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REPORT

Tumor-targeting Salmonella typhimurium A1-R combined with recombinant
methioninase and cisplatinum eradicates an osteosarcoma cisplatinum-resistant lung
metastasis in a patient-derived orthotopic xenograft (PDOX) mouse model: decoy,
trap and kill chemotherapy moves toward the clinic
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ABSTRACT
In the present study, a patient-derived orthotopic xenograft (PDOX) model of recurrent cisplatinum
(CDDP)-resistant metastatic osteosarcoma was treated with Salmonella typhimurium A1-R (S. typhimurium
A1-R), which decoys chemoresistant quiescent cancer cells to cycle, and recombinant methioninase
(rMETase), which selectively traps cancer cells in late S/G2, and chemotherapy. The PDOX models were
randomized into the following groups 14 days after implantation: G1, control without treatment; G2, CDDP
(6 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks); G3, rMETase (100 unit/mouse, i.p., daily, for
2 weeks). G4, S. typhimurium A1-R (5 £ 107 CFU/100 ml, i.v., weekly, for 2 weeks); G5, S. typhimurium A1-R
(5 £ 107 CFU/100 ml, i.v., weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for
2 weeks); G6, S. typhimurium A1-R (5 £ 107 CFU/100 ml, i.v., weekly, for 2 weeks) combined with rMETase
(100 unit/mouse, i.p., daily, for 2 weeks) and CDDP (6 mg/kg, i.p. injection, weekly, for 2 weeks). On day 14
after initiation, all treatments except CDDP alone, significantly inhibited tumor growth compared to
untreated control: (CDDP: p = 0.586; rMETase: p = 0.002; S. typhimurium A1-R: p = 0.002; S. typhimurium A1-
R combined with rMETase: p = 0.0004; rMETase combined with both S. typhimurium A1-R and CDDP: p =
0.0001). The decoy, trap and kill combination of S. typhimurium A1-R, rMETase and CDDP was the most
effective of all therapies and was able to eradicate the metastatic osteosarcoma PDOX.
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Introduction

Metastatic osteosarcoma is a recalcitrant disease with a less
than 20% long-term survival rate which has not improved for
many years [1–7].

In order to develop precision individualized therapy for
metastatic ostesosarcoma, we previously established a patient-
derived orthotopic xenogrraft (PDOX) of a lung-metastasis
from an osteosarcoma of a patient who failed CDDP therapy.
Temozolomide (TEM) and trabectedin (TRAB), but not
CDDP, significantly inhibited tumor volume compared to
untreated control in the PDOX model. This osteosarcoma
PDOX model identified potentially, highly-effective drugs for
this recalcitrant disease, while accurately maintaining the
CDDP resistance of the tumor in the patient [8].

We also previously reported that a subcutaneous
mouse model of this CDDP-resistant ostoeosarcoma was

sensitive to tumor-targeting Salmonella typhimurium A1-R
(S. typhimurium A1-R) [9].

We also previously showed recombinant methioninase
(rMETase) effectively reduced tumor growth of a PDOX
model of Ewing’s sarcoma compared to untreated control.
The methionine level both of plasma and supernatants
derived from sonicated tumors was lower in the rMETase
group [10].

Tumor-targeting S. typhimurium A1-R decoyed chemo-
resistant quiescent cancer cells in tumors to cycle from
G0/G1 to S/G2/M. When the cancer cells were subsequently
treated with rMETase, they were selectively trapped in S/G2.
We showed using sequential treatment of tumors in vivo
with S. typhimurium A1-R to decoy quiescent cancer cells to
cycle and rMETase to selectively trap the decoyed cancer cells
in S/G2 phase, that chemotherapy could eradicate tumors in
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mouse models of human stomach cancer. These results demon-
strated a new praradigm of “decoy, trap and shoot (kill)” che-
motherapy [11].

In the present study, we show that sequential treatment of
the chemotherapy-resistant osteosarcoma lung metastasis in a
PDOX mouse model with S. typhimurium A1-R, rMETase and
CDDP could eradicate the tumor.

Results and discussion

Sequential treatment of the chemotherapy-resistant
osteosarcoma lung metastasis PDOX mouse model with S.
typhimurium A1-R, rMETase and CDDP

All treatments but CDDP significantly inhibited tumor growth
compared to the untreated control on day 14 after initiation

Figure 1. Establishment of osteosarcoma lung metastaswas PDOX model. A) A skin incision was made on the left chest wall. B) Chest muscles were separated and an intercos-
tal incision in the chest wall was made, and the chest wall was opened. C) The left lung was taken up and tumor fragments were sewn into the lower lung with one suture. D)
The incision in the chest wall was closed with a 6-0 surgical suture. E) An intrathoracic puncture was made to withdraw the remaining air in the chest cavity.

Figure 2. Treatment schema.
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(Figures 1 and 2). Tumor volume at day 14 were the following:
control (G1): 201§91 mm3; CDDP (G2): 174§108 mm3; rME-
Tase (G3): 79§41 mm3; S. typhimurium A1-R (G4): 74§
18 mm3; S. typhimurium A1-R+ rMETase (G5) 44§15 mm3; S.
typhimurium A1-R+rMETase+CDDP (G6) 15§8 mm3. Con-
trol vs. CDDP (p = 0.586); control vs. rMETase (p = 0.002);
control vs. S. typhimurium A1-R (p = 0.002); control vs. S.
typhimurium A1-R+rMETase (p = 0.0004); control vs. S. typhi-
murium A1-R+rMETase+CDDP (p = 0.0001); CDDP vs. rME-
Tase (p = 0.045); CDDP vs. S. typhimurium A1-R (p = 0.033);
CDDP vs. S. typhimurium A1-R+rMETase (p = 0.011); CDDP
vs. S. typhimurium A1-R+rMETase+CDDP (p = 0.004); rME-
Tase vs. S. typhimurium A1-R (p = 0.719); rMETase vs. S. typhi-
murium A1-R+rMETase (p = 0.048); rMETase vs.
S. typhimurium A1-R+rMETase+CDDP (p = 0.003); S. typhi-
murium A1-R vs. S. typhimurium A1-R+rMETase (p = 0.003);
S. typhimurium A1-R vs. S. typhimurium A1-R+rMETase
+CDDP (p<0.0001); S. typhimurium A1-R+rMETase vs. S.
typhimurium A1-R+rMETase+CDDP (p = 0.0004) (Figures 3
and 4). There were no animal deaths in any group. The body
weight of treated mice was not significantly different in any
group (Figure 5).

Histology of the original tumor and implanted tumors

High power microscopy of the original patient tumor showed
neoplastic chondroid matrix occupied by anaplastic cells. The
tumor had hypercellular areas populated by anaplastic cells dis-
playing nuclear pleomorphism, coarse and hyperchromatic
chromatin and abundant mitotic figures (Figure 6A). High
power microscopy of the untreated PDOX tumor showed solid
and chondroblastic appearance similar to the patient original
tumor with hypercellular areas filled with tumor cells display-
ing nuclear pleomorphism and mitotic figures (Figure 6B). The
PDOX tumor treated with CDDP comprised viable cells with-
out apparent necrosis or inflammatory changes and similar

features compared to the untreated control (Figure 6C). The
rMETase-treated tumor and S. typhimurium A1-R-treated
tumor showed changes in sarcoma-cell shapes (Figure 6D and
6E). S. typhimurium A1-R combined with rMETase-treated
tumor showed reduced cellularity (Figure 6F). The tumor
treated with S. typhimurium A1-R combined with both rME-
Tase and CDDP showed reduced cellularity and tumor necrosis
(Figure 6G) [8].

The present study was made possible by the use of a PDOX
model which closely mimics the patient. Toward this goal, our
laboratory pioneered the patient-derived orthotopic xenograft
(PDOX) nude mouse model with the technique of surgical
orthotopic implantation (SOI), including breast [12], ovarian
[13], lung [14], cervical [15,16], colon [17–19], stomach [20],
pancreatic [21–25], melanoma [26–30], and sarcoma [31–40].

Figure 3. Quantitative in vivo antitumor efficacy of monotherapy of CDDP,
rMETase, S. typhimurium A1-R, S. typhimurium A1-R + rMETase and S. typhimurium
A1-R + rMETase + CDDP on the lung metastatic osteosarcoma PDOX. Please see
Figure 2 for treatment schema. Tumor volume was measured at day 14 at nec-
ropsy. N = 8 mice/group. �p<0.005, ��p<0.001

Figure 4. Representative photos of treated and untreated osteosarcoma lung-metastatic PDOX models.
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The PDOX model, developed by our laboratory over the past
30 years, has many advantages over subcutaneous-transplant
models which are growing ectopically under the skin [41]. The
PDOX model enables precise, individualized therapy, especially
for recalcitrant diseases, for example, metastatic melanoma
[26–30] or sarcoma [31–40] by matching the patient tumor to
an effective drug identified with the PDOX models.

S. typhimurium A1-R may be a general therapeutic for can-
cer. S. typhimurium A1-R is auxotrophic for Leu–Arg, which
prevents it from mounting a continuous infection in normal
tissues. S. typhimurium A1-R inhibited or eradicate primary
and metastatic tumors as monotherapy in nude-mouse models
of major cancers [42], including prostate [43,44], breast [45–
47], lung [48,49], pancreatic [23,50–53], ovarian [54,55], stom-
ach [56], cervical cancer [57], glioma [58,59], as well as sar-
coma [32,60], including osteosarcoma [61–63], all of which are
highly aggressive tumor models.

rMETase may also be a general therapeutic for cancer since
methionine dependence appears to be a general metabolic
defect in cancer [11,64–77].

Previously-developed concepts and strategies of highly-selec-
tive tumor targeting can take advantage of molecular targeting
of tumors, including tissue-selective therapy which focuses on
unique differences between normal and tumor tissues [78–83].

Materials and methods

Animal care

Athymic nu/nu nude mice (AntiCancer Inc., San Diego, CA),
4–6 weeks old, were used in this study. Animals were housed in
a barrier facility on a high efficiency particulate arrestance
(HEPA)-filtered rack under standard conditions of 12-hour

light/dark cycles. The animals were fed an autoclaved labora-
tory rodent diet. All animal studies were conducted with an
AntiCancer Institutional Animal Care and Use Committee
(IACUC)-protocol specifically approved for this study and in
accordance with the principles and procedures outlined in the
National Institute of Health Guide for the Care and Use of Ani-
mals under Assurance Number A3873-1. In order to minimize
any suffering of the animals, anesthesia and analgesics were
used for all surgical experiments. Animals were anesthetized by
subcutaneous injection of a 0.02 ml solution of 20 mg/kg keta-
mine, 15.2 mg/kg xylazine, and 0.48 mg/kg acepromazine male-
ate. The response of animals during surgery was monitored to
ensure adequate depth of anesthesia. The animals were
observed on a daily basis and humanely sacrificed by
CO2 inhalation when they met the following humane endpoint
criteria: severe tumor burden (more than 20 mm in diameter),
prostration, significant body weight loss, difficulty breathing,
rotational motion and body temperature drop [8].

Patient-derived tumor

The study was previously reviewed and approved by the UCLA
Institutional Review Board (IRB #10-001857) before the study
began. Written informed consent was previously obtained from
the patient as part of the above-mentioned UCLA Institutional
Review Board-approved protocol. A 16-year old patient with
localized left distal femoral high grade osteosarcoma previously
underwent CDDP based neoadjuvant chemotherapy and limb
salvage with distal femoral replacement. The tumor necrosis
rate of the primary tumor after cisplatin based chemotherapy
was 70%. One year later, the osteosarcoma relapsed with three
bilateral metachronous pulmonary metastases. The patient was

Figure 5. Effect of treatments on osteosarcoma lung metastasis PDOX on mouse body weight. Bar graph shows relative body weight in each treatment group at pre- and
post-treatment relative to initial body weight. There were no significant differences between any of the treatment groups or the untreated groups.
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treated with curative surgery at the Division of Surgical Oncol-
ogy, University of California, Los Angeles (UCLA). The patient
did not receive chemotherapy or radiotherapy prior to lung
surgery [8].

Surgical orthotopic implantation (SOI) for establishment of
PDOX model

The previously established osteosarcoma PDOX was further
established in the lung of nude mice in a previous study [8].
After anesthesia, mice are put in a position of right lateral decu-
bitus, with four limbs restrained. A 1.5 cm transverse incision
of the skin was made in the left chest wall. Chest muscles were

separated by sharp dissection and costal and intercostal
muscles were exposed. A 0.8-1.0 cm intercostal incision
between the sixth and seventh rib on the chest wall was made,
and the chest wall was opened. The left lung was taken up with
a forceps, and tumor fragments were sewn promptly into the
lower lung with one suture. The lung was then returned into
the chest cavity. The incision in the chest wall was closed by a
6-0 surgical suture (Ethilon, Ethicon, Inc., NJ, USA). The closed
condition of the chest walls examined immediately, and if a
leak existed, it was closed by additional sutures. After closing
the chest wall, an intrathoracic puncture was made by using a
3-ml syringe and 25G 1/2 needle to withdraw the remaining air
in the chest cavity. After the withdrawal of air, a completely

Figure 6. Effect of treatment on osteosarcoma lung metastasis PDOX tumor histology. A) Hematoxylin and eosin (H&E)-stained section of the original patient lung metas-
tasis. B) Untreated PDOX tumor. C) PDOX tumor treated with CDDP. D) PDOX tumor treated with rMETase. E) PDOX tumor treated with S. typhimurium A1-R. F) PDOX
tumor treated with S. typhimurium A1-R combined with rMETase and G) PDOX tumor treated with S. typhimurium A1-R combined with both rMETase and CDDP. White
scale bars: 80mm.
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inflated lung could be seen through the thin chest wall of the
mouse. Then the skin and chest muscle were closed with a 6-0
surgical suture in one layer (Figure 1) [14].

Preparation and administration of S. typhimurium A1-R

GFP-expressing S. typhimurium A1-R (AntiCancer Inc.) were
grown overnight on LB medium (Fisher Sci., Hanover Park, IL,
USA) and then diluted 1:10 in LB medium. Bacteria were har-
vested at late-log phase, washed with PBS, and then diluted in
PBS. For an intra-venous injection, a total of 5 £ 107 CFU
S. typhimurium A1-R in 100 ml PBS was administered to each
mouse [43–45].

rMETase production

The pAC-1 rMETase high expression clone was used for rME-
Tase production. The fermentation procedure for host E.coli
cells and the purification protocol for rMETase were the same
as previously described: rMETase was purified by 3 different
steps using columns of DEAE Sepharose FF and Sephacryl S-
200HR, and ActiClean Etox, which is designed for eliminating
endotoxin [77].

Treatment study design

The osteosaroma PDOX lung-metastasis models were random-
ized into the following groups 14 days after implantation (Fig-
ures 1 and 2): G1, control without treatment; G2, CDDP
(6 mg/kg, intraperitoneal (i.p.) injection, weekly, for 2 weeks);
G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks). G4,
S. typhimurium A1-R (5 £ 107 CFU/100 ml, i.v., weekly, for
2 weeks); G5, S. typhimurium A1-R (5 £ 107 CFU/100 ml, i.v.,
weekly, for 2 weeks) combined with rMETase (100 unit/mouse,
i.p., daily, for 2 weeks); G6, S. typhimurium A1-R (5 £ 107

CFU/100 ml, i.v., weekly, for 2 weeks) combined with rMETase
(100 unit/mouse, i.p., daily, for 2 weeks) and CDDP (6 mg/kg,
i.p. injection, weekly, for 2 weeks) (Figure 2). Body weight was
measured with a digital balance twice a week. 14 days after ini-
tiation of treatment, all mice were sacrificed and tumors in the
lung were assessed. Tumor volume was calculated by following
formula: Tumor volume (mm3) = length (mm) £ width (mm)
£ width (mm) £ 1/2. Data are presented as mean § SD.

Histological examination

Fresh tumor samples were fixed in 10% formalin and embed-
ded in paraffin before sectioning and staining. Tissue sections
(3 mm) were deparaffinized in xylene and rehydrated in an eth-
anol series. Hematoxylin and eosin (H&E) staining was
performed according to standard protocols. Histological exami-
nation was performed with a BHS system microscope. Images
were acquired with INFINITY ANALYZE software (Lumenera
Corporation, Ottawa, Canada) [8].
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