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Activation of Kappa Opioid Receptors in the Dorsal Raphe Have 
Sex Dependent Effects on Social Behavior in California Mice

Emily C. Wright1, Tiffany V. Parks1,2, Jonathon O. Alexander1, Rajesh Supra1, and Brian C. 
Trainor1

1Department of Psychology, University of California, Davis, CA, USA

2McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 
USA

Abstract

Kappa opioid receptor activation has been linked to stress and anxiety behavior, thus leading to 

kappa antagonists being popularized in research as potential anxiolytics. However, while these 

findings may hold true in standard models, the neuromodulatory effects of social defeat may 

change the behavioral outcome of kappa opioid receptor activation. Previous research has shown 

that social defeat can lead to hyperactivity of serotonergic neurons in the dorsal raphe nucleus, and 

that inhibition of this increase blocks the social deficits caused by defeat. Kappa opioid receptor 

activation in the dorsal raphe nucleus works to decrease serotonergic activity. We injected the 

kappa opioid receptor U50,488 directly into the dorsal raphe nucleus of male and female, defeat 

and control adult California mice. Here we show evidence that U50,488 induces anxiety behavior 

in control male California mice, but helps relieve it in defeated males. Consistent with previous 

literature, we find little effect in females adding evidence that there are marked and important sex 

differences in the kappa opioid system.
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1. Introduction

Psychological stress is a major risk factor of depression. The kappa opioid receptor (KOR) is 

a class of opioid receptor that is activated during stress by the endogenous opioid dynorphin 

[1]. Acute KOR activation has been found to contribute depression- and anxiety-like 

behaviors induced by stress [2], and has also been found to contribute to pro-addictive 

behavior [3]. Social stressors in particular appear to induce robust activation of the kappa 
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opioid system [4, 5]. There is growing evidence that activation of KOR during stress 

contributes to long term increases in depression- and anxiety-like behaviors that persist long 

after stressors themselves have ended. For example, KOR antagonists administered 

immediately before episodes of social defeat block stress-induced social avoidance 

(Williams et al., in review) whereas KOR antagonists administered after social defeat are 

ineffective at reducing social avoidance [6]. It also appears that social stress has different 

short and long term effects on the KOR system. While acute social defeat increases 

expression of dynorphin in the nucleus accumbens, chronic social defeat decreases 

dynorphin expression [7]. This finding is consistent with studies showing that over the long 

term, stress exposure reduces the aversive properties of KOR [8–11]. Together, these results 

suggest that stress induces neuroadaptations that alter how KOR modulate behavior. The 

dorsal raphe nucleus may be one region showing important changes [12].

Evidence from several sources indicates that the DRN is highly responsive to social stress 

[13]. In male hamsters social defeat increased c-fos mRNA in the DRN [14]. 

Immunohistochemistry approaches show that either a single or repeated episodes of social 

defeat can induce c-fos immunoreactivity specifically within serotonergic neurons of the 

DRN of male rats [15, 16]. In male hamsters this effect was limited to more rostral and 

ventral subdivisions of the DRN [17]. Consistent with these data, electrical recordings of 

DRN neurons of male tree shrews showed very large increases in activity during exposure to 

an aggressive opponent [18]. Increased activity of serotonergic neurons during episodes of 

defeat is associated with increased concentrations of extracellular serotonin in both the DRN 

[19] and hippocampus [20]. Multiple episodes of defeat have been linked with increased 

serotonin in amygdala and hypothalamus [21] and decreased expression of inhibitory 5-

HT1A autoreceptors in DRN [22], PFC [23], and desensitizes receptors in the cortex [24]; all 

of which may reflect hyperactivity of DRN serotonin neurons. Overall, these results suggest 

that defeat stress induces both acute and chronic activation of DRN serotonergic neurons, 

with chronic activation leading to greater neuromodulation throughout the brain.

However, studies examining the role of KOR have reported a different connection between 

stress and serotonergic function. Inhibition of KOR in the DRN blocked defeat-induced 

reinstatement of cocaine place-preference [25], while deletion of p38α MAP kinase (the 

putative mechanism of KOR-induced aversion) in DRN serotonin neurons blocked social 

avoidance immediately after a single episode of social defeat [26]. However, when the KOR 

agonist U69,493 was applied to DRN slices from stress naïve male mice, the excitability of 

serotonergic neurons was reduced [27]. This is somewhat surprising because most studies 

indicate that defeat increases the activity of serotonin neurons. Interestingly, KOR-induced 

inhibition of excitability in serotonergic neurons was reduced in slices from male mice 

exposed to repeated swim stress. This finding is in agreement with the hypothesis that 

repeated stress exposure alters the effects of KOR on neural circuits and behavior.

There is a major gap in our understanding of KOR modulation of behavior because the vast 

majority of studies have been conducted using male rodents, and there is growing evidence 

for important sex differences in KOR function [28, 29]. Here, we used the California mouse 

(Peromyscus californicus) model of social defeat to test whether social defeat modulates the 

behavioral effects of KOR within the DRN in males and females. The California mouse is a 
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monogamous species in which both sexes are aggressive, which allows for the study of 

social defeat in males and females [30]. In a novel environment, three episodes of social 

defeat induces social avoidance in females [31, 32] and in males that receive an acute 

injection immediately before behavior testing [33, 34]. When behavior is assessed in a 

familiar home cage, social defeat reduces investigation of social odors [35], decreases 

sucrose consumption [36], and increases freezing in response to an intruder [37] in both 

males and females. Sex differences in behavioral responses to KOR ligands have been 

observed in California mice. In a place aversion assay, females form place aversions to a 

lower dose of the KOR agonist U50,488 than males [38, 39]. However, in a forced swim test 

norBNI reduced immobility in males but not females [40], consistent with other studies 

suggesting that males may be more sensitive KOR than females [41, 42]. Previous work 

showed that activation of KOR within the DRN induced anxiety- and depression-like 

behavior, so we expected that similar responses in stress naïve mice. However, in light of 

evidence that defeat increases baseline activity of DRN serotonin neurons, we hypothesized 

that activation of KOR in stressed mice could yield very different behavioral effects.

2. Methods and Materials

2.1 Animals and housing

Male and female California mice were from the UC Davis breeding colony and began 

testing between 60–180 days old. Originally, mice were housed 2 or 3 to a cage with same-

sex cage mates of comparative age. After the cannula placement surgery, animals were 

singly housed and remained thus for the duration of the experiment. All housing cages were 

clear polypropylene cages with Sanichip bedding and were enriched with nestlets and 

enviro-dri. Room temperature was maintained between 68–74 °F, with a 16L:8D light:dark 

cycle (lights off at 1400). A longer photoperiod was chosen as short ones have been linked 

with increased aggression [43]. Water and food (Harlan Teklad 2016; Harlan, Hayward, CA, 

USA) were provided ad libitum. All behavior testing were conducted during lights out 

(1430–1730) under dim red light (3 lux). All procedures were in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals and approved by the Institutional Animal 

Care and Use Committee at the University of California, Davis.

2.2 DRN Coordinate Determination

To determine stereotaxic coordinates for the DRN in California mice (Fig. 1A), we used 

immunohistochemistry to create a map tryptophan hydroxylase (TPH) staining in the 

brainstem (Fig. 1B). Brains from two male mice were immersion fixed with acrolein and cut 

on a cryostat at 40 um and stored in cryoprotectant (50% v/v phosphate buffer, 30% w/v 

sucrose, 1% w/v polyvinylpyrrolidone, 30% v/v ethylene glycol) at 20 °C. Sections were 

then washed three times in phosphate buffered saline (PBS) and incubated in 1% sodium 

borohydride in PBS for 10 min. Sections were then blocked in 10% normal rabbit serum and 

0.3% hydrogen peroxide in PBS for 20 min. Sections were then incubated in primary anti-

TPH antibody (Sigma T8575-1VL) dissolved in 2% normal rabbit serum and 0.5% triton X 

(TX) in PBS overnight at 4 °C on an orbital shaker. The sections were then washed three 

times in PBS before transferring to biotinylated rabbit anti-sheep antibody in 2% normal 

rabbit serum in PBS TX (Vector Laboratories, Burlingame, CA, USA, 1:500) for 2 h. 
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Sections were washed three times in PBS and incubated in avidin–biotin complex (ABC 

Elite Kit, Vector Laboratories) for 30 min. Sections were then washed three times in PBS 

and developed in nickel enhanced diaminobenzidine (Vector Laboratories) for 2 min. 

Sections were then rinsed in PBS and mounted onto plus slides (Fisher, Pittsburgh, PA, 

USA). Slides were dehydrated in ethanol followed by Histoclear (National Diagnostics, 

Atlanta, GA, USA) and coversliped with Permount (Fisher). Images were taken via 

microscope with a color camera at 4x magnification.

Next, we made fluoro-ruby injections via Hamilton syringe under 3–5% isoflurane 

anesthesia to determine the correct stereotaxic coordinates to hit the region. To avoid the 

central sinus, the mouse head was raised from a flat position at −4mm to +1.5mm via the 

mouth grip. The Hamiton syringe was inserted at a 10-degree angle perpendicular to the 

midline to allow for an approach from a more lateral direction and still reach medial DRN. 

Based on these injections we determined the target coordinates of lambda +1.3mm, −1.2mm 

lateral to midline, angled 10-degree to reach the DRN coordinates of bregma −5.04mm, 

ventral −4.3mm.

2.3 Social Defeat

Male and female California mice were randomly assigned to either social defeat stress or to 

remain naïve to defeat. All social defeat was done during the dark cycle when mice are 

naturally active. Each mouse assigned to social defeat was placed in the cage of an 

aggressive same-sex mouse resident mouse. Each episode lasted 7 min or until the resident 

attacked the focal mouse 7 times (whichever occurred first), and this was repeated on 3 

consecutive days with three different residents. Naïve mice were introduced into a clean 

cage for 7 min, again for 3 consecutive days. Immediately after defeat/control conditions 

mice were returned to their home cage.

2.4 Cannula Placement Surgery

Animals were anesthetized with 3–5% isoflurane and implanted with a stainless steel 

cannula guide. A single cannula guide (Plastics One; C315G/SPC, Length 4.2mm) was 

lowered into a burr hole (#105 dremel bit, 1/16′ tip) at a 10-degree angle at +1.3mm rostral 

to lambda, and −1.2mm lateral to the midline. The guide was attached to the skull with skull 

screws (plastics one, 00-96 X 1/16) and acrylic dental cement. A dummy cap (Plastics One; 

C315DC/1/SPC, Length 4.2mm) was inserted into the guide and kept there except during 

treatment administration. Mice received subcutaneous injections of Carprofen (5mg/kg) 

immediately before surgery and for three days following. Mice were given five days of 

recovery during which they were monitored and handled daily.

2.5 Drug Administration

Mice were randomly assigned to receive infusions of either aCSF, 0.25μg of U50,488 

(Tocris), or 0.50μg of U50,488 were made into the DRN were made using internal cannula 

(Plastics One, C315I/SPC, Length 5.2mm). Injections were made 30 minutes after the start 

of the dark cycle using Hamilton syringes attached to an automatic micropump (PHD 2000, 

Harvard Apparatus, Cambridge, MA) at a flow rate of 0.1 μL/minute, for a volume of 

200nL. The internal cannula was kept in place for an additional 30 seconds before it was 
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removed and the dummy cap replaced. Test animals were then returned to their home cage 

for 30 min before testing. We used an angled injection approach to avoid the adjacent 

cerebral aqueduct. However, it’s still possible that some drug may have diffused in to the 

aqueduct. We believe the possibility of off-target effects of U50,488 is low because the doses 

of U50,488 we used are relatively low [44] and we did not see evidence for behavioral 

effects of U50,488 in mice with misplaced injection sites. A previous study examining 

behavioral effects of corticotropin releasing hormone in the DRN showed that a 20-fold 

higher dose infused in to the ventricle was required to see behavioral effects similar to those 

of local DRN infusion [45].

2.6 Social Interaction Test

Social interaction testing occurred in a large (89 × 63 × 60 cm) arena and all behaviors were 

recorded via animal tracking software (Anymaze, Stoelting). The first phase of the social 

interaction test was a three-minute open field test. During this portion, distance traveled and 

time spent in the center of the apparatus were recorded to measure the extent to which the 

test animal exhibited anxiety-like behavior. After the completion of the open field phase, an 

empty mesh wire cage was placed at one end of the arena. This marked the beginning of the 

three-minute acclimation phase. During the time, time spent within 8cm of the cage 

(interaction zone) and times spent in corners opposite to the cage were recorded. Finally, a 

novel intact same-sex conspecific was placed in an identical wire-mesh cage in the same 

location as the previous one had been during the acclimation phase. This marked the start of 

a three-minute interaction phase. During this time, the number of seconds the test animal 

spent in the interaction zone and time spent in opposite corners was also recorded. After the 

completion of the interaction phase, the test animal was promptly returned to the home cage 

in the usual home setting.

2.7 Resident Intruder Test

Resident-intruder testing was performed and scored as previously described [46, 47]. Before 

testing mice were moved to the testing room to habituate for 10 minutes. Next an unfamiliar 

same-sex intruder was placed inside the cage with the test mouse. Interactions were recorded 

for 7 minutes and later scored for behavior. Behavior was scored by an observer without 

knowledge of treatment group. Two anxiety behaviors freezing and escaping were recorded. 

Freezing was coded when the resident stood still on four paws and didn’t move for >2 

seconds. Escaping was recorded when the resident kept to the side of the cage and jumped 

side to side. Chasing, an aggressive behavior, was recorded and defined as the resident 

mouse chasing the intruder. Finally, anogenital sniffing, a social investigatory behavior, was 

coded when the resident’s nose was in proximity to the anogenital region of the intruder.

2.8 Perfusions and Histology

20 hours after the completion the resident intruder test animals were perfused with 4% 

paraformaldehyde and brains removed. Histology we performed to determine whether 

injections were correctly placed in to the DRN (Fig. 1C). Behavioral data from mice that did 

not have injection sites within the dorsal raphe were omitted from statistical analysis.
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2.9 Data Analysis

Social interaction and resident intruder data were analyzed with two-way ANOVA followed 

by planned comparisons testing for the effect of treatment or defeat using R. Homogeneity 

of variance was confirmed with a Fligner-Killeen test. This test indicated that freezing and 

chasing data had heterogeneous variance, so these data were log transformed. Planned 

comparisons (independent contrasts) were used to compare U50,488 treated mice with aCSF 

controls as well as the effect of defeat stress within each dose [48].

3. Results

3.1 Resident Intruder

In males, there was a significant interaction between treatment and defeat on freezing 

behavior (Fig. 2B, F2,25= 3.7, p<0.05). Planned comparisons showed that social defeat 

increased freezing behavior in mice treated with aCSF compared to controls (p< 0.01, d= 

1.92). In contrast, stressed males treated with 0.50μg U50,488 had lower levels of freezing 

than stressed males treated with aCSF (p< 0.01, d= 2.00). Interestingly, U50,488 appeared to 

have opposite effects on freezing in control and stressed males at the 0.25μg dose. Although 

differences were nonsignificant, effect sizes were large. In control males treated with 0.25μg 

U50,488 mean freezing was increased (p = 0.07, d=1.24) but in stressed males this same 

dose was associated with decreased freezing (p=0.05, d=1.19) relative to aCSF treated mice. 

Effects of U50,488 were weaker on escaping behavior (Fig. 2C, dose x stress F2,24= 2.7, 

p=0.08). Planned comparisons showed a nonsignificant increase (with large effect size) in 

escape behavior in control males treated with 0.50μg U50,488 (p=0.07, d= 1.23). There was 

also evidence that effects of U50,488 on anogenital sniffing were different in control and 

stressed males (Fig 2E. dose x stress, F2,24 = 2.7, p=0.08). Planned comparisons showed that 

stressed males treated with aCSF engaged in significantly less anogenital sniffing than 

controls (p<0.03, d=1.16). Interestingly, stressed males treated with 0.5μg of U50,488 

showed a non-significant increase in anogenital sniffing (with large effect size) compared to 

stressed males treated with aCSF (p= 0.08, d=1.14). There were no significant differences in 

chasing, boxing or biting.

In females, there were no significant differences in freezing, escaping, chasing, or boxing. 

There was a nonsignificant main effect of defeat on biting across all three drug groups 

(Table 1, F1,30= 3.6, p=0.06), but planned comparisons yielded no differences. There was a 

weak effect of U50,488 on anogenital sniffing treatment (Fig 3E. F2,29 = 2.6, p=0.09). 

Planned comparisons showed that 0.5μg of U50,488 reduced anogenital sniffing in control 

females (p<0.05, d=1.28).

3.2 Social Interaction

In males, there was a significant main effect of defeat on time spent in the interaction zone 

during the interaction phase of the test (Fig. 4B, F1,29= 4.2, p<0.05). Although there was no 

significant dose x defeat interaction (p > 0.5), planned comparisons revealed a decrease in 

social interaction significant only at the 0.25μg dose (p < 0.05, d= 1.33). There were no 

differences in the acclimation phase (Fig. 4C). In males, there was evidence for an effect of 

defeat on total distance traveled during the open field phase (Fig. 4E F1,30= 4.3, p<0.05). 
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Planned comparisons showed that at the 0.50μg U50,488, stressed mice traveled less than 

control mice (p< 0.02, d= 0.45) but this difference was not significant for the 0.25μg dose or 

aCSF. All other behaviors showed no significant differences.

In females, surprisingly, there were no differences during the interaction phase in time spent 

in the interaction zone or in the corners opposite the interaction zone. There were also no 

differences in behavior during the acclimation phase. During the open field phase, there was 

a main effect of dose on time spent in the open field section (Fig. 5C, F2, 32= 3.8, p< 0.02). 

Planned comparisons showed that control females treated with 0.50μg U504,88 spent less 

time in the center than control females treated with aCSF (p< 0.05, d=2.15).

4. Discussion

Here we found that KOR activation induced anxiety-like behaviors in control males, while 

having the opposite effect in stressed males. In stressed males, a higher dose of U50,488 was 

required to affect behavior compared to control males, suggesting that stress may have 

desensitized KOR. Finally, effects of U50,488 were weaker in females, consistent with 

previous reports that acute effects of KOR are stronger in males than females. Together, 

these results indicate that within the DRN, the effects of KOR on behavior and sex- and 

experience-dependent.

Social defeat increased freezing and reduced levels of anogenital sniffing in aCSF treated 

males. The low dose (0.25μg) of U50,488 also increased freezing behavior in the resident 

intruder test and decreased anogenital sniffing (a social investigatory behavior) in control 

males while escape behavior was increased by the high dose (0.50μg). These data are 

consistent with previous studies indicating that KOR activation mediates defeat-induced 

freezing behavior [4] and acute social avoidance [49]. Freezing behavior in control males 

was not affected by 0.5 μg of U50,488, consistent with previous reports of U-shaped curves 

in place aversion studies [38, 50]. For stressed males treated with the high dose of U50,488, 

freezing was reduced and anogenital sniffing increased. Thus, in the resident-intruder test, 

U50,488 had largely opposite effects on behavior in control and stressed males. U50,488 

reduces the excitability of DRN serotonin neuron [5, 51], which may contribute to the 

anxiolytic effects we observed in stressed males. The activation of KOR receptors in stressed 

males may restore the activity of DRN serotonin neurons to a baseline rate. Male rats 

exposed to uncontrollable stress had more reactive DRN serotonergic neurons when 

confronted with an acute challenge [52], an effect that is likely mediated by a stress-induced 

reductions in inhibitory 5HT1A autoreceptors [22, 23]. Stress induced changes in the 

distribution of CRH receptors in the DRN may also facilitate increased reactivity of DRN 

serotonin neurons. Some male rats take a more proactive strategy when faced with 

aggressive resident [53], resisting social defeat with defensive postures. This proactive 

phenotype is associated with increased membrane expression of the type 2 CRH receptor 

[54], which enhances the excitability of DRN serotonin neurons [55]. Previous work in mice 

and other species have linked proactive coping strategies with increased aggression and 

perseverative behavior [56], both of which are observed in male California mice exposed to 

social defeat [37, 57]. The behavioral effects of CRH receptor activation in the amygdala 
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have been found to be KOR-dependent, but less clear how these signaling pathways interact 

in the DNR [58].

While effects of U50,488 were relatively strong in males, females showed a decreased 

sensitivity to U50,488 infusions. Previous studies have also found that the acute effects of 

KOR agonists are stronger in males than females [28, 29, 59]. This suggests that there could 

be important sex differences in neural circuits mediating KOR action. In guinea pigs 

U50,488 induced freezing behavior to a greater extent in males than females [60]. Sex 

differences in freezing and escape behavior have been observed in the learned helplessness 

model, in which rats are first exposed to inescapable shocks and later given an opportunity to 

escape from shocks. In male rodents, prior exposure to inescapable shock reduces the 

probability of avoiding escapable shock, and this effect is mediated in part by activation of 

the dorsal raphe [61]. Interestingly, female rats are much less likely to develop this learned 

helplessness [62]. This is consistent with other evidence showing greater reactivity of the 

DRN to stress in males than females [63]. These results are thus consistent with our finding 

of stronger effects of KOR activation in the DRN of males versus females. A somewhat 

surprising result was that we observed no effect of defeat on social interaction behavior in 

females treated with aCSF. Defeat-induced social avoidance in females has been one of the 

most consistent phenotypes in the California mouse model of defeat [35, 64, 65]. Although 

stressed male California mice typically do not exhibit social avoidance, in two studies 

stressed males that receive injections administered 30 minutes before testing did exhibit 

social avoidance [33, 34]. Here, stressed females treated with aCSF showed high levels of 

social interaction, suggesting that the infusion itself was not overly stressful. In addition, 

0.50μg of U50,488 induced an anxiety-like response in the open-field test and reduced 

anogenital sniffing, which can both be interpreted as anxiogenic responses. However, the 

lack of the expected social withdrawal after defeat does shed some caution as to the ability 

to generalize defeated female data. The stark contrast between male and female response to 

KOR manipulation in this study highlights the sex dependent differences in the kappa opioid 

system and emphasizes the importance of investigating both sexes.

Another interesting facet of the results was that U50,488 had stronger effects in the resident-

intruder test versus the social interaction test. A major difference between these tests is the 

familiarity of the environment with the resident-intruder test occurring in familiar home cage 

versus the social interaction test occurring in a novel environment. Previous work in 

California mice demonstrates that behavior can be remarkably different in familiar versus 

novel environments [66, 67]. The DRN is also highly sensitive to the environment. For 

example, male rats that received DRN lesions reduced social behavior in a resident-intruder 

test but not in the novel context of a social interaction test [68]. Our results suggest that 

KOR modulation of the DRN has stronger effects on social behavior in familiar 

environments versus novel environments, at least in males.

The serotonergic system is well known for its modulation of aggressive behavior. Lesions of 

the DRN and inhibition of serotonin synthesis have both been found to increase instigation 

of aggression by residents in resident-intruder tests but not increase the instigation of 

aggression by intruders [69, 70]. Overall, interventions that decrease serotonin output are 

usually associated with increased aggression [71]. While activation of KOR has been linked 
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to increased aggression, this effect was observed in the nucleus accumbens and in a specific 

context of pair bonding [72]. We did not see changes in offensive aggression levels (biting 

and upright posture) in either males or females treated with U50,488 in the DRN. This 

suggest that the effects of U50,488 were not driven by functional changes in aggression 

circuits. Finally, defeat may have altered KOR expression. Social defeat has been found to 

decreases KOR mRNA within the nucleus accumbens of male C57Bl6/J [73] and increase 

KOR mRNA within the medial preoptic area of male California mice [74]. To our 

knowledge, the effects of social defeat on KOR expression have not been examined.

5. Conclusions

In conclusion, we found that the effects of KOR activation in the DRN were context- and 

sex-specific. In males, lower doses of U50,488 induced anxiety-like responses in control 

males while in stressed males given higher doses of U50,488 had anxiolytic responses. 

These results fit with data showing that social defeat decreases 5HT1A receptor negative 

feedback on serotonergic neurons. It may be the case that engaging KOR in stressed males 

generates an alternative source of negative feedback independent of 5HT1A. Overall, effects 

of U50,488 infusions were weaker in females, consistent with previous reports of greater 

sensitivity to KOR in males. Interestingly, the strongest behavioral effects of U50,488 

infusions were found when behavior testing took place in a familiar environment. Overall 

the effects of KOR activation were experience-, sex-, and context-specific. This complexity 

of regulation needs to be considered when evaluating the therapeutic potential of KOR 

dependent pharmaceuticals.
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aCSF artificial cerebrospinal fluid

DRN dorsal raphe nucleus

KOR kappa opioid receptor

TPH tryptophan hydroxylase

PBS phosphate buffered saline
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Figure 1. Cannula Placements
Nissl stain of coronal sliced California mouse brain tissue containing DRN (Fig. 1A), 

courtesy of brainmaps.org. Tryptophan hydroxylase DAB stain of serotonergic neurons (Fig. 

2A) corresponding to the regions represented in Fig. 1A. All cannula placements in DRN for 

both males and females (Fig. 1C). AQ= Cerebral aqueduct, CBP= Cerebellar peduncles, 

DRN = dorsal raphe nucleus, MLF = Medial longitudinal fascicle
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Figure 2. Male Resident Intruder Data
Experimental timeline (A). Behaviors measured in resident test animal: freezing (B), 

escaping (C), chasing (D), and anogenital sniffing (E). *= p<0.05 vs aCSF, += p=0.07 vs 

aCSF, †=p<0.05 vs control. n=4–6 per group.
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Figure 3. Female Resident Intruder Data
Experimental timeline (A). Behaviors measured in resident test animal: freezing (B), 

escaping (C), chasing (D), and anogenital sniffing (E). * p < 0.05 vs aCSF. n = 5–7 per 

group.
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Figure 4. Male Social Interaction Data
Experimental timeline (A). Time spent in interaction zone during interaction phase of the 

social interaction test (B). Time spent in interaction zone during the acclimation phase (C). 

Time spent in center of arena (D) and distance traveled (E) during the first phase. * = p < 

0.05 vs control, n = 5–8 per group.
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Figure 5. Female Social Interaction Data
Experimental timeline (A). Time spent in interaction zone during interaction phase of the 

social interaction test (B). Time spent in interaction zone during the acclimation phase (C). 

Time spent in center of arena (D) and distance traveled (E) during the first phase. * = p < 

0.05 vs aCSF, n = 6–7.
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Table 1

Resident Intruder offensive aggression (mean ± s.e.).

Bites (freq) Upright Posture (freq)

Male Female Male Female

aCSF, control 0.8 ± 0.5 3.1 ± 1.6 15.8 ± 6.5 11.4 ± 4.5

aCSF, defeat 0.6 ± 0.3 0.7 ± 0.6† 6.4 ± 2.3 5.2 ± 3.0

0.25ug, control 2.25 ± 1.6 3.3 ± 2.9 7.5 ± 2.8 12.0 ± 3.6

0.25ug, defeat 1.6 ± 1.6 0.2 ± 0.1† 7.0 ± 2.9 7.7 ± 4.5

0.50ug, control 0.0 ± 0.0 4.0 ± 1.5 5.3 ± 2.6 3.0 ± 1.7

0.50ug, defeat 2.5 ± 1.5 1.0 ± 0.7† 2.5 ± 1.2 4.0 ± 1.2

†
main effect of defeat p=0.06
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