
UNIVERSITY OF CALIFORNIA

Los Angeles

Context-Aware Deep Learning Model for Predicting

Non-Mandatory Activity Locations

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Civil and Environmental Engineering

by

Chenchen Kuai

2024



© Copyright by

Chenchen Kuai

2024



ABSTRACT OF THE THESIS
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Professor Jiaqi Ma, Chair

The explosion of mobile internet usage has generated vast amounts of data on

users’ spatiotemporal activities. This data is crucial for studying human movement,

enhancing traffic management, and understanding epidemic spread dynamics. Our

study aims to tackle the challenge of predicting locations for non-mandatory activities

using mobile location data.

The thesis introduces the SageGRU model, which combines GraphSage with At-

tentional Gated Recurrent Units, to predict the next visiting Point of Interest (POI)

for non-mandatory activities. SageGRU leverages historical visitation data, catego-

rizes activity types, and considers temporal dimensions and global movement trends

using POI-to-POI transition graphs. Validated with the Veraset dataset, SageGRU

achieves 10.2% accuracy at predicting the top location, 20.8% for the top two lo-

cations, and 27.4% for the top three, significantly outperforming existing models.
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This highlights the importance of comprehensive spatio-temporal context in predict-

ing non-mandatory activity locations. SageGRU’s capability to reconstruct real-life

trajectories and aggregate travel patterns underscores its potential to advance urban

mobility and public health planning by offering deeper insights into human move-

ment.
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CHAPTER 1

Introduction

Human movement studies are fundamental to our society and an essential compo-

nent of understanding societal challenges (Smolak et al., 2021), such as urbanization,

urban activity, and epidemic spread (Pardo-Araujo et al., 2023). At the heart of the

study on human mobility is predicting daily visited locations (Song, 2023). Pre-

dicting an individual’s future location helps with a lot of downstream applications

including traffic flow prediction (Shi et al., 2019), personalized recommendation sys-

tems (Sánchez and Belloǵın, 2022), and network resource optimization (Li et al.,

2021).

Despite its importance, next-location prediction is challenging and yet not fully

tackled. Next location prediction requires capturing spatial and temporal patterns

that characterize human habits (Barbosa et al., 2018). Also, accurate prediction

requires combining heterogeneous data sources to model multiple factors influencing

human displacements, including weather, travel modes, the presence of points of

interest, and even the influence of friendships based on social networks (Cho et al.,

2011). Focusing on the individual level, the theoretical predictability of mobility

suggests that specific sections of location visits are difficult to predict based on

mobility entropy measurements (Song et al., 2010).
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1.1 Background of Next Location Prediction Problem

Activity-based models (ABMs) in urban planning delineate between mandatory

(e.g., work) and non-mandatory (e.g., leisure) activities to predict travel patterns.

These models prioritize activities, scheduling mandatory ones first due to their pri-

ority in people’s daily planning (Guo et al., 2024). Mandatory activities typically

have stable, predictable locations (Alexander et al., 2015). Non-mandatory activi-

ties, however, are characterized by their flexibility and randomness, posing a greater

challenge for prediction (Benita, 2023). The decision mechanisms behind choos-

ing locations for these two types of activities differ significantly. While the spatial

dynamics of mandatory activities, such as the home-work relationship, have been

extensively examined (Alexander et al., 2015; Wu and Hong, 2022), specific models

for predicting non-mandatory activity locations remain underexplored.

Traditionally, pattern-based models have been applied to predict people’s visit-

ing locations and to capture the exploration and preferential return visit patterns

and power law distribution of travel distance patterns. Despite the pattern-based

approaches making good use of domain knowledge in the prediction, such models

have limitations in making use of all informative features (Luca et al., 2023). The

development of powerful Artificial Intelligence (AI) techniques and the availability

of big mobility data offered unprecedented opportunities for researchers to use Deep

Learning approaches to solve mobility-related challenges (Chen et al., 2020). Fea-

tures of historical spatial and temporal context (Liu et al., 2016), representation of

user networks and human social interactions (Kothari et al., 2022), and so on could

be mined and incorporated in next location predictions to improve the performance.

The Mobile device location data has been used in recent human mobility studies
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recently (Fan et al., 2021), but has not been applied in next-location prediction

yet. The fine-grained mobile phone data has a vast amount of dwelling points for

anonymized devices, but not poi tagged, only with coordinates and timestamps.

The integration of activity-based models into urban and transportation planning

(Jiang et al., 2018; Yu et al., 2020) represents a pivotal shift in understanding hu-

man mobility. These models suggest that human movements are intricately linked

to the pursuit of specific activities at key locations, rather than being mere random

traversals. By leveraging large-scale datasets, like mobile phone records, within the

framework of activity-based modeling, researchers are able to reveal complex spatial

patterns of human mobility that are invaluable for enhancing urban and transporta-

tion systems. Researchers (Yu et al., 2020) advanced this paradigm by embedding

the semantic importance of locations—defined by their associated activities—into

predictive models of location forecasting. This acknowledges the fundamental role of

activity motivation in travel, a factor previously underappreciated in mobility mod-

els. Such a focus on the motivational underpinnings of travel, recognizing activities

as the primary catalysts for movement, promises to refine prediction models and

inform urban planning processes in profound ways. Nonetheless, the critical role of

activities as a foundational element of human mobility has often been overlooked in

research, despite its evident influence on the reasons behind travel behaviors.

This study aims to bridge the gap by the following steps:

1. Emphasizing activity types as predictors, acknowledging that the motivations

behind movements are pivotal in understanding human travel patterns.

2. Utilizing a novel dataset replete with extensive human movement records, provid-

ing a granular view of mobility at a scale previously untapped.

3. Integrating historical information with a global transition graph of POIs into our
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model framework, a strategy validated for its effectiveness in enhancing predictive

accuracy.

4. Conducting thorough experiments that not only underscore the precision of our

location predictions but also the adeptness of our model in mirroring actual travel

patterns, culminating in the open-sourcing of our framework to foster further research

and application in the domain of location prediction.

1.2 Related Work of Human Movement Models

Human mobility patterns are fundamentally regular in their spatial and temporal

dimensions, often describable by statistical distributions. Research(González et al.,

2008) have highlighted the predictability of aggregated human movements, suggesting

a deep-rooted regularity in how people traverse spaces. This regularity stems partly

from daily activities, which not only dictate the locations people visit but also the

purposes behind these visits(Tian et al., 2023).

Traditional models, like the gravity model (Voorhees, 1956), offer insights into the

movement flow between areas, though they tend to operate at an aggregated level,

such as traffic flow between Traffic Analysis Zones (TAZs). These models, while

foundational, often overlook the nuanced spatiotemporal dynamics at the individual

level. Recent advancements have sought to address these limitations by incorporat-

ing concepts of activity space. Researchers (Zhang and Li, 2024) have introduce an

innovative Activity Space-based Gravity (ASG) model that uses urban region at-

tractiveness as a proxy, allowing for a more detailed analysis of mobility patterns.

Similarly, a Spatiotemporal Flow Force Model (FFM) inspired by fluid mechanics

principles has been proposed(Fang et al., 2024), specifically the Navier-Stokes equa-
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tions, to describe human mobility flows within cities with greater precision.

At the individual level, the TimeGeo framework (Jiang et al., 2018) represents

a significant leap forward. It leverages passive and sparse digital traces to model

individual mobility with high spatio-temporal resolution, capturing the heteroge-

neous nature of travel choices through interpretable mechanisms and parameters.

These developments signify a shift towards more granular, individual-focused mod-

els that accommodate the complex interplay of factors influencing human mobility.

By bridging the gap between traditional aggregated models and the nuanced reality

of individual movements, these innovative approaches offer a comprehensive under-

standing of human mobility patterns.

1.3 Related Work of Next Location Prediction Models

In recent years, the field of next location prediction has seen the emergence of

diverse models leveraging deep learning techniques, utilizing datasets like Gowalla

and Foursquare. Studies employing LSTM or RNN (Kong and Wu, 2018; Sun and

Kim, 2021), focus on capturing sequential dependencies in human mobility. Atten-

tion mechanisms, highlighted in research (Hong et al., 2023), aim to identify critical

features for prediction accuracy. Others (Tsanakas et al., 2024) also explore the use

of knowledge distillation to create specialized prediction models. Additionally, graph

methods are increasingly applied and researchers (Liu et al., 2023; Rao et al., 2022)

proposing models that understand the complex interactions within POI-POI graphs

or User-POI knowledge graphs, underscoring the evolving landscape of location pre-

diction methodologies.
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CHAPTER 2

Problem Formulation

Mobility data, typically collected through mobile devices, are processed to derive

activity chains that inform next-location predictions. This section introduces key

terms and notions fundamental to our discussion and formalizes the problem of pre-

dicting a user’s next location.

Figure 2.1: Overview of the process of next location prediction with prior knowledge

of activity type and time.
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2.1 Next Location Prediction Problem for Non-Mandatory

Activities

Definition 1 (Activity Chain). For a user u within the set U of all users, an

activity chain, Au, is a chronologically ordered sequence of Nu activities, represented

as Au = {A1,u, A2,u, . . . , ANu,u}. Here, An,u denotes the n-th activity undertaken by

user u.

Definition 2 (Activity). An activity, An,u, part of user u’s activity chain Au, is

characterized by a tuple [pn,u, tn,u, sn,u, en,u], where pn,u specifies the activity’s loca-

tion as a POI, tn,u its type, and sn,u and en,u the start and end times, respectively.

Definition 3 (POI). The set of POIs, denoted as P , is given by P = {p1, p2, . . . , pN},

where each POI, pj, is detailed by a tuple [lonj, latj, tj]. This tuple includes the POI’s

longitude (lonj) and latitude (latj), alongside the types of activities (tj) it accom-

modates. The subset of POIs supporting a specific activity type t is denoted as Pt.

Given these definitions, we now articulate the next location prediction problem.

Problem Statement (Next Location Prediction). The objective is to construct

a predictive model, M , capable of forecasting the next activity’s POI, pn+1,u, for

an individual u, based on their historical activity chain Au and temporal context

[tn+1,u, sn+1,u, en+1,u] of the forthcoming activity. The model endeavors to identify

the most likely POI, pn+1,u, from Ptn+1,u , the set of POIs compatible with the antic-

ipated activity type, tn+1,u.
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CHAPTER 3

GraphSage with Attentional Gated Recurrent

Units (SageGRU) Model

Figure 3.1: Overview of the proposed framework for location prediction. The frame-

work outlines the process from data collection, preprocessing, feature extraction, and

model development, to the evaluation of the model’s performance.

The study proposes a neural network architecture that leverages contextual in-

formation to enhance the prediction of future locations. The architecture’s pipeline

is depicted in Figure 1. Initially, data preprocessing is conducted through stay point
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detection, activity type inference, and POI matching algorithms, as detailed in Sec-

tion 4.1. The study then extracts historical visit patterns and user-specific features,

as outlined in Section 4.2, and arranges these into sequential vectors. Additionally,

we incorporate global transition information in Section 4.3 to construct a POI-POI

graph, which aids in creating preference features for the current POI. The study em-

ploys an AT-GRU combined with GraphSage to effectively learn dependencies from

historical sequences, user characteristics, and global transition patterns, thereby en-

hancing the prediction accuracy for the subsequent visit location, as elaborated in

Section 4.4. A comprehensive description of each component of the model is provided

in the subsequent sections.

3.1 Data Preprocessing

Our study utilizes the Veraset dataset, a compendium of mobile device data that

includes location information in the form of longitude, latitude, and timestamps.

This dataset is renowned for its granularity and accuracy, making it ideal for mobility

studies. In conjunction with the PlantSense POI data, it forms the foundation of

our preprocessing workflow.

The preprocessing begins with the extraction of mobile device records from the

Veraset dataset. The records are points in space and time, marked by longitude,

latitude, and timestamps. The initial phase involves applying a stay point identifi-

cation algorithm to discern locations indicative of user immobility for a considerable

duration. This process results in stay points characterized by their geographical

coordinates and the associated start and end times.

The POI matching process leverages spatial and temporal data to correlate ac-
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tivities with specific locales. Rule-based algorithms(Alexander et al., 2015), deduce

mandatory activities for stays, such as home, work, and school locations.

Home and Work Activities: These locations are identified based on the frequency

of visits. Home locations are recognized during evenings and weekends, while work

locations are determined by the maximum cumulative distance from the home during

standard work hours on weekdays.

School Activities: A school location is pinpointed from a stay point that satisfies

both the maximal distance criterion, similar to work locations and the presence of

an ’education’ POI within a 250-meter radius.

For other types of activities, POI matching algorithms are typically designed to

select the nearest POIs. Our method involves the following steps:

1. POI Local Candidate Pool Construction: Identification of the three nearest

POIs to create a candidate pool.

2. Calculate POI Match Score: Computation of a score incorporating the prob-

ability of an activity type based on its start time, the proportion of the type,

and a spatial distance calculated using a Gaussian kernel.

3. Final POI Match: The POI with the highest score is selected, assigning the

corresponding activity type to the stay point.

The score for a POI match is calculated using the following formula:

Score = P (ti|T ) × α× e−
(d−µ)2

2σ2 (3.1)

where:
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Table 3.1: Activity types and their corresponding descriptions

Category Description

1 Home activities (sleep, chores, etc) or Work from home

2 Work-related activity or Volunteer

3 Attend school

4 Attend child or adult care

5 Buy goods (groceries, clothes, gas)

6 Buy services (dry cleaners, banking, service a car)

7 Buy meals (go out for a meal, food, carry-out)

8 General errands (post office, library)

9 Recreational activities (visit parks, movies, bars)

10 Exercise (jog/walk, walk the dog, gym, etc)

11 Visit friends or relatives

12 Health care visit (medical, dental, therapy)

13 Religious or community activities

14 Something else

15 Drop off/pick up someone

• P (ti|T ) is the conditional probability of activity type ti given the start time T ,

• α represents the proportion of the activity type ti within the set of all activities,

• e is the base of the natural logarithm,

• d is the distance from the stay point to the POI,

• µ is the mean distance for the activity type ti,
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• σ is the standard deviation of the distance for the activity type ti.

The non-mandatory activities and POIs are selected as the ones with the highest

scores.

3.2 Integration of User-Specific Information

Each user profile is augmented with a history of site visitations alongside data on

users’ habitual locations, such as places of residence and employment. The model

is designed to retain the most recent twenty entries of this visitation log; if a user’s

history is insufficiently expansive, reaching fewer than twenty records, the remaining

entries are filled with a designated placeholder or ’mask’. The historical data are

represented as a concatenation of spatial vectors V and temporal vectors T .

The spatial component V encapsulates longitudinal and latitudinal coordinates,

along with the corresponding longitudinal and latitudinal displacements, signifying

the distance traversed. Conversely, the temporal component T encompasses the com-

mencement and conclusion times of the activity, the classification of the day (e.g.,

whether it is a workday), and the type of the activity. Temporal attributes related

to the timing of activities are encoded via a Trigonometric Time Encoding scheme,

which effectively captures the cyclical nature of daily and weekly patterns. This

method transforms hours into a sinusoidal form, facilitating the model’s interpreta-

tion of temporal continuity and periodicity.

Furthermore, users’ fixed locations—namely their homes, workplaces, and ed-

ucational institutions—are incorporated as persistent features within their profile,

reflecting the long-term stability of these sites. Before integration into the model, all

12



features undergo a normalization process to ensure homogeneity of scale across the

dataset.

3.3 Integration of Global Transition Information

Figure 3.2: GraphSage sampling and aggregating approach illustration

The POI-POI transition graph is constructed to understand the movement pat-

terns among various POIs. For each POI, the graph captures the preferences of next

POIs by all visitors. The GraphSAGE algorithm is utilized to predict the next POI

by generating embeddings through graph convolution. This method efficiently re-

duces computational expenses by sampling neighboring POIs and aggregating their

information to provide an embedding for each centered POI.

The key steps, illustrated in Fig. 3, involve the centered POI aggregating in-

formation from its immediate neighbors and their neighbors in turn, which helps in

generating a comprehensive embedding of the centered POI. These embeddings serve

13



as crucial inputs for predicting movements between POIs.

The process of information aggregation within the GraphSAGE framework is

formalized for a node i as follows:

x′
i = W1xi + W2

∑
j∈N(i)

ej,ixj

where ej,i denotes the edge weight from source node j to target node i, representing

the historical transitions between POIs.

In a vectorized form, especially when considering a graph convolutional layer,

this aggregation can be expressed as:

X ′ = ÂXΘ

Here, Â = A+I is the augmented adjacency matrix that includes self-loops, allowing

the inclusion of a node’s own features in the aggregation process.

The graph under consideration includes nodes and edges where each node rep-

resents a POI, with features including longitude, latitude, visited frequency, median

visited time, median leaving time, and activity type. Meanwhile, edges signify his-

torical transitions between POIs, encapsulating the movement patterns among them.

This structured approach facilitates an understanding of POI dynamics and assists

in predicting future movements with enhanced accuracy.

3.4 Neural Network

The GraphSage and Attential Gated Recurrent Units (SageGRU) model (Fig. 4)

combines the Attential Gated Recurrent Units for users historical visit information

extraction and the GraphSage module for global transition information extraction

14



Figure 3.3: Neural network structure illustration

and from features.

Attential Gated Recurrent Units The model’s Spatio-temporal feature extrac-

tion from historical user activity is a critical step in predicting future locations. The

vectors obtained from these features carry essential information about the user’s mo-

bility patterns. To effectively utilize this information, it is necessary to understand

the sequential dependencies present within the data. Our approach involves the use

of an attention module, which is specifically designed to discern the most relevant

features for location prediction.

The attention mechanism employed in our module relies on the dot-product at-

tention function, which calculates the compatibility of each historical data point with

15



Table 3.2: Explanation of symbols in neural networks

Symbol Description

vui Embedded POI visited by user u at time point i

tui Embedded temporal information by user u at time point

i

vk Embedded POI of kth sample

hu
i The hidden vector of GRU unit

cun+1 Embedded picking context by user u at time point n+1

pu Latent representation of user information u

gun Embedding of the global graph information on the cur-

rent location

oun+1,Vk
The probability of picking the kth POI sample at time

point n + 1 for user u

the context of future location choices. Formally, the attention function for the his-

torical hidden vector hu
i and the context vector for the subsequent location cun+1 is

defined as follows:

f(hu
i , c

u
n+1) =

(hu
i )Tcun+1√

d

The weight αi corresponding to each hidden vector hu
i is then calculated to mea-

sure how well the ith historical stay point matches with the context of the next stay

point. This is expressed by:

αi =
exp(f(hu

i , c
u
n+1))∑n

j=1 exp(f(hu
j , c

u
n+1))
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Then, the output of the attention module is a weighted sum of the hidden vectors,

yielding a composite hidden representation run of the user’s historical visits. This is

mathematically represented as:

run =
n∑

i=1

αih
u
i

The weighted hidden representation run effectively captures the essence of the

user’s historical location patterns, which is then used to forecast future locations

with higher precision. The attention module serves as a cornerstone in our pre-

dictive model, enabling it to discern and leverage the most significant factors that

influence the user’s location choices.

GraphSage Convolution The communal movement dynamics inherent to a POI

is extracted by examining the connectivity patterns among neighboring nodes and

their extensions. Graph convolution is employed to amalgamate contextually per-

tinent data, thereby delineating the typical movement routes and visitor behaviors

at a particular POI. In the GraphSage schema, such an information synthesis for a

convolutional stratum is mathematically represented as:

gun = ÂGu
nΘ

where Gu
n signifies the node features sourced from the graph with the context

POI at its nucleus, and Θ denotes the trainable weight matrix of the deep learning

graph framework. Consequently, the derived context vector gun proficiently portrays

the generalized movement patterns associated with the POI.
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Score and Loss Function The predicted score for user u’s visit to POI vk at

time point n + 1 is calculated by the operation:

su(n+1,Vk)
= (WNr

u
n + Wpp

u + Wgg
u
n)T

(
Wvvk + Wtt

u
(n+1)

)
Negative Sampling is employed in the model, distinguishing the visited POI (positive

sample) from the non-visited ones (negative samples). The probability pu(n+1,Vk)
is

obtained by applying a softmax function to the scores, where Nn is the size of negative

samples and Nn+1 is the total size of positive and negative samples:

pu(n+1,Vk)
=

e
su
(n+1,Vk)∑Nn+1

j=1 e
su
(n+1,Vj)

Given the predicted probabilities, the loss function L integrates cross-entropy loss,

distance loss, and L2 regularization:

L = − 1

N

N∑
i=1

log(pi1) +
α

N

N∑
i=1

n∑
j=1

[(Dij −Di1)pij] +
λ

2
||param||2

Here, pi1 represents the probability assigned to the positive sample in the ith pre-

diction, Dij denotes the distance from the current location to the jth POI in the ith

prediction, and Di1 indicates the distance to the positive sample POI.

Next POI prediction After incorporating negative samples into the training pro-

cess, the model assigns a probability pu(n+1,Vk)
to each POI, indicating the likelihood

that it will be the next location visited by a user. To incorporate the compatibility

of the POI’s activity type with user preferences, the model refines this probability by

applying a type filtering mechanism. The final probability P u
(n+1,Vk)

of a POI being

the next destination is calculated as follows:

P u
(n+1,Vk)

= pu(n+1,Vk)
· TS · (T T

P )
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Here, TS is a binary vector representing the POI’s support for each activity type,

with dimensions [1, all types], where each element is either 0 (not supported) or 1

(supported), akin to a one-hot encoding scheme. TP is a binary vector indicating the

presence (1) or absence (0) of the specified next activity type for the user, also with

dimensions [1, all types].

The resulting probability P u
(n+1,Vk)

provides a refined likelihood of each POI being

the next visit, based on both the initial model prediction and the compatibility of

activity types. POIs are then ranked by this final probability in descending order,

with the top-ranked POI predicted as the user’s next destination.
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CHAPTER 4

Experiment Settings

4.1 Description of Veraset Mobile Location Dataset

The research utilizes the PlanetSense POI dataset in LA County, a comprehen-

sive compendium of geographical locations following an extensive cleansing process.

This dataset, now refined to contain 340,087 distinct POIs, serves as an instrumen-

tal component in our analytical undertakings, particularly in the domains of POI

matching and location prediction.

This study utilizes a comprehensive dataset provided by Veraset, encompassing a

complete record of mobile device locations within Los Angeles County for the period

of February 1st to February 28th, 2019. The data captures the intricacies of user

movement by employing sophisticated algorithms to identify stay points, consistent

with the methodology delineated in Section 4.1. A key stipulation for inclusion in the

analysis was that each user must exhibit a minimum of 15 recorded activities within

the month-long timeframe, ensuring robustness in behavioral patterns captured.

The resultant dataset comprises 221,217 unique users and a total of 11,392,455

activity instances. Of these, 4,912,292 activities are classified as non-mandatory,

reflecting a variety of discretionary movements. The aggregation and subsequent

analysis of these activities have facilitated a comparison with the National Household
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Travel Survey (NHTS) data for the Los Angeles area. Krishna2018

Figure 4.1: Comparative data description with the National Household Travel Survey

illustrating LA’s activity patterns.

A salient finding from the dataset analysis is the increase in activity frequency

during night hours. This nighttime activity surge, as indicated by our data, can be

correlated with the prevalent mobile device usage during these hours, such as eating

out and home activities. The comparison illuminates the efficacy of our algorithm

and confirms the general mobility patterns observed within the region. Moreover,

the findings provide valuable insights into urban dynamics and user behavior, under-

scoring the potential of mobile device data to inform transportation planning and

policy-making.

4.2 Model Evaluation Measurements and Benchmark Mod-

els

After training with negative samples, we finally apply the model to the scenario

of all possible POIs and rank the scores. The following evaluation matrices help

21



define the model’s performance in the prediction.

Accuracy. It measures the correctness of the predicted location compared to the

ground truth of the next visited location. Practically, we rank the location probability

vector P̂ (ln+1), obtained from Eq. (5), in descending order and check whether the

ground truth location appears within the top-k predictions. Acc@k measures the

proportion of times this is true in the test dataset. In location prediction literature,

this metric is also referred to as Recall@k or Hit Ratio@k. We report Acc@1, Acc@5,

and Acc@10 to allow comparisons with other work.

JSD of the distance distribution For the predicted POIs, the measurement

measures the distance distribution from the last POI to the observed POI and the

distance distribution from the last POI to the predicted next POI. The measurement

is able to check the prediction is able to provide good general human mobility travel

distance patterns.

<d km Rate The rate measures the probability that the distance from the pre-

dicted next POI to the observed next POI is smaller than d km, which could indicate

how close the prediction is to the observed.

We evaluate the efficacy of our proposed model by benchmarking against deep

learning-based models reported in contemporary literature that address this problem:

• LSTM. A classical deep learning architecture for sequence modeling, LSTMs

are extensively employed and recognized as one of the foremost models for

predicting subsequent locations, as evidenced by studies from (Krishna et al.,

2018; Solomon et al., 2021; Xu et al., 2021). They maintain a continuous hidden

state and sequentially process the input data, which enables them to capture
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temporal dependencies effectively.

• Attention-Based Spatiotemporal LSTM Network (ATST-LSTM). The ATST-

LSTM (Huang et al., 2021) employs an attention mechanism that selectively

concentrates on pertinent historical check-in data within a sequence by lever-

aging spatiotemporal context.

• AT-GRU. While AT-GRU forms the fundamental structure of the SageGRU

that we have implemented, it is used as a comparison benchmark in the absence

of graph information knowledge.

4.3 Training Configurations

In our research, activity chain data was divided into training, validation, and test

sets with ratios of 60%, 20%, and 20% respectively, ensuring a comprehensive eval-

uation framework. A specific focus was placed on predicting non-human activities

within the dataset. One activity chain is set with multiple predictions. Model train-

ing utilized an NVIDIA V100 GPU, optimizing the balance between computational

efficiency and learning effectiveness.

The configuration for model training included a batch size of 15, facilitating an

optimal balance between memory usage and model update granularity. A learning

rate of 0.0002 was chosen to ensure a steady approach towards optimal loss minimiza-

tion. To prevent overfitting and promote generalization, a dropout rate of 0.6 and

a regularization parameter of 0.002 were applied. Additionally, the model employed

a k-nearest neighbors algorithm with k = 100 and a sampled subgraph technique

with num neighbors set to [3,3]. A negative sampling strategy incorporating 500
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filtered-type negative samples, evenly split between difficult and easy samples, was

implemented to enhance the model’s discrimination capability.

4.4 Activity Chain Reconstruction with SageGRU Model

Figure 4.2: Illustration of sequential prediction with next location prediction model

In this study, we also implemented a sequential prediction framework that extends

the capabilities of the next location prediction model. Our approach leverages an

autoregressive model that uses past location data and user-specific information to

forecast a series of future POIs. The sequential prediction model generates forecasts

for non-mandatory activities by incorporating each user’s predicted previous POI as

an additional contextual feature for subsequent predictions.

The autoregressive nature of the sequential prediction facilitates the reconstruc-

tion of individual activity chains, providing detailed insights into human mobility

and location preferences. Through iterative predictions and the integration of user-

specific data, the model aims to capture the complex interdependencies of locations
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within an individual’s daily routine. The efficacy of our sequential prediction ap-

proach is evaluated on its ability to replicate realistic activity chains, thereby con-

tributing to our understanding of spatial travel behavior.
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CHAPTER 5

Results

5.1 Performance Results

We first present the prediction performance for all considered methods in Table 2.

For each learning-based model, we train the model and record the best performance

of the model structure after testing parameters.

Table 5.1: Performance comparison of models on next location prediction.

Model Acc@1 Acc@5 Acc@10 Distance JSD <0.1km Rate <1km Rate

LSTM 5.4% 14.3% 19.5% 0.336 9.3% 44.0%

ATST-LSTM 6.0% 14.8% 20.2% 0.315 10.0% 47.5%

AT-GRU 6.3% 14.4% 19.6% 0.322 10.2% 47.2%

SageGRU 10.2% 20.8% 27.4% 0.257 14.8% 49.3%

Compared with other deep learning baselines, the SageGRU model outperforms in

all metrics, suggesting a significant advancement in predictive accuracy. Specifically,

SageGRU achieves the highest accuracy rates at 10.2% for Acc@1, 20.8% for Acc@5,

and 27.4% for Acc@10. These improvements indicate that SageGRU is notably

better at predicting the exact next location as the first choice and within the top

5 and 10 predictions compared to the LSTM and attention-based models. Also,
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the improvement in the prediction between SageGRU and AT-GRU indicates the

effectiveness of Global transition information in such predictions.

Furthermore, the Jensen-Shannon Divergence (JSD) for SageGRU is the low-

est at 0.257, implying that the probability distribution of SageGRU’s predictions

closely aligns with that of the true distribution of the observed data. This metric,

particularly relevant in the context of location data, reflects the model’s ability to

understand and recreate the natural variance in human mobility patterns.

The rates of predicting a location within a 0.1km and 1km radius are significantly

better as well. With a 1km rate of 49.3%, the SageGRU demonstrates a high level

of accuracy in terms of Transportation Analysis Zone (TAZ) level prediction. This

is indicative of the model’s utility in practical applications, such as urban planning

and location-based services, where TAZ-level accuracy is often sufficient.

The distance distribution, as visualized in the figure, further corroborates the

model’s proficiency. The majority of predictions fall within a 5km distance from the

observed points of interest, with a steep decline in frequency as the distance increases.

This distribution suggests that the SageGRU model is proficient at capturing the

common patterns in the data, such as the tendency for subsequent locations to be

within a certain proximity of previous points of interest. Such a characteristic is

particularly useful for predicting human movement within urban areas, where most

activities are likely to occur within a relatively condensed geographical space.
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Figure 5.1: Distance distribution from the predicted next poi to the observed next

POI

5.2 Impact of Negative Sampling Methods

Negative sampling plays a pivotal role in training our model by enabling it to

differentiate the observed next POI from a pool of potential negative samples. In our

study, we carefully curate these samples based on their probability of being the next

POI, with a specific focus on ensuring they support the type of activity predicted to

occur next.

We categorize the negative samples into two groups: ’Difficult’ and ’Simple’. Dif-

ficult samples consist of POIs within a 20km radius from the last location, presenting

a higher challenge for the model to distinguish due to their proximity. On the other
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hand, simple samples are those beyond this 20km threshold, which aids in enhancing

the model’s general performance by covering a broader range of less likely locations.

Figure 5.2: Test of different negative sampling parameters: left: Sample size Right:

Proportion of difficult samples

Literature suggests that having a balanced mix of difficult and simple samples

is imperative for a model’s ability to discern effectively while maintaining overall

performance. The proportion of these samples can be fine-tuned for optimal results.

Specifically, a greater proportion of difficult samples tends to increase the hit rate,

whereas the best performance for the Jensen-Shannon Divergence (JSD) of travel

distance is observed with a lower proportion of difficult samples.

Experimentally, we determine that the inclusion of more negative samples can

lead to improved prediction outcomes. Our evaluations show that sample sizes of

500 and 750 yield comparable performances, indicating a plateau beyond which ad-

ditional samples may not contribute to significant gains.

Consequently, we adopt a configuration of 40% difficult samples within a total

of 500 negative samples for training our model. This setting has been chosen to

balance the trade-offs between accuracy and the ability to capture distributional
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characteristics of travel distances.

5.3 Activity Chain Reconstruction Performances

The application of the sequential prediction methodology leverages the SageGRU

model to reconstruct activity chains for non-mandatory activities, providing insight

into its predictive capacity on a macroscopic scale. The focus on aggregated data

allows for an evaluation of the model’s competence in capturing overarching trends

rather than granular, individualized predictions.

As evidenced in Fig. 9, the spatial distribution of predicted POIs exhibits a

high degree of correlation with the actual data observed, particularly within the

densely populated southern region and West Los Angeles. These areas demonstrate

a pronounced pattern of visitation frequency, underscoring the model’s effectiveness

in identifying areas of high activity engagement.

Further, Fig. 10 presents the Origin-Destination (OD) pairs as forecasted by the

model, with a clear demarcation of the central activity hubs. This visual representa-

tion confirms the SageGRU model’s adeptness at discerning spatio-level predictions,

substantiating its utility in urban planning and mobility studies. The model’s pre-

dictive ability aligns with the actual spatial dynamics, thus affirming its applicability

in the context of non-mandatory activity flows.

The findings underscore the potential of the SageGRU model as a tool for un-

derstanding urban mobility patterns, with implications for the planning of transport

systems and the allocation of resources within urban environments. The congruence

between predicted and observed data sets serves as a testament to the model’s ro-

30



Figure 5.3: TAZ level visiting frequency comparison between observed visits in the

dataset and predicted visits with sequential prediction

bustness, setting a precedent for further research into the refinement of predictive

algorithms within the domain of urban analytics.
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Figure 5.4: TAZ level OD pairs distribution comparing between observed visits in

the dataset and predicted visits with sequential prediction
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CHAPTER 6

Discussion and Conclusion

Our study introduces a novel predictive model that leverages the advanced struc-

tural capabilities of GraphSage and Attential Gated Recurrent Units (SageGRU).

This model has been specifically designed to incorporate the richness of temporal

context and user activity patterns in making precise location predictions. The dis-

tinctive characteristic of our approach lies in the construction of activity chains,

which are essential in understanding individual mobility patterns and are central to

our predictive model. By focusing on reconstructing activity chains, our model goes

beyond mere location prediction to capture the sequence of locations a user is likely

to visit.

In comparison to traditional models such as LSTM and ATST-LSTM, our Sage-

GRU model showcases superior performance in single-point predictions. This is

evident from its higher accuracy in pinpointing the exact next location. The model

operates under the premise that a robust understanding of temporal dynamics is

crucial for accurate location prediction, and as such, the predictions are made with

prior knowledge of temporal context, which is unique in the landscape of location

prediction studies.

The efficacy of the SageGRU model is not limited to individual predictions; it

also exhibits commendable performance on an aggregated level. The model adeptly
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captures general human mobility and travel distance patterns, which is substantiated

by our experimental results showing the distribution of distances from predicted to

observed POIs aligning closely with real-world data.

The accomplishments of this study are manifold. By utilizing a sophisticated

neural network architecture, we have addressed the unique challenge of next-location

prediction, a task that is integral to understanding human mobility. Our model, with

its state-of-the-art approach to processing spatiotemporal data, has set new bench-

marks for accuracy in both individual predictions and aggregated travel patterns.

However, the current research is based on some assumptions of human movement

patterns: everyone has only one home and one work/school location. This may

limit the study, as it does not account for individuals who do not have a fixed work

location or those who are shift workers. These cases should be studied and discussed

to improve the current model.

In conclusion, the proposed SageGRU model stands as a testament to the power of

deep learning in the realm of predictive analytics. Its ability to reconstruct activity

chains and predict future locations with high precision marks a significant stride

forward in our understanding of human mobility. As we continue to explore the vast

potential of AI in this domain, the foundational work presented in this study paves

the way for even more sophisticated and impactful research in the future.
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