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ABSTRACT

This report describes a finite element procedure for the analysis of plates
with stiffening elements located on one side. The structure is idealized by
an assemblage of quadrilateral elements simulating both membrane and plate
bending actions for the plate. The stiffeners are discretized using special
spar-elements with additional bar-elements simulating the top flanges.

The report includes a complete users manual for the computer program. The
use of the program is demonstrated by listing of input information and output
results for some cases.

Application of the method to some structures of particular interest to

naval architects are discussed in Chapter L. The cases treated are a section of
a orthogonally stiffened platestrip, and infinite platestrip with transverse
stiffeners, and a square plate with two orthogonal stiffeners.

The program can be used directly in design. However, based on systematic
variations of the geametry of plate and stiffeners for an orthogonally stiffened
plate field, it has been possible to extract maximum stress-curves based on the
computer program results. These curves will hopefully be of value to the de-
signer at an early stage in the design process.

A complete listing of the program is given in a separate Appendix.
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1. INTRODUCTION

Stiffened plates are frequently utilized in the design of ship structures.
The need for accurate methods of calculation of stresses and displacements for
this type of structural system is evident because of its consequences for economy,
weight and safety of the structures.

Up to the present time, the method of calculation that has been used
generally to solve the local plate-stiffener interaction problem employs a
series expansion of a stress function to solve the differential equations of
equilibrium [197, [24]. The stress function approach has several drawbacks
which limit its general applicability. In most cases, it is necessary to ex-
press the boundary conditions in terms of stresses instead of displacements.
Moreover, when using this method it is almost impossible to write a general com-
puter program that can deal with arbitrary geometry of the stiffened plate and
with arbitrary boundary conditioms.

Usually, the complete stress function analysis is not performed. Instead,
the concepts of 'shear lag" and "effective width" are often used in design, and
the overall stiffened plate bending problem is solved as a grillage system or
using orthotropic plate theory. For this purpose, the effective width may be
obtained from tables or diagrams that are derived from stress function calcu-
lations. However, the effective width approach does not give a complete picture
of the stress distribution throughout the plate, and its accuracy in case of
orthogonal stiffening is questionable.

The finite element method has proven to be a powerful method of computa-

tion for meny kinds of structural problems. This method has been in rapid



development since the first paper was published in 1956 [20]. Important finite
element types that have been developed in the past decade include plate bending
elements and membrane elements [23], [147 and [10].

An important trend in the search for new elements is the development of
more specialized elements, that is, elements that are designed to represent the

special form of behavior that can be anticipated in a particular type of struc-

tural part. One example of such an element is the so-called spar element. This

element is most appropriate for idealizing the stiffeners on a stiffened plate
system.

An extensive study of different types of elements suitable for the calcu-
lation of stiffened plates has been carried out in this investigation. This
study resulted in a computer program called LASP, programmed by the first men-

tioned of the authors. This program will be described later in this report.

LASP stands for "Linear Analysis of Stiffened Plates'. The term "linear analysis"

is used to emphasize that large deflection and non-linear material effects are
not included. The program can be used for analysis of plates with arbitrary
geaetry and boundary conditions and with orthogonally oriented stiffeners on
one side. A mesh-generating subroutine makes the program particularly easy to
use.

Based on the experience gained fram this project, the authors of this re-
port are confident that the finite element approach is more powerful than any

other available method for the analysis of stiffened plates.



2. METHOD OF ANALYSIS

2.1. Discretization of the Stiffened Plate.

The finite element method will not be discussed in detail here; good
general references are available elsewhere, [23], [14] and [10]. As indicated
by the name of the method, the structure is idealized as an assemblage of dis-
crete structural elements. A set of displacement functions is assumed within
each subregion (finite element). The displacement functions, usually polynomials,
can be expressed by the displacements at a corresponding number of nodal points
at the element boundary. Using the "displacement method" [14], the strain energy
within each element can be expressed in terms of the local nodal point displace-
ments. Adding up the strain energies for all elements, the energy for the total
system is obtained. Putting the variation of the total potential equal to zero,
one is left with the stiffness relation for the entire system. Examples of how
the finite element idealization ocught to be performed in the case of the stif-
fened plate system are given in Chapter 3 and Chapter L.

The elements used here for the stiffened plate problem are of four main
types. The plate itself must be divided into quadrilateral regions. For each
such region (finite element) a plate bending stiffness and a membrane stiffness
are evaluated. The stiffeners are divided into gquadrilateral elements having
membraﬁe action only. One element only is taken over the entire height
(distance perpendicular to the plate) of the stiffeners. The ends of each
stiffener element are perpendicular to the main plate. The lower nodal points
of the stiffener elements must coincide with nodal points of the plate, so that

coupling can be established between the stiffeners and the bending and membrane



actions of the plate, Torsional stiffness of the stiffeners is not included in
this analysis because it is assumed to be of negligible importance; however, it
could be easily added. The top flanges of the stiffeners are 1dealized by bar
elements having axial rigidities only. The bending stiffness of the top flange
is considered to be negligible compared to the in-plane bending rigidity of the
total stiffener.

A more detailed discussion of the different elements follows.

2.2. Membrane Element for the Plate.

The plane stress element is a general quadrilateral with four corner nodal
points and one internal nodal point as shown in Fig. 2.1. The internal node is
eliminated during the stiffness analysis by static condensation. The u and v
displacements are defined by interpolation polynomials in the oblique & - 1
system. A similar type of element is described by Zienkiewicz [23]. The element
stiffness is evaluated by a 4 by 4 numerical integration scheme (Gaussian quad-
rature).

In addition to its corner nodes, the element may have a specified number
(up to i) of midside nodes, each having one tangential degree of freedom. The
corresponding displacement pattern is defined as a quadratic deviation from the
linear interpolation between the tangential displacements at the two adjacent
side nodes. Numerical calculations of stiffened plates have revealed that it
is a great advantage to include these additional nodes where the stiffeners are
connected to the plate. Instead of a constant tangential"strain along the ele-
ment side, a linearly varying strain is obtained by using such & node.

When this type of element is tested in & cantilever beam, however, one



easily discovers that the element is far too stiff, This is mainly due to the
high shear strain energy connected with the displacement patterns assumed in the
typical bending modes of the element, see Fig. 2.2, The displacement functions
within the element require that the edges of the element remein straight during
pure bending deformation, while in the real case, the sides would tend to be
curved. An element with a modified flexural response has been proposed by Doherty,
Wilson and Taylor [8]. They suggested that the shear strain energy resulting

fran the pure bending modes of the element should be neglected. The resulting
element conseguently has a constant shear stress throughout the element (%),

A comparison study was carried out to investigate the performance of the
"constant shear" element in stiffened plate problems, see Section 4.3. It was
concluded from this study that the constant shear element gives better results
than the ordinary element both for displacements and for stresses. However, one
drawback of this new element is the fact that it yields a constant shear stress
within each element. In general it is of great interest to know more in detail
about the shear stress variation along the stiffeners., The shear stress obtained
by this element is only representative of an average value at the centroid of the
element.

For curiosity, the stress subroutine of the ordinary membrane elementvwas
canmbined in the computer program with the stiffness subroutine of the constant
shear element. This combination gave the same stresses in x and y directions as
the constant shear-stress routine, while an improved representation of the vary-
ing shear stress was obtained.

Both the ordinary membrane element and the constant shear element are made
available in the computer program. The names of the stiffness and the stress

subroutines are QUPSSP and PLSTSP respectively.

(*Y It should be noted that the stiffness of this element is dependent on the

element orientation relative to the This ent should be
modifieé??br general quadrilateral é%%?igufu% on gee (553“



2.3 Plate Bending Element

The bending element used for the plate is a general compatible quadri-
lateral assembled from 4 triangular subelements as shown in Fig. 2.3. This
type of element gives continuous slope and displacements between adjacent ele-
ment boundaries. Each triangle is a so-called LCCT1ll element or "linear cur-
vature compatible triangle with 11 degrees of freedom". The seven internal
degrees of freedom of the quadrilateral (see Fig. 2.3) are eliminated by static
condensation. The individual bending triangles shown in Fig. 2.4 have been de-
veloped by Clough and Tocher, and are discussed more in detail in [6], [9] and
[77.

The name of the bending stiffness subroutine in the program is Ql9. This
subroutine assembles U4 triangular subelements by calling the triangular element
plate bending stiffness routine SLCT11l. The corresponding bending moment rou-

tines are BMQl9 and BMQ1l2.

2.4 Membrane Element for the Stiffeners.

Fig. 2.5 shows the element types used for idealizing the stiffeners.
The elements used are spar elements that are specially designed to represent
the axial, bending and shear action of web type structures. The polynomial ex-
pansions of the u and v displacements are different along the two element axes.
In matrix form these displacements are given by
u =< ¢u > {vi]

v =< ¢v > [vi}

where, for the element in Fig. 2.5b, the nodal point displacement vector and

the interpolation polyncmials are given by
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As for the membrane element of the plate, the sidenode displacements u, and ug are
defined as deviations from the linear interpolation between the u displacements at
the adjacent corner nodes. The element in Fig. 2.5a is similar to this refined
element but does not have the midside nodes.

The rotations 8¢ and 8,0 are eliminated by static condensation; this con-
densation is permissible because when the shear force is discontinuous, the angles
0 will not be continuous between two adjacent elements. The static condensation
operation results in a constant shear stress over the entire element. As seen
from the interpolation functions, the displacement v does not vary through the
height of the element. This constant implies that the strain ey is zero, and
thus cy will not be zero (due to Poisson ratio effects). The stiffness sub-
routines, however, are adjusted so that the energy corresponding to Uy is equal

to zero.




The element stiffness subroutines for the spar elements are called SPAR6
and SPARC, the latter being the element that includes the two side nodes.
Corresponding stress routines are FSPARG6 and FSPARC. It is seen that the midside
node can match a midside node of the QUPSSP element. Based on the improved re-
results obtained when retaining the midside nodes, use of the SPARC element is
recaonmended. For this element it is also possible to condense one or two of
the sidenodes.

Some other types of spar elements have been described by Argyris, et. al.
[1] and by Sanders, et. al. [157. A more recent study has been made by Willams
[22]. From a review of this literature, it has been concluded that the elements

incorporated into this program are the most efficient ones presently avail&ble.

2.5 Bar Element for Top Flanges.

Fig. 2.6 shows the bar element used to provide the top flange of the stif-

feners. The axial displacement is given by

w=<g > )

where

fu,}=(u <g ST o [12 (1 - %)
Ug 1/2 (1 +€)
Ua (1 - &)

As for the other elements, the midside displacement ug is defined as deviation
from the linear interpolation between u; and up. The axial stress varies
linearly along the element. However, if the midside node is not included, the

stress will be constant.



The stiffness matrix for this element is given by

AE

(K] = T |1 -1 0
-1 1 0

0 0 16

3

The name of the stiffness subroutine is BAR while the corresponding routine cal-

culating the axial stress is BARST.
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3. COMPUTER PROGRAM '"LASP"

3.1 Structure of the Program.

Figure 3.1 shows a flow chart of subroutines for the computer program

LASP ("Linear Analysis of Stiffened Plates'). A short description of the dif-

ferent subroutines will be given in the following. However, the stiffness and

the stress subroutines have been discussed in the preceding chapter, and their
functions will not be repeated here.

MAIN is the main program. It reads some control quantities and calls the
mesh generator or the input routine called INFORM.

MESH generates a finite element mesh and corresponding information needed by
the program for the analysis of a rectangular plate with orthogonal stif-
fening. A more detailed description will be given in Section 3.2.

INFORM reads and prints input data when the mesh generator is not used, also
see Section 3.3.

STIFF calculates the bandwidth of the system stiffness matrix. Then it calls
the different stiffness subroutines and assembles the system stiffness
matrix. The element stiffness routines are only called for elements of
different geometry, so that if all elements are alike, only one call is
made. STIFF also introduces the boundary conditions into the total stiff-
ness matrix.

BANSOL solves the total system of equations using Guassian elimination.

Only half the band of the symmetric stiffness matrix is used. BANSOL
operates in core only.

STRESS calls the element stress subroutines for computation of membrane and

plate bending stresses. The nodal point values are found by taking the



arithmetic average of the corresponding corner values of all elements ad-
jacent to that nodal point. The principal surface stresses and their
directions are calculated at all nodal points of the plate.

QLOAD calculates nodal point loads for a general quadrilateral subjected to
transverse load. A simplified displacement polynamnial is used in this
load subroutine so that the distributed load is converted into concentrated
nodal loads only (mament forces corresponding to ex and ey are not included).

This simplification has negligible influence on the results.

3.2 Use of Mesh Generator.

The mesh generator can be used for rectangular plates with orthogonal stif-
fening when the plate has constant thickness and the stiffeners are continuous
and have constant cross-section. The boundary conditions and the loading may be
arbitrary. The data generation is made as extensive as possible to minimize the
necessary input information. Furthermore, the mesh generator does not require
that the program user have any knowledge about the finite element method. How-
ever, as for any finite element program, some understanding of the finite element
method is an advantage when interpreting the computed results.

For each data set to be generated, the following data cards are needed

(compare data sheet for the following example).

A. < START 1> (6H)

This word that starts in column 1 on a separate card initiates the use

of the mesh generator.

1k



15.

< HEADLINE . . . . > (78 H)

Headline for the output.

< ML, NL, NSX, NSY, ICCODE, LCODE, NLOAD > (715)

ML = number of coordinate points on the x-axis (see example)
NL = number of coordinate points on the y-axis

NSX = number of stiffeners in x-direction

NSY = number of stiffeners in y-direction

ICCODE = number of boundary condition cards (see also G.). 1 < ICCODE < 8
LCODE = code for distributed transversal load. LCODE can have the follow-
ing values:
0, no distributed transversal load.
-1, uniformly distributed load.
>0, LCODE number of elements have distributed load.
NLOAD = number of nodal point that have concentrated loads. These loads

will be added to the distributed load.

< Thickness, E, v > (3F10.3)

This card gives plate thickness, Young's modulus and Poisson's ratio.

<XX(J3), 3 =1, ML > (8F10.5)

<YY (J),J

J, NL >  (8F10.5)
The vector XX contains, in increasing order, the location of the coordinate
points on the x-axis and YY the points on the y-axis. Both the information

for XX and for YY must begin on a new card. It is not necessary that every
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coordinate value be given. When some values are omitted, these values are
generated by linear interpolation between the values at the closest points
where values are given. No extrapolation is performed, consequently the

values XX(ML) and YY(NL) must always be given.

<J, HX (J), ™(J), AX(J) > (I5, 3F10.5)

< J, HY (J), TY(J), AY(J) > (I5, 3F10.5)

One card is required for every stiffener in x-direction and one card for
every stiffener in y-direction.

On the card for a stiffener in x-direction

J is coordinate point number,

HX(J) is height of stiffener in x-directionm,

TX(J) is thickness of stiffener in x-direction,

AX(J) is flange area of stiffener in x-direction,

H(Y) etc., is defined similarly.

<J, U, V, W, 0, ey, Ups Vo > (812)

The displacement boundary conditions are given on ICCODE number of cards.
Each card must contain the following information:

J is a code telling where the following boundary conditions apply. J can
have values from 1 to 8. When J is less than 5, it refers to the side
number, see figure 3.2. When greater than U, J refers to a corner where
special boundary conditions are imposed. The boundary conditions for the

sides are also valid for the adjacent corner points. When two sides that

have different boundary conditions meet at a corner, "maximum fixity" is



assumed for the corner. This means that all the displacement camponents
that are fixed for either one of the adjacent sides will be assumed to be
fixed at the corner.

<U, V, W, ex’ ey > = boundary conditions for the plate. The following
codes are allowed.

0 = free component

1l = fixed component

<u, v,

the stiffeners at that side (or corher)

> = boundary condition for the axial displacement at the top of

0 = free component

1 = fixed camponent

T

< node number, F , F , F <

w Fyr T Ty > (15, S5F10.5)

The concentrated loads are given on NLOAD number of cards. Fx’ Fy and F;
are the load components in the x, y and z directions respectively. TX and

Ty are torques along the x and the y axes.

If the nodal point is located at the top of a stiffener and has one degree

of freedom in y-direction, the corresponding force component must be pun-
ched in columns 6 to 15.

If NLOAD is equal to zero, these cards must be amitted.

Distributed transverse load. When LCODE is equal to -1, the transverse
load is assumed to be uniformly distributed and its intensity q is given
by one card only:

<q> (F10.5)

17.



When LCODE is greater than zero, LCODE elements have transversal (not
necessarily uniform) load:

<J, 435 9y 935 QY 2 (15, L4F10.5)

Here J is the element number and 9, U q3 and q), are corner intensities

of the transversal load expressed in units of force per unit area.

< STOP > or < START1 > or < START2 > (6H)
The word STOP will terminate the computation process while START1 or
STARTZ2 indicates another data set. The use of the word START2 will be ex-

plained in the next section.

18.
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EXAMPLE

The use of the mesh generator will now be illustrated by an example.

Fig. 3.3 shows a plate with three stiffeners. The plate is fixed at ome side,
simply supported at another side, and has two free edges. The global coordinate
system has its origin at the lower left corner. The plate is divided into 2k
elements such that there are 4 elements along the x-axis and 6 elements along

the y-axis. Hence there are 5 coordinate points on the x-axis and T on the y-axis.
The two stiffeners in the x-direction pass through at coordinate points 4 and 7

at the y-axis. The stiffener in the y-direction passes through coordinate point 5
at the x-axis. The input sheet for this case is shown in figure 3.k4.

It is important to note that the global system axes should always be oriented
so that there are fewer elements along the x-axis than along the y-axis so that
the band width of the system matrix will be minimized. Thus in this example the
x axis has been taken in the 4 element wide direction while the y axis is in the
6 element wide direction.

When concentrated forces act at a nodal point, one must know how the auto-
matic nodal pointnumbering is carried out. The numbering always starts at the
origin and goes by rows in the x-direction. Where there are stiffeners there
are always two nodal points at each mesh grid point (one at the top of the stif-
fener, see Fig. 3.6). In addition, there is one lower midside node for each
spar-element, and one top midside node if the stiffener has a flange.

The element numbering goes like this: first come all plate elemeénts,then
all spar-elements and last all BAR-elements. The plate element numbering starts
in the lower left corner and goes by rows in x-direction. One can always easily

find out from the output how the elements and nodes are numbered. A figure



showing the node numbering is printed, as in Fig. 3.6, and for each element the

connected nodal points are listed.

3.3 Input when the Mesh Generator is not used

When the mesh generator is not used, the program can be applied to more
general stiffened plate problems. The plate can have arbitrary shape, but the
stiffening must still be orthogonal. The program allows cut-outs and discon-
tinuous stiffeners.

The input information is much more extensive than when the mesh generator

is used. The data cards required are as follows:

A. < START2> (6H)
This word that starts in column 1 tells that the mesh generator is not

going to be used.

B, < HEADLINE . . . .> (78H)

Headline for the output.

C. < NUMEL, NUMNP, NUMBC, NMAT, NDIFFE, NLOAD, LCODE, RT > (715, F10.5)
The different symbols stand for
NUMEL = total number of elements

NUMNP

total number of nodal points

NUMBC

number of points where boundary conditions are imposed
NMAT = number of different material laws

NDIFFE number of different elements, i.e., number of different element

20.



stiffness matrices (considering both membrane and plate bending

stiffness). For instance, if all elements are alike, NDIFFE = 1

NLOAD = number of nodal points that have concentrated loads
LCODE = code for distributed load, see section 3.2

RT = reference thickness

< I, ICODE, E, v > (I3, I2, 2E10.3)

where

I = material number (less than or equal to NMAT)
ICODE = can have two values

0]

isotropic material

1

general orthotropic material
However, the present version of the program permits only an isotropic
material.

E

L}

Youngs modulus

Vv Poisson's ration

One data card is reugired for each material.

< N, (EGEOM (N,I), I =1, 8), THICK(N), MAT(N) > (I3, 9F8.4, I3)

Here, the geometry for each element of different type is given.

N = element stiffness number (the stiffness matrices of different type

have to be numbered)

< EGEOM (N,I), I =1, 8 > are the local corner point coordinates X1, X2, X3,
Xh, Y1, Y2, Y3, Yh

Local corner numbering is counter-clockwise and starts in the lower left



22.

corner. For bar elements, the length of the element is given by X2-X1.
THICK(N) = thickness of the element.If no value is given (=0), the re-
ference thickness RT is assumed for that element. For bar elements,
THICK(N) stands for the area of the flange.

MAT(N) = material law number (see under D). If not specified, material 1
is assumed.

One card is needed for each stiffness matrix of different type.

< N, IETYPE(N), (NP(N,I), I =1, N1) > (815)

where

N = element number

IETYPE(N) = stiffness matrix number (corresponds to data in E.)

(NP(N,I), I =1, N1) is the global nodal point numbering. N1 is number

of each nodal points for that element (N1 < 6)

The numbering starts in lower left corner and goes around counter-clockwise,

Midside nodes follow after corner nodes.

Examples:

(7) 8, 15) 13) 12) 1)4)

(9, 11, 21, 20, 15, 10)

One card must be used for each element.



<N, I1, I2, I3 > (15, 3I2)

These numbers specify the type of element stiffnesses that should be used.
This information is given for all stiffness matrices of different type.

N = stiffness number (corresponds to N in E).

Il= indicates the membrane stiffness routine that should be used.

I1 can have the following values:

il

3, use QUPSSP
I1 = 4 use SPAR6
I1 = 5 use SPARC

Il = 6 use BAR with 2 nodes

I1 = 7 wuse Bar with 3 nodes

I2 indicates the plate bending stiffness that should be used

I2 can have only the value I2 = 1 that gives the Q19 plate bending quadri-
lateral. I2 = O for stiffener and flange elements.

I3 is an additional code that is needed to locate the additional nodes
for the membrane elements. When the element is a QUPSSP, I3 can have the

following values:

0O no additional sidenode.

13
I3 =1, 2, 3, or 4, for sidenode on side 1, 2, 3, or 4 respectively. Side

1 is the lower side and then the numbering goes counter-clockwise.

I3 =5, 6, 7, or 8 when the quadrilateral has two sidenodes. For each case the

the location of sidenodes are given in the figure below.

]
(0)
]
(0]

13 I3 I3

n
=

I3

[}
\n
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Other combinations of sidenodes are not allowed; they are not necessary
either since there always should be at least two elements between two
parallel stiffeners,

For the SPAR6 element I3 has the following meanings:

I3 =1 The stiffener element is oriented parallel to the
x-axis,
I3 =2 The stiffener element is oriented parallel to the

y-axis.
For the SPARC element I3 can have the following values:
I3 =1, 2,
or 3 the SPARC-element is oriented in the x-direction.

I3 = 4, 5,

I

or 6 the SPARC-element is oriented in the y-direction.

here again:

I3 = 1 or 4, the top midnode and the bottom midnode should be
condensed. Do not use these values, use the SPARG-
element instead.

I3 = 2 or 5, the top midnode is condensed while the lower midnode
is retained.

I3 = 3 or 6, both midnodes are retained.

For the BAR-element I3 can have the following values:

I3 = 0, the element is oriented in x-direction,
I3 = 1, the element is oriented in y-direction.
H. <NDIM (I), I = 1, NUMNP> (ko12)

Give number of degrees of freedom at each nodal point. This information

should start on a new card and must continue over as many cards as necessary.
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I. <NBC (1), (NTAG (I,J), J =1, N)> (15, 512)

This information gives the boundary conditions., NBC (I) is the number
of the nodal point where the boundary conditions are imposed. The boundary
conditions are stored in the matrix NTAG. N is the number of degrees of freedom
at the noda; point, The code that is used for NTAG can have the following
values:

0 = free component

1l = fixed component

The ordering of the displacement components is u, v, w, Gx, ey‘ Note
that if some of the components are missing at a node, the boundary conditions
should be condensed. For example, if at node 9 the only displacement component
v is fixed, the boundary condition is then given by
< bbbbIbibdb ... > (b = blank)

One card is needed for each boundary condition point, NUMBC cards in

total.

J. < J, (RDUM (I), I =1, N)> (15, S5F 12.5)

This information gives the concentrated nodal loads when NLOAD is greater
than zero. J is the number of the nodal point and (RDUM (I), I = 1, N) are
the load components. The ordering of the load components is Fx’ Fy, Fz’ Tx’
Ty. If the nodal point has less than 5 components, the actual components are

condensed to the left (as in I). A separate card must be uséd for every nodal

point having concentrated loads.

K. Distributed transverse load.
When LCODE on card C is equal to -1, the load is uniformly distributed

over the entire plate and the transverse load is given by one value only:



<a4> (F12!5) .

When LCODE is greater than zero, LCODE number of elements have

distributed transversal load., This load is then given element-wise like:
<dJ, qu Q_2J q3; q')-l»> (157 )‘4'F12-5)

vhere J isthe element number and q., s 4, and q, are the corner
, 17 927 93 n

intensities of the distributed load.

L. <STOP> or <START1> or <START2> (6H )
STOP is used in the case when there is no more data and START1 or
START2 is used in the case of new data sets. This information must start

in column 1.

EXAMPLE

A cantilever beam with a concentrated end load as shown in Fig. 3.5
is used as an example of input when the mesh generator is not used. The
mesh generator could also have been used for this case, making the input
much simpler. The direct data input is presented here merely as an example
of the procedure. The figure shows a listing of the data cards and the

finite element idealization of the beam.

3.4 Computer Output

The first part of the computer output is a full print of the input

information. When the mesh generator is used, a figure of the generated mesh

including stiffeners is printed out. This figure is very useful when inter-
preting the results. Fig. 3.6 shows this figure for the example in section
3.2. The mesh generator also prints out generated data, that is, data that

would have had to be given as input if the mesh generator had not been used.

26.



After that follows a table of the computed displacements at all the
nodal points. The nodal point stresses for all the elements are then printed
out. The stresses and the moments are aversged at the nodal points and their
principal calues are calculated and printed out in two separate tables,
Finally, the surface stresses and their principal values with corresponding
angles are given. As an example, some important parts of the output for the

cantilever beam are shown on pages 34 to 38.

3.5 Capacity of the Program

LASP operates only in core, consequently, its capacity is limited.
However, the program could easily be extended to use external storage,
resulting in a much larger capacity of the program.

Before summarizing the capacity of the different parts of the program,
it should be repeated that the program calculates the stiffness matrix
for identical elements only once. When a structure is divided into many
identical elements, a substantial amount of computer time and storage is
saved in this manner.

Upper limits of some of the variables in the program are:

NUMEL < 100 (totel number of elements)
NUMNP < 150 (total number of nodel points)

NUMBC < 50 (total number of points where boundary
conditions are imposed)

NDIFFE £ 50 (number of different elements)

27

A1l these restrictions masy be changed easily by upldating the labeled common

block called /IS/. Other limitations in this common block that may be changed

easily are:
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a) Total number of displacement components <700, (Dimensions of
system stiffness matrix.)
b) Number of different material laws =<5.
Another limitation is the capacity of matrix B in the labeled common
block ealled /STORE/. Matrix B is used for storing the part of the stiffness
matrixes that is needed for recovering the condensed internal degrees of

freedom when calculating the stresses., The capacity of B is 1500,
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J=8 J=7
TOTAL
J=4 PLATE J=2
FIELD
J=5 J=6
Jzl

FIG. 3.2 EXPLANATION OF CODE J FOR THE
BOUNDARY CONDITIONS

Ay
FREE CORNER POINT
72 ﬁ/suppomso
- é B
Z Plate thickness 0.7 .
62 Young's mod. 3.10
% Poisson's ratio 0.3
Z
Z c Stiffeners:
8 Z Flange
56 Height Thickness Area
2
o é A 20 0.5 8
_.._‘é! 4% B| 30 0.5 10
2 A c| o 0.8 12
Z . .
3? FREE Uniform pressure 10 psi
2
A
3
rt
| -
227 = X
| 2 3 4 5
SS
| | |
T a0 1T 60

FIG. 3.3 EXAMPLE OF USE OF THE MESH GENERATOR
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2 180,
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2| 111 17301, 0.5 {o]. §
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coog Y, VW S G At X
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FIG. 3.4 INPUT DATA FOR MESHGENERATOR
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START2
CALCULATION CF CANTILEVER BEAM WITH LONGITUDINAL AXIS IN Y DIRECTION
15 29 9 1 3 1 v Ue02
1 v 24UE+5 Ue3
l Je 2 U.D 2.0 d.O
z Ue 5 U.D 20\) 2.0
3 2oV 2ev l.O l1e0 el
1 1 2 1 6 7
2 2 3 2 7 8 5
3 3 3 8 9 4 5
4 i 7 o 11 12
5 2 8 7 12 13 lu-
6 3 8 13 14 9 10
T 1 12 11 16 17
8 2 13 12 17 18 15
v 3 13 18 19 14 15
1v 1 17 16 21 22
11 2 18 1/ 22 23 20
12 3 138 23 24 19 20
13 1 22 21 26 27
14 2 23 22 27 28 25
15 3 23 24 29 24 25
1 31
2 31 4
35 5 [
Do o5 1 1 viH5 ol 1oy 21125511 995% 21155851 P=3
111111
211111
311111
4 1
8 1 1
13 1 1
18 1 1
23 1 1
28 1 1
28
STop
BEAM THEORY
8 =1.0215
CALCULATED

8 =1.020
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PICTURE OF NODAL POINT NUMBERING OF PLATE WITH STIFFENERS

€2 o4 06 68 10 72 14 16 18
€1l a3 65 87 €9 71 i3 15 17

60
59

53
53 54 55 56 517

£2
51

50
45 406 47 43 49

4
43
26 28 30 32 34 36 33 40 42
25 27 29 31 33 35 37 39 41

24
23

22
17 18 19 20 21

16
15

14

vl O

FIG. 36 ELEMENT MESH AND NODAL POINT NUMBERING
GENERATED BY THE COMPUTER
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L, EXAMPLES OF APPLICATION OF THE PROGRAM

4,1 General Remarks

In a ship structure many parts can be idealized as plate-stiffener
combinations with rectangular boundaries subjected to in-plane and lateral
loads. The stiffeners are the main load carrying members in these substructures
whereas the plating is mainly intended to transmit the lateral loads to the
stiffeners., However, the plating also acts as a flange for the stiffeners
and membrane stresses are induced in the plating due to the bending of the
stiffeners.

Orthogonally stiffened plates have been mostly analyzed by two different
methods in the past (%*):

(1) ©Plate fields with few stiffeners have been dealt with as open

grillages i.e., grid-works of beam elements without plating. An

effective width of plating as flange for stiffeners has been assumed.

A large number of different methods have been proposed for the analysis

of grid-works by different investigators. Most of these methods can

be found in.LS] and.[ll].

(2) Plate fields with many stiffeners have been idealized as plates
having different stiffness properties in two orthogonal directions
(orthotropic plate theory). The main contribution to this method of
analysis was made by Schade[.l6, 173, The method has developed
further since its first application and different ways for the evaluation
of stiffness properties of the equivalent orthotropic plate and the

solution of the resulting equations have been suggested by different

investigators.,

(*) Reference tllglxncludes a sumary of previous studies on the orthogonally
stiffened plates.
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Both above methods have several disadvantaeges vwhich can be summarized
as follows:

It is not possible to have an insight into the behavior of the plate-
stiffener interaction by either of these methods. The success in both methods
partly depends on proper estimation of the effective width of the plating as
flange for the stiffeners. This estimation generally is difficult to maske and
will be discussed later. In the first method the determination of effective
loads distributeéd on the stiffeners represents a complicated problem. In both
of these methods it is difficult to account for the torsional rigidities of
the stiffeners.

For plate fields stiffened in one directlon only, the effective flange
width of plating for various load and boundary conditions was given by Schade
in 1951 [18 ] who used a stress function in harmonic form to satisfy the equili-
brium equations of the plating. For a general orthogonally stiffened plate,
various methods have been used to estimate this effective width value. For
design purposes, the values which apply for the case of one-dimensional bending
have been adapted. For plate fields under uniform load, it has been suggested
[16, 17 ] that the spacing between parallel stiffeners be taken as the effective

flange width, with the plate thickness increased by 1 (v being Poisson's
2

. 1l-v
ratio) to account for the biaxial state of stress in the plate field. Clarkson,
based on experiments [5] has suggested different values of effective flange
width to be used in different stages associated with the open-grillage method.
Obviously no solution based on these velues can be exact and completely
religble., Further investigations are required in order to obtain a better

knowledge of the local behavior of the plating between stiffeners. More

generally, due to the increasing importance of orthogonally stiffened plates
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in the design of ship structures, it will be necessary to develop more refined

methods for analysis of these substructures.

4.2 Analysis Using the Finite-Element Method

It 1s evident that application of the finite element method to the
analysis of orthogonally stiffened plates avoids the main difficulties which,
as mentioned in 4.1 are inherent in the two other methods. In fact, the
complete plate-stiffener combination can be idealized as an assemblage of
finite elements of different types, and application of the finite element
method will demonstrate the complete behavior of the system under combined
in-plane and latersl loads.

However, in structures having a large number of stiffeners, the finite
element analysis will require a long computer time and a large capacity of
the program, and such an approach may not be economical for general cases.
To avoid these difficulties, in the case of linear systems, it is preferable
to investigate two aspects of the problem separately.

(1) Local bending of the plate-stiffener system.

(2) Overall bending of the structurasl assemblage.

Fach of these topics is discussed in the following paresgraphs.

(1) Local bending

This aspect of the behavior is associated with local bending of
plate panels surrounded by edge beams and includes the local sagging of beams
between stiffener intersections. Boundary conditions for this problem are
shown in Fig. 4.1. The beam intersections are assumed to be fixed and all
other boundary conditions result from uniformity of the structure and the
loading (*). This problem is particularly important in the case where one set

of stiffeners is significantly different from the other set [5]3 it can be

(*) Note that one-half of each beam at one side of its plane of symmetry
should be included in the analysis.




conveniently handled by the present progrem. In fact, as will be seen later,
it has been studlied in detail in this investigation and the effects of
different parameters on the stress distribution have been demonstrated.

(2) Overall Bending

This part of the problem involves the computation of deflections
and stresses of the whole plate field under concentrated loads acting at
stiffener-intersections, These loads are mainly the reverse of the reactions
at the supports as obtained in local bending analysis; in case of non-uniformity
of the field or the loading these loads will include moments as well as forces,

Based on the linearity of the structure, the solution of the entire
problem can be obtained by combining the solutions of these two parts.

In principle, the present finite element program can solve both
parts of the complete problem in one step. However, because of capacity
limitations it usually will be applied to solution of the local bending problem
of a plate with many stiffeners,

As mentioned previously, the present finite element program is
intended to be used to solve problems associated with bending and stretching
of plate fields stiffened in one or two directions. The stiffeners are assumed
to be on one side only of the plate surface, i.e., they are eccentric to the

mid-surface, The stiffened plate can be subjected to combined in-plane and
lateral loads. However, any problem handled by the program is subject to
following restrictions:

1l. Material is linearly elastic and isotropic.

2. Deflections are small so that the linear theory of

deformations can be applied.
In general, a large number of such problems are encountered in the

design of ship structures. It is, of course, not the purpose of this chapter
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to investigate all possible combinations of geometry, boundary conditions
and loading. However, several examples have been studied using the

program. These examples are believed to represent a class of problems fre-
quently encountered in the analysis of ship structures, It is expected that
these exemples will demonstrate the effectiveness of the present computer
program in solving linear stiffened-plate problems within its range of

applicability.

4.3 Comparison Study of Different Membrane Elements

Before proceeding to apply the program to various stiffened plate
problems it seemed desirable to make a comparison of the effectiveness of
two different types of plate membrane elements -- the ordinary and the constant
shear elements as described in Section 2.2. This comparison demonstrated the
relative efficiency of these elements in predicting membrane stresses in
the plate assemblage. For this demonstration, the problem of local plate-
stiffener bending in an orthogonelly stiffened plate as described in Section 4.2
and illustrated in Fig. 4.1 was selected. The loading was assumed to be
uniform pressure over the plate field of intensity p= 1T7.3 lb/in2 (equivalent
to 40 feet water pressure)., An aspect ratio of 2.5 was chosen and the following,
geometric parameters were selected:

(spacing between longitudinals) = 30 in.
(spacing between transversals) = T5 in.

gplate thickness) = 0.375 in.
height of transversels) = 20 in.

(web thickness of transversals) = 0.625 in.
(top-flange ares of transversals) = 5 in.2
(height of longitudinals) = 5 in,

(web thickness of longitudinals) = 0.375 in.
(top-flange area of longttwdinals) = 2.2625 im.>

ct ct ot
‘<>"<1‘ %b‘kbk ND‘ ‘-dp Nm



Fig. 4.2 shows three different finite-element meshes which were adopted
for this study. The problem was solved using the different meshes and apply-
ing the two different membrane elements, Part of the results for membrane
stresses of the plating are given in Figs. 4.3 and 4.4t where normal stresses
along the edges of a quarter of a plate panel are given¥*, From these figures
it can be seen that at the corner points of the plate panel the values of
longitudinal membrane stress and its gradient along the transversals are
relatively high., Tor design purposes it seems particularly important to
obtain a good representation for the value of longitudinal stress at these
points., A comparison of the results for the different meshes reveals that
as finer meshes are used for the problem, higher estimates are obtained for

. 2
1b/in ) was obtained by the

this stress value. The highest estimate (14895
mesh Q-48 when using constant shear elements. This value is evidently a

lower bound for the true value and can be regarded as the best estimate obtained
in this study. It can be seen from the figures that the stress value obtained
by the coarse mesh (Q-6) and constant shear elements is closer to the best
estimate than that obtained by the fine mesh (Q-48) using ordinary elements.
Thus it e¢an be concluded that as far as stiffened plate problems are concerned,
the constant shear elements, when used to simulate the membrane behavior of

the plating, are much more efficient than the ordinary elements in predicting

high stress concentrations., Based on this result it was decided to utilize

the constant shear element for all subsegquent studies,

L, TFinite Element Results versus Estimates Based on the Effective Width
Concept.

A local plate-stiffener bending problem (see Section 4.2 and Fig. U4.1)

wvas studied in order to make a comparison between finite element stress results

* In all the examples the modulus of elasticity and the Poisson's ratio are
assumed to be 3 x 107 1b/in® and .3 respectively.
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and approximate estimates based on the classical concept of effective width

of plating acting as a flange for the stiffeners. An aspect ratio of 5 was

chosen and the following parameters were selected:

a = 30 in.
pid
= l O i .
ay 50 in
t = .375 in..
hx = 20 ino
t. = .625 in.
x .2
Ax = 5 in
Ng
t = 375 in.
J 2
Ay = 2,625 in

where the different parameters are defined as in Case 4.3, Fig. 4.5 shows two
finite element meshes used for this study; only the constant shear element was
used in this problem. The results for the normal membrane stresses along the
edges of a quarter of the plate panel are shown in Fig. 4.6. As in the case
of 4.3, the maximum longitudinal membrane stress was obtained at the corner
points of the plate panel., A comparison of the results for two different
meshes reveals that even with the coarse mesh a good estimate has been obtained
for the longitudinal stress value; the transverse stress is relatively less
accurate in the coarse mesh solution, but it also is less significant.

In general, the local plate-stiffener bending problem involves bending
of stiffeners in two orthogonal directions. However, in the classical method
of analysis, which is valid in the case where the aspect ratio is large, the
problem is considered as one in which the bending of stiffeners in one direction
only is involved. In fact, it is assumed that the whole lateral pressure is
uniformly distributed along the longer edge beams and these beams are clamped
at the stiffener intersections. This idealization was made for the present

case as shown in Fig. 4.7 where the bending moment diegram along the stiffener



is given., The longitudinal stress of the plating at the center and the ends
of the beam was calculated on the basis of effective flange width of the
plating, as obtained from the curves given by Schade in Ref. [18]. For this
purpose the segment CD (see Fig, 4.7) was idealized as a simply supported
beam under action of a uniformly distributed load whereas the segment AC was
idealized as a helf of a simply supported beam under action of a concentrated
load at the middle, The above idealization is suggested by Schade [18] based
on the results that he has obtained for effective flange width at different
cross sections, Having the effective flange width at the ends and the center
of the beam, the corresponding section modulus and longitudinel membrane stress
of the plating were calculated.

The results of these calculations are indicated in the Table 4.1. 1In
this table the finite element results for stress value in the plating at the
different cross-sections also have been given, The finite element results
are compared with approximate stress values obtained on the basis of effective
width concept. The percentage difference between results of the two different
methods is also indicated in that table., Is is believed that this significant
discrepancy is due mainly to the errors involved in calculation of the
effective flange width. This judgment has been reached on the basis of the
quite close agreement between the results obtained by the finite element

method of analysis and a refined analytical solution in the case of a simpler

L6,

example as described in Section 4.5. It should also be mentioned that the simpli-

fication made in the problem by ignoring the bending of transversals cannot

result in differences comparable to those indicated in Table L4.1.



Teble 4.1, Longitudinal Stresses in Stiffened Plating

Position Along the Stiffener Segment Middle| Ends

Effective Width/Spacing of Longitudineals 0.90 0.53
Stress [Finite Element Method 2960 9397
Value Effective Width Concept 2750 8320
Difference % 11%

Note: These stresses are computed in a segment of a
longitudinal between stiffener intersections,
see Fig. L4-T.

4,5 Infinite Plate Strip with Transverse Stiffeners

This example was selected in order to compare the results obtained by
the finite element method with results of an analytical solution. A uniform
infinite plate strip with an infinite number of transverse stiffeners was
examined., A single stiffener and a part of the plating between two successive
mid-sections of the plate pasnels are shown in Fig. 4.8. The stiffeners are
assumed to be subjected to uniformly distributed load perpendicular to the
plating surface and along the plaete-stiffener junctions. The plate-stiffener
combination is assumed to be supported along the longitudinal edges in such
a way that its lateral deflections and longitudinel displacements are con-
strained. Along these edges the structure is free to have transverse dis-
placement and rotations about the longitudinal exis. Due to the uniformity
of the loading and the structure, at junctions of the plate and stiffeners,
and at transverse mid-sections of the plate panels the displacements in the

longitudinal direction and the rotations about the transverse axis are



assumed to be constrained by symmetry conditions. All these boundary con-
ditions together with geometric parameters are shown in Fig. 4.8. Due to

the symmetries, only a quarter of one plate panel and a quarter of one
stiffener was included in the finite element analysis., The finite element
idealization for this exemple is shown in Fig. 4.9 where the letters at the
corner points indicate the corresponding points in Fig. 4.8. The finite
element program was applied to solve the problem and the results were compared
with an analytical solution which has been obtained by H. Payer (*) and is
explained very briefly in the following paragraphs.

In the analytical solution the web of the stiffener as well as the
plating is treated as an element in a state of plane stress, The top flange
is idealized as a bar element, i.e., any shear lag or bending effect in this
element is neglected. The equilibrium equations of the plating and the web

are satisfied by introducing two Airy stress functions Fi (i =1, 2 for the

plating and the web) such that the membrane stresses of the element i satisfies:

2 Fy
(0.). = ———
2
x’i 3
Cat
o))y = 57— L= 1,2 (4.1)
y'1 Oy 1=4, .
3°F
(T )i ='_-l‘;-
Xy 3y 3y

By means of Egs. 4.1 and the constitutive equations it can be shown
that the compatability equations of the plating and the web are satisfied

if Fi are solutions of two following biharmonic equations:

vl*Fi = 0 i=1,2 (4.2)

(*) Graduate Student at Naval Architecture, University of California
Berkeley, California
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Egs. 4.2 are solved by separation of variables; the results for the

case of simply supported edges are written in the following form:

(-]
F, = E: sin W y (Ai + 0w xi) cosh w x, + (Bi + Diwn xi) sinh ©_ X, (4.3)
n=l, 3, 5 ...
vwhere wn = EEL (I is length of the stiffener.) X; = X and x; =2z,

The unknown coefficients in Eq. 4.3 are evaluated by means of the
specified boundary conditions as well as compatibility and equilibrium re-
quirements along the element junctions. The boundary conditions are exactly
the same as shown in Fig. 4.8 and explained earlier in this section. However,
displacement boundary conditions should be first interpreted in terms of stresses
before evaluation of unknown coefficients in Eq. 4.3. The analytical solution
of the problem has been obtained by using eleven terms of each stress function
which is in the form of an infinite series, Part of the results obtained for
membrane stresses of the plating and the flange by the finite element method
and this analytical method are shown in Figs. 4,10 and 4,11. The results are
generally in good agreement; especidlly for the large membrane stresses of
the plating along the center line of the stiffened plate, very close results
have been obtained by the two different methods.

An additional example also was studied which, except for the boundary
conditions, wassimilar in all details to the previous one, In this example,
at both edges of the plate strip in-plane displacements were allowed while
lateral deflection was constrained, The finite element program was applied
to the problem using two different meshes. One mesh was identical to that
used in the previous study (Fig. 4.9); the other had the same number of

elements as the first; however, on the x-axis, its three subdivisions a&djacent
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to the stiffener were smaller than those adjacent to the center line of the
plate panel, The finite element results for the stress distribution of the
plate and stiffener were, in general, very close to the results obtained in
previous study. However, at the very ends of the stiffener locally high
values of o, were obtained for the plate. These stress values were -1891 lb/in2
end -2182 lb/in2 respectively for the uniform and non-uniform meshes. By
studying the in-plane displacements of the plate it can be seen that the
elimination of shear strains along the edges of the plate requires compression
of the plate at the ends of the stiffener., On the other hand, it can be

shovn that the points of the plate at the ends of the stiffener are singular
and a stress discontinuity exists at these points., In fact, according to

Fig. 4.10, the compatibility of the plate and the stiffener requires increas-
ing of the shear stress along their junction towards the edges and this is
inconsistent with vanishing of shear stress at the edges. On the basis of

the above considerations, no attempt was made to predict the exact stress
distribution of the plating in the vicinity of these singular points. How-
ever the high q, velues at these points are a very localized feature and the
singularity of these points does not affect the finite element results

obtained for adjacent points.

4.6 Simply Supported Plate with Two Orthogonal Stiffeners

Fig. 4.12 shows a simply supported square plate with two identical
stiffeners in the x and y directions, Along the edges, the in-plane displace-
ments of the plate are allowed. The stiffened plate is assumed to be subjected
to a uniform pressure with intensity of 10 lb/ine. Three different finite
element meshes were selected for this example as shown in Fig. 4.12. The

results of the finite element program for the lateral deflections of the



stiffened plate and the membrane stresses of the plating along the half of
a center line are shown in Figs. 4.13 and 4.14. It can be seen from Fig.
4,14 that along a stiffener and in its direction the membrane stress of the
plating does not have its maximum value at the center of the system. This
result which is in contrast with what normelly would be expected is due to
the shear lag effect in the plating. Another interesting result of the
study is that at the ends of a stiffener and in the direction perpendicular
to it the value of plate membrane stress is relatively high. This result
is consistent with that obtained in Section 4.5 for an infinite plate strip
with free ends. For the same reasons as described in Section 4.5, these
points are singular and there exists stress discontinuities at these points.
Although an analytical solution of this problem is not available,
the example indicates the capability of the program in analyzing a general
case in which interaction between plating and stiffeners in two distinct

directions is involved.
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FIG. 48 PART OF THE INFINITE PLATE STRIP
STIFFENED WITH TRANSVERSE STIFFENERS

( SECTION 4.5)
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5. DESIGN CURVES FOR LOCAL PLATE-STIFFENER BENDING

When an orthogonally stiffened plate is subjected to uniform lateral
pressure, significantly high stresses may be induced in the plating due
to the sagging of stiffeners between intersection points. In general,
these stresses are influenced by the stiffness properties of both sets
of longitudinal and transverse stiffeners. However, in practical cases,
the transversals are much stronger than the longitudinals in withstanding
lateral loads. Therefore, these local membrane stresgses of the plating
are mostly due to the local sagging of the longitudinal stiffeners.

As observed in sections 4.3 and 4.4, the maximum principal stress of
the plating due to the local plate-stiffener bending occurs at the corner
points of the plate panel. For design purposes it seemed desirable to
study the effect of different geometric parameters on this stress value.
For this purpose certain ranges for the geometric parameters were assumed.
These ranges are shown in Table 5,1 and are believed to cover most cases
of practical interest in the design of ship-bottom structures. A number
of different cases were studied using the finite element program. The
dimensions in each case were within the assumed ranges and were such that
reasonable proportions were obtained for the structure. By means of sys-
tematic geometric variations and on the basis of computer results, a set of
curves were prepared which can be used to estimate the maximum longitudinal
membrane stress of the plating with an error less than 4%. It is hoped that
these curves may be useful in estimating the meximum principal stress in the
plating at the early design stages. If necessary a better estimate can be

obtained at any time using the program and a fine mesh.



Table 5.1: "Ranges of Different Geametric Parameters Assumed in
Preparation of the Design Curves’

Geometric Parameter
Range
Symbol Description (in. or in?)

a_ Spacing between longitudinals 18-36
a, 8pacing between transversals 60-300
t Plate thickness 5/16-%
hx Height of transversals 20-38
t, Web thickness of transversals 7/16-7/8
A Top-flange area of transversals 2.2-8.8
hy Height of longitudinals 6-18
t Web thickness of longitudinals £-7/16
AY Top-flange area of longitudinals 1-4

A quarter of a plate panel with appropriate parts of the surrounding
beams (see figure 4.1 and footnote on page 4l ) were included in the finite
element analysis. The finite element mesh for the one-quarter plate panel
consisted of 2 elements in the transverse direction and from 3 to 8 elements,
depending on the aspect ratio, in the longitudinal direction. Using such a
mesh, it is possible to predict the longitudinal stress st the corner points
with an error less than 4%. This error, as can be seen from the
results represented in the sections 4.3 and 4.4, is significantly influenced
by the aspect ratio. It is approximately equal to 4% and 2% for the aspect
ratios equal to 2.5 and 5 respectively.

As was mentioned earlier, the effect of local bending of transversals,

in general, is much smaller than that of longitudinals. This means that
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the cross-sectional dimensions of the transversals do not significantly

influence the stress distribution of the plate panels. The validity of

this assumption was examined for the ranges of parameters adopted for this

study by means of a few examples.

In fact, it was found that the effect

of transversals were quite negligible when compared with those of longi-

tudinals.

Two examples have been given in table 5.2 whereck and oy are

the membrane stresses at the corner points of a plate panel due to lateral

pressure of intensity p over the plate field.

Table 5.2:

"Examples Showing the Effect of Transversals on the Stresses
of Intersection Points Due to the Local Bending."

Example a

O
t A x/p| “y/p

Lo

375

15 }0.50

0.25 1 43,9 |221.5

Lo

375

6 .250

25 1 4.6 |220.8

Some of the dimensions in these two examples were selected out of

the assumed range in order to amplify the effect of transversals on

the membrane stresses.

is smaller than those normally given by Table 5.1.

For instance, the aspect ratio in these examples

Obviously, for aspect

ratios greater than 2, the membrane stresses will be much less sensitive to

any change in the cross-sectional dimensions of the transversals. Moreover,

the sizes of transversals in these examples are smaller than those given




in Table 5.1, therefore the effect of transversals on the membrane stresses
is more significant than what it normally is in practice. Still the mem-
brane stresses are very insensitive to changes inthe geometry of trans-
versal cross-sections.

On the basis of the above considerations, a fixed transversal gedmetry
(hx = 20 in., t, = 0.45 in., Ax =2 in.e) was selected for all subsequent
cases and membrane stresses were assumed to be malnly due to the sagging
of the longitudinals between the stiffener-intersections.

In order to have a basis for the recognition of the different factors
influencing the masimum principal stress it is suitable to visualize the
longitudinal as an element which includes an effective width of plating
as 1ts flange. This beam is clamped at the ends and it is under action of
uniform load, transmitted to it by the plating.

The lateral load on the beam, in general, 1s not known but it has been
found [5] that the proportions of total load carried by each set of stiffeners
depend mostly on the aspect ratio A = iz and 1s not significantly affected
by stiffness properties of the stiffengis. On this basis, the bending mament

at the ends of the idealized beam can be written:
2
¥ = £(\) pa, &® /12 (5.1)

where p is intensity of the lateral pressure and f is a function which
represents the effect of aspect ratio on the distribution of the field
pressure over the stiffener.

If ax is the effective flange width and Sy is the section modulus of
the beam element at the corner points of the plate panel, the longitudinal

stress at these points can be written:
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o, = = = - (5.2)
y /Saxayé(f}--'. _‘ii)
a 4
X
where ¢ =h t A +h t 2
Y(3YJY)/aY (5.3)
2A +ht

and h_t hAy + hyty

Y= T (____.__) (5.4)

X 3A +ht
y yy
An anulytical treatment of the effective flange width problem by
Schade has revealed that the dimensionless gquantity 5X depends on the
a_
X

aspect ratio A and the parameter Y. On this basis and by combining
Egs. 5.1 and 5.2, the stress value can be written as:

o =—2- F(¥,)) (5.5)

y
where F is a function of ¥ and A only. Then the dimensionless parameter
5 =¢o can be written as
y ¥

p
Ey = F(Y,)) (5.6)

On the basis of Eq. 5.6 and the results of the computer program
for a number of suitable cases a set of five design curves corresponding
to five different values of Y were prepared. These curves are shown in
Fig. 5.1. They were checked by several examples. In each case the stress
value as obtained by the finite-element program was compared with that
obtained by using the stress curves. The difference in all cases was less
than 2% and it is believed that most of the error arises in interpolation

between different curves.
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