE() // Sample mini-batch of transition (s, a, r, s′)
6: Compute loss based on the learning rule, e.g. D3QN, for back-propagation wrt online

network Q(s, a; θ)
7: Update online network weights θ
8: if i % Intervalupdate == 0 then
9: Update target network Q(s, a; θ−) with weights θ− = θ

91

temporal correlation in the sequence of experiences (Line 5). It, then, calculates the

temporal difference (TD) error, which is the difference between the current Q-value

estimate and the target Q-value (Line 6). Lastly, update the Q-value of the selected action

using gradient descent to minimize the TD error for the online network (Line 7). The

learner periodically updates the parameters of the target Q-network with the current

Q-network parameters, which is designed to help stabilize the learning process (Line 8 - 9).

4.5 Evaluation

4.5.1 Experimental Setup

In this subsection, we describe the platform setup, multi-accelerator design profiles, the

DNN accelerator library, and the input workload characteristics to evaluate our framework.

Finally, we address the setup for the learning model.

Platform Setup: In our experiments, eight end devices, Raspberry Pi 4B, periodically

capture images from their environment and send requests for DNN-based vision acceleration

to the FPGA edge. We consider image classification and object detection applications.

These end devices and the edge communicate through a dedicated wireless router access

point. The edge is a multi-accelerator FPGA edge device, AMD Xilinx ZCU102, which

is also connected to a single multi-core Intel i5 CPU platform as the computing node for

learning and processing other applications.

DNN Accelerator Library: we use CHaiDNN [9] to implement and generate the DNN

accelerators. We use HLS pragmas and modify the source codes to explore various parallelism

and resource utilization. Table 4.1 lists our DNN accelerator library in ascending order of

92

accuracy for DNN models. The inference latency increases when the accelerator is smaller.

MobileNetSSD and VGGSSD can only run with the large or medium DNN accelerator. All

models run under Xilinx 6-bit quantization with CHaiDNN. We modified the software stack

of CHaiDNN to move its online parameter quantization process to be executed offline.

Dataset and Input Workload Characteristics: To facilitate the training and evaluation

of our proposed framework, a substantial stream of input images is needed, encompassing a

combo of different working cases. We create a collection of video dataset generated by each

end device from Multiple Object Tracking (MOT) Benchmark[84], Driving Event Camera

Dataset [107] and the VIRAT Video Dataset[127] to simulate various use cases such as a

surveillance camera at parking lots or a smart camera at a traffic intersection in smart spaces.

We generate eight data sets by randomizing, mixing and rotating existing video clips. In

our case, each training data set has eight streams of tasks, coming from different video data

sets, timelines, and application configurations. To generate training/testing data, we first

separate the selected video clips into end devices, simulating cameras capturing real-time

videos.

In our experiments, some end devices run an on-device object detection algorithm by

Q-Engineering[103], and then, send the detected objects to the edge for classification using

hardware acceleration. Some will directly send the images for detection and classification

processing at the FPGA edge. Detection tasks generate additional classification

acceleration tasks from detected objects in the input queue. In this work, we consider three

categories of classification tasks, i.e. Car, Person, and General, and two categories of

detection tasks, i.e. General and License Plate. We have organized our input acceleration

tasks into four sets as follows:

Set A: requests three types (car/ person/ general) of classification tasks with the minimum

accuracy requirement (91%/ 54%-56%/ 55%-69%), accordingly. The accumulated task ratio

for each category is 1:1:2. The total accelerator accesses range from 40-100 per second.

93

Set B: requests two types (person/general) of classification tasks with the same minimum

accuracy requirement as Set A. The accumulated task ratio for each category is around 1:1.

The total accelerator accesses range from 40-100 per second.

Set C: involves a combination of requests for classification and detection. The accumulated

task ratio for classification and detection is around 3:2. The total accelerator accesses range

from 50-90 per second.

Set D: involves even more detection and fewer classification tasks. The accumulated task

ratio for classification and detection becomes 2:3. The accelerator accesses range 50-90 per

second.

All model learning is done for two hours of deployment time and testing is evaluated during

the last 10 minutes using a collection of video datasets from the real world in the above.

We evaluate the performance of our proposed framework with the two state-of-the-art

heuristic and learning-based approaches. (1) SCY LLA: [48] is a greedy heuristic algorithm

for task scheduling and resource allocation, which provides out-of-order scheduling and

dynamic accelerator allocation. (2) REINFORCE: We adopt the learning-based

approach [120] to provide scheduling and accelerator allocation on the multi-accelerator

FPGA edge. It includes out-of-order access to accelerators but lacks dynamic slot

configuration, multi-queue scheme, accelerator sharing, and asynchronous learning.

4.5.2 Experimental Results

Edge Resource Utilization for the learning model

Our framework allows having multiple Exploration actors for exploration in action spaces.

Figure 4.4 shows the average input and system throughput in set A 2 over a two-hour

duration when using two to sixteen Exploration actors for learning. Each number in the

94

Figure 4.4: Scheduling Performance over time with two to sixteen Exploration actors
(Experiment: A 2). Each number in the x-axis is the average throughput in every 10-minute
interval.

x-axis is the average value in every 10-minute interval. The data in green color represents

the average input throughput; the red one is the system throughput of our framework.

In the early stage, we see the average throughput mismatch significantly. This is because

the system is still exploring action spaces and can only discover sub-optimal policies; thus,

scheduling policies change frequently. Once the action spaces have been sufficiently explored,

the optimal policy will be discovered and learned. In eight actors, we observe the scheduling

policy improves quickly and has reached the maximized system throughput. When using

two actors, fluctuation remains over time, and when using sixteen actors, due to the limited

computing resources on embedded cores, actors suffer in high turnaround time, hence, the

system learns an inferior policy. We observed the same behavior in other experiments, and

the eight actors outperformed the others. Therefore, we use eight Exploration actors for

the target FPGA edge in our experiments. Note that the percentage of CPU consumed by

each Exploration actor is around 4.3% on a core, which still allows our quad-core ZCU102

95

edge device to process other routines/tasks during runtime. During the training phase, the

learner process utilizes around 27.5% per CPU core on the i5 processor. We observe that the

learning often converges within one hour, and the proposed model is lightweight and efficient

enough to run fully on the resource-constrained edge.

Table 4.2: Average Throughput (accelerator access per second) and Task Drop Rate
Comparison

Avg. Throughput/Task Drop Rate
Set SCYLLA[48] REINFORCE[120] Our

A 1 (40) 30.7/23.3% 28.4/29.0% 40.0/0.0%
A 2 (60) 32.5/45.8% 36.3/39.5% 59.8/0.3%
A 3 (80) 33.7/57.9% 34.7/56.6% 64.8/19.0%
A 4 (100) 32.3/67.7% 32.8/67.2% 63.8/36.2%

B 1 (40) 30.9/22.8% 23.5/41.3% 39.9/0.3%
B 2 (60) 34.3/42.8% 36.7/38.8% 59.9/0.2%
B 3 (80) 32.2/59.8% 36.6/54.3% 66.4/17.0%
B 4 (100) 34.7/65.3% 40.7/59.3% 65.2/34.8%

C 1 (50) 41.2/17.6% 35.9/28.2% 50.0/0.0%
C 2 (70) 46.7/33.2% 44.8/36.0% 69.7/0.4%
C 3 (90) 42.1/53.2% 47.4/47.3% 65.1/27.7%

D 1 (50) 34.1/31.8% 31.3/37.4% 49.3/1.4%
D 2 (70) 34.8/50.3% 40.5/42.1% 58.5/16.4%
D 3 (90) 41.0/54.4% 42.8/52.4% 61.3/31.9%

Evaluation on Average Throughput and Task Drop Rate

To evaluate the system performance, we measured the number of tasks that obtain access to

accelerators and are processed on the edge. We use the rate of average accelerator accesses

per second as the average throughput, which is formulated as the number of accelerator

accesses divided by the testing time. The task drop rate due to overflow is also reported.

Table 4.2 summarizes the average throughput and task drop rate measured during the last

10 minutes, as the testing phase, out of the total 2-hour deployment time and we compare

Our method against the state-of-art heuristic and learning-based approaches.

96

In most of our experiments, SCY LLA [48] saturated at a throughput of around 34

accelerator access per second. Due to the greedy scheme, this two-step heuristic method

achieves the approximate optimal performance. Instead, Our can achieve up to 2.1x

speedup in throughput and 45.5% lower in the task drop rate.

Both REINFORCE [120] and Our adopt the reinforcement learning approach. Our

obtains the multi-queue-input-task module, accelerator-sharing policy, and the exploration

of slot configurations; as a result, we achieve up to 1.9x higher in throughput compared to

REINFORCE. We obtain 19.7% to 41.0% lower in the task drop rates. REINFORCE

is only capable of scheduling on pre-set static resources, which, in a multi-accelerator

platform, are fixed slot numbers and not capable of exploring configurations to optimize

during learning. Thus, the computing resource usage could be unbalanced in workloads

between each slot, which prevents tasks from being allocated on the shared resource more

efficiently. Therefore, in REINFORCE, despite applying the learning approach, the

system can only achieve a slight throughput improvement compared to the heuristic

method. Certain experiments, like A 1, B 1, C 1/2, and D 1, the throughput of

REINFORCE is even lower than SCY LLA. Note that, the REINFORCE doesn’t have

multiple Exploration actors for the asynchronous learning and requires exploring the

action spaces directly in the real environment during the deployment phase. Although the

exploration space has been deduced to optimize on pre-set static resources, in experiments,

REINFORCE still requires a longer time (one to two hours) to converge compared to

Our (with less than an hour) Our can adapt to the dynamic environment faster and more

efficiently.

Our achieves the best average throughput and lower task drop rates compared to

SCY LLA and REINFORCE. In most of our experiments, e.g. A 1/2, B 1/2, C 1/2 and

D 1, the system reaches the ideal maximum throughput according to the input. For higher

input throughput, e.g. experiment A 3/4, B 3/4, C 3, and D 2/3, the system can’t process

97

the acceleration tasks literally due to the limited computing resources to schedule for the

heterogeneity and high loads of acceleration tasks; however, Our still surpasses them. This

demonstrates the efficiency of the proposed model and the fact that the joint scheduling

and accelerator allocation policy has learned to accommodate the dynamic workload.

Insights of Scheduling and Allocation Results

We now provide insights about the difference in scheduling and allocation acquired from

SCY LLA/REINFORCE/Ours methods.

Figure 4.5: Scheduling Sequence Snapshot (The blue painted/cross-hatch/blank area denotes
batched execution (of which accelerator)/accelerator configuration/idle state.)

Figure 4.5 shows the representative of a partial real scheduling sequence on experiment D 1,

from which we can see the difference in scheduling policies. In experiment D 1, applications

are mixed in categories and classification/detection tasks.

SCY LLA tends to process batched tasks using larger accelerators, which provide lower

execution time. As a result, the number of accelerators running in parallel decreases. This

leads to less parallelism and potentially more tasks waiting in serial. In experiment D 1,

even with the flexibility of exploring slot configurations, SCY LLA greatly uses two

98

medium accelerator slots. In Figure 4.5:(a), SCY LLA schedules batches of tasks in waiting

queues every a while when the previous schedule of tasks among all slots has finished.

Since there is no ”memory” of the previous schedule in the heuristic algorithm, the

algorithm is unlikely to further optimize and improve the throughput. In REINFORCE,

the system is pre-set and fixed on two medium accelerator slots according to the minimum

resource requirement for detection tasks. The REINFORCE observes waiting tasks in the

waiting matrix, i.e. the observation part, and dynamically schedules tasks for the existing

accelerator on slots. However, tasks that are not capable of processing via the existing

accelerators due to application requirements start accumulating and eventually fill up the

observation set and drop tasks, which, as a result, forces the system to configure

accelerator slots for processing other tasks.

When Our applies the proposed multi-queue-input-task module and accelerator-sharing

mechanism, these improvements allow the system to globally observe the task workloads in

queues, process tasks in dynamic batches, and, thus, balance the load on both queues and

accelerators/slots. In addition, Our is optimized to acquire various accelerator slots. In

Figure 4.5:(c), the system starts with processing tasks on two medium accelerator slots and

changes to 1 medium plus 2 small accelerator slots, where despite that, on the small slot,

each task takes a relatively prolonged execution time compared to the medium one, but the

system can run more (different types of) tasks in parallel. The system also learns to

initialize the next accelerator for predicted future workload and, as a result, it hinders the

accelerator configuration delay overhead and increases the efficiency of computing

resources, i.e. accelerator slots.

99

4.6 Related Works

There have been related works focusing on using learning-based approaches to dynamically

offload tasks to assigned compute resources, e.g. pre-set IPs (Accelerators),

CPU-based/VM-based nearby edge or cloud nodes.

Sheng et al. [120] introduces a DRL-based solution for optimizing both resource allocation

and task scheduling, with a focus on maximizing Quality of Experience (QoE) value over

the long term while considering expected delay requirements. The method determines both

the scheduling order and the assignment of tasks to specific Virtual Machines (VMs).

Although VMs can treated as accelerators, the authors consider no functional difference in

accelerators and no assignment restriction of tasks to accelerators which means tasks can

be freely assigned to any of the VMs. However, in an accelerator-rich edge, tasks may not

be able to be processed on certain deployed accelerators. Because such a deployed

hardware accelerator, which isn’t as general-purposed as CPUs, may not fulfill the task

requirement, i.e. network topologies, and accuracy requirements. The proposed model

lacks the consideration of heterogeneity of computing resource functionalities and can’t

restrict the task assignment to certain computing resources. Also, it lacks the consideration

of changes in accelerators in terms of sizes/functions. The amount of VMs is fixed where

their computational capacity and functionality are pre-configured and unchanged.

However, on a shared edge featuring FPGA-based accelerators, the computing resource can

be dynamically reconfigured into different sizes/types of accelerators to maximize resource

utilization based on the variation of system workloads. The proposed model lacks the

flexibility of changing and re-allocating compute resources. Besides, while maximizing

accumulated QoS, i.e. the ratio of the response time and expected delay, as the objective,

the task drop rate is also important. There is no control of task drops and fairness to

multiple end devices. Despite the improved task success ratio reported in the experiment,

the proposed method lacks the modeling for task drops and can’t extend to support the

100

(weighted) fairness for processing tasks to control/improve drops due to the designed

waiting ”set” mechanism. Tuli et al. [131] explore leveraging temporal patterns for

scheduling in a hybrid Edge-Cloud setup. The authors use coarser-grained scheduling to

reduce the frequency of scheduling, which occurs at consistent 5-minute intervals. The

action involves assigning tasks (cloudlets) to Virtual Machines using a bijection approach

that establishes a one-to-one mapping between tasks and VMs. However, in a

resource-constrained edge environment, the computing resource may not be able to serve

all hosts and require the task/host to wait in the queue/unscheduled. Or allowing the hosts

to process on multiple computing resources in parral. The proposed model cannot handle

such restrictions or allocations. Besides, their proposed A3C-based approach in the

learning engine requires quite an amount of actor agents for training and collecting

experience, which isn’t suitable for a resource-constrained edge compared to

”resource-unlimited” clouds. Iranfar et al. [44] presents a reinforcement-learning-based

method for efficient resource management. It addresses real-time streaming complexity by

optimizing system performance using heterogeneous hardware acceleration and

general-purpose cores in MP-SoCs. The approach involves dynamically assigning different

video streaming tasks to these deployed components while adjusting their frequencies to

meet diverse task requirements.

The aforementioned related works focus on establishing a mapping between tasks and certain

computing resources. The amount of deployed IP configuration guarantees streams/tasks to

pair with any of the IPs without the contention on computing resources. Overall, these

previous studies concentrate on task scheduling within specific setups and deployment. In

[131], the bijection mechanism makes it impossible to apply to a computing resource that

could be dynamically allocated and shared among tasks. As a result, these approaches

hinder the potential for optimizing the allocation of shared computing resources during task

scheduling. However, this is essential and not uncommon in a resource-constrained edge

computing system.

101

Other related works focus on adapting compute resource allocation, which enables resource

sharing among tasks. In [95], Pan et al. propose a deep reinforcement learning (DRL)

framework to dynamically allocate bandwidth in routers featuring multiple queues. This

framework employs DRL algorithms to train a bandwidth controller, distributing

bandwidth weights across queues based on real-time queue lengths. It controls the

proportion of bandwidth for multiple splits. The results demonstrate that the trained

controllers yield notably lower average delays and packet loss rates compared to rule-based

policies. The problem of managing the bandwidth controller has limitations in handling

homogeneous tasks and accelerators, which has no concerns about the compatibility of

task-accelerator pairs. Raeis et al. [104] propose a reinforcement learning-based

service-rate controller that provides probabilistic upper bounds on system end-to-end delay

while avoiding excessive service resource utilization within multi-server queueing systems.

However, the model is restricted in deployment same as [95].

Compared to bandwidth control, Xiong et al. [141] present a resource allocation policy

for enhancing resource utilization efficiency in a mobile edge computing (MEC) system. In

the MEC system, IoT device-uploaded jobs are queued, awaiting scheduling. The approach

employs deep reinforcement learning to train the system and minimize the weighted sum of

average job completion times and average requested resource count over the long term.

Nevertheless, these works include task scheduling and resource allocation other than the

resource mapping problems. This adaptation is tailored to processing tasks on

general-purpose CPUs or similar resources at the edge. Existing works lack consideration

in changes of VMs/IPs in terms of sizes/functions. There is an assumption that the

streams/tasks can always allocate an available IP for acceleration. There is no system

software support that considers both task scheduling and resource allocation on FPGA

multi-accelerator architectures, where, in addition to the functions/sizes of tasks and

accelerators, runtime configuration overheads for re-allocating accelerators for diverse

102

computing resource types should also be considered.

4.7 Conclusion

In this chapter, we present a learning-based multi-accelerator management framework that

provides efficient joint task scheduling and accelerator allocation. Our proposed

asynchronous learning architecture allows the system to consistently make scheduling

decisions in real time and asynchronously improve the scheduling policy. Under changing

input workloads in the environment, the result significantly outperforms related scheduling

schemes in terms of average throughput and task drop rate.

103

Chapter 5

Conclusions and Future Directions

5.1 Conclusion

Edge computing is becoming increasingly important in the era of big-data applications

with high demand for processing power. Unlike cloud computing, which involves processing

data in a centralized data center, edge computing processes data locally, closer to the

source of data. This is particularly useful for real-time processing and immediate

decision-making, as it reduces latency and network congestion. As the demand for

computing power continues to grow and data processing requirements become more

diverse, heterogeneous architectures and hardware accelerators play a key role in

accommodating the demanding processing powers of resource-constrained edge devices.

FPGAs offer the advantage of implementing various independent accelerators, enabling a

single FPGA to process various applications simultaneously. However, due to the limited

amount of resources on FPGAs, it is important to share FPGA resources among different

applications to avoid under-utilization of resources. When multiple end devices send DNN

applications to the FPGA edge for hardware acceleration, we need system software that

104

can provide efficient task scheduling and resource allocation on the shared FPGA edge.

In this dissertation, we discuss the limitations in the related task scheduling and resource

management approaches for the FPGA-based multi-accelerator edge system. We realize the

major flaws and investigate optimization opportunities.

In Chapter 2, we present the DNN accelerator sharing service on the edge system. The task

scheduling and accelerator allocation problem is modeled into an optimization problem as

Mixed Integer Linear Programming and solved using mathematical programming solvers.

The experimental results show an up to 2.20x performance gain and improve the utilization

by reducing up to 27% of DNN library usage while still meeting the requests’ requirement

and resource constraints.

In Chapter 3, we present a two-phase systematic approach that not only exploits the

characteristics of applications in patterns and optimally balances the concurrent execution

on accelerators but also employs a mixed offline/online multi-queue scheduling method to

optimize responsiveness by reducing response time and minimizing task drops and

accommodate noises from various network delays for consistent IoT DNN workloads. With

this two-phase approach, the edge system can significantly improve the responsiveness of

average response time and task drops in serving multiple end devices where the task drops

are even reduced to zero.

In Chapter 4, we present a knowledge-based multi-accelerator management framework that

learns the insights to optimize task scheduling and accelerator allocation. This framework

asynchronously learns the scheduling and allocation policy, dynamically partitioning shared

resources to optimize system performance through continuous interaction with the edge. The

experimental results show improved throughput as well as task drops, compared to related

learning-based and heuristic approaches.

105

5.2 Directions for Future Work

In this dissertation, we present a systematic solution to optimize responsiveness on the

edge for consistent workloads, leveraging regularity while accommodating fluctuations.

Additionally, for dynamic and event-driven workloads, we introduce a knowledge-based

solution, i.e. the learning-based multi-accelerator management framework. This framework

learns to efficiently manage tasks and computing resources. Finally, we outline potential

opportunities and directions for future development.

5.2.1 Efficiency and Adaptability for the mixed offline/online

approach

The proposed mixed offline/online approach is well-suited to consistent input workloads

while accommodating noises and uncertainty through the adaptive online scheduler. Future

improvements may focus on enhancing methods, e.g. machine learning algorithms, to better

explore and exploit regularities in dynamic workloads. This could involve advanced analytics

for identifying hidden patterns, leading to more effective offline model training.

Additionally, researchers may explore the development of adaptive hybrid models that

dynamically adjust the balance between offline and online components based on the

evolving characteristics of the input workloads. This adaptability could enhance the

system’s performance across a broader range of scenarios.

5.2.2 Reliability and Resilience in the learning-based framework

In addressing noisy and event-based input workloads, the learning-based framework’s

future evolution could involve integrating robustness mechanisms. While the framework

106

was initially designed for task fairness, there is potential for critical tasks with strict

deadlines to benefit from prioritization mechanisms. This approach enhances system

reliability and robustness, particularly in scenarios with diverse and unpredictable task

characteristics.

Furthermore, the framework’s future development may focus on improving adaptability and

resilience. This could include exploring transfer learning techniques for leveraging knowledge

across different workloads, continual learning mechanisms for staying current with evolving

requirements, and investigating meta-reinforcement learning for efficient policy adaptation.

107

Bibliography

[1] M. Aazam and E.-N. Huh. Fog computing micro datacenter based dynamic resource
estimation and pricing model for iot. In 2015 IEEE 29th international conference on
advanced information networking and applications, pages 687–694. IEEE, 2015.

[2] AMD Xilinx Vitis HLS. Avaialble: https://www.xilinx.com/products/

design-tools/vitis/vitis-hls.html/.

[3] R. Ayachi, Y. Said, and A. Ben Abdelali. Optimizing neural networks for efficient fpga
implementation: A survey. Archives of Computational Methods in Engineering, pages
1–11, 2021.

[4] E. Baek, D. Kwon, and J. Kim. A multi-neural network acceleration architecture. In
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 940–953. IEEE, 2020.

[5] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload or not to offload? the
bandwidth and energy costs of mobile cloud computing. In 2013 Proceedings Ieee
Infocom, pages 1285–1293. IEEE, 2013.

[6] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu,
M. Leeser, and K. Vissers. Finn-r: An end-to-end deep-learning framework for
fast exploration of quantized neural networks. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 11(3):1–23, 2018.

[7] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D. Brown,
and J. H. Anderson. Legup: An open-source high-level synthesis tool for fpga-based
processor/accelerator systems. ACM Transactions on Embedded Computing Systems
(TECS), 13(2):1–27, 2013.

[8] A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural network models
for practical applications. arXiv preprint arXiv:1605.07678, 2016.

[9] CHaiDNN: An HLS based Deep Neural Network Accelerator Library for Xilinx
Ultrascale+ MPSoCs. Avaialble: https://github.com/Xilinx/CHaiDNN.

[10] G. Charitopoulos, I. Koidis, K. Papadimitriou, and D. Pnevmatikatos. Hardware task
scheduling for partially reconfigurable fpgas. In Applied Reconfigurable Computing:

108

https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html/
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html/
https://github.com/Xilinx/CHaiDNN

11th International Symposium, ARC 2015, Bochum, Germany, April 13-17, 2015,
Proceedings 11, pages 487–498. Springer, 2015.

[11] H. Chen, W. Qin, and L. Wang. Task partitioning and offloading in iot cloud-edge
collaborative computing framework: a survey. Journal of Cloud Computing, 11(1):86,
2022.

[12] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu. iraf: A deep reinforcement
learning approach for collaborative mobile edge computing iot networks. IEEE Internet
of Things Journal, 6(4):7011–7024, 2019.

[13] M. Chirila, P. D’Alberto, H.-Y. Ting, A. Veidenbaum, and A. Nicolau. A heterogeneous
solution to the all-pairs shortest path problem using fpgas. In 2022 23rd International
Symposium on Quality Electronic Design (ISQED), pages 108–113. IEEE, 2022.

[14] Y. Choi and M. Rhu. Prema: A predictive multi-task scheduling algorithm for
preemptible neural processing units. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 220–233. IEEE, 2020.

[15] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural
networks: Training deep neural networks with weights and activations constrained to+
1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[16] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica.
Clipper: A {Low-Latency} online prediction serving system. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), pages
613–627, 2017.

[17] A. Dairi, F. Harrou, Y. Sun, and M. Senouci. Obstacle detection for intelligent
transportation systems using deep stacked autoencoder and k-nearest neighbor scheme.
IEEE Sensors Journal, 18(12):5122–5132, 2018.

[18] N.-N. Dao, T.-T. Nguyen, M.-Q. Luong, T. Nguyen-Thanh, W. Na, and S. Cho.
Self-calibrated edge computation for unmodeled time-sensitive iot offloading traffic.
IEEE Access, 8:110316–110323, 2020.

[19] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu,
T. Harley, I. Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International conference on machine learning,
pages 1407–1416. PMLR, 2018.

[20] J. Faraone, G. Gambardella, D. Boland, N. Fraser, M. Blott, and P. H. Leong.
Customizing low-precision deep neural networks for fpgas. In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL), pages 97–973, 2018.

[21] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas. A survey of
sequential pattern mining. Data Science and Pattern Recognition, 1(1):54–77, 2017.

109

[22] P. A. Gagniuc. Markov chains: from theory to implementation and experimentation.
John Wiley & Sons, 2017.

[23] M. Ghasemzadeh, M. Samragh, and F. Koushanfar. Rebnet: Residual binarized neural
network. In 2018 IEEE 26th annual international symposium on field-programmable
custom computing machines (FCCM), pages 57–64. IEEE, 2018.

[24] S. Ghodrati, B. H. Ahn, J. K. Kim, S. Kinzer, B. R. Yatham, N. Alla, H. Sharma,
M. Alian, E. Ebrahimi, N. S. Kim, et al. Planaria: Dynamic architecture fission
for spatial multi-tenant acceleration of deep neural networks. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 681–697.
IEEE, 2020.

[25] Google. Tensor Processing Unit (TPU). Avaialble: https://cloud.google.com/tpu/
docs/intro-to-tpu#edge_tpu.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018.

[27] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krishnamurthy.
Mcdnn: An approximation-based execution framework for deep stream processing
under resource constraints. In Proceedings of the 14th Annual International Conference
on Mobile Systems, Applications, and Services, pages 123–136, 2016.

[28] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu, and D. Chen.
Fpga/dnn co-design: An efficient design methodology for iot intelligence on the edge.
In Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6,
2019.

[29] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G. Dreslinski,
J. Mars, and L. Tang. Djinn and tonic: Dnn as a service and its implications for
future warehouse scale computers. ACM SIGARCH Computer Architecture News,
43(3S):27–40, 2015.

[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[31] G. Hegde, Siddhartha, N. Ramasamy, and N. Kapre. Caffepresso: An optimized library
for deep learning on embedded accelerator-based platforms. In Proceedings of the
International Conference on Compilers, Architectures and Synthesis for Embedded
Systems, pages 1–10, 2016.

[32] C.-H. Hong and B. Varghese. Resource management in fog/edge computing: a survey
on architectures, infrastructure, and algorithms. ACM Computing Surveys (CSUR),
52(5):1–37, 2019.

110

https://cloud.google.com/tpu/docs/intro-to-tpu#edge_tpu
https://cloud.google.com/tpu/docs/intro-to-tpu#edge_tpu

[33] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. Van Hasselt, and
D. Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam. Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[35] P. Hu, S. Dhelim, H. Ning, and T. Qiu. Survey on fog computing: architecture,
key technologies, applications and open issues. Journal of network and computer
applications, 98:27–42, 2017.

[36] K.-Y. Huang and C.-H. Chang. Efficient mining of frequent episodes from complex
sequences. Information Systems, 2008.

[37] L. Huang, X. Feng, C. Zhang, L. Qian, and Y. Wu. Deep reinforcement learning-based
joint task offloading and bandwidth allocation for multi-user mobile edge computing.
Digital Communications and Networks, 5(1):10–17, 2019.

[38] IBM Article: Edge computing architecture and use cases. Avaialble: https://

developer.ibm.com/articles/edge-computing-architecture-and-use-cases/.

[39] IBM CPLEX® Optimizer. Available: https://www.ibm.com/analytics/

cplex-optimizer.

[40] IDC White Paper - #US44413318: The digitization of the World From Edge
to Core. Avaialble: https://www.seagate.com/files/www-content/our-story/

trends/files/idc-seagate-dataage-whitepaper.pdf.

[41] S. Iftikhar, S. S. Gill, C. Song, M. Xu, M. S. Aslanpour, A. N. Toosi, J. Du, H. Wu,
S. Ghosh, D. Chowdhury, et al. Ai-based fog and edge computing: A systematic review,
taxonomy and future directions. Internet of Things, page 100674, 2022.

[42] Intel oneAPI. Avaialble: https://www.intel.com/content/www/us/en/developer/
tools/oneapi/training/fpga-development-flow.html/.

[43] Internet of Things (IoT) connected devices installed base worldwide from
2015 to 2025. Avaialble: https://www.statista.com/statistics/471264/

iot-number-of-connected-devices-worldwide/.

[44] A. Iranfar, W. A. Simon, M. Zapater, and D. Atienza. A machine learning-based
strategy for efficient resource management of video encoding on heterogeneous mpsocs.
In 2018 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5.
IEEE, 2018.

[45] Z. István, G. Alonso, and A. Singla. Providing multi-tenant services with fpgas:
Case study on a key-value store. In 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), pages 119–1195. IEEE, 2018.

111

https://developer.ibm.com/articles/edge-computing-architecture-and-use-cases/
https://developer.ibm.com/articles/edge-computing-architecture-and-use-cases/
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/fpga-development-flow.html/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/training/fpga-development-flow.html/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

[46] P. Jaccard. The distribution of the flora in the alpine zone. 1. New phytologist,
11(2):37–50, 1912.

[47] S. Jiang, D. He, C. Yang, C. Xu, G. Luo, Y. Chen, Y. Liu, and J. Jiang. Accelerating
mobile applications at the network edge with software-programmable fpgas. In IEEE
INFOCOM 2018 - IEEE Conference on Computer Communications, pages 55–62, 2018.

[48] S. Jiang, Z. Ma, X. Zeng, C. Xu, M. Zhang, C. Zhang, and Y. Liu. Scylla: Qoe-aware
continuous mobile vision with fpga-based dynamic deep neural network reconfiguration.
In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pages
1369–1378. IEEE, 2020.

[49] W. Jiang, E. H.-M. Sha, X. Zhang, L. Yang, Q. Zhuge, Y. Shi, and J. Hu. Achieving
super-linear speedup across multi-fpga for real-time dnn inference. ACM Transactions
on Embedded Computing Systems (TECS), 18(5s):67, 2019.

[50] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu. Accuracy
vs. efficiency: Achieving both through fpga-implementation aware neural architecture
search. In Proceedings of the 56th Annual Design Automation Conference 2019, pages
1–6, 2019.

[51] M. Jridi, T. Chapel, V. Dorez, G. Le Bougeant, and A. Le Botlan. Soc-based edge
computing gateway in the context of the internet of multimedia things: experimental
platform. Journal of Low Power Electronics and Applications, 8(1):1, 2018.

[52] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang.
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM
SIGARCH Computer Architecture News, 45(1):615–629, 2017.

[53] S.-C. Kao and T. Krishna. Gamma: Automating the hw mapping of dnn models on
accelerators via genetic algorithm. In Proceedings of the 39th International Conference
on Computer-Aided Design, pages 1–9, 2020.

[54] S.-C. Kao and T. Krishna. Domain-specific genetic algorithm for multi-tenant dnn
accelerator scheduling. arXiv preprint arXiv:2104.13997, 2021.

[55] A. Khawaja, J. Landgraf, R. Prakash, M. Wei, E. Schkufza, and C. J. Rossbach.
Sharing, protection, and compatibility for reconfigurable fabric with AmorphOS. In
13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 107–127, Carlsbad, CA, Oct. 2018. USENIX Association.

[56] K. Kim, S.-J. Jang, J. Park, E. Lee, and S.-S. Lee. Lightweight and energy-efficient deep
learning accelerator for real-time object detection on edge devices. Sensors, 23(3):1185,
2023.

[57] J. H. Ko, T. Na, M. F. Amir, and S. Mukhopadhyay. Edge-host partitioning of deep
neural networks with feature space encoding for resource-constrained internet-of-things
platforms. In 2018 15th IEEE International Conference on Advanced Video and Signal
Based Surveillance (AVSS), pages 1–6. IEEE, 2018.

112

[58] H. Kooti and E. Bozorgzadeh. Reconfiguration-aware task graph scheduling. In 2015
IEEE 13th International Conference on Embedded and Ubiquitous Computing, pages
163–167. IEEE, 2015.

[59] G. Korol, M. G. Jordan, M. B. Rutzig, and A. C. S. Beck. Synergistically exploiting
cnn pruning and hls versioning for adaptive inference on multi-fpgas at the edge. ACM
Transactions on Embedded Computing Systems (TECS), 20(5s):1–26, 2021.

[60] G. Korol, M. G. Jordan, M. B. Rutzig, and A. C. S. Beck. Adaflow: a framework for
adaptive dataflow cnn acceleration on fpgas. In 2022 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 244–249. IEEE, 2022.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[62] S. Kumar, P. Tiwari, and M. Zymbler. Internet of things is a revolutionary approach
for future technology enhancement: a review. Journal of Big data, 6(1):1–21, 2019.

[63] D. C. Le, E. Y. Oh, J. H. Jeong, S. H. Kim, M. Jeon, J. Jang, and C.-H. Youn.
An opencl-based sift accelerator for image features extraction on fpga in mobile
edge computing environment. In 2018 International Conference on Information and
Communication Technology Convergence (ICTC), pages 1406–1410. IEEE, 2018.

[64] Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[65] J. Lee, J. Choi, J. Kim, J. Lee, and Y. Kim. Dataflow mirroring: Architectural support
for highly efficient fine-grained spatial multitasking on systolic-array npus. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pages 247–252. IEEE, 2021.

[66] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and D. Chen. Edd:
Efficient differentiable dnn architecture and implementation co-search for embedded
ai solutions. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pages
1–6. IEEE, 2020.

[67] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei. Fp-bnn: Binarized neural network on
fpga. Neurocomputing, 275:1072–1086, 2018.

[68] J. D. Little. A proof for the queuing formula: L= λ w. Operations research,
9(3):383–387, 1961.

[69] B. Liu, Z. Luo, H. Chen, and C. Li. A survey of state-of-the-art on edge computing:
Theoretical models, technologies, directions, and development paths. IEEE Access,
10:54038–54063, 2022.

[70] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch. Run-time partial reconfiguration
speed investigation and architectural design space exploration. In 2009 International
Conference on Field Programmable Logic and Applications, pages 498–502. IEEE,
2009.

113

[71] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg.
Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I
14, pages 21–37. Springer, 2016.

[72] X. Liu, J. Yang, C. Zou, Q. Chen, X. Yan, Y. Chen, and C. Cai. Collaborative edge
computing with fpga-based cnn accelerators for energy-efficient and time-aware face
tracking system. IEEE Transactions on Computational Social Systems, 9(1):252–266,
2021.

[73] P. Lou, L. Shi, X. Zhang, Z. Xiao, and J. Yan. A data-driven adaptive sampling
method based on edge computing. Sensors, 20(8):2174, 2020.

[74] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi. Resource scheduling in edge computing: A
survey. IEEE Communications Surveys & Tutorials, 23(4):2131–2165, 2021.

[75] X. Luo, D. Li, Y. Yang, S. Zhang, et al. Spatiotemporal traffic flow prediction with
knn and lstm. Journal of Advanced Transportation, 2019, 2019.

[76] D. Ma and X. Jiao. Hyperdimensional computing vs. neural networks: Comparing
architecture and learning process. arXiv preprint arXiv:2207.12932, 2022.

[77] X. Ma, T. Yao, M. Hu, Y. Dong, W. Liu, F. Wang, and J. Liu. A survey on deep
learning empowered iot applications. IEEE Access, 7:181721–181732, 2019.

[78] X. Ma, A. Zhou, S. Zhang, Q. Li, A. X. Liu, and S. Wang. Dynamic task scheduling
in cloud-assisted mobile edge computing. IEEE Transactions on Mobile Computing,
2021.

[79] N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining algorithms.
ACM Computing Surveys (CSUR), 43(1):1–41, 2010.

[80] H. Mannila, H. Toivonen, and A. Inkeri Verkamo. Discovery of frequent episodes in
event sequences. Data mining and knowledge discovery, 1:259–289, 1997.

[81] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep
reinforcement learning. In Proceedings of the 15th ACM workshop on hot topics in
networks, pages 50–56, 2016.

[82] J. M. Mbongue, A. M.-I. Shuping, P. Bhowmik, and C. Bobda. Architecture support
for fpga multi-tenancy in the cloud. In 2020 IEEE 31st International Conference on
Application-specific Systems, Architectures and Processors (ASAP), pages 125–132.
IEEE, 2020.

[83] J. Meng, H. Tan, C. Xu, W. Cao, L. Liu, and B. Li. Dedas: Online task dispatching
and scheduling with bandwidth constraint in edge computing. In IEEE INFOCOM
2019-IEEE Conference on Computer Communications, pages 2287–2295. IEEE, 2019.

114

[84] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. Mot16: A benchmark for
multi-object tracking. arXiv preprint arXiv:1603.00831, 2016.

[85] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
International conference on machine learning, pages 1928–1937. PMLR, 2016.

[86] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[87] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[88] V. N. Moothedath, J. P. V. Champati, and J. Gross. Energy efficient sampling policies
for edge computing feedback systems. IEEE Transactions on Mobile Computing, 2022.

[89] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria,
V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al. Massively parallel
methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

[90] H. Nakahara, T. Fujii, and S. Sato. A fully connected layer elimination for a binarizec
convolutional neural network on an fpga. In 2017 27th international conference on field
programmable logic and applications (FPL), pages 1–4. IEEE, 2017.

[91] H. Nakahara, H. Yonekawa, T. Fujii, and S. Sato. A lightweight yolov2: A binarized
cnn with a parallel support vector regression for an fpga. In Proceedings of the
2018 ACM/SIGDA International Symposium on field-programmable gate arrays, pages
31–40, 2018.

[92] Number of Internet of Things (IoT) connected devices worldwide from 2019 to
2023, with forecasts from 2022 to 2030. Avaialble: https://www.statista.com/

statistics/1183457/iot-connected-devices-worldwide/.

[93] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and D. Marr. Accelerating
binarized neural networks: Comparison of fpga, cpu, gpu, and asic. In 2016
International Conference on Field-Programmable Technology (FPT), pages 77–84.
IEEE, 2016.

[94] L. Otten. LaTeX template for thesis and dissertation documents at UC Irvine. https:
//github.com/lotten/uci-thesis-latex/, 2012.

[95] J. Pan, G. Chen, H. Wu, X. Peng, and L. Xia. Deep reinforcement learning-based
dynamic bandwidth allocation in weighted fair queues of routers. In 2022 IEEE
18th International Conference on Automation Science and Engineering (CASE), pages
1580–1587. IEEE, 2022.

115

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://github.com/lotten/uci-thesis-latex/
https://github.com/lotten/uci-thesis-latex/

[96] D. R. Patrikar and M. R. Parate. Anomaly detection using edge computing in
video surveillance system. International Journal of Multimedia Information Retrieval,
11(2):85–110, 2022.

[97] H. Peng, S. Zhou, S. Weitze, J. Li, S. Islam, T. Geng, A. Li, W. Zhang, M. Song,
M. Xie, et al. Binary complex neural network acceleration on fpga. In 2021 IEEE
32nd International Conference on Application-specific Systems, Architectures and
Processors (ASAP), pages 85–92. IEEE, 2021.

[98] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C.
Chen, and S. S. Iyengar. A survey on deep learning: Algorithms, techniques, and
applications. ACM Computing Surveys (CSUR), 51(5):1–36, 2018.

[99] G. Premsankar, M. Di Francesco, and T. Taleb. Edge computing for the internet of
things: A case study. IEEE Internet of Things Journal, 5(2):1275–1284, 2018.

[100] Press Release: Intel acquired the Altera Corp. for $16.7 billion.
Avaialble: https://www.intc.com/news-events/press-releases/detail/302/

intel-completes-acquisition-of-altera.

[101] A. Purgato, D. Tantillo, M. Rabozzi, D. Sciuto, and M. D. Santambrogio.
Resource-efficient scheduling for partially-reconfigurable fpga-based systems. In
2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 189–197. IEEE, 2016.

[102] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme,
H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, et al. A reconfigurable fabric for
accelerating large-scale datacenter services. ACM SIGARCH Computer Architecture
News, 42(3):13–24, 2014.

[103] Q-engineering. Available: https://qengineering.eu/.

[104] M. Raeis, A. Tizghadam, and A. Leon-Garcia. Queue-learning: A reinforcement
learning approach for providing quality of service. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages 461–468, 2021.

[105] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on
computer vision, pages 525–542. Springer, 2016.

[106] S. A. Razavi, H.-Y. Ting, T. Giyahchi, and E. Bozorgzadeh. On exploiting patterns
for robust fpga-based multi-accelerator edge computing systems. In 2022 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 116–119. IEEE,
2022.

[107] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza. High speed and high dynamic
range video with an event camera. IEEE transactions on pattern analysis and machine
intelligence, 43(6):1964–1980, 2019.

116

https://www.intc.com/news-events/press-releases/detail/302/intel-completes-acquisition-of-altera
https://www.intc.com/news-events/press-releases/detail/302/intel-completes-acquisition-of-altera
https://qengineering.eu/

[108] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 779–788, 2016.

[109] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[110] M. Rusci, A. Capotondi, and L. Benini. Memory-driven mixed low precision
quantization for enabling deep network inference on microcontrollers. Proceedings
of Machine Learning and Systems, 2:326–335, 2020.

[111] M. Sadeghi, S. A. Razavi, and M. S. Zamani. Reducing reconfiguration time in fpgas.
In 2019 27th Iranian Conference on Electrical Engineering (ICEE), pages 1844–1848.
IEEE, 2019.

[112] T. J. Saleem and M. A. Chishti. Deep learning for the internet of things: Potential
benefits and use-cases. Digital Communications and Networks, 7(4):526–542, 2021.

[113] F. Samie. Resource management for edge computing in internet of things (iot). 2018.

[114] F. Samie, L. Bauer, and J. Henkel. From cloud down to things: An overview of machine
learning in internet of things. IEEE Internet of Things Journal, 6(3):4921–4934, 2019.

[115] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based
cloudlets in mobile computing. IEEE pervasive Computing, 8(4):14–23, 2009.

[116] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

[117] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[118] ScienceTechworld.com: Scientech IoT Builder. Avaialble: https://www.

scientechworld.com/it-educational-platforms/iot-solutions/iot-builder/.

[119] S. Shahhosseini, T. Hu, D. Seo, A. Kanduri, B. Donyanavard, A. M. Rahmani, and
N. Dutt. Hybrid learning for orchestrating deep learning inference in multi-user
edge-cloud networks. arXiv preprint arXiv:2202.11098, 2022.

[120] S. Sheng, P. Chen, Z. Chen, L. Wu, and Y. Yao. Deep reinforcement learning-based
task scheduling in iot edge computing. Sensors, 21(5):1666, 2021.

[121] A. Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term
memory (lstm) network. Physica D: Nonlinear Phenomena, 404:132306, 2020.

[122] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

117

https://www.scientechworld.com/it-educational-platforms/iot-solutions/iot-builder/
https://www.scientechworld.com/it-educational-platforms/iot-solutions/iot-builder/

[123] D. Singh and C. K. Mohan. Deep spatio-temporal representation for detection of road
accidents using stacked autoencoder. IEEE Transactions on Intelligent Transportation
Systems, 20(3):879–887, 2018.

[124] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015.

[125] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception
architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826, 2016.

[126] M. M. Taye. Understanding of machine learning with deep learning: Architectures,
workflow, applications and future directions. Computers, 12(5):91, 2023.

[127] The VIRAT Video Dataset. Available: https://viratdata.org/index.html.

[128] H.-Y. Ting, T. Giyahchi, A. A. Sani, and E. Bozorgzadeh. Dynamic sharing
in multi-accelerators of neural networks on an fpga edge device. In 2020 IEEE
31st International Conference on Application-specific Systems, Architectures and
Processors (ASAP), pages 197–204. IEEE, 2020.

[129] H.-Y. Ting, A. A. Sani, and E. Bozorgzadeh. System services for reconfigurable
hardware acceleration in mobile devices. In 2018 International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–6. IEEE, 2018.

[130] Towards a framework for developing extensible IoT applications. Avaialble: https:

//mimove.inria.fr/zefxis/.

[131] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya. Dynamic scheduling
for stochastic edge-cloud computing environments using a3c learning and residual
recurrent neural networks. IEEE transactions on mobile computing, 21(3):940–954,
2020.

[132] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and
K. Vissers. Finn: A framework for fast, scalable binarized neural network inference. In
Proceedings of the 2017 ACM/SIGDA international symposium on field-programmable
gate arrays, pages 65–74, 2017.

[133] A. Vaishnav, K. D. Pham, D. Koch, and J. Garside. Resource elastic virtualization
for fpgas using opencl. In 2018 28th International Conference on Field Programmable
Logic and Applications (FPL), pages 111–1117. IEEE, 2018.

[134] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

118

https://viratdata.org/index.html
https://mimove.inria.fr/zefxis/
https://mimove.inria.fr/zefxis/

[135] S. I. Venieris and C.-S. Bouganis. fpgaconvnet: A framework for mapping convolutional
neural networks on fpgas. In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 40–47. IEEE, 2016.

[136] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, et al. Scipy 1.0: fundamental
algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

[137] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas. Fast adaptive task offloading
in edge computing based on meta reinforcement learning. IEEE Transactions on
Parallel and Distributed Systems, 32(1):242–253, 2020.

[138] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen. Convergence of
edge computing and deep learning: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 22(2):869–904, 2020.

[139] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR, 2016.

[140] W. Xiangxue, X. Lunhui, and C. Kaixun. Data-driven short-term forecasting for urban
road network traffic based on data processing and lstm-rnn. Arabian Journal for Science
and Engineering, 44:3043–3060, 2019.

[141] X. Xiong, K. Zheng, L. Lei, and L. Hou. Resource allocation based on deep
reinforcement learning in iot edge computing. IEEE Journal on Selected Areas in
Communications, 38(6):1133–1146, 2020.

[142] C. Xu, S. Jiang, G. Luo, G. Sun, N. An, G. Huang, and X. Liu. The case for fpga-based
edge computing. IEEE Transactions on Mobile Computing, 21(7):2610–2619, 2020.

[143] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan, D. Chen,
and Y. Lin. Autodnnchip: An automated dnn chip predictor and builder for both
fpgas and asics. In Proceedings of the 2020 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pages 40–50, 2020.

[144] L. Yan, S. Cao, Y. Gong, H. Han, J. Wei, Y. Zhao, and S. Yang. Satec: A 5g satellite
edge computing framework based on microservice architecture. Sensors, 19(4):831,
2019.

[145] Z. Yang, K. Nahrstedt, H. Guo, and Q. Zhou. Deeprt: A soft real time scheduler for
computer vision applications on the edge. In 2021 IEEE/ACM Symposium on Edge
Computing (SEC), pages 271–284. IEEE, 2021.

[146] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li. Lavea: Latency-aware video
analytics on edge computing platform. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, pages 1–13, 2017.

119

[147] W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang. A survey on the
edge computing for the internet of things. IEEE access, 6:6900–6919, 2017.

[148] Y. Zeng, M. Chao, and R. Stoleru. Emuedge: A hybrid emulator for reproducible and
realistic edge computing experiments. In 2019 IEEE International Conference on Fog
Computing (ICFC), pages 153–164. IEEE, 2019.

[149] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing fpga-based
accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA international symposium on field-programmable gate arrays, pages
161–170, 2015.

[150] D. Zhang, N. Vance, Y. Zhang, M. T. Rashid, and D. Wang. Edgebatch: Towards
ai-empowered optimal task batching in intelligent edge systems. In 2019 IEEE
Real-Time Systems Symposium (RTSS), pages 366–379. IEEE, 2019.

[151] W. Zhang, Z. Zhang, S. Zeadally, and H.-C. Chao. Efficient task scheduling with
stochastic delay cost in mobile edge computing. IEEE Communications Letters,
23(1):4–7, 2018.

[152] Z. Zhang. Improved adam optimizer for deep neural networks. In 2018 IEEE/ACM
26th International Symposium on Quality of Service (IWQoS), pages 1–2, 2018.

[153] C. Zhao, C. Xiao, and Y. Liu. A real-time reconfigurable edge computing system in
industrial internet of things based on fpga. In 2021 IEEE 16th Conference on Industrial
Electronics and Applications (ICIEA), pages 480–485. IEEE, 2021.

[154] H. Zhao and R. Sakellariou. An experimental investigation into the rank function of
the heterogeneous earliest finish time scheduling algorithm. In Euro-Par 2003 Parallel
Processing: 9th International Euro-Par Conference Klagenfurt, Austria, August 26-29,
2003 Proceedings 9, pages 189–194. Springer, 2003.

[155] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta,
and Z. Zhang. Accelerating binarized convolutional neural networks with
software-programmable fpgas. In Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages 15–24, 2017.

[156] T. Zheng, J. Wan, J. Zhang, and C. Jiang. Deep reinforcement learning-based workload
scheduling for edge computing. Journal of Cloud Computing, 11(1):3, 2022.

[157] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

[158] Z. Zhu, J. Zhang, J. Zhao, J. Cao, D. Zhao, G. Jia, and Q. Meng. A hardware and
software task-scheduling framework based on cpu+fpga heterogeneous architecture in
edge computing. IEEE Access, 7:148975–148988, 2019.

120

[159] J. Zou, T. Hao, C. Yu, and H. Jin. A3c-do: A regional resource scheduling
framework based on deep reinforcement learning in edge scenario. IEEE Transactions
on Computers, 70(2):228–239, 2021.

121

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Edge Computing in IoT Systems
	Deep Neural Network Applications in Edge Computing
	Hardware Acceleration of DNN applications on the Edge
	Deep Neural Network Models and Accelerators on FPGAs

	System Software Support in Edge Computing
	Multi-tenancy Support on the FPGA-based Multi-Accelerator Edge

	Overview and Contributions of this dissertation

	Dynamic Sharing in Multi-accelerators of Neural Networks on an FPGA Edge Device
	Introduction
	Edge FPGA-based DNN Accelerator Sharing System
	SharedDNN/PlanAhead: Offline Out-of-Order DNN-Accelerator Sharing Policy
	Graph Representation of Tasks and Accelerators
	Mixed Integer Linear Programming Formulation

	Evaluation
	Platform Setup
	Workload and Application Characteristics
	Experimental Results

	Conclusion

	On Exploiting Patterns For Robust FPGA-based Multi-accelerator Edge Computing Systems
	Introduction
	System Framework
	Pre-Deployment Phase (Offline)
	Pattern Extraction
	Static Scheduling and Accelerator Allocation

	Deployment Phase (Online)
	Adaptive Online Scheduler

	Evaluation
	Platform Setup
	Evaluation Scenario
	Result and Discussion

	Related work to increase the robustness of patterns
	Conclusion

	Learning-based Multi-Accelerator Management for Deep Learning Applications on the FPGA Edge
	Introduction
	Multi-Accelerator FPGA Edge Platform Overview
	FPGA-based Multi-Accelerator Edge Hardware
	Learning-based Multi-Accelerator Management Software

	Reinforcement Learning Model
	State Space
	Action Space
	Reward
	Problem Formulation

	Asynchronous Learning Architecture for Multi-Accelerator Management
	Evaluation
	Experimental Setup
	Experimental Results

	Related Works
	Conclusion

	Conclusions and Future Directions
	Conclusion
	Directions for Future Work
	Efficiency and Adaptability for the mixed offline/online approach
	Reliability and Resilience in the learning-based framework

	Bibliography

