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Barriers that have separated different domains of physics and isolated engineers within the silos 

of their own expertise have been continually eroding in recent decades. Potential exotic devices 

of the future continue to be actualized through designs which are optimized by evoking multiple 

engineering disciplines. One such family of novel devices are electrically small multiferroic 

mechanical resonance-based antennas, which couple acoustic and electromagnetic 

phenomenon, allowing for sizes which are roughly five orders of magnitude smaller than 

conventional antennas. As such, the ability to understand these tiny and more efficient antennas 

through the development of a numerical algorithm benefits a wide array of industries by allowing 

engineers to optimize designs without undue prototyping. For example, such a numerical 

algorithm would allow smaller conformal antennas on the outer skin of aircraft to be designed 

faster, as well as small minimally invasive implantable biomedical antennas which may serve a 

myriad of functions to improve patient quality of life. 
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The first chapter of this work provides a history of antennas, highlighting limitations to motivate 

interest in pursuing mechanical resonance-based radiators. Background information on the 

operating principle of these antennas and a literature survey follows. The second and third 

chapters then formulate the numerical model by presenting the continuum form of all requisite 

equations in the former chapter and then discretizing these expressions in the latter chapter. The 

finite difference time domain method is leveraged for discretization and all relevant numerical 

artifacts such as boundary conditions, interface conditions, and excitations are derived. The 

algorithm is then validated versus analytical solutions in the fourth chapter of this work to 

champion the reliability of the proposed numerical framework. The dissertation capstone is the 

fifth chapter which utilizes the code to conduct simulations on novel devices, demonstrating a 

large boost in performance with respect to the state of the art.  

This dissertation also features guidelines for prospective modelers based on lessons learned from 

the author during the model formulation process. Device simulations from chapter 5 also provide 

engineers with useful counsel on future piezoelectric antenna array designs. This work presents 

a comprehensive procedural guide for the full-wave simulation of mechanical resonance-based 

antennas, effectively bridging a gap in the existing literature which deals almost exclusively in 

lower fidelity equivalent circuit models. 
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CHAPTER 1: BACKGROUND AND HISTORY 

In this chapter, a brief history of the multiple dynamic equations which mechanical 

resonance based (MRB) antennas utilize will be presented. Both multiferroic (MF) antennas and 

piezoelectric antennas (PEAs) fall under this umbrella. Then, the history of antennas will be 

discussed, with special emphasis on current issues affecting new designs within the aerospace 

and biomedical industries, amongst others. A statement on what ferroic materials are, and how 

they can be combined in composite structures to achieve coupling between electric and 

magnetic energy (for multiferroic antennas) will follow. Since piezoelectric antennas operate 

under similar principles, a brief discussion on these devices follows. Penultimately, a word on 

what multiferroic (MF) and piezoelectric antennas are, and the physical principals that undergird 

these novel devices will be provided. Lastly, an overview of the dissertation will conclude the 

chapter. 

1.1 Introduction 

Antennas are devices which are designed to radiate and receive electromagnetic signals 

and are the bedrock for successful performance within wireless communications systems. In 

recent decades the demand for a paradigm shift in antenna design has echoed through 

academia and industry alike as new applications in electrically lossy environments continue to 

emerge and data rate increases continue to be desirable. This is additionally spurred on by the 

benefit of integrating system components to reduce the noise floor, and the need to miniaturize 

antennas operating at low frequencies. The antennas of the future, therefore, need to be 

smaller, more efficient in lossy environments, conformal to ground planes while avoiding the 

platform effect, amongst other requirements. All which hint at a mechanical resonance based 

(MRB) antenna solution, the simulation of which requires the numerical integration of multiple 

dynamic systems including Newton’s laws, Maxwell’s equations, and potentially the Landau-

Lifshitz-Gilbert (LLG) equation in the case of multiferroic antennas.  
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In this chapter, these three dynamic equations will be introduced first. Then a history on 

antennas will be presented in order to paint the picture of the current challenges in antenna 

design, and to argue why multiferroic and piezoelectric antennas rise to these challenges. 

Ferroic orders, stress, strain, and linear elasticity will then be introduced. Ferromagnetism and 

ferroelectricity will then be discussed in order to understand what a multiferroic system is. 

Finally, mechanical resonance based (MRB) antennas will be discussed in detail. 

1.1.1 Multiple Dynamic Systems w/ History 

In 1687, Sir Isaac Newton’s pivotal work “Mathematical Principles of Natural Philosophy” is 

first published, revolutionizing mathematics and physics alike [1][2]. Among the key insights 

provided by the Principia, as it is often truncated, are the law of universal gravitation and a 

derived form of Johannes Kepler’s laws of planetary motion. So important is this work that 

Newton’s own annotated copy is kept in the Wren Library at Trinity College, Cambridge (see 

Figure 1-1) and a 1st edition copy recently sold for $3.7 million [3]. 

 

 

Figure 1-1: Sir Isaac Newton along with a picture of his own personal copy of his Principia 

 

The most important part of the Principia for this work are Newton’s laws of motion. More 

specifically, the primary concern is in the conservation of linear momentum which states that, in 

order to have any accelerations, there must be a net force on a body. As stated, this implies the 
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mass is constant which is a consistent assumption herein. This is the fundamental equation 

when considering mechanical wave fluctuations. For example, consider a wave propagating 

horizontally through a medium while generating vertical displacements as shown in Figure 1-2. 

 

 

Figure 1-2: Bulk shear wave propagation and the effects on an element originally on the 

centerline. 

 

Note that it has been assumed that vertical planes remain plane and do not change 

orientation during the motion (bulk shear wave [4]). The forces acting on the edges of a square 

element are drawn at different stages of the wave. Note that when the element is above the 

centerline, the net forces cause downward acceleration back toward the centerline. A similar 

behavior is observed when the element is below the centerline. In mechanics of materials terms, 

the acceleration is said to be caused by a “stress divergence”, where the stress (denoted 𝑇 in 

Figure 1-2) is a second order tensor describing the force over area acting on a body [4-6]. This 

will be explored more in section 1.1.3 and in chapter 2. 

In addition to linear momentum, angular momentum is similarly related to the net torques 

acting on a body. This leads to the symmetry of the stress tensor in mechanics, but interestingly 

also has impact in the realm of magnetics. This is due to an intrinsic property of electrons to act 

like tiny magnets [7-11], hinted at by the Stern-Gerlach experiment [7] and others, known as 

spin. This was first proposed in 1924 by Uhlenbeck and Goudsmit [8][9] in response to failure of 
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contemporary models of the electron which only considered angular momentum generated as 

the electron orbits the nucleus (orbital angular momentum). The angular momentum aspect is 

important because moving charges create magnetic fields, as first demonstrated by Hans 

Christian Oersted in 1819 when he discovered magnetic fields around a current carrying 

conductor [12][13], beginning the field of electromagnetism. Therefore, electron magnetic 

properties cannot be divorced from the angular momentum that creates them, the two are 

synonymous and the study of their interaction is known as micromagnetics. To facilitate 

understanding, consider the simplest case of a magnetic field being generated by charge 

motion, namely the current loop shown in Figure 1-3: 

 

 

Figure 1-3: Magnetic dipole moment generated by current loop. 

 

As the electron revolves with velocity 𝑣 a current 𝑖 is generated in the opposite direction. 

This generates an angular momentum 𝐿 and magnetic dipole moment 𝑚 simultaneously, which 

are anti-parallel to one another since the electron has a positive mass but a negative charge. 

Within a material, the spin angular momentum of the outer valence electrons couple to the 

orbital angular momentum. The orbital and spin motion then couple to the lattice, generating 

macroscopic magnetic moments within the material in what are known as magnetic domains 

[8][9]. On the macroscale, the parameter of interest is typically the dipole moment per unit 
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volume, which is known as the magnetization [14] and is on the same level of importance in 

mircromagnetics as displacement is in mechanics. A conservation of angular momentum 

equation exists for the electron as first proposed by Landau and Lifshitz in 1935 [15]. This was 

later modified by Gilbert in 1955 [16] to what is now known as the Landau-Lifshitz-Gilbert (LLG) 

equation which governs micromagnetics. Both forms are widely in use today and demonstrate 

that the motion of the magnetization is precessional in nature, like a spinning top, about an 

effective magnetic field excitation. For the sake of brevity, the details are left for Chapter 2. 

In 1861-1862, James Clerk Maxwell introduced an early form of his famous equations within 

a four-part series “On Physical Lines Force” [17-20] and later he compiled his work into “A 

Treatise of Electricity in Magnetism” in the form of twelve equations [21]. It was not until 1893 

that Oliver Heaviside condensed Maxwell’s equations down to the four that are widely used 

today [22-24]. Maxwell’s equations are the governing equations behind electromagnetic 

radiation [25], and are summarized in Figure 1-4: 

 

 

Figure 1-4: Maxwell’s Equations, (a) Gauss’s Law, (b) Gauss’s Law for Magnetism, (c) 

Ampere’s Law, (d) Faraday’s Law 

 

Maxwell’s equations are split into two sets, known as the divergence equations and the curl 

equations. Gauss’s Law (Figure 1-4a) states that the number of electric flux lines 𝐷 diverging 
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from a point in space is proportional to the charge density 𝜌𝑣 in that space. Therefore, If the net 

charge within a surface is zero the amount of flux lines going out equals the amount coming 

back in. Gauss’s law for magnetism (Figure 1-4b) states that the divergence of the magnetic flux 

lines 𝐵 from a point must be zero always. In other words, there is no such thing as a magnetic 

monopole. Wherever a north pole exists, there must be a south pole and vice versa. More 

interesting in terms of electromagnetic radiation are the curl equations. Ampere’s law (Figure 

1-4c) states that any form of electric current 𝐽 will induce swirling magnetic field lines 𝐻 whose 

direction may be determined by the right-hand rule, namely placing one’s right thumb in the 

direction of the current and wrapping the fingers in the direction of magnetic field. Conversely, 

Faraday’s law (Figure 1-4d) states that any form of magnetic current ℳ will induce swirling 

electric field lines 𝐸 whose direction may be determined by the left-hand rule, namely placing 

one’s left thumb in the direction of the current and wrapping the fingers in the direction of 

electric field. This back-and-forth induction of EM fields is what produces electromagnetic 

waves, and Maxwell was the first to postulate that light itself was this type of wave [21]. This set 

the stage for the explosion of antenna technology that started with Rudolph Hertz and continues 

to this day. 

1.1.2 Antenna History and Motivation 

Antennas fundamentally act as the components that propagate EM energy out into free 

space (transmitter) or accept EM energy from free space (receiver). By Ampere’s law of 

induction, a current through a wire will be surrounded by swirling field lines, but these will not 

detach from the current source and propagate. To accomplish such radiation, the current itself 

must change with time, in other words charges must be accelerated not simply moved at 

constant velocity. Accelerations, however, need not be generated by changing velocity 

magnitude, directional changes also produce this effect. Therefore, the current carrying wire 

may be curved, bent, terminated, etc. in order to produce an antenna [26]. 
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In 1886, Professor Heinrich Rudolph Hertz was the first to demonstrate wireless 

electromagnetic communication [26-28] when he was able to produce a spark within the gap of 

a metallic square loop antenna by first producing a spark in a nearby transmitting dipole 

antenna, as shown in Figure 1-5: 

 

 

Figure 1-5: Heinrich Hertz along with his 1886 complete radio system. 

 

This was performed within Professor Hertz’s laboratory; it was not until 15 years later that 

Guglielmo Marconi successfully transmitted long distance. In 1901, Marconi sent the first 

transatlantic signals from Poldhu in Cornwall, England, to St. John’s, Newfoundland [26-28]. His 

transmitting antenna was an array, rather than a single element, composed of 50 vertical wires 

arranged in a fan-like configuration, while his receiving antenna was a 200m wire pulled and 

supported by a kite. This great success may have been the dawn of the antenna era, but it was 

met with some skepticism at first from those that did not believe that radio waves could bend to 

match the curvature of the Earth [28]. Even amongst believers there was controversy, as the 

Cable Company served Marconi with a writ to cease and desist as transatlantic communications 
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was within their exclusive domain. In the end, however, the truth and positive impact of what 

happened that day in 1901 could not be denied and wire related antennas would go on to 

dominate the state of the art for decades to come. 

World War II saw the rise of novel antenna designs which took advantage of aperture fields 

(waveguide apertures, horns) as well as bouncing signals off reflective surfaces (reflectors) and 

other methods. This was not only driven by the war itself, but also from the fact that reliable 

microwave sources became readily available in the 1940s [27][29]. Shortly thereafter, the 

microstrip patch antenna was proposed in the 1950s [30-32] but not fully investigated until the 

1970s. This type of antenna is comprised of a metallic patch printed onto an electrically thin 

grounded dielectric material which when excited produces radiating aperture fields along two 

slots [26][29][30] as shown in Figure 1-6. This occurs because the device size between the two 

radiating slots is roughly a half wavelength. Therefore, the surface normals (�̂�) and electric 

fields (𝐸) on the slots are both opposite in direction with respect to one another, yielding two 

effective magnetic currents (ℳ) with the same sense (ℳ = 𝐸 × �̂�) [25][30]. 

 

 

Figure 1-6: Microstrip Patch Antenna 

 

The patch antenna is given special attention here due to its wide use in both military and 

civil applications including cellphones, biomedical systems, and radar. This is because patch 

antennas may be readily integrated into arrays conformal to surfaces, at low-weight and low-



 
 

9 

 

cost [30]. As such, the fundamental question for any novel antenna designs is this: “how is this 

antenna any better than just printing a piece of copper onto a board?”. This question has proven 

surprisingly difficult to overcome for many exotic devices currently under investigation. In order 

formulate an answer it is important to remember that patch antennas struggle with the prevalent 

miniaturization issues when made sufficiently electrical small (< 𝜆0/50) with respect to 𝜆0, the 

free space EM wavelength. These issues are reduced radiation resistance, large stored vs. 

radiated energy ratios (Q-factors), and reduced radiation efficiency as ohmic losses become 

more pronounced [33-37]. This is further exacerbated if the electrically small antenna is 

radiating near a conductive surface due to the platform effect [38], or if the antenna is operating 

within lossy electrically conductive environments such as through the water [39], ground [40], or 

the human body [41]. Platform effect reduction augments the performance of conformal 

antennas [30] which are widely used in the aerospace industry [42-45], while improvements in 

water communications would benefit submarine applications [46] and through body 

communication aids the implantable device industry [47-50], just to name a few beneficiaries. In 

the remainder of this introductory section, the ohmic losses, platform effect, and lossy 

environment issues will be discussed in-depth along with potential solutions. It is then shown 

that all these potential solutions point to multiferroic antennas, which will be examined in section 

1.2 along with piezoelectric antennas which partially solve these issues. 

In 1827, Georg Ohm publishes his work on electrical resistance [51] which gave rise to 

Ohm’s law, a now seemingly obvious equation which states that electrical energy is lost as 

current passes through a wire [52]. This energy loss increases drastically as wire diameter is 

decreased, the same way that car speeds inevitably drop when there are less lanes on the 

highway [53], or the way fluid velocity drops just upstream of an orifice [54]. As such, drastic 

miniaturization in wired devices, by five orders of magnitude for example, would be akin to 

shutting all but one lane down in a multi-highway network, or trying to suck a milkshake out of a 
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coffee straw. Clearly, for such shrinkage of device dimensions to occur, wire-based methods, 

which dominated the antenna space for over 40 years, had to be replaced by some other 

methodology for many applications. To this end, Mechanical resonance based (MRB) antennas 

are electrically driven by a voltage across electrodes, rather than current through wires [55], 

eliminating this issue as will be discussed further in section 1.2. Although this is substantially 

beneficial, ohmic losses are mentioned first since this advantage is one that mechanical 

antennas share with other antennas (e.g., patch antennas). These antennas suffer from other 

miniaturization issues that MRB antennas (multiferroic and piezoelectric) can utterly avoid 

however, which will be discussed in section 1.2.2. 

The platform effect is caused when the antenna element operates using electrical currents 

which are tangent to a nearby conducting surface. This is caused by the near cancellation of the 

radiation due to the anti-parallel image currents that are generated by the presence of the 

conductive surface when in close proximity [25][26][29]. Additionally, a large amount of energy 

is stored between the current and the conducting surface which increases the Q-factor [38]. If 

the antenna were magnetic current driven, however, the image current would be parallel 

instead, and the near cancellation effect/energy storing issue would be eliminated [25][26][29]. 

Fortunately, multiferroic antennas produce EM radiation through magnetization fluctuations and 

are therefore magnetic current antennas capable of operating conformal to a ground plane. This 

coupled with the relaxed miniaturization issues discussed in the previous paragraph make them 

particularly effective in the Aerospace industry as the conformal antennas currently utilized 

require a cavity just below the aircraft outer mold line (surface) [56]. The issues created by 

these cavities are reduced internal real estate, increased weight, and lightning strike 

complications just to name a few. A multiferroic antenna acting in a receive mode can respond 

to incident tangential magnetic fields which are maximal at the ground plane, and thus not 

require subsurface cavities. Although piezoelectric antennas are not magnetic current driven 
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devices and therefore will still experience the platform effect, aerospace applications exist for 

these devices as well. Trailing wire technology, currently utilized for low frequency transmission, 

can be optimized using a mechanically resonating piezoelectric as an impedance matching 

network for example. 

Since lossy environments are characterized by free electric charges within the media, 

magnetic current driven multiferroic antennas also benefit since their reactive near field region is 

dominated by magnetic fields rather than electric fields. As such, more efficiency is realized in 

the reactive region of the antenna since the magnetic fields do not lose energy moving charges 

around the same way that electric fields do. It is not surprising then that magnetic current 

antennas outperform their electric equivalents within lossy media [57]. The importance of 

developing such magnetic current antennas cannot be underemphasized in the biomedical 

implantable device industry. For example, the current state of the art in the implantable 

pacemaker (PM) space is the leadless PM. Unfortunately, these devices are limited to single 

chamber pacing support and therefore only suitable for a minority of patients [48]. However, 

leadless pacemaker networks can alleviate these issues by allowing multi-chamber support, and 

magnetic current multiferroic antennas can act as the voice between these devices. In this 

biomedical area, piezoelectric antennas cannot provide value unfortunately. 

Mechanical resonance based (MRB) antennas clearly fill a need in today’s antenna design 

space. To fully understand their function, ferroic orders are introduced along with linear elasticity 

in the next section. Ferromagnetism and ferroelectricity are discussed next in order to 

subsequently discuss multiferroic composite devices. A discussion on MRB antennas will follow 

in section 1.2. 

1.1.3 Ferroic Orders and Linear Elasticity 

Ferroic materials spontaneously exhibit an order parameter under certain conditions 

(typically certain temperature ranges). Thus far the magnetic order parameter, magnetization, 
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has been introduced and the mechanical order parameter, strain, has been hinted at. In section 

1.1.4, the electric order parameter of polarization will be discussed. Ferromagnetic materials will 

therefore spontaneously contain a magnetization within the crystal structure below a certain 

temperature and ferroelectric materials will similarly contain a spontaneous polarization below a 

certain temperature. This temperature is known as the Curie temperature (or point), named after 

Pierre Curie [58] whose contributions will be discussed further in the sections that follow. What 

happens at the Curie point is that the material goes through a phase transition which alters the 

crystal structure by an amount large enough to break a certain type of symmetry. For example, 

a cubic structure may become elongated in one direction (tetragonal) below the Curie point, 

breaking cubic symmetry as it becomes ferroelectric. The way in which the different ferroic 

orders break symmetry will be discussed in subsequent sections, but first stress, strain, 

ferroelasticity, and linear elasticity will be discussed. 

The concept of stress is introduced in order to relate the forces acting on surfaces to the 

elastic reactions within the material volume (from springy atomic bonds), which is performed 

using Cauchy’s stress theorem [4-6]. This is as opposed to body forces, which already act 

everywhere within the volume and therefore need no such description in terms of stress. 

Gravitational forces are the most notable example, which is convenient, since if gravity only 

acted on the surfaces of our body, we would have strange droopy skin. The stress is the force 

acting over an area and is typically depicted by examining a differential cube as shown in Figure 

1-7. Proper description of stress therefore requires knowledge of the direction of the force, and 

the surface normal on which the force acts. When the force and surface normal are orthogonal, 

shear stresses are produced. 
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Figure 1-7: Stresses on an element with the normal and shear components marked. 

 

Note that the stress tensor is symmetric and has six unique components, three normal and 

three shear. Strain is a measure of how much a differential element changes geometrically as 

stresses act on it. This language is intentionally vague as strain neither necessitates changes in 

shape, nor changes in volume. It is therefore convenient to classify strain in terms of normal 

strain (elongations/contractions Figure 1-8a) and shear strain (changes in angles between two 

edges of the element Figure 1-8b). It is also helpful to talk about strain in terms of its hydrostatic 

components (those that retain the shape but change the volume Figure 1-8c), and its deviatoric 

components (those that change the shape of the element but retain the volume Figure 1-8d). 

Note in Figure 1-8 that whenever a change in shape occurs, there will inevitably be an angle 

change (shear) somewhere within the element (even if only at a rotated axis). In fact, there will 

be some degree of shear in all but the “principal axes” which are the eigenvectors of the stress 

tensor. Herein, the normal and shear stress/strain description is utilized. 
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Figure 1-8: Strain and its descriptions, (a) Normal strain, (b) Shear strain, (c) Hydrostatic 

strain, (d) Deviatoric strain. 

 

Ferroelastic materials are inherently non-linear, having a hysteretic stress/strain curve, and 

exhibit a spontaneous strain due to the presence of at least two asymmetric and stable 

“orientation states” [59-62]. A crystal in one orientation state can then be switched to another 

orientation state through mechanical stress. An example of a pure ferroelastic is lead phosphate 

whose ferroelasticity comes from an interesting interplay that occurs between a lead atom, and 

six oxygen atoms within its unit cell as shown in Figure 1-9: 

 

 

Figure 1-9: Ferroelastic mechanism within lead phosphate. 

 

The lead atom bonds more closely with two of the oxygen atoms at the expense of the other 

four yielding three possible and stable configurations. A specimen will then be comprised of a 
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heterogenous set of these three orientation states. During mechanical loading, the Pb atom can 

be forced toward another orientation in a process called “ferroelastic switching”, and this new 

state may be retained even after the loading is removed, yielding a “plastic strain” and hysteretic 

behavior. This ferroelastic process is surprisingly similar to what is seen in ferroelectric and 

ferromagnetic materials. In fact, the magnetic equivalent to plastic strain is “remnant 

magnetization” which forms the basis for the memory devices widely in use today. 

Although a vibrant field of research, pure ferroelasticity is not of interest in the analysis of 

mechanical resonance based (MRB) antennas, and ferroelasticity is only useful where it 

intrinsically couples to another ferroic order. What concerns multiferroics researchers is linear 

elasticity, in which the stress and strain are related linearly through the use of the 

“stiffness/compliance tensor”. This will be discussed in more detail in Chapter 2. 

1.1.4 Ferroelectricity 

An electric dipole moment is created whenever two opposite charges are separated by a 

distance 𝑙 and is equal to the charge multiplied by the separation length [63][64], directed from 

the negative charge to the positive charge as shown in Figure 1-10a. 

 

 

Figure 1-10: Electric dipole moment per volume (polarization 𝑷), (a) Simplest dipole, (b) 

Lead Zirconate Titanate (PZT) with asymmetry 𝜹 and polarization 𝑷 marked. 
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When asymmetries exist within the unit cell, these dipole moments can be macroscopically 

present within a material, where it is more convenient to reference the dipole moment per unit 

volume known as the “polarization”. Lead Zirconate Titanate (PZT) is a famous case as shown 

in Figure 1-10b where the asymmetry 𝛿 and polarization 𝑃 are clearly marked [65]. Additionally, 

in the direction of asymmetry/ polarization, the lattice is distorted (tetragonal), destroying the 3-

fold cubic symmetry, and opening the door for mechanically driven electric field fluctuations 

within the material. For example, note in Figure 1-10b that if compression was applied to the 

long axis the asymmetry would naturally decrease along with the polarization [63]. Alternatively, 

if an elongation occurred along the long axis the asymmetry/polarization would increase. This is 

known as the direct piezoelectric effect, which is linear, and was first discovered by Pierre and 

Paul-Jacques Curie in 1880 [66], though it was first thermodynamically postulated by Lord 

Kelvin in the early 19th century [63]. The converse effect where electric fields drive mechanical 

distortions was deduced mathematically by Gabriel Lippman in 1881, and experimentally 

demonstrated by the Curie brothers later that same year [63]. 

All nonlinear ferroelectric materials exhibit linear piezoelectricity when subjected to small 

excitations, but not all piezoelectric materials are ferroelectric. To see a fundamentally 

ferroelectric phenomenon, start by noting from Figure 1-10b that the direction of asymmetry is 

not arbitrary but rather pointed normal to the faces of the unit cell, known as the easy directions, 

and as such there are six for PZT. Applying an external electric field toward an easy axis that is 

not parallel to the polarization can therefore lead to the polarization becoming unstable thus 

switching to the new easy axis, and this state will remain even after the excitation has been 

removed. This “ferroelectric switching” is a nonlinear behavior akin to pushing a ball in a valley 

(energy well) over a hill into another valley [67][68]. Figure 1-11 demonstrates switching from an 

electric field applied orthogonal to the original polarization direction (90° switching), though 
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antiparallel ferroelectric switching can also occur (180° switching), as well as mechanically 

induced “ferroelastic switching”. 

 

 

Figure 1-11: Switching of polarization direction, see also [Lynch] for accurate picture of 

asymmetries within PZT, (a) small electric fields producing a distortion of the unit cell. Removal 

of the excitation at this point will return the cell to the original state, (b) large electric field has 

now caused the polarization to switch to a new easy axis, (c) Removal of the large excitation 

does not change the polarization direction but does decrease the polarization magnitude. 

 

If an electric field is applied to a bulk material with randomly oriented polarizations, a 

macroscopic order can be achieved through ferroelectric switching and the material is 

subsequently said to be “poled” in the direction of the DC field. From Figure 1-11a it is clear that 

electric fields can also produce shear strain (𝛾) in the material in addition to the normal strain 

(elongation/compression) previously discussed. Herein the focus will be on the linear converse 

piezoelectric effect induced by high frequency excitations. 

1.1.5 Ferromagnetism 

In a ferromagnetic material, exchange interactions occur between adjacent dipole moments 

which favor parallel alignment [9], thus creating macroscopic magnetizations as shown in Figure 

1-12 for iron. 
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Figure 1-12: Ferromagnetism, (a) alignment of magnetic dipoles within Iron below the Curie 

temperature, (b) Mirror symmetry failing to represent the reality of ferromagnetism within Iron, 

(c) Mirror plane with time-reversal symmetry properly representing ferromagnetism of Iron. 

 

Above the Curie temperature, the iron atoms still exhibit a dipole moment, but the thermal 

energy is too high for any order to be seen as the dipoles oscillate about without aligning. Based 

on the discussion on ferroelectricity in section 1.1.4, it may be expected that the cubic cell of 

iron is distorted by the presence of the spontaneous magnetization, but the three edges of the 

unit cell (lattice parameters) of iron at room temperature agree to five significant figures, though 

it is expected that some distortion does indeed take place. This applies to more than just iron, 

the d-orbital valence electrons within transition metals generally resist distortions typical of 

ferroelectrics, making it difficult for any single-phase material to exhibit both ferroic orders 

simultaneously [69]. It may therefore be hard to understand exactly how ferromagnetic iron 

breaks symmetry, but this may be understood by observing the two mirror planes shown in 

Figure 1-12. Examining one of the mirror planes in Figure 1-12b reveals that the dipole moment 

of the adjacent iron atoms is invertedly reversed during the mirror operation. If this is not clear, 
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one may stand in front of a mirror, put their right thumb up and note that the fingers on their 

mirror image are wrapping around as if left-handed. Ferromagnetic iron, therefore, breaks mirror 

symmetry, even if otherwise perfectly cubic in shape, when cooled below the Curie temperature. 

To account for this, after the mirror operation is performed, a “time-reversal” is also performed, 

as shown in Figure 1-14c, and thus ferromagnetic iron is said to have “time-reversal symmetry”. 

Additionally, a ferromagnetic specimen will generally not be composed of a homogenous 

magnetization vector but rather be split up into a heterogenous set of “magnetic domains”. This 

occurs because magnetizations oriented normal to material boundaries increase the number of 

magnetic flux lines leaving the material which will then do work on any nearby charges. As such 

having a single magnetic domain is a high energy state, which is counteracted by a 

“demagnetization field” (demag for short), also known as shape anisotropy (since material 

surface normals determine the directionality of this effect). Demag is therefore what drives 

magnetic domain formation as shown in Figure 1-13 [8][9]: 

 

 

Figure 1-13: Single vs. Multi-Domain energy within a ferromagnetic material. 

 

Still, there are such materials which extend large magnetic flux into free space known as 

permanent magnets. To understand why note that the magnetizations within a material will not 

be arbitrarily oriented but rather favor certain lattice directions known as “easy-axes” due to 

what is known as “magnetocrystalline anisotropy” or MCA for short. “Hard” magnetic materials 
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contain large MCA which counteracts demag, and as a result are capable of maintaining large 

“surface poles” (surface magnetizations normal to the surface). MCA arises since the valence 

electron spin couples to the orbital momentum and both couple to the lattice of a material 

resulting in easy and hard directions. The lattice itself is slightly distorted from this, opening the 

possibility of magnetic field driven elongations to occur known as magnetostriction. This is 

represented in Figure 1-14. 

 

 

Figure 1-14: Magnetostriction, (a) pictorial representation, (b) typical strain (∆𝑳) vs. magnetic 

field (H) plot with demonstration of linear piezomagnetism. 

 

Note in Figure 1-14a that the elongation effect will occur in the same manner if the magnetic 

field excitation 𝐻 were reversed yielding a quadratic-like response as shown in Figure 1-14b. 

Also, if a bias field is maintained and small perturbations are applied to the system, a linear 

response will result. This is known as linear “piezomagnetism” and is of particular importance in 

this work. James Prescott Joule first discovered magnetostriction in 1847 when he found that an 

iron bar would change length when magnetized [70][71]. The inverse also holds as shown by 

Villari in 1864 [72], when he discovered that stress induced dimensional changes produced 

magnetization changes in ferromagnetic materials. Magnetostriction is not limited to normal 
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stresses and strains, as Gustav Wiedmann discovered in 1858 that torsion was produced in a 

rod when electric current flowed through it [63]. Recall that, by Ampere’s law, this means that 

were circumferential magnetic fields, namely along the curvilinear plane of shear stress. The 

inverse was discovered the same year by Carlo Matteucci and is known as the Matteucci effect 

[73]. 

1.1.6 Multiferroics 

A multiferroic material is one that exhibits more than one ferroic order simultaneously [74] 

and is a field of research growing in popularity since the turn of the century [75-84]. The term is 

somewhat interchangeable with “magnetoelectric” material since the goal of researchers 

investigating multiferroics is to combine the ferromagnetic and ferroelectric orders together such 

that magnetic fields drive polarization changes (direct magnetoelectric effect DME), or, more 

importantly, electric fields drive magnetization changes (converse magnetoelectric effect CME). 

This cross-coupling of the ferroelectric and ferromagnetic orders has proven difficult within 

single phase materials since the d-shell electrons necessary for ferromagnetism reduce the 

tendency for the symmetry breaking lattice distortion necessary for ferroelectricity [69]. 

Additionally, the CME necessary for magnetic current antennas is more difficult to achieve than 

the DME due to realigning magnetic domains which inhibit large changes in observable 

magnetic fields. However, as shown in the previous two sections, combining ferromagnetics 

with ferroelastics (magnetostriction) and ferroelectrics with ferroelastics (piezoelectricity) is 

relatively simple. This opens the door for the ferroelastic order to be used as a telephone to 

communicate between electric and magnetic order parameters in a novel way using “multiferroic 

composites”. In this section, the “multiferroic tetrahedron” (Heckmann diagram) will be 

presented first to facilitate understanding. Then, the history of multiferroics will be discussed. 

Finally, multiferroic composites will be presented. 

A summary of the last three sections is represented in Figure 1-15: 
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Figure 1-15: Multiferroic triangle containing ferroelasticity, ferroelectricity, and 

ferromagnetism along with the name of each multiferroic effect. 

 

All processes that cross from one ferroic order to another have been labeled in Figure 1-15. 

Note that, strictly speaking, magnetostriction and piezoelectricity are multiferroic in nature but 

usually the term multiferroic is used to describe the direct and converse magnetoelectric effects. 

For this reason, technically piezoelectric antennas are also multiferroic antennas and a more 

accurate name for the magnetic current antennas discussed thus far is magnetoelectric 

antenna. Herein, multiferroic will be used interchangeably with magnetoelectric and 

piezoelectric driven devices will be referred to as such without evoking the term “multiferroic”. 

This is the popular nomenclature within the multiferroic research community. Diagrams like the 

one shown in Figure 1-15 have been named "Heckmann diagrams" [85-87], which were 

modified by Nye in 1957 [88], and are sometimes depicted with an additional axis for 

temperature (𝑇) with entropy (𝑆) as the order parameter [86]. Therein lies some unfortunate 

confusion, as Figure 1-15 depicts the stress and strain using the same letters respectively, as 
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opposed to the much more widely used sigma (𝜎) for stress, and epsilon (𝜀) for strain that 

mechanical engineers use. This is because electrical engineers use those Greek letters for 

conductivity and permittivity respectively, highlighting an interesting human element of multi-

domain physics, namely that there will be some overlap in symbols. Since mechanical 

resonance based (MRB) antenna analysis utilizes the isothermal assumption, the use of 𝑇 for 

stress and 𝑆 for strain, for which there is some precedent [4], will only be a minor inconvenience 

in Chapter 2 when the laws of thermodynamics are evoked. 

The first three milestones of multiferroics have already been discussed herein. These are 1) 

Oersted’s discovery that electric currents induce magnetic fields in 1820 [12][13], 2) Joule’s 

discovery of magnetostriction in 1842 [70][71], and 3) The discovery of the piezoelectric effect 

by the Curie brothers in 1880 [63][66]. In 1894, the Curie brothers are the first to investigate the 

magnetoelectric effect [89], though they were completely unsuccessful due to some incorrect 

crystal symmetry assumptions. In 1926, Debye coins the term “magnetoelectric” [90], predating 

the term “multiferroic”, coined by Schmidt in 1994 [91], by almost 70 years. In 1958, Landau and 

Lifshitz, the same men who first proposed the governing equation of micromagnetics [15], 

provide a theoretical basis for the magnetoelectric effect [92]. The search for a commercially 

viable magnetoelectric then took decades before bearing fruit in 2002, when Ryu et al 

experimentally advertised giant multiferroic coupling [93] of magnetic to electrical energy (DME). 

In order to accomplish this, a single-phase material was not used, but rather a heterogenous 

laminated composite as first proposed by Van Suchtelen in 1972 [94]. This has led to an influx 

of interest in generating the magnetoelectric effect through the use of composite structures. 

Multiferroic composites tackle the problem of the lack of commercially viable 

magnetoelectric materials by mechanically bonding ferroelectric and ferromagnetic material 

within a laminate [95-98] as shown in Figure 1-16: 
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Figure 1-16: Simplest multiferroic composite. 

 

This is the simplest design there is, but all multiferroic composites include a piezoelectric 

material sandwiched between two electrodes, one of which is grounded, somewhere within the 

layout. A voltage is applied to these electrodes, causing an electric field to pass through the 

piezoelectric and generating a mechanical deformation through the converse piezoelectric 

effect. This deformation is not apparent to the entire system simultaneously, therefore 

mechanical waves must communicate this distortion to the rest of the device. Eventually these 

mechanical waves impinge upon the ferromagnetic material causing deformation. This 

deformation induces magnetization changes, through magnetostriction, that have their origin in 

the voltage applied at the electrodes (electric field in the piezoelectric), thus achieving the CME. 

In the next section, the use of multiferroic composites in the design of antennas will be 

discussed. 

1.2 Mechanical Resonance Based (MRB) Antennas 

Thus far, Mechanical Resonance Based (MRB) antennas have been discussed indirectly 

and this section will focus on these devices. First, it is prudent to review all the terms so far. 

Herein, an MRB antenna includes both multiferroic antennas and piezoelectric antennas. 

Multiferroic antennas are those where the converse magnetoelectric effect is utilized to produce 

magnetic current. Piezoelectric antennas produce polarization current utilizing mechanical 

stresses and are therefore technically also multiferroic but will not be referred to as such herein. 

There is a more general class of devices known as mechanical antennas which encompass 

both MRB antennas and rotating dipole devices. These latter antennas will be discussed in 
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Section 1.2.4. Herein, whenever the term “mechanical antenna” is used, MRB antennas are 

being referred to unless otherwise stated. 

1.2.1 History 

The first instance of mechanically driven EM waves is quite alien to the discussion so far as 

the outgoing wave was a single pulse generated not by a multiferroic composite, but rather by a 

rapid change in EM boundary conditions generated by an implosion [99][100]. The setup was to 

generate magnetic flux within a conducting cylinder with an explosive charge fashioned to the 

outer circumference. Upon explosion the radius of the shell would rapidly decrease, producing 

an increase in magnetic flux, and generating a pulse. This dates to Joseph Fowler in 1944 [100], 

though the first work to be openly published on the subject was not until 1952. 

The next advancement towards mechanical antennas was performed by Rowen in 1961 

[101] where he investigated the potential for EM radiation from a spherical specimen of Yttrium 

Iron Garnet (YIG), which is a magnetostrictive. The spherical geometry was utilized to avoid the 

complex nature of shape anisotropy (demag), as the research focused on the anisotropy 

introduced by static strains (magnetoelastic anisotropy [14]). As such, the potential for 

microwave generation was merely proposed but not demonstrated. Also, since the strains were 

applied directly without the use of a piezoelectric, this is not a magnetoelectric antenna but 

represents a significant step in the right direction. 

Analysis on EM radiation from standalone piezoelectric antennas (PEAs) in the absence of a 

magnetostrictive were subsequently performed by multiple authors spanning three decades. 

Mindlin studied the problem in 1973 [102] but claims that Tiersten was the first to conduct the 

study in 1970 [103], though the original paper appears to be lost. This early analysis was on an 

infinite quartz plate, having a shear stress excitation applied to the top and bottom, with the goal 

of attaining an equation for the radiated power. The full Maxwell’s equations were used 

everywhere, including inside of the piezoelectric quartz plate. In 1989, Lee continued this study 
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except with the electrostatic assumption applied within the piezo and full Maxwell’s in the 

surrounding vacuum [104]. Interestingly, the analytical radiated power predicted with and 

without this assumption only exhibited a percent difference of 10−10. This allows for fully 

coupled numerical models of piezoelectric antennas (PEAs) to be compared with much simpler 

models utilizing the electrostatic assumption for the purposes of verification testing. Lee also 

considered the case of electric excitations applied tangential to the quartz plate, which Mindlin 

had previously ignored. Lee went on to generalize his work in a 1990 paper [105]. 

The first instance of a multiferroic composite being proposed for antenna applications was in 

2008 when Petrov et al [106] argued that the simultaneous high permittivity and permeability of 

these laminates would allow for miniaturization. Later that same year, a group out of 

Northeastern University led by Nian Sun experimented with augmenting patch antenna 

performance through the addition of thin ferrite films thus constituting a multiferroic composite 

[107]. Electric field was used to alter the magnetic properties resulting in a frequency 

reconfigurable antenna. 

In 2009, a group out of the Boeing corporation with Robert J. Miller at the helm filed a patent 

for a multiferroic antenna [56]. The patent widely documents many of the complications that 

state of the art antennas exhibit in aerospace applications, some of which have been discussed 

in section 1.1.2. The work was mainly concerned with the operation of the multiferroic antenna 

acting as a receiver immune to the platform effect. The goal was that incident magnetic fields 

would excite strains in a magnetostrictive which would then excite voltages across nearby 

bonded piezoelectric materials. 

In 2011, the Translational Applications of Nanoscale Multiferroic Systems (TANMS) 

Engineering Research Center (ERC) begins work on multiferroic antennas. This ERC is led by 

Dr. Greg Carman and comprised of researchers from multiple universities, including Nian Sun 

who has already been mentioned in this section. Some early work was performed by Scott 
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Keller [108]. In 2014, Zhi (Jackie) Yao continues this research as part of the Digital Microwave 

Laboratory (DML) under Ethan Wang [109]. She presents a 1D finite difference time-domain 

(FDTD) model for a Bulk Acoustic Wave (BAW) multiferroic antenna [110] as shown in Figure 

1-17. 

 

 

Figure 1-17: BAW resonance-based antenna, from [110]. 

 

The operation of such BAW MF antennas will be explored in the next section and this 

concept has been adopted by subsequent researchers [111-113]. Yao et al. then expanded on 

this topic in a journal publication in 2015 [114] in which she calculated the theoretical lower limit 

of the Q-factor for an infinite plate MF antenna much like Chu [33] for general electrically small 

antennas. A major assumption used within this model is that only one displacement is relevant 

(uniaxial strain approximation). Another assumption is that the magnetostrictive material is acted 

on by a sufficiently large bias field such that only a single magnetic domain exists. In addition, it 

is assumed that this domain is only acted on by small perturbations, which allows for a 

linearization of the LLG equation. The strategy is then to integrate this linearized equation into 

the magnetic constitutive relation to write magnetic field update equations. The magnetization in 

not updated directly. The code implicitly updates the electric field using a tridiagonal system of 

equations. 
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That same year of 2015, Scott Keller et al. along with the Northrop Grumman Corporation 

submit a patent for a Surface Acoustic Wave (SAW) Multiferroic antenna [115] as shown in 

Figure 1-18: 

 

 

Figure 1-18: SAW multiferroic antenna from US patent [115] 

 

This configuration is not 1D like the proposed BAW device of Figure 1-17 since the strain is 

relevant in more than one direction. This SAW MF antenna device utilizes intertwined “fingers” 

of piezoelectric material to convert EM energy into surface waves which then induce 

measurable voltage changes in downstream electrodes spaced a quarter acoustic wavelength 

apart. 

In January 2017, the Defense Advanced Research Projects Agency (DARPA) holds a 

“Proposer’s Day” for the A MEchanically Based Antenna (AMEBA) project [116]. The goal is to 

develop antennas that operate at very low frequency (VLF 3-30kHz) to communicate across the 

globe by utilizing the Earth and the ionosphere as a waveguide at <6dB/1000km attenuation, as 

well as antennas that operate at ultra-low frequency (ULF 0.3-3kHz) in order to penetrate water, 

soil, and rock, allowing underwater and underground communication [117]. Currently, the US 

Navy utilizes the Naval Radio Station Cutler in Cutler, Maine in order to transmit at 24kHz 
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(12.5km wavelength) to good effect, but the station antenna array is about 1.2 miles in diameter 

and uses 1.8 megawatts of power [118-121]. DARPA therefore desires VLF and ULF 

transmitters with reduced size and power consumption for future high penetrating portable 

communications. This highlights a key benefit of multiferroic transmitters, the devices can either 

operate at microwave frequencies with dimensions at the micrometer level (e.g., for use in 

implantable devices), or be made at the tens of centimeters level to operate at VLF (e.g., 

AMEBA Earth-ionosphere communications). 

The same year of 2017, Domann performs on eigenmode analysis to compare multiferroic 

and conventional antennas [122]. Using a Green’s function approach, an equivalent 

piezoelectric and piezomagnetic current is utilized based on a prescribed strain rate. These are 

used to determine the electric and magnetic fields surrounding the device and the radiated 

power. Due to the small device size relative to the EM wavelength (< 𝜆0/50), a comparison to 

the infinitesimal dipole is appropriate and conducted. It was concluded that multiferroic antennas 

outperform conventional antennas at this small size. 

Later in 2017, Nan et al [111], under Nian Sun, experimentally test both a nanoplate 

resonator (NPR) and thin-film bulk acoustic wave resonator (FBAR) multiferroic antenna in 

response to the lack of measurements of magnetoelectric coupling at very high frequency (VHF 

30-300MHz) and ultra-high frequency (UHF 0.3-3GHz). This task had yet been performed due 

to low-signal levels from the MF antenna and difficulties in isolating that signal from contributing 

elements other than the magnetostrictive. The desired strong coupling was observed which 

impressed Zaeimbashi et al [123], as in 2019 these researchers, working in the biomedical 

implant field, proposed to use a planar array of these antennas, implanted at the cerebrospinal 

fluid-gray matter interface (CSF-GM) in order to establish communications with a transceiver 

located just outside the scalp. 
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Also in 2017, Kim et al investigated a multiferroic receiver that is similar to a strain rosette 

[112]. Within the device, five BAW resonators, like those shown in Figure 1-17, were setup at 

angles of 0°, 30°, 45°, 60°, and 90°. The goal was to measure the change in resonant frequency 

caused by incident magnetic fields due to the delta E effect, where E denotes the elastic 

modulus (stiffness) of the magnetostrictive (not an electric field). Since this effect depends on 

the re-orientation of magnetic domains within the magnetostrictive, the change in resonant 

frequency for a BAW device biased parallel to the incident magnetic field will be smaller than 

that of a BAW device biased orthogonal to the same field. As such, not only is the magnetic field 

detected, but the orientation is also detected, as advertised by the authors. 

In 2018, Yao et al expand the 1D code developed in 2015 [124][125], to 3D while ignoring 

Newton’s laws. As such this is not work on multiferroic antennas specifically but represents a 

significant steppingstone toward the first fully coupled solver, which will be discussed shortly. 

The most significant innovation in this code is the use of a “field-splitting strategy” to deal with 

magnetic field discontinuities at the magnetostrictive/air interfaces. These arise due to the use 

of the linearized LLG equation. This rigorous treatment of material interface conditions allows for 

the demagnetization field to be fully accounted for, which is typically the most time-consuming 

part of any simulation involving micromagnetics. 

In 2019, Kubena along with colleagues at HRL laboratories and Rutgers University perform 

work on a multiferroic RF receiver [126]. The device is made up of two piezoelectric quartz 

resonators, one serving as a frequency reference and the other experiencing frequency shifts 

induced by incident magnetic fields due to a bonded FeGaB magnetostrictive. The frequencies 

are then compared using integrated electronics allowing the incident magnetic fields to be 

measured. 

Additionally in 2019, Schneider tests 1D multiferroic antenna in the shape of a rod under 

uniaxial stresses [127]. The setup includes a PZT piezoelectric stack of circular cross section 
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experiencing a variable applied voltage. This induces compressional waves to propagate into a 

magnetic field biased FeGa magnetostrictive material bonded in series with the PZT. As the 

FeGa was stressed, a search coil would measure the changes in magnetic flux from within the 

material and a near field probe from without. It was found that the magnetic flux oscillations 

within the FeGa increased with the magnitude of the electric field applied to the PZT. The most 

interesting result from this study is that there was a peak in magnetization oscillations as a 

sweep of the magnetic bias field was performed. At no bias field, the oscillation magnitude is 

zero and the stress/strain hysteresis is maximal because the stress wastes energy moving 

magnetic domain wails around that have no macroscopic order. At large bias fields, the 

magnetic domains are too stiff to want to change direction and the mechanical hysteresis is 

virtually zero since no domain wall motion takes place. At just the right bias field, the magnetic 

domain walls move in an orderly fashion, producing optimal oscillations of magnetization. This 

trend was seen both within the FeGa, and in the surrounding air. This presents a modeling 

challenge, as multi-domain magnetostrictives experiencing domain wall motion are not properly 

characterized by the linearized LLG equation. 

Also in 2019, Yao proposes a method to relax linear LLG assumption within her code by 

introducing the magnetization as a field to be updated, as well as swapping the implicitly 

updated field from electric field to magnetic field [128]. To focus on this effort, the 1D form of 

Newton’s equation leveraged in previous iterations of the code were dropped, like in her 2018 

work [124][125], meaning that a fully coupled 3D Maxwell’s, Newton’s, and non-linear LLG 

solver remains elusory. The coupling of non-linear magnetic behavior at RF frequencies dates 

to Suhl in 1956 [129]. 

In 2019, Xu et al experimentally demonstrate a multiferroic antenna operating in the 

transmitter mode [121]. The device was made up of a piezoelectric PZT core with 

magnetostrictive Metglas bonded on the top and bottom. Interesting from the study, the 



 
 

32 

 

radiation pattern of the antenna was measured and seen to take the “donut” shape typical of 

magnetic dipole antennas. Typically, however, in conventional antennas, the magnetic dipole is 

not in fact driven by a magnetic current but rather by an electric current loop. However, the 

multiferroic antenna radiation under study is driven by magnetization fluctuations, and therefore 

represents a true magnetic current. As such, the multiferroic transmitter was found to have 

anywhere from 103 to 104 times higher efficiency over a loop antenna with the same area. A 

similar study was performed in 2020 by Dong et al [130] where it was additionally proposed that 

an array of multiferroic antennas would increase the range of effective communication. 

In 2020, Yao et al publish a paper on the first fully coupled solver to simulate a BAW 

multiferroic antenna [131]. The solver employed the alternating direction implicit (ADI) finite 

difference time-domain (FDTD) scheme in order to utilize an intermediate time step between the 

EM and acoustic physics. Otherwise, 100,000-time steps would need to pass on the 

electrodynamic side, before any useful information is transmitted on the acoustic side. The 

paper leveraged the field-splitting strategy described in [124][125] to model demagnetization 

effects. The major assumptions of the solver were uniaxial strains (1D Newton’s), and a single 

domain magnetostrictive under small RF perturbations (linearized LLG). The numerical results 

demonstrate that the optimal radiated power and efficiency are achieved when the acoustic 

resonance and the FMR occur at the same frequency. More details on this solver are given in 

Chapter 3. 

Also in 2020, Rangriz et al simulated a magnetoelectric antenna for the purposes of 

establishing communications in implantable biomedical devices [132]. The approach was to 

model magnetostrictive FeGaB using a non-linear constitutive relation [133] rather than the full 

LLG. The EM fields in the near field around the device were then calculated using a low 

frequency approximation to Maxwell’s equations, though the exact equation utilized was not 

presented. Then the surface equivalency theorem was used to perform a near to far-field 
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(NTFF) transformation of the results in order to determine scattering parameters. Altogether the 

approach was a nice compromise between accuracy and complexity. 

Finally in 2022, Kevin Luong and Ethan Wang comprehensively attack the modeling of 

magnetoelastic coupling within magnetostrictives in the absence of electrodynamic wave 

propagation [134]. This was performed to highlight the limitations of contemporary approaches 

of modeling magnetoelastic coupling within MF antennas solely through constitutive relations, 

like in [135], without evoking the full LLG equations governing the magnetization dynamics in a 

highly frequency dependent manner. The analysis focused on the linearized form of the LLG 

equation however, though this version is highly appropriate for many multiferroic antenna 

designs, e.g., those that utilize thin film magnetostrictives biased such that only a single 

magnetic domain is present. Since devices under these conditions have their magnetizations 

saturated in the direction of biasing, the only magnetoelastic coupling coefficients that can 

induce magnetization oscillations are those related to shear stresses. The results of this 

analytical study show that this is indeed the case as, for example, the optimal coupling in an iron 

material biased in the z-direction is achieved when a normal stress is applied 45° off axis, i.e., 

such that the magnetization experiences the maximum amount of shear. The study also 

demonstrates other interesting properties of magnetoelastics, namely that the resonance 

frequency for the coupling becomes higher with stronger magnetic bias fields due to shifts in the 

FMR frequency. Note that since this study focused on single domain magnetoelastics, this does 

not discredit experimental work that claims normal stress driven magnetizations oscillations, as 

the magnetostrictives in these works presumably had not been fully saturated. 

One of the largest issues facing MF antennas is the small bandwidths (BWs) associated with 

the large total Q values since the bandwidth is inversely proportional to the Q. For example, an 

antenna resonating at 10kHz with a Q of 100,000 will have a bandwidth of 0.1Hz which is 

unpalatable and real MF antennas have had BWs on this order. Direct antenna modulation 
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(DAM) is one way to approach this problem but in 2022 the authors of [136] attempted to tackle 

the issue buy fabricating a MF antenna with 3 resonant regions based on the composite 

stackup. Resonant region 1 (R1) was fixed on the bottom and composed of an electrode-AlN-

FeGa-electrode stack up. Resonant region 2 (R2) was the same but included a Al2O3 layer on 

top and R3 was the same as R2 save the bottom was a traction free boundary. Due to the three 

different resonance frequencies, the BW was increased. Altering the resonant frequency by 

changing the device capacitance via semiconductor relay switches and discrete capacitors is 

likely a better alternative, however. 

 Also in 2022, Rostami et al. [137] proposed modelling of a MF antenna via finite element 

software Comsol. A comparison with a micro-loop antenna of equivalent size was also 

performed demonstrating that the micro-loop was too small to produce resonance, radiation, 

and matching with a 50Ohm transmission line. This is not surprising as traditional EM driven 

antennas with dimensions on the order of the mechanical wavelength are too small to exhibit 

the spatial fluctuations necessary to radiate and essentially become lumped elements. Since a 

full-wave fully coupled simulation was not performed, near-field and far-field parameters were 

derived in a roundabout way utilizing equivalent circuits on the software CST. Interestingly, the 

mechanical viscous damping parameter was chosen as 1e-4 which is significantly lower than 

the 0.02-0.025 value that agrees well with experimental values of AlN [131]. As such, the 

efficiencies within the paper are likely overpredicted. 

In June 2022, Will-Cole et al., as part of Professor Sun’s lab, released a NEMS antenna 

“tutorial” [138] which gives an overview of the relevant equations, material properties, and 

experimental results performed on MF antennas at Northeastern University. 

In April of 2023, Zheng et al. [139] from the TANMS organization published a work in which 

a MF antenna similar to that of Figure 1-18 was simulated and experimented. The difference 

being that the antenna did not include alternating plus and minus electrodes (IDTs) on top of a 
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substrate, but rather positive electrodes laced between magnetostrictive material with a large 

ground electrode below the piezoelectric substrate. Etching vias were also used so that an air 

cavity could be generated beneath the antenna, maximizing piezoelectric strain. The antenna 

was characterized in both the receiving and transmitting modes. For transmission, an 

electrostatic elastodynamic simulation was performed utilizing finite element software Comsol 

so that the device geometry could be properly tuned to induce a mechanical standing wave in-

plane orthogonal to the driving electrodes. The stresses within the magnetostrictive material 

were then subsequently input into a micromagnetic solver which utilizes the LLG equation to 

calculate magnetization fluctuations. These fluctuations are then fed into a magnetic dipole 

simulation to calculate far-field parameters. As such, the analysis consisted of three uncoupled 

simulations performed in series. 

1.2.2 Operating Principles 

Magnetoelectric coupling in MF composites at RF frequencies has been investigated by 

multiple authors as seen in the previous section as well as in [140-146]. Using MF 

heterostructures allows the designer to bypass the two main issues with scaling down antennas 

to the micrometer level, namely, ohmic losses, as discussed in section 1.1.2, and wavelength 

constraints. Traditional antennas, like dipoles, have physical dimensions on the order of the 

wavelength of the EM radiation being propagated at the frequency of operation [26][27]. This 

concept of size being proportional to wavelength is true of all resonating devices. A notable 

example is the size of a trumpet operating at high frequency/pitch (short wavelength), which is 

relatively small compared to a tuba operating at low frequency/pitch (long wavelength). This 

also applies to MRB antennas of course, except that the resonance driving EM radiation is 

acoustic rather than electromagnetic. In the GHz range the EM wavelengths are 5 orders of 

magnitude longer than that of acoustic waves [114][131]. This is fundamentally because the 

speed of light is much faster than the speed of sound as shown in Figure 1-19: 
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Figure 1-19: Linear dispersion relation (frequency 𝝎 vs. wavenumber 𝒌) demonstrating 5 

orders of magnitude difference in acoustic to EM wavelength at the same frequency. The slope 

of the dispersion relation is the wave speed (group velocity). Note that the EM wave speed 

(𝑽𝑬𝑴) is much larger than the acoustic wave speed (𝑽𝑨𝒄𝒐𝒖𝒔𝒕𝒊𝒄). 

 

Therefore, mechanical antennas, which utilize acoustic waves to generate magnetic field 

fluctuations, can be made significantly smaller than traditional antennas and are multiscale in 

nature. In other words, these novel devices turn waves that generate sound, into waves that can 

be received by a wireless communication system. This is the fundamental mechanism 

motivating multiferroic antenna research which also applies to piezoelectric radiators discussed 

in section 1.2.3. The operation of a multiferroic antenna is shown in Figure 1-20, for the initial 

single time period. 
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Figure 1-20: Initial period (T) of operation for a simple multiferroic antenna. ∆𝑽 is the voltage 

differential across the two electrodes. The upper and lower mechanical boundary conditions are 

both traction free. The ordering was chosen such that the reader can follow along with the 

acoustic wave during propagation. The t=0 time designation was given to (a) to emphasize that 

the voltage cannot change instantaneously across electrodes, and therefore only (a) and (c) 

could possibly be the initial state. The magnetostrictive has a single magnetic domain, which is 

achieved using a magnetic bias field. The device is thin-film, meaning that the in-plane 

dimensions are significantly larger than the thickness (1D uniaxial strain case). The piezoelectric 

is poled out-of-plane (z-direction) 

 

The thickness of the multiferroic antenna is half of the acoustic wavelength (𝜆𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐/2 

[114][131]), and the quarter period (T/4) steps shown in Figure 1-20a-e will now be described in 

detail: (a) At t=0 a voltage input generates a compressional wave which begins to propagate to 

the upper and lower traction free boundaries of the device at the acoustic wave speed. Note 

however that there are still no electric potential (voltage) gradients as the voltage differential 
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between the electrodes cannot change instantaneously. Since the acoustic wave has not had 

time to propagate there is no stress/strain anywhere in the material nor are there electric fields 

in the piezoelectric or magnetization changes in the magnetostrictive. (b) At t=T/4 the 

compression wave has hit the upper and lower boundary of the antenna, generating a negative 

stress/strain throughout the device and producing a change in magnetization within the 

magnetostrictive. There are also electric fields and polarization changes in the piezoelectric due 

to the voltage differential. The compression wave reflects off the boundary as an expansion 

wave since the boundary is traction free and therefore cannot hold any strain. (c) At t=T/2 the 

reflected expansion wave has reached the center of the device, undoing the effects of the initial 

compressional wave. Simultaneously, the voltage input is now generating an additional 

expansion wave which interferes constructively with the reflected expansion wave. This 

constructive interference is the mechanism behind acoustic resonance. (d) At t=3T/4, the 

expansion has now propagated through the entire device, producing a positive stress/strain and 

inducing a change in magnetization in the magnetostrictive with the opposite sense as that 

produced at time t=T/4. The expansion wave reflects off the upper and lower boundaries as a 

compressional wave. (e) At time t=T the system is back to its original configuration with an 

additional voltage induced compressional wave constructively interfering with the reflected 

compressional wave. (f) Since the voltage excitation frequency is the same as the first acoustic 

harmonic frequency, mechanical resonance is achieved with a half sine wave eigenfunction 

(mode). This is accomplished since the device has a thickness equal to half of the acoustic 

wavelength (𝜆𝑎𝑐𝑜𝑢𝑠𝑡𝑖𝑐/2). If additionally, the acoustic resonance and the ferromagnetic 

resonance (FMR) occur at the same frequency, the magnetizations within the magnetostrictive 

precess, optimally producing alternating magnetic currents which propagate into free space as 

EM waves. As it concerns resonance, there are three possibilities as shown in Figure 1-21: 
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Figure 1-21: Three potential cases of resonance, (a) the frequency input 𝒇𝒊𝒏 is equal to the 

FMR frequency, (b) 𝒇𝒊𝒏 is equal to the first acoustic resonant frequency 𝒇𝒂𝒄𝒐𝒖𝒔𝒕𝒊𝒄, (c) 𝒇𝒊𝒏 is equal 

to both the FMR frequency and 𝒇𝒂𝒄𝒐𝒖𝒔𝒕𝒊𝒄 

 

In Figure 1-21a the FMR frequency is input at the electrodes, but this does not coincide with 

the first acoustic resonant frequency. The acoustic wave will therefore be some amalgamation 

of acoustic harmonics which excite the magnetostrictive layer in a disorganized fashion. The 

result is small amplitude magnetization fluctuations and a weak signal. In Figure 1-21b the input 

frequency equals the first acoustic harmonic, generating a half sine wave stress profile through 

the thickness of the device. These stresses induce magnetization changes that sometimes aid 

the precessional motion and sometimes hinder it. Again, the result is a weak signal. In Figure 

1-21c the first acoustic harmonic induces precessional motion in the magnetic material such that 

every time the magnetization is back to its initial position the wave excites it again in the same 

way, reinforcing its motion. In other words, the acoustic resonance frequency and the FMR 

frequency are the same. The result is large macroscopically detectable magnetization 

precessional motion which generates a strong signal. There has been much research performed 

on acoustically driven ferromagnetic resonance (ADFMR) in recent years for SAW devices [147-

151], though the phenomenon has been predicted for BAW device as well [131]. 

Now that the operation of the multiferroic antenna design in Figure 1-20 has been explained, 

some additional observations will now be explored. First, since the EM wavelength is around 5 

orders of magnitude larger than the device, the difference in electric field within the electrode-
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piezo-electrode driving sandwich is small. Therefore, unlike patch antennas, the effective 

magnetic currents on the lateral walls (radiating slots in Figure 1-6) of the sandwich are opposite 

in direction, cancelling out. This stackup therefore acts as a lumped circuit capacitor with current 

𝐼 90 degrees out-of-phase with voltage 𝑉. Thus, the electric field fluctuations within the piezo 

are reactive in nature, storing energy rather than radiating it, alleviating concerns that the 

piezoelectric is affecting the far-field radiation pattern of the antenna. Also, small fringing electric 

fields near the capacitor will die off too quickly to be of importance from a performance 

standpoint. For modeling purposes, this suggests full Maxwell’s equations are not required 

within the domain of the driving sandwich and therefore this region could be simulated 

separately. However, the full elastodynamic set of equations still applies within this volume. 

Second, note that the polarization vector only changes in magnitude, while the 

magnetization only changes in direction. As such, normal stresses applied to the magnetization 

can only induce significant changes if sufficiently strong enough to induce ferroelastic switching. 

To counteract this, note that when the device is unstrained, the magnetization is slightly canted 

vertically. This is so that the magnetization vector experiences shear strains rather than only 

normal strains (recall from Figure 1-8 that shape changes always imply shear at non-principal 

directions). This canting of the magnetization is accomplished by the application of an out-of-

plane bias magnetic field. Unfortunately, due to the high degree of shape anisotropy favoring in-

plane magnetizations, this bias field will need to be exceedingly large. Shape anisotropy has 

another implication. Note from Figure 1-20f that the precessional motion of the magnetization at 

FMR is depicted as a right circular cone. In reality, shape anisotropy will force this cone to 

flatten into a more ellipsoidal shape such that the magnetic current is mostly in-plane. This is not 

a hinderance since any out-of-plane magnetic currents would suffer from the same platform 

effect that in-plane electric currents do because of image currents. 



 
 

41 

 

Another way of getting the magnetization to experience shear strains that avoids the need 

for an out-of-plane bias field would be to excite a thickness shear mode, not unlike those 

investigated analytically by Mindlin [102] and Lee [104][105]. Since it is not reasonable to place 

electrodes on the lateral walls of the device, due to the small thickness, horizontal electrical 

excitations are not possible for thin-film devices. Therefore, a more reasonable way to excite 

thickness shear modes is to have an in-plane poled piezoelectric material as shown in Figure 

1-22: 

 

 

Figure 1-22: Thickness Shear Mode Multiferroic Antenna 

 

Thin-film piezoelectrics poled in-plane are currently challenging but this could open up the 

possibility for future fabrication and material science research on the topic. Still, these difficulties 

are why emerging technologies have begun to shift focus towards piezoelectric antennas which 

will be discussed in the following Section 1.2.3 and are simulated in Chapter 5. 

Another way of improving the performance of the antenna in Figure 1-20 is to note that the 

half sine wave first eigenmode, due to the traction free boundaries, will be retained if an 

additional layer is added to the stackup as shown in Figure 1-23: 
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Figure 1-23: Multiferroic antenna with acoustic buffer. 

 

The acoustic buffer has the effect of ensuring a higher stress region within the 

magnetostrictive layer [131], thus boosting the performance by generating a higher magnetic 

current. Any added layers will need to be impedance matched (same wave speed) to the rest of 

the stackup to ensure that the mechanical waves only reflect at the traction free boundaries 

rather than at the interfaces as well. This is a concern whenever interfaces between two 

materials exist however, and therefore even the original configuration of Figure 1-20 must take 

impedance matching into account. If the planar nature of the device may be sacrificed, another 

approach is to allow the thickness of the magnetostrictive layer to increase until an axial bar like 

configuration is reached. This however would introduce difficulties of retaining a single magnetic 

domain since shape anisotropy would no longer heavily favor in-plane magnetizations. This 

again highlights why research focus has shifted towards piezoelectric antennas, at least within 

the aerospace industry. 

The discussion so far has focused on 1D bulk acoustic wave (BAW) devices, but more 

complex surface acoustic wave (SAW) devices are also possible and will require the use of the 

full 3D Newton’s laws. 
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Figure 1-24: SAW multiferroic antenna, a) Structure and physical coupling mechanism, b) 

Cross section of the antenna. 

 

Within the SAW device a voltage excitation is applied to the electrodes inducing surface 

shear waves to propagate within the piezoelectric substrate triggering magnetization changes 

within the intertwined magnetic islands. Such devices have proven exceedingly difficult to 

fabricate and model, providing motivation for further research. Although a piezoelectric material 

could conceivably be used instead in Figure 1-24, generating a 3D piezoelectric antenna, it is 

much simpler and optimally effective to utilize 1D piezoelectric devices loaded with metal wire to 

boost dipole moment and fill a 3D volume. This concept will be discussed in the subsequent 

Section 1.2.3. 

While simulation of multiferroic devices is needed, the analysis performed herein is 

exclusively on piezoelectric antennas due to shifting interest into these radiators by 

organizations such as DARPA. Multiferroic devices, being the most general case, will continue 

to be discussed in this text but future work is needed to modify the numerical framework 

provided in Chapter 3 to tackle the multiferroic antenna problem. 

1.2.3 Piezoelectric Antennas (PEAs) 

The conversation so far has revolved around magnetic current multiferroic antennas, but 

these are not the only type of antennas that leverage mechanical resonance as the radiation 
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mechanism. Indeed, polarization oscillations can also be utilized to propagate EM radiation by 

effectively swapping the magnetostrictive material with piezoelectric material within designs 

similar to those discussed in section 1.2.2, in what are known as piezoelectric antennas (PEAs). 

These will no longer be magnetic current antennas and will therefore suffer from drawbacks 

largely trivial to MF antennas such as the platform effect (for currents tangential to the ground 

plane), and near field degradation within lossy environments. These issues do not come without 

counteracting benefits, however. For example, the magnitude of polarizations can be changed 

in contrast to magnetizations, and therefore, normal stresses may always be used to induce 

polarization changes unlike MF antennas utilizing single domain magnetostrictives. Also, the 

need for a bias field is eliminated. Impedance matching issues can additionally be eliminated if 

the same piezoelectric material is used within the driving sandwich and the radiating volume. 

Lastly, piezoelectric resonator antennas are much easier to model and verify with commercial 

software as the EM fields within the piezoelectric are the same whether electrostatics or full 

Maxwell’s are utilized [104]. Therefore, if a very low frequency (VLF) transmitter is desired that 

is not placed within a dielectric lossy environment, a PEA solution should be chosen from a 

simplicity standpoint. Since readily available magnetic sensors can already receive in lossy 

environments [121] this would work wonderfully for portable transmitters located above water 

sending signals to underwater equipment like submarines. However, for scuba diver to scuba 

diver communications, or signals sent within implantable device networks, these radiators would 

work poorly. As such, there is a need that can be filled by piezoelectric radiators though 

multiferroic antennas have broader applicability at the cost of increased complexity. 

There are two main configurations of PEAs, axial bar radiators, and planar radiators as 

shown in Figure 1-25a and b respectively. Note that planar radiators have two main 

configurations. In the first (top of Figure 1-25b), Poisson’s effect is utilized to generate 

resonance in-plane orthogonal to the electrodes. The PEA must have a surface that is not 
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completely covered by an electrode, otherwise the device would act as a capacitor. In the 

second (bottom of Figure 1-25b) the PEA is configured much like the MF antennas of section 

1.2.2, producing a thickness resonance mode. Due to large depolarization (polarization current 

orthogonal to large surface area), it is not recommended that planar devices be utilized, and 

only axial dumbbell designs are simulated in Chapter 5. Recall from Section 1.2.2 that 

multiferroic antennas like those at the bottom of Figure 1-25b also suffer, though from separate 

issues. The rest of this section focuses on the history of these PEA devices. 

 

 

Figure 1-25: Piezoelectric Radiator Configurations, (a) Axial bar (dumbbell) design, (b) 

Planar designs. 

 

As indicated previously the earliest work on piezoelectric radiators was performed by Mindlin 

[102], and decades later the research was continued by Lee [104][105]. Since this work has 

already been discussed in section 1.2.1, the conversation herein will fast-forward to 2019, 

where Kemp et al [152], out of Stanford, perform experiments and simulations on a low 
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frequency piezoelectric radiator. The device was a homogenous rod of Lithium Niobate (LN), 

9.4cm long, with mechanical resonance around 35kHz. The antenna was fixed in the center and 

traction free on both ends with voltage excitation at the bottom. This produced a half sine wave 

stress profile which in turn caused the transmitter to behave like a dipole, due to piezoelectric 

coupling, but with an efficiency greater than 300x that of traditional antennas. The authors also 

compared experimental measurements of the input impedance with a multiphysics finite 

element model, as well as an equivalent circuit model. Within the equivalent circuit model, an 

RLC resonating circuit was used to model the mechanical resonance with the electromechanical 

coupling modeled by a transformer. 

Piezoelectric radiators need not be in the shape of rods, however, as planar designs also 

exist as investigated by Hassanien et al in 2019 [153]. This work focused on a disk-shaped 

device where the bottom planar face was covered with a ground electrode, and the top 

electrode was confined to an area hugging the outer circumference. When excited, mechanical 

waves propagate towards the center of the device, producing the desired resonance. Since the 

piezoelectric is poled out-of-plane, this produces polarization currents normal to the ground 

plane which are not hindered by image currents, reducing platform effect. Hassanien continues 

his work through two publications in 2020 [154][155], in which he proposes adding unipolar 

electrets to the maximally displacing portion of a MEMS resonator to increase radiation, similar 

to Weldon [156] who proposed placing charge on the tip of vibrating carbon nanotubes to 

radiate EM waves. This crosses into the space of bulk mechanical motion driven antennas 

which is discussed in section 1.2.4. 

Also in 2020, Dong et al [157] modeled a stress source within a piezoelectric radiator using 

the finite difference time-domain (FDTD) method. As a simplification, these researchers did not 

use the elastodynamics equation at all, but rather modeled the stress input as a lumped voltage-

resistance source. Also, an unconditionally stable solver was not utilized, and results were not 
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presented, only derivations. Still, this represents a novel idea within the space. Interest in 

piezoelectric radiators has continued into 2021 as well [158][159], with Yong et al. [160] 

provided a summary of some prominent designs in 2022. 

In 2023, Xu et al. [161] attempted to tackle the problem of small bandwidth in piezoelectric 

resonator antennas by utilizing PMN-PT as the radiating material. Unfortunately, there appears 

to be some confusion in the paper as the authors argue that the inverse piezoelectric effect 

inherently involves ferroelectric switching and is therefore a cause of significant friction. While 

poling of a piezoelectric does indeed involve ferroelectric switching, the linear piezoelectric 

effect only involves a displacement of the asymmetrical ion within each crystal, not a full 

switching, hence why piezoelectricity is a linear effect. Coincidently, the authors argued that the 

electrostrictive effect would be better for radiation, which would indeed suffer from temperature 

increases. Also, the disk-shaped resonator that was tested included electrodes on the top and 

bottom of the PMN-PT that covered the entire surface in contrast to Hassanien’s previous work 

[153]. Due to the electrically tiny size, this disk was therefore an energy storing capacitor rather 

than an energy radiating antenna and any received power measured from their receiving loop 

antenna was from reactive near fields that do not contribute to radiation. The authors attempted 

to show that the received power during their measurements was indeed from the PMN-PT by 

measuring a device that only includes the electrodes and wires, but their measurements were 

made only within 10s of meters away, easily within the near field. Therefore, the increased 

received power was from the non-radiating near fields produced from the PMN-PT. Any claims 

about increased bandwidth are therefore also suspect. This problem of resonant capacitors 

being advertised as mechanical antennas is a wider issue as Cao et al. [162] appear to have 

fallen into the same trap. Still, Xu et al. [160] are quite accurate that materials with low 

mechanical to electrical energy conversion (like LN) are not well suited for mechanical antenna 

applications. 
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In 2023, Gao et al. [163] experimented with adding conducting material to the piezoelectric 

antennas to increase the effective length. Essentially, metal wire was added along the axial 

direction of the cylindrical antenna such that the resonating piezoelectric material would act as 

an impedance matching element. While innovative, Gao et al. did record smaller efficiencies 

than that of Kemp [152] when the antenna was of the same size or slightly larger. Interestingly, 

in the device, the piezoelectric bar has electrodes on the top and bottom, so it does not seem 

that the mechanical portion of the device is radiating anything. Therefore, it appears that the 

authors were able to hit the upper radiation efficiency bound (from [164]) for metallic electrically 

small antennas (MESAs) with a device that has only metallic radiating elements by utilizing a 

piezoelectric resonator for impedance matching. This could mean that further improvements in 

efficiency may be possible if the electrodes are moved around such that the piezoelectric 

material also radiates. This marriage between novel piezoelectric antennas and the classic 

current carrying wire is the optimal method of generating large dipole moments within a 3D 

space. Thus, 1D axial bar PEAs are the preferred configuration and 2D/3D devices are not 

considered herein. 

Finally, in 2023, DARPA sent out a Broad Agency Announcement (BAA) seeking proposals 

for electrically small receivers (TA1) and transmitters (TA2) under the name “Macaroni”. The 

name was originally meant to be Marconi (in honor of the first transatlantic communication [26-

28]) but due to a clerical error was changed to Macaroni. The exact performance metrics are 

classified, and the bidding process ended on October 10, 2023, when final proposals were due. 

Notable amongst the TA2 bidders is the Northrop Grumman Corporation, in partnership with 

Greg Carman and Ethan Wang of the University of California, Los Angeles. Although this 

proposal was ultimately not funded, the technical approach described in the proposal was well 

received and simulations in Chapter 5 of this work cover much of the proposed innovations. 
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1.2.4 Alternative Mechanical Antennas (Mechtennas) 

In section 1.1.2, the radiation mechanism in antennas was described as fundamentally 

originating from charge acceleration, and in section 1.2.2, it was shown that magnetization 

oscillations are a magnetic equivalent to this phenomenon. So far, piezoelectric radiators have 

been presented as devices that produce the former, and multiferroic antennas have been 

presented as devices that produce the latter, both of which are strain driven methods. However, 

even if the mechanical antenna is thought of as rigid (not deformable), radiation will still occur if 

bulk mechanical motion is applied. This may be in the form of spinning an electric dipole 

(Bipolar Electret [154]) or permanent magnet, or linear acceleration of an electric monopole 

(Unipolar Electret [154]) as shown in Figure 1-26. The usefulness of unipolar electrets is mainly 

in the augmentation of multiferroic radiators [154][156]. As such, the remainder of this section 

will focus first on oscillating electric dipoles and then on spinning magnets. 

 

 

Figure 1-26: Bulk mechanical motion driven antenna concept, (a) Electric monopole under 

linear acceleration, (b) Oscillating electric dipole, (c) Oscillating magnet. 

 

The earliest study of oscillating electric dipoles appears to have been made by a curious 

astrophysicist in 1976 [165] who noted the following: 1) gravity and acceleration are often 

indistinguishable, 2) charge acceleration fundamentally drives EM radiation, and 3) small 

positive charges appear near the surface of rotating objects. Therefore, rapidly rotating dense 
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celestial bodies should produce at least small amounts of radiation. While curious, this 

appeared to be a novelty until Bickford picked up the idea in 2017 for the purpose of super low 

frequency (SLF 30-300Hz) communications by spinning an electric dipole at 167Hz [166]. The 

idea was put forward again by Barani in 2018 [167] and expanded on by Bickford in 2019 [168] 

where he proposed a linear mechtenna composed of layers of electrets where adjacent layers 

were displaced anti-parallel with respect to one another. 

The study of spinning magnets started in the 1950s [169][170], and later in 1978 [171], 

again with researchers based in astrophysics. Research then increased in frequency in 

2014/2015 when Garraud et al began studying oscillating dipoles for the purpose of low 

frequency wireless power transfer with a potential application aimed toward wireless battery 

charging of biomedical implants [172][173]. Selvin, working under Ethan Wang, then presented 

on the topic of oscillating dipoles in a conference in 2017 [174], highlighting some of the main 

issues with the oscillating dipole method in general, namely that a 1kHz signal will require an 

angular speed of 60,000rpm, leading to frictional issues with additional complications introduced 

by frequency modulation for information transfer. 

Prasad then takes up the mantle of researching spinning magnets, presenting at 

conferences in 2017 [175] and 2018 [176], and publishing in 2019 [177] on “magnetic pendulum 

arrays”. These configurations use diametrically polarized permanent magnetics in a linear array 

as shown in Figure 1-27. 
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Figure 1-27: Magnetic pendulum array, from [Prasad 2019] 

 

The adjacent elements within the array will align to one another, producing a self-biased 

system, and the coils surrounding the bars induce an RF magnetic field that excites oscillations. 

This innovative design was proposed in order to significantly reduce the mechanical loss 

associated with mechtennas. It was shown that the pendulum array efficiency was about 7dB 

higher than that of the coils operating alone. 

Active research in mechtennas has continued [178-182], but the drawback of these 

antennas is the large inertial forces induced, producing structural integrity concerns [127], and 

the general power inefficiency of the proposed designs with limited magnetic field strength for 

long-range communications [130]. The applicability to the biomedical industry also appears to 

be limited, if not nonexistent, edging multiferroic antennas ahead within the mechanically driven 

EM radiator design space. However, for up to 1kHz, rotating magnet antennas still truly shine 

and appear to have a healthy future. 
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1.3 Dissertation Overview 

Thus far in chapter 1, important preliminary concepts have been presented to discuss the 

operation and history of traditional antennas, microstrip antennas, and mechanical antennas. 

Three dynamic systems (elastodynamic, electrodynamic, micromagnetic) were also introduced 

along with the ferroic orders. Piezoelectric and piezomagnetic materials were described, along 

with how these materials can be combined into magnetoelectric (multiferroic) composites which 

can be made to radiate EM energy. The method by which these multiferroic antennas overcome 

the current issues facing antenna miniaturization was presented. A summary of the remainder of 

this dissertation follows. 

In chapter 2, all relevant equations describing the electro-magneto-mechanical system, 

necessary for modeling multiferroic antennas, are presented. First the balance laws are 

discussed. Then, the 1st law of thermodynamics will be evoked to demonstrate the conditions 

under which the input power equals the output power. Then, the 2nd law of thermodynamics will 

be utilized, yielding an inequality that imposes restrictions on the constitutive relations. The laws 

of thermodynamics provide insight into how coupling between EM and mechanical fields can 

take place through constitutive relations. Then, the uncoupled and coupled constitutive relations 

are described. Finally, a brief discussion on dissipation is presented in the context of quality 

factors and other terms that may be more familiar to engineers. A summary of all the equations 

is then provided at the end of the chapter. All equations are presented in continuum (non-

discretized) form. 

In chapter 3, the discretized finite difference equations are presented along with the relevant 

derivations. These equations are used to update the EM fields, stress, velocity, and 

convolutional history variables. The order in which the updates occur is described with 

reasoning for why the parameters are best updated in that manner. Discussions about interface 

conditions, excitations, boundary conditions, and PML expressions are also provided. 
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In chapter 4, validation cases are discussed that test the mechanical, electrodynamic, and 

micromagnetic portions of the code. Comparison to analytical solutions and commercial 

software are both performed and numerical experiments are conducted to develop best 

practices for modelers. Validation cases include but are not limited to aperture antennas, 

electric dipoles, 1D mechanical bars, and infinite line sources. 

Lastly in chapter 5, simulations on mechanical antenna devices are performed and 

discussions on antenna performance are conducted. The devices are compared to the 

theoretical limits for electrically small antennas and far field parameters are presented. 

Radiation efficiencies are presented and compared to the state of the art with tips on how to 

improve performance for future designs. Conclusions are drawn as to the efficacy of mechanical 

antennas to meet the challenges of future antenna platforms. 

  



 
 

54 

 

CHAPTER 2: MULTI-PHYSICS MODEL DEVELOPMENT 

Multiferroic antennas function by mechanically bonding piezoelectric material to thin film 

magnetostrictive material. The piezoelectric may then be excited by attached electrodes which 

then propagates acoustic waves to the bonded magnetostrictive generating magnetization 

fluctuations. Some of the mechanical energy is then dissipated due to magnetic loss within the 

material and some is propagated out into free space as an EM wave [131]. Therefore, any 

numerical algorithm wishing to properly characterize a small multiferroic antenna must be 

capable of not only dealing with the multi scale nature of the physics involved but also solve 

three sets of coupled partial differential equations: Landau-Lifshitz-Gilbert (LLG) equation 

governing micromagnetics within the magnetostrictive, Newton’s Laws governing the acoustic 

waves, and Maxwell’s laws governing EM waves. Currently existing finite element software like 

COMSOL Multiphysics have been shown to be able to solve these equations in the absence of 

EM waves [74][183]. Previous Work done by the TANMS ERC solved these equations including 

EM waves by utilizing an unconditionally stable multi-scale solver under a uniaxial strain state 

and in the absence of piezoelectric radiating elements [110][114][131]. This is sufficient to 

model a bulk acoustic wave (BAW) multiferroic antenna but is incapable of modeling 2D and 3D 

devices like those that utilize surface acoustic waves. The solver tackled the multi-scale 

problem by using a special finite difference time domain (FDTD) algorithm which will be adopted 

herein, where the exercise of including piezoelectricity is performed. The result is an algorithm 

capable of modeling mechanical resonance-based antennas which may be used to design 

exotic new devices. 

This chapter deals with the derivation of all required equations in continuum form. These are 

split into two categories; balance laws, which remain unchanged when cross-coupling is 

introduced, and constitutive relations, where the coupling terms in a system involving multiple 

physical domains arise. Convolutional methods will be discussed when appropriate for 
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describing lossy media. The equations herein are written in indicial notation unless otherwise 

specified. 

2.1 Balance Laws 

2.1.1 Conservation of Electron Angular Momentum 

Since magnetism originates from the intrinsic property of spin within the electron and the 

orbit of the electron about the nucleus of the atom, conservation of the associated angular 

momentum is particularly significant within magnetic materials. Following the approach by 

Landis [184] two micro-force systems are introduced that are power conjugate with the 

magnetization order parameter: one representing the surface interactions between magnetic 

domains, and the other representing magnetic forces within the volume of each magnetic 

domain. The power from these micro-force systems may be written as follows: 

 ∭𝜋𝑖�̇�𝑖𝑑𝑉 , ∬ 𝜁𝑗𝑖𝑛𝑗�̇�𝑖𝑑𝐴 (2.1) 

Where 𝑛𝑗 is the surface normal of differential area 𝑑𝐴, 𝑑𝑉 is a differential volume element, 

𝑀𝑖 is the magnetization, 𝜁𝑗𝑖 is the surface micro-force tensor, and 𝜋𝑖 is the volumetric micro-

force vector. Utilizing these micro-force systems, the angular momentum balance may be 

written as: 

 ∬𝜖𝑘𝑗𝑖𝑀𝑗𝜁𝑝𝑖𝑛𝑝𝑑𝐴 + ∭𝜖𝑘𝑗𝑖𝑀𝑗𝜋𝑖𝑑𝑉 = ∭
𝜇0

𝛾0
�̇�𝑘𝑑𝑉 (2.2) 

Where 
𝛾0

𝜇0
= 𝛾 is the gyromagnetic ratio of the electron magnetic moment to angular 

momentum, and as such is used to express the time derivative of angular momentum with 

respect to the time derivative of magnetization. Applying the divergence theorem and 

recognizing that the balance must apply to any arbitrary volume yields: 

 𝜖𝑘𝑗𝑖𝑀𝑗(𝜁𝑝𝑖,𝑝 + 𝜋𝑖) + 𝜖𝑘𝑗𝑖𝑀𝑗,𝑝𝜁𝑝𝑖 =
𝜇0

𝛾0
�̇�𝑘 (2.3) 
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Equation (2.3) relates the micro-force systems to the time derivative of magnetization, which 

incorporates changes in the direction and magnitude of the magnetization vector with time. The 

micromagnetics literature often makes assumptions about the magnitude of the magnetization 

and the forces acting along the direction of magnetization. To take advantage of these 

assumptions the cross product of equation (2.3) with respect to magnetization is taken yielding: 

 𝜖𝑚𝑘𝑛𝜖𝑘𝑗𝑖𝑀𝑛𝑀𝑗(𝜁𝑝𝑖,𝑝 + 𝜋𝑖) + 𝜖𝑚𝑘𝑛𝜖𝑘𝑗𝑖𝑀𝑛𝑀𝑗,𝑝𝜁𝑝𝑖 =
𝜇0

𝛾0
𝜖𝑚𝑘𝑛𝑀𝑛�̇�𝑘 (2.4) 

Equation (2.4) no longer provides information on how the micro-forces effect the 

magnetization magnitude since the components of the micro-forces in the direction of the 

magnetization have been eliminated by the nature of the cross product. For example, had the 

micro-forces been completely in line with the magnetization vector then the left-hand side of 

equation (2.4) would be zero since the rate of change of magnetization would be parallel to its 

direction and be eliminated by the cross product. Recall the following identity: 

 𝜖𝑚𝑘𝑛𝜖𝑘𝑗𝑖 = (𝛿𝑛𝑗𝛿𝑚𝑖 − 𝛿𝑛𝑖𝛿𝑚𝑗) (2.5) 

Using (2.5), equation (2.4) may be written as: 

(𝛿𝑛𝑗𝛿𝑚𝑖 − 𝛿𝑛𝑖𝛿𝑚𝑗)𝑀𝑛𝑀𝑗(𝜁𝑝𝑖,𝑝 + 𝜋𝑖) + 𝜖𝑚𝑘𝑛𝜖𝑘𝑗𝑖𝑀𝑛𝑀𝑗,𝑝𝜁𝑝𝑖 =
𝜇0

𝛾0
𝜖𝑚𝑘𝑛𝑀𝑛�̇�𝑘 

 

→ |𝑀|2(𝜁𝑝𝑚,𝑝 + 𝜋𝑚) − 𝑀𝑚𝑀𝑛(𝜁𝑝𝑛,𝑝 + 𝜋𝑛) + 𝜖𝑚𝑛𝑘𝜖𝑖𝑗𝑘𝑀𝑛𝑀𝑗,𝑝𝜁𝑝𝑖

=
𝜇0

𝛾0
𝜖𝑚𝑛𝑘�̇�𝑛𝑀𝑘 

(2.6) 

Where 𝑀𝑖𝑀𝑖 = |𝑀|2 has been used. Also note that some manipulation of the indices has 

been performed. The last term on the left-hand side of the equality in equation (2.6) has been 

altered using the following property of permutations, 

𝜖𝑚𝑘𝑛𝜖𝑘𝑗𝑖 = −𝜖𝑚𝑘𝑛𝜖𝑖𝑗𝑘 = 𝜖𝑚𝑛𝑘𝜖𝑖𝑗𝑘 

The term on the right-hand side in equation (2.6) was altered using the anti-commutative 

property of the cross product (𝑎 × 𝑏 = −𝑏 × 𝑎), 
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𝜖𝑚𝑘𝑛𝑀𝑛�̇�𝑘 = −𝜖𝑚𝑘𝑛𝑀𝑛
̇ 𝑀𝑘 = 𝜖𝑚𝑛𝑘𝑀𝑛

̇ 𝑀𝑘 

Following the assumptions made by Landis [184] the micro-forces parallel to the 

magnetization are assumed to be quasi-static. This means that changes in magnetization occur 

such that the micro-forces are in equilibrium at every instant in time. Changes in magnetization 

amplitude are also assumed to occur at much shorter time scales than those associated with 

directional changes in magnetization. Therefore, the work being done by micro-forces in the 

direction of the magnetizations is assumed zero: 

 𝑀𝑛(𝜁𝑝𝑛,𝑝 + 𝜋𝑛) = 0 (2.7) 

Therefore, equation (2.6) is simplified by equation (2.7) to: 

 𝜁𝑝𝑚,𝑝 + 𝜋𝑚 =
𝜇0

𝑀2𝛾0
𝜖𝑚𝑛𝑘�̇�𝑛𝑀𝑘 −

1

|𝑀|2
𝜖𝑚𝑛𝑘𝜖𝑖𝑗𝑘𝑀𝑛𝑀𝑗,𝑝𝜁𝑝𝑖 (2.8) 

By tinkering with the indices, this may also be written as: 

 𝜁𝑗𝑖,𝑗 =
𝜇0

𝑀2𝛾0
𝜖𝑖𝑗𝑘�̇�𝑗𝑀𝑘 −

1

𝑀2 𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 − 𝜋𝑖 (2.9) 

Equation (2.9) is the balance of electron angular momentum and will be leveraged in section 

2.2.1 when the power balance is performed consistent with the continuum thermodynamics 

approach contained herein. 

2.1.2 Conservation of Linear Momentum in Viscoelastic Media 

If surface tractions 𝑡𝑖 (forces) are applied to the outer boundary of a body, the conservation 

of linear momentum equation is written as [185]: 

 
𝑑

𝑑𝑡
∭𝜌 𝑣𝑖𝑑𝑉 = ∬𝑡𝑖 𝑑𝐴 + ∭𝑏𝑖𝑑𝑉 (2.10) 

Where 𝑏𝑖 is the body force, 𝜌 is the volumetric mass density, and 𝑣𝑖 is the velocity which is 

the time derivative of the displacement. The density is assumed to be time invariable, and the 

differential volume (𝑑𝑉) is assumed to not change appreciably (small deformation). Therefore, 

the time derivative may be moved into the volume integral and applied to the velocity directly. In 
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order to combine the traction term, which acts on the surface, to the inertial and body force 

terms, which act on the volume, Cauchy’s stress theorem is applied: 

 𝑡𝑖 = 𝑇𝑖𝑗𝑛𝑗 (2.11) 

Now the divergence theorem is used, and it is recognized that the balance must apply to 

any arbitrary volume yielding: 

 𝜌�̇�𝑖 = 𝑇𝑖𝑗,𝑗 + 𝑏𝑖 (2.12a) 

Equation (2.12a) is known as the elastodynamic equation, or Newton’s law, or the 

mechanical balance equation. All three are appropriate. Often when considering elastic waves, 

the body force term is ignored (though not by necessity), and the divergence of stress is seen 

as the sole driving mechanism for mechanical accelerations as was alluded to in section 1.1.1. 

 𝜌�̇�𝑖 = 𝑇𝑖𝑗,𝑗 (2.13b) 

When excitations are slow (low frequency) the mechanical wavelength may be large 

compared to the dimensions of the structure and the body may be considered rigid for dynamic 

analysis as is the case for engineers working on mechanisms like steering systems and landing 

gear. Alternatively, if the excitations are exceedingly slow (quasistatic) then the system may be 

modelled as a deformable body with stresses/strains not evolving with time. These 

approximations are not appropriate herein and equation (2.12) will be used to write update 

equations for the velocity. 

2.1.3 Maxwell’s Equations w/ Modification 

Maxwell’s equations governing the electrodynamics, pictorially represented in Figure 1-4, 

are presented below in equations (2.13a-d) [25]: 

 Guass′s Law 𝐷𝑖,𝑖 = 𝜌𝑣 (2.13a) 

 Guass′s Law for Magnetism 𝐵𝑖,𝑖 = 0 (2.13b) 

 Faraday′s Law of Induction �̇�𝑖 + ℳ𝑖
𝑆 = ϵ𝑖𝑗𝑘𝐸𝑗,𝑘 (2.13c) 
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 Ampere′s Law with Maxwell′s Addition �̇�𝑖 + 𝜎𝑖𝑗𝐸𝑗 + 𝐽𝑖
𝑆 = ϵ𝑖𝑗𝑘𝐻𝑘,𝑗 (2.13d) 

Where 𝐷 is the electric flux, 𝜌𝑣 is the volume charge density, 𝐵 is the magnetic flux, ℳ𝑆 is 

the magnetic source current, 𝜎 is the electric conductivity, and 𝐽𝑆 is the electric source current. 

For the purposes of this work, Maxwell’s divergence equations (2.13ab) are not particularly 

interesting as the proper choice of finite difference lattice automatically satisfies both 

expressions [186-188]. 

When dealing with lossy material, Maxwell’s equations may be written with the spatial 

derivatives in terms of complex frequency shifted (CFS) stretched coordinates [187]. To see 

how this is the case, ignore sources and substitute 𝐸 = 𝐸0𝑒
𝑗𝜔𝑡 into Ampere’s law to get the 

following in free space: 

 𝑗𝜔𝜀𝑖𝑗𝐸𝑗
0 + 𝜎𝑖𝑗𝐸𝑗

0 = ϵ𝑖𝑗𝑘𝐻𝑘,𝑗 (2.14) 

Where 𝜀𝑖𝑗 is the electric permittivity which relates the electric flux 𝐷𝑖 to the electric field 𝐸𝑖. 

Equation (2.14) may be rewritten as: 

 𝑗𝜔𝜀𝑖𝑗𝑠𝑗𝑘𝐸𝑘
0 = ϵ𝑖𝑗𝑘𝐻𝑘,𝑗 (2.15) 

Where, 

 𝑠𝑗𝑘 = 𝛿𝑗𝑘 + 𝛽𝑗𝑙
𝜖 𝜎𝑙𝑘

𝑗𝜔
 (2.16) 

Where 𝛽𝑗𝑙
𝜖  is the inverse permittivity, and the complex 𝑠𝑖𝑗 terms are called the stretching 

coefficients [189] and may be used to model lossy conductive material. Faraday’s law may be 

similarly written: 

 𝑗𝜔𝜇𝑖𝑗𝑠𝑗𝑘
∗ 𝐻𝑘 = ϵ𝑖𝑗𝑘𝐸𝑗,𝑘 (2.17) 

Where 𝜇𝑖𝑗 is the magnetic permeability and: 

 𝑠𝑗𝑘
∗ = 𝛿𝑗𝑘 + 𝛽𝑗𝑙

𝜇 𝜎𝑙𝑘
∗

𝑗𝜔
 (2.18) 
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Where 𝛽𝑗𝑙
𝜇
 is the inverse permeability and 𝜎𝑙𝑘

∗  is the purely theoretical magnetic conduction 

tensor. Both 𝑠𝑖𝑗 and 𝑠𝑖𝑗
∗  will be equal if the following matching condition holds: 

 𝛽𝑗𝑙
𝜖 𝜎𝑙𝑘 = 𝛽𝑗𝑙

𝜇
𝜎𝑙𝑘

∗ , ∴      𝑠𝑗𝑘 = 𝑠𝑗𝑘
∗  (2.19) 

In the literature, the stretching coordinates are always written in free space and, since the 

conductivity tensors are diagonal, using a single index yields: 

 𝑠𝑖 = 1 +
𝜎𝑖

𝑗𝜔𝜀0
 (2.20) 

Ampere’s and Faraday’s law are then written divorced from indicial notation for now, as 

shown below for the x-projection of Ampere’s law [189]: 

 𝑗𝜔𝜀0𝐸𝑥 =
1

𝑠𝑦

𝜕𝐻𝑧

𝜕𝑦
−

1

𝑠𝑧

𝜕𝐻𝑦

𝜕𝑧
 (2.21) 

Equation (2.21) reveals that the 𝑠 values may be modified to introduce a real stretch of the x, 

y, and z coordinates by replacing unity in (2.20) with some value 𝜅𝑖 > 1 as shown below: 

 𝑠𝑖 = 𝜅𝑖 +
𝜎𝑖

𝑗𝜔𝜀0
 (2.22) 

Note above that if the material is lossless (𝑠𝑖 = 𝜅𝑖) then the stretching of the coordinates is 

apparent from the 𝑠𝑦𝜕𝑦 and 𝑠𝑧𝜕𝑧 terms in (2.21). The stretched coordinate metrics 𝑠𝑖 can 

therefore be thought of as a generalized way of including both stretching and loss into the 

system. Of course, if the 𝑠 values were set to unity, there would be no stretching and the original 

lossless Ampere’s law would be recovered. A further generalization was proposed by Kuzouglu 

and Mittra [190] to shift the pole away from 𝜔 = 0 as follows: 

 𝑠𝑖 = 𝜅𝑖 +
𝜎𝑖

𝛼𝑖 + 𝑗𝜔𝜖0
 (2.23) 

Where 𝛼𝑖 is a positive real number which accomplishes the pole frequency shifting effect. 

The full benefit of this choice of stretched coordinate metrics will be explored more fully in 

chapter 3. Following the nomenclature of [191], define �̅�𝑖 = 𝑠𝑖
−1, which may be written as: 
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 �̅�𝑖 =
1

𝜅𝑖 +
𝜎𝑖

𝛼𝑖 + 𝑗𝜔𝜖0

=
𝛼𝑖 + 𝑗𝜔𝜖0

𝜅𝑖𝛼𝑖 + 𝜎𝑖 + 𝑗𝜅𝑖𝜔𝜖0
=

1

𝜅𝑖
−

𝜎𝑖

𝜅𝑖
2𝜖0

𝛼𝑖

𝜖0
+

𝜎𝑖

𝜅𝑖𝜖0
+ 𝑗𝜔

 (2.24) 

Performing inverse Laplace transformation produces: 

 �̅�𝑖(𝑡) =
1

𝜅𝑖
𝛿(𝑡) −

𝜎𝑖

𝜅𝑖
2𝜖0

𝑒
−(

𝛼𝑖
𝜖0

+
𝜎𝑖

𝜅𝑖𝜖0
)𝑡

𝐻(𝑡) =
1

𝜅𝑖
𝛿(𝑡) + 𝜁𝑖(𝑡) (2.25) 

Where 𝛿(𝑡) is the dirac delta function and, 

 𝜁𝑖(𝑡) = −
𝜎𝑖

𝜅𝑖
2𝜖0

𝑒
−(

𝛼𝑖
𝜖0

+
𝜎𝑖

𝜅𝑖𝜖0
)𝑡

𝐻(𝑡) (2.26) 

Which is the impulse response of the stretched coordinate metric with 𝐻(𝑡) being the 

Heaviside step function. Since multiplication in the frequency domain is equivalent to 

convolution in the time domain, transforming the modified Maxwell’s equations into time domain 

will require the use of convolution integrals. Ampere’s equations may therefore be written as 

follows: 

 �̇�𝑥 + 𝜎𝑥𝑥𝐸𝑥 + 𝐽𝑥
𝑠 =

1

𝜅𝑦

𝜕𝐻𝑧

𝜕𝑦
−

1

𝜅𝑧

𝜕𝐻𝑦

𝜕𝑧
+ ∫ 𝜁𝑦(𝑡 − 𝜏)

𝜕𝐻𝑧(𝜏)

𝜕𝑦
𝑑𝜏

𝑡

0−
− ∫ 𝜁𝑧(𝑡 − 𝜏)

𝜕𝐻𝑦(𝜏)

𝜕𝑧
𝑑𝜏

𝑡

0−
 (2.27a) 

 �̇�𝑦 + 𝜎𝑦𝑦𝐸𝑦 + 𝐽𝑦
𝑠 =

1

𝜅𝑧

𝜕𝐻𝑥

𝜕𝑧
−

1

𝜅𝑥

𝜕𝐻𝑧

𝜕𝑥
+ ∫ 𝜁𝑧(𝑡 − 𝜏)

𝜕𝐻𝑥(𝜏)

𝜕𝑧
𝑑𝜏

𝑡

0−
− ∫ 𝜁𝑥(𝑡 − 𝜏)

𝜕𝐻𝑧(𝜏)

𝜕𝑥
𝑑𝜏

𝑡

0−
 (2.27b) 

 �̇�𝑧 + 𝜎𝑧𝑧𝐸𝑧 + 𝐽𝑧
𝑠 =

1

𝜅𝑥

𝜕𝐻𝑦

𝜕𝑥
−

1

𝜅𝑦

𝜕𝐻𝑥

𝜕𝑦
+ ∫ 𝜁𝑥(𝑡 − 𝜏)

𝜕𝐻𝑦(𝜏)

𝜕𝑥
𝑑𝜏

𝑡

0−
− ∫ 𝜁𝑦(𝑡 − 𝜏)

𝜕𝐻𝑥(𝜏)

𝜕𝑦
𝑑𝜏

𝑡

0−
 (2.27c) 

Which may be shortened by using the following “history variables”: 

 Φ𝐻𝑚𝑞 = ∫ 𝜁𝑞(𝑡 − 𝜏)
𝜕𝐻𝑚(𝜏)

𝜕𝑞
𝑑𝜏

𝑡

0−
= −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−

1
𝜖0

(𝛼𝑞+
𝜎𝑞
𝜅𝑞

)(𝑡−𝜏) 𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡

0−
,

𝑚 = 𝑥, 𝑦, 𝑧
𝑞 = 𝑥, 𝑦, 𝑧

𝑚 ≠ 𝑞
 (2.28) 

Therefore, 

 �̇�𝑥 + 𝜎𝑥𝑥𝐸𝑥 + 𝐽𝑥
𝑠 =

1

𝜅𝑦

𝜕𝐻𝑧

𝜕𝑦
−

1

𝜅𝑧

𝜕𝐻𝑦

𝜕𝑧
+ Φ𝐻𝑧𝑦 − Φ𝐻𝑦𝑧 (2.29a) 

 �̇�𝑦 + 𝜎𝑦𝑦𝐸𝑦 + 𝐽𝑦
𝑠 =

1

𝜅𝑧

𝜕𝐻𝑥

𝜕𝑧
−

1

𝜅𝑥

𝜕𝐻𝑧

𝜕𝑥
+ Φ𝐻𝑥𝑧 − Φ𝐻𝑧𝑥 (2.29b) 
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 �̇�𝑧 + 𝜎𝑧𝑧𝐸𝑧 + 𝐽𝑧
𝑠 =

1

𝜅𝑥

𝜕𝐻𝑦

𝜕𝑥
−

1

𝜅𝑦

𝜕𝐻𝑥

𝜕𝑦
+ Φ𝐻𝑦𝑥 − Φ𝐻𝑥𝑦 (2.29c) 

An important point will now be made, note that the electric flux 𝐷 and the conduction current 

𝜎𝐸 have been reintroduced. This is to allow more general constitutive relations to be utilized 

later, along with lossy conduction currents that do not require convolution. A constitutive relation 

and conduction current have already been assumed when deriving the impulse response of the 

stretched coordinate metrics, however, so there appears to be a contradiction. Herein, 

heterogeneous structures with surrounding air are modeled, and it is desirable to use one and 

the same equation everywhere in the simulation space. As such, it is assumed that wherever 

the stretched coordinate metrics are utilized the medium is vacuum, and wherever more general 

constitutive relations or non-convolutional lossy environments are located, the 𝜎𝑖 components of 

the metric are zero. As such, equations (2.29a-c) will degenerate into the non-contradictory 

equations necessary to model the physics at each discretized point in space. These modified 

Ampere’s equations will later be used in the finite difference chapter to derive the finite 

difference equations. The modified Faraday’s equations may be written by utilizing the matched 

stretched coordinate metric of equation (2.19) as follows: 

 �̇�𝑥 + ℳ𝑥
𝑠 =

1

𝜅𝑧

𝜕𝐸𝑦

𝜕𝑧
−

1

𝜅𝑦

𝜕𝐸𝑧

𝜕𝑦
+ ∫ 𝜁𝑧(𝑡 − 𝜏)

𝜕𝐸𝑦(𝜏)

𝜕𝑧
𝑑𝜏

𝑡

0−
− ∫ 𝜁𝑦(𝑡 − 𝜏)

𝜕𝐸𝑧(𝜏)

𝜕𝑦
𝑑𝜏

𝑡

0−
 (2.30a) 

 �̇�𝑦 + ℳ𝑦
𝑠 =

1

𝜅𝑥

𝜕𝐸𝑧

𝜕𝑥
−

1

𝜅𝑧

𝜕𝐸𝑥

𝜕𝑧
+ ∫ 𝜁𝑥(𝑡 − 𝜏)

𝜕𝐸𝑧(𝜏)

𝜕𝑥
𝑑𝜏

𝑡

0−
− ∫ 𝜁𝑧(𝑡 − 𝜏)

𝜕𝐸𝑥(𝜏)

𝜕𝑧
𝑑𝜏

𝑡

0−
 (2.30b) 

 �̇�𝑧 + ℳ𝑧
𝑠 =

1

𝜅𝑦

𝜕𝐸𝑥

𝜕𝑦
−

1

𝜅𝑥

𝜕𝐸𝑦

𝜕𝑥
+ ∫ 𝜁𝑦(𝑡 − 𝜏)

𝜕𝐸𝑥(𝜏)

𝜕𝑦
𝑑𝜏

𝑡

0−
− ∫ 𝜁𝑥(𝑡 − 𝜏)

𝜕𝐸𝑦(𝜏)

𝜕𝑥
𝑑𝜏

𝑡

0−
 (2.30c) 

This may be similarly shortened by introducing the following “history variables”: 

 Φ𝐸𝑚𝑞 = ∫ 𝜁𝑞(𝑡 − 𝜏)
𝜕𝐸𝑚(𝜏)

𝜕𝑞
𝑑𝜏

𝑡

0−
= −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−

1
𝜖0

(𝛼𝑞+
𝜎𝑞
𝜅𝑞

)(𝑡−𝜏) 𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡

0−
,

𝑚 = 𝑥, 𝑦, 𝑧
𝑞 = 𝑥, 𝑦, 𝑧

𝑚 ≠ 𝑞
 (2.31) 

Therefore, 
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 �̇�𝑥 + ℳ𝑥
𝑠 =

1

𝜅𝑧

𝜕𝐸𝑦

𝜕𝑧
−

1

𝜅𝑦

𝜕𝐸𝑧

𝜕𝑦
+ Φ𝐸𝑦𝑧 − Φ𝐸𝑧𝑦 (2.32a) 

 �̇�𝑦 + ℳ𝑦
𝑠 =

1

𝜅𝑥

𝜕𝐸𝑧

𝜕𝑥
−

1

𝜅𝑧

𝜕𝐸𝑥

𝜕𝑧
+ Φ𝐸𝑧𝑥 − Φ𝐸𝑥𝑧 (2.32b) 

 �̇�𝑧 + ℳ𝑧
𝑠 =

1

𝜅𝑦

𝜕𝐸𝑥

𝜕𝑦
−

1

𝜅𝑥

𝜕𝐸𝑦

𝜕𝑥
+ Φ𝐸𝑥𝑦 − Φ𝐸𝑦𝑥 (2.32c) 

This use of history variables is leveraged in recursive convolution algorithms which will be 

discussed throughout this text. The basic idea is that the system output right now depends on 

the entire history of the system inputs and the history variable records the progressive effect of 

all previous inputs. The curl equations expressed in this section may be further truncated into 

indicial notation by considering the following primed coordinates: 

𝑑𝑥′ = 𝜅𝑥(𝑥)𝑑𝑥, 𝑑𝑦′ = 𝜅𝑦(𝑦)𝑑𝑦, 𝑑𝑧′ = 𝑠𝑧(𝑧)𝑑𝑧 

This yields: 

 �̇�𝑖 + 𝜎𝑖𝑗𝐸𝑗 + 𝐽𝑖
𝑠 = 𝜖𝑖𝑗′𝑘𝐻𝑘,𝑗′ − 𝜖𝑖𝑗𝑘Φ𝐻𝑗𝑘

 (2.33) 

 �̇�𝑖 + ℳ𝑖
𝑠 = 𝜖𝑖𝑗𝑘′𝐸𝑗,𝑘′ + 𝜖𝑖𝑗𝑘Φ𝐸𝑗𝑘

 (2.34) 

Where, 

 Φ𝐻𝑗𝑘
= [

0 Φ𝐻𝑥𝑦
Φ𝐻𝑥𝑧

Φ𝐻𝑦𝑥
0 Φ𝐻𝑦𝑧

Φ𝐻𝑧𝑥
Φ𝐻𝑧𝑦

0

] , Φ𝐸𝑗𝑘
= [

0 Φ𝐸𝑥𝑦
Φ𝐸𝑥𝑧

Φ𝐸𝑦𝑥
0 Φ𝐸𝑦𝑧

Φ𝐸𝑧𝑥
Φ𝐸𝑧𝑦

0

] (2.35a/b) 

2.2 Thermodynamics 

The process flow chart for deriving the constitutive relations through thermodynamics is 

shown in Figure 2-1 [184][192]: 
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Figure 2-1: Flow chart for determination of constitutive relations. 

 

These steps are followed in this section with the coupled constitutive relations presented in 

section 2.3. For simplicity, the uncoupled constitutive relations are presented first in section 

2.2.2. 

2.2.1 First Law Power Balance 

The principle of total conservation of energy for the thermo-electro-magneto-elastic system 

is expressed as: 

 

∭ �̇�𝑑𝑉 +
𝑑

𝑑𝑡
∭

1

2
𝜌�̇�𝑖�̇�𝑖𝑑𝑉

= ∬(𝑡𝑖�̇�𝑖 + 𝜁𝑗𝑖𝑛𝑗�̇�𝑖 − 𝜖𝑖𝑗𝑘𝐸𝑗𝐻𝑘𝑛𝑖 − 𝑞𝑖𝑛𝑖)𝑑𝑆 + ∭(𝑏𝑖�̇�𝑖 + ℎ)𝑑𝑉 

(2.36) 

Where the first two terms on the left-hand side are the time rates of change of the internal 

and kinetic energies respectively. Now focusing on the surface integral on the right-hand side; 

The first and second terms are the mechanical and magnetic powers transferred at the surface 

of the system. The third surface integral term is the energy carried by EM waves out of the 

surface of the system and as such contains a minus sign. The final term in the surface integral 

is the rate of heat flux (𝑞𝑖) out of the system and therefore also contains a minus sign. The 

volume integral on the right-hand side includes the body forces acting on the system and the 

heat generation within the system respectively. Applying Cauchy’s stress theorem (𝑡𝑖 = 𝑇𝑖𝑗𝑛𝑗) to 

equation (2.36) yields: 
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∭�̇�𝑑𝑉 +
𝑑

𝑑𝑡
∭

1

2
𝜌�̇�𝑖�̇�𝑖𝑑𝑉

= ∬(𝑇𝑖𝑗𝑛𝑗�̇�𝑖 + 𝜁𝑗𝑖𝑛𝑗�̇�𝑖 − 𝜖𝑖𝑗𝑘𝐸𝑗𝐻𝑘𝑛𝑖 − 𝑞𝑖𝑛𝑖)𝑑𝑆 + ∭(𝑏𝑖�̇�𝑖 + ℎ)𝑑𝑉 

(2.37) 

Now that all surface integral terms include the surface normal, the divergence theorem may 

be applied. Also, the differential volume does not change substantially during system operation, 

therefore the time derivative acting on the kinetic energy may be moved inside the integrand, 

yielding the following results: 

 

∭�̇�𝑑𝑉 + ∭𝜌�̇�𝑖�̈�𝑖𝑑𝑉

= ∭(𝑇𝑖𝑗,𝑗�̇�𝑖 + 𝑇𝑖𝑗�̇�𝑖,𝑗 − 𝜖𝑖𝑗𝑘(𝐸𝑗,𝑖𝐻𝑘 + 𝐸𝑗𝐻𝑘,𝑖) + 𝜁𝑗𝑖,𝑗�̇�𝑖 + 𝜁𝑗𝑖�̇�𝑖,𝑗

+ 𝑏𝑖�̇�𝑖 − 𝑞𝑖,𝑖 + ℎ)𝑑𝑉 

(2.38) 

Utilize Maxwell’s equations (−𝜖𝑖𝑗𝑘𝐸𝑗,𝑖 = −∇ × 𝐸 = �̇�𝑘, and −𝜖𝑖𝑗𝑘𝐻𝑘,𝑖 = ∇ × 𝐻 = �̇�𝑗) to get: 

 

∭�̇�𝑑𝑉 + ∭𝜌�̇�𝑖�̈�𝑖𝑑𝑉 𝑑

= ∭(𝑇𝑖𝑗,𝑗�̇�𝑖 + 𝑇𝑖𝑗�̇�𝑖,𝑗 + 𝐻𝑖�̇�𝑖 + 𝐸𝑖�̇�𝑖 + 𝜁𝑗𝑖,𝑗�̇�𝑖 + 𝜁𝑗𝑖�̇�𝑖,𝑗 + 𝑏𝑖�̇�𝑖

+ 𝐻𝑖�̇�𝑖 − 𝑞𝑖,𝑖 + ℎ)𝑑𝑉 

(2.39) 

Equation (2.39) may be simplified further by noting the following geometric relation between 

displacements and strains: 

 �̇�𝑖,𝑗 =
1

2
(�̇�𝑖,𝑗 + �̇�𝑗,𝑖) +

1

2
(�̇�𝑖,𝑗 − �̇�𝑗,𝑖) = �̇�𝑖𝑗 + �̇�𝑖𝑗 (2.40) 

Where �̇�𝑖𝑗 is the time rate of change of the green strain tensor (linear), and �̇�𝑖𝑗 is the time 

rate of change of the rotation tensor, which is clearly anti-symmetric. Since the Cauchy stress 

tensor is symmetric, then: 

 𝑇𝑖𝑗�̇�𝑖𝑗 = 0 (2.41) 

Substituting (2.40) and (2.41) into (2.39) yields, 
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∭�̇�𝑑𝑉 + ∭𝜌�̇�𝑖�̈�𝑖𝑑𝑉

= ∭(𝑇𝑖𝑗,𝑗�̇�𝑖 + 𝑇𝑖𝑗�̇�𝑖𝑗 + 𝐻𝑖�̇�𝑖 + 𝐸𝑖�̇�𝑖 + 𝜁𝑗𝑖,𝑗�̇�𝑖 + 𝜁𝑗𝑖�̇�𝑖,𝑗 + 𝑏𝑖�̇�𝑖

− 𝑞𝑖,𝑖 + ℎ)𝑑𝑉 

(2.42) 

Assuming the continuity of the integrands gives: 

 �̇� = (𝑇𝑖𝑗,𝑗 + 𝑏𝑖 − 𝜌�̈�𝑖)�̇�𝑖 + 𝑇𝑖𝑗�̇�𝑖𝑗 + 𝐻𝑖�̇�𝑖 + 𝐸𝑖�̇�𝑖 + 𝜁𝑗𝑖,𝑗�̇�𝑖 + 𝜁𝑗𝑖�̇�𝑖,𝑗 − 𝑞𝑖,𝑖 + ℎ (2.43) 

Noting that the terms in the parenthesis zero out by the elastodynamic equation and 

substituting in equation (2.9) for the divergence of the magnetic surface micro-force 𝜁𝑗𝑖, yields 

[184]: 

 

�̇� = 𝑇𝑖𝑗�̇�𝑖𝑗 + (
𝜇0

|𝑀|2𝛾0
𝜖𝑖𝑗𝑘�̇�𝑗𝑀𝑘 −

1

|𝑀|2
𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 − 𝜋𝑖) �̇�𝑖 + 𝜁𝑗𝑖�̇�𝑖,𝑗

+ 𝐻𝑖�̇�𝑖 + 𝐸𝑖�̇�𝑖 − 𝑞𝑖,𝑖 + ℎ 

(2.44) 

Note that equation (2.44) has re-introduced the volumetric micro-force term (𝜋𝑖). Simplify 

further by noting that, 

𝜇0

|𝑀|2𝛾0
𝜖𝑖𝑗𝑘�̇�𝑗𝑀𝑘�̇�𝑖 = 0 

Since this is the dot product of two perpendicular vectors, therefore: 

 

�̇� = 𝑇𝑖𝑗�̇�𝑖𝑗 + (−
1

|𝑀|2
𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 − 𝜋𝑖) �̇�𝑖 

+𝜁𝑗𝑖�̇�𝑖,𝑗 + 𝐻𝑖�̇�𝑖 + 𝐸𝑖�̇�𝑖 − 𝑞𝑖,𝑖 + ℎ 

(2.45) 

Which defines the time derivative of the volume specific internal energy. Further treatment 

requires the use of the second law of thermodynamics in its continuum form. 

2.2.2 Second Law of Thermodynamics 

The second law of thermodynamics on a continuum may be stated in the following form 

[185]: 
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 𝛿𝑆 ≥
𝛿𝑄

𝑇
 (2.46) 

Where 𝛿𝑆 is the change in volume specific entropy as the system goes from one equilibrium 

state to another, 𝛿𝑄 is the amount of heat added to the system per unit volume during the same 

process, and 𝑇 is the temperature of the system on an absolute scale. Note here that 𝑇 and 𝑆 

are now being used to represent temperature and entropy respectively in addition to stress and 

strain. Since the latter two are second order tensors, any confusion should be eliminated by 

observing the indices. The equality holds for processes that are reversible (non-dissipative). 

Following the methodology of Mal [185], to apply this to systems that are not spatially 

homogenous or in thermodynamic equilibrium 𝑆, 𝑇, and internal energy 𝑈 are assigned the 

values they would have as state functions if the system were to be in equilibrium at every instant 

in time. Therefore, the heat added to the system may be written as: 

 ∭ 𝛿𝑄𝑑𝑉 = [−∬𝑞𝑖𝑛𝑖𝑑𝑆 + ∭ ℎ𝑑𝑉] 𝛿𝑡 (2.47) 

Substituting equation (2.47) into equation (2.46) to get: 

 ∭ 𝛿𝑆𝑑𝑉 ≥ [−∬
𝑞𝑖𝑛𝑖

𝑇
𝑑𝑆 + ∭

ℎ

𝑇
𝑑𝑉] 𝛿𝑡 (2.48) 

Apply the divergence theorem to the surface integral in equation (2.48) and use the quotient 

rule of differentiation to get: 

 ∭ 𝛿𝑆𝑑𝑉 ≥ [∭(
𝑞𝑖𝑇,𝑖 − 𝑞𝑖,𝑖𝑇

𝑇2 +
ℎ

𝑇
)𝑑𝑉] 𝛿𝑡 (2.49) 

Since this may be applied to any arbitrary volume, the integrands may be directly related: 

 𝛿𝑆 ≥ [
𝑞𝑖𝑇,𝑖 − 𝑞𝑖,𝑖𝑇

𝑇2 +
ℎ

𝑇
] 𝛿𝑡 (2.50) 

Taking the limit of equation (2.50) as 𝛿𝑡 approaches zero, then multiplying by 𝑇 yields: 

 𝑇�̇� ≥
𝑞𝑖𝑇,𝑖

𝑇
− 𝑞𝑖,𝑖 + ℎ (2.51) 
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Equation (2.51) is the Clausius-Duhem dissipation inequality which is the continuum form of 

the second law of thermodynamics. Introduce the Helmholtz free energy (𝜓) which is defined as 

the ability of a system to do work in a constant temperature environment: 

 𝑇𝜓 = 𝑈 − 𝑇𝑆 (2.52) 

Where the product 𝑇𝑆 is the work that the system gets “for free” from the isothermal 

environment (hence the negative sign). The time derivative of the Helmholtz free energy is thus: 

 �̇� = �̇� − 𝑇�̇� − �̇�𝑆 (2.53) 

Combining equations (2.51) and (2.53) yields: 

 −�̇� ≥
𝑞𝑖𝑇,𝑖

𝑇
− 𝑞𝑖,𝑖 + ℎ + �̇�𝑆 − �̇� (2.54) 

But the divergence of the rate of heat flux vector and the rate of heat generation has already 

arisen in equation (2.45), therefore equation (2.54) above is rewritten after substitution: 

 

−�̇� ≥ [−𝑇𝑖𝑗�̇�𝑖𝑗 + (
1

𝑀2 𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 + 𝜋𝑖) �̇�𝑖 − 𝜁𝑗𝑖�̇�𝑖,𝑗 − 𝐻𝑖�̇�𝑖 − 𝐸𝑖�̇�𝑖 + �̇�]

+
𝑞𝑖𝑇,𝑖

𝑇
+ �̇�𝑆 − �̇�  

(2.55) 

Or, by rearranging terms in equation (2.55): 

 

�̇� +
𝑞𝑖𝑇,𝑖

𝑇
− 𝑇𝑖𝑗�̇�𝑖𝑗 + (

1

𝑀2 𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 + 𝜋𝑖) �̇�𝑖 

−𝜁𝑗𝑖�̇�𝑖,𝑗 − 𝐻𝑖�̇�𝑖 − 𝐸𝑖�̇�𝑖 + �̇�𝑆 ≤ 0 

(2.56) 

The inequality of equation (2.56) will lead to conditions on the constitutive equations which 

will be explored by considering the electrical, mechanical, and magnetic portions separately in 

the following sections 2.2.2.1-3. As a preliminary, to demonstrate the methodology used, say 

that a purely thermal system is considered, then eq (2.56) may be reduced to the following: 

 �̇� + �̇�𝑆 +
𝑞𝑖𝑇,𝑖

𝑇
≤ 0 (2.57) 
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It now becomes necessary to explicitly state the order parameters on which the material free 

energy depends, which in this case is the temperature: 

𝜓 = 𝜓(𝑇) 

The variable chosen has work conjugate counterpart (entropy 𝑆) which may have been 

chosen instead. For linear systems the variable chosen is immaterial and therefore the variables 

most convenient for the derivation should be used. By the chain rule the time rate of change of 

the free energy is expanded as: 

 �̇� =
𝜕𝜓

𝜕𝑇
�̇� (2.58) 

Substituting equation (2.58) into equation (2.57) and combining like terms yields: 

 (
𝜕𝜓

𝜕𝑇
+ 𝑆) �̇� +

𝑞𝑖𝑇,𝑖

𝑇
≤ 0 (2.59) 

The first term can be made to always satisfy the equality condition by the following relation 

which is well known in the thermodynamics literature [193]: 

 𝑆 = −
𝜕𝜓

𝜕𝑇
 (2.60) 

For the second term, note that, since 𝑞𝑖 and 𝑇,𝑖 are always anti-parallel and 𝑇 is measured in 

an absolute scale, equation (2.59) suggests that the rate of heat flux should take the following 

form: 

 𝑞𝑖 = 𝜅𝑖𝑗𝑇,𝑗 (2.61) 

Since the system herein is considered to be isothermal, these relations are only meant to 

highlight the methodology used in the subsequent three sections and will not be utilized to 

update any fields within the numerical formulation proposed herein. 

2.2.2.1 Purely Electrical Constitutive Relation 

From eq (2.56), a purely electrical system has the following relation to the free energy [194]: 

 �̇� − 𝐸𝑖�̇�𝑖 ≤ 0 (2.62) 
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The order parameter on which the material free energy depends is electric flux: 

𝜓 = 𝜓(𝐷𝑖) 

By the chain rule the time rate of change of the free energy is expanded as: 

 �̇� =
𝜕𝜓

𝜕𝐷𝑖
�̇�𝑖 (2.63) 

Substituting equation (2.63) into equation (2.56) and combining like terms yields: 

 (
𝜕𝜓

𝜕𝐷𝑖
− 𝐸𝑖) �̇�𝑖 ≤ 0 (2.64) 

Which can be made to always satisfy the equality condition by the following relation which is 

well known in the literature [194]: 

 𝐸𝑖 =
𝜕𝜓

𝜕𝐷𝑖
 (2.65) 

This term leads to the inverse permittivity tensor 𝛽𝑖𝑗
𝜖  (slope of the 𝐸 vs. 𝐷 curve) if the 

relation above is differentiated with respect to the electric flux: 

 
𝜕𝐸𝑖

𝜕𝐷𝑗
=

𝜕2𝜓

𝜕𝐷𝑖𝜕𝐷𝑗
= 𝛽𝑖𝑗

𝜖 = 𝜖𝑖𝑗
−1 (2.66) 

No additional terms related to dissipation appear in equation (2.62) as electrical losses are 

captured within Maxwell’s equations (balance laws) rather than the electrical constitutive 

relation. This represents a subtle difference with the mechanical domain, which does include 

losses in the constitutive relation rather than the balance law (elastodynamic equation) as 

shown in the next section 2.2.2.2. 

2.2.2.2 Purely Mechanical Constitutive Relation 

From eq (2.56), a purely mechanical system has the following relation to the free energy: 

 �̇� − 𝑇𝑖𝑗�̇�𝑖𝑗 ≤ 0 (2.67) 

Where the second term is referred to as the “stress power” [185]. A simple method of 

determining the relationship between free energy and stress can be made if a purely elastic 



 
 

71 

 

system is considered. This means that no losses, or plastic (permanent) strains are present. 

Therefore, there is no distinction between the total linear strain (𝑆𝑖𝑗) and the elastic strain (𝑆𝑖𝑗
𝑒𝑙), 

namely: 

𝑆𝑖𝑗
𝑒𝑙 = 𝑆𝑖𝑗 ≡

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

The free energy is thus a function of the strain only, and, by the chain rule: 

 �̇�(𝑆𝑖𝑗) =
𝜕𝜓

𝜕𝑆𝑖𝑗

𝜕𝑆𝑖𝑗

𝜕𝑡
 (2.68) 

Substitution into the 2nd law inequality yields: 

 (
𝜕𝜓

𝜕𝑆𝑖𝑗
− 𝑇𝑖𝑗) �̇�𝑖𝑗 ≤ 0 (2.69) 

Which may be satisfied always if the following holds: 

 𝑇𝑖𝑗 =
𝜕𝜓

𝜕𝑆𝑖𝑗
 (2.70) 

Relation (2.70) is quite familiar to structural engineers and leads to the stiffness tensor 𝑐𝑖𝑗𝑘𝑙 

(slope of 𝑇𝑖𝑗 vs. 𝑆𝑖𝑗 curve) if differentiated with respect to the strain: 

 
𝜕𝑇𝑖𝑗

𝜕𝑆𝑘𝑙
=

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙
= 𝑐𝑖𝑗𝑘𝑙 (2.71) 

If, however, inelastic losses are considered, there are many methods that may be used to 

modify the relations above. One popular method, consistent with the literature on viscoelasticity 

[195], is to consider the Maxwell representation of the so-called “Standard Linear Solid (SLS)” 

shown in Figure 2-2:  
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Figure 2-2: Standard Linear Solid (SLS) 1D Mechanical Model Maxwell Representation 

 

As shown, the standard linear solid consists of a spring, with stiffness 𝑐∞, in parallel with a 

“Maxwell Fluid” which is a spring (𝑐) in series with a dashpot with damping parameter 𝜂. A 

stress 𝑇 and stain 𝑆 are applied to the system at the ends, and the corresponding stresses and 

strains in the springs and dashpot are shown. If a Heaviside step function were applied, the 

stiffness 𝑐 would eventually relax away and the system would exhibit the stiffness 𝑐∞, hence the 

subscript, and therefore 𝑐∞ is a time independent stiffness term. In this case, the stiffness 

exhibited by the system an infinitesimally small amount of time after loading is 𝑐0 = 𝑐 + 𝑐∞, and 

therefore 𝑐0 is the instantaneous stiffness. In mechanical systems, series elements share the 

same force with differing displacement, and parallel elements share the same displacement with 

differing force. Assume, for simplicity, that the system has unit area and length so that there is 

no distinction between stress and force, as well as strain and displacement. Note that the strain 

across the dashpot (𝛼) is inelastic and that the corresponding viscous stress, which is shared by 

the series spring, is as follows: 

 𝑇𝑣 = 𝜂�̇� = 𝑐𝑆2 = 𝑐(𝑆 − 𝛼) (2.72) 

Also, since the force is split between the parallel branches, the following relation holds for 

the total stress 𝑇. 

𝑇 = 𝑇∞ + 𝑇𝑣 = 𝑐∞𝑆 + 𝜂�̇� 

Or alternatively, 

𝑇 = 𝑇∞ + 𝑇𝑣 = 𝑐∞𝑆 + 𝑐(𝑆 − 𝛼) = 𝑐0𝑆 − 𝑐𝛼 
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It can be shown, by using the series and parallel relations, that this constitutive relation for 

the standard linear solid may be re-written as follows: 

 𝑇 + Ξ�̇� = 𝑐∞𝑆 + 𝑞�̇� (2.73a) 

 Ξ =
𝜂

𝑐
, 𝑞 = 𝜂

𝑐0

𝑐
= Ξ𝑐0 (2.73b, c) 

Where Ξ is a time constant that depends on the damping parameter and stiffness 𝑐, which 

generally vary in each direction yielding a time constant tensor. Equation (2.73a) may be written 

as follows: 

𝑇 = 𝑐∞𝑆 + Ξ[𝑐0�̇� − �̇�] 

Which may be generalized to three dimensions as follows: 

 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
∞ 𝑆𝑘𝑙 + Ξ𝑖𝑗𝑘𝑙[𝑐𝑘𝑙𝑚𝑛

0 �̇�𝑚𝑛 − �̇�𝑘𝑙] (2.74) 

This form of the relation is important as it will be assumed that the magnetic damping may 

take the same form in section 2.2.2.3 in order to acquire a dissipative term in the magnetic 

constitutive relation. Note that the elastic free energy (inside the springs) for the system is as 

follows for the 3D case: 

 𝜓(𝑆𝑖𝑗, 𝛼𝑖𝑗) =
1

2
𝑇𝑖𝑗

∞𝑆𝑖𝑗 +
1

2
𝑇𝑖𝑗

𝑣(𝑆𝑖𝑗 − 𝛼𝑖𝑗) (2.75) 

This may be expanded using the chain rule as follows: 

 �̇�(𝑆𝑖𝑗, 𝛼𝑖𝑗) =
𝜕𝜓

𝜕𝑆𝑖𝑗

𝜕𝑆𝑖𝑗

𝜕𝑡
+

𝜕𝜓

𝜕𝛼𝑖𝑗

𝜕𝛼𝑖𝑗

𝜕𝑡
=

𝜕𝜓

𝜕𝑆𝑖𝑗
�̇�𝑖𝑗 −

1

2
𝑇𝑖𝑗

𝑣 �̇�𝑖𝑗 (2.76) 

Substituting equation (2.76) into the 2nd law inequality (2.67) yields: 

 (
𝜕𝜓

𝜕𝑆𝑖𝑗
− 𝑇𝑖𝑗) �̇�𝑖𝑗 −

1

2
𝑇𝑖𝑗

𝑣�̇�𝑖𝑗 ≤ 0 (2.77) 

The inequality (2.77) may therefore be satisfied always under the following conditions: 

 𝑇𝑖𝑗 =
𝜕𝜓

𝜕𝑆𝑖𝑗
, 𝑇𝑖𝑗

𝑣 = 𝜂𝑖𝑗𝑘𝑙�̇�𝑘𝑙 (2.78a, b) 
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This definition of the viscous stress ensures that the system dissipation is non-negative, 

which may be seen by considering the 2nd law inequality in terms of a dissipation function 

𝒟𝑚𝑒𝑐ℎ: 

 (
𝜕𝜓

𝜕𝑆𝑖𝑗
− 𝑇𝑖𝑗) �̇�𝑖𝑗 − 𝒟𝑚𝑒𝑐ℎ(𝑆𝑖𝑗, 𝛼𝑖𝑗, �̇�𝑖𝑗) ≤ 0 (2.79) 

Which yields the following definition of the mechanical dissipation function: 

 𝒟𝑚𝑒𝑐ℎ(𝑆𝑖𝑗, 𝛼𝑖𝑗 , �̇�𝑖𝑗) =
1

2
𝑇𝑖𝑗

𝑣 �̇�𝑘𝑙 ≡
1

2
𝜂𝑖𝑗𝑘𝑙�̇�𝑖𝑗�̇�𝑘𝑙 ≥ 0 (2.80) 

The purely mechanical losses of (2.80) are those where bulk mechanical motion is lost to 

unorganized nanoscale lattice vibrations (friction/thermal losses), which is called mechanical 

“damping” herein. In contrast, the mechanical energy loss from transfer to electrical energy 

(piezoelectric effect) or to magnetic energy (magnetostriction) is referred to as energy 

“conversion”. Both damping and conversion are combined under the umbrella of “dissipation”. 

Converted energy may then go on to be dissipated due to loss mechanisms within other 

domains of physics, such as Gilbert (magnetic) damping, or propagated out as EM radiation. 

The goal of introducing mechanical losses was then to apply the viscoelastic methodology to the 

magnetics equations to model magnetic damping. As such, the level of complexity introduced by 

using the SLS is not necessary. Therefore, a further simplification will now be made in that the 

spring with stiffness 𝑐 in Figure 2-2 is removed (Kelvin solid model) which yields the following 

relation: 

𝑇 = 𝑇𝑠𝑝𝑟𝑖𝑛𝑔 + 𝑇𝑑𝑎𝑠ℎ𝑝𝑜𝑡 = 𝑐𝑆 + 𝜂�̇� 

Which may be generalized into three dimensions as follows: 

 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
∞ 𝑆𝑘𝑙 + 𝜂𝑖𝑗𝑘𝑙�̇�𝑘𝑙 (2.81) 

Where the last term on the right-hand side is a mechanical damping term, as utilized by Auld 

[4], that acts to resist deformation and attenuate acoustic waves. The 𝜂𝑖𝑗𝑘𝑙 damping tensor 

always has the same form as the stiffness tensor and is populated using acoustic quality factors 
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which are frequency dependent. Further discussion on quality factors is presented in section 

2.4. Equation (2.81) will be used to write update equations for the stress within the numerical 

formulation presented herein. 

2.2.2.3 Purely Magnetic Constitutive Relation 

From eq (2.56), a purely magnetic system has the following relation to the free energy [194]: 

 �̇� + (
1

𝑀2 𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 + 𝜋𝑖) �̇�𝑖 − 𝜁𝑗𝑖�̇�𝑖,𝑗 − 𝐻𝑖�̇�𝑖 ≤ 0 (2.82) 

The order parameters on which the material free energy depends are three-fold: 

𝜓 = 𝜓(𝐵𝑖, 𝑀𝑖, 𝑀𝑖,𝑗) 

By the chain rule the time rate of change of the free energy is expanded as: 

 �̇� =
𝜕𝜓

𝜕𝐵𝑖
�̇�𝑖 +

𝜕𝜓

𝜕𝑀𝑖
�̇�𝑖 +

𝜕𝜓

𝜕𝑀𝑖,𝑗
�̇�𝑖,𝑗 (2.83) 

Substituting equation (2.83) into equation (2.82) and combining like terms yields: 

 (
𝜕𝜓

𝜕𝐵𝑖
− 𝐻𝑖) �̇�𝑖 + (

𝜕𝜓

𝜕𝑀𝑖
+

1

𝑀2 𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 + 𝜋𝑖) �̇�𝑖 + (
𝜕𝜓

𝜕𝑀𝑖,𝑗
− 𝜁𝑗𝑖) �̇�𝑖,𝑗 ≤ 0 (2.84) 

Ignoring the �̇�𝑖 term for now, eq (2.84) above can be made to always satisfy the equality 

condition by the following relations: 

 𝐻𝑖 =
𝜕𝜓

𝜕𝐵𝑖
, 𝜁𝑗𝑖 =

𝜕𝜓

𝜕𝑀𝑖,𝑗
 (2.85a, b) 

These are the terms not related to dissipation. The first term (a) leads to the inverse 

permeability tensor 𝛽𝑖𝑗
𝜇

 (slope of the 𝐻 vs. 𝐵 curve) which may be seen by differentiating (2.85a) 

with respect to the magnetic flux: 

 
𝜕𝐻𝑖

𝜕𝐵𝑗
=

𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
= 𝛽𝑖𝑗

𝜇
= 𝜇𝑖𝑗

−1 (2.86) 

The second (b) is a statement that the surface micro-force tensor is related to the 

magnetization gradients and therefore associated with the exchange energy within the thickness 
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of magnetic domain walls where such gradients are non-zero. In the absence of domain walls 

(single domain) this term may be ignored completely. 

Now focusing on the volumetric micro-force in (2.84), this satisfies the inequality if written as 

follows [184]: 

 𝜋𝑖 = −(
𝜕𝜓

𝜕𝑀𝑖
+

1

|𝑀|2
𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟) − 𝛽�̇�𝑖 (2.87) 

The governing equation of micromagnetics may now be determined by substituting this 

expression for πi back into the balance of angular momentum equation (2.9): 

 

𝜁𝑗𝑖,𝑗 =
𝜇0

|𝑀|2𝛾0
𝜖𝑖𝑗𝑘�̇�𝑗𝑀𝑘 −

1

|𝑀|2
𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟

+ (
𝜕𝜓

𝜕𝑀𝑖
+

1

|𝑀|2
𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑠,𝑝𝜁𝑝𝑟 + 𝛽�̇�𝑖) 

(2.88) 

Canceling and Rearranging terms yields: 

 
1

𝜇0
(𝜁𝑗𝑖,𝑗 −

𝜕𝜓

𝜕𝑀𝑖
) =

1

|𝑀|2𝛾0
𝜖𝑖𝑗𝑘�̇�𝑗𝑀𝑘 +

𝛽

𝜇0
�̇�𝑖 (2.89) 

Define the effective magnetic field as follows: 

 𝐻𝑖
𝑒𝑓𝑓

=
1

𝜇0
(𝜁𝑗𝑖,𝑗 −

𝜕𝜓

𝜕𝑀𝑖
) (2.90) 

This effective magnetic field will be explored more in section 2.2.3, for now substitute (2.90) 

into (2.89): 

 𝐻𝑖
𝑒𝑓𝑓

−
𝛽

𝜇0
�̇�𝑖 =

1

|𝑀|2𝛾0
𝜖𝑖𝑗𝑘�̇�𝑗𝑀𝑘 (2.91) 

Taking the cross product of equation (2.91) with respect to magnetization yields: 

 𝜖𝑖𝑗𝑘𝑀𝑗 (𝐻𝑘
𝑒𝑓𝑓

−
𝛽

𝜇0
�̇�𝑘) =

1

|𝑀|2𝛾0
𝜖𝑖𝑗𝑘𝜖𝑘𝑟𝑠𝑀𝑗𝑀𝑟�̇�𝑠 (2.92) 

Since the isothermal assumption has been utilized, the fact that the magnetization 

magnitude is nearly constant at any given temperature will be leveraged. It is often assumed in 
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the micromagnetics literature that the magnitude of magnetization is equal to the saturation 

magnetization. Applying this assumption to equation (2.92) yields: 

 𝜖𝑖𝑗𝑘𝑀𝑗 (𝐻𝑘
𝑒𝑓𝑓

−
𝛽

𝜇0
�̇�𝑘) =

1

𝛾0
�̇�𝑖 (2.93) 

The relationship between the damping factor 𝛽 and the more familiar gilbert damping factor 

𝛼 is 𝛽 =
𝜇0𝛼

𝛾0𝑀𝑠
=

𝛼

𝛾𝑀𝑠
 therefore: 

 
1

𝜇0𝛾
�̇�𝑖 = 𝜖𝑖𝑗𝑘𝑀𝑗 (𝐻𝑘

𝑒𝑓𝑓
−

𝛼

𝜇0𝛾𝑀𝑠
�̇�𝑘) (2.94) 

Where equation (2.94) is the Landau-Lifshitz-Gilbert (LLG) equation describing the 

precessional motion of the magnetization vector about the effective field. Note that the equation 

involves the torque that causes the precession in the form of 𝜖𝑖𝑗𝑘𝑀𝑗𝐻𝑘
𝑒𝑓𝑓

 in addition to a 

damping term of the form 𝜖𝑖𝑗𝑘𝑀𝑗�̇�𝑘. Since the magnitude of the magnetization is assumed 

constant, this term acts to damp out directional (transverse) changes in the magnetization. The 

LLG equation is written such that each term has the units of magnetic torque (𝑀 × 𝐻). Note that 

this leads to a term with units of time in front of the Gilbert damping torque: 

 Ξ =
𝛼

𝜇0𝛾𝑀𝑠
 (2.95) 

The significance of this time constant will now be explored. Consider the 2nd law inequality if 

the magnetic microforce tensors were not considered, namely: 

 �̇� − 𝐻𝑖�̇�𝑖 ≤ 0 (2.96) 

This applies for a purely magnetic system in the absence of micromagnetic considerations. 

Now assume that the magnetic system behaves like the standard linear solid (SLS), presented 

in section 2.2.2.2, where magnetic flux is analogous to strain, and magnetic field is analogous to 

stress. The magnetic free energy would then be: 

 𝜓(𝐵𝑖, 𝐵𝑖
𝑑) =

1

2
𝐻𝑖

∞𝐵𝑖 +
1

2
𝐻𝑖

𝑑(𝐵𝑖 − 𝐵𝑖
𝑑) (2.97) 
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Where 𝐵𝑖
𝑑 and 𝐻𝑖

𝑑 are dissipation fields and 𝐻𝑖
∞ is the magnetic field after a large amount of 

time has passed since a step excitation was applied. Equation (2.97) may be expanded using 

the chain rule as follows: 

 𝜓(𝐵𝑖, 𝐵𝑖
𝑑) =

𝜕𝜓

𝜕𝐵𝑖

𝜕𝐵𝑖

𝜕𝑡
+

𝜕𝜓

𝜕𝐵𝑖
𝑑

𝜕𝐵𝑖
𝑑

𝜕𝑡
=

𝜕𝜓

𝜕𝐵𝑖
�̇�𝑖 −

1

2
𝐻𝑖

𝑑𝐵𝑖
𝑑 (2.98) 

Substituting this into the 2nd law inequality of (2.96) yields: 

 (
𝜕𝜓

𝜕𝐵𝑖
− 𝐻𝑖) �̇�𝑖 −

1

2
𝐻𝑖

𝑑𝐵𝑖
𝑑 ≤ 0 (2.99) 

The inequality may therefore be satisfied always under the following conditions: 

 𝐻𝑖 =
𝜕𝜓

𝜕𝐵𝑖
, 𝐻𝑖

𝑑 = 𝜂𝑖𝑗�̇�𝑗
𝑑 (2.100a, b) 

This definition of the viscous stress ensures that the system dissipation is non-negative, 

which may be seen by considering the 2nd law inequality in terms of a dissipation function 𝒟𝑚𝑎𝑔: 

 (
𝜕𝜓

𝜕𝐵𝑖
− 𝐻𝑖) �̇�𝑖 − 𝒟𝑚𝑎𝑔(𝐵𝑖, 𝐵𝑖

𝑑 , �̇�𝑖
𝑑) ≤ 0 (2.101) 

Which yields the following definition of the mechanical dissipation function: 

 𝒟𝑚𝑎𝑔(𝐵𝑖, 𝐵𝑖
𝑑 , �̇�𝑖

𝑑) =
1

2
𝐻𝑖

𝑑𝐵𝑖
𝑑 ≡

1

2
𝜂𝑖𝑗�̇�𝑖

𝑑�̇�𝑗
𝑑 ≥ 0 (2.102) 

These damping fields have yet to be related to the Gilbert damping seen within the LLG 

equation (2.94), however. To begin to write a relation, note that the magnetic constitutive 

relation will take the same form as eq. (2.74) for mechanics (repeated below), namely: 

 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
∞ 𝑆𝑘𝑙 + Ξ𝑖𝑗𝑘𝑙[𝑐𝑘𝑙𝑚𝑛

0 �̇�𝑚𝑛 − �̇�𝑘𝑙] (2.74) 

 𝐻𝑖 = 𝛽𝑖𝑗
∞𝐵𝑗 + Ξ𝑖𝑗[𝛽𝑗𝑘

0 �̇�𝑘 − �̇�𝑗] (2.103) 

 Ξ𝑖𝑗 = 𝜂𝑖𝑘𝜇𝑘𝑗 (2.104) 

Note that the inverse permeability is analogous to the stiffness in this comparison. Lossy 

magnetic materials under a constant bias field [14] exhibit an instantaneous permeability 𝛽𝑗𝑘
0  
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(shortly after a step excitation is applied) that is equal to the free space value with no 

directionality, therefore: 

 𝛽𝑗𝑘
0 =

1

𝜇0
 (2.105) 

Additionally, recognize that the time independent inverse permeability 𝛽𝑖𝑗
∞ is the 𝛽𝑖𝑗

𝜇
 term that 

was used previously. This yields: 

 𝐻𝑖 = 𝛽𝑖𝑗
𝜇
𝐵𝑗 + Ξ𝑖𝑗 [

1

𝜇0
�̇�𝑗 − �̇�𝑗] (2.106) 

Interestingly, the bracketed term is the exact definition of the magnetization: 

 𝑀𝑗 =
1

𝜇0
𝐵𝑗 − 𝐻𝑗 (2.107) 

Therefore, by substituting eq. (2.107) into (2.106) the magnetic constitutive relation may be 

written as follows: 

 𝐻𝑖 = 𝛽𝑖𝑗
𝜇
𝐵𝑗 + Ξ𝑖𝑗�̇�𝑗 (2.108) 

Where the following relations hold: 

 𝛽𝑖𝑗
𝜇
𝜇𝑗𝑘 = 𝛿𝑗𝑘 , 𝜇𝑖𝑗 = 𝜇0(𝛿𝑖𝑗 + 𝜒𝑖𝑗) (2.109a, b) 

Here, 𝜇𝑗𝑘 and 𝜒𝑖𝑗 are the magnetic permeability and susceptibility respectively. The goal 

now is to populate the time constant tensor Ξ𝑖𝑗 using additional physical arguments. Firstly, note 

that the form of eq. (2.108) suggests that the magnetic damping field 𝐻𝑖
𝑑, discussed in eq. 

(2.100b), may also be written as follows: 

 𝐻𝑖
𝑑 = 𝜂𝑖𝑗�̇�𝑗

𝑑 = −Ξ𝑖𝑗�̇�𝑗 = −𝜂𝑖𝑘𝜇𝑘𝑗�̇�𝑗 (2.110) 

Note that 𝐻𝑖
𝑑 is the damping field which resists the precessional motion of the 

magnetization. Also, from (2.5.4), the relation of the damping magnetic flux field to the 

magnetization is: 

 𝐵𝑗
𝑑 = −𝜇𝑘𝑗𝑀𝑗 (2.111) 
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Which states that the damping magnetic field is anti-parallel to the magnetization in an 

isotropic material. The second order damping tensor Ξ𝑖𝑗
𝑇  will now be defined by arguing that 𝐻𝑖

𝑑, 

defined in eq. (2.110), is antiparallel to the time rate of change of magnetization (�̇�𝑖) as shown 

in Figure 2-3. This is argued to be the case because the damping field resists magnetization 

precessional motion, therefore the Ξ𝑖𝑗
𝑇  damping tensor is a positive scalar since any change in 

directionality of the damping magnetic field would cause it to no longer be anti-parallel to the 

time rate of change of magnetization. 

 𝐻𝑗
𝑑 = −Ξ𝑗𝑘

𝑇 �̇�𝑘 = −Ξ𝑇�̇�𝑗 (2.112) 

 

Figure 2-3: Magnetic Damping Field 

Note that eq. (2.112) yields the desired result, namely a damping field which is antiparallel to 

�̇�𝑖. In order to determine the value of the damping constant Ξ𝑇, it is now postulated that the 

damping field must produce the same torque as the Gilbert damping torque within the LLG 

equation, therefore: 

 𝜖𝑖𝑗𝑘𝑀𝑗𝐻𝑘
𝑑 = −Ξ𝑇𝜖𝑖𝑗𝑘𝑀𝑗�̇�𝑘 =

𝛼

𝛾0𝑀𝑠
𝜖𝑖𝑗𝑘𝑀𝑗�̇�𝑘 (2.113) 

This yields: 

 Ξ𝑇 = −
𝛼

𝛾0𝑀𝑠
= 𝜏 (2.114) 

Therefore, the magnetic damping tensor that was introduced degenerates into time constant 

𝜏, the importance of which is further elaborated on in the next section. The time constant is 
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positive since the gyromagnetic ratio of the electron is a negative value (due to the negative 

charge of the electron). Note that the time constant is proportional to the damping constant 𝛼 

which was introduced in section Error! Reference source not found. to satisfy the 2nd law of 

thermodynamics by utilizing the dissipation micro-force 𝜋𝑖 and therefore eq. (2.114) is an 

indirect relation between these terms. The magnetic constitutive relation may now be written as: 

 𝐵𝑖 = 𝜇𝑖𝑗
𝑇 𝐻𝑗 +

𝛼

𝛾0𝑀𝑠
𝜇𝑖𝑗

𝑇 (
1

𝜇0
�̇�𝑗 − �̇�𝑗) (2.115) 

The permeability terms above are time independent and represent the slope of the magnetic 

flux (B) versus magnetic field (H) curve at an area of interest (bias magnetic field with small 

excitations). The viscoelastic approximation to the micromagnetic damping presented herein is 

a good first approximation for linear piezomagnetic systems but must be modified in order to 

match the LLG solution [196]. Some of the shortcomings of the viscoelastic analog are 

summarized in section 1.5 of [197]. 

2.2.3 Taylor Series Expansion of Free Energy 

Thus far in the formulation purely electrical, mechanical, and magnetic forms of the free 

energy have been presented, yielding constitutive relations in the absence of cross-coupling 

between physical domains. An expression for the fully coupled free energy has not been 

provided, however a well-behaved function can be approximated by a Taylor series expansion 

[192], taken with respect to a reference state. In multiferroic antennas a DC bias magnetic field 

(𝐻𝑖
𝐷𝐶) is applied in order to saturate the ferromagnetic material. For this reason, it is useful to 

think of the reference state for the magnetic field and the magnetization as 𝐻𝑖
𝐷𝐶 and 𝑀𝑠 

respectively. This means that the 𝐻𝑖 and 𝑀𝑖 terms that appear in the 2nd law of thermodynamics 

are fluctuations of these fields with respect to 𝐻𝑖
𝐷𝐶 and 𝑀𝑠. Therefore 𝐻𝑖 represents the dynamic 

magnetic field driven by electromagnetic fluctuations governed by Maxwell’s equations. This has 

a corresponding magnetization which is as follows: 



 
 

82 

 

 𝑀𝑖
𝑚𝑎𝑥𝑤𝑒𝑙𝑙 = 𝜒𝑖𝑗

𝑇𝐻𝑗 (2.116) 

In the reference state it is also assumed that the material is unstrained. Performing the 

expansion on the free energy yields: 

 

∆𝜓 = 𝜓 ≈
𝜕𝜓

𝜕𝑆𝑖𝑗
𝑆𝑖𝑗 +

𝜕𝜓

𝜕𝛼𝑖𝑗
𝛼𝑖𝑗 +

𝜕𝜓

𝜕𝐵𝑖
𝐵𝑖 +

𝜕𝜓

𝜕𝐷𝑖
𝐷𝑖 +

𝜕𝜓

𝜕𝑀𝑖
𝑀𝑖 +

𝜕𝜓

𝜕𝑀𝑖,𝑗
𝑀𝑖,𝑗

+
𝜕𝜓

𝜕𝐵𝑖
𝑑 𝐵𝑖

𝑑

+
1

2!
(

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙
𝑆𝑖𝑗𝑆𝑘𝑙 +

𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
𝐵𝑖𝐵𝑗 +

𝜕2𝜓

𝜕𝐷𝑖𝜕𝐷𝑗
𝐷𝑖𝐷𝑗

+
𝜕2𝜓

𝜕𝑀𝑖𝜕𝑀𝑗
𝑀𝑖𝑀𝑗 +

𝜕2𝜓

𝜕𝑀𝑖,𝑗𝜕𝑀𝑘,𝑙
𝑀𝑖,𝑗𝑀𝑘,𝑙 + 2

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐵𝑘
𝑆𝑖𝑗𝐵𝑘

+ 2
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐷𝑘
𝑆𝑖𝑗𝐷𝑘 + 2

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝛼𝑘𝑙
𝑆𝑖𝑗𝛼𝑘𝑙 + 2

𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
𝑑 𝐵𝑖𝐵𝑗

𝑑 ⋯)

+
1

3!
(

𝜕3𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙𝜕𝑆𝑚𝑛
𝑆𝑖𝑗𝑆𝑘𝑙𝑆𝑚𝑛 +

𝜕3𝜓

𝜕𝐵𝑖𝜕𝐵𝑗𝜕𝐵𝑘
𝐵𝑖𝐵𝑗𝐵𝑘

+
𝜕3𝜓

𝜕𝑀𝑖𝜕𝑀𝑗𝜕𝑀𝑘
𝑀𝑖𝑀𝑗𝑀𝑘 + ⋯) + 𝑂4 

(2.117) 

Where 𝑂4 represents all terms of order 4 and above. Recall that when performing an 

expansion, all independent fields are held constant, save the fields that appear in the 

derivatives. For example, zone in on the following terms: 

(
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙
)

𝛼𝑖𝑗,𝐵𝑖,𝐷𝑖,𝑀𝑖,𝑀𝑖,𝑗,𝐵𝑖
𝑑,𝑇

, (
𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
𝑑)

𝑆𝑖𝑗,𝛼𝑖𝑗,𝐷𝑖,𝑀𝑖,𝑀𝑖,𝑗,𝑇

 

Where all of the fields that are held constant are now explicitly stated through the use of 

subscripts. For brevity these superscripts are almost always omitted in this work. Many of the 

terms in (2.117) may be eliminated by making some physical observations [192]. If the 

reference configuration is in a cubic state, all linear terms are removed since the energy should 

change by the same amount regardless of whether any order parameter changes positively or 
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negatively. For example, a tensile strain on a bar loaded axially increases the strain energy by 

the same amount as a compressive strain of the same magnitude. Similarly, a clockwise 

rotation of the magnetization vector changes the energy by the same amount as a 

counterclockwise rotation. Also, the energy related to magnetization gradients is assumed to be 

an uncoupled quadratic term, therefore: 

 

∆𝜓 = 𝜓 ≈
1

2!
(

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙
𝑆𝑖𝑗𝑆𝑘𝑙 +

𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
𝐵𝑖𝐵𝑗 +

𝜕2𝜓

𝜕𝐷𝑖𝜕𝐷𝑗
𝐷𝑖𝐷𝑗 +

𝜕2𝜓

𝜕𝑀𝑖𝜕𝑀𝑗
𝑀𝑖𝑀𝑗

+
𝜕2𝜓

𝜕𝑀𝑖,𝑗𝜕𝑀𝑘,𝑙
𝑀𝑖,𝑗𝑀𝑘,𝑙 + 2

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐵𝑘
𝑆𝑖𝑗𝐵𝑘 + 2

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐷𝑘
𝑆𝑖𝑗𝐷𝑘

+ 2
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝛼𝑘𝑙
𝑆𝑖𝑗𝛼𝑘𝑙 + 2

𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
𝑑 𝐵𝑖𝐵𝑗

𝑑 ⋯)

+
1

3!
(

𝜕3𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙𝜕𝑆𝑚𝑛
𝑆𝑖𝑗𝑆𝑘𝑙𝑆𝑚𝑛 +

𝜕3𝜓

𝜕𝐵𝑖𝜕𝐵𝑗𝜕𝐵𝑘
𝐵𝑖𝐵𝑗𝐵𝑘

+
𝜕3𝜓

𝜕𝑀𝑖𝜕𝑀𝑗𝜕𝑀𝑘
𝑀𝑖𝑀𝑗𝑀𝑘 + ⋯) + 𝑂4 

(2.118) 

This process of eliminating terms can be continued until a general form of the Helmholtz free 

energy is found. In section 2.3, the electric, magnetic, and mechanical constitutive relations are 

considered in their coupled states, and further terms are eliminated. First, a cubic ferromagnet 

will be considered in order to further elaborate on the effective magnetic field (𝐻𝑖
𝑒𝑓𝑓

) within the 

LLG equation (2.94). In this case, the free energy may be written as: 

 

𝜓(𝑆𝑖𝑗, 𝑀𝑖 , 𝑀𝑖,𝑗 , 𝐵𝑗) = −µ0𝑀𝑖𝐻𝑖
𝑒𝑥𝑡 +

1

2
𝐴𝑖𝑗𝑘𝑙𝑀𝑖,𝑗𝑀𝑘,𝑙 + 𝐾𝑖𝑗𝑘𝑙𝑀𝑖𝑀𝑗𝑀𝑘𝑀𝑙 + 

𝐾𝑖𝑗𝑘𝑙𝑚𝑛𝑀𝑖𝑀𝑗𝑀𝑘𝑀𝑙𝑀𝑚𝑀𝑛 +
1

2
𝑐𝑖𝑗𝑘𝑙(𝑆𝑖𝑗 − 𝑆𝑖𝑗

𝑚)(𝑆𝑘𝑙 − 𝑆𝑘𝑙
𝑚) −

1

2
µ0𝑀𝑖𝐻𝑖

𝑑 

(2.119) 

The first term on the right-hand side is the energy associated with an externally applied 

magnetic field. The second term is the exchange energy which models the effects of the 

magnetization gradients on the material free energy. This term gives the magnetic domain walls 

energy and thickness since a domain wall is defined as a finite region in which magnetization 
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gradients are non-zero. The third and fourth terms model magnetocrystalline anisotropy energy. 

These higher order magnetization terms are necessary to model the “easy” directions within a 

magnetic material. The fifth term models the strain energy and includes the magnetoelastic 

terms. The last term is the energy associated with the demagnetizing field 𝐻𝑖
𝑑𝑒𝑚𝑎𝑔

. The free 

energy can therefore be written as follows: 

 𝜓(𝜀𝑖𝑗, 𝑀𝑖, 𝑀𝑖,𝑗, 𝐵𝑗) = 𝐸𝑒𝑥𝑡 + 𝐸𝑒𝑥 + 𝐸𝑎𝑛𝑖𝑠 + 𝐸𝑑𝑒𝑚𝑎𝑔 + 𝐸𝑒𝑙 (2.120) 

Where 𝐸𝑒𝑥𝑡 is the external energy density, 𝐸𝑒𝑥 is the exchange energy density, 𝐸𝑎𝑛𝑖𝑠 is the 

magnetocrystalline anisotropy energy density, 𝐸𝑑𝑒𝑚𝑎𝑔 is the demagnetization energy density, 

and 𝐸𝑒𝑙 is the elastic energy density. 

2.2.3.1 Energy Terms 

The energy terms in the previous section are now written out explicitly in terms of the 

direction of magnetization 𝑚𝑖 where, 

 𝑀𝑖 = 𝑀𝑠𝑚𝑖  (2.121) 

This is done because certain energy terms are only a function of the direction of the 

magnetization and not on its magnitude. The external energy density 𝐸𝑒𝑥𝑡 is the energy 

associated with an applied external magnetic field and is written as: 

 𝐸𝑒𝑥𝑡 = −𝜇0𝑀𝑠𝑚𝑖𝐻𝑖
𝑒𝑥𝑡 (2.122) 

Note that this energy is minimized when the magnetization is parallel with the external field 

and maximized when antiparallel. 

The exchange energy density 𝐸𝑒𝑥 is the energy associated with magnetization gradients and 

as such is necessarily associated with the magnetic domain walls. This term is expressed in 

terms of the exchange stiffness constant 𝐴𝑒𝑥 as: 

 𝐸𝑒𝑥 = 𝐴𝑒𝑥𝑚𝑖,𝑗𝑚𝑖,𝑗 (2.123) 

The anisotropic energy density 𝐸𝑎𝑛𝑖𝑠 is the energy associated with the intrinsic material 

preferred directions of magnetization and is expressed as: 
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 𝐸𝑎𝑛𝑖𝑠 = 𝐾1(𝑚1
2𝑚2

2 + 𝑚2
2𝑚3

2 + 𝑚3
2𝑚1

2) + 𝐾2(𝑚1
2𝑚2

2𝑚3
2) (2.124) 

Which draws an energy surface in real space with energy wells in the magnetic easy 

directions within the material. 

The demagnetization energy density 𝐸𝑑𝑒𝑚𝑎𝑔 is the energy associated with surface free poles 

and may be written in terms of the demagnetizing field as follows: 

 𝐸𝑑𝑒𝑚𝑎𝑔 = −
1

2
µ0𝑀𝑖𝐻𝑖

𝑑𝑒𝑚𝑎𝑔
 (2.125) 

This energy is minimized when the magnetization is in the same direction as the 

demagnetizing field. Since the system creates this field itself, the ½ term is included which is 

typical in self energizing systems since the material should not be counted once as the exciter 

and once as the potential being excited. This energy is particularly important since magnetic 

domains form in order to minimize magnetostatic energy. When full Maxwell’s equations are 

utilized within a simulation and the material interface conditions are enforced, the 

demagnetization field is determined automatically by the solver [131]. 

The elastic energy density 𝐸𝑒𝑙 is the strain energy associated elastic strains which in the 

case of isothermal ferromagnetic materials may be defined from the total strain (𝑆𝑖𝑗) as follows: 

 𝑆𝑖𝑗 = 𝑆𝑖𝑗
𝑒𝑙 + 𝑆𝑖𝑗

𝑚   →   𝑆𝑖𝑗
𝑒𝑙 = 𝑆𝑖𝑗 − 𝑆𝑖𝑗

𝑚 (2.126a, b) 

Therefore: 

 𝐸𝑒𝑙 =
1

2
𝑐𝑖𝑗𝑘𝑙𝑆𝑖𝑗

𝑒𝑙𝑆𝑘𝑙
𝑒𝑙 =

1

2
𝑐𝑖𝑗𝑘𝑙(𝑆𝑖𝑗 − 𝑆𝑖𝑗

𝑚)(𝑆𝑘𝑙 − 𝑆𝑘𝑙
𝑚) (2.127) 

Where 𝑆𝑖𝑗
𝑚 is the magnetostriction, the strain caused by magnetization, which for a cubic 

crystal may be written as: 

 𝑆𝑖𝑗
𝑚 = {

 
3

2
𝜆100 (𝑚𝑖𝑚𝑗 −

1

3
)     𝑖 = 𝑗

3

2
𝜆111𝑚𝑖𝑚𝑗 𝑖 ≠ 𝑗

 (2.128) 
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Where 𝜆100 and 𝜆111 are the saturation magnetostriction constants in the <100> and <111> 

crystallographic directions respectively. In other words, these constants represent the strain in 

the material in the <100> or <111> direction when all the magnetization vectors in the material 

are pointed in the <100> or <111> direction respectively. Note that if the material is saturated in 

the <100> direction (𝑚1 = 1,𝑚2 = 𝑚3 = 0) the magnetostriction will be: 

 𝑆𝑖𝑗
𝑚 = [

𝜆100 0 0
0 −𝜆100/2 0
0 0 −𝜆100/2

] (2.129) 

2.2.3.2 Effective Magnetic Field 

The effective magnetic field was defined previously in equation (2.90) which is repeated 

here for convenience: 

 𝐻𝑖
𝑒𝑓𝑓

=
1

𝜇0
(𝜁𝑗𝑖,𝑗 −

𝜕𝜓

𝜕𝑀𝑖
) (2.130) 

Recall also that the surface micro-force tensor is equal to the derivative of the free energy 

with respect to the magnetization gradients, therefore: 

 𝜁𝑗𝑖,𝑗 = (
𝜕𝜓

𝜕𝑀𝑖,𝑗
)

,𝑗

= (2
𝐴𝑒𝑥

𝑀𝑠
2 𝑀𝑖,𝑗)

,𝑗

= 2
𝐴𝑒𝑥

𝑀𝑠
2 𝑀𝑖,𝑗𝑗 (2.131) 

Therefore 𝜁𝑗𝑖,𝑗 is proportional to the divergence of the magnetization gradients and accounts 

for the exchange energy, therefore: 

 𝐻𝑖
𝑒𝑓𝑓

= 𝐻𝑖
𝑒𝑥 −

1

𝜇0𝑀𝑠

𝜕𝜓

𝜕𝑚𝑖
= 𝐻𝑖

𝑒𝑥𝑡 + 𝐻𝑖
𝑒𝑥 + 𝐻𝑖

𝑎𝑛𝑖𝑠 + 𝐻𝑖
𝑑𝑒𝑚𝑎𝑔

+ 𝐻𝑖
𝑚𝑒 (2.132) 

Where the exchange magnetic field is separated since this field is a function of 

magnetization gradients, whereas all other magnetic fields are a function of magnetization. 

Recall 𝐻𝑖
𝑒𝑥𝑡 is an externally applied magnetic field, and: 

 𝐻𝑖
𝑒𝑥 =

2𝐴𝑒𝑥

𝜇0𝑀𝑠
𝑚𝑖,𝑗𝑗 (2.133) 
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 𝐻𝑖
𝑎𝑛𝑖𝑠 = −

2𝑚𝑖

𝜇0𝑀𝑠
[𝐾1(𝑚𝑗

2 + 𝑚𝑘
2) + 𝐾2(𝑚𝑗

2𝑚𝑘
2)] (2.134) 

 𝐻𝑖
𝑚𝑒 = −

1

𝜇0𝑀𝑠
𝑐𝑖𝑗𝑘𝑙(𝑆𝑘𝑙 − 𝑆𝑘𝑙

𝑚)
𝜕𝑆𝑖𝑗

𝑚

𝜕𝑚𝑗
 (2.135) 

For single magnetic domain simulations, the exchange field is zero. 

2.3 Coupled Constitutive Relations 

In section 2.2.2 the uncoupled constitutive relations for a purely electrical, mechanical, and 

magnetic system were introduced. It was then shown in section 2.2.3 that the free energy may 

be expressed in terms of a Taylor series expansion that includes cross-coupled terms. In this 

section the fully coupled constitutive relations will be presented that include the multiferroic 

effects of piezoelectricity and piezomagnetism. The mechanical constitutive relation will be 

presented first, which is used to write update equations for the stresses. The magnetic 

constitutive relation will be presented next, which is used to update the magnetic fields and to 

derive the implicit electric field update equations known as the ADI-FDTD equations. Lastly, the 

electric constitutive relation is presented which is also used to derive the ADI-FDTD equations. 

2.3.1 Mechanical Constitutive Relation 

The mechanical constitutive relation may be written utilizing the proposed Taylor series 

expansion and the Clausius-Duhem inequality as follows: 

 

𝑇𝑖𝑗 =
𝜕𝜓

𝜕𝑆𝑖𝑗
=

1

2

𝜕

𝜕𝑆𝑖𝑗
[(

𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙
)

𝐵,𝛼⋯

𝑆𝑖𝑗𝑆𝑘𝑙 + 2(
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐵𝑘
)

𝛼,𝐸⋯

𝑆𝑖𝑗𝐵𝑘

+ 2(
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐸𝑘
)

𝐵,𝛼⋯

𝑆𝑖𝑗𝐷𝑘 + 2(
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝛼𝑘𝑙
)

𝐵,𝐸⋯

𝑆𝑖𝑗𝛼𝑘𝑙 + ⋯]

+ ⋯ 

(2.136) 

Where the electric dependent variable has been switched to 𝐸 rather than 𝐷, which will 

simplify the ADI algorithm derived in chapter 3 since the ADI equations update the electric fields 
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not the electric fluxes. The higher order (non-linear) terms in (2.136) will be ignored, and the 

subscripts denote, for brevity, only some of the fields that are to be held constant, therefore: 

 

𝑇𝑖𝑗 = (
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝑆𝑘𝑙
)

𝐵,𝐸,𝛼⋯

𝑆𝑘𝑙 + (
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐵𝑘
)

𝛼,𝐸⋯

𝐵𝑘 + (
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝐸𝑘
)

𝐵,𝛼⋯

𝐸𝑘

+ (
𝜕2𝜓

𝜕𝑆𝑖𝑗𝜕𝛼𝑘𝑙
)

𝐵,𝐸⋯

𝛼𝑘𝑙 

(2.137) 

The first term in parenthesis is the instantaneous stiffness tensor 𝑐𝑖𝑗𝑘𝑙
0  discussed in section 

2.1.2 (stiffness when no viscous effects exist 𝑐0 = 𝑐∞ + 𝑐), which is measured at constant 

magnetic flux, inelastic strain, etc. To recover the SLS constitutive relation of section 2.2.2.2, the 

final term is the negative of the stiffness which relaxes away over time (c𝑖𝑗𝑘𝑙). The second and 

third terms are piezomagnetic and piezoelectric coupling tensors which are well documented in 

the IEEE literature [198][199] and elsewhere [194], therefore: 

 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
0 𝑆𝑘𝑙 − ℎ𝑘𝑖𝑗

𝑃𝑀𝐵𝑘 − ℎ𝑘𝑖𝑗
𝑃𝐸𝐷𝑘 − 𝑐𝑖𝑗𝑘𝑙𝛼𝑘𝑙 (2.138) 

Which may be re-written into the equivalent expression: 

 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
∞ 𝑆𝑘𝑙 − ℎ𝑘𝑖𝑗

𝑃𝑀𝐵𝑘 − ℎ𝑘𝑖𝑗
𝑃𝐸𝐷𝑘 + 𝜂𝑖𝑗𝑘𝑙�̇�𝑘𝑙 (2.139) 

Where the fields to be held constant at measurement have now been omitted, and the 

superscripts on the third order coupling tensors denote piezomagnetism (PM) and 

piezoelectricity (PE) respectively. The third order ℎ𝑖𝑗𝑘 coupling tensors relate the EM induced 

stress terms (𝑇𝑖𝑗
𝑃𝑀 and 𝑇𝑖𝑗

𝑃𝐸) to the EM fields that induce them, namely: 

 ℎ𝑘𝑖𝑗
𝑃𝑀 =

𝜕𝑇𝑖𝑗
𝑃𝑀

𝜕𝐵𝑘
, ℎ𝑘𝑖𝑗

𝑃𝐸 =
𝜕𝑇𝑖𝑗

𝑃𝐸

𝜕𝐷𝑘
 (2.140a, b) 

Also, 𝑑𝑘𝑖𝑗
𝑃𝑀 and 𝑑𝑘𝑖𝑗

𝑃𝐸  are the piezomagnetic and piezoelectric strain coupling tensors which 

relate the magnetostriction to the magnetic field (𝐻𝑖) and the electrically driven strain to the 

electric field (𝐸𝑖) respectively, namely: 
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 𝑑𝑘𝑖𝑗
𝑃𝑀 =

𝜕𝑆𝑖𝑗
𝑃𝑀

𝜕𝐻𝑘
, 𝑑𝑘𝑖𝑗

𝑃𝐸 =
𝜕𝑆𝑖𝑗

𝑃𝐸

𝜕𝐸𝑘
 (2.141a/b) 

There are also 𝑒𝑖𝑗𝑘 and 𝑔𝑖𝑗𝑘 coupling systems and the relation between the different 

coupling tensors is provided in [194]. The “h-form” utilized herein has proven to be the most 

convenient and stable. The mechanical portion of (2.139) may be solved via a convolution 

integral approach. Instead, the Kelvin solid approximation (𝛼𝑘𝑙 = 𝑆𝑘𝑙) will be used [200] yielding: 

 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
∞ 𝑆𝑘𝑙 − ℎ𝑘𝑖𝑗

𝑃𝑀𝐵𝑘 − ℎ𝑘𝑖𝑗
𝑃𝐸 𝐷𝑘 + 𝜂𝑖𝑗𝑘𝑙�̇�𝑘𝑙 (2.142) 

Since Kelvin solids include only one stiffness term, the super-script will be dropped. The 

system of equations (2.142) is linear, and therefore may be readily inverted yielding the 

following: 

 𝑆𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙𝑇𝑘𝑙 + 𝑔𝑘𝑖𝑗
𝑃𝑀𝐵𝑘 + 𝑔𝑘𝑖𝑗

𝑃𝐸𝐷𝑘 − 𝑠𝑖𝑗𝑘𝑙𝜂𝑘𝑙𝑚𝑛�̇�𝑘𝑙𝑚𝑛 (2.143) 

Where 𝑠𝑖𝑗𝑘𝑙 is the compliance tensor, which is the inverse of the stiffness tensor, and: 

 𝑔𝑘𝑖𝑗
𝑃𝑀 = 𝛽𝑘𝑚

𝜇
𝑑𝑚𝑖𝑗

𝑃𝑀 = ℎ𝑘𝑚𝑛
𝑃𝑀 𝑠𝑚𝑛𝑖𝑗, 𝑔𝑘𝑖𝑗

𝑃𝐸 = 𝛽𝑘𝑚
𝜖 𝑑𝑚𝑖𝑗

𝑃𝐸 = ℎ𝑘𝑚𝑛
𝑃𝐸 𝑠𝑚𝑛𝑖𝑗 (2.144a, b) 

Where 𝛽𝑘𝑚
𝜇

 and 𝛽𝑘𝑚
𝜖  are the inverse permeability and inverse permittivity respectively. 

Alternatively, these strains may be related to the magnetic and electric flux through the use of 

the 𝑔𝑖𝑗𝑘 coupling tensors as shown in equations 2.144a/b below: 

 𝑔𝑘𝑖𝑗
𝑃𝑀 =

𝜕𝑆𝑖𝑗
𝑃𝑀

𝜕𝐵𝑘
, 𝑔𝑘𝑖𝑗

𝑃𝐸 =
𝜕𝑆𝑖𝑗

𝑃𝐸

𝜕𝐷𝑘
 (2.145a/b) 

These strains are in contrast to the total strain (𝑆𝑖𝑗) in eq. (2.143) which may now be seen to 

be the summation of the elastic strain (𝑆𝑖𝑗
𝑒𝑙 = 𝑠𝑖𝑗𝑘𝑙𝑇𝑘𝑙), driven by fluctuating stresses, the 

magnetostriction (𝑆𝑖𝑗
𝑃𝑀 = 𝑔𝑘𝑖𝑗

𝑃𝑀𝐵𝑘), driven by fluctuating magnetic fields, the piezoelectric strain 

(𝑆𝑖𝑗
𝑃𝐸 = 𝑔𝑘𝑖𝑗

𝑃𝐸𝐷𝑘), and the subtraction of a damping strain term (𝑆𝑖𝑗
𝑑 = 𝑠𝑖𝑗𝑘𝑙𝜂𝑘𝑙𝑚𝑛�̇�𝑘𝑙𝑚𝑛). This 

relation, written below in (2.146), therefore states that the total strain, plus the strain lost to 

viscoelastic damping, is equal to the sum of all strains induced in an undamped system: 
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 𝑆𝑖𝑗 = 𝑆𝑖𝑗
𝑒𝑙 + 𝑆𝑖𝑗

𝑃𝑀 + 𝑆𝑖𝑗
𝑃𝐸 − 𝑆𝑖𝑗

𝑑𝑎𝑚𝑝
= (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)/2 (2.146) 

From eq. (2.145) and (2.140), the stress may therefore be rewritten as shown below: 

 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑆𝑘𝑙
𝑒𝑙 (2.147) 

Note that equation (2.147) regresses back to the expected mechanical relation when the 

electromagnetic and damping terms are zeroed out (𝑆𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙𝑇𝑘𝑙). The acoustic damping term, 

as utilized by Auld [4], acts to resist deformation and attenuate acoustic waves. The 𝜂𝑖𝑗𝑘𝑙 

damping tensor always has the same form as the stiffness tensor and is populated using 

acoustic quality factors which are frequency dependent. The equation for the stress is now re-

written in rate form, with strain rates replaced by velocity terms using the strain-displacement 

relation (2.146): 

 �̇�𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑣𝑘,𝑙 − ℎ𝑘𝑖𝑗
𝑃𝑀𝐵𝑘 − ℎ𝑘𝑖𝑗

𝑃𝐸𝐷𝑘 + 𝜂𝑖𝑗𝑘𝑙�̇�𝑘,𝑙 (2.148) 

This is the so-called velocity-stress formulation [4], since the displacement is not utilized. 

Note that this allows for the use of a 1st order time derivative in the damping term which enables 

the modeler to bypass the use of a convolution integral. In fact, the relaxation function for the 

Kelvin solid representation utilized herein is as follows: 

 𝐺𝑥𝑥𝑥𝑥(𝑡 − 𝜏) = 𝑐𝑥𝑥𝑥𝑥𝐻(𝑡 − 𝜏) + 𝜂𝑥𝑥𝑥𝑥𝛿(𝑡 − 𝜏) (2.149) 

Where 𝐻(𝑡) is the Heaviside step function and 𝛿(𝑡) is the Dirac delta function. Therefore, the 

Kelvin solid model produces sudden step changes in the stress due to changes in strain which 

is readily input into a finite difference scheme without the use of a convolution integral. The 

velocity is determined by utilizing the elastodynamic equation in the following form: 

 𝑇𝑖𝑗,𝑗 = 𝜌𝑉�̇�𝑖 (2.150) 

The piezomagnetic strain coupling tensor, truncated to include only the terms related to 

shear stress, may be written as follows for a system biased in the xy-plane: 
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𝑑𝑘𝑖𝑗
𝑃𝑀 = [

𝑐𝑠2𝑑15
𝑃𝑀 −𝑐𝑠2𝑑15

𝑃𝑀 0

−𝑐2𝑠𝑑15
𝑃𝑀 𝑐2𝑠𝑑15

𝑃𝑀 0

𝑐𝑠𝑑14
𝑃𝑀 −𝑐𝑠𝑑14

𝑃𝑀 0

     

−𝑠2𝑑14
𝑃𝑀 −𝑐𝑠𝑑14

𝑃𝑀 𝑠(𝑠2 − 𝑐2)𝑑15
𝑃𝑀

𝑐𝑠𝑑14
𝑃𝑀 𝑐2𝑑14

𝑃𝑀 𝑐(𝑐2 − 𝑠2)𝑑15
𝑃𝑀

𝑠𝑑15
𝑃𝑀 𝑐𝑑15

𝑃𝑀 (𝑠2 − 𝑐2)𝑑14
𝑃𝑀

] 

𝑐 = 𝑐𝑜𝑠𝜙, 𝑠 = 𝑠𝑖𝑛𝜙 

(2.151) 

Where 𝜙 is the biasing angle measured from the x to the y axis. Generally, however, due to 

shape effects, the tensor will differ slightly from this but still retain the same form for the in-plane 

biasing case. Additionally, Hexagonal 6mm symmetry is assumed for the piezoelectric [4]. 

Therefore, the coupling tensors and inverse permeability/permittivity tensors are as follows: 

 

𝑑𝑖𝑗𝑘
𝑃𝑀 = [

𝑑𝑥𝑥𝑥
𝑃𝑀 𝑑𝑥𝑦𝑦

𝑃𝑀 0

𝑑𝑦𝑥𝑥
𝑃𝑀 𝑑𝑦𝑦𝑦

𝑃𝑀 0

𝑑𝑧𝑥𝑥
𝑃𝑀 𝑑𝑧𝑦𝑦

𝑃𝑀 0

     

𝑑𝑥𝑦𝑧
𝑃𝑀 𝑑𝑥𝑥𝑧

𝑃𝑀 𝑑𝑥𝑥𝑦
𝑃𝑀

𝑑𝑦𝑦𝑧
𝑃𝑀 𝑑𝑦𝑥𝑧

𝑃𝑀 𝑑𝑦𝑥𝑦
𝑃𝑀

𝑑𝑧𝑦𝑧
𝑃𝑀 𝑑𝑧𝑥𝑧

𝑃𝑀 𝑑𝑧𝑥𝑦
𝑃𝑀

    

𝑑𝑥𝑦𝑧
𝑃𝑀 𝑑𝑥𝑥𝑧

𝑃𝑀 𝑑𝑥𝑥𝑦
𝑃𝑀

𝑑𝑦𝑦𝑧
𝑃𝑀 𝑑𝑦𝑥𝑧

𝑃𝑀 𝑑𝑦𝑥𝑦
𝑃𝑀

𝑑𝑧𝑦𝑧
𝑃𝑀 𝑑𝑧𝑥𝑧

𝑃𝑀 𝑑𝑧𝑥𝑦
𝑃𝑀

] 

𝑑𝑖𝑗𝑘
𝑃𝐸 = [

0 0 0
0 0 0

𝑑31
𝑃𝐸 𝑑31

𝑃𝐸 𝑑33
𝑃𝐸

    
0 𝑑15

𝑃𝐸 0

𝑑15
𝑃𝐸 0 0
0 0 0

] 

(2.152a/b) 

 𝛽𝑖𝑗
𝜇

=

[
 
 
 
 
𝛽𝑥𝑥

𝜇
𝛽𝑥𝑦

𝜇
0

𝛽𝑦𝑥
𝜇

𝛽𝑦𝑦
𝜇

0

0 0
1

𝜇𝑧𝑧]
 
 
 
 

, 𝛽𝑖𝑗
𝜖 =

[
 
 
 
 
 
 

1

𝜖𝑥𝑥
0 0

0
1

𝜖𝑦𝑦
0

0 0
1

𝜖𝑧𝑧]
 
 
 
 
 
 

 (2.153a/b) 

Tensor multiplication should now be clearer. The magnetoelastic coupling term (𝑔𝑟𝑘𝑙
𝑃𝑀) is not 

as intuitive in the current state so it is beneficial to simplify as follows: 

 

𝑔𝑟𝑘𝑙
𝑃𝑀 = 𝛽𝑟𝑞

𝑇 𝑑𝑞𝑘𝑙
𝑃𝑀 = 

[
 
 
 
 
 
 
 

𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑥 + 𝛽𝑥𝑧
𝑇 𝑑𝑧𝑥𝑥 𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑥 + 𝛽𝑦𝑧

𝑇 𝑑𝑧𝑥𝑥 𝛽𝑧𝑥
𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑧𝑦

𝑇 𝑑𝑦𝑥𝑥 + 𝛽𝑧𝑧
𝑇 𝑑𝑧𝑥𝑥

𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑦 + 𝛽𝑥𝑧
𝑇 𝑑𝑧𝑦𝑦 𝛽𝑦𝑥

𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑦𝑦 + 𝛽𝑦𝑧

𝑇 𝑑𝑧𝑦𝑦 𝛽𝑧𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑧𝑦

𝑇 𝑑𝑦𝑦𝑦 + 𝛽𝑧𝑧
𝑇 𝑑𝑧𝑦𝑦

𝛽𝑥𝑥
𝑇 𝑑𝑥𝑧𝑧 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑧𝑧 + 𝛽𝑥𝑧
𝑇 𝑑𝑧𝑧𝑧 𝛽𝑦𝑥

𝑇 𝑑𝑥𝑧𝑧 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑧𝑧 + 𝛽𝑦𝑧

𝑇 𝑑𝑧𝑧𝑧 𝛽𝑧𝑥
𝑇 𝑑𝑥𝑧𝑧 + 𝛽𝑧𝑦

𝑇 𝑑𝑦𝑧𝑧 + 𝛽𝑧𝑧
𝑇 𝑑𝑧𝑧𝑧

2(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑧 + 𝛽𝑥𝑧
𝑇 𝑑𝑧𝑦𝑧) 2(𝛽𝑦𝑥

𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑦𝑧 + 𝛽𝑦𝑧

𝑇 𝑑𝑧𝑦𝑧) 2(𝛽𝑧𝑥
𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑧𝑦

𝑇 𝑑𝑦𝑦𝑧 + 𝛽𝑧𝑧
𝑇 𝑑𝑧𝑦𝑧)

2(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑧 + 𝛽𝑥𝑧
𝑇 𝑑𝑧𝑥𝑧) 2(𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑧 + 𝛽𝑦𝑧

𝑇 𝑑𝑧𝑥𝑧) 2(𝛽𝑧𝑥
𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑧𝑦

𝑇 𝑑𝑦𝑥𝑧 + 𝛽𝑧𝑧
𝑇 𝑑𝑧𝑥𝑧)

2(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑦 + 𝛽𝑥𝑧
𝑇 𝑑𝑧𝑥𝑦) 2(𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑦 + 𝛽𝑦𝑧

𝑇 𝑑𝑧𝑥𝑦) 2(𝛽𝑧𝑥
𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑧𝑦

𝑇 𝑑𝑦𝑥𝑦 + 𝛽𝑧𝑧
𝑇 𝑑𝑧𝑥𝑦)]

 
 
 
 
 
 
 

 

(2.154) 

Where all terms were assumed non-zero for generality. Zeroing out the appropriate terms in 

(2.154) using (2.152) and (2.153) yields: 
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[
 
 
 
 
𝛽𝑥𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑥𝑥 𝛽𝑥𝑥

𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑦𝑦 0

𝛽𝑦𝑥
𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑥𝑥 𝛽𝑦𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑦𝑦 0

𝑑𝑧𝑥𝑥

𝜇𝑧𝑧
𝑇

𝑑𝑧𝑦𝑦

𝜇𝑧𝑧
𝑇

0

     

2(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑧) 2(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑧) 2(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑦)

2(𝛽𝑦𝑥
𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑦𝑧) 2(𝛽𝑦𝑥
𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑥𝑧) 2(𝛽𝑦𝑥
𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑥𝑦)

2
𝑑𝑧𝑦𝑧

𝜇𝑧𝑧
𝑇

2
𝑑𝑧𝑥𝑧

𝜇𝑧𝑧
𝑇

2
𝑑𝑧𝑥𝑦

𝜇𝑧𝑧
𝑇 ]

 
 
 
 

 

Multiplying this by the magnetic induction current, and multiplying the piezoelectric coupling 

tensor by the electric field rate yields: 

 

𝑔𝑟𝑘𝑙
𝑃𝑀�̇�𝑟 =

(

 
 
 
 
 
 
 
 
 
 

(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑥)�̇�𝑥 + (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑥𝑥)�̇�𝑦 +
𝑑𝑧𝑥𝑥

𝜇𝑧𝑧
𝑇 �̇�𝑧

(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑦)�̇�𝑥 + (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑦𝑦)�̇�𝑦 +
𝑑𝑧𝑦𝑦

𝜇𝑧𝑧
𝑇 �̇�𝑧

0

2 [(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑧)�̇�𝑥 + (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑦𝑧)�̇�𝑦 +
𝑑𝑧𝑦𝑧

𝜇𝑧𝑧
𝑇

�̇�𝑧]

2 [(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑧)�̇�𝑥 + (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑥𝑧)�̇�𝑦 +
𝑑𝑧𝑥𝑧

𝜇𝑧𝑧
𝑇 �̇�𝑧]

2 [(𝛽𝑥𝑥
𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑥𝑦)�̇�𝑥 + (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑥𝑦)�̇�𝑦 +
𝑑𝑧𝑥𝑦

𝜇𝑧𝑧
𝑇 �̇�𝑧])

 
 
 
 
 
 
 
 
 
 

 

ℎ𝑟𝑘𝑙
𝑃𝐸 �̇�𝑟 = (ℎ31

𝑃𝐸�̇�𝑧 ℎ31
𝑃𝐸�̇�𝑧 ℎ33

𝑃𝐸�̇�𝑧 ℎ15
𝑃𝐸�̇�𝑦 ℎ15

𝑃𝐸�̇�𝑥 0) 

(2.155a) 

Therefore, each of the stress components, for a piezomagnetic/piezoelectric heterostructure 

may be written as: 

 

�̇�𝑥𝑥 = 𝑐𝑥𝑥𝑥𝑥
𝐵 𝑣𝑥,𝑥 + 𝑐𝑥𝑥𝑦𝑦

𝐵 𝑣𝑦,𝑦 + 𝑐𝑥𝑥𝑧𝑧
𝐵 𝑣𝑧,𝑧

− [𝑐𝑥𝑥𝑥𝑥
𝐵 (𝛽𝑥𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑥𝑥) + 𝑐𝑥𝑥𝑦𝑦

𝐵 (𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑦)]�̇�𝑥

− [𝑐𝑥𝑥𝑥𝑥
𝐵 (𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑥) + 𝑐𝑥𝑥𝑦𝑦

𝐵 (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑦𝑦)]�̇�𝑦

− [
𝑐𝑥𝑥𝑥𝑥

𝐵 𝑑𝑧𝑥𝑥 + 𝑐𝑥𝑥𝑦𝑦
𝐵 𝑑𝑧𝑦𝑦

𝜇𝑧𝑧
𝑇

] �̇�𝑧 − ℎ31
𝑃𝐸�̇�𝑧 + 𝜂𝑥𝑥𝑥𝑥

𝐵 �̇�𝑥,𝑥 + 𝜂𝑥𝑥𝑦𝑦
𝐵 �̇�𝑦,𝑦

+ 𝜂𝑥𝑥𝑧𝑧
𝐵 �̇�𝑧,𝑧 

(2.156a) 
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�̇�𝑦𝑦 = 𝑐𝑥𝑥𝑦𝑦
𝐵 𝑣𝑥,𝑥 + 𝑐𝑦𝑦𝑦𝑦

𝐵 𝑣𝑦,𝑦 + 𝑐𝑦𝑦𝑧𝑧
𝐵 𝑣𝑧,𝑧

− [𝑐𝑥𝑥𝑦𝑦
𝐵 (𝛽𝑥𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑥𝑥) + 𝑐𝑦𝑦𝑦𝑦

𝐵 (𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑦)]�̇�𝑥

− [𝑐𝑥𝑥𝑦𝑦
𝐵 (𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑥) + 𝑐𝑦𝑦𝑦𝑦

𝐵 (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑦𝑦)]�̇�𝑦

− [
𝑐𝑥𝑥𝑦𝑦

𝐵 𝑑𝑧𝑥𝑥 + 𝑐𝑦𝑦𝑦𝑦
𝐵 𝑑𝑧𝑦𝑦

𝜇𝑧𝑧
𝑇 ] �̇�𝑧 − ℎ31

𝑃𝐸�̇�𝑧 + 𝜂𝑥𝑥𝑦𝑦
𝐵 �̇�𝑥,𝑥 + 𝜂𝑦𝑦𝑦𝑦

𝐵 �̇�𝑦,𝑦

+ 𝜂𝑦𝑦𝑧𝑧
𝐵 �̇�𝑧,𝑧 

(2.156b) 

 

�̇�𝑧𝑧 = 𝑐𝑥𝑥𝑧𝑧
𝐵 𝑣𝑥,𝑥 + 𝑐𝑦𝑦𝑧𝑧

𝐵 𝑣𝑦,𝑦 + 𝑐𝑧𝑧𝑧𝑧
𝐵 𝑣𝑧,𝑧

− [𝑐𝑥𝑥𝑧𝑧
𝐵 (𝛽𝑥𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑥𝑥) + 𝑐𝑦𝑦𝑧𝑧

𝐵 (𝛽𝑥𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑥𝑦

𝑇 𝑑𝑦𝑦𝑦)]�̇�𝑥

− [𝑐𝑥𝑥𝑧𝑧
𝐵 (𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑥 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑥) + 𝑐𝑦𝑦𝑧𝑧

𝐵 (𝛽𝑦𝑥
𝑇 𝑑𝑥𝑦𝑦 + 𝛽𝑦𝑦

𝑇 𝑑𝑦𝑦𝑦)]�̇�𝑦

− [
𝑐𝑥𝑥𝑧𝑧

𝐵 𝑑𝑧𝑥𝑥 + 𝑐𝑦𝑦𝑧𝑧
𝐵 𝑑𝑧𝑦𝑦

𝜇𝑧𝑧
𝑇

] �̇�𝑧 − ℎ33
𝑃𝐸�̇�𝑧 + 𝜂𝑥𝑥𝑧𝑧

𝐵 �̇�𝑥,𝑥 + 𝜂𝑦𝑦𝑧𝑧
𝐵 �̇�𝑦,𝑦

+ 𝜂𝑧𝑧𝑧𝑧
𝐵 �̇�𝑧,𝑧 

(2.156c) 

 

�̇�𝑦𝑧 = 𝑐𝑦𝑧𝑦𝑧
𝐵 (𝑣𝑦,𝑧 + 𝑣𝑧,𝑦)

− 2𝑐𝑦𝑧𝑦𝑧
𝐵 {(𝛽𝑥𝑥

𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑦𝑧)�̇�𝑥 + (𝛽𝑦𝑥

𝑇 𝑑𝑥𝑦𝑧 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑦𝑧)�̇�𝑦

+
𝑑𝑧𝑦𝑧

𝜇𝑧𝑧
𝑇

�̇�𝑧} − ℎ15
𝑃𝐸�̇�𝑦 + 𝜂𝑦𝑧𝑦𝑧

𝐵 (�̇�𝑦,𝑧 + �̇�𝑧,𝑦) 

(2.156d) 

 

�̇�𝑥𝑧 = 𝑐𝑥𝑧𝑥𝑧
𝐵 (𝑣𝑥,𝑧 + 𝑣𝑧,𝑥)

− 2𝑐𝑥𝑧𝑥𝑧
𝐵 {(𝛽𝑥𝑥

𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑥𝑧)�̇�𝑥 + (𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑧 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑧)�̇�𝑦

+
𝑑𝑧𝑥𝑧

𝜇𝑧𝑧
𝑇

�̇�𝑧} − ℎ15
𝑃𝐸�̇�𝑥 + 𝜂𝑥𝑧𝑥𝑧

𝐵 (�̇�𝑥,𝑧 + �̇�𝑧,𝑥) 

(2.156e) 

 

�̇�𝑥𝑦 = 𝑐𝑥𝑦𝑥𝑦
𝐵 (𝑣𝑥,𝑦 + 𝑣𝑦,𝑥)

− 2𝑐𝑥𝑦𝑥𝑦
𝐵 {(𝛽𝑥𝑥

𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑥𝑦
𝑇 𝑑𝑦𝑥𝑦)�̇�𝑥 + (𝛽𝑦𝑥

𝑇 𝑑𝑥𝑥𝑦 + 𝛽𝑦𝑦
𝑇 𝑑𝑦𝑥𝑦)�̇�𝑦

+
𝑑𝑧𝑥𝑦

𝜇𝑧𝑧
𝑇 �̇�𝑧} + 𝜂𝑥𝑦𝑥𝑦

𝐵 (�̇�𝑥,𝑦 + �̇�𝑦,𝑥) 

(2.156f) 

Note that the 𝑇𝑥𝑦 constitutive relation (2.156f) is left unchanged by piezoelectricity which 

occurs because the piezoelectric is poled normal to the xy-plane. Equations (2.156a-f) are 
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appropriate for writing a time marching scheme which will be explored in chapter 3 which 

focuses on finite differencing. The piezomagnetic terms will be omitted in that section however 

as industry interest and research have shifted toward piezoelectric devices. 

2.3.2 Magnetic Constitutive Relation 

In the magnetic constitutive relation, it is simpler to consider the form when the stress (𝑇𝑖𝑗) is 

the independent variable, rather than the strain (𝑆𝑖𝑗), and then invert the relation, both of which 

are acceptable for linear systems. The magnetic constitutive relation in this case is: 

 

𝐻𝑖 =
𝜕𝜓

𝜕𝐵𝑖
=

1

2

𝜕

𝜕𝐵𝑖
[(

𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
)

𝑇,𝑀𝑑⋯

𝐵𝑖𝐵𝑗 + 2(
𝜕2𝜓

𝜕𝐵𝑖𝜕𝑇𝑗𝑘
)

𝑀𝑑⋯

𝐵𝑖𝑇𝑗𝑘

+ 2(
𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
𝑑)

𝑇⋯

𝐵𝑖𝐵𝑗
𝑑 + ⋯] + ⋯ 

(2.157) 

Or, 

 𝐻𝑖 = (
𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
)

𝑇,𝑀𝑑⋯

𝐵𝑗 + (
𝜕2𝜓

𝜕𝐵𝑖𝜕𝑇𝑗𝑘
)

𝑀𝑑⋯

𝑇𝑖𝑗 + (
𝜕2𝜓

𝜕𝐵𝑖𝜕𝐵𝑗
𝑑)

𝑇⋯

�̇�𝑗
𝑑 (2.158) 

The IEEE literature defines the first two terms in parentheses as the inverse permeability 𝛽𝑖𝑗
𝜇

 

and the piezomagnetic tensor 𝑔𝑖𝑗𝑘
𝑃𝑀 respectively [198][199], and the novel third term is a 

magnetic damping tensor discussed at length in section 2.2.2.3, yielding: 

 𝐻𝑖 = 𝛽𝑖𝑗
𝜇
𝐵𝑗 − 𝑔𝑖𝑗𝑘

𝑃𝑀𝑇𝑗𝑘 −
𝛼

𝛾0𝑀𝑠
(

1

𝜇0
�̇�𝑖 − �̇�𝑖) (2.159) 

Here, a magnetoelastic field 𝐻𝑗
𝑚𝑒 may be identified as follows: 

 𝐻𝑗
𝑚𝑒 = 𝑔𝑗𝑘𝑙

𝑃𝑀𝑇𝑘𝑙 (2.160) 

Where 𝐻𝑗
𝑚𝑒 is the magnetic field driven by fluctuations in stress. Relation (2.159) may also 

be inverted yielding: 

 𝐵𝑖 = 𝜇𝑖𝑗𝐻𝑗 + 𝑑𝑖𝑗𝑘
𝑃𝑀𝑇𝑗𝑘 +

𝛼

𝛾0𝑀𝑠
𝜇𝑖𝑗 (

1

𝜇0
�̇�𝑗 − �̇�𝑗) (2.161) 
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When this relation is put in rate form, higher order time derivatives appear which are 

handled using a convolutional approach as presented next: 

2.3.2.1 Convolution Approach 

When incorporating the magnetic constitutive relation into an ADI-FDTD algorithm, the rate 

form of (2.161) must be utilized as follows: 

 �̇�𝑖 = 𝜇𝑖𝑗�̇�𝑗 + 𝑑𝑖𝑗𝑘�̇�𝑗𝑘 −
𝛼

𝛾0𝑀𝑠
𝜇𝑖𝑗 (

1

𝜇0
�̈�𝑗 − �̈�𝑗) (2.162) 

This introduces 2nd order time derivatives which are inconsistent with the 1st order 

derivatives in the rest of the algorithm. To avoid this, a convolution integral may be utilized 

[195]. Expand the constitutive relation of (2.159) as follows in (2.163a-c), which applies for a 

material with coupling in the x and y-directions: 

 𝐻𝑥 = 𝛽𝑥𝑥
𝜇

𝐵𝑥 + 𝛽𝑥𝑦
𝜇

𝐵𝑦 +
𝛼

𝛾0𝑀𝑠
(

1

𝜇0
�̇�𝑥 − �̇�𝑥) (2.163a) 

 𝐻𝑦 = 𝛽𝑦𝑥
𝜇

𝐵𝑥 + 𝛽𝑦𝑦
𝜇

𝐵𝑦 +
𝛼

𝛾0𝑀𝑠
(

1

𝜇0
�̇�𝑦 − �̇�𝑦) (2.163b) 

 𝐻𝑧 = 𝛽𝑧𝑧
𝜇

𝐵𝑧 +
𝛼

𝛾0𝑀𝑠
(

1

𝜇0
�̇�𝑧 − �̇�𝑧) (2.163c) 

 𝛽𝑖𝑗
𝜇

= [

𝛽𝑥𝑥
𝜇

𝛽𝑥𝑦
𝜇

0

𝛽𝑦𝑥
𝜇

𝛽𝑦𝑦
𝜇

0

0 0 𝛽𝑧𝑧
𝜇

] (2.163d) 

Where, in order to focus on magnetic dissipation, the piezomagnetic terms have been 

removed, and will be added again later as superposition applies for this linear system. 

Transforming into Laplace space yields: 

 𝐻𝑥 = 𝛽𝑥𝑥
𝜇

�̅�𝑥 + 𝛽𝑥𝑦
𝜇

�̅�𝑦 +
𝛼𝑠

𝛾0𝑀𝑠
(

1

𝜇0
�̅�𝑥 − 𝐻𝑥) (2.164a) 

 𝐻𝑦 = 𝛽𝑦𝑥
𝜇

�̅�𝑥 + 𝛽𝑦𝑦
𝜇

�̅�𝑦 +
𝛼𝑠

𝛾0𝑀𝑠
(

1

𝜇0
�̅�𝑦 − 𝐻𝑦) (2.164b) 
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 𝐻𝑧 = 𝛽𝑧𝑧
𝜇

�̅�𝑧 +
𝛼𝑠

𝛾0𝑀𝑠
(

1

𝜇0
�̅�𝑧 − 𝐻𝑧) (2.164c) 

Simplification yields: 

 𝐻𝑥 = {
𝛾0𝑀𝑠𝛽𝑥𝑥

𝜇

𝛼
[

1

𝑠 + a
] +

1

𝜇0
[

𝑠

𝑠 + a
]} �̅�𝑥 +

𝛾0𝑀𝑠𝛽𝑥𝑦
𝜇

𝛼
[

1

𝑠 + a
] �̅�𝑦 (2.165a) 

 𝐻𝑦 =
𝛾0𝑀𝑠𝛽𝑦𝑥

𝜇

𝛼
[

1

𝑠 + a
] �̅�𝑥 + {

𝛾0𝑀𝑠𝛽𝑦𝑦
𝜇

𝛼
[

1

𝑠 + a
] +

1

𝜇0
[

𝑠

𝑠 + a
]} �̅�𝑦 (2.165b) 

 𝐻𝑧 = {
𝛾0𝑀𝑠𝛽𝑧𝑧

𝜇

𝛼
[

1

𝑠 + a
] +

1

𝜇0
[

𝑠

𝑠 + a
]} �̅�𝑧 (2.165c) 

Where a = τ−1 = 𝛾0𝑀𝑠/𝛼 is the inverse relaxation time. Input the following magnetic flux 

impulses: 

 𝐵𝑖(𝑡) = 𝐵𝑖
0𝛿(𝑡), →         �̅�𝑖(𝑠) =

1

𝑠
𝐵𝑖

0, 𝑖 = 𝑥, 𝑦, 𝑧 (2.166a/b) 

Therefore: 

 𝐻𝑥 = {
𝛾0𝑀𝑠𝛽𝑥𝑥

𝜇

𝛼
[

1

𝑠(𝑠 + a)
] +

1

𝜇0
[

1

𝑠 + a
]} 𝐵𝑥

0 +
𝛾0𝑀𝑠𝛽𝑥𝑦

𝜇

𝛼
[

1

𝑠(𝑠 + a)
] 𝐵𝑦

0 (2.167a) 

 𝐻𝑦 =
𝛾0𝑀𝑠𝛽𝑦𝑥

𝜇

𝛼
[

1

𝑠(𝑠 + a)
] 𝐵𝑥

0 + {
𝛾0𝑀𝑠𝛽𝑦𝑦

𝜇

𝛼
[

1

𝑠(𝑠 + a)
] +

1

𝜇0
[

1

𝑠 + a
]}𝐵𝑦

0 (2.167b) 

 𝐻𝑧 = {
𝛾0𝑀𝑠𝛽𝑧𝑧

𝜇

𝛼
[

1

𝑠(𝑠 + a)
] +

1

𝜇0
[

1

𝑠 + a
]}𝐵𝑧

0 (2.167c) 

Performing inverse Laplace transformation and simplifying yields: 

 𝐻𝑥(𝑡) = {𝛽𝑥𝑥
𝜇

+ (
1

𝜇0
− 𝛽𝑥𝑥

𝜇
) 𝑒−a𝑡} 𝐵𝑥

0 + 𝛽𝑥𝑦
𝜇 (1 − 𝑒−a𝑡)𝐵𝑦

0 (2.168a) 

 𝐻𝑦(𝑡) = 𝛽𝑦𝑥
𝜇 (1 − 𝑒−a𝑡)𝐵𝑥

0 + {𝛽𝑦𝑦
𝜇

+ (
1

𝜇0
− 𝛽𝑦𝑦

𝜇
) 𝑒−a𝑡} 𝐵𝑦

0 (2.168b) 

 𝐻𝑧(𝑡) = {𝛽𝑧𝑧
𝜇

+ (
1

𝜇0
− 𝛽𝑧𝑧

𝜇
) 𝑒−a𝑡} 𝐵𝑧

0 (2.168c) 

Which may be re-written as: 
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 𝐻𝑖(𝑡) = 𝐺𝑖𝑗(𝑡)𝐵𝑗
0 (2.169) 

Where the 𝐺 tensor components are the time dependent inverse permeability terms and the 

unit impulse response functions for the magnetic field. Note that if the free space permeability 

tensor is input above all time dependent terms zero out and the expected free space constitutive 

relation is recovered, namely 𝐻𝑖 = 𝐵𝑖
0/𝜇0. For modelling general loading conditions, the impulse 

response function may be written for an impulse applied at time 𝜏 with response recorded at 

time 𝑡 and summed for all time as follows: 

 𝐻𝑖 = ∫ 𝐺𝑖𝑗(𝑡 − 𝜏)
𝜕𝐵𝑗

𝜕𝜏
𝑑𝜏 

𝑡

0−
 (2.170) 

To be clear, the constitutive relation is expanded out as follows: 

 𝐻𝑥(𝑡) = ∫ [𝛽𝑥𝑥
𝜇

+ (
1

𝜇0
− 𝛽𝑥𝑥

𝜇
)𝑒−a(𝑡−𝜏)]

𝜕𝐵𝑥

𝜕𝜏
𝑑𝜏

𝑡

0−
+ ∫ 𝛽𝑥𝑦

𝜇
(1 − 𝑒−a(𝑡−𝜏))

𝜕𝐵𝑦

𝜕𝜏
𝑑𝜏

𝑡

0−
 (2.171a) 

 𝐻𝑦(𝑡) = ∫ 𝛽𝑦𝑥
𝜇

(1 − 𝑒−a(𝑡−𝜏))
𝜕𝐵𝑥

𝜕𝜏
𝑑𝜏

𝑡

0−
+ ∫ [𝛽𝑦𝑦

𝜇
+ (

1

𝜇0
− 𝛽𝑦𝑦

𝜇
) 𝑒−a(𝑡−𝜏)]

𝜕𝐵𝑦

𝜕𝜏
𝑑𝜏

𝑡

0−
 (2.171b) 

 𝐻𝑧(𝑡) = ∫ [𝛽𝑧𝑧
𝜇

+ (
1

𝜇0
− 𝛽𝑧𝑧

𝜇
) 𝑒−a(𝑡−𝜏)]

𝜕𝐵𝑧

𝜕𝜏
𝑑𝜏

𝑡

0−
 (2.171c) 

Similar to section 2.1.3, history variables may be introduced to simplify equations (2.171a-c), 

and these are defined as follows: 

 Φ𝑚𝑞 = (
1

𝜇
0

− 𝛽
𝑚𝑞
𝜇 )∫ 𝑒−a(𝑡−𝜏)

𝜕𝐵𝑞

𝜕𝜏
𝑑𝜏

𝑡

0−
,

𝑚 = 𝑥, 𝑦, 𝑧

𝑞 = 𝑥, 𝑦, 𝑧

𝑚 = 𝑞
 (2.172a) 

 Φ𝑚𝑞 = −𝛽𝑚𝑞
𝜇

∫ 𝑒−a(𝑡−𝜏)
𝜕𝐵𝑞

𝜕𝜏
𝑑𝜏 

𝑡

0−
,

𝑚 = 𝑥, 𝑦
𝑞 = 𝑥, 𝑦
𝑚 ≠ 𝑞

 (2.172b) 

In other words: 

 Φ𝑚𝑞 = [

Φ𝑥𝑥 Φ𝑥𝑦 0

Φ𝑦𝑥 Φ𝑦𝑦 0

0 0 Φ𝑧𝑧

] (2.173) 

Therefore, after reintroducing piezomagnetism, the magnetic constitutive relation may be 

written as follows: 
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 𝐻𝑖 = 𝛽𝑖𝑗
𝜇
𝐵𝑗 − 𝑔𝑖𝑗𝑘

𝑃𝑀𝑇𝑗𝑘 + Φ𝑖𝑗1𝑗 (2.174) 

Where 1𝑗 is a vector populated by ones. Inputting the magnetic constitutive relation (2.174) 

into an unconditionally stable and 2nd order accurate finite difference scheme is covered in 

Chapter 3. Although this methodology may be utilized to model magnetic damping in multiferroic 

antennas, the device simulations of Chapter 5 will not utilize magnetic damping as only 

piezoelectric antennas are considered. Still, a validation case for this proposed methodology is 

provided in Section 4.3. 

2.3.3 Electrical Constitutive Relation 

Utilizing the stress and electric field as independent variables, any piezoelectric materials 

within the simulation space are governed by the following electric constitutive relation [198]: 

 �̇�𝑖 = 𝜖𝑖𝑗
𝑇 �̇�𝑗 + 𝑒𝑖𝑗𝑘

𝑃𝐸 �̇�𝑗𝑘 (2.175) 

This is written in rate form to facilitate incorporation into Ampere’s law which involves the 

displacement current �̇�𝑖. Assuming that the piezoelectric material is poled out-of-plane in the 

global z-direction, and is transversely isotropic, yields the following strain coupling and 

permittivity tensors: 

 𝑒𝑖𝑗𝑘
𝑃𝐸 = [

0 0 0
0 0 0

𝑒31
𝑃𝐸 𝑒31

𝑃𝐸 𝑒33
𝑃𝐸

    
0 𝑒15

𝑃𝐸 0

𝑒15
𝑃𝐸 0 0
0 0 0

],    𝜖𝑖𝑗
𝑇 = [

𝜖𝑥𝑥
𝑇 0 0

0 𝜖𝑥𝑥
𝑇 0

0 0 𝜖𝑧𝑧
𝑇

] (2.176a, b) 

This constitutive relation will be substituted into Ampere’s law in the finite differencing 

chapter in order to derive the finite difference equations. 

2.4 Quality Factors and Dissipation 

The dissipation discussed thus far in the context of the 2nd law of thermodynamics may 

seem foreign to some readers more familiar with concepts such as loss tangent (tan (𝛿)), quality 

factors (𝑄), and complex material properties. For example, often authors will express the 

mechanical stiffness as: 
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 𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝑆𝑘𝑙 = (𝑐𝑖𝑗𝑘𝑙
′ + 𝑗𝑐𝑖𝑗𝑘𝑙

′′ )𝑆𝑘𝑙 (2.176) 

Where 𝑐𝑖𝑗𝑘𝑙
′  and 𝑐𝑖𝑗𝑘𝑙

′′  are the real and imaginary parts of stiffness 𝑐𝑖𝑗𝑘𝑙 respectively and a 

loss factor can then be defined as: 

 tan(𝛿) =
𝑐′′

𝑐′ =
1

𝑄
 (2.177) 

This is referred to as a “tan delta” since, on the complex plane, 𝛿 is the angle from the real 

axis to the imaginary axis (𝐸′′ is opposite, and 𝐸′ is adjacent). In (2.177), 𝑄 is the quality factor 

(q-factor) which is typically assumed to be frequency dependent in the following fashion 

[201][202]: 

 Qf = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.178) 

By observing (2.176) and (2.177), the conversion of the q-factor to a viscoelastic damping 

parameter (𝜂) is [4]: 

 𝜂 =
𝑐′

𝜔𝑄
 (2.179) 

From (2.178) and (2.179) it is seen that the viscoelastic damping parameter is assumed 

frequency independent and therefore the viscoelastic damping is more fundamental than 𝑄. 

Different q-factors need to be measured for different resonant modes. 𝑄 is a measure of how 

high the output is at resonance while tan(𝛿) is a measure of how much the output is attenuated 

at resonance. Every dissipation mechanism will have a 𝑄 associated with it, and the total 𝑄 (𝑄𝑡) 

may be computed as follows [138]: 

 
1

𝑄𝑡
= ∑

1

𝑄𝑖

𝑁

𝑖=1

 (2.179) 

Where 𝑁 is the number of dissipation mechanisms (both from energy loss and energy 

conversion). The Q for a mechanical antenna may be most simply written as: 

 
1

𝑄𝑡
=

1

𝑄𝑟𝑎𝑑
+

1

𝑄𝑚𝑒𝑐ℎ
 (2.180) 
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Where 𝑄𝑟𝑎𝑑 is the q-factor associated with radiation and 𝑄𝑚𝑒𝑐ℎ is the q-factor associated 

with mechanical losses. Each individual 𝑄𝑖 may be defined as: 

 𝑄𝑖 =
2𝜔𝑊𝑇𝑜𝑡𝑎𝑙

𝑃𝑖
 (2.181) 

Where 𝑊𝑇𝑜𝑡𝑎𝑙 is the total energy stored within the system and 𝑃𝑖 is the power dissipated by 

the specific dissipation mechanism. Based on (2.179) and (2.180) the 𝑄𝑚𝑒𝑐ℎ is ideally 

maximized and the 𝑄𝑟𝑎𝑑 is ideally minimized, hence why sometimes authors will describe a high 

𝑄 as a favorable result and sometimes as an unfavorable result. The total 𝑄 may be determined 

by taking the resonant frequency (𝑓𝑟) and dividing by the half-power bandwidth (∆𝑓𝐻𝑃), which is 

the range of frequencies where the dissipated power is half of the maximum or higher: 

 𝑄𝑡 =
𝑓𝑟

∆𝑓𝐻𝑃
 (2.182) 

This expression will be used to determine the total q-factors for the devices simulated 

herein. The radiation efficiency (𝑒𝑟𝑎𝑑) of an antenna may be defined [152] by taking the ratio of 

the 𝑄𝑡 with a theoretical bound (𝑄𝑎) [33-35][164]: 

 𝑒𝑟𝑎𝑑 =
𝑄𝑡

𝑄𝑎
∗ 100% (2.183) 

Equation (2.183) does not need to be used to determine the efficiency in the proposed 

numerical framework however since the input and radiated power are directly computed. Other 

authors use this approach however to approximate radiation efficiency from a measured Q 

value [152]. 

2.5 Summary of Equations 

As a capstone to this chapter, all the equations presented will be summarized in table format 

to prepare for their discretization into finite difference form in the next chapter. The balance laws 

are shown below in Table 2-1: 
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Newton’s Laws 𝜌�̇�𝑖 = 𝑇𝑖𝑗,𝑗 Mechanics 

Maxwell’s Equations 

�̇�𝑖 + 𝜎𝑖𝑗𝐸𝑗 + 𝐽𝑖
𝑠 = 𝜖𝑖𝑗′𝑘𝐻𝑘,𝑗′ − 𝜖𝑖𝑗𝑘Φ𝐻𝑗𝑘

 

�̇�𝑖 + ℳ𝑖
𝑠 = 𝜖𝑖𝑗𝑘′𝐸𝑗,𝑘′ + 𝜖𝑖𝑗𝑘Φ𝐸𝑗𝑘

 

Electrodynamics 

LLG Equation 
1

𝜇0𝛾
�̇�𝑖 = 𝜖𝑖𝑗𝑘𝑀𝑗𝐻𝑘

𝑒𝑓𝑓
−

𝛼

𝜇0𝛾𝑀𝑠
𝜖𝑖𝑗𝑘𝑀𝑗�̇�𝑘 Micromagnetics 

Table 2-1: Balance Laws 

The constitutive relations are as shown in Table 2-2: 

 

Mechanical �̇�𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝐵,𝐷𝑣𝑘,𝑙 − ℎ𝑘𝑖𝑗

𝑃𝑀𝐵𝑘 − ℎ𝑘𝑖𝑗
𝑃𝐸 �̇�𝑘 + 𝜂𝑖𝑗𝑘𝑙

𝐵,𝐷 �̇�𝑘,𝑙 

Electrical �̇�𝑖 = 𝜖𝑖𝑗
𝑆 �̇�𝑗 + 𝑒𝑖𝑗𝑘

𝑃𝐸𝑣𝑗,𝑘 

Magnetic 𝐻𝑖 = 𝛽𝑖𝑗
𝜇
𝐵𝑗 − 𝑔𝑖𝑗𝑘

𝑃𝑀𝑇𝑗𝑘 + Φ𝑖𝑗1𝑗 

Table 2-2: Constitutive Relations 

 

Within the constitutive relations of Table 2-2, three different coupling tensors are referred to 

which can be confusing. Fortunately, Table 2-3 documents all the expressions for piezoelectric 

materials [194]. For piezomagnetic materials, the expressions are identical [199], simply 

substitute 𝐻 for 𝐸, and 𝐵 for 𝐷. 

 

Independent Variable Form Piezoelectric Relation 

𝑆,𝐷 ℎ-form 
𝑇 = 𝑐𝐷𝑆 − ℎ𝐷

𝐸 = −ℎ𝑆 + 𝛽𝑆𝐷
 



 
 

102 

 

𝑇, 𝐸 𝑑-form 
𝑆 = 𝑠𝐸𝑇 + 𝑑𝐸
𝐷 = 𝑑𝑇 + 𝜖𝑇𝐸

 

𝑇,𝐷 𝑔-form 
𝑆 = 𝑠𝐷𝑇 + 𝑔𝐷

𝐸 = −𝑔𝑇 + 𝛽𝑇𝐷
 

𝑆, 𝐸 𝑒-form 
𝑇 = 𝑐𝐸𝑆 − 𝑒𝐸
𝐷 = 𝑒𝑆 + 𝜖𝑆𝐸

 

Relationships Between Constants 

𝑑𝑛𝑖𝑗 = 𝜖𝑛𝑚
𝑇 𝑔𝑚𝑖𝑗 = 𝑒𝑛𝑘𝑙𝑠𝑘𝑙𝑖𝑗

𝐸  𝑒𝑛𝑖𝑗 = 𝜖𝑛𝑚
𝑆 ℎ𝑚𝑖𝑗 = 𝑑𝑛𝑘𝑙𝑐𝑘𝑙𝑖𝑗

𝐸  

𝑔𝑛𝑖𝑗 = 𝛽𝑛𝑚
𝑇 𝑑𝑚𝑖𝑗 = ℎ𝑛𝑘𝑙𝑠𝑘𝑙𝑖𝑗

𝐷  ℎ𝑛𝑖𝑗 = 𝛽𝑛𝑚
𝑆 𝑒𝑚𝑖𝑗 = 𝑔𝑛𝑘𝑙𝑐𝑘𝑙𝑖𝑗

𝐷  

𝜖𝑛𝑚
𝑇 − 𝜖𝑛𝑚

𝑆 = 𝑑𝑛𝑘𝑙𝑒𝑚𝑘𝑙  𝑐𝑖𝑗𝑘𝑙
𝐷 − 𝑐𝑖𝑗𝑘𝑙

𝐸 = 𝑒𝑚𝑖𝑗ℎ𝑚𝑘𝑙 

Table 2-3: Types of Fundamental Piezoelectric Relations 

 

These equations may be used to acquire update equations directly for all fields save the 

electric fields. These will require the use of Maxwell’s equations as well as the electric and 

magnetic constitutive relations. The result is a tri-diagonal system known as the ADI-FDTD 

equations. This will be discussed in the subsequent chapter on the finite difference 

discretization of the equations contained herein. 
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CHAPTER 3: FINITE DIFFERENCE ALGORITHM 

Herein, the numerical formulation for modelling a mechanical resonance-based antenna is 

described. The continuum equations in Chapter 2, summarized in Section 2.5, are necessary to 

model a piezoelectric resonator antenna as shown in Figure 3-1, where a z-poled piezoelectric 

material is assumed.  

 

 

Figure 3-1: Typical mechanical axial resonance based piezoelectric antenna. 

 

In the figure, an electrical source sends current 𝐼𝑆 into electrodes sandwiching piezoelectric 

material producing potential difference 𝑉𝑆 across the electrodes. This generates field 𝐸𝑧
𝑆 within 

the piezoelectric. Due to the device size being electrically small, the x and y components of the 

electric field, along with the fringing fields, are assumed to be zero between the electrodes. The 

electrically small size also means that Maxwell’s equations do not need to be evoked in this 

region as the feedline current 𝐼𝑆 is equal and opposite to the polarization current. The electrode 

+ piezo + electrode stack therefore acts as an energy storing capacitor rather than an energy 

propagating antenna. Also, since field 𝐸𝑧
𝑆 is within a piezoelectric material, mechanical stress 

and strain/velocity will be produced. This stress and strain will propagate in the axial direction of 

the mechanical bar via elastodynamics and resonate mechanical modes based on the 
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mechanical boundary conditions (half-sine wave mode for traction free boundaries shown in 

Figure 3-1). In this case, only the axial stress 𝑇𝑧𝑧 will be excited and, although in-plane velocities 

𝑣𝑥 and 𝑣𝑦 are non-zero via Poisson’s effect, only 𝑇𝑧𝑧 and 𝑣𝑧 are required to find a unique 

solution via (3). These resonant mechanical fields 𝑇𝑧𝑧 and 𝑣𝑧 generate electrical polarization 

current �̇� within the mechanical bar which lie outside of the electrodes via the direct 

piezoelectric effect. As such, this polarization current will induce EM radiation per Maxwell’s 

equations. After simulating these effects, the fields immediately surrounding the antenna are 

input into a post-processer to determine far-field performance. A general overview is seen in 

Figure 3-2. Any numerical framework claiming to model piezoelectric antennas must somehow 

perform each task in the figure and this chapter highlights one such methodology. 

 

 

Figure 3-2: General flow of the goals for a mechanical antenna simulation. 

 

In numerical analysis it is common to take the differential equations that govern the physical 

system everywhere and instead formulate new versions that are only approximations at discrete 

points. One popular approach is the finite difference time domain (FDTD) method in which the 
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spatial and temporal derivatives are analyzed across finite intervals. To demonstrate this, recall 

the definition of a derivative in equation (3.1): 

 
𝜕𝑓

𝜕𝑢
= lim

∆𝑢→0

𝑓(𝑢 + ∆𝑢, ⋯ ) − 𝑓(𝑢,⋯ )

∆𝑢
 (3.14) 

Where any number of dependent variables exist. The finite difference approach relaxes this 

definition by removing the limit and allowing the interval (∆𝑢) to be finite as in equation (3.2a): 

 
𝜕𝑓

𝜕𝑢
≈

𝑓(𝑢 + ∆𝑢,⋯ ) − 𝑓(𝑢,⋯ )

∆𝑢
 (3.2a) 

The interval may be the difference in any dependent variable, and the expression above is 

known as a forward difference since the fields is being analyzed just ahead of the current 

location. Backward and central differences also exist and are, respectively: 

 
𝜕𝑓

𝜕𝑢
≈

𝑓(𝑢,⋯ ) − 𝑓(𝑢 − ∆𝑢,⋯ )

∆𝑢
 (3.2b) 

 
𝜕𝑓

𝜕𝑢
≈

𝑓(𝑢 + ∆𝑢/2, ⋯ ) − 𝑓(𝑢 − ∆𝑢/2,⋯ )

∆𝑢
 (3.2c) 

In terms of the nomenclature utilized herein, the n index defines the time with the i, j, and k 

indices defining the x, y, and z directions respectively: 

 𝑡 = 𝑛∆𝑡 (3.3a) 

 𝑥 = 𝑖∆𝑥 (3.3b) 

 𝑦 = 𝑗∆𝑦 (3.3c) 

 𝑧 = 𝑘∆𝑧 (3.3d) 

Herein, the spatial location of each field is written in parenthesis, the time step is written 

using superscripts, and the tensorial information (e.g., the direction of the field) is written using 

subscripts as shown in equation (3.4a) for a 1st order tensor:  

 𝑓𝑥,𝑦,𝑧
𝑛 (𝑖, 𝑗, 𝑘) = 𝑓𝑥,𝑦,𝑧(𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧, 𝑛∆𝑡) = 𝑓𝑥,𝑦,𝑧(𝑥, 𝑦, 𝑧, 𝑡) (3.4a) 
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The values of n, i, j, and k need not be integers, in fact most fields contained herein are not 

rectified at an integer time step or spatial location. Whenever a field varies spatially but not 

temporally, the spatial indices are expressed using superscripts as shown in equation (3.4b): 

 𝑓𝑥,𝑦,𝑧
𝑖,𝑗,𝑘

= 𝑓𝑥,𝑦,𝑧(𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧) = 𝑓𝑥,𝑦,𝑧(𝑥, 𝑦, 𝑧) (3.4b) 

This is performed to shorten the notation, as some of the equations herein become lengthy. 

When the equations become quite long herein, all terms will have their temporal (if applicable) 

and spatial designations within the superscript, namely: 

 𝑓𝑥,𝑦,𝑧
𝑛,𝑖,𝑗,𝑘

= 𝑓𝑥,𝑦,𝑧
𝑛 (𝑖∆𝑥, 𝑗∆𝑦, 𝑘∆𝑧) = 𝑓𝑥,𝑦,𝑧(𝑥, 𝑦, 𝑧, 𝑡) (3.4c) 

Herein, an unconditionally stable method known as the alternating direction implicit finite 

difference time-domain (ADI-FDTD) method is utilized in which the evolution of fields from time 

𝑛∆𝑡 to time (𝑛 + 1)∆𝑡 is split into two subiterations. The 1st sub-iteration updates the fields from 

𝑛∆𝑡 to (𝑛 + 1/2)∆𝑡, and the 2nd from (𝑛 + 1/2)∆𝑡 to (𝑛 + 1)∆𝑡. This method will be described in 

more detail in sections 3.6, 3.7, and 3.8. 

3.1 Methodology 

When leveraging the finite difference method, the left- and right-hand sides of the equation 

must be rectified at the same time and spatial location. This rule is known as spatial and 

temporal homogeneity. As an example, consider the elastodynamic equation in the absence of 

body forces described in section 2.1.2: 

 𝜌�̇�𝑖 = 𝑇𝑖𝑗,𝑗 (2.12b) 

In finite difference form, the z-component is as follows: 
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1

∆𝑡
[𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 ) − 𝑣𝑧

𝑛−
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 )]

=
1

∆𝑥
[𝑇𝑥𝑧

𝑛 (𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝑇𝑥𝑧

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

+
1

∆𝑦
[𝑇𝑦𝑧

𝑛 (𝑖 +
1

2
, 𝑗 + 1, 𝑘) − 𝑇𝑦𝑧

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)]

+
1

∆𝑧
[𝑇𝑧𝑧

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑧𝑧

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘 −

1

2
)] 

(3.5) 

Examining each individual term in (3.5), all differences are defined at time 𝑡 = 𝑛∆𝑡, and point 

𝑥 = (𝑖 + 1/2)∆𝑥, 𝑦 = (𝑗 + 1/2)∆𝑦, and 𝑧 = (𝑘 + 1/2)∆𝑧. This homogeneity rule is typical of finite 

difference equations but may be broken in special cases. Note in the equation above, only one 

term is defined at a future time step (𝑛 + 1/4) with all other fields being known, either from the 

previous time step or from the initial conditions. This is therefore an explicit update equation for 

the velocity in the z-direction. Both explicit and implicit methods are utilized herein.  

3.2 Grids 

The spatial definition of the tensors updated using the FDTD method conform to grids with 

many useful properties. These spatial grids are discussed next. 

3.2.1 Electromagnetic Yee Grid 

Within electrodynamic simulations it is necessary to map out the discrete points in which the 

3-components of the electric and magnetic fields will be determined. As a first pass it may seem 

prudent to collocate all fields at a single point similarly to how displacements are all collocated 

within the finite element method in structural analysis. However, within the finite difference 

method, so-called “staggered” grids produce 2nd order accurate central differences for spatial 

derivatives if the fields are mapped out properly. The most famous is the Yee grid first 

introduced by K.S. Yee in 1966 [177] as shown in Figure 3-3: 
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Figure 3-3: The Yee grid utilized for FDTD simulations. 

 

In the space lattice, the magnetic field nodes lie on the face centers pointed in the normal 

direction and the electric fields are along the center of the cell edges and tangential to the 

edges. The locations of the electric and magnetic fields can be swapped so that the electric 

fields instead lie on the face centers, but all equations derived herein use the grid above. Also 

shown in Figure 3-3 is the magnetic interface which is half a cell staggered from the electric 

interfaces that are collocated with the cell faces. These interfaces will be discussed in section 

3.3.1. Note in Figure 3-3 that the H fields are surrounded by swirling E fields (Faraday contour) 

and that the E fields are surrounded by swirling H fields (Ampere contour). This essentially puts 

each field at the center of a Faraday or Ampere loop and allows for central difference equations 

to be readily written which are 2nd order accurate. Additionally, it can be shown that the space 

lattice is divergence free in the absence of free charges [177-179] essentially satisfying two of 

Maxwell’s equations upfront, namely Gauss’s law for electricity and magnetism. 
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3.2.2 The Staggered Mechanical Grid 

Mechanical spatial lattices are defined based on which system of dependent variables are 

utilized to approximate the PDEs. For example, a single PDE in terms of displacement may be 

written as follows: 

 𝜌�̈�𝑖 = 𝑐𝑖𝑗𝑘𝑙𝑢𝑘,𝑙𝑗 (3.6) 

Where the material stiffness is assumed to be spatially independent. Modelers that utilize 

this PDE make use of the so-called “conventional” grid [192] in which the three displacement 

components are collocated and defined at the corners of the unit cell and the stress terms do 

not appear as shown in Figure 3-4: 

 

 

Figure 3-4: Conventional mechanical finite difference grid. 

 

When the so-called Velocity-Stress formulation [4][192][193] is used, the velocity and stress 

are treated as the dependent variables, as in equation (2.12b), and two sets of PDEs are used 

to update the mechanical fields. This allows the PDEs to be written in terms of the first time and 

spatial derivatives similar to Maxwell’s equations. 2nd order accurate central differences for the 

spatial divergence of the stress in the elastodynamic equation (2.12b) and the spatial gradients 

of the velocity in the mechanical constitutive relation (2.148) in rate form may be achieved by 
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utilizing a staggered finite difference grid [192-194]. Figure 3-5 shows the spatial lattice utilized 

herein: 

 

 

Figure 3-5: 3D Staggered mechanical finite difference grid. 

 

This cell looks similar to the Yee grid utilized in electrodynamics in that the shear stresses 

are along the cell edges and tangent to the edges, like the electric field, and the velocities are at 

the face centers and normal to the surface, like the magnetic fields. Curiously however, the 

normal stresses are all collocated at the center of the cell which is a consequence of the fact 

that the mechanical grid is not divergence free like the Yee grid. If it were divergence free, 

dynamic motions would be absent since the stress divergence is proportional to the 

acceleration. This also leads to additional complications as it relates to boundary conditions as 

will be discussed in section 3.4.2. For now, it is prudent to note that the velocity fields in Figure 

3-5 are surrounded by diverging stress fields, as is expected from the elastodynamic equation, 

and that the stress fields are surrounded by the velocity gradients, as is expected from the 
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mechanical constitutive relation. To help visualize the former, consider the x-component of the 

elastodynamic equation: 

 𝜌�̇�𝑥 = 𝑇𝑥𝑥,𝑥 + 𝑇𝑥𝑦,𝑦 + 𝑇𝑥𝑧,𝑧 (3.7) 

Examining these terms, the three spatial derivatives diverge from a single point, namely the 

location of the 𝑣𝑥 field as shown in Figure 3-6. 

 

 

Figure 3-6: Stress divergence centered at the velocity terms. 

 

It can similarly be shown that the grid is such that the velocity gradients are collocated with 

the appropriate stress terms. Although the 3D grid has been presented in this section, only 1D 

uniaxial stress simulations are performed herein. For these simulations, only stress Tzz and 

velocity vz need be considered. 

3.2.3 Field Values at Off-Grid Locations 

If it is desired to know the value of a field at a spatial location offset from where it is defined 

by Figure 3-3 and Figure 3-5 then averaging between nearest grid points is necessary. Recall 

from Figure 3-5 that the stresses are defined at the unit cell center, namely at 𝑥 = (𝑖 + 1/2)∆𝑥, 
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𝑦 = (𝑗 + 1/2)∆𝑦, and 𝑧 = (𝑘 + 1/2)∆𝑧. Say it is desired to know the normal stress 𝑇𝑧𝑧 at 𝑧 = 𝑘∆𝑧 

instead; Spatial averaging would yield the following value: 

 𝑇𝑧𝑧 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) =

1

2
(𝑇𝑧𝑧 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) + 𝑇𝑧𝑧 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 −

1

2
)) (3.8) 

For spatial locations that do not bisect grid points, averaging would be more complex than 

what is seen in (3.8), but herein bisection points are considered. 

3.3 Interface Conditions 

An interface is defined herein as the nodes where two or more materials meet with differing 

material properties. This is distinct from boundaries, which are the nodes where the simulation 

space is terminated. In this section, electrodynamic and mechanical interface conditions are 

explored. 

3.3.1 EM Interfaces 

The following relations (3.9a/b) must hold at all material interfaces [25][26]: 

 𝐽𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = �̂� × 𝐻, ℳ𝑠𝑢𝑟𝑓𝑎𝑐𝑒 = 𝐸 × �̂� (3.9a/b) 

Where �̂�, is a unit vector normal to the interface and 𝐽𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and ℳ𝑠𝑢𝑟𝑓𝑎𝑐𝑒 are the electric 

and magnetic surface currents, acting at the interface, respectively. In the absence of surface 

currents these relations state that the tangential electric and magnetic fields must be continuous 

across a material interface. Looking again at Figure 3-3, the E fields are tangential to the unit 

cell faces and the H fields are tangential to a cube that is half a cell staggered from the unit cell. 

Say two different materials are stacked on top of one another in a heterogenous structure and 

label the bottom and top layers as material 1 and 2 respectively as shown in Figure 3-7. 
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Figure 3-7: Electric and magnetic interfaces. 

 

The plane where the electrical interface conditions are satisfied will coincide with the cube 

face, as highlighted in blue, but the magnetic interface conditions are satisfied on a plane half a 

cell above as highlighted in yellow. Within the figure all fields at an interface are labeled with an 

“i” superscript and those fields which uniquely belong to materials 1 and 2 are similarly labeled 

with corresponding superscripts. It is informative to note that the magnetic field located at the 

electrical interface corresponds to material 1 alone. This raises a question; what material 

properties should be utilized at the interface between multiple materials? This question is 

answered in the subsequent section. 

3.3.1.1 Electric and Magnetic Property Definition 

It is important to note that not only must the EM fields be defined spatially but also the 

permittivity and permeability which are necessary for update equations. Consider that the 

electrical quantities are defined at the center of each cell, and the magnetic quantities are 

located at the corners as illustrated in Figure 3-8: 



 
 

114 

 

 

 

Figure 3-8: Spatial definition of electric and magnetic material properties. 

 

These are not defined arbitrarily but such that spatial interpolation always returns an 

average permittivity and permeability at all interfaces between different materials. For further 

clarification consider a corner interface between four materials with different properties as 

shown in Figure 3-9. Additionally, assume that the permittivity and permeability of the materials 

are diagonal matrices. 

 

 

Figure 3-9: Corner Interface Between Four Different Materials 
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In the figure, only interface fields are shown for clarity. Note that these EM fields are not 

collocated with the corresponding material properties necessary for the update equations thus 

necessitating spatial interpolation of the permittivity and permeability terms. Say the interface 

occurs at the spatial location (i,j,k) shown as a red dot in the figure. An update equation will now 

be written for the interface electric field at point (i+1/2,j,k) shown as a purple dot. From this, the 

x-component of Ampere’s law may be written as follows: 

 

𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑡
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐸𝑥

𝑛−
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

=
1

∆𝑦
[𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 −

1

2
, 𝑘)]

−
1

∆𝑧
[𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] 

(3.10) 

Note that both sides of the equation are determined at the same spatial location if the 

permittivity term is defined at (𝑖 +
1

2
, 𝑗, 𝑘). Since this is not the case, spatial interpolation needs 

to be performed. By rearranging terms, an update equation for 𝐸𝑥 may be written as follows: 

 

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) = 𝐸𝑥

𝑛−
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)

+
1

1
4 [𝜖𝑥𝑥

𝑖+
1
2,𝑗+

1
2,𝑘+

1
2 + 𝜖𝑥𝑥

𝑖+
1
2,𝑗−

1
2,𝑘+

1
2 + 𝜖𝑥𝑥

𝑖+
1
2,𝑗+

1
2,𝑘−

1
2 + 𝜖𝑥𝑥

𝑖+
1
2,𝑗−

1
2,𝑘−

1
2]

{
∆𝑡

∆𝑦
[𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘)

− 𝐻𝑧
𝑛 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)] −

∆𝑡

∆𝑧
[𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)]} 

(3.11) 

The permittivity term shown is the average permittivity between the four materials. It can 

similarly be shown, by examining 𝐻𝑥 at (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
), that the magnetic permeability will also 

require spatial interpolation, yielding an average, or effective, permeability. 

3.3.2 Mechanical Interfaces 

The traction and the displacement at all mechanical interfaces must be continuous. Also, 

when considering interfaces between two or more materials with different stiffness and density it 

is important to make a distinction. Previously it was observed that on the EM side, when using 
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the Yee grid, two interfaces must be considered; electrical interface planes that line up with the 

faces of the unit cell and magnetic interface planes that bisect the unit cell (half a cell 

staggered). When dealing with mechanical fields however, only one interface exists. This 

highlights an interesting distinction between electrodynamics and elastodynamics, namely that 

the former deals with two sets of fields with two sets of constitutive relations while the latter only 

deals with one set of fields. It should not be surprising then that there is only one interface 

condition when dealing with mechanical fields. This leaves a question to be answered; should 

the mechanical interface planes line up with the unit cell like electrical interfaces or should the 

planes be half a cell staggered like the magnetic interfaces? Consider the latter approach, 

resulting in the interface planes shown in Figure 3-10a: 

 

  

(a) (b) 

Figure 3-10: Potential mechanical interfaces. 

 

The glaring problem with this is that all normal stresses are continuous across any interface 

plane, but this is not the case. Only one normal stress is continuous across an interface, and it 

is the one that is normal to the interface. It is then clear that the mechanical interfaces must be 

along the unit cell planes as shown in Figure 3-10b. Again, there are questions left to be 
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answered, namely that the interface planes only guarantee continuity of the shear stresses and 

one velocity component so what about the normal stress and the other two velocity 

components? These questions may be answered by considering mechanical properties which 

are discussed in the next section. 

3.3.2.1 Mechanical Property Definition 

At this time, it is important to note that not only must the mechanical fields be defined 

spatially but also the density, stiffness, and the discretization (for graded meshes) which are 

necessary for update equations. Consider that the mechanical material properties are defined at 

the center of each cell as shown in Figure 3-11: 

 

 

Figure 3-11: Spatial definition of mechanical material properties. 

 

These are not defined arbitrarily but rather such that spatial interpolation always returns an 

average shear stiffness and density at all interfaces between structural elements. For further 

clarification consider a planar interface between two materials with different stiffness and 

density normal to the z-direction as shown in Figure 3-12. Label the bottom layer as material (1) 

and the top layer as material (2) with properties having corresponding subscripts. 
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Figure 3-12: Vertical mechanical interface. 

 

As shown, two shear stresses (𝑇𝑦𝑧, 𝑇𝑥𝑧) and one velocity term (𝑣𝑧) are defined at the 

interface which is highlighted yellow. Note that these mechanical fields are not collocated with 

the material properties necessary to define them thus necessitating spatial interpolation of the 

stiffness and density terms. Say the interface occurs at the spatial location (i,j,k), then the 

spatial definition of the velocity 𝑣𝑧 may be written as: 

 

𝑣𝑧 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘 ) =

1

1
2(𝜌

(1)

𝑖+
1
2,𝑗+

1
2,𝑘−

1
2 + 𝜌

(2)

𝑖+
1
2,𝑗+

1
2,𝑘+

1
2)

{
1

∆𝑥
[𝑇𝑥𝑧 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝑇𝑥𝑧 (𝑖, 𝑗 +

1

2
, 𝑘)]

+
1

∆𝑦
[𝑇𝑦𝑧 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝑇𝑦𝑧 (𝑖 +

1

2
, 𝑗, 𝑘)]

+
1

∆𝑧
[𝑇𝑧𝑧 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑧𝑧 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 −

1

2
)]} 

(3.12) 

Note that both sides of the equation are determined at the same spatial location and that the 

density term shown is the average density between the two materials. The normal stresses 

require no spatial interpolation since these are collocated with the stiffness terms and are never 

evaluated at the interface of different materials. Based on this, the normal stress in the z-

direction can be written as follows: 
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𝑇𝑧𝑧 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
)

=
1

∆𝑥
𝑐𝑥𝑥𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘+

1
2 [𝑣𝑥 (𝑖 + 1, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑣𝑥 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)]

+
1

∆𝑦
𝑐𝑦𝑦𝑧𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 [𝑣𝑦 (𝑖 +

1

2
, 𝑗 + 1, 𝑘 +

1

2
) − 𝑣𝑦 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
)]

+
1

∆𝑧
𝑐𝑧𝑧𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘+

1
2 [𝑣𝑧 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 + 1) − 𝑣𝑧 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)] 

(3.13) 

So, the 𝑇𝑧𝑧 is dependent on the velocity term at the interface, namely 𝑣𝑧 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘 ). 

Since the velocity at the interface considers both materials, the normal stress near the interface 

is also affected by the interface even though it is not evaluated there. In fact, complete traction 

continuity and velocity continuity at interfaces may be guaranteed by proper inclusion of the 

material properties [192]. Next, take for example the 𝑇𝑦𝑧 field represented by the double headed 

orange arrow pointed in the x-direction. This field is surrounded by an equal number of 𝑐𝑦𝑧𝑦𝑧 

shear stiffness terms from each material. 

 

𝑇𝑦𝑧 (𝑖 +
1

2
, 𝑗, 𝑘) =

1

4
[𝑐𝑦𝑧𝑦𝑧

(1)
(𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘 −

1

2
) + 𝑐𝑦𝑧𝑦𝑧

(1)
(𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 −

1

2
)

+ 𝑐𝑦𝑧𝑦𝑧
(2)

(𝑖 +
1

2
, 𝑗 −

1

2
, 𝑘 +

1

2
) + 𝑐𝑦𝑧𝑦𝑧

(2)
(𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
)] 𝑆𝑦𝑧 (𝑖 +

1

2
, 𝑗, 𝑘) 

(3.14) 

Note that both sides of the equation are determined at the same spatial location and that the 

stiffness term shown is the average stiffness between the two materials. It is additionally 

important to note that the 4 terms are necessary in case of a line interface between 4 different 

materials. This case is shown in Figure 3-13 for a line interface in the x-direction (corner) at the 

(i,j,k) spatial point which is colored red. 
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Figure 3-13: Mechanical corner interface. 

 

Note that all line interfaces are simply two plane interfaces converging together, and in this 

case only the 𝑇𝑦𝑧 shear stress is evaluated at the interface which may be written as: 

 

𝑇𝑦𝑧 (𝑖 +
1

2
, 𝑗, 𝑘) =

1

4
[𝑐𝑦𝑧𝑦𝑧

(1)
(𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘 −

1

2
) + 𝑐𝑦𝑧𝑦𝑧

(2)
(𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘 +

1

2
)

+ 𝑐𝑦𝑧𝑦𝑧
(3)

(𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) + 𝑐𝑦𝑧𝑦𝑧

(4)
(𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 −

1

2
)] 𝑆𝑦𝑧 (𝑖 +

1

2
, 𝑗, 𝑘) 

(3.15) 

Therefore, the shear stiffness requires four terms since generally the shear stresses may be 

at the interface of four different materials. 

3.3.3 Piezoelectric 

As seen in this section, interface conditions are met via spatial averaging of the material 

properties. As such, there exist piezoelectric interface conditions which are satisfied via proper 

placement of the piezoelectric coupling coefficients. These will differ slightly based on which 

coupling coefficients are used as shown in the following sub-sections. 

The interface condition between a piezoelectric and a dielectric is derived herein. The air 

interface is a special case of this derivation. Recall that the tangential D is not continuous at an 

interface, and tangential E is continuous. Refer to region (1) as the space containing the 

piezoelectric material and region (2) as the space containing the dielectric. The z-component of 

Ampere’s law is: 
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2

∆𝑡
[𝐷𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝐷𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)]

=
1

∆𝑥
[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
1

∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)] 

(3.16) 

Say that spatial location (𝑖, 𝑗, 𝑘 +
1

2
) is at an xz-planar interface. Split the 𝐷𝑧 terms into 𝐷𝑧1 

and 𝐷𝑧2, which are located just to the interior and exterior of the piezoelectric at the interface 

respectively, therefore: 

 
𝐷𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) =

𝐷
𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1
2) + 𝐷

𝑧(2)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1
2)

2
 

(3.17) 

Substituting (3.17) into Ampere’s law (3.16) yields: 

 

2

∆𝑡
[
𝐷

𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1
2) + 𝐷

𝑧(2)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1
2)

2
−

𝐷𝑧(1)
𝑛 (𝑖, 𝑗, 𝑘 +

1
2) + 𝐷𝑧(2)

𝑛 (𝑖, 𝑗, 𝑘 +
1
2)

2
]

=
1

∆𝑥
[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
1

∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)] 

(3.18) 

The constitutive relation for the dielectric, assuming diagonal permittivity, is the following: 

 𝐷
𝑧(2)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) = 𝜖𝑧𝑧

(2)
𝐸

𝑧(2)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) (3.19a) 

Where 𝜖𝑧𝑧
(2)

 is the permittivity of the adjacent dielectric (for air 𝜖𝑧𝑧
(2) = 𝜖0). Since distinct (but 

equivalent) piezoelectric constitutive relations may be used, the following subsections discuss 

using the d-form and the e-form [194] separately, both assuming a z-poled class 6mm 

tetragonal crystal. Note that, since discontinuity leads to Dz being split, the d and e-form are the 

only constitutive relations that should be used for determining interface conditions as these 

contain the flux on the left-hand side of the equation (i.e., using h and g-forms would not be 

appropriate). 



 
 

122 

 

3.3.3.1 d-form Piezoelectric Interface Condition 

From the d-form of the piezoelectric constitutive relations, the interface adjacent electric flux 

within the piezoelectric is: 

 

𝐷
𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) = 𝑑31

(1)
[𝑇

𝑥𝑥(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + 𝑇

𝑦𝑦(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)] + 𝑑33

(1)
𝑇
𝑧𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

+ 𝜖𝑧𝑧
𝑇(1)

𝐸
𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) 

(3.19b) 

Here, 𝑑33
(1)

 and 𝑑31
(1)

 are the piezoelectric coupling coefficients, and 𝜖𝑧𝑧
𝑇(1)

 is the constant stress 

permittivity of the piezoelectric material. Use 𝐸𝑧(1)=𝐸𝑧(2)=𝐸𝑧, from tangential E continuity, and 

substitute the constitutive relations (3.19a-b) into Ampere’s law (3.18): 

 

2

∆𝑡
[
𝑑31

(1)

2
[𝑇

𝑥𝑥(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + 𝑇

𝑦𝑦(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)] +

𝑑33
(1)

2
𝑇
𝑧𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

+
(𝜖𝑧𝑧

𝑇(1)
+ 𝜖𝑧𝑧

(2)
)

2
𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

−
𝑑31

(1)

2
[𝑇𝑥𝑥(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
) + 𝑇𝑦𝑦(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] −

𝑑33
(1)

2
𝑇𝑧𝑧(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)

−
(𝜖𝑧𝑧

𝑇(1)
+ 𝜖𝑧𝑧

(2)
)

2
𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)]

=
1

∆𝑥
[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
1

∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)] 

(3.20) 

Rearrange: 
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(𝜖𝑧𝑧
𝑇(1)

+ 𝜖𝑧𝑧
(2)

)

2
𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

=
(𝜖𝑧𝑧

𝑇(1)
+ 𝜖𝑧𝑧

(2)
)

2
𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)

+
∆𝑡

2∆𝑥
[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
∆𝑡

2∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)]

−
𝑑33

(1)

2
(𝑇

𝑧𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝑇𝑧𝑧(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
))

−
𝑑31

(1)

2
(𝑇

𝑥𝑥(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝑇𝑥𝑥(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
) + 𝑇

𝑦𝑦(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

− 𝑇𝑦𝑦(1)
𝑛 (𝑖, 𝑗, 𝑘 +

1

2
)) 

(3.21) 

As expected, the permittivity is averaged while the piezoelectric 𝑑𝑇 products are multiplied 

by a factor of ½ with respect to the interior value. The ½ factor may be achieved by averaging 

the 𝑑 terms, just as the permittivity, while utilizing the interior normal stresses at the interface.  

Mechanically, for the shear free case, no piezoelectric interface conditions need be 

considered as only the velocity terms exists on interfaces/boundaries and the velocities are 

updated using the elastodynamic equation, which makes no mention of coupling coefficients. 

More generally, at a corner interface, a factor of ¼ will appear on the piezoelectric terms as 

the 𝐷𝑧 term is split into 𝐷𝑧(1), 𝐷𝑧(2), 𝐷𝑧(3), and 𝐷𝑧(4) (where material (1) is the piezoelectric), 

yielding: 
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(𝜖𝑧𝑧
𝑇(1)

+ 𝜖𝑧𝑧
(2)

+ 𝜖𝑧𝑧
(3)

+ 𝜖𝑧𝑧
(4)

)

4
𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

=
(𝜖𝑧𝑧

𝑇(1)
+ 𝜖𝑧𝑧

(2)
+ 𝜖𝑧𝑧

(3)
+ 𝜖𝑧𝑧

(4)
)

4
𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)

+
∆𝑡

2∆𝑥
[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
∆𝑡

2∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)]

−
𝑑33

(1)

4
(𝑇

𝑧𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝑇𝑧𝑧(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
))

−
𝑑31

(1)

4
(𝑇

𝑥𝑥(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝑇𝑥𝑥(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
) + 𝑇

𝑦𝑦(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

− 𝑇𝑦𝑦(1)
𝑛 (𝑖, 𝑗, 𝑘 +

1

2
)) 

(3.22) 

Therefore, define the permittivity and piezoelectric coupling coefficients as follows: 

 

𝜖𝑧𝑧 (𝑖, 𝑗, 𝑘 +
1

2
) =

(𝜖𝑧𝑧
𝑇(1)

+ 𝜖𝑧𝑧
(2)

+ 𝜖𝑧𝑧
(3)

+ 𝜖𝑧𝑧
(4)

)

4

=

(𝜖𝑧𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

4
 

(3.23a) 

 
𝑑33 (𝑖, 𝑗, 𝑘 +

1

2
) =

𝑑33
(1)

4
=

(𝑑33

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑑33

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑑33

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝑑33

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

4
 

(3.23b) 

 
𝑑31 (𝑖, 𝑗, 𝑘 +

1

2
) =

𝑑31
(1)

4
=

(𝑑31

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑑31

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑑31

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝑑31

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

4
 

(3.23c) 

These definitions can be applied generally, with interface conditions handled via use of the 

internal stress only. 

3.3.3.2 e-form Piezoelectric Interface Condition 

From the e-form of the piezoelectric constitutive relations, the interface adjacent electric flux 

within the piezoelectric is: 
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𝐷
𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) = 𝑒31

(1)
[𝑆

𝑥𝑥(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + 𝑆

𝑦𝑦(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)] + 𝑒33

(1)
𝑆
𝑧𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

+ 𝜖𝑧𝑧
𝑆(1)

𝐸
𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) 

(3.19c) 

Here, 𝑒33
(1)

 and 𝑒31
(1)

 are the piezoelectric coupling coefficients, and 𝜖𝑧𝑧
𝑆(1)

 is the constant strain 

permittivity of the piezoelectric material. The rest of the derivation follows the same vein as that 

of the d-form in the previous section, yielding the following expression for the electric field in the 

case of a corner interface: 

 

(𝜖𝑧𝑧
𝑆(1)

+ 𝜖𝑧𝑧
(2)

+ 𝜖𝑧𝑧
(3)

+ 𝜖𝑧𝑧
(4)

)

4
𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

=
(𝜖𝑧𝑧

𝑆(1)
+ 𝜖𝑧𝑧

(2)
+ 𝜖𝑧𝑧

(3)
+ 𝜖𝑧𝑧

(4)
)

4
𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)

+
∆𝑡

2∆𝑥
[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
∆𝑡

2∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)]

−
𝑒33

(1)

4
(𝑆

𝑧𝑧(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝑆𝑧𝑧(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
))

−
𝑒31

(1)

4
(𝑆

𝑥𝑥(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝑆𝑥𝑥(1)

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
) + 𝑆

𝑦𝑦(1)

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

− 𝑆𝑦𝑦(1)
𝑛 (𝑖, 𝑗, 𝑘 +

1

2
)) 

(3.24) 

Therefore, define the permittivity and piezoelectric coupling coefficients as follows: 

 

𝜖𝑧𝑧 (𝑖, 𝑗, 𝑘 +
1

2
) =

(𝜖𝑧𝑧
𝑆(1)

+ 𝜖𝑧𝑧
(2)

+ 𝜖𝑧𝑧
(3)

+ 𝜖𝑧𝑧
(4)

)

4

=

(𝜖𝑧𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

4
 

(3.25a) 

 
𝑒33 (𝑖, 𝑗, 𝑘 +

1

2
) =

𝑒33
(1)

4
=

(𝑒33

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑒33

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑒33

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝑒33

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

4
 

(3.25b) 
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𝑒31 (𝑖, 𝑗, 𝑘 +

1

2
) =

𝑒31
(1)

4
=

(𝑒31

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑒31

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑒31

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝑒31

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

4
 

(3.25c) 

These definitions can be applied generally, with interface conditions handled via use of the 

internal stress only. 

Note from this and the previous section that the electric flux is tangential at the electric 

interface and therefore not continuous. This leads to averaging of the 𝑑 and 𝑒 piezoelectric 

coupling tensors along with the permittivity tensor. The 𝑔 and ℎ piezoelectric coupling tensors 

[194][198] must not be averaged then during FDTD simulations as it is accurate to utilize 

average 𝑑, 𝑒, 𝜖𝑇, and 𝜖𝑆. If the g or h-form are used, then these should be averaged as follows: 

 𝑔33 (𝑖, 𝑗, 𝑘 +
1

2
) =

(𝑑33

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑑33

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑑33

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝑑33

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

(𝜖𝑧𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

 (3.26a) 

 ℎ33 (𝑖, 𝑗, 𝑘 +
1

2
) =

(𝑒31

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑒31

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑒31

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝑒31

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

(𝜖𝑧𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖+
1
2
,𝑗−

1
2
,𝑘+

1
2 + 𝜖𝑧𝑧

𝑖−
1
2
,𝑗−

1
2
,𝑘+

1
2)

 (3.26b) 

All the piezoelectric interface conditions herein have been determined for collocation with Dz 

or Ez. Other similar expressions may be written for the x and y-directions also yielding spatially 

averaged material properties. 

3.4 Boundary Conditions 

Boundaries are defined as nodes outside of which fields are no longer updated. This means 

that the mechanical boundaries will generally not coincide with the EM boundaries, as the outer 

surface of any solid structure acts as the mechanical boundary, whereas the EM portion of the 

code may encompass surrounding air beyond the structure. It is therefore fruitful to treat 

mechanical and EM boundaries as separate entities. 
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3.4.1 Electromagnetic Boundary Conditions 

In the context of the EM physics, boundaries are planes where the simulation space is 

truncated, therefore requiring special treatment unlike interfaces. This special treatment is 

known as the boundary condition and the subsequent sections cover some such relations as 

they pertain to electrodynamics. 

3.4.1.1 Perfect Electric Conductor (PEC) 

A perfect electric conducting surface is a theoretical boundary that has infinite free charges 

to dissipate electric fields. As such any incident tangential electric fields are immediately used to 

move these free charges and therefore no such fields may exist on these surfaces [178][179]. 

Since magnetic fields are created by swirling Faraday contours, this implies that the normal 

magnetic field is also zero at the PEC boundary: 

 𝐸𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 0, 𝐸𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑚𝑎𝑥/𝑚𝑖𝑛, 𝐻𝑛𝑜𝑟𝑚𝑎𝑙 = 0, @ 𝑃𝐸𝐶 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (3.27) 

Of course, no such surfaces exist but many highly conductive materials may be accurately 

modeled using this approximation and, within this study, the ground electrode is modeled as a 

PEC. Since EM waves are transverse in nature, the zeroing out of the tangential electric fields 

has the effect of perfectly reflecting all incident waves. As such, PECs are often used to model 

infinite arrays of radiators using image theory. Consider for example an infinite electric line 

source as shown in Figure 3-14: 
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Figure 3-14: Infinite electric line source. 

 

This continuous line source produces a cylindrical wavefront that propagates in the radial 

direction as shown in Figure 3-14a. When modeled in a discretized simulation space however, 

the continuous line source must be split up into dipole point current sources that produce a 

spherical wavefront as shown in Figure 3-14b. This does not perfectly recreate the cylindrical 

wavefront, especially near the source, but as the discretization size ∆𝑧 is made smaller and 

smaller the accuracy increases at the cost of an increased number of nodes and therefore 

simulation time. This is a constant trade-off in numerical analysis that must be made and 

requires some engineering intuition. Of course, the simulation space cannot contain infinitely 

many nodes in the vertical direction to recreate the infinitely long line source. At some location 

the simulation space needs to be truncated to keep the number of nodes finite. In this case a 

PEC is appropriate due to its ability to perfectly reflect incident EM waves by zeroing out the 

tangential electric fields. This becomes clear when looking at Figure 3-14c where it is shown 

that the PEC has the effect of creating an imaged dipole just outside the simulation space. The 

reflection of the dipole just within the simulation space can therefore be thought of as the 
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incident wavefront from this imaged dipole as shown in the zoomed in image in Figure 3-14c. 

The infinite electric line source is simulated in section 4.2.2. 

3.4.1.2 Perfect Magnetic Conductor 

A perfect magnetic conducting surface is a theoretical boundary that has infinite free 

magnetic charges to dissipate magnetic fields. As such any incident tangential magnetic fields 

are immediately used to move these free magnetic charges and therefore no such fields may 

exist on these surfaces [178][179]. Since electric fields are created by swirling Ampere contours, 

this implies that the normal electric field is also zero at the PMC boundary: 

 𝐻𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 = 0, 𝐻𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑚𝑎𝑥/𝑚𝑖𝑛, 𝐸𝑛𝑜𝑟𝑚𝑎𝑙 = 0, @ 𝑃𝑀𝐶 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 (3.28) 

Of course, no such surfaces exist as free magnetic charge is a theoretical construct but 

often systems may be modeled by theoretical equivalents which may include fictional magnetic 

currents. Aperture antennas for example may be modeled using electric and magnetic current 

sources which act over the aperture [25][26]. As such, PMCs may be used to model periodic 

structures just like PECs when appropriate. 

3.4.1.3 Absorbing Boundary Conditions 

When performing simulations, it is often necessary to model an infinite region where a wave 

propagates away from the device of interest never to return. Cleary in terms of computer 

memory, this infinite simulation space is not realizable and as such truncation of the simulation 

space is necessary. The boundaries of this practical simulation space will ideally exhibit perfect 

transmission and no reflection of any incident waves will occur and these are known as 

absorbing boundary conditions. These date back to 1975 where Taflove referred to them as 

“soft lattice truncation conditions” [196] and later as “radiating boundary conditions” by Holland 

in 1977 [197]. There are many ways of attempting to realize zero reflection at a boundary, and 

herein so called “one-way wave equations” are utilized which only allow the wave to propagate 
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in one-way, namely away from the simulation space. To derive these one-way expressions, the 

3D wave equation is written as [178]: 

 
𝜕2𝑈

𝜕𝑥2 +
𝜕2𝑈

𝜕𝑦2 +
𝜕2𝑈

𝜕𝑧2 −
1

𝑐2

𝜕2𝑈

𝜕𝑡2 ≡ 𝐺𝑈 = 𝐺+𝐺−𝑈 (3.29a) 

Where, 𝐺+ and 𝐺− denote the one-way wave operators yielding the following analytical 

boundary conditions at x=0,h, which apply for any angle of incidence: 

 𝐺−1𝑈(0, 𝑦, 𝑧) = 0, 𝐺+𝑈(ℎ, 𝑦, 𝑧) = 0 (3.29b/c) 

The theory for equations (3.17a-c) was first derived by Engquist and Majda in 1977 for 

Cartesian FDTD grids [198], and was later applied to the electromagnetic field equations by Mur 

in 1981 [199]. The largest setback of this one-way wave approach is that equations (3.29b/c) 

are pseudodifferential operators which disallows direct numerical implementation. (3.29b/c) 

Therefore these must be approximated by Taylor series first and these approximate terms only 

exhibit perfect absorption at broadside (normal wave incidence). Mur derived both 1st (Mur1) 

and 2nd (Mur2) order finite difference versions of these boundary conditions [199] and Trefethen 

modified the expressions such that perfect absorption can be achieved at oblique incidences 

rather than broadside [200]. The Mur1 ABCs are often utilized in ADI-FDTD due to the light 

computational load w.r.t the 2nd order version. Yang applied the Mur1 conditions to the ADI-

FDTD formulation in 2005 [201]. The 1st order accurate absorbing boundary condition for an EM 

wave traveling in free space is shown below and applies to the 1D, 2D, and 3D cases [178]: 

 𝐺∓𝑈 ≅
𝜕𝑈

𝜕𝑥
∓

1

𝑐

𝜕𝑈

𝜕𝑡
= 0 (3.30) 

This approximation holds when the spatial variation tangential to the boundary is small, in 

other words, when the wave impinges upon the boundary at or near normal incidence. The 

minus corresponds to the start of the simulation space (left/back/bottom) and the plus for the 

end of the simulation space (right/front/top). 𝑈 is a scalar field that may be any electric or 

magnetic field that is evaluated at the boundary and is tangential to the boundary. If the 
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simulation space is aligned with the electrical interface, then the 𝑈 field will be the tangential 

electrical fields, as is the case herein. Since the normal H-field component at the boundary does 

not require external electric fields to update, Faraday’s law may still be used. E-field update, 

however, will require H-field components outside of the simulation space, and will therefore 

instead use the following one-way wave boundary conditions: 

𝑥 = 0:
𝜕𝐸𝑦

𝜕𝑥
−

1

𝑐

𝜕𝐸𝑦

𝜕𝑡
= 0,

𝜕𝐸𝑧

𝜕𝑥
−

1

𝑐

𝜕𝐸𝑧

𝜕𝑡
= 0

𝑦 = 0:
𝜕𝐸𝑥

𝜕𝑦
−

1

𝑐

𝜕𝐸𝑥

𝜕𝑡
= 0,

𝜕𝐸𝑧

𝜕𝑦
−

1

𝑐

𝜕𝐸𝑧

𝜕𝑡
= 0

𝑧 = 0:
𝜕𝐸𝑥

𝜕𝑧
−

1

𝑐

𝜕𝐸𝑥

𝜕𝑡
= 0,

𝜕𝐸𝑦

𝜕𝑧
−

1

𝑐

𝜕𝐸𝑦

𝜕𝑡
= 0

𝑥 = 𝐿𝑥 :
𝜕𝐸𝑦

𝜕𝑥
+

1

𝑐

𝜕𝐸𝑦

𝜕𝑡
= 0,

𝜕𝐸𝑧

𝜕𝑥
+

1

𝑐

𝜕𝐸𝑧

𝜕𝑡
= 0

𝑦 = 𝐿𝑦:
𝜕𝐸𝑥

𝜕𝑦
+

1

𝑐

𝜕𝐸𝑥

𝜕𝑡
= 0,

𝜕𝐸𝑧

𝜕𝑦
+

1

𝑐

𝜕𝐸𝑧

𝜕𝑡
= 0

𝑧 = 𝐿𝑧:
𝜕𝐸𝑥

𝜕𝑧
+

1

𝑐

𝜕𝐸𝑥

𝜕𝑡
= 0,

𝜕𝐸𝑦

𝜕𝑧
+

1

𝑐

𝜕𝐸𝑦

𝜕𝑡
= 0

 

(3.31a-f) 

Using central differences, the following is derived for the 𝑧 = 𝐿𝑧 = 𝑁𝑧∆𝑧 boundary (3.31f) in 

standard FDTD: 

1

2∆𝑧
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗,𝑁𝑧) + 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗,𝑁𝑧) − 𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑁𝑧 − 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑁𝑧 − 1)]

+
1

2𝑐∆𝑡
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗,𝑁𝑧 − 1) + 𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑁𝑧) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑁𝑧 − 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗,𝑁𝑧)] = 0 

(3.32a) 

1

2∆𝑧
[𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
,𝑁𝑧) + 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
,𝑁𝑧) − 𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
, 𝑁𝑧 − 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑁𝑧 − 1)]

+
1

2𝑐∆𝑡
[𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
,𝑁𝑧 − 1) + 𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
, 𝑁𝑧) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑁𝑧 − 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
,𝑁𝑧)] = 0 

(3.32b) 

Solving for the fields at the boundary and the future time step yields: 

 𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗,𝑁𝑧) = 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗,𝑁𝑧 − 1) +

𝑐∆𝑡 − ∆𝑧

𝑐∆𝑡 + ∆𝑧
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑁𝑧 − 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗,𝑁𝑧)] (3.33a) 

 𝐸𝑦
𝑛+1 (𝑖, 𝑗 +

1

2
,𝑁𝑧) = 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
,𝑁𝑧 − 1) +

𝑐∆𝑡 − ∆𝑧

𝑐∆𝑡 + ∆𝑧
[𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
, 𝑁𝑧 − 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
,𝑁𝑧)] (3.33b) 

In the ADI-FDTD formulation these equations will be slightly modified due to the presence of 

the 2 sub-iterations yielding the following for the 1st sub-iteration if the same methodology is 

followed: 
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 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑁𝑧) = 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑁𝑧 − 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑁𝑧)] (3.34a) 

 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑁𝑧) = 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑁𝑧 − 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑁𝑧)] (3.34b) 

And for the 2nd sub-iteration the equations are simply evolved half a time step: 

 𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗,𝑁𝑧) = 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗,𝑁𝑧 − 1) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗,𝑁𝑧)] (3.34c) 

 𝐸𝑦
𝑛+1 (𝑖, 𝑗 +

1

2
,𝑁𝑧) = 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
,𝑁𝑧 − 1) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
,𝑁𝑧)] (3.34d) 

The 24 ADI-FDTD equations for the Mur1 absorbing boundary conditions are tabulated 

below: 

 

𝑥 = 0 

1st 

𝐸𝑦

𝑛+
1
2 (0, 𝑗 +

1

2
, 𝑘) = 𝐸𝑦

𝑛 (1, 𝑗 +
1

2
, 𝑘) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑦

𝑛+
1
2 (1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛 (0, 𝑗 +
1

2
, 𝑘)] 

𝐸𝑧

𝑛+
1
2 (0, 𝑗, 𝑘 +

1

2
) = 𝐸𝑧

𝑛 (1, 𝑗, 𝑘 +
1

2
) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑧

𝑛+
1
2 (1, 𝑗, 𝑘 +

1

2
) − 𝐸𝑧

𝑛 (0, 𝑗, 𝑘 +
1

2
)] 

2nd 

𝐸𝑦
𝑛+1 (0, 𝑗 +

1

2
, 𝑘) = 𝐸𝑦

𝑛+
1
2 (1, 𝑗 +

1

2
, 𝑘) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑦

𝑛+1 (1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛+
1
2 (0, 𝑗 +

1

2
, 𝑘)] 

𝐸𝑧
𝑛+1 (0, 𝑗, 𝑘 +

1

2
) = 𝐸𝑧

𝑛+
1
2 (1, 𝑗, 𝑘 +

1

2
) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑧

𝑛+1 (1, 𝑗, 𝑘 +
1

2
) − 𝐸𝑧

𝑛+
1
2 (0, 𝑗, 𝑘 +

1

2
)] 

𝑥 = 𝐿𝑥 

1st 

𝐸𝑦

𝑛+
1
2 (𝑁𝑥 , 𝑗 +

1

2
, 𝑘) = 𝐸𝑦

𝑛 (𝑁𝑥 − 1, 𝑗 +
1

2
, 𝑘) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑦

𝑛+
1
2 (𝑁𝑥 − 1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑁𝑥 , 𝑗 +
1

2
, 𝑘)] 

𝐸𝑧

𝑛+
1
2 (𝑁𝑥 , 𝑗, 𝑘 +

1

2
) = 𝐸𝑧

𝑛 (𝑁𝑥 − 1, 𝑗, 𝑘 +
1

2
) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑧

𝑛+
1
2 (𝑁𝑥 − 1, 𝑗, 𝑘 +

1

2
) − 𝐸𝑧

𝑛 (𝑁𝑥 , 𝑗, 𝑘 +
1

2
)] 

2nd 

𝐸𝑦
𝑛+1 (𝑁𝑥 , 𝑗 +

1

2
, 𝑘) = 𝐸𝑦

𝑛+
1
2 (𝑁𝑥 − 1, 𝑗 +

1

2
, 𝑘) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑦

𝑛+1 (𝑁𝑥 − 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛+
1
2 (𝑁𝑥 , 𝑗 +

1

2
, 𝑘)] 

𝐸𝑧
𝑛+1 (𝑁𝑥 , 𝑗, 𝑘 +

1

2
) = 𝐸𝑧

𝑛+
1
2 (𝑁𝑥 − 1, 𝑗, 𝑘 +

1

2
) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
[𝐸𝑧

𝑛+1 (𝑁𝑥 − 1, 𝑗, 𝑘 +
1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑁𝑥 , 𝑗, 𝑘 +

1

2
)] 

𝑦 = 0 

1st 

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 0, 𝑘) = 𝐸𝑥

𝑛 (𝑖 +
1

2
, 1, 𝑘) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 1, 𝑘) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 0, 𝑘)] 

𝐸𝑧

𝑛+
1
2 (𝑖, 0, 𝑘 +

1

2
) = 𝐸𝑧

𝑛 (𝑖, 1, 𝑘 +
1

2
) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑧

𝑛+
1
2 (𝑖, 1, 𝑘 +

1

2
) − 𝐸𝑧

𝑛 (𝑖, 0, 𝑘 +
1

2
)] 

2nd 

𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 0, 𝑘) = 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 1, 𝑘) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 0, 𝑘)] 

𝐸𝑧
𝑛+1 (𝑖, 0, 𝑘 +

1

2
) = 𝐸𝑧

𝑛+
1
2 (𝑖, 1, 𝑘 +

1

2
) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑧

𝑛+1 (𝑖, 1, 𝑘 +
1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑖, 0, 𝑘 +

1

2
)] 

𝑦 = 𝐿𝑦 1st 

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
,𝑁𝑦 , 𝑘) = 𝐸𝑥

𝑛 (𝑖 +
1

2
,𝑁𝑦 − 1, 𝑘) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
,𝑁𝑦 − 1, 𝑘) − 𝐸𝑥

𝑛 (𝑖 +
1

2
,𝑁𝑦 , 𝑘)] 

𝐸𝑧

𝑛+
1
2 (𝑖, 𝑁𝑦, 𝑘 +

1

2
) = 𝐸𝑧

𝑛 (𝑖, 𝑁𝑦 − 1, 𝑘 +
1

2
) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑧

𝑛+
1
2 (𝑖, 𝑁𝑦 − 1, 𝑘 +

1

2
) − 𝐸𝑧

𝑛 (𝑖, 𝑁𝑦 , 𝑘 +
1

2
)] 
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2nd 

𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑁𝑦 , 𝑘) = 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
,𝑁𝑦 − 1, 𝑘) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
,𝑁𝑦 − 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
,𝑁𝑦 , 𝑘)] 

𝐸𝑧
𝑛+1 (𝑖, 𝑁𝑦 , 𝑘 +

1

2
) = 𝐸𝑧

𝑛+
1
2 (𝑖, 𝑁𝑦 − 1, 𝑘 +

1

2
) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
[𝐸𝑧

𝑛+1 (𝑖, 𝑁𝑦 − 1, 𝑘 +
1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑖, 𝑁𝑦 , 𝑘 +

1

2
)] 

𝑧 = 0 

1st 

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 0) = 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 0)] 

𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 0) = 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 0)] 

2nd 

𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗, 0) = 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 1) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 0)] 

𝐸𝑦
𝑛+1 (𝑖, 𝑗 +

1

2
, 0) = 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
, 1) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 0)] 

𝑧 = 𝐿𝑧 

1st 

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑁𝑧) = 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑁𝑧 − 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑁𝑧)] 

𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑁𝑧) = 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
,𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
,𝑁𝑧 − 1) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
,𝑁𝑧)] 

2nd 

𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑁𝑧) = 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑁𝑧 − 1) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑁𝑧)] 

𝐸𝑦
𝑛+1 (𝑖, 𝑗 +

1

2
,𝑁𝑧) = 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
,𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
,𝑁𝑧 − 1) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
,𝑁𝑧)] 

Table 3-1: Mur1 absorbing boundary conditions for ADI-FDTD. 

 

Since the fields at the absorbing boundary rely on the future time step fields just next to the 

boundary, the ABC fields should be evaluated just after the for loops solving for the interior 

fields. 

3.4.1.4 Perfectly Matched Layers (PMLs) 

As described in section 3.4.1.3, absorbing boundary conditions based on one-way wave 

equations can introduce significant error when incoming waves deviate from normal incidence. 

One method of bypassing this issue is to introduce lossy layers adjacent to the boundary which 

absorb the incoming waves over a distance. Strategies along this line of thinking were first 

introduced in 1983 by Holland and Berenger [202][203], though these early attempts still 

suffered from requiring normal incidence. The true explosive growth of the method commenced 

when Berenger introduced the perfectly matched layer in 1994 [204]. Within this methodology, 

the lossy layers are matched to the adjacent simulation space such that incident waves do not 



 
 

134 

 

change direction as they transmit into the lossy PML region which is backed by a PEC boundary 

condition as shown in Figure 3-15: 

 

 

Figure 3-15: Concept of PEC-backed PML regions. 

 

The idea is for all incident waves entering the PML region to die out before bouncing off the 

PEC and re-entering the simulation space. The loss within the PML region is introduced into the 

numerical algorithm through the complex frequency shifted (CFS) [178-182] stretched 

coordinates [205-207] which modify Maxwell’s equations, as discussed in section 2.1.3, allowing 

for the same generalized update scheme to be applied both in the interior and PML regions. The 

approach highlighted in section 2.1.3 is known as the convolutional PML (CPML) method and, 

although other strategies exist [208-210], this method, coupled with CFS stretched coordinates, 

has proven superior for dampening out evanescent (non-propagating) modes [180], although 

the complementary operator method is another non-PML solution for the evanescent absorption 

problem [211]. As such, the PML layers may be brought much closer to the radiating elements, 

which is a must for multiferroic antenna simulations due to the 5 orders of magnitude difference 

in EM and mechanical wavelengths. To better understand why using CFS stretched coordinates 

is effective in the near field, recall equation (2.23) for the stretched coordinates below: 

 𝑠𝑖 = 𝜅𝑖 +
𝜎𝑖

𝛼𝑖 + 𝑗𝜔𝜖0
 (2.23) 
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The real components of 𝑠𝑖 constitute a stretch of the finite difference cell, and the imaginary 

parts constitute a wave dampening effect. Rewrite equation (2.23) as follows: 

 𝑠𝑖 = 𝜅𝑖 +
𝜎𝑖/2𝜋𝜖0
𝛼𝑖

2𝜋𝜖0
+ 𝑗𝑓

 (3.35) 

Note that at low frequencies (𝑓 ≪ 𝛼𝑖/2𝜋𝜖0) the stretched coordinate is essentially real, 

producing a stretch of 𝜅𝑖 + 𝜎𝑖/𝛼𝑖. At high frequencies, equation (3.35) yields both a real stretch 

and complex dampening effect. These low and high frequency regions are split by the threshold 

frequency defined below: 

 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝛼𝑖

2𝜋𝜖0
 (3.36) 

In radiation problems, the outgoing waves are generally an amalgamation of multiple 

frequencies propagating together with low frequency components being evanescent modes, and 

high frequency components radiating into the far-field, where “low” and “high” are relative to the 

device cutoff frequency. Therefore, 𝛼𝑖 is defined such that the threshold and cutoff frequencies 

are equivalent so that low frequency evanescent modes experience a real stretch and 

exponentially decay naturally [180][208], while high frequency radiating modes experience the 

loss introduced by the PML layers. The CPML methodology was applied to ADI-FDTD in 2001 

by Gedney [212], yielding what is termed herein as CPML-ADI-FDTD. 

3.4.2 Mechanical Boundary Conditions 

Recall that the Yee spatial grid is set up such that both of Gauss’s laws are satisfied 

automatically meaning that the condition that the normal component of the magnetic flux and 

electric displacement must be continuous at a boundary is automatically satisfied everywhere 

within the simulation space. For mechanical fields however the spatial grid is not setup to 

automatically satisfy traction continuity which may be seen by the fact that the normal stresses 

are evaluated at the center of the cell where no EM fields are evaluated. To show that this is the 

case, a traction free surface is considered in the next section. 
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3.4.2.1 Traction Free Surfaces 

A traction free surface bounds the outer area of a solid structure without external forces 

applied, and motion is permitted. Within the finite difference grid, this boundary is aligned with 

the unit cell like the electrical interfaces. Various methods exist to numerically implement these 

boundary conditions within the FDTD method [192-194]. Due to the small-time step utilized 

herein (relative to the mechanical stability requirement), a relatively simple method was chosen 

to avoid undue inaccuracies and was adopted as explained below. 

Consider a traction free surface with outward normal in the positive z-direction (top 

boundary). Evaluation of the non-zero velocity at the surface will involve the adjacent boundary 

shear stresses which are zero (traction free). 

 𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘𝑡𝑜𝑝) = 0, 𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) = 0 (3.37) 

Also involved will be the normal stress just below and above the z-directed velocity term 

which has the following update equation: 

 

𝑣𝑧

𝑛+
3

4 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) = 𝑣𝑧

𝑛+
1

4 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) +

∆𝑡[𝑇𝑧𝑧

𝑛+
1
2(𝑖+

1

2
,𝑗+

1

2
,𝑘𝑡𝑜𝑝+

1

2
)−𝑇𝑧𝑧

𝑛+
1
2(𝑖+

1

2
,𝑗+

1

2
,𝑘𝑡𝑜𝑝−

1

2
)]

(𝜌(1)

𝑖+
1
2
,𝑗+

1
2
,𝑘𝑡𝑜𝑝−

1
2+𝜌(2)

𝑖+
1
2
,𝑗+

1
2
,𝑘𝑡𝑜𝑝+

1
2)∆𝑧

 

(3.38) 

The densities and stresses located at (𝑘𝑡𝑜𝑝 + 1/2)∆𝑧 are outside the structure and require 

attention prior to implementation of (3.38). Since the stress is zero at the boundary, the following 

anti-symmetry equation may be applied to deal with the out-of-bounds stress terms: 

 𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 +

1

2
) = −𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
) (3.39) 

Note that (3.26) produces a zero normal stress at the boundary located at 𝑧 = 𝑘𝑡𝑜𝑝∆𝑧 when 

spatial averaging is applied (see section 3.2.3). In (3.39), the stress just outside the boundary is 

fictious rather than an actual physical stress and therefore this stress should not be applied to 
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the exterior nodes directly, as the EM portion of the code would then erroneously utilize these 

stresses. Instead, (3.39) should be handled using if-statements within the code. 

The density just outside the material may be defined to be zero in what was referred to as a 

“vacuum formalism” by Zahradnik et al. in 1993 [213] but was previously proposed by Boore in 

1972 [214]. It is tempting to utilize this method due to being easier to implement on more 

generic structures, but in 1996 Graves [194] warned of numerical issues that this formalism 

presents so the practice of utilizing the density (and stiffness) of the nearest neighbor node is 

utilized herein, consistent with authors such as Ugural [215], therefore: 

 𝜌
(2)

𝑖+
1
2,𝑗+

1
2,𝑘𝑡𝑜𝑝+

1
2 = 𝜌

(1)

𝑖+
1
2,𝑗+

1
2,𝑘𝑡𝑜𝑝−

1
2 (3.40) 

The velocity update equation at the boundary is now as follows: 

 𝑣𝑧

𝑛+
3
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) = 𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) −

∆𝑡𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1
2 , 𝑗 +

1
2 , 𝑘𝑡𝑜𝑝 −

1
2)

∆𝑧𝜌
(1)

𝑖+
1
2
,𝑗+

1
2
,𝑘𝑡𝑜𝑝−

1
2

 (3.41a) 

Thus far, at the boundary, the traction free conditions have been applied either directly 

(3.37) or through anti-symmetry (3.39) and an expression for the velocity defined at the 

boundary has been derived (3.41). Continuity of all velocity terms is required, however, so the 

tangential 𝑣𝑥 and 𝑣𝑦 seem to also require a boundary condition but note that these are not 

defined at the boundary. Regardless the traction free surface effects the tangential velocities 

half a cell to the interior as follows: 
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𝑣𝑥

𝑛+
3
4 (𝑖, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
)

= 𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
)

+
∆𝑡

2𝜌 (𝑖, 𝑗 +
1
2 , 𝑘𝑡𝑜𝑝 −

1
2)∆𝑥

[𝑇𝑥𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
) − 𝑇𝑥𝑥

𝑛+
1
2 (𝑖 −

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
)]

+
∆𝑡

2𝜌 (𝑖, 𝑗 +
1
2 , 𝑘𝑡𝑜𝑝 −

1
2)∆𝑦

[𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗 + 1, 𝑘𝑡𝑜𝑝 −

1

2
) − 𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘𝑡𝑜𝑝 −

1

2
)]

−
∆𝑡

2𝜌 (𝑖, 𝑗 +
1
2 , 𝑘𝑡𝑜𝑝 −

1
2)∆𝑧

𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 − 1) 

(3.41b) 

 

𝑣𝑦

𝑛+
3
4 (𝑖 +

1

2
, 𝑗, 𝑘𝑡𝑜𝑝 −

1

2
)

= 𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘𝑡𝑜𝑝 −

1

2
)

+
∆𝑡

2𝜌 (𝑖 +
1
2 , 𝑗, 𝑘 +

1
2) ∆𝑥

[𝑇𝑥𝑦

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘𝑡𝑜𝑝 −

1

2
) − 𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘𝑡𝑜𝑝 −

1

2
)]

+
∆𝑡

2𝜌 (𝑖 +
1
2

, 𝑗, 𝑘 +
1
2
) ∆𝑦

[𝑇𝑦𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
) − 𝑇𝑦𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
)]

−
∆𝑡

2𝜌 (𝑖 +
1
2 , 𝑗, 𝑘 +

1
2) ∆𝑧

𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘𝑡𝑜𝑝 − 1) 

(3.41c) 

Therefore, the tangential velocities adjacent to the boundary will be affected by the 

boundary from the zeroing out of shear stresses. These conditions may be handled without the 

use of any if-statements since the shear stresses at the surface are always zero from proper 

definition of for-loops. The boundary conditions shown here for a horizontal plane may be 

modified for planes normal to the in-plane direction following the same methodology. For the 

case where two planes meet (at a corner) the only field shared by both planes is a shear stress 

which for both planes is zero, so no special if-statements are necessary outside of the ones 

already used for the velocity components normal to the boundary. 

3.4.2.2 Fixed Boundary 

For a fixed boundary, all velocity terms are zero while tractions at the boundary are 

unrestricted. Say a fixed boundary is normal to the z-direction on the bottom of the device (at 

𝑧 = 𝑘𝑏𝑜𝑡∆𝑧 = 0, then there are two non-zero shear stresses at the boundary which require 
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velocity components just below the simulation space in order to resolve. The update equations 

are as follows: 

 

𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘𝑏𝑜𝑡) = 𝑇𝑦𝑧

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘𝑏𝑜𝑡)

+
∆𝑡

2

1

4
(𝑐𝑦𝑧𝑦𝑧

𝑖+
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡+

1
2 + 𝑐𝑦𝑧𝑦𝑧

𝑖−
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡+

1
2 + 𝑐𝑦𝑧𝑦𝑧

𝑖+
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡−

1
2

+ 𝑐𝑦𝑧𝑦𝑧

𝑖−
1
2
,𝑗+

1
2
,𝑘𝑏𝑜𝑡−

1
2)

1

2
[
1

∆𝑧
(𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘𝑏𝑜𝑡 +

1

2
) − 𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘𝑏𝑜𝑡 −

1

2
))

+
1

∆𝑦
(𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡) − 𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘𝑏𝑜𝑡))] 

(3.42a) 

 

𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) = 𝑇𝑥𝑧

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)

+
∆𝑡

2

1

4
(𝑐𝑥𝑧𝑥𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑐𝑥𝑧𝑥𝑧

𝑖−
1
2
,𝑗+

1
2
,𝑘+

1
2 + 𝑐𝑥𝑧𝑥𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘−

1
2

+ 𝑐𝑥𝑧𝑥𝑧

𝑖−
1
2,𝑗+

1
2,𝑘−

1
2)

1

2
[
1

∆𝑧
(𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡 +

1

2
) − 𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡 −

1

2
))

+
1

∆𝑥
(𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡) − 𝑣𝑧

𝑛+
1
4 (𝑖 −

1

2
, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡))] 

(3.42b) 

The velocities directly adjacent to the fixed boundary adhere to the following anti-symmetry 

conditions: 

 𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) = −𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
) , 𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) = −𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘 −

1

2
) (3.43a/b) 

Where the terms just below the boundary are just outside the simulation space and are 

therefore imaged, rather than physical, fields. The averages of the velocities in equations 

(3.43a/b) are located at the fixed boundary and are equal to zero as expected.  

At fixed boundaries it is appropriate to take the stiffness from the adjacent material and 

apply it to a phantom node just outside the simulation space [215], therefore: 

 𝑐
𝑖𝑗𝑖𝑗

𝑖+
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡+

1
2 = 𝑐

𝑖𝑗𝑖𝑗

𝑖+
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡−

1
2 (3.44) 

Substituting (3.44) and (3.43a/b) into equations (3.42/b) yields: 
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𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘𝑏𝑜𝑡) = 𝑇𝑦𝑧

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘𝑏𝑜𝑡)

+
∆𝑡

2

1

2
(𝑐𝑦𝑧𝑦𝑧

𝑖+
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡+

1
2 + 𝑐𝑦𝑧𝑦𝑧

𝑖−
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡+

1
2)

1

2
[
2

∆𝑧
𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘𝑏𝑜𝑡 +

1

2
)

+
1

∆𝑦
(𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡) − 𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘𝑏𝑜𝑡))] 

(3.45a) 

 

𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡) = 𝑇𝑥𝑧

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘𝑏𝑜𝑡)

+
∆𝑡

2

1

2
(𝑐𝑥𝑧𝑥𝑧

𝑖+
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡+

1
2 + 𝑐𝑥𝑧𝑥𝑧

𝑖−
1
2,𝑗+

1
2,𝑘𝑏𝑜𝑡+

1
2)

1

2
[
2

∆𝑧
𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡 +

1

2
)

+
1

∆𝑥
(𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡) − 𝑣𝑧

𝑛+
1
4 (𝑖 −

1

2
, 𝑗 +

1

2
, 𝑘𝑏𝑜𝑡))] 

(3.45b) 

3.4.2.3 Normal Velocity Prescribed 

When a velocity normal to a boundary is applied, the two co-planar shear stress terms will 

be affected. Suppose a z-directed velocity is applied at the top boundary of the device: 

 𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) = 𝑣𝑧𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) (3.46) 

The shear stresses at the excitation plane are 𝑇𝑦𝑧 and 𝑇𝑥𝑧. In the simplest case of a uniform 

velocity input, the shear terms must necessarily be zero everywhere (since shear stresses 

would warp the excitation plane, destroying the uniformity), therefore: 

 𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘𝑡𝑜𝑝) = 0, 𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) = 0 (3.47a/b) 

3.4.2.4 Normal Traction Prescribed 

In this case, rather than anti-symmetry for the normal stress, the following applies at the 

boundary: 

 
1

2
[𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 +

1

2
) + 𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
)] = 𝑇𝑧𝑧𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) (3.48a) 

This yields the following imaged stress above the surface: 

 𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 +

1

2
) = 2𝑇𝑧𝑧𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝) − 𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
) (3.48b) 
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So, the normal traction applied at the boundary may be modelled as the following vertical 

velocity: 

 

𝑣𝑧

𝑛+
3
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝)

= 𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝)

+
∆𝑡

𝜌 (𝑖 +
1
2

, 𝑗 +
1
2

, 𝑘𝑡𝑜𝑝)∆𝑧
[𝑇𝑧𝑧𝑃𝑟𝑒𝑠𝑐𝑟𝑖𝑏𝑒𝑑

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝)

− 𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘𝑡𝑜𝑝 −

1

2
)] 

(3.49) 

Where the shear stress terms do not appear since the applied traction is normal to the 

boundary surface, i.e., zero shear stress. The horizontal velocity terms just below the free 

surface remain unaffected. 

3.5 Unified Grid 

A spatial lattice containing all the information needed to write update equations is shown in 

Figure 3-16. More specifically, the spatial locations of the EM fields discussed in section 3.2.1, 

the mechanical fields shown in 3.2.2, the EM material properties of section 3.3.1.1, and the 

mechanical material properties of section 3.3.2.1, are all presented in the figure. 
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Figure 3-16: Unified spatial grid for mechanical antenna simulations. 

 

Figure 3-16 also reiterates the physical significance of the EM and mechanical field 

placement (e.g., to create Ampere contours). Recall also that the material properties are defined 

such that average material properties are utilized at interfaces. Although a full 3D mechanical 

grid is presented in Figure 3-16 for completeness, only 1D mechanical simulations are 

performed herein. 

3.6 ADI-Methodology for Homogenous Free Space with Source Currents 

In this section the alternating direction implicit methodology will be derived for free space 

simulations in the absence of piezomagnetism and piezoelectricity, to simplify the description 

while providing a basic understanding of the approach. The process flow is shown in Figure 

3-17: 
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Figure 3-17: Process flow for the free space ADI method. 

 

The accuracy of this method is highlighted in [218][219]. First, the z-component of Faraday’s 

law is written in finite difference form as follows: 

 

2

∆𝑡
[𝐵𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐵𝑧

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘)] + ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

=
1

∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
1

∆𝑥
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] 

(3.50) 

Note that the magnetic flux current �̇� and the curl of the electric field ∇ × 𝐸 are evaluated at 

time 𝑡 = (𝑛 + 1/4)∆𝑡, with the latter term achieving this by having the spatial derivative 𝐸𝑥,𝑦 

evaluated at 𝑡 = (𝑛 + 1/2)∆𝑡, and 𝐸𝑦,𝑥 at 𝑡 = 𝑛∆𝑡. This is in stark contrast to the magnetic 

source current term ℳ𝑧 which is defined at time 𝑡 = (𝑛 + 1/2)∆𝑡. This time mismatch has been 

shown to be optimally accurate by Hagness et al. [220][221] and represents a situation where 

the temporal homogeneity of the finite difference expression need not be rigorously applied. 

Since the 𝐸𝑥 terms are not yet known, (3.50) is implicit (in the y-direction) and further treatment 

is necessary before Faraday’s law may be used as an update equation. Equation (3.50) could 

have also been made implicit in the x-direction, and this is accomplished in a 2nd sub-iteration. 

The magnetic constitutive relation for a vacuum environment is as follows: 
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 𝐵𝑧

𝑛+
1
2 = 𝜇0𝐻𝑧

𝑛+
1
2 (3.51) 

Combining (3.50) and (3.51) and solving for 𝐻𝑧
𝑛+1/2

 yields: 

 

𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

= 𝐻𝑧
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) +

∆𝑡

2𝜇0∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
∆𝑡

2𝜇0∆𝑥
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] −

∆𝑡

2𝜇0
ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) 

(3.52) 

The electric constitutive relation for a vacuum environment is as follows: 

 𝐷𝑥

𝑛+
1
2 = 𝜖0𝐸𝑥

𝑛+
1
2 (3.53) 

The x-component of Ampere’s law will now be written, which again will involve an implicit 

direction which is alternated in the 2nd sub-iteration (hence the name alternating direction 

implicit): 

 

2

∆𝑡
[𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐷𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)] + 𝐽𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)

=
1

∆𝑦
[𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
1

∆𝑧
[𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] 

(3.54a) 

Note in (3.54a) that the 𝐻𝑧 terms are implicit. Also, the time sampling for the electric current 

is identical to the magnetic case. Substituting (3.52) and (3.53) into (3.54a) yields: 
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2𝜖0

∆𝑡
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)]

=
1

∆𝑦
[𝐻𝑧

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) +

∆𝑡

2𝜇0∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
∆𝑡

2𝜇0∆𝑥
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] −

∆𝑡

2𝜇0

ℳ𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)

− 𝐻𝑧
𝑛 (𝑖, 𝑗 −

1

2
, 𝑘 +

1

2
) +

∆𝑡

2𝜇0∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 − 1, 𝑘)]

−
∆𝑡

2𝜇0∆𝑥
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 −
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘)] +

∆𝑡

2𝜇0

ℳ𝑧

𝑛+
1
2 (𝑖, 𝑗 −

1

2
, 𝑘 +

1

2
)]

−
1

∆𝑧
[𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] − 𝐽𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) 

(3.55) 

Note in (3.55) that now the only fields determined at future time step 𝑛 + 1/2 are x-directed 

electric field terms which occur along a y-directed cut of three nodes, namely 𝑗 − 1, 𝑗, and 𝑗 + 1. 

This so-called “y-cut” equation may be simplified as follows: 

 

−
(∆𝑡)2

4𝜇0𝜖0(∆𝑦)2
𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 − 1, 𝑘) + [1 +

(∆𝑡)2

2𝜇0𝜖0(∆𝑦)2
] 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)

−
(∆𝑡)2

4𝜇0𝜖0(∆𝑦)2
𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘)

= 𝐸𝑥
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘) +

∆𝑡

2𝜖0∆𝑦
[𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 −

1

2
, 𝑘)]

−
∆𝑡

2𝜖0∆𝑧
[𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)]

−
(∆𝑡)2

4𝜇0𝜖0∆𝑥∆𝑦
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

+
(∆𝑡)2

4𝜇0𝜖0∆𝑥∆𝑦
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 −
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘)]

−
(∆𝑡)2

4𝜇0𝜖0∆𝑦
[ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
∆𝑡

2𝜖0
𝐽𝑥
𝑛+

1
2 (𝑖 +

1

2
, 𝑗, 𝑘) 

(3.56) 

The y-cut equation (3.56) may be written in matrix form as follows: 
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[
 
 
 
 
 
⋱ ⋯ 0
⋮ 1 + 2𝑐𝑦 −𝑐𝑦

0 −𝑐𝑦 1 + 2𝑐𝑦

     0          0     0
0 0 0

−𝑐𝑦 0 0

0 0 −𝑐𝑦

0 0 0
0      0          0     

1 + 2𝑐𝑦 −𝑐𝑦 0

−𝑐𝑦 1 + 2𝑐𝑦 ⋮

0 ⋯ ⋱]
 
 
 
 
 

(

 
 
 
 

⋮

𝐸𝑥
𝑗−2

𝐸𝑥
𝑗−1

𝐸𝑥
𝑗

𝐸𝑥
𝑗+1

⋮ )

 
 
 
 

=

(

 
 
 
 

⋮

𝐹1
𝑗−2

𝐹1
𝑗−1

𝐹1
𝑗

𝐹1
𝑗+1

⋮ )

 
 
 
 

 

𝑐𝑛 =
(∆𝑡)2

4𝜇0𝜖0(∆𝑛)2
, 𝑛 = 𝑦     (𝑦 − 𝑐𝑢𝑡 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

(3.57a) 

Where the 𝑛 subscript denotes the cut on 𝑐𝑛, the 𝐹1 (forcing) terms are composed of 

everything on the right-hand side of (3.56), and the known matrix on the left-hand side is tri-

diagonal in nature, reducing computational load. Equation (3.57a) may be written in more 

compact form as: 

 [𝑀𝑦] (𝐸𝑥
𝑛+1/2

) = (𝐹1) (3.57b) 

Where the electric field vector contains all the 𝐸𝑥 field components along the y direction at a 

specific 𝑖 and 𝑘 node. Say that the simulation space has 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 nodes in the x, y, and z 

directions respectively. As such, matrix 𝑀𝑦 will be a 𝑁𝑦 × 𝑁𝑦 matrix and (3.57b) will need to be 

solved 𝑁𝑥 × 𝑁𝑧 times to completely update the 𝐸𝑥 field within the simulation space. This process 

will also occur for the 𝐸𝑦 and 𝐸𝑧 fields through the z-cut and x-cut equations respectively, thus 

advancing the simulation from time 𝑡 = 𝑛∆𝑡 to 𝑡 = (𝑛 + 1/2)∆𝑡 and finishing the first sub-

iteration. In matrix form this may be written as follows: 

 [

𝑀𝑦[𝑁𝑦 × 𝑁𝑦] 0 0

0 𝑀𝑧[𝑁𝑧 × 𝑁𝑧] 0

0 0 𝑀𝑥[𝑁𝑥 × 𝑁𝑥]

] (

𝐸𝑥
𝑛+1/2

𝐸𝑦
𝑛+1/2

𝐸𝑧
𝑛+1/2

) = (

𝐹1

𝐹2

𝐹3

) (3.58a) 

In the second sub-iteration, the direction of implicit definition is alternated, yielding for 

example the following for the x-component of Ampere’s law: 
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2

∆𝑡
[𝐷𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘) − 𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

=
1

∆𝑦
[𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
1

∆𝑧
[𝐻𝑦

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] 

(3.54b) 

Due to this alternation, the update equation for 𝐸𝑥 will now be the z-cut equation. Repeating 

the process from the first sub-iteration, the following matrix representation describes the second 

sub-iteration: 

 [

𝑀𝑧[𝑁𝑧 × 𝑁𝑧] 0 0
0 𝑀𝑥[𝑁𝑥 × 𝑁𝑥] 0

0 0 𝑀𝑦[𝑁𝑦 × 𝑁𝑦]
](

𝐸𝑥
𝑛+1

𝐸𝑦
𝑛+1

𝐸𝑧
𝑛+1

) = (

𝐹4

𝐹5

𝐹6

) (3.58b) 

Updating electric fields utilizing (3.58a) and (3.58b) yields an unconditionally stable method 

[216]. Therefore, the Courant-Friedrichs-Lewy (CFL) stability time step ∆𝑡𝐶𝐹𝐿 [177], governing 

electrodynamics, may be ignored: 

 ∆𝑡 = 𝐶𝐹𝐿𝑁 ∗ ∆𝑡𝐶𝐹𝐿 = 𝐶𝐹𝐿𝑁 ∗
min(∆𝑥, ∆𝑦, ∆𝑧)

√3𝑐
 (3.59) 

Where the CFLN factor expresses what multiple of ∆𝑡𝐶𝐹𝐿 that the simulation time step ∆𝑡 is. 

Herein, this factor varies in the range from 1 to ~100,000 (matching the mechanical time step). 

If the numerical volume is not free space but remains homogenous, then the equations of 

this section may still be used by substituting 𝜇0 → 𝜇𝑟𝜇0 and 𝜖0 → 𝜖𝑟𝜖0, where 𝜇𝑟 and 𝜖𝑟 are the 

relative permeability and relative permittivity respectively of the homogenous space. 

3.7 ADI for Heterogeneous Spaces 

Previously the simulation space was assumed to be homogeneous and, therefore, no 

interfaces existed, and the spatial location of the material properties was not considered. More 

generally, material properties are as defined by Figure 3-16, therefore the magnetic constitutive 

relation is: 
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 𝐵𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) = 𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) (3.60) 

Where the permeability is collocated with the magnetic fields via spatial averaging: 

 𝜇𝑧𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘

=
1

4
(𝜇𝑧𝑧

𝑖,𝑗,𝑘
+ 𝜇𝑧𝑧

𝑖+1,𝑗,𝑘
+ 𝜇𝑧𝑧

𝑖,𝑗+1,𝑘
+ 𝜇𝑧𝑧

𝑖+1,𝑗+1,𝑘
) (3.61) 

Substitution into Faraday’s law and rearranging yields: 

 

𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

= 𝐻𝑧
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

+
∆𝑡

2𝜇𝑧𝑧

𝑖+1
2
,𝑗+1

2
,𝑘

∆𝑦

[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+1
2
,𝑗+1

2
,𝑘

∆𝑥

[𝐸𝑦
𝑛 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+1
2
,𝑗+1

2
,𝑘

ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) 

(3.62) 

The electric constitutive relation is as follows: 

 𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) = 𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) (3.63) 

Where, 

 𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

=
1

4
(𝜖𝑥𝑥

𝑖+
1
2,𝑗+

1
2,𝑘+

1
2 + 𝜖𝑥𝑥

𝑖+
1
2,𝑗−

1
2,𝑘+

1
2 + 𝜖𝑥𝑥

𝑖+
1
2,𝑗+

1
2,𝑘−

1
2 + 𝜖𝑥𝑥

𝑖+
1
2,𝑗−

1
2,𝑘−

1
2) (3.64) 

Substituting (3.63) into Ampere’s law and utilizing (3.62): 
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2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

∆𝑡
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)]

=
1

∆𝑦
[𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘)

+
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

∆𝑦

[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
∆𝑡

2𝜇0∆𝑥
[𝐸𝑦

𝑛 (𝑖 + 1, 𝑗 +
1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2
,𝑗+

1
2
,𝑘

ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 −

1

2
, 𝑘)

+
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

∆𝑦

[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 − 1, 𝑘)]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

∆𝑥

[𝐸𝑦
𝑛 (𝑖 + 1, 𝑗 −

1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘)]

+
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
1

∆𝑧
[𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] −

∆𝑡

2𝜖0
𝐽𝑥
𝑛+

1
2 (𝑖 +

1

2
, 𝑗, 𝑘) 

(3.65) 

Which yields the following “y-cut” equation: 
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−
(∆𝑡)2

4𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

(∆𝑦)2

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 − 1, 𝑘)

+ [1 +
(∆𝑡)2

4𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

(∆𝑦)2

(
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

+
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

)]𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)

−
(∆𝑡)2

4𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

(∆𝑦)2

𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘)

= 𝐸𝑥
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘)

+
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑦

[𝐻𝑧
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛 (𝑖 +
1

2
, 𝑗 −

1

2
, 𝑘)]

−
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑧

[𝐻𝑦
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)]

−
(∆𝑡)2

4𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑥∆𝑦

[𝐸𝑦
𝑛 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

+
(∆𝑡)2

4𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑥∆𝑦

[𝐸𝑦
𝑛 (𝑖 + 1, 𝑗 −

1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘)]

−
(∆𝑡)2

4𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑦

[
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

−
1

𝜇𝑧𝑧

𝑖+
1
2
,𝑗−

1
2
,𝑘

ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)] −

∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

𝐽𝑥
𝑛+

1
2 (𝑖 +

1

2
, 𝑗, 𝑘) 

(3.66) 

Note that (3.66) simplifies to the homogenous case when the material properties have no 

spatial dependence. The tridiagonal system of equations for the 1st and 2nd sub-iteration will be: 

 [

𝑀𝑦1[𝑁𝑦 × 𝑁𝑦] 0 0

0 𝑀𝑧1[𝑁𝑧 × 𝑁𝑧] 0

0 0 𝑀𝑥1[𝑁𝑥 × 𝑁𝑥]

](

𝐸𝑥
𝑛+1/2

𝐸𝑦
𝑛+1/2

𝐸𝑧
𝑛+1/2

) = (

𝐹1

𝐹2

𝐹3

) (3.67a) 
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 [

𝑀𝑧2[𝑁𝑧 × 𝑁𝑧] 0 0
0 𝑀𝑥2[𝑁𝑥 × 𝑁𝑥] 0

0 0 𝑀𝑦2[𝑁𝑦 × 𝑁𝑦]
] (

𝐸𝑥
𝑛+1

𝐸𝑦
𝑛+1

𝐸𝑧
𝑛+1

) = (

𝐹4

𝐹5

𝐹6

) (3.67b) 

Note that an extra subscript is now used for the tri-diagonal matrices to delineate the first 

and second sub-iteration. Generally, the n-cut matrices only exhibit 𝑀𝑛1 = 𝑀𝑛2 = 𝑀𝑛 when 

𝜇𝑥𝑥 = 𝜇𝑦𝑦 = 𝜇𝑧𝑧. Herein, the simulation space is assumed to be magnetically homogenous (i.e., 

𝜇𝑖𝑗 = 𝜇0𝛿𝑖𝑗 everywhere) and thus the tri-diagonal matrices for like cuts will be the same. 

Regardless, to maintain some degree of generality, the CPML-ADI-FDTD equations derived 

subsequently will assume a diagonal permeability with 𝜇𝑥𝑥 ≠ 𝜇𝑦𝑦 ≠ 𝜇𝑧𝑧. As a final note for 

readers familiar with material science, the expressions x-cut, y-cut, and z-cut herein refer to the 

fact that the three unknown electric fields within the ADI-FDTD equations lie along a x, y, and z-

directed line respectively. The term “cut” does not refer to a crystalline orientation of a material 

under investigation. 

3.8 Convolutional Perfectly Matched Layer (CPML) ADI-FDTD w/ Mesh Grading 

The CPML-ADI-FDTD equations will now be derived where the flow is the same as that of 

the previous two sections except that modified versions on Maxwell’s curl equations are utilized 

to produce graded meshes as well as perfectly matched layers (PMLs). Since the equations 

begin to be quite lengthy within this section, spatial definition of the fields is placed as a 

superscript to shorten the expressions. Also, to sponsor clarity, all six ADI equations are 

explicitly provided. 

3.8.1 Faraday’s Law w/ CFS Stretched Coordinates 

Faraday’s law is used to write update equations for the magnetic flux (𝐵𝑖) and is substituted 

into the magnetic constitutive relation to generate the update equations for magnetic fields (𝐻𝑖). 

Whenever Faraday’s law or Ampere’s law are evoked in an update equation, a different form for 

the 1st and 2nd sub-iteration will result since the direction of the implicit fields alternate each sub-

iteration (Alternating-Direction Implicit scheme). Recall that Faraday’s law, relating the magnetic 
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currents to the left-handed curl of the electric field, was modified by stretched coordinate metric 

𝑠𝑖 in section 2.1.3 yielding history variables which included a decaying exponential term. This 

enables the use of a recursive convolution algorithm which allows the response of the system at 

time 𝑡, due to a series of impulses at time 𝜏, to be determined. Algorithms of this type are used 

extensively herein and involve what are known as history variables. These are so named 

because they include the progressive effect of the series of impulses on the present response. 

In other words, these variables track the history of the system excitations and were defined in 

equation (2.31): 

 Φ𝐸𝑚𝑞 = ∫ 𝜁𝑞(𝑡 − 𝜏)
𝜕𝐸𝑚(𝜏)

𝜕𝑞
𝑑𝜏

𝑡

0−
= −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−

1
𝜖0

(𝛼𝑞+
𝜎𝑞
𝜅𝑞

)(𝑡−𝜏) 𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡

0−
,

𝑚 = 𝑥, 𝑦, 𝑧
𝑞 = 𝑥, 𝑦, 𝑧

𝑚 ≠ 𝑞
 (2.31) 

Note that the history variable is zero in free space (when 𝜎𝑞 = 0) and say that a =

1

𝜖0
(𝛼𝑞 +

𝜎𝑞

𝜅𝑞
) is the inverse relaxation time (the time it takes a perturbed system to return to 

equilibrium). Faraday’s law was defined as follows: 

 �̇�𝑖 + ℳ𝑖
𝑠 = 𝜖𝑖𝑗𝑘′𝐸𝑗,𝑘′ + 𝜖𝑖𝑗𝑘Φ𝐸𝑗𝑘

 (2.34) 

 Φ𝐸𝑗𝑘
= [

0 Φ𝐸𝑥𝑦
Φ𝐸𝑥𝑧

Φ𝐸𝑦𝑥
0 Φ𝐸𝑦𝑧

Φ𝐸𝑧𝑥
Φ𝐸𝑧𝑦

0

] (2.35b) 

Utilizing the following primed coordinates: 

𝑑𝑥′ = 𝜅𝑥(𝑥)𝑑𝑥, 𝑑𝑦′ = 𝜅𝑦(𝑦)𝑑𝑦, 𝑑𝑧′ = 𝜅𝑧(𝑧)𝑑𝑧 

In equation (2.34), the ℳ𝑖 terms are the fictional magnetic source currents which are 

included here since some problems allow actual sources to be modeled using these terms. For 

example, aperture antennas, where the EM fields are known over the aperture, may be 

modelled using electric and magnetic source currents [25-27]. This is beneficial since the ADI-

FDTD algorithm, as proposed herein, does not allow for electric fields to be input explicitly but 

equivalent magnetic source currents, defined by ℳ = 𝐸 × �̂� (see eq. 3.9b), present no issue. 
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The history variables will be written in finite difference form first, before returning to the full 

Faraday’s law of equation (2.34), with the goal of deriving update equations. For input into a 

finite difference algorithm say 𝑡𝑛+1/2 = 𝑡𝑛 + ∆𝑡𝑛+1/2, where the superscript indicates the 𝑛𝑡ℎ 

time step. For a fixed step solver and two sub-iterations we have time increment ∆𝑡𝑛+1/2 =

∆𝑡/2, for all 𝑛 but the current notation will be kept until the end of the derivation. The history 

variables at times 𝑡𝑛 and 𝑡𝑛+1/2 are as follows: 

 Φ𝐸𝑚𝑞
𝑛 = −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒−a(𝑡𝑛−𝜏)
𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛

0−
 (3.68a) 

 

Φ𝐸𝑚𝑞

𝑛+
1
2 = −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−a(𝑡

𝑛+
1
2−𝜏) 𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡
𝑛+

1
2

0−

= −
𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−a(𝑡𝑛+∆𝑡

𝑛+
1
2−𝜏) 𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛+∆𝑡𝑛+1/2

0−
 

(3.68b) 

Where the Φ𝐸𝑚𝑞
𝑛+1/2

 integral in (3.68b) may be split into two and the exponential term 

expanded as follows: 

 Φ𝐸𝑚𝑞

𝑛+
1
2 = −

𝜎𝑞

𝜅𝑞
2𝜖0

{∫ 𝑒
−a(∆𝑡

𝑛+
1
2)

𝑒−a(𝑡𝑛−𝜏)
𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛

0−
+ ∫ 𝑒

−a(𝑡
𝑛+

1
2−𝜏) 𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛+1/2

𝑡𝑛
} (3.68c) 

Substituting equation (3.54a) into (3.54c) yields: 

 Φ𝐸𝑚𝑞

𝑛+
1
2 = 𝑒

−a(∆𝑡
𝑛+

1
2)

Φ𝐸𝑚𝑞
𝑛 −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−a(𝑡

𝑛+
1
2−𝜏) 𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛+1/2

𝑡𝑛
 (3.68d) 

Assuming that the time step is small enough, the midpoint rule may be used to approximate 

the electric field gradient within the integrand, but, as noted by [212], more efficient and 

accurate results may be obtained if the time designation is as follows: 

∫ 𝑒
−a(𝑡

𝑛+
1
2−𝜏) 𝜕𝐸𝑚

𝜕𝑞
𝑑𝜏

𝑡
𝑛+

1
2

𝑡𝑛
≅ ∫ 𝑒

−a(𝑡
𝑛+

1
2−𝜏)

𝑑𝜏
𝑡𝑛+1/2

𝑡𝑛
[
𝜕𝐸𝑚

𝜕𝑞
]
𝜏=𝑡𝑛+1/2
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= [
1

a
𝑒

−a(𝑡
𝑛+

1
2−𝜏)

]

𝑡𝑛

𝑡𝑛+1/2

(
∆𝐸𝑚

𝑛+
1
2

∆𝑞
) =

1

a
(1 − 𝑒−a∆𝑡

𝑛+
1
2)(

∆𝐸𝑚

𝑛+
1
2

∆𝑞
) 

Therefore, the history variable update equation is as follows: 

 Φ𝐸𝑚𝑞

𝑛+
1
2 = 𝑒−a∆𝑡

𝑛+
1
2Φ𝐸𝑚𝑞

𝑛 +
𝜎𝑞

𝜅𝑞
2𝜖0

1

a
(𝑒−a∆𝑡

𝑛+
1
2 − 1) (

∆𝐸𝑚

𝑛+
1
2

∆𝑞
) (3.68e) 

Where the first term on the right-hand side of (3.68e) is the time decay of the history variable 

at time step 𝑡𝑛 after time increment ∆𝑡𝑛+1/2, and the second term adds on the additional 

component of the history variable due to field increment ∆𝐸𝑛+1/2, now substitute in ∆𝑡𝑛+1/2 =

∆𝑡/2, as well as the inverse relaxation time constant, to get: 

 Φ𝐸𝑚𝑞

𝑛+
1
2 = 𝑒

−(𝛼𝑞+
𝜎𝑞

𝜅𝑞
)

∆𝑡
2𝜖0Φ𝐸𝑚𝑞

𝑛 +
𝜎𝑞

𝜅𝑞(𝜅𝑞𝛼𝑞 + 𝜎𝑞)
[𝑒

−(𝛼𝑞+
𝜎𝑞

𝜅𝑞
)

∆𝑡
2𝜖0 − 1] (

∆𝐸𝑚

𝑛+
1
2

∆𝑞
) (3.69) 

So far, no spatial indices have been included in order to facilitate a general derivation of the 

history variable update equations. However, the history variables will, in general, vary in space. 

For example, the components of the stretched coordinate metric can vary in the direction of 

stretching, but only in this direction so that the planar boundaries remain plane with a consistent 

number of cells. The ∆𝐸𝑚 term will also have unique spatial indices depending on the history 

variable. For clarity, all the history variables are presented in Table 3-2. 

 

Φ
𝐸𝑧𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) 𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗 )

∆𝑡
2𝜖0

Φ𝐸𝑧𝑦
𝑛 +

𝜎𝑦
𝑗

𝜅𝑦
𝑗𝛼𝑦

𝑗 + 𝜎𝑦
𝑗

[
 
 
 
𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗 )

∆𝑡
2𝜖0

− 1

]
 
 
 

(
1

𝜅𝑦
𝑗∆𝑦

)(𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗 + 1, 𝑘 +

1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)) 

Φ
𝐸𝑦𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) 𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0Φ𝐸𝑦𝑧

𝑛 +
𝜎𝑧

𝑘

𝜅𝑧
𝑘𝛼𝑧

𝑘 + 𝜎𝑧
𝑘
[𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0 − 1] (

1

𝜅𝑧
𝑘∆𝑧

)(𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 + 1) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)) 

Φ
𝐸𝑥𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) 𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0Φ𝐸𝑥𝑧

𝑛 +
𝜎𝑧

𝑘

𝜅𝑧
𝑘𝛼𝑧

𝑘 + 𝜎𝑧
𝑘 [𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0 − 1](

1

𝜅𝑧
𝑘∆𝑧

)(𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 + 1) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)) 
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Φ
𝐸𝑧𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) 𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0Φ𝐸𝑧𝑥

𝑛 +
𝜎𝑥

𝑖

𝜅𝑥
𝑖 𝛼𝑥

𝑖 + 𝜎𝑥
𝑖 [𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0 − 1](

1

𝜅𝑥
𝑖 ∆𝑥

)(𝐸𝑧

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘 +

1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)) 

Φ
𝐸𝑦𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) 𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0Φ𝐸𝑦𝑥

𝑛 +
𝜎𝑥

𝑖

𝜅𝑥
𝑖 𝛼𝑥

𝑖 + 𝜎𝑥
𝑖
[𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0 − 1] (

1

𝜅𝑥
𝑖 ∆𝑥

)(𝐸𝑦

𝑛+
1
2 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)) 

Φ
𝐸𝑥𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) 𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗 )

∆𝑡
2𝜖0

Φ𝐸𝑥𝑦
𝑛 +

𝜎𝑦
𝑗

𝜅𝑦
𝑗𝛼𝑦

𝑗 + 𝜎𝑦
𝑗

[
 
 
 
𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗 )

∆𝑡
2𝜖0

− 1

]
 
 
 

(
1

𝜅𝑦
𝑗∆𝑦

)(𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)) 

Table 3-2: History variables for modified Faraday’s law. 

 

These expressions will be used in the subsequent two sections to derive the finite difference 

form of the modified Faraday’s law for the first and second sub-iterations respectively. Note that 

the history variables in Table 3-2 may be adjusted for algorithms without sub-iterations by 

replacing 𝑛 + 1/2 with 𝑛 + 1, as well as all ∆𝑡/2 terms with ∆𝑡. 

Within the finite difference equations that follow in this chapter, the 𝜅𝑖 real stretching factor 

will include an additional subscript, either E or H, which is introduced due to the staggered finite 

difference grid. To understand why, note that the space between electric fields and magnetic 

fields is not the same in Figure 3-18. Within the figure, an xz-planar cut is shown with the solid 

blue lines representing the cell edges and the dashed grey lines representing the bisections. 

 

 

Figure 3-18: Definition of 𝜿 for update of magnetic fields (a) and electric fields (b). 
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Note that where mesh grading (stretching) is occurring the relevant spacing, 𝜅𝑦𝐻∆𝑦 vs. 

𝜅𝑦𝐸∆𝑦, required to update the magnetic and electric fields respectively will differ (since 𝜅𝑦
𝑗−1

≠

𝜅𝑦
𝑗
 generally), thus requiring a distinction to be made. 

3.8.1.1 First Sub-Iteration 

Faraday’s law may be written in finite difference form for the first sub-iteration as follows: 

 

2

∆𝑡
[𝐵𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐵𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
)]

=
1

𝜅𝑧𝐻
𝑘 ∆𝑧

[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 + 1) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)]

−
1

𝜅𝑦𝐻
𝑗

∆𝑦
[𝐸𝑧

𝑛 (𝑖, 𝑗 + 1, 𝑘 +
1

2
) − 𝐸𝑦

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] − ℳ𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)

+ Φ𝐸𝑦𝑧
𝑛 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − Φ𝐸𝑧𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) 

(3.70a) 

 

2

∆𝑡
[𝐵𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐵𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
)]

=
1

𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑧

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘 +

1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

−
1

𝜅𝑧𝐻
𝑘 ∆𝑧

[𝐸𝑥
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘 + 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)] − ℳ𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
)

+ Φ𝐸𝑧𝑥
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − Φ𝐸𝑥𝑧

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) 

(3.70b) 

 

2

∆𝑡
[𝐵𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐵𝑧

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
)]

=
1

𝜅𝑦𝐻
𝑗

∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
1

𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑦
𝑛 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] − ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

+ Φ𝐸𝑥𝑦
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − Φ𝐸𝑦𝑥

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) 

(3.70c) 

Note that the history variables in equations (3.70a-c) are temporally inhomogeneous, being 

defined at 𝑡 = 𝑛∆𝑡, similar to the magnetic source current terms. This method was found to be 
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computationally optimal and accurate by [212]. From this, update equations for magnetic flux 

may be acquired as follows: 

 

𝐵𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) = 𝐵𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) +

∆𝑡

2𝜅𝑧𝐻
𝑘 ∆𝑧

[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 + 1) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)]

−
∆𝑡

2𝜅𝑦𝐻
𝑗 ∆𝑦

[𝐸𝑧
𝑛 (𝑖, 𝑗 + 1, 𝑘 +

1

2
) − 𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)]

−
∆𝑡

2
[ℳ𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − Φ𝐸𝑦𝑧

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) + Φ𝐸𝑧𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
)] 

(3.71a) 

 

𝐵𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) = 𝐵𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) +

∆𝑡

2𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑧

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘 +

1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

−
∆𝑡

2𝜅𝑧𝐻
𝑘 ∆𝑧

[𝐸𝑥
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘 + 1) − 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)]

−
∆𝑡

2
[ℳ𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − Φ𝐸𝑧𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
) + Φ𝐸𝑥𝑧

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 +

1

2
)] 

(3.71b) 

 

𝐵𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

= 𝐵𝑧
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) +

∆𝑡

2𝜅𝑦𝐻
𝑗

∆𝑦
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
∆𝑡

2𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑦
𝑛 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

−
∆𝑡

2
[ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − Φ𝐸𝑥𝑦

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘) + Φ𝐸𝑦𝑥

𝑛 (𝑖 +
1

2
, 𝑗 +

1

2
, 𝑘)] 

(3.71c) 

For these equations to be utilized the future electric fields (at time 𝑡 = (𝑛 + 1/2)∆𝑡) must 

already be known and therefore the magnetic flux is updated after the electric fields. 

3.8.1.2 Second Sub-Iteration 

The update equations for magnetic flux for the second sub-iterations may be acquired by 

alternating the direction of the implicit electric fields within the curl expression and forwarding all 

other time designations by a half time step as follows: 
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𝐵𝑥
𝑛+1 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) = 𝐵𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) +

∆𝑡

2𝜅𝑧𝐻
𝑘 ∆𝑧

[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 + 1) − 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)]

−
∆𝑡

2𝜅𝑦𝐻
𝑗 ∆𝑦

[𝐸𝑧
𝑛+1 (𝑖, 𝑗 + 1, 𝑘 +

1

2
) − 𝐸𝑦

𝑛+1 (𝑖, 𝑗, 𝑘 +
1

2
)]

−
∆𝑡

2
[ℳ𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − Φ𝐸𝑦𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) + Φ𝐸𝑧𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)] 

(3.72a) 

 

𝐵𝑦
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) = 𝐵𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) +

∆𝑡

2𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑧

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘 +

1

2
) − 𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

−
∆𝑡

2𝜅𝑧𝐻
𝑘 ∆𝑧

[𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑘 + 1) − 𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘)]

−
∆𝑡

2
[ℳ𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − Φ𝐸𝑧𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) + Φ𝐸𝑥𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
)] 

(3.72b) 

 

𝐵𝑧
𝑛+1 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

= 𝐵𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) +

∆𝑡

2𝜅𝑦𝐻
𝑗 ∆𝑦

[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

−
∆𝑡

2𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑦
𝑛+1 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝐸𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
, 𝑘)]

−
∆𝑡

2
[ℳ𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − Φ𝐸𝑥𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) + Φ𝐸𝑦𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)] 

(3.72c) 

Note that the magnetic source current is still rectified at the half time step as championed in 

[216][217]. Indeed, all source currents are evaluated at the half time step including the electric 

source currents present in Ampere’s law. 

3.8.2 Magnetic Constitutive Relations 

Though a complex magnetic constitutive relation was defined in section 2.3.2, the 

simulations performed in Chapters 4 and 5 assume a diagonal permeability with no magnetic 

damping and no piezomagnetism, namely: 

 𝐻𝑖 = 𝛽𝑖𝑗
𝜇
𝐵𝑗 , 𝛽𝑖𝑗

𝜇
𝜇𝑗𝑘 = 𝛿𝑖𝑘 (2.174) 

Where 𝜇𝑗𝑘 is the permeability and 𝛽𝑖𝑗
𝜇

 is the inverse permeability. Discretization of the x, y, 

and z components yields the following updates equations for the magnetic fields for the first 

sub-iteration: 
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 𝐻𝑥

𝑛+
1
2,𝑖,𝑗+

1
2,𝑘+

1
2 =

1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

𝐵𝑥

𝑛+
1
2,𝑖,𝑗+

1
2,𝑘+

1
2

 (3.73a) 

 𝐻𝑦

𝑛+
1
2,𝑖+

1
2,𝑗,𝑘+

1
2 =

1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

𝐵𝑦

𝑛+
1
2,𝑖+

1
2,𝑗,𝑘+

1
2

 (3.73b) 

 𝐻𝑧

𝑛+
1
2,𝑖+

1
2,𝑗+

1
2,𝑘

=
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝐵𝑧

𝑛+
1
2,𝑖+

1
2,𝑗+

1
2,𝑘

 (3.73c) 

Where spatial interpolation is utilized for the material properties as usual and it is assumed 

that the magnetic flux is known at the time of the magnetic field update. Therefore, update the 

magnetic fields after the fluxes. For the 2nd sub-iteration, simply advance the time designations 

half a time step as follows: 

 𝐻𝑥

𝑛+1,𝑖,𝑗+
1
2
,𝑘+

1
2 =

1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

𝐵𝑥

𝑛+1,𝑖,𝑗+
1
2
,𝑘+

1
2

 (3.74a) 

 𝐻𝑦

𝑛+1,𝑖+
1
2,𝑗,𝑘+

1
2 =

1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

𝐵𝑦

𝑛+1,𝑖+
1
2,𝑗,𝑘+

1
2

 (3.74b) 

 𝐻𝑧

𝑛+1,𝑖+
1
2,𝑗+

1
2,𝑘

=
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝐵𝑧

𝑛+1,𝑖+
1
2,𝑗+

1
2,𝑘

 (3.74c) 

These constitutive relations are combined with Faraday’s law as in Sections 3.6 and 3.7.  

3.8.2.1 First Sub-Iteration 

Substitution of the magnetic constitutive relation into Faraday’s law yields the following for 

the first sub-iteration: 
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𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 = 𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2 +

∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑧𝐻

𝑘 ∆𝑧

[𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘
]

−
∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑦𝐻

𝑗
∆𝑦

[𝐸𝑧

𝑛,𝑖,𝑗+1,𝑘+
1
2 − 𝐸𝑧

𝑛𝑖,𝑗,𝑘+
1
2]

−
∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛𝑖,𝑗+
1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2] 

(3.75a) 

 

𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 = 𝐻𝑦

𝑛𝑖+
1
2
,𝑗,𝑘+

1
2 +

∆𝑡

2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐻

𝑖 ∆𝑥

[𝐸𝑧

𝑛+
1
2
,𝑖+1,𝑗,𝑘+

1
2 − 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2]

−
∆𝑡

2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑧𝐻

𝑘 ∆𝑧

[𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

]

−
∆𝑡

2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

[ℳ𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2] 

(3.75b) 

 

𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

= 𝐻𝑧

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

+
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑦𝐻
𝑗

∆𝑦

[𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗+1,𝑘

− 𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑦

𝑛,𝑖+1,𝑗+
1
2
,𝑘

− 𝐸𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘
]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

[ℳ𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘
] 

(3.75c) 

Where the spatial definition is now included in the superscript of all fields since the 

equations are beginning to be unruly in length. 

3.8.2.2 Second Sub-Iteration 

In the second sub-iteration the direction of implicit definition is swapped in Faraday’s law 

yielding the following expressions: 
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𝐻𝑥

𝑛+1,𝑖,𝑗+
1
2
,𝑘+

1
2 = 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 +

∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑧𝐻

𝑘 ∆𝑧

[𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘
]

−
∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑦𝐻

𝑗
∆𝑦

[𝐸𝑧

𝑛+1,𝑖,𝑗+1,𝑘+
1
2 − 𝐸𝑧

𝑛+1𝑖,𝑗,𝑘+
1
2]

−
∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛+
1
2
𝑖,𝑗+

1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2] 

(3.76a) 

 

𝐻𝑦

𝑛+1,𝑖+
1
2
,𝑗,𝑘+

1
2 = 𝐻𝑦

𝑛+
1
2
𝑖+

1
2
,𝑗,𝑘+

1
2 +

∆𝑡

2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐻

𝑖 ∆𝑥

[𝐸𝑧

𝑛+
1
2
,𝑖+1,𝑗,𝑘+

1
2 − 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2]

−
∆𝑡

2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑧𝐻

𝑘 ∆𝑧

[𝐸𝑥

𝑛+1,𝑖+
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛+1,𝑖+
1
2
,𝑗,𝑘

]

−
∆𝑡

2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

[ℳ𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2] 

(3.76b) 

 

𝐻𝑧

𝑛+1,𝑖+
1
2
,𝑗+

1
2
,𝑘

= 𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

+
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑦𝐻
𝑗

∆𝑦

[𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗+1,𝑘

− 𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑦

𝑛+1,𝑖+1,𝑗+
1
2
,𝑘

− 𝐸𝑦

𝑛+1,𝑖,𝑗+
1
2
,𝑘
]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

[ℳ𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘
] 

(3.76c) 

These expressions are substituted into Ampere’s law which is also modified to allow for 

graded PML regions. Ampere’s law will be presented soon but first the electric constitutive 

relation shall be discussed. 

3.8.3 Electric Constitutive Relation 

The electric constitutive relation for a non-piezoelectric orthotropic material is, as previously 

presented in Section 3.7, repeated here for the 1st sub-iteration: 

 𝐷𝑥

𝑛+
1
2,𝑖+

1
2,𝑗,𝑘

= 𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝐸𝑥

𝑛+
1
2,𝑖+

1
2,𝑗,𝑘

 
(3.77a) 

 𝐷𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

= 𝜖𝑦𝑦

𝑖,𝑗+
1
2
,𝑘
𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

 (3.77b) 
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 𝐷𝑧

𝑛+
1
2,𝑖,𝑗,𝑘+

1
2 = 𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝐸𝑧

𝑛+
1
2,𝑖,𝑗,𝑘+

1
2

 
(3.77c) 

Where all three components are now provided as all ADI expressions are explicitly provided 

herein. In the 2nd sub-iteration, the expressions are the same, simply advance all time 

designations by half a time step as follows: 

 𝐷𝑥

𝑛+1,𝑖+
1
2,𝑗,𝑘

= 𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝐸𝑥

𝑛+1,𝑖+
1
2,𝑗,𝑘

 
(3.78a) 

 𝐷𝑦

𝑛+1,𝑖,𝑗+
1
2,𝑘

= 𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝐸𝑦

𝑛+1,𝑖,𝑗+
1
2,𝑘

 (3.78b) 

 𝐷𝑧

𝑛+1,𝑖,𝑗,𝑘+
1
2 = 𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝐸𝑧

𝑛+1,𝑖,𝑗,𝑘+
1
2

 
(3.78c) 

These relations will be substituted into modified Ampere’s law which is presented in the 

following section. 

3.8.4 Ampere’s Law w/ CFS Stretched Coordinates 

Now that the electrical constitutive relations have been derived, Ampere’s law in finite 

difference form is written in preparation for deriving the ADI-FDTD equations. Additionally, 

Ampere’s law is used to write update equations for the electric displacement fields (𝐷𝑖), though 

these may be determined in post processing outside of the main update scheme. Recall that 

Ampere’s law was modified by stretched coordinate metric 𝑠𝑖 in section 2.1.3 which, like the 

magnetic damping case and Faraday’s law, included a decaying exponential term which allows 

for the use of a recursive convolution algorithm with the following history variables: 

 Φ𝐻𝑚𝑞 = ∫ 𝜁𝑞(𝑡 − 𝜏)
𝜕𝐻𝑚(𝜏)

𝜕𝑞
𝑑𝜏

𝑡

0−
= −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−

1
𝜖0

(𝛼𝑞+
𝜎𝑞
𝜅𝑞

)(𝑡−𝜏) 𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡

0−
,

𝑚 = 𝑥, 𝑦, 𝑧
𝑞 = 𝑥, 𝑦, 𝑧

𝑚 ≠ 𝑞
 (2.28) 

Note that, again, a history variable which is zero in free space (when 𝜎𝑞 = 0) is attained and 

say that a =
1

𝜖0
(𝛼𝑞 +

𝜎𝑞

𝜅𝑞
) is the inverse relaxation time. Therefore, Ampere’s law is as follows: 

 �̇�𝑖 + 𝜎𝑖𝑗𝐸𝑗 + 𝐽𝑖
𝑠 = 𝜖𝑖𝑗′𝑘𝐻𝑘,𝑗′ − 𝜖𝑖𝑗𝑘Φ𝐻𝑗𝑘

 (2.33) 
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 Φ𝐻𝑗𝑘
= [

0 Φ𝐻𝑥𝑦
Φ𝐻𝑥𝑧

Φ𝐻𝑦𝑥
0 Φ𝐻𝑦𝑧

Φ𝐻𝑧𝑥
Φ𝐻𝑧𝑦

0

] (2.35a) 

Which utilize the following primed coordinates: 

𝑑𝑥′ = 𝜅𝑥(𝑥)𝑑𝑥, 𝑑𝑦′ = 𝜅𝑦(𝑦)𝑑𝑦, 𝑑𝑧′ = 𝑠𝑧(𝑧)𝑑𝑧 

The history variables will be treated first before returning to the full Ampere’s law above. For 

input into a finite difference algorithm say 𝑡𝑛+1/2 = 𝑡𝑛 + ∆𝑡𝑛+1/2, where the superscript indicates 

the 𝑛𝑡ℎ time step. For a fixed step solver and two sub-iterations we have time increment 

∆𝑡𝑛+1/2 = ∆𝑡/2, for all 𝑛 but the current notation will be kept until the end of the derivation. The 

history variables at times 𝑡𝑛 and 𝑡𝑛+1/2 are as follows: 

 Φ𝐻𝑚𝑞
𝑛 = −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒−a(𝑡𝑛−𝜏)
𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛

0−
 (3.79a) 

 Φ
𝐻𝑚𝑞

𝑛+
1
2 = −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−a(𝑡

𝑛+
1
2−𝜏) 𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡
𝑛+

1
2

0−
= −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−a(𝑡𝑛+∆𝑡

𝑛+
1
2−𝜏) 𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛+∆𝑡𝑛+1/2

0−
 (3.79b) 

Where the Φ𝐻𝑚𝑞
𝑛+1/2

 integral may be split into two and the exponential term expanded as 

follows: 

 Φ
𝐻𝑚𝑞

𝑛+
1
2 = −

𝜎𝑞

𝜅𝑞
2𝜖0

{∫ 𝑒
−a(∆𝑡

𝑛+
1
2)

𝑒−a(𝑡𝑛−𝜏)
𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛

0−
+ ∫ 𝑒

−a(𝑡
𝑛+

1
2−𝜏) 𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛+1/2

𝑡𝑛
} (3.79c) 

Substituting (3.79a) into (3.79c) yields: 

 Φ
𝐻𝑚𝑞

𝑛+
1
2 = 𝑒

−a(∆𝑡
𝑛+

1
2)

Φ𝐻𝑚𝑞
𝑛 −

𝜎𝑞

𝜅𝑞
2𝜖0

∫ 𝑒
−a(𝑡

𝑛+
1
2−𝜏) 𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡𝑛+1/2

𝑡𝑛
 (3.79d) 

Assuming that the time step is small enough, the midpoint rule may be used to approximate 

the magnetic field gradient within the integrand, but, as noted by [211], more efficient and 

accurate results may be obtained if the time designation is as follows: 

∫ 𝑒
−a(𝑡

𝑛+
1
2−𝜏) 𝜕𝐻𝑚

𝜕𝑞
𝑑𝜏

𝑡
𝑛+

1
2

𝑡𝑛
≅ ∫ 𝑒

−a(𝑡
𝑛+

1
2−𝜏)

𝑑𝜏

𝑡𝑛+1/2

𝑡𝑛
[
𝜕𝐻𝑚

𝜕𝑞
]
𝜏=𝑡𝑛+1/2
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= [
1

a
𝑒

−a(𝑡
𝑛+

1
2−𝜏)

]

𝑡𝑛

𝑡𝑛+1/2

(
∆𝐻𝑚

𝑛+
1
2

∆𝑞
) =

1

a
(1 − 𝑒−a∆𝑡

𝑛+
1
2)(

∆𝐻𝑚

𝑛+
1
2

∆𝑞
) 

Therefore, the history variable update equation is as follows: 

 Φ
𝐻𝑚𝑞

𝑛+
1
2 = 𝑒−a∆𝑡

𝑛+
1
2Φ𝐻𝑚𝑞

𝑛 +
𝜎𝑞

𝜅𝑞
2𝜖0

1

a
(𝑒−a∆𝑡

𝑛+
1
2 − 1)(

∆𝐻𝑚

𝑛+
1
2

∆𝑞
) (3.79e) 

Where the first term on the right-hand side is the time decay of the history variable at time 

step 𝑡𝑛 after time increment ∆𝑡𝑛+1/2, and the second term adds on the additional component of 

the history variable due to field increment ∆𝐻𝑛+1/2, now substitute in ∆𝑡𝑛+1/2 = ∆𝑡/2, as well as 

the inverse relaxation time constant, to get the history variable update equation: 

 Φ
𝐻𝑚𝑞

𝑛+
1
2 = 𝑒

−(𝛼𝑞+
𝜎𝑞

𝜅𝑞
)

∆𝑡
2𝜖0Φ𝐻𝑚𝑞

𝑛 +
𝜎𝑞

𝜅𝑞(𝜅𝑞𝛼𝑞 + 𝜎𝑞)
[𝑒

−(𝛼𝑞+
𝜎𝑞

𝜅𝑞
)

∆𝑡
2𝜖0 − 1] (

∆𝐻𝑚

𝑛+
1
2

∆𝑞
) (3.80) 

So far, no spatial indices have been included in order to facilitate a general derivation of the 

history variable update equations. However, the history variables will, in general, vary in space. 

For example, the components of the stretched coordinate metric can vary in the direction of 

stretching, but only in this direction so that the planar boundaries remain plane with a consistent 

number of cells. The ∆𝐻𝑚 term will also have unique spatial indices depending on the history 

variable. For clarity, all the history variables are presented in Table 3-3. 

 

Φ
𝐻𝑧𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) 𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗 )

∆𝑡
2𝜖0

Φ𝐻𝑧𝑦
𝑛 +

𝜎𝑦
𝑗

𝜅𝑦
𝑗𝛼𝑦

𝑗 + 𝜎𝑦
𝑗

[
 
 
 
𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗)

∆𝑡
2𝜖0

− 1

]
 
 
 

(
1

𝜅𝑦
𝑗∆𝑦

)(𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)) 

Φ
𝐻𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) 𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0Φ𝐻𝑦𝑧

𝑛 +
𝜎𝑧

𝑘

𝜅𝑧
𝑘𝛼𝑧

𝑘 + 𝜎𝑧
𝑘 [𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0 − 1] (

1

𝜅𝑧
𝑘∆𝑧

)(𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 −

1

2
)) 

Φ
𝐻𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) 𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0Φ𝐻𝑥𝑧

𝑛 +
𝜎𝑧

𝑘

𝜅𝑧
𝑘𝛼𝑧

𝑘 + 𝜎𝑧
𝑘
[𝑒

−(𝛼𝑧
𝑘+

𝜎𝑧
𝑘

𝜅𝑧
𝑘)

∆𝑡
2𝜖0 − 1](

1

𝜅𝑧
𝑘∆𝑧

)(𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
)) 
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Φ
𝐻𝑧𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) 𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0Φ𝐻𝑧𝑥

𝑛 +
𝜎𝑥

𝑖

𝜅𝑥
𝑖 𝛼𝑥

𝑖 + 𝜎𝑥
𝑖 [𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0 − 1] (

1

𝜅𝑥
𝑖 ∆𝑥

)(𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 −

1

2
, 𝑗 +

1

2
, 𝑘)) 

Φ
𝐻𝑦𝑥

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) 𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0Φ𝐻𝑦𝑥

𝑛 +
𝜎𝑥

𝑖

𝜅𝑥
𝑖 𝛼𝑥

𝑖 + 𝜎𝑥
𝑖
[𝑒

−(𝛼𝑥
𝑖 +

𝜎𝑥
𝑖

𝜅𝑥
𝑖 )

∆𝑡
2𝜖0 − 1] (

1

𝜅𝑥
𝑖 ∆𝑥

)(𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)) 

Φ
𝐻𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) 𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗 )

∆𝑡
2𝜖0

Φ𝐻𝑥𝑦
𝑛 +

𝜎𝑦
𝑗

𝜅𝑦
𝑗𝛼𝑦

𝑗 + 𝜎𝑦
𝑗

[
 
 
 
𝑒

−(𝛼𝑦
𝑗
+

𝜎𝑦
𝑗

𝜅𝑦
𝑗 )

∆𝑡
2𝜖0

− 1

]
 
 
 

(
1

𝜅𝑦
𝑗∆𝑦

)(𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 −

1

2
, 𝑘 +

1

2
)) 

Table 3-3: History variables for modified Ampere’s law. 

 

These expressions will be used in the subsequent two sections to derive the finite difference 

form of the modified Ampere’s law for the first and second sub-iterations respectively. Recall 

that an additional subscript, E or H, is required for the constituents of the stretched coordinate 

metric (𝜅, 𝜎, and 𝛼) as shown in Figure 3-18. As a final note, the history variables in Table 3-3 

may be adjusted for algorithms without sub-iterations by replacing 𝑛 + 1/2 with 𝑛 + 1, as well as 

all ∆𝑡/2 terms with ∆𝑡. 

3.8.4.1 First Sub-iteration 

The modified Ampere’s law with source currents and conductivity may be discretized into 

finite difference form as follows: 

 

2

∆𝑡
[𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐷𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)]

=
1

𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
1

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] − 𝐽𝑥

𝑐 − 𝐽𝑥
𝑆 + Φ𝐻𝑧𝑦

𝑛

− Φ𝐻𝑦𝑧
𝑛  

(3.81a) 
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2

∆𝑡
[𝐷𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) − 𝐷𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

=
1

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
)]

−
1

𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛 (𝑖 −
1

2
, 𝑗 +

1

2
, 𝑘)] − 𝐽𝑦

𝑐 − 𝐽𝑦
𝑆 + Φ𝐻𝑥𝑧

𝑛

− Φ𝐻𝑧𝑥
𝑛  

(3.81b) 

 

2

∆𝑡
[𝐷𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝐷𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)]

=
1

𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
1

𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)] − 𝐽𝑧

𝑐 − 𝐽𝑧
𝑆 + Φ𝐻𝑦𝑥

𝑛

− Φ𝐻𝑥𝑦
𝑛  

(3.81c) 

Note that 𝐻𝑧,𝑦, 𝐻𝑥,𝑧, and 𝐻𝑦,𝑥 in (3.81a), (3.81b), and (3.81c) respectively are defined 

implicitly at the future time step. The history variables Φ𝐻𝑚𝑞
𝑛  are defined at time 𝑛∆𝑡, rather than 

(𝑛 + 1/2)∆𝑡, since numerical experiments performed by previous investigators have shown that 

this time sampling is more efficient and accurate [211]. As such, the history terms will not affect 

the tridiagonal matrix. The 𝐽𝑐 and 𝐽𝑆 terms are the conduction and source currents respectively, 

with the time sampling left intentionally ambiguous since special considerations must be made. 

It is intuitive to sample the source current 𝐽𝑆 such that temporal homogeneity is maintained, but 

it has been shown that time sampling should occur at 𝑡 = (𝑛 + 1/2)∆𝑡 for both sub-iterations 

[216][217], which curiously produces an overall consistent scheme despite the loss of 

consistency for each half time step. Note that this corresponds to a forward scheme in the 1st 

sub-iteration and a backward scheme in the 2nd sub-iteration, therefore this may be thought of 

as a forward-backward scheme. For the conduction current term, a widely utilized method is to 

take a temporal average of the electric field as follows: 
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 𝐽𝑞
𝑐 =

𝜎𝑞𝑞

2
[𝐸𝑞

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + 𝐸𝑞

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] (3.82) 

Taflove [178] also referred to this as a semi-implicit approximation, which is appealing as 

temporal homogeneity is maintained. This method does indeed work but produces stability 

issues for highly conductive media as will been demonstrated shortly. For now, substitution of 

(3.82) back into Ampere’s law (3.81a-c) yields the following: 

 

2

∆𝑡
[𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − 𝐷𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)]

=
1

𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
1

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)]

−
𝜎𝑥𝑥

2
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) + 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)] − 𝐽𝑥𝑆

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) + Φ𝐻𝑧𝑦

𝑛 − Φ𝐻𝑦𝑧
𝑛  

(3.83a) 

 

2

∆𝑡
[𝐷𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) − 𝐷𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)]

=
1

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
)]

−
1

𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛 (𝑖 −
1

2
, 𝑗 +

1

2
, 𝑘)]

−
𝜎𝑥𝑥

2
[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) + 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] − 𝐽𝑦𝑆

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) + Φ𝐻𝑥𝑧

𝑛 − Φ𝐻𝑧𝑥
𝑛  

(3.83b) 

 

2

∆𝑡
[𝐷𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − 𝐷𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)]

=
1

𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
1

𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)]

−
𝜎𝑧𝑧

2
[𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + 𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] − 𝐽𝑧𝑆

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + Φ𝐻𝑦𝑥

𝑛 − Φ𝐻𝑥𝑦
𝑛  

(3.83c) 

Equations (3.83a-c) may be used to write update equations for the electric displacements: 
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𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) = 𝐷𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘) +

∆𝑡

2𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
∆𝑡

2𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦
𝑛 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)]

−
𝜎𝑥𝑥∆𝑡

4
[𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) + 𝐸𝑥

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)] −

∆𝑡

2
𝐽𝑥𝑆

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)

+
∆𝑡

2
[Φ𝐻𝑧𝑦

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘) − Φ𝐻𝑦𝑧

𝑛 (𝑖 +
1

2
, 𝑗, 𝑘)] 

(3.84a) 

 

𝐷𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) = 𝐷𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘) +

∆𝑡

2𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
)]

−
∆𝑡

2𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧
𝑛 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛 (𝑖 −
1

2
, 𝑗 +

1

2
, 𝑘)]

−
𝜎𝑥𝑥∆𝑡

4
[𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) + 𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] −

∆𝑡

2
𝐽𝑦𝑆

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)

+
∆𝑡

2
[Φ𝐻𝑥𝑧

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘) − Φ𝐻𝑧𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘)] 

(3.84b) 

 

𝐷𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) = 𝐷𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
) +

∆𝑡

2𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
∆𝑡

2𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑥

𝑛 (𝑖, 𝑗 +
1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)]

−
𝜎𝑧𝑧∆𝑡

4
[𝐸𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + 𝐸𝑧

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] −

∆𝑡

2
𝐽𝑧𝑆
𝑛+

1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

+
∆𝑡

2
[Φ𝐻𝑦𝑥

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
) − Φ𝐻𝑥𝑦

𝑛 (𝑖, 𝑗, 𝑘 +
1

2
)] 

(3.84c) 

Now the finite difference forms of Ampere’s law (3.83a-c) may be treated for use in the ADI-

FDTD equations by first substituting in the electric constitutive relations (3.77a-c): 

 

𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

= 𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

+
∆𝑡

2𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗−

1
2
,𝑘
]

−
∆𝑡

2𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘−

1
2] −

𝜎𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑡

4
[𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

+ 𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

]

−
∆𝑡

2
𝐽𝑥𝑆

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

+
∆𝑡

2
[Φ𝐻𝑧𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘

− Φ𝐻𝑦𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘

] 

(3.85a) 
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𝜖𝑦𝑦

𝑖,𝑗+
1
2
,𝑘
𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

= 𝜖𝑦𝑦

𝑖,𝑗+
1
2
,𝑘
𝐸𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘

+
∆𝑡

2𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘−

1
2]

−
∆𝑡

2𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛,𝑖−
1
2
,𝑗+

1
2
,𝑘
] −

𝜎𝑦𝑦

𝑖,𝑗+
1
2
,𝑘
∆𝑡

4
[𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

+ 𝐸𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘
]

−
∆𝑡

2
𝐽𝑦𝑆

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

+
∆𝑡

2
[Φ𝐻𝑥𝑧

𝑛,𝑖,𝑗+
1
2
,𝑘

− Φ𝐻𝑧𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘
] 

(3.85b) 

 

𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 = 𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝐸𝑧

𝑛,𝑖,𝑗,𝑘+
1
2 +

∆𝑡

2𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2]

−
∆𝑡

2𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛,𝑖,𝑗−
1
2
,𝑘+

1
2] −

𝜎𝑧𝑧

𝑖,𝑗,𝑘+
1
2∆𝑡

4
[𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 + 𝐸𝑧

𝑛,𝑖,𝑗,𝑘+
1
2]

−
∆𝑡

2
𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 +

∆𝑡

2
[Φ𝐻𝑦𝑥

𝑛,𝑖,𝑗,𝑘+
1
2 − Φ𝐻𝑥𝑦

𝑛,𝑖,𝑗,𝑘+
1
2] 

(3.85c) 

The spatial definitions of the fields in (3.85a-c) are now included in the superscripts as the 

expressions are becoming lengthy. Rearranging terms yields the following: 

 

𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

= [
4𝜖𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

− 𝜎𝑥𝑥

𝑖+
1
2
,𝑗,𝑘

∆𝑡

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

+ 𝜎𝑥𝑥

𝑖+
1
2,𝑗,𝑘

∆𝑡

]𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

+
2∆𝑡

(4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

+ 𝜎𝑥𝑥

𝑖+
1
2,𝑗,𝑘

∆𝑡)𝜅𝑦𝐸
𝑗

∆𝑦

[𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗−

1
2
,𝑘
]

−
2∆𝑡

(4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

+ 𝜎𝑥𝑥

𝑖+
1
2,𝑗,𝑘

∆𝑡)𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘−

1
2]

−
2∆𝑡

(4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

+ 𝜎𝑥𝑥

𝑖+
1
2,𝑗,𝑘

∆𝑡)

[𝐽𝑥𝑆

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

− Φ𝐻𝑧𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘

+ Φ𝐻𝑦𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘

] 

(3.86a) 
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𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

= [
4𝜖𝑦𝑦

𝑖,𝑗+
1
2
,𝑘

− 𝜎𝑦𝑦

𝑖,𝑗+
1
2
,𝑘
∆𝑡

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

+ 𝜎𝑦𝑦

𝑖,𝑗+
1
2,𝑘

∆𝑡

]𝐸𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘

+
2∆𝑡

(4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

+ 𝜎𝑦𝑦

𝑖,𝑗+
1
2,𝑘

∆𝑡)𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘−

1
2]

−
2∆𝑡

(4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

+ 𝜎𝑦𝑦

𝑖,𝑗+
1
2,𝑘

∆𝑡)𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛,𝑖−
1
2
,𝑗+

1
2
,𝑘
]

−
2∆𝑡

(4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

+ 𝜎𝑦𝑦

𝑖,𝑗+
1
2,𝑘

∆𝑡)

[𝐽𝑦𝑆

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

− Φ𝐻𝑥𝑧

𝑛,𝑖,𝑗+
1
2
,𝑘

+ Φ𝐻𝑧𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘
] 

(3.86b) 

 

𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 = [

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2 − 𝜎𝑧𝑧

𝑖,𝑗,𝑘+
1
2∆𝑡

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2 + 𝜎𝑧𝑧

𝑖,𝑗,𝑘+
1
2∆𝑡

]𝐸𝑧

𝑛,𝑖,𝑗,𝑘+
1
2

+
2∆𝑡

(4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2 + 𝜎𝑧𝑧

𝑖,𝑗,𝑘+
1
2∆𝑡)𝜅𝑥𝐸

𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2]

−
2∆𝑡

(4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2 + 𝜎𝑧𝑧

𝑖,𝑗,𝑘+
1
2∆𝑡)𝜅𝑦𝐸

𝑗
∆𝑦

[𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛,𝑖,𝑗−
1
2
,𝑘+

1
2]

−
2∆𝑡

(4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2 + 𝜎𝑧𝑧

𝑖,𝑗,𝑘+
1
2∆𝑡)

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛,𝑖,𝑗,𝑘+
1
2 + Φ𝐻𝑥𝑦

𝑛,𝑖,𝑗,𝑘+
1
2] 

(3.86c) 

Note that the expressions for the unknown electric fields above contain unknown magnetic 

fields on the right-hand side which are known via equations (3.75a-c). Substituting in these 

unknown magnetic fields will yield the CPML-ADI-FDTD equations. The electric field update 

equations above, utilizing 𝜎𝑖𝑗, may be used in applications where the simulation space does not 

contain highly lossy media, however, if conductive material is present, stability issues may arise 

due to the coefficient of the 𝐸𝑖
𝑛 term which will change signs: 

 [
4𝜖𝑖𝑖

𝑇 − 𝜎𝑖𝑖∆𝑡

4𝜖𝑖𝑖
𝑇 + 𝜎𝑖𝑖∆𝑡

] =
1

> 0
< 0

         

𝑙𝑜𝑠𝑠𝑙𝑒𝑠𝑠
𝜎𝑖𝑖 < 4𝜖𝑖𝑖

𝑇/∆𝑡

𝜎𝑖𝑖 > 4𝜖𝑖𝑖
𝑇/∆𝑡

 (3.87) 
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Various authors [222-224] have attempted to deal with the highly conductive case by 

utilizing time sampling schemes that differ from (3.88), but herein any highly conductive material 

is either modeled as a PEC or through use of recursive convolution to avoid stability issues, 

especially at the high CFLN factors heavily leveraged in mechanical antenna simulations. Thus, 

no more mention of 𝜎𝑖𝑗 is made and modelers of mechanical antennas should not use this term. 

3.8.4.2 Second Sub-Iteration 

For the second sub-iteration the magnetic fields defined at the half time step 𝑛 + 1/2 are 

again defined temporally as such, and the implicit definition now migrates to the latter magnetic 

terms in the alternate directions. This yields the following: 

 

2

∆𝑡
[𝐷𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘) − 𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

=
1

𝜅𝑦𝐸
𝑗

∆𝑦
[𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
1

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] − 𝐽𝑥𝑆

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) + Φ𝐻𝑧𝑦

𝑛+
1
2

− Φ𝐻𝑦𝑧

𝑛+
1
2 

(3.88a) 

 

2

∆𝑡
[𝐷𝑦

𝑛+1 (𝑖, 𝑗 +
1

2
, 𝑘) − 𝐷𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)]

=
1

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
)]

−
1

𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧
𝑛+1 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+1 (𝑖 −
1

2
, 𝑗 +

1

2
, 𝑘)] − 𝐽

𝑦𝑆

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) + Φ𝐻𝑥𝑧

𝑛+
1
2

− Φ𝐻𝑧𝑥

𝑛+
1
2 

(3.88b) 

 

2

∆𝑡
[𝐷𝑧

𝑛+1 (𝑖, 𝑗, 𝑘 +
1

2
) − 𝐷𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

=
1

𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
1

𝜅𝑦𝐸
𝑗 ∆𝑦

[𝐻𝑥
𝑛+1 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+1 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)] − 𝐽𝑧𝑆

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) + Φ𝐻𝑦𝑥

𝑛+
1
2

− Φ𝐻𝑥𝑦

𝑛+
1
2 

(3.88c) 

The update equations for the electric displacement may then be derived as follows: 
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𝐷𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑘) = 𝐷𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) +

∆𝑡

2𝜅𝑦𝐸
𝑗 ∆𝑦

[𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘)]

−
∆𝑡

2𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦
𝑛+1 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+1 (𝑖 +
1

2
, 𝑗, 𝑘 −

1

2
)] −

∆𝑡

2
𝐽
𝑥𝑆

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)

+
∆𝑡

2
[Φ𝐻𝑧𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘) − Φ𝐻𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)] 

(3.89a) 

 

𝐷𝑦
𝑛+1 (𝑖, 𝑗 +

1

2
, 𝑘) = 𝐷𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) +

∆𝑡

2𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 −

1

2
)]

−
∆𝑡

2𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧
𝑛+1 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝐻𝑧

𝑛+1 (𝑖 −
1

2
, 𝑗 +

1

2
, 𝑘)] −

∆𝑡

2
𝐽
𝑦𝑆

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)

+
∆𝑡

2
[Φ𝐻𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘) − Φ𝐻𝑧𝑥

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)] 

(3.89b) 

 

𝐷𝑧
𝑛+1 (𝑖, 𝑗, 𝑘 +

1

2
) = 𝐷𝑧

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) +

∆𝑡

2𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝐻𝑦

𝑛+
1
2 (𝑖 −

1

2
, 𝑗, 𝑘 +

1

2
)]

−
∆𝑡

2𝜅𝑦𝐸
𝑗 ∆𝑦

[𝐻𝑥
𝑛+1 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝐻𝑥

𝑛+1 (𝑖, 𝑗 −
1

2
, 𝑘 +

1

2
)] −

∆𝑡

2
𝐽
𝑧𝑆

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)

+
∆𝑡

2
[Φ𝐻𝑦𝑥

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
) − Φ𝐻𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)] 

(3.89c) 

In preparation for the derivation of the ADI-FDTD equations, substitute in the electric 

constitutive relations (3.78a-c) into (3.88a-c) and solve for the unknown electric field as follows: 

 

𝐸𝑥

𝑛+1,𝑖+
1
2
,𝑗,𝑘

= 𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

+
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑦𝐸
𝑗

∆𝑦

[𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗−

1
2
,𝑘
]

−
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦

𝑛+1,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+1,𝑖+
1
2
,𝑗,𝑘−

1
2]

−
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

[𝐽𝑥𝑆

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

− Φ𝐻𝑧𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

+ Φ𝐻𝑦𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

] 

(3.90a) 

 

𝐸𝑦

𝑛+1,𝑖,𝑗+
1
2
,𝑘

= 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

+
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘−

1
2]

−
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑥𝐸
𝑖 ∆𝑥

[𝐻𝑧

𝑛+1,𝑖+
1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛+1,𝑖−
1
2
,𝑗+

1
2
,𝑘
]

−
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

[𝐽𝑦𝑆

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

− Φ𝐻𝑥𝑧

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

+ Φ𝐻𝑧𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘
] 

(3.90b) 
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𝐸𝑧

𝑛+1,𝑖,𝑗,𝑘+
1
2 = 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 +

∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

[𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2]

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦

[𝐻𝑥

𝑛+1,𝑖,𝑗+
1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+1,𝑖,𝑗−
1
2
,𝑘+

1
2]

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 + Φ𝐻𝑥𝑦

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2] 

(3.90c) 

These expressions for the unknown electric fields, (3.86a-c) in the 1st sub-iteration and 

(3.90a-c) in the 2nd sub-iteration, will be used to determine the CPML-ADI-FDTD equations in 

the following section. This is done by substituting in the expressions for the unknown magnetic 

fields, (3.75a-c) for the 1st sub-iteration and (3.76a-c) for the 2nd sub-iteration, derived from 

substituting the magnetic constitutive relations into Faraday’s law in Section 3.8.2. 

3.8.5 CPML-ADI-FDTD Equations 

Now that expressions for the future magnetic and electric fields have been attained by 

utilizing the magnetic/electric constitutive relations and Maxwell’s equations, the ADI-FDTD 

equations may be derived. These will be different for each sub-iteration. 

3.8.5.1 First Sub-Iteration 

Recall that the expressions for the unknown electric fields (obtained from inputting the 

electric constitutive relations into Ampere’s law) contained unknown magnetic fields on the right-

hand side. These unknown magnetic fields were determined via substitution of the magnetic 

constitutive relations into Faraday’s law. Thus, by substitution of the unknown 𝐻𝑧
𝑛+1/2

 terms 

(3.75c) into the 𝐸𝑥
𝑛+1/2

 expression (3.86a), the following is acquired: 
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𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

= 𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

+
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑦𝐸
𝑗

∆𝑦
[
 
 
 
 

𝐻𝑧

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

+
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑦𝐻
𝑗

∆𝑦

[𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗+1,𝑘

− 𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑦

𝑛,𝑖+1,𝑗+
1
2
,𝑘

− 𝐸𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘
] −

∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

[ℳ𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘
]

− 𝐻𝑧

𝑛,𝑖+
1
2
,𝑗−

1
2
,𝑘

+
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

𝜅𝑦𝐻
𝑗

∆𝑦

[𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

− 𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗−1,𝑘

]

−
∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

𝜅𝑥𝐻
𝑖 ∆𝑥

[𝐸𝑦

𝑛,𝑖+1,𝑗−
1
2
,𝑘

− 𝐸𝑦

𝑛,𝑖,𝑗−
1
2
,𝑘
] −

∆𝑡

2𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

[ℳ𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗−

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛,𝑖+
1
2
,𝑗−

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛,𝑖+
1
2
,𝑗−

1
2
,𝑘
]

]
 
 
 
 

−
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

[𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘−

1
2] −

∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

[𝐽𝑥𝑆

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

− Φ𝐻𝑧𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘

+ Φ𝐻𝑦𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘

] 

(3.91) 

This may be simplified into the y-cut equation as follows in (3.92a). Recall that the term “y-

cut” refers to the three unknown electric fields that appear in the tri-diagonal matrix which lie 

along a y-directed cut of the simulation space (i.e., at 𝑦 = (𝑗 − 1)∆𝑦, 𝑦 = 𝑗∆𝑦, and 𝑦 = (𝑗 −

1)∆𝑦). The term y-cut does not refer to a crystalline orientation. Indeed, even when discussing 

homogeneous free space simulations in Section 3.6, the terms x-cut, y-cut, and z-cut were 

used. 
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−
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑦𝐸
𝑗

𝜅𝑦𝐻
𝑗

∆𝑦2

𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗+1,𝑘

+ [1 +
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑦𝐸
𝑗

∆𝑦2

(
1

𝜅𝑦𝐻
𝑗

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

+
1

𝜅𝑦𝐻
𝑗−1

𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

)]𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

−
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

𝜅𝑦𝐸
𝑗

𝜅𝑦𝐻
𝑗−1

∆𝑦2

𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗−1,𝑘

= 𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

+
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑦𝐸
𝑗

∆𝑦

(𝐻𝑧

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛,𝑖+
1
2
,𝑗−

1
2
,𝑘
) −

∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

(𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘−

1
2)

−
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑥𝐻
𝑖 ∆𝑥𝜅𝑦𝐸

𝑗
∆𝑦

[
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

(𝐸𝑦

𝑛,𝑖+1,𝑗+
1
2
,𝑘

− 𝐸𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘
) −

1

𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

(𝐸𝑦

𝑛,𝑖+1,𝑗−
1
2
,𝑘

− 𝐸𝑦

𝑛,𝑖,𝑗−
1
2
,𝑘
)]

−
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑦𝐸
𝑗

∆𝑦

[
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

(ℳ𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘
)

−
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗−

1
2,𝑘

(ℳ𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗−

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛,𝑖+
1
2
,𝑗−

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛,𝑖+
1
2
,𝑗−

1
2
,𝑘
)]

−
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

[𝐽𝑥𝑆

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

− Φ𝐻𝑧𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘

+ Φ𝐻𝑦𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘

] 

(3.92a) 

This process is repeated for 𝐸𝑦
𝑛+1/2

 (3.86b) where 𝐻𝑥
𝑛+1/2

 (3.75a) is substituted in yielding 

the following z-cut equation: 
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−
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑧𝐸

𝑘 𝜅𝑧𝐻
𝑘 ∆𝑧2

𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+1

+ [1 +
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧2

(
1

𝜅𝑧𝐻
𝑘 𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

+
1

𝜅𝑧𝐻
𝑘−1𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘−

1
2

)]𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

−
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘−

1
2𝜅𝑧𝐸

𝑘 𝜅𝑧𝐻
𝑘−1∆𝑧2

𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘−1

= 𝐸𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘

+
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

(𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘−

1
2) −

∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑥𝐸
𝑖 ∆𝑥

(𝐻𝑧

𝑛,𝑖+
1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛,𝑖−
1
2
,𝑗+

1
2
,𝑘
)

−
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑦𝐻
𝑗

𝜅𝑧𝐸
𝑘 ∆𝑦∆𝑧

[
1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

(𝐸𝑧

𝑛,𝑖,𝑗+1,𝑘+
1
2 − 𝐸𝑧

𝑛𝑖,𝑗,𝑘+
1
2) −

1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘−

1
2

(𝐸𝑧

𝑛,𝑖,𝑗+1,𝑘−
1
2 − 𝐸𝑧

𝑛𝑖,𝑗,𝑘−
1
2)]

−
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

[
1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

(ℳ𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛𝑖,𝑗+
1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2)

−
1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘−

1
2

(ℳ𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘−

1
2 − Φ𝐸𝑦𝑧

𝑛𝑖,𝑗+
1
2
,𝑘−

1
2 + Φ𝐸𝑧𝑦

𝑛,𝑖,𝑗+
1
2
,𝑘−

1
2)]

−
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

[𝐽𝑦𝑆

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

− Φ𝐻𝑥𝑧

𝑛,𝑖,𝑗+
1
2
,𝑘

+ Φ𝐻𝑧𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘
] 

(3.92b) 

Finally, the process is repeated for 𝐸𝑧
𝑛+1/2

 (3.86c) where 𝐻𝑦
𝑛+1/2

 (3.75b) is substituted in 

yielding the following x-cut equation: 
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−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐸

𝑖 𝜅𝑥𝐻
𝑖 ∆𝑥2

𝐸𝑧

𝑛+
1
2
,𝑖+1,𝑗,𝑘+

1
2 + [1 +

∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥2

(
1

𝜅𝑥𝐻
𝑖 𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

+
1

𝜅𝑥𝐻
𝑖−1𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

)]𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐸

𝑖 𝜅𝑥𝐻
𝑖−1∆𝑥2

𝐸𝑧

𝑛+
1
2
,𝑖−1,𝑗,𝑘+

1
2

= 𝐸𝑧

𝑛,𝑖,𝑗,𝑘+
1
2 +

∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

(𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2) −

∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦

(𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛,𝑖,𝑗−
1
2
,𝑘+

1
2)

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑧𝐻

𝑘 𝜅𝑥𝐸
𝑖 ∆𝑥∆𝑧

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

) −
1

𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

(𝐸𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘

)]

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2)

−
1

𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2)]

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛,𝑖,𝑗,𝑘+
1
2 + Φ𝐻𝑥𝑦

𝑛,𝑖,𝑗,𝑘+
1
2] 

(3.92c) 

The above y-cut (3.92a), z-cut (3.92b), and x-cut (3.92c) expressions are used to update 

𝐸𝑥
𝑛+1/2

, 𝐸𝑦
𝑛+1/2

, and 𝐸𝑧
𝑛+1/2

 respectively. Update expressions in the 2nd sub-iteration may 

similarly be derived and are presented in the following section. 

3.8.5.2 Second Sub-Iteration 

In the 2nd sub-iteration, expressions for 𝐸𝑥
𝑛+1 (3.90a), 𝐸𝑦

𝑛+1 (3.90b), and 𝐸𝑧
𝑛+1 (3.90c) are 

modified via substitution of 𝐻𝑦
𝑛+1 (3.76b), 𝐻𝑧

𝑛+1 (3.76c), and 𝐻𝑥
𝑛+1 (3.76a) yielding the z-cut 

(3.92d), x-cut (3.92e), and y-cut (3.92f) update equations provided below respectively: 
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−
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑧𝐸

𝑘 𝜅𝑧𝐻
𝑘 ∆𝑧2

𝐸𝑥

𝑛+1,𝑖+
1
2
,𝑗,𝑘+1

+ [1 +
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧2

(
1

𝜅𝑧𝐻
𝑘 𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

+
1

𝜅𝑧𝐻
𝑘−1𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘−

1
2

)]𝐸𝑥

𝑛+1,𝑖+
1
2
,𝑗,𝑘

−
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘−

1
2𝜅𝑧𝐸

𝑘 𝜅𝑧𝐻
𝑘−1∆𝑧2

𝐸𝑥

𝑛+1,𝑖+
1
2
,𝑗,𝑘−1

= 𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

+
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑦𝐸
𝑗

∆𝑦

(𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗−

1
2
,𝑘
)

−
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

(𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘−

1
2)

−
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑥𝐻
𝑖 ∆𝑥𝜅𝑧𝐸

𝑘 ∆𝑧

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(𝐸𝑧

𝑛+
1
2
,𝑖+1,𝑗,𝑘+

1
2 − 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2)

−
1

𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

(𝐸𝑧

𝑛+
1
2
,𝑖+1,𝑗,𝑘−

1
2 − 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘−

1
2)]

+
∆𝑡2

4𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2)

−
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘−

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘−

1
2 − Φ𝐸𝑧𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘−

1
2 + Φ𝐸𝑥𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘−

1
2)]

−
∆𝑡

2𝜖𝑥𝑥

𝑖+
1
2,𝑗,𝑘

[𝐽𝑥𝑆

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

− Φ𝐻𝑧𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

+ Φ𝐻𝑦𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

] 

(3.92d) 
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−
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

𝜅𝑥𝐸
𝑖 𝜅𝑥𝐻

𝑖 ∆𝑥2

𝐸𝑦

𝑛+1,𝑖+1,𝑗+
1
2
,𝑘

+ [1 +
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑥𝐸
𝑖 ∆𝑥2

(
1

𝜅𝑥𝐻
𝑖 𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

+
1

𝜅𝑥𝐻
𝑖−1𝜇𝑧𝑧

𝑖−
1
2,𝑗+

1
2,𝑘

)]𝐸𝑦

𝑛+1,𝑖,𝑗+
1
2
,𝑘

−
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜇𝑧𝑧

𝑖−
1
2,𝑗+

1
2,𝑘

𝜅𝑥𝐸
𝑖 𝜅𝑥𝐻

𝑖−1∆𝑥2

𝐸𝑦

𝑛+1,𝑖−1,𝑗+
1
2
,𝑘

= 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

+
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑧𝐸
𝑘 ∆𝑧

(𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘−

1
2)

−
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑥𝐸
𝑖 ∆𝑥

(𝐻𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− 𝐻𝑧

𝑛+
1
2
,𝑖−

1
2
,𝑗+

1
2
,𝑘
)

−
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑥𝐸
𝑖 ∆𝑥𝜅𝑦𝐻

𝑗
∆𝑦

[
1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

(𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗+1,𝑘

− 𝐸𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘

)

−
1

𝜇𝑧𝑧

𝑖−
1
2,𝑗+

1
2,𝑘

(𝐸𝑥

𝑛+
1
2
,𝑖−

1
2
,𝑗+1,𝑘

− 𝐸𝑥

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘

)]

+
∆𝑡2

4𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

𝜅𝑥𝐸
𝑖 ∆𝑥 [

 
 
 

1

𝜇𝑧𝑧

𝑖+
1
2,𝑗+

1
2,𝑘

[ℳ𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘
]

−
1

𝜇𝑧𝑧

𝑖−
1
2,𝑗+

1
2,𝑘

[ℳ𝑧

𝑛+
1
2
,𝑖−

1
2
,𝑗+

1
2
,𝑘

− Φ𝐸𝑥𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗+

1
2
,𝑘

+ Φ𝐸𝑦𝑥

𝑛+
1
2
,𝑖−

1
2
,𝑗+

1
2
,𝑘
]

]
 
 
 

−
∆𝑡

2𝜖𝑦𝑦

𝑖,𝑗+
1
2,𝑘

[𝐽𝑦𝑆

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

− Φ𝐻𝑥𝑧

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘

+ Φ𝐻𝑧𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘
] 

(3.92e) 
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−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑦𝐸

𝑗
𝜅𝑦𝐻

𝑗
∆𝑦2

𝐸𝑧

𝑛+1,𝑖,𝑗+1,𝑘+
1
2 + [1 +

∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦2

(
1

𝜅𝑦𝐻
𝑗

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

+
1

𝜅𝑦𝐻
𝑗−1

𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

)]𝐸𝑧

𝑛+1,𝑖,𝑗,𝑘+
1
2

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2𝜅𝑦𝐸

𝑗
𝜅𝑦𝐻

𝑗−1
∆𝑦2

𝐸𝑧

𝑛+1,𝑖,𝑗−1,𝑘+
1
2

= 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 +

∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

(𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2)

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦

(𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2)

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦𝜅𝑧𝐻

𝑘 ∆𝑧

[
1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

(𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘
)

−
1

𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

(𝐸𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘
)]

+
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦 [

 
 
 

1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛+
1
2
𝑖,𝑗+

1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2]

−
∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛+
1
2
𝑖,𝑗−

1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2]

]
 
 
 

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 + Φ𝐻𝑥𝑦

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2] 

(3.92f) 

For the uniaxial stress piezoelectric antenna problems investigated in Chapter 5, only the 

update expressions for 𝐸𝑧, (3.92c) and (3.92f), need be modified beyond what has been 

provided in this section. Thus expressions (3.92a), (3.92b), (3.92d), and (3.92e) are already 

sufficient for the simulations performed herein. In the following sections, EM boundary 

conditions are further explored. 
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3.8.5.3 Perfect Electric Conductor Boundary Conditions 

Now that the tri-diagonal ADI equations have been derived, the EM boundary conditions are 

revisited. Within this section the following tri-diagonal matrices are synonymous: 𝑀1 → 𝑀𝑥1, 

𝑀2 → 𝑀𝑦1, 𝑀3 → 𝑀𝑧1, 𝑀4 → 𝑀𝑥2, 𝑀5 → 𝑀𝑦2, 𝑀6 → 𝑀𝑧2. Firstly, consider the perfect electric 

conductor (PEC) boundary condition by writing the equation for the (𝑁𝑧-1)th row of the 𝐸𝑦 z-cut 

equation, where 𝑁𝑧 is the number of nodes in the z-direction: 

 

𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑧 − 2)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 2)

+ 𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑍 − 1)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 1)

+ 𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑧)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧) = 𝑞1(𝑖, 𝑗, 𝑁𝑧 − 1) 

(3.93) 

Where 𝑇𝑅𝑀2(𝑖, 𝑗, 𝑚, 𝑛) is the component of the tri-diagonal matrix 𝑀2 associated with the 𝑖𝑡ℎ 

and 𝑗𝑡ℎ node and located in the 𝑚𝑡ℎ row and the 𝑛𝑡ℎ column. The forcing vector is 𝑞1 and note 

that a similar equation involving 𝐸𝑥 also exists. If there is a PEC boundary condition at z=𝑁𝑧∆𝑧 

then: 

 𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧) = 0 (3.94) 

Combining (3.93) and (3.94) yields: 

 

𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑧 − 2)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 2)

+ 𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑧 − 1)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 1) = 𝑞1(𝑖, 𝑗, 𝑁𝑧 − 1) 

(3.95) 

Since there is no boundary 𝐸𝑦(𝑖, 𝑗, 𝑁𝑧) term in (3.95), the top PEC boundary may be 

modelled by eliminating the final row and column from the tri-diagonal matrix. It is convenient 

however to maintain the 𝑁𝑧 × 𝑁𝑧 size of 𝑀2, and this may be accomplished by keeping a 

diagonal term at the end of the matrix rather than truncation: 
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 𝑇𝑅𝑀2(𝑁𝑧 , 𝑁𝑧) = 1, 𝑇𝑅𝑀2(𝑁𝑧 − 1, 𝑁𝑧) = 𝑇𝑅𝑀2(𝑁𝑧 , 𝑁𝑧 − 1) = 0 (3.96) 

Therefore the 𝑁𝑧
𝑡ℎ row of the tri-diagonal matrix yields: 

 𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧) = 𝑞1(𝑖, 𝑗, 𝑁𝑧) (3.97) 

Zeroing of the tangential electric fields (𝐸𝑥 and 𝐸𝑦) is accomplished by setting the forcing 

vector 𝑞1 equal to zero and never updating it, which may be accomplished by omitting the 

boundary node 𝑁𝑧 in any for loops. Recall that at a PEC the normal magnetic fields are also 

zero and this condition may also be imposed by never updating these fields through the use of 

for loops. A similar procedure may be followed for all 5 other potential boundaries, and for the 

second sub-iteration. 

3.8.5.4 Perfect Magnetic Conductor Boundary Condition 

For a perfect magnetic conductor, the boundary is shifted half a cell into the simulation 

space. Consider again the (𝑁𝑧-1)th row of the 𝐸𝑦 z-cut equation: 

 

𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑧 − 2)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 2)

+ 𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑧 − 1)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 1)

+ 𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1,𝑁𝑧)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧) = 𝑞1(𝑖, 𝑗, 𝑁𝑧 − 1) 

(3.98) 

The 𝐸𝑦 field at z=𝑁𝑧∆𝑧 is now being determined outside of the simulation space. Fortunately, 

by image theory, the external electric field is known as shown in Figure 3-19 [225]: 

 

 

Figure 3-19: Imaged electric field across a PMC boundary. 
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As such: 

 𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧) = 𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 1) (3.99) 

Therefore, 

 

𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1, 𝑁𝑧 − 2)𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 2)

+ [𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1, 𝑁𝑧 − 1)

+ 𝑇𝑅𝑀2(𝑖, 𝑗, 𝑁𝑧 − 1, 𝑁𝑍)]𝐸𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 1) = 𝑞1(𝑖, 𝑗, 𝑁𝑧 − 1) 

(3.100) 

Note that the coefficient in front of the 𝐸𝑦(𝑖, 𝑗, 𝑁𝑧 − 1) term changed and the boundary term 

𝐸𝑦(𝑖, 𝑗, 𝑁𝑧) is gone in (3.100). Therefore, the top PMC boundary may be modelled by 

modification of the (𝑁𝑧-1)th row/column term of the tri-diagonal matrix and elimination of the last 

row/column. A diagonal term may again be added to maintain the 𝑁𝑧 × 𝑁𝑧 size of the matrix like 

the PEC case. 

The two tangential magnetic fields at the PMC are zero: 

 𝐻𝑥

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 1) = 𝐻𝑦

𝑛+
1
2(𝑖, 𝑗, 𝑁𝑧 − 1) = 0 (3.101) 

This condition may be imposed by never updating these fields through the use of for loops. 

3.8.5.5 Absorbing Boundary Conditions 

In treating absorbing boundary conditions within the ADI-FDTD some special considerations 

must be made at the nodes adjacent to the boundary plane. To explain this, recall the Mur1 

ABC equation for Ey at z=𝑁𝑧∆𝑧 from Section 3.4.1.3. 

 𝐸𝑦

𝑛+
1
2(𝑁𝑧) = 𝐸𝑦

𝑛(𝑁𝑧 − 1) +
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 1) − 𝐸𝑦

𝑛(𝑁𝑧)] (3.102) 

This equation may be used to update the fields on the k=𝑁𝑧 plane. Additionally, in the first 

sub-iteration, the update equation for the y-directed electric field is the z-cut equation which will 



 
 

184 

 

require special treatment for the Ey fields just below the top ABC plane (at k=𝑁𝑧-1). The tri-

diagonal matrix for a finite device in the z-direction (one that does not touch the absorbing 

boundary) yields the following at row NZ-1 for arbitrary node in the xy-plane (omit 𝑖 and 𝑗 

designations used in the previous two sections): 

 

𝑇𝑅𝑀2(𝑁𝑍 − 1, 𝑁𝑍 − 1)𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 1) + 𝑇𝑅𝑀2(𝑁𝑍 − 1, 𝑁𝑍)𝐸𝑦

𝑛+
1
2(𝑁𝑧)

+ 𝑇𝑅𝑀2(𝑁𝑍 − 1, 𝑁𝑍 − 2)𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 2) = 𝑞1(𝑁𝑍 − 1) 

(3.103) 

Note that these equations are evaluated within free space, therefore the free space values 

for all coefficients may be used. Substituting (3.102) into (3.103) yields: 

 

𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍 − 1)𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 1)

+ 𝑇𝑅𝑀2(𝑁𝑍 − 1, 𝑁𝑍) {𝐸𝑦
𝑛(𝑁𝑧 − 1)

+
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 1) − 𝐸𝑦

𝑛(𝑁𝑧)]}

+ 𝑇𝑅𝑀2(𝑁𝑍 − 1, 𝑁𝑍 − 2)𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 2) = 𝑞1(𝑁𝑍 − 1) 

(3.104) 

To reiterate, it has been assumed that piezomagnetic material does not touch the upper 

boundary of the simulation space which will lead to additional coupling terms since the electric 

fields in the y and z directions are coupled in the first sub-iteration. Re-writing (3.104) yields: 
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𝑇𝑅𝑀2(𝑁𝑍 − 1, 𝑁𝑍 − 2)𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 2)

+ {𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍 − 1)

+
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍)} 𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 1)

=
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍)𝐸𝑦

𝑛(𝑁𝑧)

− 𝑇𝑅𝑀2(𝑁𝑍 − 1, 𝑁𝑍)𝐸𝑦
𝑛(𝑁𝑧 − 1) + 𝑞1(𝑁𝑍 − 1) 

(3.105) 

The absorbing boundary conditions introduce additional terms on both the left- and right-

hand side of the equation. The former is taken care of within the portion of the code where the 

ADI coefficients are defined and the latter is included in the portion of the code where the time 

marching scheme is contained, both through the use of if statements. (3.105) applies to the 

entire plane one cell adjacent to the boundary. The corresponding ABC condition for electric 

fields in the x-direction in the first sub-iteration is: 

 𝐸𝑥

𝑛+
1
2(𝑁𝑧) = 𝐸𝑥

𝑛(𝑁𝑧 − 1) +
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+
1
2(𝑁𝑧 − 1) − 𝐸𝑥

𝑛(𝑁𝑧)] (3.106) 

This may be applied directly at the k=NZ plane without special treatment being necessary at 

the k=NZ-1 plane since the update equation for Ex is not the z-cut equation in the first sub-

iteration. In the second sub-iteration however, a similar treatment is performed utilizing the 

following condition: 

 𝐸𝑥
𝑛+1(𝑁𝑧) = 𝐸𝑥

𝑛+
1
2(𝑁𝑧 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+1(𝑁𝑧 − 1) − 𝐸𝑥

𝑛+
1
2(𝑁𝑧)] (3.107) 

Substitute (3.107) into the tri-diagonal matrix at row NZ-1 as follows: 
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𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍 − 1)𝐸𝑥
𝑛+1(𝑁𝑧 − 1)

+ 𝑇𝑅𝑀4(𝑁𝑍 − 1, 𝑁𝑍) {𝐸𝑥

𝑛+
1
2(𝑁𝑧 − 1)

+
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
[𝐸𝑥

𝑛+1(𝑁𝑧 − 1) − 𝐸𝑥

𝑛+
1
2(𝑁𝑧)]}

+ 𝑇𝑅𝑀4(𝑁𝑍 − 1, 𝑁𝑍 − 2)𝐸𝑥
𝑛+1(𝑁𝑧 − 2) = 𝑞1(𝑁𝑍 − 1) 

(3.108) 

Re-writing (3.108) yields:  

 

𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍 − 2)𝐸𝑥
𝑛+1(𝑁𝑧 − 2)

+ {𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍 − 1)

+
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍)} 𝐸𝑥

𝑛+1(𝑁𝑧 − 1)

=
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍)𝐸𝑥

𝑛+
1
2(𝑁𝑧)

− 𝑇𝑅𝑀4(𝑁𝑍 − 1, 𝑁𝑍)𝐸𝑥

𝑛+
1
2(𝑁𝑧 − 1) + 𝑞1(𝑁𝑍 − 1) 

(3.109) 

The equations for the nodes adjacent to the ABC’s are tabulated in Table 3-4: 

 

𝑥 = ∆𝑥 

𝑖 = 1 

1st 

𝑇𝑅𝑀3(1,2)𝐸𝑧

𝑛+
1
2 (2, 𝑗, 𝑘 +

1

2
) + {𝑇𝑅𝑀3(1,1) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀3(1,0)} 𝐸𝑧

𝑛+
1
2 (1, 𝑗, 𝑘 +

1

2
)

=
𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀3(1,0)𝐸𝑧

𝑛 (0, 𝑗, 𝑘 +
1

2
) − 𝑇𝑅𝑀3(1,0)𝐸𝑧

𝑛 (1, 𝑗, 𝑘 +
1

2
) + 𝑝1(1) 

2nd 

𝑇𝑅𝑀5(1,2)𝐸𝑦
𝑛+1 (2, 𝑗 +

1

2
, 𝑘) + {𝑇𝑅𝑀5(1,1) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀5(1,0)}𝐸𝑦

𝑛+1 (1, 𝑗 +
1

2
, 𝑘)

=
𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀5(1,0)𝐸𝑦

𝑛+
1
2 (0, 𝑗 +

1

2
, 𝑘) − 𝑇𝑅𝑀5(1,0)𝐸𝑦

𝑛+
1
2 (1, 𝑗 +

1

2
, 𝑘) + 𝑞2(1) 

𝑥 = 𝐿𝑥 

−∆𝑥 

1st 

𝑇𝑅𝑀3(𝑁𝑋 − 1,𝑁𝑋 − 2)𝐸𝑧

𝑛+
1
2(𝑁𝑥 − 2) + {𝑇𝑅𝑀3(𝑁𝑋 − 1,𝑁𝑋 − 1) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀3(𝑁𝑋 − 1,𝑁𝑋)} 𝐸𝑧

𝑛+
1
2(𝑁𝑥 − 1)

=
𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀3(𝑁𝑋 − 1,𝑁𝑋)𝐸𝑧

𝑛(𝑁𝑥) − 𝑇𝑅𝑀3(𝑁𝑋 − 1,𝑁𝑋)𝐸𝑧
𝑛(𝑁𝑥 − 1) + 𝑝1(𝑁𝑥 − 1) 

2nd 

𝑇𝑅𝑀5(𝑁𝑋 − 1,𝑁𝑋 − 2)𝐸𝑦
𝑛+1(𝑁𝑥 − 2) + {𝑇𝑅𝑀5(𝑁𝑋 − 1,𝑁𝑋 − 1) +

𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀5(𝑁𝑋 − 1,𝑁𝑋)}𝐸𝑦

𝑛+1(𝑁𝑥 − 1)

=
𝑐∆𝑡 − 2∆𝑥

𝑐∆𝑡 + 2∆𝑥
𝑇𝑅𝑀5(𝑁𝑋 − 1,𝑁𝑋)𝐸𝑦

𝑛+
1
2(𝑁𝑥) − 𝑇𝑅𝑀5(𝑁𝑋 − 1,𝑁𝑋)𝐸𝑦

𝑛+
1
2(𝑁𝑥 − 1) + 𝑞2(𝑁𝑥 − 1) 
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𝑦 = ∆𝑦 

𝑗 = 1 

1st 

𝑇𝑅𝑀1(1,2)𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 2, 𝑘) + {𝑇𝑅𝑀1(1,1) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀1(1,0)}𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 1, 𝑘)

=
𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀1(1,0)𝐸𝑥

𝑛 (𝑖 +
1

2
, 0, 𝑘) − 𝑇𝑅𝑀1(1,0)𝐸𝑥

𝑛 (𝑖 +
1

2
, 1, 𝑘) + 𝑟1(1) 

2nd 

𝑇𝑅𝑀6(1,2)𝐸𝑧
𝑛+1 (𝑖, 2, 𝑘 +

1

2
) + {𝑇𝑅𝑀6(1,1) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀6(1,0)} 𝐸𝑧

𝑛+1 (𝑖, 1, 𝑘 +
1

2
)

=
𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀6(1,0)𝐸𝑧

𝑛+
1
2 (𝑖, 0, 𝑘 +

1

2
) − 𝑇𝑅𝑀6(1,0)𝐸𝑧

𝑛+
1
2 (𝑖, 1, 𝑘 +

1

2
) + 𝑝2(1) 

𝑦 = 𝐿𝑦 

−∆𝑦 

1st 

𝑇𝑅𝑀1(𝑁𝑌 − 1,𝑁𝑌 − 2)𝐸𝑥

𝑛+
1
2(𝑁𝑦 − 2) + {𝑇𝑅𝑀1(𝑁𝑌 − 1,𝑁𝑌 − 1) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀1(𝑁𝑌 − 1,𝑁𝑌)} 𝐸𝑥

𝑛+
1
2(𝑁𝑦 − 1)

=
𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀1(𝑁𝑌 − 1,𝑁𝑌)𝐸𝑥

𝑛(𝑁𝑦) − 𝑇𝑅𝑀1(𝑁𝑌 − 1,𝑁𝑌)𝐸𝑥
𝑛(𝑁𝑦 − 1) + 𝑟1(𝑁𝑦 − 1) 

2nd 

𝑇𝑅𝑀6(𝑁𝑌 − 1,𝑁𝑌 − 2)𝐸𝑧
𝑛+1(𝑁𝑦 − 2) + {𝑇𝑅𝑀6(𝑁𝑌 − 1,𝑁𝑌 − 1) +

𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀6(𝑁𝑌 − 1,𝑁𝑌)} 𝐸𝑧

𝑛+1(𝑁𝑦 − 1)

=
𝑐∆𝑡 − 2∆𝑦

𝑐∆𝑡 + 2∆𝑦
𝑇𝑅𝑀6(𝑁𝑌 − 1,𝑁𝑌)𝐸𝑧

𝑛+
1
2(𝑁𝑦) − 𝑇𝑅𝑀6(𝑁𝑌 − 1,𝑁𝑌)𝐸𝑧

𝑛+
1
2(𝑁𝑦 − 1) + 𝑝2(𝑁𝑦 − 1) 

𝑧 = ∆𝑧 

𝑘 = 0 

1st 

𝑇𝑅𝑀2(1,2)𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 2) + {𝑇𝑅𝑀2(1,1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀2(1,0)} 𝐸𝑦

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 1)

=
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀2(1,0)𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 0) − 𝑇𝑅𝑀2(1,0)𝐸𝑦

𝑛 (𝑖, 𝑗 +
1

2
, 1) + 𝑞1(1) 

2nd 

𝑇𝑅𝑀4(1,2)𝐸𝑥
𝑛+1 (𝑖 +

1

2
, 𝑗, 2) + {𝑇𝑅𝑀4(1,1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀4(1,0)}𝐸𝑥

𝑛+1 (𝑖 +
1

2
, 𝑗, 1)

=
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀4(1,0)𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 0) − 𝑇𝑅𝑀4(1,0)𝐸𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 1) + 𝑟2(1) 

𝑧 = 𝐿𝑧 

−∆𝑧 

1st 

𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍 − 2)𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 2) + {𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍)} 𝐸𝑦

𝑛+
1
2(𝑁𝑧 − 1)

=
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍)𝐸𝑦

𝑛(𝑁𝑧) − 𝑇𝑅𝑀2(𝑁𝑍 − 1,𝑁𝑍)𝐸𝑦
𝑛(𝑁𝑧 − 1) + 𝑞1(𝑁𝑧 − 1) 

2nd 

𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍 − 2)𝐸𝑥
𝑛+1(𝑁𝑧 − 2) + {𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍 − 1) +

𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍)} 𝐸𝑥

𝑛+1(𝑁𝑧 − 1)

=
𝑐∆𝑡 − 2∆𝑧

𝑐∆𝑡 + 2∆𝑧
𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍)𝐸𝑥

𝑛+
1
2(𝑁𝑧) − 𝑇𝑅𝑀4(𝑁𝑍 − 1,𝑁𝑍)𝐸𝑥

𝑛+
1
2(𝑁𝑧 − 1) + 𝑟2(𝑁𝑧 − 1) 

Table 3-4: Free space Mur1 equations for nodes adjacent to ABCs. 

 

Sections 3.6, 3.7, and 3.8 fully define the electrodynamics utilized herein. In the following 

sections, the mechanical expressions will be introduced and coupled to the CPML-ADI-FDTD 

equations of this section (3.92a-f) via piezoelectric coupling coefficients. 
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3.9 Uniaxial Stress Update Equations w/ Piezoelectricity 

Now that the CPML-ADI-FDTD methodology has been introduced, the 1D mechanical 

update equations with piezoelectricity will be presented so that the final coupled ADI equations 

will be clear. The expressions are first presented in continuum form and then discretized. 

Additionally, guidance for how to temporally define the mechanical stress and velocity is 

provided. 

3.9.1 Mechanical Expressions in Continuum Form for Uniaxial Stress 

When one dimension of a material is much larger than the other two, as in an axial bar, the 

normal stresses in the two short dimensions are negligible compared to the normal stress in the 

axial direction. If additionally, there are no shear stresses then the problem is 1-dimensional and 

the following relations hold: 

 𝑇𝑧𝑧 ≠ 0 (3.110a) 

 𝑇𝑥𝑥 = 𝑇𝑦𝑦 = 𝑇𝑦𝑧 = 𝑇𝑥𝑧 = 𝑇𝑥𝑦 = 𝑆𝑦𝑧 = 𝑆𝑥𝑧 = 𝑆𝑥𝑦 = 0 (3.110b) 

 𝑆𝑧𝑧 ≠ 0 (3.110c) 

 𝑆𝑥𝑥 = 𝑆𝑦𝑦 ≠ 0 (3.110d) 

Where the axial direction is assumed to be the z-direction and the material is assumed to be 

either isotropic or transversely isotropic about the z-axis. Thus, the stress, strain, and velocity 

relations are as follows: 

 𝑆𝑥𝑥 = 𝑆𝑦𝑦 = −
𝑐𝑥𝑥𝑧𝑧

𝑐𝑥𝑥𝑥𝑥 + 𝑐𝑥𝑥𝑦𝑦
𝑆𝑧𝑧 (3.111a) 

 𝑇𝑧𝑧 = 𝐸𝑧𝑧𝑧𝑧𝑆𝑧𝑧 (3.111b) 

 𝐸𝑧𝑧𝑧𝑧 =
1

𝑠𝑧𝑧𝑧𝑧
= 𝑐𝑧𝑧𝑧𝑧 − 2

𝑐𝑥𝑥𝑧𝑧
2

𝑐𝑥𝑥𝑥𝑥 + 𝑐𝑥𝑥𝑦𝑦
 (3.111c) 

 𝜌�̇�𝑥 = 0 (3.111d) 

 𝜌�̇�𝑦 = 0 (3.111e) 
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 𝜌�̇�𝑧 = 𝑇𝑧𝑧,𝑧 (3.111f) 

Where 𝐸𝑧𝑧𝑧𝑧 is the Young’s modulus and 𝑠𝑧𝑧𝑧𝑧 is the compliance relating 𝑆𝑧𝑧 to 𝑇𝑧𝑧. The 

“piggybacking” strains (𝑆𝑥𝑥 and 𝑆𝑦𝑦) from Poisson’s effect are not necessary to find a solution 

mechanically. Additionally, piezoelectric descriptions where coupling is via stress (e.g., d-form 

and g-form [194]) will not need to invoke Poisson’s effect (since there are no Poisson’s 

stresses) and piezoelectric descriptions where coupling is via strain (e.g., h-form and e-form) 

cover Poisson’s effect through the ℎ31 or 𝑒31 terms. Thus, Poisson’s strains (if properly 

accounted for) are not needed to find a solution to the piezoelectric problem either. The method 

of accounting for the Poisson’s strains in a piezoelectric problem where coupling is via strain is 

presented in the following section. 

3.9.2 Piezoelectric Coupling Under Uniaxial Stress 

Emerging technologies are beginning to leverage mechanically 1D axial bar piezoelectric 

antennas [152]. These devices are the simplest to manufacture and provide significant boosts to 

dipole moment at electrically small sizes compared to metallic antennas. This 1D axial bar 

configuration is optimal for piezoelectric devices to minimize depolarization, since the poling and 

polarization current are in the axial direction and the cross-section is small compared to the 

length. Therefore, mechanically 1D PEA devices are not only easier to model but also ultimately 

perform better than 2D/3D devices, especially when metal wiring is added as in [163]. 

For a purely mechanical system, equations (3.68a-f) are enough to write update equations. 

Herein, however, piezoelectric coupling [194][198] will be added in. If stress is used for 

piezoelectric coupling (e.g., when using 𝐷 = 𝑑𝑇 + 𝜖𝑇𝐸), then the uniaxial stress state makes 

writing update equations simple as only one mechanical term appears (namely, the non-zero 

stress). If, however, the strain is used for piezoelectric coupling (such as when using 𝐷 = 𝑒𝑆 +

𝜖𝑆𝐸) within a uniaxial stress problem, then Poisson’s strains will appear, complicating the 
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formulation. These Poisson’s strains may be eliminated by solving for the cross-sectional strains 

and performing substitutions as highlighted next.  

Within this section, Voigt’s notation is leveraged. Also, numbers are used for subscripts on 

material properties and letters are used for subscripts on fields. By the mechanical constitutive 

relation (2.148), and by using ℎ31 = ℎ32 and 𝑆𝑥𝑥 = 𝑆𝑦𝑦, the cross-sectional stresses being zero 

leads to: 

 𝑇𝑥𝑥 = 𝑇𝑦𝑦 = 0 = (𝑐11
𝐷 + 𝑐12

𝐷 )𝑆𝑥𝑥 + 𝑐13
𝐷 𝑆𝑧𝑧 − ℎ31𝐷𝑧 (3.112) 

Where viscous damping is ignored for brevity and coupling tensors like ℎ, 𝑑, 𝑔, and 𝑒 always 

denote piezoelectric coupling within this chapter (piezomagnetism is ignored). Solving (3.112) 

for the cross-sectional strain 𝑆𝑥𝑥 gives: 

 𝑆𝑥𝑥 = −
𝑐13
𝐷

𝑐11
𝐷 + 𝑐12

𝐷 𝑆𝑧𝑧 +
ℎ31

𝑐11
𝐷 + 𝑐12

𝐷 𝐷𝑧 (3.113) 

Substituting (3.113) into the 𝑇𝑧𝑧 term in (2.148), and simplifying yields: 

 𝑇𝑧𝑧 = (𝑐33
𝐷 − 2

(𝑐13
𝐷 )2

𝑐11
𝐷 + 𝑐12

𝐷 ) 𝑆𝑧𝑧 − (ℎ33 −
2𝑐13

𝐷 ℎ31

𝑐11
𝐷 + 𝑐12

𝐷 )𝐷𝑧 (3.114) 

Where the coefficient in front of strain 𝑆𝑧𝑧 in (3.114) is the Young’s modulus at constant flux 

(𝐸33
𝐷 ) and the coefficient in front of 𝐷𝑧 is the effective piezoelectric coefficient ℎ33,𝑃𝑜𝑖. These 

effective properties take Poisson’s effect into account and are denoted by the subscript “Poi” 

herein. Similarly, the z-component of the electric constitutive relation (2.175) will include 

Poisson’s (𝑒31) terms for a strain coupled (e-form) uniaxial stress problem: 

 𝐷𝑧 = 𝜖33
𝑆 𝐸𝑧 + 2𝑒31𝑆𝑥𝑥 + 𝑒33𝑆𝑧𝑧 (3.115) 

Where (3.115) utilizes 𝑒31 = 𝑒32 and 𝑆𝑥𝑥 = 𝑆𝑦𝑦. Since the strain coupled e-form was used in 

(3.115), an equivalent expression for the cross-sectional strain may been written as follows: 

 𝑆𝑥𝑥 = −
𝑐13
𝐸

𝑐11
𝐸 + 𝑐12

𝐸 𝑆𝑧𝑧 +
𝑒31

𝑐11
𝐸 + 𝑐12

𝐸 𝐸𝑧 (3.116) 
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Equation (3.116) is equivalent to (3.113). Thus, there are multiple ways to arrive at an 

equivalent solution if care is taken with all coefficients. Substitute (3.116) into (3.115): 

 𝐷𝑧 = (𝜖33
𝑆 +

2𝑒31
2

𝑐11
𝐸 + 𝑐12

𝐸 )𝐸𝑧 + (𝑒33 −
2𝑒31𝑐13

𝐸

𝑐11
𝐸 + 𝑐12

𝐸 ) 𝑆𝑧𝑧 (3.117) 

Where the coefficients in front of the 𝐸𝑧 and 𝑆𝑧𝑧 terms are the effective permittivity 𝜖33,𝑃𝑜𝑖
𝑆  

and piezoelectric coefficient 𝑒33,𝑃𝑜𝑖. Recall, these terms are not unique, even though their 

numerical value is, as there are multiple ways to acquire equivalent terms. For example, the 

effective permittivity for strain coupling under uniaxial stress may also be written as: 

 𝜖33,𝑃𝑜𝑖
𝑆 = 𝜖33

𝑆 +
2𝑒31

2

𝑐11
𝐸 + 𝑐12

𝐸 =
𝜖33

𝑆 (𝑐11
𝐷 + 𝑐12

𝐷 )

𝑐11
𝐷 + 𝑐12

𝐷 − 2𝑒31ℎ31
 (3.118) 

Effective properties do not vary much from those that do not take Poisson’s effect into 

account. For example, in X4B PIN-PMN-PT (utilized for simulations herein), the effective 

permittivity and regular permittivity vary by about 3%. 

This section highlights that either stress or strain may be utilized for piezoelectric coupling 

within a 1D uniaxial stress configuration. Additionally, both methods are equal in complexity if 

effective properties are derived when using strain for coupling. 

3.10 Stress Driven Piezoelectric Antenna for Uniaxial Stress 

If a uniaxial stress 𝑇𝑧𝑧 is present, and the piezoelectric tensor has a non-zero 𝑑33 coefficient 

somewhere in the simulation space, then additional currents will appear in the forcing vector of 

the CPML-ADI-FDTD equations. First, consider the electric constitutive relation assuming a 

diagonal permittivity tensor: 

 𝐷𝑧

𝑛+
1
2 = 𝜖33

𝑇 𝐸𝑧

𝑛+
1
2 + 𝑑33𝑇𝑧𝑧

𝑛+
1
2 (3.119) 

For both sub-iterations, the piezoelectric term will affect the 𝐸𝑧 update matrix expression 

only as the non-zero 𝑇𝑧𝑧 effects 𝐸𝑧 exclusively. The 𝐸𝑧 x-cut and y-cut equations for the 1st and 

2nd sub-iterations respectively are derived following the same process as Section 3.8 yielding: 
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−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐸

𝑖 𝜅𝑥𝐻
𝑖 ∆𝑥2

𝐸𝑧

𝑛+
1
2
,𝑖+1,𝑗,𝑘+

1
2 + [1 +

∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥2

(
1

𝜅𝑥𝐻
𝑖 𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

+
1

𝜅𝑥𝐻
𝑖−1𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

)]𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐸

𝑖 𝜅𝑥𝐻
𝑖−1∆𝑥2

𝐸𝑧

𝑛+
1
2
,𝑖−1,𝑗,𝑘+

1
2

= 𝐸𝑧

𝑛,𝑖,𝑗,𝑘+
1
2 +

∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

(𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2) −

∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦

(𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛,𝑖,𝑗−
1
2
,𝑘+

1
2)

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑧𝐻

𝑘 𝜅𝑥𝐸
𝑖 ∆𝑥∆𝑧

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

) −
1

𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

(𝐸𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘

)]

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2)

−
1

𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2)]

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛,𝑖,𝑗,𝑘+
1
2 + Φ𝐻𝑥𝑦

𝑛,𝑖,𝑗,𝑘+
1
2] −

𝑑33

𝑖,𝑗,𝑘+
1
2

𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

[𝑇𝑧𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 − 𝑇𝑧𝑧

𝑛,𝑖,𝑗,𝑘+
1
2] 

(3.120a) 
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−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑦𝐸

𝑗
𝜅𝑦𝐻

𝑗
∆𝑦2

𝐸𝑧

𝑛+1,𝑖,𝑗+1,𝑘+
1
2 + [1 +

∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦2

(
1

𝜅𝑦𝐻
𝑗

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

+
1

𝜅𝑦𝐻
𝑗−1

𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

)]𝐸𝑧

𝑛+1,𝑖,𝑗,𝑘+
1
2

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2𝜅𝑦𝐸

𝑗
𝜅𝑦𝐻

𝑗−1
∆𝑦2

𝐸𝑧

𝑛+1,𝑖,𝑗−1,𝑘+
1
2

= 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 +

∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

(𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2)

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦

(𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2)

−
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦𝜅𝑧𝐻

𝑘 ∆𝑧

[
1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

(𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘
)

−
1

𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

(𝐸𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘
)]

+
∆𝑡2

4𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦 [

 
 
 

1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛+
1
2
𝑖,𝑗+

1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2]

−
∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛+
1
2
𝑖,𝑗−

1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2]

]
 
 
 

−
∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 + Φ𝐻𝑥𝑦

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2] −

𝑑33

𝑖,𝑗,𝑘+
1
2

𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

[𝑇𝑧𝑧

𝑛+1,𝑖,𝑗,𝑘+
1
2 − 𝑇𝑧𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2] 

(3.120b) 

Note that a piezoelectric driven electric field is now present in the forcing vector for both 

sub-iterations, and that this piezoelectric term includes an unknown stress. For example, in the 

first sub-iteration the piezoelectric term is written in shorthand as: 

 𝐸𝑧𝑑33

𝑛+
1
4
,𝑖,𝑗,𝑘+

1
2 = −

𝑑33

 𝑖,𝑗,𝑘+
1
2∆𝑡

2𝜖𝑧𝑧

𝑖,𝑗,𝑘+
1
2

�̇�𝑧𝑧

𝑛+
1
4
,𝑖,𝑗,𝑘+

1
2 (3.121) 

It is not recommended that this unknown stress issue be rectified via substitution of the 

stress update equation, as this will introduce additional unknown electric fields and the 
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computationally elegant tri-diagonal matrices will be lost. Attempts to perform simulations for 

this case also yielded unstable results. If, however, the stresses are hard sourced (i.e., when 

stresses are known a priori), then there is no longer an issue. In this case, the elastodynamic 

equation is no longer evoked and a decoupled formulation results. Thus, a full-wave mechanical 

simulation is bypassed, increasing computational efficiency at the cost of reduced accuracy. 

Work from Lee in 1989 [104][105] suggests that the stresses and electric fields within a 

piezoelectric radiator are not significantly changed whether Maxwell’s equations are used to 

update the surrounding EM fields however, therefore the approximation described herein is 

reasonable. This uncoupled stress driven formulation is utilized in Chapter 5 to simulate an 

infinite piezoelectric plate. 

To solve the fully coupled problem, a simpler approach is to leverage the fact that the 

velocity terms are a quarter time step staggered with respect to the EM fields and the stresses. 

Therefore, the strain rate is completely known in terms of velocities and a piezoelectric 

constitutive relation in terms of strains (e.g., h-form or e-form) is more palatable. A derivation 

involving strains is presented in the following section. 

3.11 Strain Driven Piezoelectric Antenna for Uniaxial Stress 

If a uniaxial stress 𝑇𝑧𝑧 is present, and the piezoelectric tensor has non-zero 𝑒33 and 𝑒31 

coefficients somewhere in the simulation space, then additional currents will appear in the 

forcing vector of the ADI-FDTD equations. First, consider the electric constitutive relation in rate 

form: 

 �̇�𝑧

𝑛+
1
4 = 𝜖𝑧𝑧

𝑆 �̇�𝑧

𝑛+
1
4 + 2𝑒31𝑣𝑥,𝑥

𝑛+
1
4 + 𝑒33𝑣𝑧,𝑧

𝑛+
1
4 (3.122) 

Where 𝑣𝑖 are the internal axial velocities and 𝑒31 is the Poisson’s coupling term. The method 

of accounting for the Poisson’s term was covered in Section 3.9. Note the temporal 

homogeneity of the expression which is the reason this is the preferred method of coupling 

Maxwell’s to Newton’s law via piezoelectricity. For both sub-iterations, the piezoelectric term will 
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affect the 𝐸𝑧 update matrix expression only. The electrical constitutive relation in rate form is 

substituted into Ampere’s law yielding the following x-cut and y-cut expressions for the 1st and 

2nd sub-iterations respectively: 

−
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐸

𝑖 𝜅𝑥𝐻
𝑖 ∆𝑥2

𝐸𝑧

𝑛+
1
2
,𝑖+1,𝑗,𝑘+

1
2 + [1 +

∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥2

(
1

𝜅𝑥𝐻
𝑖 𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

+
1

𝜅𝑥𝐻
𝑖−1𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

)]𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2

−
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2𝜅𝑥𝐸

𝑖 𝜅𝑥𝐻
𝑖−1∆𝑥2

𝐸𝑧

𝑛+
1
2
,𝑖−1,𝑗,𝑘+

1
2

= 𝐸𝑧

𝑛,𝑖,𝑗,𝑘+
1
2 +

∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

(𝐻𝑦

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2) −

∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦

(𝐻𝑥

𝑛,𝑖,𝑗+
1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛,𝑖,𝑗−
1
2
,𝑘+

1
2)

−
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑧𝐻

𝑘 𝜅𝑥𝐸
𝑖 ∆𝑥∆𝑧

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘

) −
1

𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

(𝐸𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘+1

− 𝐸𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘

)]

−
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

[
1

𝜇𝑦𝑦

𝑖+
1
2,𝑗,𝑘+

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛,𝑖+
1
2
,𝑗,𝑘+

1
2)

−
1

𝜇𝑦𝑦

𝑖−
1
2,𝑗,𝑘+

1
2

(ℳ𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2 − Φ𝐸𝑧𝑥

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2 + Φ𝐸𝑥𝑧

𝑛,𝑖−
1
2
,𝑗,𝑘+

1
2)]

−
∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛,𝑖,𝑗,𝑘+
1
2 + Φ𝐻𝑥𝑦

𝑛,𝑖,𝑗,𝑘+
1
2] −

𝑒
33,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑧𝐻

𝑘 ∆𝑧

(𝑣𝑧

𝑛+
1
4
,𝑘+1

− 𝑣𝑧

𝑛+
1
4
,𝑘
) 

(3.123a) 
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−
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑦𝐸

𝑗
𝜅𝑦𝐻

𝑗
∆𝑦2

𝐸𝑧

𝑛+1,𝑖,𝑗+1,𝑘+
1
2 + [1 +

∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦2

(
1

𝜅𝑦𝐻
𝑗

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

+
1

𝜅𝑦𝐻
𝑗−1

𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

)]𝐸𝑧

𝑛+1,𝑖,𝑗,𝑘+
1
2

−
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2𝜅𝑦𝐸

𝑗
𝜅𝑦𝐻

𝑗−1
∆𝑦2

𝐸𝑧

𝑛+1,𝑖,𝑗−1,𝑘+
1
2

= 𝐸𝑧

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 +

∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑥𝐸

𝑖 ∆𝑥

(𝐻𝑦

𝑛+
1
2
,𝑖+

1
2
,𝑗,𝑘+

1
2 − 𝐻𝑦

𝑛+
1
2
,𝑖−

1
2
,𝑗,𝑘+

1
2)

−
∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦

(𝐻𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − 𝐻𝑥

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2)

−
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦𝜅𝑧𝐻

𝑘 ∆𝑧

[
1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

(𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘
)

−
1

𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

(𝐸𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+1

− 𝐸𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘
)]

+
∆𝑡2

4𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑦𝐸

𝑗
∆𝑦 [

 
 
 

1

𝜇𝑥𝑥

𝑖,𝑗+
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛+
1
2
𝑖,𝑗+

1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛+
1
2
,𝑖,𝑗+

1
2
,𝑘+

1
2]

−
∆𝑡

2𝜇𝑥𝑥

𝑖,𝑗−
1
2,𝑘+

1
2

[ℳ𝑥

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2 − Φ𝐸𝑦𝑧

𝑛+
1
2
𝑖,𝑗−

1
2
,𝑘+

1
2 + Φ𝐸𝑧𝑦

𝑛+
1
2
,𝑖,𝑗−

1
2
,𝑘+

1
2]

]
 
 
 

−
∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2

[𝐽𝑧𝑆
𝑛+

1
2
,𝑖,𝑗,𝑘+

1
2 − Φ𝐻𝑦𝑥

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2 + Φ𝐻𝑥𝑦

𝑛+
1
2
,𝑖,𝑗,𝑘+

1
2] −

𝑒
33,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2∆𝑡

2𝜖𝑧𝑧,𝑃𝑜𝑖

𝑖,𝑗,𝑘+
1
2𝜅𝑧𝐻

𝑘 ∆𝑧

(𝑣𝑧

𝑛+
3
4
,𝑘+1

− 𝑣𝑧

𝑛+
3
4
,𝑘
) 

(3.123b) 

Note that effective properties are utilized to account for Poisson’s effect. Since leapfrogging 

(explicit conditionally stable updating) is utilized on the mechanical side, the velocities are 

already known. Also, the tri-diagonal matrices remain intact. 

Once the electric fields are known the magnetic fluxes and fields are calculated via 

Faraday’s law and the magnetic constitutive relations respectively. Then the electric fluxes may 

be calculated via Ampere’s law. The stress and velocity are then updated using the mechanical 
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constitutive relation and the elastodynamic equation respectively as discussed in the following 

sections. 

3.11.1 Stress Update Equations 

The stress is updated via the h-form of the mechanical constitutive relation utilizing effective 

properties that consider Poisson’s effect as follows: 

 

𝑇𝑧𝑧

𝑛+
1
2
,𝑘+

1
2 = 𝑇𝑧𝑧

𝑛,𝑘+
1
2 +

𝐸33

𝐷,𝑘+
1
2∆𝑡

2𝜅𝑧𝐻
𝑘 ∆𝑧

(𝑣𝑧

𝑛+
1
4
,𝑘+1

− 𝑣𝑧

𝑛+
1
4
,𝑘
)

− ℎ
33,𝑃𝑜𝑖

𝑘+
1
2 (𝐷𝑧

𝑛+
1
2
,𝑖𝑖𝑛𝑡 ,𝑗𝑖𝑛𝑡,𝑘+

1
2 − 𝐷𝑧

𝑛,𝑖𝑖𝑛𝑡,𝑗𝑖𝑛𝑡 ,𝑘+
1
2)

+
𝜂33

∆𝑧
[𝑣𝑧

𝑛+
1
4
,𝑘+1

− 𝑣𝑧

𝑛+
1
4
,𝑘

− 𝑣𝑧

𝑛−
1
4
,𝑘+1

+ 𝑣𝑧

𝑛−
1
4
,𝑘
] 

(3.124a) 

Where (3.124a) assumes that the electric flux has already been updated this time step so 

the stress must be updated after the flux. The acceleration gradient in (3.124a) used for 

damping is taken from a slightly earlier time 𝑡 = 𝑛∆𝑡 and therefore the finite difference 

expression (3.124a) is not strictly temporally homogenous. This use of a previous time step for 

the mechanical damping term is consistent with [131] and does not induce significant error due 

to the mechanically tiny time step used in the simulations. Since the stress 𝑇𝑧𝑧 is internal to the 

piezoelectric antenna, and the electric flux 𝐷𝑧 is uniform along the cross-section of the bar, the i 

and j indices are any that would place 𝐷𝑧 within the device (i.e., not in free space or at the 

interface). These indices are denoted as 𝑖𝑖𝑛𝑡 and 𝑗𝑖𝑛𝑡 in (3.124a). The mechanical constitutive 

relations used to update the stress are identical in the second sub-iteration since none of 

Maxwell’s equations are present. Simply move all fields forward by a half time step, namely:  
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𝑇𝑧𝑧

𝑛+1,𝑘+
1
2 = 𝑇𝑧𝑧

𝑛+
1
2
,𝑘+

1
2 +

𝐸33

𝐷,𝑘+
1
2∆𝑡

2𝜅𝑧𝐻
𝑘 ∆𝑧

(𝑣𝑧

𝑛+
3
4
,𝑘+1

− 𝑣𝑧

𝑛+
3
4
,𝑘
)

− ℎ
33,𝑃𝑜𝑖

𝑘+
1
2 (𝐷𝑧

𝑛+1,𝑖𝑖𝑛𝑡 ,𝑗𝑖𝑛𝑡,𝑘+
1
2 − 𝐷𝑧

𝑛+
1
2
,𝑖𝑖𝑛𝑡,𝑗𝑖𝑛𝑡 ,𝑘+

1
2)

+
𝜂33

∆𝑧
[𝑣𝑧

𝑛+
3
4
,𝑘+1

− 𝑣𝑧

𝑛+
3
4
,𝑘

− 𝑣𝑧

𝑛+
1
4
,𝑘+1

+ 𝑣𝑧

𝑛+
1
4
,𝑘
] 

(3.124b) 

The stress update occurs after the EM fields are updated but before the velocity which will 

now be discussed. 

3.11.2 Velocity Update Equations 

The velocity within the simulation space is updated using the elastodynamic equation which 

is an expression of the balance of linear momentum and is therefore unaffected by 

magnetoelastic and piezoelectric coupling. The equation may be written as: 

 𝜌�̇�𝑖 = 𝑇𝑖𝑗,𝑗 (2.12b) 

Recall that the velocities are temporally defined at times 𝑡 = ½(𝜏-½)∆𝑡, 𝜏 = 1,2,3,… (i.e., 

staggered with the stress and EM fields). The velocity at time 𝑡 = 1/4∆𝑡 is known since the 

stresses at time 𝑡 = 0 is known. Thus, the update expressions for the 1st and 2nd sub-iterations 

yield velocities at times 𝑡 = (𝑛 + 3/4)∆𝑡 and 𝑡 = (𝑛 + 5/4)∆𝑡 respectively. Since (2.12b) is 

relatively simple, the general update expressions will be briefly derived and then simplified for 

the uniaxial stress case. Equation (2.12b) may be expanded and written in the following finite 

difference form for the 2nd sub-iteration: 

 

2𝜌 (𝑖, 𝑗 +
1
2 , 𝑘 +

1
2)

∆𝑡
[𝑣𝑥

𝑛+
3
4 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)]

=
1

∆𝑥
[𝑇𝑥𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑥𝑥

𝑛+
1
2 (𝑖 −

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
)]

+
1

∆𝑦
[𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗 + 1, 𝑘 +

1

2
) − 𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

+
1

∆𝑧
[𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 + 1) − 𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)] 

(3.125a) 
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2𝜌 (𝑖 +
1
2 , 𝑗, 𝑘 +

1
2)

∆𝑡
[𝑣𝑦

𝑛+
3
4 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) − 𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
)]

=
1

∆𝑥
[𝑇𝑥𝑦

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘 +

1

2
) − 𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

+
1

∆𝑦
[𝑇𝑦𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑦𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘 +

1

2
)]

+
1

∆𝑧
[𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 + 1) − 𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)] 

(3.125b) 

 

2𝜌 (𝑖 +
1
2 , 𝑗 +

1
2 , 𝑘)

∆𝑡
[𝑣𝑧

𝑛+
3
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) − 𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)]

=
1

∆𝑥
[𝑇𝑥𝑧

𝑛+
1
2 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)]

+
1

∆𝑦
[𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

+
1

∆𝑧
[𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 −

1

2
)] 

(3.125c) 

The update equations may easily be acquired from (3.125a-c) and are as follows (where 

mesh grading kappa terms are also added in): 

 

𝑣𝑥

𝑛+
3
4 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
) = 𝑣𝑥

𝑛+
1
4 (𝑖, 𝑗 +

1

2
, 𝑘 +

1

2
)

+
∆𝑡

2𝜌𝑖,𝑗+
1
2,𝑘+

1
2𝜅𝑥𝐸

𝑖 ∆𝑥
[𝑇𝑥𝑥

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑥𝑥

𝑛+
1
2 (𝑖 −

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
)]

+
∆𝑡

2𝜌𝑖,𝑗+
1
2
,𝑘+

1
2𝜅𝑦𝐻

𝑗 ∆𝑦
[𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗 + 1, 𝑘 +

1

2
) − 𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

+
∆𝑡

2𝜌𝑖,𝑗+
1
2
,𝑘+

1
2𝜅𝑧𝐻

𝑘 ∆𝑧
[𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘 + 1) − 𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)] 

(3.126a) 

 

𝑣𝑦

𝑛+
3
4 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) = 𝑣𝑦

𝑛+
1
4 (𝑖 +

1

2
, 𝑗, 𝑘 +

1

2
) +

∆𝑡

2𝜌𝑖+
1
2
,𝑗,𝑘+

1
2𝜅𝑥𝐻

𝑖 ∆𝑥
[𝑇𝑥𝑦

𝑛+
1
2 (𝑖 + 1, 𝑗, 𝑘 +

1

2
) − 𝑇𝑥𝑦

𝑛+
1
2 (𝑖, 𝑗, 𝑘 +

1

2
)]

+
∆𝑡

2𝜌𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑦𝐸

𝑗 ∆𝑦
[𝑇𝑦𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑦𝑦

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 −

1

2
, 𝑘 +

1

2
)]

+
∆𝑡

2𝜌𝑖+
1
2,𝑗,𝑘+

1
2𝜅𝑧𝐻

𝑘 ∆𝑧
[𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘 + 1) − 𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)] 

(3.126b) 
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𝑣𝑧

𝑛+
3
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘)

= 𝑣𝑧

𝑛+
1
4 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘) +

∆𝑡

2𝜌𝑖+
1
2,𝑗+

1
2,𝑘𝜅𝑥𝐻

𝑖 ∆𝑥
[𝑇𝑥𝑧

𝑛+
1
2 (𝑖 + 1, 𝑗 +

1

2
, 𝑘) − 𝑇𝑥𝑧

𝑛+
1
2 (𝑖, 𝑗 +

1

2
, 𝑘)]

+
∆𝑡

2𝜌𝑖+
1
2,𝑗+

1
2,𝑘𝜅𝑦𝐻

𝑗 ∆𝑦
[𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 + 1, 𝑘) − 𝑇𝑦𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗, 𝑘)]

+
∆𝑡

2𝜌𝑖+
1
2,𝑗+

1
2,𝑘𝜅𝑧𝐸

𝑘 ∆𝑧
[𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 +

1

2
) − 𝑇𝑧𝑧

𝑛+
1
2 (𝑖 +

1

2
, 𝑗 +

1

2
, 𝑘 −

1

2
)] 

(3.126c) 

Since these update equations do not involve Maxwell’s equations, the form is the same in 

both sub-iterations, simply subtract ½ to all time designations (n+½→n+1, n+3/4→n+5/4) in 

(3.117a-c) to acquire the form for the 1st sub-iteration. For the uniaxial stress case, the velocity 

update expressions for the 1st and 2nd sub-iterations respectively are as follows: 

 

𝑣𝑧

𝑛+
3
4,𝑖+

1
2,𝑗+

1
2,𝑘

= 𝑣𝑧

𝑛+
1
4,𝑖+

1
2,𝑗+

1
2,𝑘

+
∆𝑡

2𝜌𝑖+
1
2,𝑗+

1
2,𝑘𝜅𝑧𝐸

𝑘 ∆𝑧
[𝑇𝑧𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘+

1
2 − 𝑇𝑧𝑧

𝑛+
1
2
,𝑖+

1
2
,𝑗+

1
2
,𝑘−

1
2] 

(3.127a) 

 

 

𝑣𝑧

𝑛+
5
4,𝑖+

1
2,𝑗+

1
2,𝑘

= 𝑣𝑧

𝑛+
3
4,𝑖+

1
2,𝑗+

1
2,𝑘

+
∆𝑡

2𝜌𝑖+
1
2,𝑗+

1
2,𝑘𝜅𝑧𝐸

𝑘 ∆𝑧
[𝑇𝑧𝑧

𝑛+1,𝑖+
1
2,𝑗+

1
2,𝑘+

1
2 − 𝑇𝑧𝑧

𝑛+1,𝑖+
1
2,𝑗+

1
2,𝑘−

1
2] 

(3.127b) 

Thus, all of the fields within the main simulation space are now accounted for. Recall 

however that there exists an electrostatic region between the driving electrodes that is modeled 

separately, but simultaneously, for simplicity (i.e., by not needlessly evoking full Maxwell’s 

equations within an electrostatic region). This so called “Source Space” will contain fields that 

also need to be updated and will now be discussed. 

3.12 Source Space Formulation 

Excitations discussed thus far such as stress inputs, displacement inputs, electric currents, 

and magnetic currents are suitable for a myriad of important problems, but herein the input is 



 
 

201 

 

voltage across electrodes. The setup will be as is shown in Figure 3-20, where a current source 

𝐼𝑆 with source resistance 𝑅𝑆 feeds current 𝐼𝐵𝐴𝑊 into an electrode-piezo-electrode driving 

sandwich producing voltage differential 𝑉𝐵𝐴𝑊 across the electrodes. The dimensions tangential 

to the ground plane are 𝑊𝑥 and 𝑊𝑦 and the out-of-plane length is 𝐿𝑧. The electrodes are 

assumed to be infinitely thin. 

 

 

Figure 3-20: Source space formulation where an electrostatic region (source space) is 

coupled to an electrodynamic region (simulation space) by utilizing interface velocity. Both the 

source and simulation spaces utilize elastodynamics. 

 

Assuming that all dimensions are on the order of the mechanical wavelength (~10-5 𝜆𝐸𝑀), the 

polarization current within the driving sandwich cancels out the electrode current and as such 

the piezoelectric material within the source space produces no EM radiation. The driving portion 

therefore acts as a resonating energy storing capacitor (essentially a BAW filter) and thus the 
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electrostatic assumption is warranted in this region. The source space is coupled to the 

simulation space through the interface velocity 𝑉𝑧 shared by both regions and elastodynamics is 

applied along the entire solid structure. Therefore, the mechanical resonance can be 

communicated across both the simulation space and the source space. The bottom mechanical 

boundary can be made either fixed or traction free. 

Now that the source space formulation has been introduced, the relevant expressions shall 

be derived. Due to the small electrical size, only the out-of-plane electric fields are non-zero 

within the piezoelectric and these fields vary only in the out-of-plane dimension which is taken 

as the z-direction. The electrical constitutive relation in rate form, assuming tetragonal 6mm 

symmetry, is therefore as follows:  

 
2

Δ𝑡
(𝐸𝑧𝑆

𝑛+
1
2 (𝑘 +

1

2
) − 𝐸𝑧𝑆

𝑛 (𝑘 +
1

2
)) =

1

𝜖𝑧𝑧
𝑆

�̇�𝑧

𝑛+
1
4 −

ℎ33

Δz𝑆
(𝑣𝑧𝑆

𝑛+
1
4(𝑘 + 1) − 𝑣𝑧𝑆

𝑛+
1
4(𝑘)) (3.128) 

The subscript “𝑆” is used to identify source space for all fields as well as the spatial 

discretization. The time step is the same in both the source space and simulation space, thus no 

subscript is used for Δ𝑡. The displacement current is related to the electrode current density 

(𝐽𝐵𝐴𝑊), which is uniform, as follows: 

 �̇�𝑧

𝑛+
1
4 = −𝐽𝐵𝐴𝑊

𝑛+
1
4  (3.129) 

Note that the displacement current and the electrode current are equal in magnitude and 

opposite in direction which is why the capacitor does not radiate energy. The following relation 

holds for the current density: 

 𝐽𝐵𝐴𝑊

𝑛+
1
4 =

1

𝑊𝑥𝑊𝑦
𝐼𝐵𝐴𝑊

𝑛+
1
4 =

1

𝑊𝑥𝑊𝑦
[𝐼𝑆

𝑛+
1
4 − 𝐼𝑅𝑆

𝑛+
1
4] =

1

𝑊𝑥𝑊𝑦
[𝐼𝑆

𝑛+
1
4 −

𝑉𝐵𝐴𝑊

𝑛+
1
4

𝑅𝑆
] (3.130) 

Where all currents are as described in Figure 3-20 and 𝑉𝐵𝐴𝑊 may be written as follows for 

𝑁𝑧𝑆 nodes within the source space: 
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 𝑉𝐵𝐴𝑊

𝑛+
1
4 = −

1

2
∑ (𝐸𝑧𝑆

𝑛+
1
2 (𝑘 +

1

2
) + 𝐸𝑧𝑆

𝑛 (𝑘 +
1

2
))

𝑘=𝑁𝑧𝑆
−1

𝑘=0
∆𝑧𝑆 (3.131) 

Combining equations (3.128) – (3.131) and solving for the unknown electric fields yields: 

 

𝐸𝑧𝑆

𝑛+
1
2 (𝑘 +

1

2
) +

∆𝑧𝑆Δ𝑡

4𝜖𝑧𝑧
𝑆 𝑅𝑆𝑊𝑥𝑊𝑦

∑ 𝐸𝑧𝑆

𝑛+
1
2 (𝑘 +

1

2
)

𝑘=𝑁𝑧𝑆
−1

𝑘=0

= 𝐸𝑧𝑆
𝑛 (𝑘 +

1

2
) −

Δ𝑡

2𝜖𝑧𝑧
𝑆 𝐽𝑆

𝑛+
1
4 −

∆𝑧𝑆Δ𝑡

4𝜖𝑧𝑧
𝑆 𝑅𝑆𝑊𝑥𝑊𝑦

∑ 𝐸𝑧𝑆
𝑛 (𝑘 +

1

2
)

𝑘=𝑁𝑧𝑆
−1

𝑘=0

−
ℎ33Δ𝑡

2Δz𝑆
(𝑣𝑧𝑆

𝑛+
1
4(𝑘 + 1) − 𝑣𝑧𝑆

𝑛+
1
4(𝑘)) 

(3.132) 

Assuming 3 cells (4 nodes) within the source space, equation (3.132) may be written as a 

matrix expression: 

 [
1 + 𝑎 𝑎 𝑎

𝑎 1 + 𝑎 𝑎
𝑎 𝑎 1 + 𝑎

]

(

 
 
 
 

𝐸𝑧𝑆

𝑛+
1
2 (𝑘 +

1

2
)

𝐸𝑧𝑆

𝑛+
1
2 (𝑘 +

3

2
)

𝐸𝑧𝑆

𝑛+
1
2 (𝑘 +

5

2
))

 
 
 
 

= �⃑� (3.133a) 

 𝑎 =
∆𝑧𝑆Δ𝑡

4𝜖𝑧𝑧
𝑆 𝑅𝑆𝑊𝑥𝑊𝑦

 (3.133b) 

 �⃑� =

(

 
 
 
 
 
 

𝐸𝑧𝑆

𝑛 (𝑘 +
1

2
) −

Δ𝑡

2𝜖𝑧𝑧
𝑆

𝐽𝑆
𝑛+

1
4 −

∆𝑧𝑆Δ𝑡

4𝜖𝑧𝑧
𝑆 𝑅𝑆𝑊𝑥𝑊𝑦

∑ 𝐸𝑧𝑆

𝑛 (𝑘 +
1

2
)

𝑘=𝑁𝑧𝑆
−1

𝑘=0
−

ℎ33Δ𝑡

2Δz
(𝑣𝑧𝑆

𝑛+
1
4(𝑘 + 1) − 𝑣𝑧𝑆

𝑛+
1
4(𝑘))

𝐸𝑧𝑆

𝑛 (𝑘 +
3

2
) −

Δ𝑡

2𝜖𝑧𝑧
𝑆

𝐽
𝑆

𝑛+
1
4 −

∆𝑧𝑆Δ𝑡

4𝜖𝑧𝑧
𝑆 𝑅𝑆𝑊𝑥𝑊𝑦

∑ 𝐸𝑧𝑆

𝑛 (𝑘 +
1

2
)

𝑘=𝑁𝑧𝑆
−1

𝑘=0
−

ℎ33Δ𝑡

2Δz
(𝑣𝑧𝑆

𝑛+
1
4(𝑘 + 2) − 𝑣𝑧𝑆

𝑛+
1
4(𝑘 + 1))

𝐸𝑧𝑆

𝑛 (𝑘 +
5

2
) −

Δ𝑡

2𝜖𝑧𝑧
𝑆

𝐽𝑆
𝑛+

1
4 −

∆𝑧𝑆Δ𝑡

4𝜖𝑧𝑧
𝑆 𝑅𝑆𝑊𝑥𝑊𝑦

∑ 𝐸𝑧𝑆

𝑛 (𝑘 +
1

2
)

𝑘=𝑁𝑧𝑆
−1

𝑘=0
−

ℎ33Δ𝑡

2Δz
(𝑣𝑧𝑆

𝑛+
1
4(𝑘 + 3) − 𝑣𝑧𝑆

𝑛+
1
4(𝑘 + 2))

)

 
 
 
 
 
 

 (3.133c) 

Often the source space does not occupy more than a 20th of a mechanical wavelength and 

therefore it is not necessary to involve more than three cells such as in equations (3.133a-c). 

The matrix inversions that are required are thus not computationally heavy. The velocities and 

stresses within the simulation space may be updated using the elastodynamic and constitutive 

equations respectively as before, except the stress update utilizes (3.129): 
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 𝑇𝑧𝑧𝑆

𝑛+
1
2,𝑘+

1
2 = 𝑇𝑧𝑧𝑆

𝑛,𝑘+
1
2 +

𝐸33
𝐷 ∆𝑡

2𝜅𝑧𝐻
𝑘 ∆𝑧𝑆

(𝑣𝑧𝑆

𝑛+
1
4,𝑘+1

− 𝑣𝑧𝑆

𝑛+
1
4,𝑘

) +
ℎ

33,𝑃𝑜𝑖

𝑘+
1
2 ∆𝑡

2
𝐽𝑆
𝑛+

1
4 

(3.134a) 

The interface velocity is updated as follows: 

 𝑣𝑧𝑆

𝑛+
3
4(𝑁𝑧𝑆

) = 𝑣𝑧𝑆

𝑛+
1
4(𝑁𝑧𝑆

) +
∆𝑡

2𝜌 (
∆𝑧 + ∆𝑧𝑆

2
)
[𝑇𝑧𝑧

𝑛+
1
2 (

1

2
) − 𝑇𝑧𝑧𝑆

𝑛+
1
2 (𝑁𝑧𝑆

−
1

2
)] (3.134b) 

Where the average spatial discretization is used which produces 2nd order accurate 

mechanical results [237]. User’s may input a modulated Gaussian pulse as source current 

density 𝐽𝑆 to simulate a ringdown and calculate mechanical antenna performance by utilizing a 

near to far-field (NTFF) transformation to acquire the far-field parameters such as radiated 

power 𝑃𝑟𝑎𝑑. The input power may then be calculated by taking the FFT of the voltage and 

current and utilizing: 

 𝑃𝑖𝑛 =
1

2
𝑟𝑒𝑎𝑙[�̆�𝐵𝐴𝑊 × 𝐼𝐵𝐴𝑊

∗ ] (3.135) 

The radiation efficiency may then be readily calculated as: 

 𝑒𝑟𝑎𝑑 =
𝑃𝑟𝑎𝑑

𝑃𝑖𝑛
 (3.136) 

Therefore, this input methodology allows for the radiation efficiency to be calculated with 

high fidelity. The source space formulation herein will be independently validated vs. the 

analytical solution of a BAW filter device in Chapter 5. Now that the piezoelectric antenna 

problem has been numerically formulated, it is necessary to focus on post-processing of the 

data. Herein, the major post-processing that occurs is inputting the near-field data into a near to 

far-field (NTFF) transformation to acquire far-field performance characteristics. This will be 

discussed next. 

3.13 Near to Far-Field (NTFF) Transformations 

For the mechanical antenna simulations studied herein, the simulation space representing a 

physical volume (i.e., excluding PML layers) will always lie in the near field of the radiator. As 
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such, a method of converting near field numerical results to far-field data is invaluable. To 

accomplish this, a fictional rectangular volume (Huygen surface), of dimensions 2𝑥0, 2𝑦0, 2𝑧0, 

may be constructed surrounding the radiator, and, using the surface equivalency theorem 

[25][26][178], may use tangential fields calculated from the FDTD simulation in order to 

determine the following equivalent currents on the surface of the volume: 

𝐽𝑖
𝑆 = 𝜖𝑖𝑗𝑘𝑛𝑗𝐻𝑘 

ℳ𝑖
𝑆 = 𝜖𝑖𝑗𝑘𝑛𝑘𝐸𝑗  

This yields the following electric source currents on the surfaces orthogonal to the global x, 

y, and z-directions: 

 �̂� = 𝑖̂, 𝐽𝑖
𝑆 = −𝐻𝑧𝑗̂ + 𝐻𝑦�̂�, �̂� = −𝑖̂, 𝐽𝑖

𝑆 = 𝐻𝑧𝑗̂ − 𝐻𝑦�̂� (3.137a) 

 �̂� = 𝑗̂, 𝐽𝑖
𝑆 = 𝐻𝑧𝑖̂ − 𝐻𝑥�̂�, �̂� = −𝑗̂, 𝐽𝑖

𝑆 = −𝐻𝑧𝑖̂ + 𝐻𝑥�̂� (3.137b) 

 �̂� = �̂�, 𝐽𝑖
𝑆 = −𝐻𝑦𝑖̂ + 𝐻𝑥𝑗̂, �̂� = −�̂�, 𝐽𝑖

𝑆 = 𝐻𝑦𝑖̂ − 𝐻𝑥𝑗 ̂ (3.137c) 

And the following magnetic source currents: 

 �̂� = 𝑖̂, ℳ𝑖
𝑆 = 𝐸𝑧𝑗̂ − 𝐸𝑦�̂�, �̂� = −𝑖̂, ℳ𝑖

𝑆 = −𝐸𝑧𝑗̂ + 𝐸𝑦�̂� (3.137d) 

 �̂� = 𝑗̂, ℳ𝑖
𝑆 = −𝐸𝑧𝑖̂ + 𝐸𝑥�̂�, �̂� = −𝑗̂, ℳ𝑖

𝑆 = 𝐸𝑧𝑖̂ − 𝐸𝑥�̂� (3.137e) 

 �̂� = �̂�, ℳ𝑖
𝑆 = 𝐸𝑦𝑖̂ − 𝐸𝑥𝑗̂, �̂� = −�̂�, ℳ𝑖

𝑆 = −𝐸𝑦𝑖̂ + 𝐸𝑥𝑗 ̂ (3.137f) 

Where the EM fields in (3.137a-f) are at the surface of the fictional volume, and therefore will 

require some spatial averaging for the magnetic fields which are staggered by half a unit cell. 

Following the approach by [25], these equivalent source currents may be input into the following 

integrals: 

 �̆�𝜃 = ∬(𝐽𝑥𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ + 𝐽𝑦𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ − 𝐽𝑧𝑠𝑖𝑛𝜃) 𝑒𝑗𝑘𝑟′𝑐𝑜𝑠Ψ𝑑𝑠′ (3.138a) 

 �̆�∅ = ∬(−𝐽𝑥𝑠𝑖𝑛∅ + 𝐽𝑦𝑐𝑜𝑠∅) 𝑒𝑗𝑘𝑟′𝑐𝑜𝑠Ψ𝑑𝑠′ (3.138b) 
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 �̆�𝜃 = ∬(ℳ̆𝑥𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ + ℳ̆𝑦𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ − ℳ̆𝑧𝑠𝑖𝑛𝜃) 𝑒𝑗𝑘𝑟′𝑐𝑜𝑠Ψ𝑑𝑠′ (3.138c) 

 �̆�∅ = ∬(−ℳ̆𝑥𝑠𝑖𝑛∅ + ℳ̆𝑦𝑐𝑜𝑠∅) 𝑒𝑗𝑘𝑟′𝑐𝑜𝑠Ψ𝑑𝑠′ (3.138d) 

Primed values above are source coordinates, for example, 𝑑𝑠′ in (3.138a-d) is a differential 

area on the Huygen surface within the simulation space. The unprimed 𝜃 and ∅ are the 

spherical coordinates pertaining to the far-field observation point, therefore the near-field EM 

fields within the simulation space are used as sources through (3.137a-f) to determine the 

integrals (3.138a-d) which apply outside the simulation space. The breve accent marks denote 

that these are phasor quantities, and the exponential terms may be determined as follows: 

 �̂� = ±𝑖̂, 𝑟′𝑐𝑜𝑠Ψ = ±x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ + 𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅ + 𝑧′𝑐𝑜𝑠𝜃 (3.139a) 

 �̂� = ±𝑗̂, 𝑟′𝑐𝑜𝑠Ψ = x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ ± 𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅ + 𝑧′𝑐𝑜𝑠𝜃 (3.139b) 

 �̂� = ±�̂�, 𝑟′𝑐𝑜𝑠Ψ = x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ + 𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅ ± 𝑧0𝑐𝑜𝑠𝜃 (3.139c) 

Where the primed values (x′, 𝑦′, and 𝑧′) denote points on the virtual surface within the near-

field/simulation space and 𝜃/∅ still describe the far-field observation point. Therefore, for every 

observation point (𝜃/∅), the collective effect of all EM fields on the virtual surface nodes (x′, 𝑦′, 

and 𝑧′) must be summed up through integrals (3.138a-d). This process is then repeated for 

different 𝜃/∅ values to develop a complete picture of far-field performance, like radiation pattern 

and radiated power. The EM phasors in spherical coordinates are determined from as follows: 

 �̆�𝑟 ≅ 0 (3.140a) 

 �̆�θ ≅ −
𝑗𝑘𝑒−𝑗𝑘𝑟

4𝜋𝑟
(�̆�∅ + 𝜂0�̆�𝜃) (3.140b) 

 �̆�∅ ≅
𝑗𝑘𝑒−𝑗𝑘𝑟

4𝜋𝑟
(�̆�𝜃 − 𝜂0�̆�∅) (3.140c) 

 �̆�𝑟 ≅ 0 (3.140d) 
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 �̆�θ ≅
𝑗𝑘𝑒−𝑗𝑘𝑟

4𝜋𝑟
(�̆�∅ − �̆�𝜃/𝜂0) (3.140e) 

 �̆�∅ ≅ −
𝑗𝑘𝑒−𝑗𝑘𝑟

4𝜋𝑟
(�̆�𝜃 + �̆�∅/𝜂0) (3.140f) 

Where 𝜂0 = √𝜇0/𝜖0 ≅ 377 is the free space impedance and 𝑟 is the radial distance of the 

observation point to the source. For the purpose of simulations using the FDTD method, the 

spatial location of both the 𝐿 and 𝑁 terms must lie on the virtual surface, and as such two spatial 

interpolation terms must be used for the magnetic fields. The radiation intensity and total power 

may then be calculated respectively as follows: 

 𝑈(𝜃, ∅) ≅
𝑟2

2𝜂
[|�̆�𝜃(𝑟, 𝜃, ∅)|

2
+ |�̆�∅(𝑟, 𝜃, ∅)|

2
] (3.141) 

 𝑃𝑟𝑎𝑑 = ∫ ∫ 𝑈𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅
𝜋

0

2𝜋

0

 (3.142) 

These values may now be used to create far-field radiation pattern charts. The procedure is 

clarified with an example. 

3.13.1 NTFF Transformation of Planar Array on PEC 

In the case of an unphased planar array mounted on a ground plane normal to the z-

direction, the radiation moves in the positive z-direction only, and therefore only the surface with 

�̂� = +�̂� need be examined for NTFF transformation. On this surface, the source currents are as 

follows: 

𝐽𝑖
𝑆 = −�̆�𝑦𝑖̂ + �̆�𝑥𝑗̂, ℳ̆𝑖

𝑆 = �̆�𝑦𝑖̂ − �̆�𝑥𝑗 ̂

Substitution into the 𝐿 and 𝑁 terms (3.138a-d) yields: 

�̆�𝜃 = ∫ ∫ (−�̆�𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ + �̆�𝑥𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′
𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�∅ = ∫ ∫ (�̆�𝑦𝑠𝑖𝑛∅ + �̆�𝑥𝑐𝑜𝑠∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′
𝑦0

−𝑦0

𝑥0

−𝑥0
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�̆�𝜃 = ∫ ∫ (�̆�𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ − �̆�𝑥𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′
𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�∅ = ∫ ∫ (−�̆�𝑦𝑠𝑖𝑛∅ − �̆�𝑥𝑐𝑜𝑠∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′
𝑦0

−𝑦0

𝑥0

−𝑥0

 

The far-field electric and magnetic phasors may then be determined. 

3.13.2 General 3D NTFF Transformation 

The procedure of Section 3.13.1 must be repeated for each absorbing boundary condition 

utilized in the simulation, meaning that generally all six surfaces enclosing the radiator will 

require unique 𝐿 and 𝑁 terms. These are summarized in Table 3-5: 

 

�̂� = +𝑖̂ 

�̆�𝜃
+�̂� = ∫ ∫ (−�̆�𝑧𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ − �̆�𝑦𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̆�∅
+�̂� = ∫ ∫ (−�̆�𝑧𝑐𝑜𝑠∅)𝑒𝑗𝑘(x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̆�𝜃
+�̂� = ∫ ∫ (�̆�𝑧𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ + �̆�𝑦𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̆�∅
+�̂� = ∫ ∫ (�̆�𝑧𝑐𝑜𝑠∅)𝑒𝑗𝑘(x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̂� = −𝑖̂ 

�̆�𝜃
−�̂� = ∫ ∫ (�̆�𝑧𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ + �̆�𝑦𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(−x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̆�∅
−�̂� = ∫ ∫ (�̆�𝑧𝑐𝑜𝑠∅)𝑒𝑗𝑘(−x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̆�𝜃
−�̂� = ∫ ∫ (−�̆�𝑧𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ − �̆�𝑦𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(−x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̆�∅
−�̂� = ∫ ∫ (−�̆�𝑧𝑐𝑜𝑠∅)𝑒𝑗𝑘(−x0𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑦′𝑑𝑧′

𝑦0

−𝑦0

𝑧0

−𝑧0

 

�̂� = +𝑗̂ 

�̆�𝜃
+�̂�

= ∫ ∫ (�̆�𝑧𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ + �̆�𝑥𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0

 

�̆�∅
+�̂�

= ∫ ∫ (−�̆�𝑧𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0
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�̆�𝜃
+�̂�

= ∫ ∫ (−�̆�𝑧𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ − �̆�𝑥𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0

 

�̆�∅
+�̂�

= ∫ ∫ (�̆�𝑧𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0

 

�̂� = −𝑗̂ 

�̆�𝜃
−�̂�

= ∫ ∫ (−�̆�𝑧𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ − �̆�𝑥𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅−𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0

 

�̆�∅
−�̂�

= ∫ ∫ (�̆�𝑧𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅−𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0

 

�̆�𝜃
−�̂�

= ∫ ∫ (�̆�𝑧𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ + �̆�𝑥𝑠𝑖𝑛𝜃)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅−𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0

 

�̆�∅
−�̂�

= ∫ ∫ (−�̆�𝑧𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅−𝑦0𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧′𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑧′
𝑥0

−𝑥0

𝑧0

−𝑧0

 

�̂� = +�̂� 

�̆�𝜃
+�̂� = ∫ ∫ (−�̆�𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ + �̆�𝑥𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�∅
+�̂� = ∫ ∫ (�̆�𝑦𝑠𝑖𝑛∅ + �̆�𝑥𝑐𝑜𝑠∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�𝜃
+�̂� = ∫ ∫ (�̆�𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ − �̆�𝑥𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�∅
+�̂� = ∫ ∫ (−�̆�𝑦𝑠𝑖𝑛∅ − �̆�𝑥𝑐𝑜𝑠∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅+𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̂� = −�̂� 

�̆�𝜃
−�̂� = ∫ ∫ (�̆�𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ − �̆�𝑥𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅−𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�∅
−�̂� = ∫ ∫ (−�̆�𝑦𝑠𝑖𝑛∅ − �̆�𝑥𝑐𝑜𝑠∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅−𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�𝜃
−�̂� = ∫ ∫ (−�̆�𝑦𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ + �̆�𝑥𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅−𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

�̆�∅
−�̂� = ∫ ∫ (�̆�𝑦𝑠𝑖𝑛∅ + �̆�𝑥𝑐𝑜𝑠∅)𝑒𝑗𝑘(x′𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅+𝑦′𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅−𝑧0𝑐𝑜𝑠𝜃)𝑑𝑥′𝑑𝑦′

𝑦0

−𝑦0

𝑥0

−𝑥0

 

Table 3-5: NTFF equations. 
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Since all multi-physics radiators investigated herein are mounted on a ground plane, the �̂� =

−�̂� terms are unused. For this linear system, the far-field response generated by the six 

surfaces may be added together to acquire the total response by superposition: 

 �̆�𝜃 = �̆�𝜃
+�̂� + �̆�𝜃

−�̂� + �̆�𝜃
+�̂�

+ �̆�𝜃
−�̂�

+ �̆�𝜃
+�̂� + �̆�𝜃

−�̂� (3.143a) 

 �̆�∅ = �̆�∅
+�̂� + �̆�∅

−𝑖̂ + �̆�∅
+�̂�

+ �̆�∅
−�̂�

+ �̆�∅
+�̂� + �̆�∅

−�̂� (3.143b) 

 �̆�𝜃 = �̆�𝜃
+�̂� + �̆�𝜃

−�̂� + �̆�𝜃
+�̂�

+ �̆�𝜃
−�̂�

+ �̆�𝜃
+�̂� + �̆�𝜃

−�̂� (3.143c) 

 �̆�∅ = �̆�∅
+�̂� + �̆�∅

−�̂� + �̆�∅
+�̂�

+ �̆�∅
−�̂�

+ �̆�∅
+�̂� + �̆�∅

−�̂� (3.143d) 

The determination of the far-field EM fields may then proceed using equations (3.124a-d) 

and Table 3-5, then substituting into equations (3.140a-f). Thus, the entire process of 

determining the performance of a piezoelectric antenna has now been discussed. This process 

is lengthy, so it is helpful to review the process briefly as presented in the following section. 

3.14 Numerical Framework Overview 

The process of modeling piezoelectric antennas presented thus far is summarized in Figure 

3-21. First, the input current 𝐽𝑆 is used to update the source space electric fields, stresses, and 

velocities via (3.133a-c), (3.134a), and (3.127a-b). Then the terminal voltage 𝑉𝑆 may be updated 

via (3.131). The simulation space electric fields are then updated implicitly using the CPML-ADI-

FDTD equations; (3.192a) for 𝐸𝑥
𝑛+1/2

, (3.192b) for 𝐸𝑦
𝑛+1/2

, (3.123a) or (3.120a) for 𝐸𝑧
𝑛+1/2

, 

(3.192d) for 𝐸𝑥
𝑛+1, (3.192e) for 𝐸𝑦

𝑛+1, and (3.123b) or (3.120b) for 𝐸𝑧
𝑛+1. The magnetic flux, 

magnetic field, electric flux, and history variables may then be readily updated using Faraday’s 

law (3.71a-c) (3.72a-c), the magnetic constitutive relation (3.73a-c) (3.74a-c), Ampere’s law 

(3.84a-c) (3.89a-c), and Table 3-2/Table 3-3 respectively. Stress is then updated using the 

mechanical constitutive relation (3.124a-b) followed by velocity being updated by the 

elastodynamic equation (3.127a-b). 
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Figure 3-21: Simulation flow chart for piezoelectric antenna simulations via CPML-ADI-FDTD 

method. 

 

The 2nd sub-iteration then follows the same flow after which the next time step commences. 

The process should be iterated until the mechanical damping decays the signal enough to allow 

for FFTs to be performed without introducing significant spectral leakage. 
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CHAPTER 4: VERIFICATION TESTING 

This chapter focuses on verifying that the three major constituents of the code, i.e., the 

mechanical, electrodynamic, and magnetic damping portions, are working properly. This is 

accomplished through comparisons with analytical solutions and/or commercial codes. 

4.1 Mechanical Test Cases 

Mechanically, the elastic waves are assumed to move such that one stress is non-zero 

known as the uniaxial stress approximation. This assumption is justified if the specimen under 

load has one dimension at least an order of magnitude larger than either of the other two (i.e., 

for a slender bar shaped device). A wealth of sources document how such 1D problems 

behave, [238] being one. This section compares the FDTD simulation to both analytical 

solutions and commercial software. 

4.1.1 1D Quasistatic Bar Problem under Force Input 

A 2x2x20cm mechanical bar fixed on one end and with a 100Hz harmonic force input 

(100lbf/445N) on the other (see Figure 4-1 bottom insert) was simulated using the code. The 

input frequency is significantly below (<10%) the first resonant frequency of the bar and 

therefore this problem is quasistatic. The bars tip displacement is plotted as a function of time 

and compared to the analytical solution [238]. There are 40 finite difference cells utilized along 

the length of the bar (5mm discretization). The maximum amplitude error is 2.84% and no 

discernable error in phase is present. Therefore, these results provide confidence in the 

mechanical portion of the ADI-FDTD code. 
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Figure 4-1: 1D mechanical bar operating at a near static frequency (<10% of 1st harmonic). 

 

4.1.2 On Resonance 1/4 Wavelength Mechanical Bar under Gaussian Base Excitation 

A 100x100x500𝜇m mechanical bar which is traction free on one end and with an on 

resonance 5MHz Gaussian pulse base excitation (2.5nm magnitude) applied on the other (see 

Figure 4-2 bottom insert) was simulated using the code. The axial stress (𝑇𝑧𝑧) 50𝜇m away from 

the base is plotted as a function of time and compared to the results from a simulation 

performed using the Comsol multiphysics software [239]. Since the boundary conditions are 

such that the bar is a quarter wavelength resonator, there are 5 finite difference cells utilized 

along the length of the bar (100𝜇m discretization) to achieve a 20 cell per wavelength spatial 

sampling. The maximum amplitude error is 2.59% and no discernable error in phase is present. 

Therefore, these results provide confidence in the mechanical portion of the ADI-FDTD code. 
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Figure 4-2: On resonance Gaussian base excitation mechanical bar problem. 

 

4.2 Electrodynamic Test Cases 

This section focuses on the validation of any electrodynamic portions of the code and post-

processor and exists to inspire confidence in the results presented in Chapter 5. 

4.2.1 Aperture Antenna Study 

A problem that was solved early on to check that magnetic and electric currents could be 

input simultaneously and still produce accurate results was the aperture antenna problem. 

Aperture antennas radiate by forming an area (aperture) of relatively uniform electric and 

magnetic fields known as the aperture fields (𝐸𝑎 and 𝐻𝑎 respectively) which are often generated 

using a waveguide. A rectangular aperture antenna is shown in Figure 4-3: 
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Figure 4-3: Rectangular Aperture Antenna with electric field along the y-direction and 

magnetic field along the negative x-direction. 

 

Within the literature [25][26], analytical solutions may be found for such a case in the form of 

far-field approximations which assume that the waveguide has allowed an area (aperture) to 

contain uniform electric and magnetic fields which oscillate, radiating EM waves into free space. 

These aperture electric and magnetic fields may then be mapped to equivalent electric and 

magnetic currents by utilizing the following relations. 

 𝐽𝑠⃑⃑⃑ = �̂� × 𝐻𝑎
⃑⃑⃑⃑⃑⃑ , 𝑀𝑠

⃑⃑⃑⃑⃑⃑ = 𝐸𝑎
⃑⃑ ⃑⃑⃑ × �̂� (4.1) 

An aperture antenna simulation was performed utilizing a 1m cube volume with aperture 

dimensions of 5x5cm in the xy-plane, and a y-directed aperture electric field. All boundaries are 

Mur 1st order (Mur1) absorbing boundary conditions (ABCs) [210] and the system was allowed 

to radiate for 5 cycles at 400MHz with the time step set to 2 times the CFL condition with a 

spatial discretization of 1cm. The aperture is located at the center of the simulation space. The 

analytical solution, for the z-directed electric field, applies only for the far field and is as follows: 

 𝐸𝑧 =
|𝑬𝑎|

𝜋𝛽𝑟
(
1 + 𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅
) sin (

𝛽𝑎

2
𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅) sin (

𝛽𝑏

2
𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅) sin (𝜔𝑡 − 𝛽𝑟) (4.2) 

Where a, and b are the in-plane dimensions of the aperture antenna which are both equal to 

5cm in this case, and the independent variables are in terms of spherical coordinates about a 

coordinate system with its origin at the geometrical centroid of the aperture. A plot comparing 

the z-directed electric field obtained from both the far-field analytical solution [25] and the ADI-
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FDTD algorithm is plotted as a function of time in Figure 4-4. The electric field was calculated at 

the point (x=0, y=0.46m, z=0m) on a coordinate system whose origin is at the center of the 

aperture. The far-field analytical solutions have a phase error of up to π/8 [25] which is 

represented using error bars on the analytical solution in the figure. The phase error is caused 

due to proximity of the MUR1 boundaries. This is also observed for the infinite line source case 

in section 4.2.2.1, where the phase error is removed by moving the MUR1 boundaries further 

away. 

 

 

Figure 4-4: Plot comparing 𝑬𝒛 from the numerical simulation and the analytical solution. 

 

As can be seen in Figure 4-4, the ADI solution stays within the error bar of the analytical 

phase solution. The noise in the ADI-FDTD solution is a result of the excitation not initially being 

zero which can be rectified by using a modulated Gaussian pulse [240]. Modulated Gaussian 

pulses are utilized in sections 4.2.2 and 4.2.4. Noise is also produced by numerical reflection 

and Higher order ABCs reduce this type of noise, but these ABCs are difficult to implement 

within the implicit ADI methodology without compromising the tri-diagonal matrix [241]. These 
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results provide confidence in the general response of the code including stability, however, 

some phase shifts and small oscillation errors emanating from the ABC boundary conditions are 

present. These errors may be minimized by placing the ABCs further from the source which 

may be accomplished by cell stretching, as shown in subsequent sections of this chapter. 

4.2.2 Infinite Line Sources 

Sources of this type involve an infinitely long linear currents which may be electric (Figure 

4-5a) or magnetic (Figure 4-5b) in nature. For the electromagnetic validation of the code, 

consider first an infinite z-directed electric line source, excited at 400MHz (𝜆0
𝐸𝑀 = 0.75𝑚), as 

shown in Figure 4-5a. The PECs are included to replicate the infinite source currents in the 

vertical z-direction by image theory (see section 3.4.1.1). Due to the infinite length in the z-

direction, there are no spatial variations in that direction, and this is a 2D problem in the 

rectangular coordinate system. 

 

(a) Electric (b) Magnetic 

Figure 4-5: Infinite line source cases w/ boundary conditions. 

 

For this case, the analytical solution for the z-directed electric field as a phasor (denoted 

using a breve accent) is written below [25]: 
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 �̆�𝑧(𝜌) = −𝐼0
𝜔𝜇0

4
[𝐽0(𝑘𝜌) − 𝑗𝑌0(𝑘𝜌)] (4.3a) 

Where 𝜌 is the cylindrical radial coordinate, which originates at the line source, 𝜔 is the 

circular excitation frequency, 𝑘 is the wavenumber, 𝐽0/𝑌0 are Bessel functions of the 1st/2nd kind 

respectively, and 𝐼0 is the magnitude of the line current which is input as 1mA. The steady state 

instantaneous field is as follows: 

 𝐸𝑧(𝜌, 𝑡) = 𝑅𝑒{�̆�𝑧𝑒
𝑗𝜔𝑡} = −𝐼0

𝜔𝜇0

4
[𝐽0(𝑘𝜌) cos (𝜔𝑡 −

𝜋

2
) + 𝑌0(𝑘𝜌)𝑠𝑖𝑛 (𝜔𝑡 −

𝜋

2
)] (4.3b) 

Where the 𝜋/2 phase shifting is included to represent a sinusoidal input. If a modulated 

Gaussian pulse solution is sought, equation (4.3b) is modified as follows: 

 𝐸𝑧(𝜌, 𝑡) = −𝐼0
𝜔𝜇0

4
[𝐽0(𝑘𝜌) cos (𝜔𝑡 −

𝜋

2
) + 𝑌0(𝑘𝜌)𝑠𝑖𝑛 (𝜔𝑡 −

𝜋

2
)] 𝑒

−
(𝑡−𝑡𝑑−𝜌/𝑐)2

(𝑡𝑤)2  (4.3c) 

Where 𝑡𝑤 is the pulse half-width, 𝑡𝑑 is the time delay at the source, and 𝜌/𝑐 is the additional 

time delay as the wave propagates to the observation point (𝑐 is the speed of light). This latter 

time delay term may be ignored when the observation point is electrically close to the radiator, 

i.e., when in the extreme near field which is the case in this section. The Gaussian pulse 

parameters were chosen as follows: 

 𝑡 → 𝑡 + ∆𝑡/2 (4.4a) 

 𝑡𝑑 = 3.6/𝑓 (4.4b) 

 𝑡𝑤 = 1.2√2/𝑓 (4.4c) 

 𝑒
−

(𝑡−𝑡𝑑−𝜌/𝑐)2

(𝑡𝑤)2 → 𝑒
−

(𝑡+∆𝑡/2−3.6/𝑓−𝜌/𝑐)2

2(1.2/𝑓)2  
(4.4d) 

Where 𝑓 is the input frequency and ∆𝑡 is the sampling time. Equation (4.3b) generally 

applies in both the near and far-field and is compared to numerical results in the following 

sections, along with the modulated Gaussian pulse solution (4.3c). 
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4.2.2.1 Small/Medium/Large Study 

An initial study using three simulated spaces, i.e., a small (0.1m cube), medium (1x1x0.1m), 

and large (2x2x0.1m), were conducted with the ADI-FDTD code as shown in Figure 4-6. The 

simulation space was varied to better understand the influence of the MUR1 absorbing 

boundary conditions on the numerical solution as the boundaries are moved closer to radiating 

elements. 

 

 

Figure 4-6: Small/Medium/Large Study Geometry 

 

The MUR1 ABCs shown in Figure 4-6 are applied in both the x and y directions. In this study 

the discretization, time step, and observation point are consistent across all three simulations 

such that the only variation between runs is the proximity of the absorbing boundaries to the 

radiator. The discretization for all runs is 1cm (∆𝑥 = ∆𝑦 = ∆𝑧 = 1𝑐𝑚). Figure 4-7 shows the 

simulation results for the z-directed electric field (𝐸𝑧) compared to the general analytical solution 

(eq. 4.3b) at an observation point x=0.04m from the source for this axisymmetric problem. 
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Figure 4-7: 𝑬𝒛 Results from the infinite line source study, for all three simulation space sizes, 

at the observation point which is 4cm away from the line source. 

 

The time step was set to 2 times larger than what is required for stability (CFLN=2). If 

conventional FDTD were utilized, the results from using this time step would be unstable, but in 

this ADI-FDTD algorithm the results are not only stable but accurate (with the exception of a 

phase and amplitude error in the 0.1m small cube) as shown in Figure 4-7. The initial ripples in 

the ADI results for all three cases are expected transients prior to the system reaching steady 

state. The phase and amplitude error in the 0.1 m small cube are attributed to the first order Mur 

absorbing boundary conditions (MUR1 ABCs) [210] utilized in the (xy) directions. It is difficult to 
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implement higher order ABCs in ADI simulations [241] and thus, to use the ADI approach, ABC 

boundaries should be placed as far as possible from the source. As can be seen, these errors 

are absent in the medium and large simulations. Note that, since the spatial discretization, time 

step, and wavelength are consistent across all simulations, the cause of this phase lag and 

amplitude error is not numerical dispersion as this is the same in all three cases. Indeed, the 

cause is that the 1st order Mur absorbing boundaries have been brought too close to the source 

currents, producing errors. This error may be minimized by stretching the finite difference grid in 

the xy-plane such that the ABCs are pushed further away from the radiating source currents, or 

by utilizing PEC-backed lossy perfectly matched layers (PMLs) rather than MUR1 boundaries. 

Both these methods may be used simultaneously to produce stretched PML regions as will be 

discussed in the next section. 

4.2.2.2 Stretched/Lossy Regions within Progressively Shrinking Simulation Spaces 

Often it is necessary to move the simulation boundaries electrically close to the radiating 

elements due to the computational expense of modeling electrically small radiators as well as in 

complex coupled problems such as multiferroic antennas requiring both electromagnetic and 

mechanics modeling. In the case of mechanical resonance-based antennas, the simulation 

space must shrink to on the order of 1/10,000th of the free space EM wavelength when using a 

uniform grid of 100x100x100 cells or less to be able to model the structure using conventional 

computational platforms. However, placing absorbing boundaries based on one-way wave 

equations, such as the MUR1 ABC [210], introduce significant error to the simulated results, as 

illustrated in the previous section. Therefore, other approaches need to be considered such as 

stretching the finite difference mesh so that the simulated boundaries are mathematically 

pushed further away from the radiator even though the number of elements has not increased. 

In this graded mesh design, the mesh is geometrically fine near the radiator and progressively 

coarser near the boundaries. The following subsections explore this avenue of boundary error 
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reduction on progressively shrinking simulation spaces to gain insight on the multi-physics 

simulations performed in Chapter 5. 

4.2.2.2.1 10cm Cubic Simulation Space 

First consider the geometry of Figure 4-8, which is identical to the infinite electric line source 

problem shown in Figure 4-5a with relevant simulation parameters now defined: 

 

 

Figure 4-8: 400MHz Infinite line source within a 10cm cubic unstretched simulation space. 

𝑬𝒛 is measured 1cm away from the source. 

 

The size of the simulation space is identical to the “small” case discussed in the 

“Small/Medium/Large Study” Section 4.2.2.1 (i.e., a 0.1m cube), but with finer spatial sampling 

in the x and y directions. The observation point is also now closer to the source (1cm away) with 

respect to the Small/Medium/Large Study (4cm away). The numerical results for 𝐸𝑧 at the 

observation point shown in Figure 4-8 are compared to the analytical solution in Figure 4-9: 
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Figure 4-9: 𝑬𝒛 at observation point from infinite line source case shown in Figure 4-8. 

 

There is an amplitude and phase error present in these results, like the “small” case 

previously exhibited (Figure 4-7), caused by the ABCs. To reduce this error, a scheme for 

stretching the cells is introduced as shown in Figure 4-10. In this figure, the 12 cells adjacent to 

the boundaries are stretched while the center 16x16 grid remains unstretched (at ∆𝑥 = ∆𝑦 =

2.5𝑚𝑚). 
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Figure 4-10: 12-cell In-plane stretching scheme for the infinite line source problem. 

 

In the design of this ADI-FDTD code there are three input parameters related to coordinate 

stretching; the maximum stretching (𝜅𝑚𝑎𝑥), the number of cells across which the stretching 

occurs, and the polynomial factor describing the fashion in which the stretch increases from 1 to 

𝜅𝑚𝑎𝑥 (m=1=linear, m=2=quadratic, …). Utilizing a 12-cell stretched region with 𝜅𝑚𝑎𝑥 = 10, and 

𝑚 = 1 yields: 
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Figure 4-11: Infinite line source results for 𝑬𝒛 for an initially 10cm cubic simulation space 

with 𝜿𝒎𝒂𝒙=10, 12-cell, m=1, and CFLN=2. 

 

As can be seen in Figure 4-11, the phase error has been virtually eliminated (compared to 

Figure 4-9) and the amplitude error significantly reduced as a result of the stretching. Some 

degree of noise has been introduced into the results; however, this can be mitigated with the 

use of higher m-factors as well as using a modulated Gaussian pulse input so that the initial 

input is near zero. 

At this time, it is helpful to show one approach to producing more accurate results with a 

note that there are multiple methods that can be used. For example, Figure 4-12 shows a 14-

cell PEC-backed unstretched PML region as contrasted with the 12-cell ABC approach shown in 

Figure 4-10: 
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Figure 4-12: 14-cell In-plane PML region for the infinite line source problem. 

 

Figure 4-13 shows the results for a modulated Gaussian pulse rather than a sinusoidal 

input. In this model the reflection error is set to 𝑒−16, and a linear interpolation scheme is utilized 

(m=1). As shown, accurate results are achievable when the stretched region, backed by an 

ABC, is replaced by a unstretched PML region, backed by a PEC at this size. Therefore, some 

level of experimentation is open to the modeler with some guardrails in place to ensure 

accuracy. For example, 𝜅𝑚𝑎𝑥 should not cause the spatial discretization to become greater than 

𝜆0
𝐸𝑀/20 within the stretched region. 
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Figure 4-13: Infinite line source results for 𝑬𝒛 for an initially 10cm cubic simulation space 

with reflection error 𝑹(𝟎)=𝒆−𝟏𝟔, 14-cell, m=1, and CFLN=2. 

 

4.2.2.2.2 1cm Cubic Simulation Space 

In this section the simulation space and discretization utilized in the previous section are 

reduced by an order of magnitude while maintaining the same time step by increasing the CFLN 

factor to 20 from 2. The goal of this study is to retain accuracy as the number of cells is 

progressively reduced until the unstretched size is on the order of 10−4𝜆0
𝐸𝑀. This dimension 

represents the simulation space required for mechanical resonance-based antenna simulations. 

For clarity, the simulation space is shown in Figure 4-14: 
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Figure 4-14: 400MHz Infinite line source within a 1cm cubic unstretched simulation space. 

𝑬𝒛 is measured 1mm away from the source. 

 

The results for 𝐸𝑧 at the observation point shown in Figure 4-14 for an unstretched 

simulation space are shown in Figure 4-15: 

 

 

Figure 4-15: 𝑬𝒛 at observation point from infinite line source case shown in Figure 4-14. 
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Note that there is significant amplitude and phase error within the simulation results caused 

by the absorbing boundaries. In order to mitigate this, the stretching scheme shown in Figure 

4-10 is utilized again with 𝜅𝑚𝑎𝑥 = 150 and 𝑚 = 2 to produce the results in Figure 4-16: 

 

 

Figure 4-16: Infinite line source results for 𝑬𝒛 for an initially 1cm cubic simulation space with 

𝜿𝒎𝒂𝒙=150, 12-cell, m=1, and CFLN=20. 

 

The phase error has been virtually eliminated in Figure 4-16, and the amplitude error has 

been significantly reduced, though some noise has been introduced. The noise can be mitigated 

by utilizing a modulated Gaussian pulse rather than a sinusoidal input along with unstretched 

PML layers to yield the results in Figure 4-17. As shown in Figure 4-17, the amplitude and 

phase error are within 10%. Further improvements may be achieved by reducing the time step 

or beginning to implement both stretching and lossy PML layers simultaneously. 
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Figure 4-17: Infinite line source results for 𝑬𝒛 for an initially 1cm cubic simulation space with 

𝑹(𝟎)=𝒆−𝟏𝟔, 14-cell, m=1, and CFLN=20. 

 

4.2.2.2.3 1mm Cubic Simulation Space 

In this section the simulation space and discretization utilized in the previous section are 

reduced by another order of magnitude (i.e., from 1cm to 1mm) while maintaining the same time 

step by increasing the CFLN factor to 200 from 20, see Figure 4-18. The goal continues to be 

shrinking the simulation space until the unstretched size is on the order of 10−4𝜆0
𝐸𝑀 as is the 

case required for mechanical resonance-based antenna simulations.  
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Figure 4-18: 400MHz Infinite line source within a 1mm cubic simulation space. 𝑬𝒛 is 

measured 100𝝁m away from the source. 

 

The results for 𝐸𝑧 at the observation point shown in Figure 4-18 for an unstretched 

simulation space are shown in Figure 4-19.  

 

 

Figure 4-19: 𝑬𝒛 at observation point from infinite line source case shown in Figure 4-18. 
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As can be seen, there is significant amplitude and phase error within the simulation results. 

To mitigate this, the stretching scheme shown in Figure 4-10 is utilized again with 𝜅𝑚𝑎𝑥 = 1500 

and 𝑚 = 2 to produce the results in Figure 4-20: 

 

 

Figure 4-20: Infinite line source results for 𝑬𝒛 for 1mm cubic simulation space and 

𝜿𝒎𝒂𝒙=1500, 12-cell, m=2, and CFLN=200. 

 

Figure 4-20 shows the phase error has been virtually eliminated but the amplitude error 

persists, and significant noise is present due mainly to the initial excitation being non-zero. 

Regardless, it is interesting that the results are not unstable even with a cell aspect ratio of 

1500. To reduce the amplitude error, the time step may be reduced by a factor of 10 by 

reducing CFLN to 20, yielding the results of Figure 4-21. Note that the degree of noise has 

increased. An increase in m-factor will reduce the noise slightly, but the best method of noise 

reduction is to switch to a modulated Gaussian pulse input such that the initial excitation is near 

zero as will be shown in the following section. 
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Figure 4-21: Infinite line source results for 𝑬𝒛 for 1mm cubic simulation space and 

𝜿𝒎𝒂𝒙=1500, 12-cell, m=2, and CFLN=20. 

 

4.2.2.2.4 100𝝁m Cubic Simulation Space 

In this section the simulation space and discretization utilized in the previous section are 

reduced by an order of magnitude (to 100𝜇𝑚 from 1mm) while maintaining the same time step 

by increasing the CFLN factor to 2000 from 200, see Figure 4-22 compared to Figure 4-20. The 

unstretched simulation space is now 𝜆0/7500 in size, and therefore has dimensions comparable 

to mechanical resonance-based antenna simulations. 
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Figure 4-22: 400MHz Infinite line source within a 100𝝁m cubic unstretched simulation 

space. 𝑬𝒛 is measured 10𝝁m away from the source. 

 

The results for 𝐸𝑧 at the observation point shown Figure 4-22 for an unstretched simulation 

space are shown in Figure 4-23:  

 

 

Figure 4-23: 𝑬𝒛 at observation point from infinite line source case shown in Figure 4-22. 

 

Note that there is significant amplitude and phase error as well as noise within the 

simulation results. Given the absence of such high amplitude noise within the unstretched 
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results of larger simulation spaces (see Figure 4-9 for example), the noise present in Figure 

4-23 is caused partly by the close proximity of the MUR1 ABCs utilized. To improve accuracy, 

the stretching scheme shown in Figure 4-10 is utilized again with 𝜅𝑚𝑎𝑥 = 15000 and 𝑚 = 2 to 

produce the results in Figure 4-24: 

 

 

Figure 4-24: Infinite line source results for 𝑬𝒛 for 100𝝁m cubic simulation space and 

𝜿𝒎𝒂𝒙=15000, 12-cell, m=2, and CFLN=2000. 

 

The phase error has been virtually eliminated but the amplitude error persists. Regardless, it 

is interesting that the results are not unstable even with a cell aspect ratio of 15,000. To reduce 

the amplitude error, the time step may be reduced by a factor of 20 to CFLN=100, and the m-

factor increased to 4, yielding the results of Figure 4-25: 
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Figure 4-25: Infinite line source results for 𝑬𝒛 for 100𝝁m cubic unstretched simulation space 

and 𝜿𝒎𝒂𝒙=15000, 12-cell, m=4, and CFLN=100. 

 

As well as exhibiting improved amplitude accuracy, the amplitude of the noise has also 

increased in Figure 4-25. The noise is virtually eliminated by utilizing a modulated Gaussian 

pulse as shown in Figure 4-26. Note that a 10.1% amplitude error persists. To further improve 

the results, the time step may be reduced, or the stretched region may be extended, or a PEC-

backed PML region may be introduced, or all the above as shown in the following sections. 
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Figure 4-26: Gaussian pulse excitation for the initially 100𝝁m cubic infinite line source 

problem. 

 

Note that much of the noise has been eliminated by switching to the modulated Gaussian 

pulse, but some noise persists. This is the noise introduced by the MUR1 ABCs which can be 

eliminated by switching to stretched PML layers. 

4.2.2.2.5 Variable 𝜿 Study 

Recall that 𝜅𝑚𝑎𝑥 = 15,000 was chosen in Figure 4-26 such that there are 20 cells per free 

space EM wavelength (𝜆0
𝐸𝑀 = 20𝜅𝑚𝑎𝑥∆) at the coarsest spatial sampling. This standard is widely 

used in numerical analysis and a study was performed to prove that this rule is adequate for 

mechanical antenna analysis as shown in Figure 4-27: 
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Figure 4-27: Results from study where the value of 𝜿𝒎𝒂𝒙 is varied. The steady state 

analytical solution and numerical results are based on a sinusoidal modulated Gaussian pulse 

input. The region where the amplitude error is most pronounced is shaded and expanded for 

clarity. 𝜿𝒎𝒂𝒙 = 𝟏𝟓𝟎𝟎𝟎 corresponds to 20 cells per free space EM wavelength. 

 

Figure 4-27 shows the results for three 𝜅𝑚𝑎𝑥 values (15,000, 30,000, & 10,000) 

corresponding to the coarsest spatial discretization of 20, 10, and 30 cells per wavelength 

respectively. The error compared to the analytical model increases as 𝜅𝑚𝑎𝑥 moves further from 

the 20 cells per wavelength standard. When 𝜅𝑚𝑎𝑥 = 30,000 the error increases to 12% since the 

spatial sampling is considered too coarse as well as some phase error is introduced. When 

𝜅𝑚𝑎𝑥 = 10,000 the error increases to 12.2% since the reduced amount of stretching brings the 

MUR1 ABCs closer to the radiator. Therefore, the 𝜅𝑚𝑎𝑥 value should be chosen such that there 

are 20 cells per wavelength to maximize the separation between the ABCs and the radiating 

elements, while maintaining adequate spatial sampling. 
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4.2.2.2.6 Stretched Region Increase 

Since increased separation of the boundary from the radiator yields more accurate results, 

including more cells within the stretched region is beneficial. This is illustrated in Figure 4-28 for 

the 100𝜇m infinite line source problem discussed in 4.2.2.2.4, with the time step maintained at 

CFLN=100: 

 

  

Figure 4-28: Effect of larger stretched regions on accuracy for the infinite line source 

problem on a 100𝝁m cubic simulation space. 

 

As seen in the figure, larger stretched regions increase the accuracy but with diminishing 

returns. For example, going from a 12 to 14 cell stretched region increases the amplitude 

accuracy from 10.1% to 8.3%, but further increasing the stretched region to 20-cells only 

increases the accuracy to 7.2%. Also note that, to achieve the 20-cell stretched region, the 

number of in-plane cells is increased from 40 to 50, adding computational load. The utilization of 



 
 

240 

 

a 14-cell stretched region therefore is seen to strike a balance between accuracy and 

computational efficiency for this case. 

4.2.2.2.7 Time Step Reduction Study 

Perhaps the most intuitive way to improve results within an electrically small simulation 

space is to reduce the time step. This is achieved within the ADI-FDTD algorithm by reducing 

the CFLN factor. 

  

Figure 4-29: Effect of time step reduction on the accuracy of the infinite line source 

simulations. 

 

Figure 4-29 shows the influence of for different CLFN (i.e. 100, 50, 25 & 10) as compared to 

the analytical results. As can be seen, for each time step reduction a corresponding 

improvement in accuracy is achieved with diminishing returns smaller than CFLN=25 for this 

case.  
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4.2.2.2.8 PML Stretched Region 

Figure 4-30 shows results for a 14-cell stretched PML region (see Figure 4-12 where 

stretching is now included as well) where the reflection error is set to 𝑒−16, a cubic interpolation 

scheme is used (m=3), and 𝜅𝑚𝑎𝑥 = 15,000 stretching is applied. 

 

 

Figure 4-30: Comparison of analytical, stretched, and stretched PML results for 𝑬𝒛 for the 

infinite electric line source problem. 

 

At CFLN=100, the stretched PML solution (CPML) exhibits a 5.2% amplitude error, an 

improvement over the 8.3% error demonstrated when only stretching is used at this time step. 

Also, with removal of the MUR1 ABCs the low amplitude noise is eliminated in the CPML 

solution. The most accurate results exhibited by a scheme that utilizes stretching only (2.1%) 

was shown in Figure 4-29 when CFLN=10 was used. This particular result is repeated in Figure 

4-30 (see green line) in order to compare to the CPML solution with CFLN=50, which displayed 
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an error of 1.2%. Therefore, including PML layers within a stretching scheme improves the 

accuracy of results even while utilizing larger time steps. 

4.2.2.2.9 CPML w/ Pre-Stretched Regions 

Since the PML layers include a fictitious (non-physical) loss the fields within the lossy layers 

are also fictitious and only the interior nodes contain true near field data which may be used to 

analyze antenna performance. It can be beneficial then to include a real stretch within the 

interior nodes, prior to introducing fictitious PML loss, to increase the size of the interior space 

without increasing computational load. Unfortunately, a degradation of accuracy occurs when 

the real stretch (𝜅) factor is not equal to 1 at the onset of the PML layers. Therefore, the interior 

nodes must be stretched then compressed back to the original size within the interior as shown 

in Figure 4-31: 

 

 

Figure 4-31: Interior stretching scheme adjacent to PML layers. 

 

The pre-stretching scheme shown in Figure 4-32 is utilized for the infinite line source, where 

the PML scheme is the same as that utilized in the previous section (i.e., 14 cells, 𝜅𝑚𝑎𝑥 =

15,000). Within Figure 4-32 the numbers between the nodes are the kappa (real stretch) factors, 

the degree of stretching of the cell with respect to the original 2.5𝜇m. As such, the 2nd node from 

the line source is now the observation point which is 10𝜇m away. 
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Figure 4-32: Infinite line source pre-stretching scheme. 

 

This scheme will exhibit lower accuracy than the standard stretched PML scheme without 

interior stretching shown in Figure 4-12, but the accuracy is reasonable as shown in Figure 

4-33: 

 

 

Figure 4-33: Comparison of analytical, stretched PML, and pre-stretched PML results for 𝑬𝒛 

for the infinite electric line source problem. 
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As shown, a slight reduction in accuracy at the same time step occurs when pre-stretching 

to an interior simulation space of over 3x the original size. This will be beneficial if a comparison 

to experimental near field values is desired, as measurements will typically take place at 

distances several times that of the geometric size of the radiator which governs the smallest 

discretization size. Though this pre-stretching method is useful, it was not utilized during any of 

the device simulations or comparisons performed in Chapter 5.  

4.2.2.3 Infinite Mechatronic Line Source 

If the infinite electric line currents (𝐽𝑧) of section 4.2.2.2 are replaced by an infinite line of 

normal stresses 𝑇𝑧𝑧 which are collocated in space and time (see Figure 4-34), then electric 

fields will be generated if the piezoelectric coefficient 𝑑33
𝑃𝐸 is not equal to zero. 

 

 

Figure 4-34: Infinite Mechatronic line source. 

 

If the magnitude of the mechanically driven current and the electrically driven current is 

identical, then the magnitude of the generated electric fields will also be identical: 

 |𝐽𝑧| = |𝑑33
𝑃𝐸�̇�𝑧𝑧| (4.5) 

This is demonstrated in Figure 4-35, where 𝐸𝑧 results from section 4.2.2.2 were also 

included for comparison. 
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Figure 4-35: Mechatronic and electric infinite line source comparison. 

 

As shown, when utilizing the same time step, identical results for 𝐸𝑧 are seen whether 

driving radiation via electric source current or via the stress induced direct piezoelectric effect. 

4.2.2.4 Infinite Magnetic Line Source 

As mentioned in section 3.8.5.4, PMC boundaries require some special treatment within the 

ADI-FDTD framework with implicit electric field update, and boundaries aligned with electrical 

interfaces. To verify that the PMC boundaries are operating properly an infinite magnetic line 

source is leveraged, in contrast to the infinite electric line source utilized in previous sections. In 

this new model the approach illustrated in Figure 4-5b was simulated under the same input 

frequency, time step, spatial discretization, etc. of the infinite electric line source investigated in 

the previous section with the magnitude of the input current equal to 𝐼0 = 377mA. 
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Figure 4-36: 400MHz Infinite magnetic line source within a 100𝝁m cubic simulation space. 

𝑯𝒛 is measured 10𝝁m away from the source. 

 

A 14-cell PEC-backed stretched PML region surrounds the line source in the xy-plane (see 

Figure 4-10 and Figure 4-12) with a reflection error of 𝑒−16, maximum stretch of 15,000, and an 

m-factor of 3. By duality theorem, the steady state time domain solution of the z-directed 

magnetic field (𝐻𝑧) for a sinusoidal input is as follows: 

 𝐻𝑧(𝜌, 𝑡) = 𝑅𝑒{�̆�𝑧𝑒
𝑗𝜔𝑡} = −𝐼0

𝜔𝜖0

4
[𝐽0(𝑘𝜌) cos (𝜔𝑡 −

𝜋

2
) + 𝑌0(𝑘𝜌)𝑠𝑖𝑛 (𝜔𝑡 −

𝜋

2
)] (4.6a) 

Where 𝜌 is the cylindrical radial coordinate, which originates at the line source, 𝜔 is the 

circular excitation frequency, 𝑘 is the wavenumber, 𝐽0/𝑌0 are Bessel functions of the 1st/2nd kind 

respectively. This may be multiplied by a Gaussian pulse for comparison with a modulated 

Gaussian pulse simulation: 

 
𝐻𝑧(𝜌, 𝑡) = −𝐼0

𝜔𝜖0

4
[𝐽0(𝑘𝜌) cos (𝜔𝑡 −

𝜋

2
) + 𝑌0(𝑘𝜌)𝑠𝑖𝑛 (𝜔𝑡 −

𝜋

2
)] 𝑒

−
(𝑡+

∆𝑡
2 −

3.6
𝑓 −

𝜌
𝑐)

2

2(
1.2
𝑓 )

2

 
(4.6b) 

Where 𝑓 is the input frequency and ∆𝑡 is the time sampling. In this section, the observation 

point is 𝜆0
𝐸𝑀/75,000 away and equation (4.6b) may be used for comparison with modulated 
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Gaussian pulse excited simulations. The results, comparing the CPML-ADI simulation to the 

analytical solution for various time steps, are plotted in Figure 4-37: 

 

 

Figure 4-37: Infinite magnetic line source results comparison for 100𝝁m simulation space 

with time step reduction. 

 

The amplitude and phase error in the numerical solution is reduced with progressively 

smaller time steps. The zoomed in image within Figure 4-37 reveals slight error in phase within 

the CFLN=50 and CFLN=25 simulations but with low amplitude error (6.1% and 3.5% 

respectively). 

4.2.2.5 Conclusions from Line Source Results 

To summarize this section 4.2.2, both infinite line source cases shown in Figure 4-5 have 

been investigated on a simulation space where the smallest spatial discretization is 𝜆0
𝐸𝑀/3e5. 

This was done to verify that the CPML method is capable of accurately modeling 

electrodynamics problems operating on computational volumes originally on the order of 

𝜆0
𝐸𝑀/1e4 in size, as these are the length scales modelers operate on when simulating 
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mechanical resonance-based antennas. The results demonstrate that errors as low as 1.2% 

may be achieved when the time step is 50x the stability requirement and the maximal mesh 

grading is 15e3 (see Figure 4-30) by utilizing the CPML method with stretched PML layers 

placed 𝜆0
𝐸𝑀/5e4 away from the source. 

4.2.3 Near to Far-Field Algorithm Check 

The near to far-field transformation is a string of code within the post-processing script that 

needs verification testing. This is performed by utilizing the analytical solution of the infinitesimal 

dipole (i.e., no numerical values are utilized). This allows the verification of the NTFF transform 

to occur separately from the ADI-FDTD algorithm, easing the debugging process. The phasor 

electric fields for the dipole solution in spherical coordinates, which apply to either the near or 

far-field, are as follows [25][26]: 

 �̆�𝑟(𝑟, 𝜃, ∅) = 𝜂0

𝐼0𝑙𝑐𝑜𝑠𝜃

2𝜋𝑟2 (1 +
1

𝑗𝛽𝑟
) 𝑒−𝑗𝛽𝑟 (4.7a) 

 �̆�𝜃(𝑟, 𝜃, ∅) = 𝑗𝜂0

𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
(1 +

1

𝑗𝛽𝑟
−

1

(𝛽𝑟)2) 𝑒−𝑗𝛽𝑟 (4.7b) 

 �̆�∅(𝑟, 𝜃, ∅) = 0 (4.7c) 

Where 𝜂0 is the free space impedance, 𝐼0 is the magnitude of the current, 𝛽 is the 

wavenumber, and 𝑙 is the length in which the current acts which should be at least an order of 

magnitude smaller than the wavelength so that the dipole may be considered infinitesimal. Also, 

𝑟, 𝜃, and ∅ are the spherical coordinates centered at the dipole point source. In the far-field, the 

analytical solution is determined by eliminating the 𝑟−2 and 𝑟−3 terms from the general solution: 

 �̆�𝑟 = 0 (4.8a) 

 �̆�𝜃 = 𝑗𝜂0

𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
𝑒−𝑗𝛽𝑟 (4.8b) 

These far-field values produce the following radiation intensity and radiated power: 
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𝑈(𝜃, ∅) ≅
𝑟2

2𝜂0
[|�̆�𝜃(𝑟, 𝜃, ∅)|

2
+ |�̆�∅(𝑟, 𝜃, ∅)|

2
] =

𝑟2

2𝜂0
[𝑅𝑒{�̆�𝜃}

2
+ 𝐼𝑚{�̆�𝜃}

2
]

=
𝑟2

2𝜂0
[(𝜂0

𝛽𝐼0𝑙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝛽𝑟

4𝜋𝑟
)
2

+ (𝜂0

𝛽𝐼0𝑙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛽𝑟

4𝜋𝑟
)
2

]

=
𝜂0

2
(
𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋
)
2

 

(4.9) 

 𝑃𝑟𝑎𝑑 = ∫ ∫ 𝑈𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅
𝜋

0

2𝜋

0

= 2𝜋
𝜂0

2
(
𝛽𝐼0𝑙

4𝜋
)

2

∫ sin3 𝜃 𝑑𝜃
𝜋

0

=
𝜂0(𝛽𝐼0𝑙)

2

12𝜋
 (4.10) 

Note that the radiation intensity is independent of ∅ and has sin2 𝜃 dependency, which is the 

famous “donut” omnidirectional pattern characteristic of dipoles. The NTFF algorithm radiation 

intensity and radiated power results are compared to equations (4.9) and (4.10). 

The NTFF algorithm accepts near field time-domain data (non-phasor) in rectangular 

coordinates, and then transforms into far-field phasor data in spherical coordinates. Therefore, it 

is necessary to convert into rectangular coordinates and to determine the instantaneous values. 

To convert equations (4.7) to steady state time domain expressions multiply by 𝑒𝑗𝜔𝑡 and take 

the real component of the product: 

𝐸(𝑟, 𝜃, ∅, 𝑡) = 𝑅𝑒{�̆�(𝑟, 𝜃, ∅)𝑒𝑗𝜔𝑡} 

𝐸𝑟(𝑟, 𝜃, ∅, 𝑡) = 𝑅𝑒 {𝜂0

𝐼0𝑙𝑐𝑜𝑠𝜃

2𝜋𝑟2
(1 −

𝑗

𝛽𝑟
) 𝑒𝑗(𝜔𝑡−𝛽𝑟)} 

 𝐸𝑟(𝑟, 𝜃, ∅, 𝑡) = 𝜂0

𝐼0𝑙𝑐𝑜𝑠𝜃

2𝜋𝑟2 (𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +
1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟)) (4.11a) 

𝐸𝜃(𝑟, 𝜃, ∅, 𝑡) = 𝑅𝑒 {𝜂0

𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
(

1

𝛽𝑟
+ 𝑗 (1 −

1

(𝛽𝑟)2))𝑒𝑗(𝜔𝑡−𝛽𝑟)} 

 𝐸𝜃(𝑟, 𝜃, ∅, 𝑡) = 𝜂0

𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2 − 1) 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟)) (4.11b) 

Which may be re-written in rectangular coordinates via the following transformation: 
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(

𝐸𝑥

𝐸𝑦

𝐸𝑧

) = [
𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ 𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅
𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
] (

𝐸𝑟

𝐸𝜃

0
) 

 

𝐸𝑥 = 𝜂0

𝐼0𝑙

2𝜋
{
𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅𝑐𝑜𝑠𝜃

𝑟2
(𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +

1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))

+ 𝛽
𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅𝑠𝑖𝑛𝜃

2𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2
− 1)𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))} 

(4.12a) 

 

𝐸𝑦 = 𝜂0

𝐼0𝑙

2𝜋
{
𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅𝑐𝑜𝑠𝜃

𝑟2
(𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +

1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))

+ 𝛽
𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅𝑠𝑖𝑛𝜃

2𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2
− 1) 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))} 

(4.12b) 

 

𝐸𝑧 = 𝜂0

𝐼0𝑙

2𝜋
{
cos2 𝜃

𝑟2
(𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +

1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))

− 𝛽
sin2 𝜃

2𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2
− 1) 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))} 

(4.12c) 

Where the spherical coordinates may be written in terms of rectangular coordinates as 

follows: 

 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, 𝜃 = 𝑎𝑐𝑜𝑠 (
𝑧

𝑟
) , ∅ =

𝑎𝑐𝑜𝑠 (
𝑥

√𝑥2 + 𝑦2
) , 𝑦 ≥ 0

−𝑎𝑐𝑜𝑠 (
𝑥

√𝑥2 + 𝑦2
) , 𝑦 < 0

 (4.12d) 

Equations (4.12) describe the electric field from an infinitesimal dipole in the near or far-field. 

Similarly, the magnetic fields induced by an electric infinitesimal dipole are as follows: 

 �̆�𝑟(𝑟, 𝜃, ∅) = �̆�𝜃(𝑟, 𝜃, ∅) = 0 (4.13a/b) 

 �̆�∅(𝑟, 𝜃, ∅) = 𝑗
𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
(1 +

1

𝑗𝛽𝑟
) 𝑒−𝑗𝛽𝑟 (4.13c) 

The time domain equivalent is: 

𝐻(𝑟, 𝜃, ∅, 𝑡) = 𝑅𝑒{�̆�(𝑟, 𝜃, ∅)𝑒𝑗𝜔𝑡} 
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𝐻∅(𝑟, 𝜃, ∅, 𝑡) = 𝑅𝑒 {𝑗
𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
(1 +

1

𝑗𝛽𝑟
) 𝑒𝑗(𝜔𝑡−𝛽𝑟)} 

 𝐻∅(𝑟, 𝜃, ∅, 𝑡) =
𝛽𝐼0𝑙𝑠𝑖𝑛𝜃

4𝜋𝑟
[
1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) − 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟)] (4.14) 

Which may be re-written in rectangular coordinates: 

(

𝐻𝑥

𝐻𝑦

𝐻𝑧

) = [
𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅ 𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅ −𝑠𝑖𝑛∅
𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
] (

0
0
𝐻∅

) 

 𝐻𝑥 = −
𝛽𝐼0𝑙𝑠𝑖𝑛∅𝑠𝑖𝑛𝜃

4𝜋𝑟
[
1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) − 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟)] (4.15a) 

 𝐻𝑦 =
𝛽𝐼0𝑙𝑐𝑜𝑠∅𝑠𝑖𝑛𝜃

4𝜋𝑟
[
1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) − 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟)] (4.15b) 

 𝐻𝑧 = 0 (4.15c) 

The time dependent EM fields (4.12 and 4.15) are then converted to phasors via a Fast 

Fourier Transform (FFT) which is embedded in the NTFF transformation algorithm. Of course, 

the FFT could have been bypassed by utilizing the original phasor analytical solutions (4.7 and 

4.13), but this is a luxury that is not afforded to the time domain data that comes from the ADI-

FDTD simulation. Therefore, validation of the NTFF code requires that the FFT be performed on 

rectilinear data. 

Three dipole cases are run for this validation effort. In the first, the dipole is applied at the 

center of the simulation space. In the second, the dipole is bisected by an xy-planar PEC, 

requiring imaged EM fields to be used to perform the NTFF transform. In the third case, the 

dipole is placed in a corner with the adjacent boundaries tangential to the dipole being set to 

PMCs and the adjacent boundary normal to the dipole set to a PEC. These cases are shown in 

Figure 4-38: 
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Figure 4-38: NTFF validation cases, (a) dipole applied at the center, (b) dipole bisected via 

orthogonal PEC such that half the fields used for the transformation are imaged, (c) Dipole cut 

into eight components using orthogonal PEC and two tangential PMCs such that 7/8ths of the 

fields used for the transformation are imaged. Case (c) is referred to as the “corner dipole”. 

 

Due to field staggering within the divergence free Yee grid, the actual location of the 

excitation can vary by half a cell with respect to what is shown in Figure 4-38. 

4.2.3.1 Centered Dipole 

First, a 400MHz 1mA harmonic source is input along length 𝑙 = ∆𝑥 = ∆𝑦 = ∆𝑧 = ∆=

1.25𝜇𝑚 = 𝜆0
𝐸𝑀/600,000 at the center of the simulation space. The electrically tiny discretization 

is roughly equal to the spatial sampling required of a mechanical wave at the same frequency 

(≈ 𝜆𝑀𝑒𝑐ℎ/20). Since the EM fields are taken from the analytical solution (no simulation 

performed) the time step is immaterial as long as enough samples are taken per period to 

acquire clean frequency data (20 samples per period herein). A Huygen box with sides of length 

2𝑎 is placed around the dipole and various values for 𝑎 are investigated as shown in Figure 

4-39: 
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Figure 4-39: Huygen boxes around a dipole at the center of the simulation space. 

 

The radiation intensity calculated via NTFF transformation using EM fields at each Huygen 

box were compared to the analytical solution (4.9) at the excitation frequency as shown in 

Figure 4-40. The radiation pattern is omnidirectional about the xy-plane (no Φ dependence), 

therefore only one planar cut is reported herein. 
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Figure 4-40: Radiation Intensity comparison to the analytical solution for multiple Huygens’s 

boxes with the dipole at the center of the simulation space. 

 

The closest Huygen’s box is the only one that exhibits an undue error which is seemingly 

caused by the fact that the dipole excitation contacts only this Huygen’s box. This will be further 

hinted at in the bisected and corner dipole cases where the Huygen’s boxes used never touch 

the radiator and undue error (>10%) is not seen. Examining Figure 4-40 NTFF results from all 

the other Huygen’s boxes yield acceptable results. Observing the zoomed in image in Figure 

4-40, the 𝑎 = 3∆, 4∆, 6∆, and 8∆ cases are all virtually identical (<5% variance) and in excellent 

agreement with the analytical solution (<5% error). Therefore, when performing the NTFF 

transform, the modeler need only verify that two different Huygen’s boxes produce virtually 

identical results to verify convergence and accuracy. The radiated power at the excitation 

frequency from the NTFF transform is 1.098e-15 Watts, which corresponds to a 0.16% error 

with respect to the analytical solution. 
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4.2.3.2 Dipole Bisected by Orthogonal PEC 

Utilizing again the 400MHz 1mA harmonic source input along length 𝑙 = ∆𝑥 = ∆𝑦 = ∆𝑧 = ∆=

1.25𝜇𝑚 = 𝜆0
𝐸𝑀/600,000 from the previous section, the excitation is now applied at the bottom of 

the simulation space (𝑧 = ∆𝑧/2 ≈ 0) and bisected by an orthogonal PEC as shown in Figure 

4-45. As mentioned in the figure, the bisecting PEC may be a symmetry boundary condition, or 

it may represent a physical ground plane. Regardless, the NTFF algorithm maps the fields 

within the simulation space to imaged fields below the PEC when performing the transformation. 

The results need not be modified if the PEC represents a symmetry boundary condition. In the 

case of a physical ground plane, the radiation intensity of the bottom hemisphere must be 

zeroed out, and the radiated power will be half. 

 

 

Figure 4-41: Huygen boxes around a dipole bisected by an orthogonal PEC. 

 

The radiation intensity, calculated via NTFF transformation using EM fields and imaged EM 

fields at each Huygen box, was compared to the analytical solution (4.9) at the excitation 

frequency as shown in Figure 4-42. The radiation pattern is omnidirectional about the xy-plane 

(no Φ dependence), therefore only one planar cut is reported herein. 
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Figure 4-42: Radiation Intensity comparison to the analytical solution for multiple Huygen’s 

boxes with the dipole bisected by an orthogonal PEC. 

 

In this case, none of the Huygen’s boxes contact the excitation and therefore all cases have 

error within tighter margins (<30%). Observing the zoomed in image in Figure 4-46, the 𝑎 = 3∆, 

4∆, 6∆, and 8∆ cases are all virtually identical (<5% variance) and in excellent agreement with 

the analytical solution (<5% error). Therefore, when performing the NTFF transform, the 

modeler need only verify that two different Huygen’s boxes produce virtually identical results to 

verify convergence and accuracy. The radiated power at the excitation frequency from the NTFF 

transform is 1.098e-15 Watts, which corresponds to a 0.15% error with respect to the analytical 

solution. 

4.2.3.3 Corner Dipole 

Utilizing again the 400MHz 1mA harmonic source input along length 𝑙 = ∆𝑥 = ∆𝑦 = ∆𝑧 = ∆=

1.25𝜇𝑚 = 𝜆0
𝐸𝑀/600,000 from the previous section, the excitation is now applied at the corner of 

the simulation space (𝑥 = ∆𝑥/2 ≈ 0, 𝑦 = ∆𝑦/2 ≈ 0, and 𝑧 = 0) as shown in Figure 4-43: 
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Figure 4-43: Huygen boxes around a dipole at the corner of the simulation space. 

 

The radiation intensity calculated via NTFF transformation using EM fields and imaged EM 

fields at each Huygen box were compared to the analytical solution (4.9) at the excitation 

frequency as shown in Figure 4-44. The radiation pattern is omnidirectional about the xy-plane 

(no Φ dependence), therefore only one cut is reported herein. 
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Figure 4-44: Corner Dipole Radiation Intensity comparison to the analytical solution for 

multiple Huygen’s boxes. 

 

In this case, none of the Huygen’s boxes contact the excitation and therefore all cases have 

error within tighter margins (<15%). Observing the zoomed in image in Figure 4-44, the results 

from all but the smallest box are virtually identical (<5% variance) and in excellent agreement 

with the analytical solution (<5% error). Therefore, when performing the NTFF transform, the 

modeler need only verify that two different Huygen’s boxes produce virtually identical results to 

verify convergence and accuracy. The radiated power at the excitation frequency from the NTFF 

transform is 1.097e-15 Watts, which corresponds to a 0.05% error with respect to the analytical 

solution. 

4.2.4 Infinitesimal Dipoles 

A pivotal electrodynamic problem is the infinitesimal dipole case which herein is simulated to 

verify agreement with the ADI-FDTD code. 
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4.2.4.1 Far-Field Electric Dipole 

Consider a simulation space that is cubic, with edge lengths equal to 3x the free space EM 

wavelength as shown in Figure 4-45. The z-directed electric field will be compared to the 

analytical dipole solution at the observation point which is located a distance 𝑎 from the dipole in 

both the x and y directions: 

 

 

Figure 4-45: Geometry for infinitesimal dipole problem. A single quadrant of an xy-planar cut 

that bisects the simulation space is shown. The dipole and the observation point both lie on this 

plane. 1st order MUR1 absorbing boundary conditions are used on all six boundary planes. 

 

The general analytical solution for the infinitesimal dipole, which applies both in the near and 

far-field, was written in the NTFF validation section and is repeated here in rectangular 

coordinates:  

 

𝐸𝑥 = 𝜂0

𝐼0𝑙

2𝜋
{
𝑠𝑖𝑛𝜃𝑐𝑜𝑠∅𝑐𝑜𝑠𝜃

𝑟2
(𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +

1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))

+ 𝛽
𝑐𝑜𝑠𝜃𝑐𝑜𝑠∅𝑠𝑖𝑛𝜃

2𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2
− 1) 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))} 

(4.12a) 

 

𝐸𝑦 = 𝜂0

𝐼0𝑙

2𝜋
{
𝑠𝑖𝑛𝜃𝑠𝑖𝑛∅𝑐𝑜𝑠𝜃

𝑟2
(𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +

1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))

+ 𝛽
𝑐𝑜𝑠𝜃𝑠𝑖𝑛∅𝑠𝑖𝑛𝜃

2𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2
− 1) 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))} 

(4.12b) 
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𝐸𝑧 = 𝜂0

𝐼0𝑙

2𝜋
{
cos2 𝜃

𝑟2
(𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +

1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))

− 𝛽
sin2 𝜃

2𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2
− 1) 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))} 

(4.12c) 

 𝑟 = √𝑥2 + 𝑦2 + 𝑧2, 𝜃 = 𝑎𝑐𝑜𝑠 (
𝑧

𝑟
) , ∅ =

𝑎𝑐𝑜𝑠 (
𝑥

√𝑥2 + 𝑦2
) , 𝑦 ≥ 0

−𝑎𝑐𝑜𝑠 (
𝑥

√𝑥2 + 𝑦2
) , 𝑦 < 0

 (4.12d) 

These equations describe the electric field from an infinitesimal dipole in the near or far-field. 

Similarly, the magnetic fields induced by an electric infinitesimal dipole are as follows: 

 𝐻𝑥 = −
𝛽𝐼0𝑙𝑠𝑖𝑛∅𝑠𝑖𝑛𝜃

4𝜋𝑟
[
1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) − 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟)] (4.15a) 

 𝐻𝑦 =
𝛽𝐼0𝑙𝑐𝑜𝑠∅𝑠𝑖𝑛𝜃

4𝜋𝑟
[
1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) − 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟)] (4.15b) 

 𝐻𝑧 = 0 (4.15c) 

A comparison between the analytical and numerical solutions at 𝑎 = 𝜆/4 (see Figure 4-45) is 

presented in Figure 4-46. The input frequency is 400MHz and the magnitude of the input current 

is 1mA. 
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Figure 4-46: Infinitesimal dipole results comparison for 𝑬𝒛 at 𝒙 = 𝒚 = 𝒂 = 𝝀/𝟒. 

 

Figure 4-46 shows good agreement between the ADI-FDTD numerical solution and the 

analytical solution. As the observation point is moved closer to the MUR1 boundary conditions 

(𝑎 = 3𝜆/4) a degradation of results manifests as spurious ripples after the pulse dies out as 

shown in Figure 4-56: 
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Figure 4-47: Infinitesimal dipole results comparison for 𝑬𝒛 at 𝒙 = 𝒚 = 𝒂 = 𝟑𝝀/𝟒 (halfway 

between the radiator and the MUR1 ABCs). Spurious ripples after the modulated Gaussian 

pulse dies out are observed due to the close proximity of the MUR1 ABCs. 

 

To eliminate the ripples, 14-cell wide perfectly matched layer regions may be added directly 

adjacent to the boundaries which are switched from MUR1 ABCs to PECs. In this model the 

reflection error is set to 𝑒−64 within the lossy PML layers and the loss is increased in cubic 

fashion (m=3) yielding the results of Figure 4-48: 
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Figure 4-48: Infinitesimal dipole results comparison for 𝑬𝒛 at 𝒙 = 𝒚 = 𝒂 = 𝟑𝝀/𝟒. This is 

halfway between the radiator and the PECs and directly adjacent to the onset of the PML layers. 

Spurious ripples after the modulated Gaussian pulse, seen previously in Figure 4-56, are no 

longer present. 

 

Figure 4-48 reveals that spurious numerical artifacts may be eliminated by using PEC-

backed PML layers. All EM fields within these PML layers are non-physical however, so PML 

layers should not be used when physical near-fields are to be investigated at distances an order 

of magnitude of the dimensions of the radiator away or more (i.e., when validation with 

experimental near-field data is performed). In these cases, ABC backed stretched regions are 

preferable. 

4.2.4.2 Far-Field Mechatronic Dipole 

If the point current source (𝐽𝑧) of the previous section 4.2.4.1 is substituted by a point stress 

source (𝑇𝑧𝑧), identical electric fields will be created if the following relation holds: 

 |𝐽𝑧| = |𝑑33
𝑃𝐸�̇�𝑧𝑧| (4.5) 

Where 𝑑33
𝑃𝐸 is the piezoelectric coefficient coupling normal stresses in the z-direction to the 

parallel electric fields (assuming the material is poled in the z-direction). This is demonstrated in 
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Figure 4-49, where the stress input is compared to both the source current input case and the 

analytical solution with excellent agreement observed. 

 

 

Figure 4-49: Mechatronic Dipole 𝑬𝒛 time history comparison for 𝒓 = 𝟑√𝟐𝝀/𝟐. The analytical, 

source current, and stress input cases all have the same 1mA effective current. 

 

A logarithmic plot of the electric field magnitude versus distance 𝑟 is below in Figure 4-50: 
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Figure 4-50: Mechatronic Dipole 𝑬𝒛
𝒎𝒂𝒙 vs. 𝒓 comparison. The analytical, source current, and 

stress input cases all have the same 1mA effective current. 

 

Errors begin to increase closer to the radiator due to geometric issues as the length ∆𝑧 over 

which the electric current acts becomes roughly equal to the distance 𝑟 of the measurement. 

4.2.4.3 Far-Field Magnetic and Mechnetic Dipole 

If the point current source (𝐽𝑧) of the previous section 4.2.4.1 is substituted by a point 

magnetic current source (ℳ𝑧) then a magnetic dipole is achieved. The magnetic current will be 

present in Faraday’s law by definition and the ADI forcing vector by substitution. The analytical 

solution is acquired via duality theorem. 

 

𝐻𝑧 =
𝐼𝑚𝑙

𝜂02𝜋
{
cos2 𝜃

𝑟2 (𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) +
1

𝛽𝑟
𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))

− 𝛽
sin2 𝜃

2𝑟
(

1

𝛽𝑟
𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑟) + (

1

(𝛽𝑟)2 − 1) 𝑠𝑖𝑛(𝜔𝑡 − 𝛽𝑟))} 

(4.16) 

Where 𝐼𝑚 is the magnitude of the fictional magnetic current (𝐼𝑚 = ℳ𝑧∆𝑥∆𝑦), 𝜂0 is the free 

space impedance, and 𝛽 is the wavenumber. Note that the magnitude of 𝐻𝑧 will equal 𝐸𝑧 from 

the 1mA electric dipole case of section 4.2.4.1 if: 
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 𝐼𝑚 = 𝜂0
2𝐼0 =

𝜇0

𝜖0
(1𝑚𝐴) = 142 𝑉 (4.17) 

Additionally, a point stress source (𝑇𝑧𝑧), will create identical magnetic fields if the following 

relation holds: 

 |ℳ𝑧| = |𝑑33
𝑃𝑀�̇�𝑧𝑧| (4.18) 

Where 𝑑33
𝑃𝑀 is the piezomagnetic coefficient coupling normal stresses in the z-direction to 

the parallel magnetic fields (assuming the material is poled in the z-direction). The stress rate 

may be input into the code through the magnetic constitutive relation: 

 𝐻𝑧

𝑛+
1
2 = 𝐻𝑧

𝑛 +
1

𝜇0
(𝐵𝑧

𝑛+
1
2 − 𝐵𝑧

𝑛) −
∆𝑡𝑑33

𝑃𝑀

2𝜇0
�̇�𝑧𝑧

𝑛+
1
2 (4.19a) 

 

 𝐻𝑧
𝑛+1 = 𝐻𝑧

𝑛+
1
2 +

1

𝜇0
(𝐵𝑧

𝑛+1 − 𝐵𝑧

𝑛+
1
2) −

∆𝑡𝑑33
𝑃𝑀

2𝜇0
�̇�𝑧𝑧

𝑛+
1
2 (4.19b) 

Since the stress is assumed to be uniform, the stress gradient terms appearing in the ADI 

forcing vector will be zero. Thus, the mechnetic dipole excites magnetic fields through a 

piezomagnetic current term that appears in the constitutive relation rather than a magnetic 

current term in Faraday’s law. Fantastic agreement is demonstrated in Figure 4-51, where the 

stress input is compared to both the magnetic source current input case and the analytical 

solution at observation distance 𝑟 = 3√2𝜆/4. 
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Figure 4-51: Mechnetic Dipole 𝑯𝒛 time history comparison for 𝒓 = 𝟑√𝟐𝝀/𝟐. The analytical, 

magnetic source, and stress input cases all have the same 142V effective voltage. 

 

A logarithmic plot of the magnetic field magnitude versus distance 𝑟 is below in Figure 4-52: 

 

 

Figure 4-52: Mechnetic Dipole 𝑯𝒛
𝒎𝒂𝒙 vs. 𝒓 comparison. The analytical, magnetic source, and 

stress input cases all have the same 142V effective voltage. 

4.2.4.4 Corner Dipole Case 

Mechanical antennas are electrically small enough that many behave as infinitesimal 

dipoles, especially those with dipole-like geometries (e.g., the SLAC piezoelectric antenna 
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[152]). As such, symmetry conditions may be leveraged to analyze the performance of such 

antennas with a computational load reduced by a factor of 8 as shown in Figure 4-53 for a z-

directed excitation. The dipole (point source) is applied at the corner of the simulation space 

with the two adjacent tangential boundaries set to PMCs generating 3 parallel virtual sources as 

shown in Figure 4-53(b). The adjacent normal boundary is set to a PEC, generating another 4 

virtual currents. These 8 sources (1 real, 7 virtual) allow for the dipole to be modelled using an 

eighth of the computational space. 

 

 

Figure 4-53: Corner dipole case where only the corner cell is represented. Since PMC 

boundaries truncate half a cell inward, an “empty region” will be present where all fields are not 

updated. This region does not affect the simulation results. (a) 2D representation showing the 

current input into the simulation (𝑱𝒛
𝑰𝒏𝒑𝒖𝒕

) and virtual currents (𝑱𝒛
𝑽𝒊𝒓𝒕𝒖𝒂𝒍), (b) 3D representation 

showing the spatial location of the effective excitation (𝑱𝒛
𝑬𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆

). 

 

The dipole will now effectively act half a cell staggered in the xy-plane and aligned with the 

cell interface in the z-direction (i.e., collocated with the 𝐻𝑧 field) as shown in Figure 4-53(b). 
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Since this effective point excitation is the amalgamation of the other 8 sources, the input must 

be set to an eighth of the intended value (e.g., if a 1mA is to be studied, then input 1/8mA at the 

corner). The corner dipole continues to act over the length ∆𝑧 and the area ∆𝑥∆𝑦. 

4.2.4.4.1 Far-Field Corner Dipole Case 

A comparison between the analytical solution and the corner dipole simulation is made for 

𝑥 = 𝑦 = 𝑎 = 14.5𝜆/20 in Figure 4-54 where good agreement is demonstrated. The excitation is 

1mA and 400MHz with the discretization set to ∆= 𝜆/20 and PML layers added as in the 

previous case (see 4.2.4.1) except now only a 30x30x30 cell simulation space is necessary 

(due to symmetry conditions of Figure 4-53). 

 

 

Figure 4-54: Corner infinitesimal dipole case results comparison at 𝒙 = 𝒚 = 𝒂 = 𝟏𝟒. 𝟓𝝀/𝟐𝟎 

with 𝒓 = √𝒙𝟐 + 𝒚𝟐. 

 

A comparison of the electric field magnitude versus distance 𝑟 is below in Figure 4-55: 
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Figure 4-55: Corner dipole case comparison of 𝑬𝒛 vs. 𝒓 between the analytical solution and 

the ADI-FDTD simulation. 

 

Errors begin to increase closer to the radiator due to geometric issues as the length ∆𝑧 over 

which the electric current acts becomes roughly equal to the distance 𝑟 of the measurement. 

Regardless, both near-field and far-field points are observed to agree with the analytical 

solution. 

4.2.4.4.2 Progressive Shrink Study for Corner Dipole 

The corner dipole case will now be validated on progressively shrinking simulation spaces 

such that the finest discretization is on the order of 1/20 of the mechanical wavelength at the 

excitation frequency. The source is a 400MHz 1mA infinitesimal dipole. Consider the geometry 

of Figure 4-56 where the symmetry boundaries are as presented in section 4.2.4.4. the other 

three boundaries are MUR1 ABCs. Adjacent to these ABCs are 16-cell stretched regions with 

𝜅𝑚𝑎𝑥 = 30 and 𝑚 = 3, such that most of the computational space is stretched.  
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Figure 4-56: 400MHz 1mA corner dipole case within a 𝟐𝟎 × 𝟐𝟎 × 𝟐𝟎 cell cubic simulation 

space. 𝑬𝒛 is measured at a distance 𝒓 away from the effective source. 

 

The goal is to measure EM fields at distances several times larger than the finest 

discretization (Δ𝑚𝑖𝑛) which in multiferroic antenna simulations will be related to the mechanical 

wavelength as Δ𝑚𝑖𝑛 ≤ 𝜆𝑚𝑒𝑐ℎ/20. This is crucial when comparisons are to be made with 

experimental data which is often taken at distances orders of magnitude larger than the physical 

dimensions of the mechanical antenna (see [152]). As such, most of the observation points are 

within the stretched region and therefore MUR1 ABCs were used instead PEC-backed PMLs. 

Inclusion of non-physical PML losses within this stretched region would thus produce erroneous 

results at such observation points. The modeler may choose instead to retain both the boundary 

adjacent PMLs and the ability to make comparisons with experimental results by including a 

purely stretched region interior to the outer PML region and this methodology will be discussed 

later in this section. 

The numerical results with CFLN=1 for 𝐸𝑧 vs. 𝑟 are compared to the analytical solution in 

Figure 4-57, where 𝑟 values both inside and outside of the stretched regions are utilized. 
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Figure 4-57: Comparison between analytical and numerical solution of 𝑬𝒛 vs. 𝒓 from 

infinitesimal corner dipole case shown in Figure 4-56 with CFLN=1. Points both inside and 

outside of the stretched regions were used in the comparison. Onset of error at large 𝒓 values is 

caused by reflections off the MUR1 ABCs. 

 

For observation points 8 cells or more away from the ABCs, the amplitude error is negligible 

(<6%) with errors rising to as high as 27.5% directly adjacent to the boundary. The loss of 

fidelity at higher 𝑟 values is caused by the MUR1 absorbing boundaries. To illuminate this, 

Figure 4-58 shows the time history plots of four observation points where an onset of worsening 

amplitude and phase degradation is observed at the ABC adjacent node (Figure 4-58(d)). 

Regardless, due to the cell stretching, this error is confined to the outer periphery of the 

simulation space and an interior kernel of good agreement is maintained as shown in Figure 

4-58(a)-(c) where the observation points are within 𝜆/50 away from the radiator (i.e., all within 

the near-field). 
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Figure 4-58: Time histories of 𝑬𝒛 for various points along 𝒓. (a) 𝒓 = 𝟐. 𝟔𝟓𝒎𝒎, (b) 𝒓 =

𝟔. 𝟏𝟗𝒎𝒎, (c) 𝒓 = 𝟏𝟒. 𝟓𝒎𝒎, (d) 𝒓 = 𝟐𝟏𝟑𝒎𝒎. Good agreement is seen save for the point directly 

adjacent to the MUR1 ABC (i.e., at 𝒓 = 𝟐𝟏𝟑𝒎𝒎). 

 

The smallest discretization is now reduced by an order of magnitude to ∆𝑚𝑖𝑛= 125𝜇𝑚, while 

maintaining ∆𝑥
𝑚𝑎𝑥= ∆𝑦

𝑚𝑎𝑥= ∆𝑧
𝑚𝑎𝑥= 𝜆𝐸𝑀/20 as the largest discretization by increasing the 

maximum stretch by an order of magnitude (𝜅𝑚𝑎𝑥 = 300) as shown in Figure 4-59. The size of 

the stretched regions is maintained at 16-cells with 𝑚 = 3, the CFLN factor is maintained at 1 

such that the ∆𝑡 is reduced by an order of magnitude, and the input current is maintained at 

1mA. 
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Figure 4-59: 400MHz 1mA corner dipole case within a 𝟐𝟎 × 𝟐𝟎 × 𝟐𝟎 cell cubic simulation 

space. 𝑬𝒛 is measured at a distance 𝒓 away from the effective source. 

 

The numerical results for 𝐸𝑧 vs. 𝑟 are compared to the analytical solution in Figure 4-60, 

where 𝑟 values both inside and outside of the stretched regions are utilized. 
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Figure 4-60: Comparison between analytical and numerical solution of 𝑬𝒛 vs. 𝒓 from 

infinitesimal corner dipole case shown in Figure 4-59 with CFLN=1. Points both inside and 

outside of the stretched regions were used in the comparison. Onset of error at large 𝒓 values is 

caused by reflections off the MUR1 ABCs. Due to large degree of stretching (𝜿𝒎𝒂𝒙 = 𝟑𝟎𝟎) a 

zoomed in image is included to better highlight to fields at nodes directly adjacent to the 

radiator. 

 

For observation points 4 cells or more away from the ABCs the amplitude error is negligible 

(<6%) with errors rising to as high as 33.9% directly adjacent to the boundary. Thus, the low 

fidelity region, due to ABC spurious reflection, occupies fewer cells in this case (where ∆𝑚𝑖𝑛=

125𝜇𝑚) than that of the previous case (where ∆𝑚𝑖𝑛= 1.25𝑚𝑚).  

There are multiple methods of achieving accurate results. Another approach is to include 

PML layers directly adjacent to PEC boundaries, with a purely stretched region intermediate 

between the PMLs and the interior unstretched lossless region as shown in the Figure 4-61 

inset. A simulation was performed utilizing 10 PML layers with reflection error set to 𝑅(0)=𝑒−16 

and m=3. A 6-cell wide pre-stretching region internal to the PML layers is utilized where the 
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cells are stretched to 𝜅 = 100. The degree of stretching is not reduced back to 1 prior the onset 

of the PML region. Within the PML layers the cells are stretched from 𝜅 = 100 to 𝜅 = 300 at 

m=3.  

 

 

Figure 4-61: Comparison between analytical and numerical solution of 𝑬𝒛 vs. 𝒓 from 

infinitesimal corner dipole case shown in Figure 4-59 but with a pre-stretched region (highlighted 

red in the figure). Points both inside and outside of the stretched regions were used in the 

comparison and CFLN=1. 

 

Note that in Figure 4-61, accurate results are seen up to 𝑟 = 0.0375𝑚. Greater distances are 

not plotted since these locations are within the PML region and are therefore non-physical. 

Since in Figure 4-60 accuracy is also seen at 𝑟 = 0.0375𝑚, either approach is acceptable. 

4.3 Micromagnetic Testing 

This section focuses on a validation case for the magnetic damping via convolutional 

integral approach presented in Chapter 2. Due to a shift in focus on piezoelectric rather than 

piezomagnetic antenna elements, magnetic damping is not included in the device simulations 
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and comparisons Chapter 5. This section is only included for completeness. First, the analytical 

solution for the convolution integral is derived. Then the ADI-FDTD code is compared to 

commercial software. 

4.3.1 Analytical Solution of the Convolution Integral 

From Section    the convolution integral for the x-directed magnetic field is as follows: 

 𝐻𝑥(𝑡) = ∫ [𝛽𝑥𝑥
𝜇

+ (
1

𝜇0
− 𝛽𝑥𝑥

𝜇
)𝑒−a(𝑡−𝜏)]

𝜕𝐵𝑥

𝜕𝜏
𝑑𝜏

𝑡

0−
+ ∫ 𝛽𝑥𝑦

𝜇
(1 − 𝑒−a(𝑡−𝜏))

𝜕𝐵𝑦

𝜕𝜏
𝑑𝜏

𝑡

0−
 (2.171a) 

Focusing on an x-directed harmonic excitation of the form 𝐵𝑥(𝜏) = |𝐵|sin(𝜔𝜏) yields the 

following: 

 𝐻𝑥(𝑡) = |𝐵|𝜔 ∫ [𝛽𝑥𝑥
𝑇 + (

1

𝜇0
− 𝛽𝑥𝑥

𝑇 ) 𝑒−a(𝑡−𝜏)] cos(𝜔𝜏)𝑑𝜏
𝑡

0−
 (4.20) 

Split the integral into two parts as follows: 

 

𝐻𝑥(𝑡) = |𝐵|𝛽𝑥𝑥
𝑇 𝜔 ∫ cos(𝜔𝜏) 𝑑𝜏

𝑡

0−
+ |𝐵| (

1

𝜇0
− 𝛽𝑥𝑥

𝑇 )𝜔 ∫ 𝑒−a(𝑡−𝜏) cos(𝜔𝜏) 𝑑𝜏
𝑡

0−

= |𝐵|𝛽𝑥𝑥
𝑇 𝜔𝐼1 + |𝐵| (

1

𝜇0
− 𝛽𝑥𝑥

𝑇 )𝜔𝐼2 

(4.21) 

The first integral is determined as follows: 

 |𝐵|𝛽𝑥𝑥
𝑇 𝜔𝐼1 = |𝐵|𝛽𝑥𝑥

𝑇 𝜔 ∫ cos(𝜔𝜏) 𝑑𝜏
𝑡

0−
= |𝐵|𝛽𝑥𝑥

𝑇 [sin(𝜔𝜏)]|
𝑡
 
0

= |𝐵|𝛽𝑥𝑥
𝑇 sin(𝜔𝑡) (4.22) 

Now focus on the second integral: 

 𝐼2 = ∫ 𝑒−a(𝑡−𝜏) cos(𝜔𝜏) 𝑑𝜏
𝑡

0−
=

1

𝑎
𝑐𝑜𝑠(𝜔𝜏)𝑒−a(𝑡−𝜏)|

𝑡
 
0

+
𝜔

𝑎
∫ sin(𝜔𝜏)𝑒−a(𝑡−𝜏)𝑑𝜏

𝑡

0−
 (4.23a) 

 

 𝐼2 =
1

𝑎
{𝑐𝑜𝑠(𝜔𝑡) − 𝑒−𝑎𝑡 + 𝜔 [

1

𝑎
𝑠𝑖𝑛(𝜔𝜏)𝑒−a(𝑡−𝜏)|

𝑡
 
0

−
𝜔

𝑎
∫ 𝑒−a(𝑡−𝜏) cos(𝜔𝜏) 𝑑𝜏

𝑡

0−
]} (4.23b) 

 

 𝐼2 =
1

𝑎
{𝑐𝑜𝑠(𝜔𝑡) − 𝑒−𝑎𝑡 +

𝜔

𝑎
[𝑠𝑖𝑛(𝜔𝑡) − 𝜔𝐼2]} (4.23c) 
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Solving (4.23c) for 𝐼2 yields: 

 
𝐼2 =

1

𝑎 (1 + (
𝜔
𝑎
)
2
)
{𝑐𝑜𝑠(𝜔𝑡) − 𝑒−𝑎𝑡 +

𝜔

𝑎
𝑠𝑖𝑛(𝜔𝑡)} 

(4.23d) 

Therefore, the magnetic field response is as follows: 

 

𝐻𝑥(𝑡) = |𝐵|𝛽𝑥𝑥
𝑇 sin(𝜔𝑡)

+ |𝐵| (
1

𝜇0
− 𝛽𝑥𝑥

𝑇 )
𝜔𝜏

(1 + (𝜔𝜏)2)
{𝑐𝑜𝑠(𝜔𝑡) − 𝑒−

𝑡
𝜏 + 𝜔𝜏𝑠𝑖𝑛(𝜔𝑡)} 

(4.24) 

Where the Greek letter Tau is now being used to represent the relaxation time rather than 

the integration dummy variable. Equation (4.24) could be used for validation of the FDTD code, 

but focus shifted towards comparison with commercial software instead. 

4.3.1.1 FDTD Simulation and Comparison 

A simulation was performed in which a thin-film strip of y-biased magnetic material, with 

dimensions 6.224𝜇m×1mm×492nm, was excited in the x-direction by a 400MHz harmonic 

magnetic field of amplitude 4.85 kA/m. The saturation magnetization of the material (𝑀𝑠) was set 

to 4.85e5 A/m and the Gilbert damping constant (𝛼) was set to 0.045. For comparison purposes 

the same magnetic problem is modeled in a commercially available LLG code (MuMax3 [242]). 

The resulting 𝑀𝑥 vs. 𝐻𝑥 hysteresis loop for both the FDTD and LLG code are shown in Figure 

4-62. The inset of Figure 4-62 provides a zoomed in image near the point 𝑀𝑥 = 𝐻𝑥 = 0 to better 

compare and contrast the two codes. As one can see there is good agreement between the two 

codes. Also, if one calculates the energy lost per cycle between the LLG simulation and the FDTD 

code they are 2.7656 J/𝑚3 and 1.4634 J/𝑚3 respectively. While this is a very reasonable error for 

damping, this error can be further reduced by modifying the Gilbert damping factor with an 

effective Gilbert damping term as determined from the LLG simulation, i.e. effective damping for 

that geometry and material. Using this modified phenomenological approach (FDTD Adjusted 

curve) almost exact agreement is obtained to the extent that the two lines are indistinguishable. 
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Figure 4-62: Mx vs. Hx for small x-directed excitation of y-biased thin film magnetic 

strip. 
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CHAPTER 5: DEVICE SIMULATIONS 

In this chapter, simulations on devices are presented. The code of Chapter 3, which was 

tested in Chapter 4, is compared to experimental data in Section 5.1 for a homogenous free 

space and electrodynamics only. Subsequently, in Section 5.2, piezoelectric material is 

introduced to compare to one last analytical solution for the fields within the piezoelectric. The 

input is a stress that is known a priori, as such the simulation is not yet fully coupled 

(elastodynamics is not utilized). Then the excitation methodology of Section 3.12 is tested in 

Section 5.3. At this point it will be clear that the fields both inside and outside the piezoelectric 

are accurate, and that the excitation methodology is valid. Therefore, fully coupled simulations 

are ready to be performed with high confidence. In Section 5.4, fully coupled simulations on an 

infinite planar array of piezoelectric antennas are performed at variable array spacing to 

characterize the mutual depolarization effect and provide design guidance for future array 

platforms. Finally, in Section 5.5, a multimode alternate poling piezoelectric antenna capable of 

expanding the operational bandwidth is discussed. 

5.1 SLAC Experimental Comparison (Electrodynamics and Homogenous Free Space) 

Kemp et al [152] built and tested a very low frequency (VLF) piezoelectric antenna at 

35.5kHz, referred to herein as the SLAC antenna due to its development at the SLAC National 

Accelerator Laboratory. Figure 5-1 shows the SLAC antenna has an axial length of 9.4cm and a 

1.6cm diameter with experimental 𝐸𝑧 measurements performed in the near field as a function of 

radial distance 𝑟 from the antenna with z=0. The measured intrinsic dipole moment rate (�̇�) was 

reported to be 7.5mA-m and this value was used as input into the ADI-FDTD solver (i.e. point 

source current Jz
S= �̇�/∆𝑥∆𝑦∆𝑧 directly into Ampere’s law) to assess the accuracy of the 

proposed computational model. In this initial model verification, elastodynamics was excluded 

and the primary focus was on validating the Maxwell portion of the code. In the computational 

model, we used corner symmetry boundary conditions (PMCs in-plane and a PEC ground as in 
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Figure 5-1) to reduce the size of the modeled space. Additionally, as shown in Figure 5-1 there 

are Mur1 ABCs with adjacent stretched regions that are 16-cells wide to reduce error. 

 

 

Figure 5-1: Simulation setup for the SLAC antenna experimental validation study. 

 

The smallest cell sizes [∆𝑥 = ∆𝑦 = 1.44𝑐𝑚 and ∆𝑧 = 9.40𝑐𝑚] are within the uniform interior 

non-stretched region. The discretization was selected such that the source current acts along 

one cell in the z-direction across an area equivalent to the SLAC bar cross-section (1.44cm2). 

Stretching is cubically (𝑚 = 3) increased with maximum stretching factors (𝜅𝑥, 𝜅𝑦, and 𝜅𝑧) 

chosen such that the largest discretization is 𝜆𝐸𝑀/20 (𝜅𝑥
𝑚𝑎𝑥 = 𝜅𝑦

𝑚𝑎𝑥 ≅ 29340, and 𝜅𝑧
𝑚𝑎𝑥 ≅ 4495). 

Figure 5-2 shows the simulated FDTD results (Ez and Bx) are compared to the SLAC measured 

values (e.g. only Ez measured by SLAC) versus the radial distance from the antenna. In 

addition to these data points a 1/𝑟3 electric field decay along with a 1/𝑟2 magnetic flux decay 

are provided. As can be seen when comparing the FDTD with the SLAC electric field decay 
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there is extremely good agreement between the two as well as agreement with the expected 

decay from a dipole analytical solution. Furthermore, the FDTD code shows an excellent 

agreement with the magnetic flux decay pattern from a dipole model. 

 

 

Figure 5-2: Plot of Ez and Bx  values from FDTD simulation vs. the range r. Measured values 

for Ez provided by [152] (SLAC) are also shown. The solid lines are fits to the data. The 

“Moment” from which r originates is a single applied source current Jz
S within the FDTD 

simulation. This source current represents the SLAC piezoelectric antenna. 

 

These results provide validation of the electromagnetic portion of the code to accurately 

reflect experimental data as well as being able to represent the electromagnetic field around an 

extremely electrically small antenna in the near field. 
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5.2 Infinite Piezoelectric Plate Analytical Comparison 

In this section, an infinite plate of piezoelectric material is simulated to compare to an 

analytical solution. First, the analytical solution is derived in Section 5.2.1. Then, the comparison 

is made in Section 5.2.2 along with a discussion of the results. 

5.2.1 Analytical Solution for Internal EM Fields within an Infinite Piezoelectric Plate 

The filling density  describes how much of a plane is made up of piezoelectric material. 

Thus  = 1 corresponds to an infinite plate of piezoelectric material and  → 0 for a single long 

slender bar. Consider the infinite square regular array of piezoelectric material of Figure 5-3. 

The piezoelectric material is transversely isotropic about the out-of-plane 𝑧 axis. 

 

 

Figure 5-3: Infinite square planar array of piezoelectric material, each excited by stress Tzz
in 

which is uniform in-plane. The minimum spacing between elements is defined as d. The cross-

section of each antenna is square with dimension w. The length between lines of symmetry is L. 

 

The minimum spacing between the elements is d and the square cross-sectional dimension 

is w. Note in Figure 5-3 that as the spacing 𝑑 approaches zero, the entire xy-plane fills with 

piezoelectric material ( = 1) and an infinite plate is achieved. The filling density for this array 

may be written as in equation (5.1). 
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 𝜓 = (
𝑤

𝑤 + 𝑑
)
2

= (
𝑤

𝐿
)
2

 (5.15) 

Each piezoelectric element is excited by stress Tzz
in which does not vary in-plane. Thus, as d 

→ 0 and an infinite plate is achieved, no spatial variation in-plane exists. From Ampere’s law 

within the material, this yields: 

 �̇�𝑧
𝑖𝑛𝑡 = 𝐻𝑦,𝑥 − 𝐻𝑥,𝑦 = 0 (5.2) 

Therefore, internal flux 𝐷𝑧
𝑖𝑛𝑡 is constant and can be assumed to be zero [102][104][105]. 

Also, since the piezoelectric material is transversely isotropic about the 𝑧 axis, and the uniaxial 

stress state holds (𝑇𝑧𝑧 is the only non-zero stress), 𝐷𝑥
𝑖𝑛𝑡 and 𝐷𝑦

𝑖𝑛𝑡 are also zero. Since electric 

flux is the source of EM radiation [27], this means that the infinite plate ( = 1) for out-of-plane 

uniaxial stress cannot radiate. As internal 𝐷𝑧
𝑖𝑛𝑡 is zero, the internal electric field 𝐸𝑧

𝑖𝑛𝑡 may be 

readily determined using the electric constitutive relation as follows: 

 𝐸𝑧
𝑖𝑛𝑡 = −𝑔33𝑇𝑧𝑧 = −

𝑑33

𝜖33
𝑇 𝑇𝑧𝑧 (5.3) 

Since the flux is constant in the  = 1 infinite plate, the stiffness that is operative is the cD 

value with corresponding resonance frequency of frcD. Thus, the opposite state of a single long 

slender element, like [152] which is known to radiate, will exist under a constant field state. The 

stiffness that is operative is the cE value with corresponding resonance frequency of frcE. In this 

case, the radiation from the piezoelectric antenna is optimal. The characteristics described in 

this section and the internal fields from (5.2) and (5.3) will be seen to obtain for the  = 1 infinite 

plate in the following Section 5.2.2. 

5.2.2 Simulation Results Comparison to Analytical Solution 

Consider a 1.26m thick infinite piezoelectric plate resting on a ground plane and poled out-

of-plane (z-direction) as shown in Figure 5-4(a). If a uniform stress excitation (Tzz
in) is applied, all 

fields within the plate are spatially invariant in-plane and analytical expressions for the internal 
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electric field (𝐸𝑧
𝑖𝑛𝑡) and electric flux (𝐷𝑧

𝑖𝑛𝑡) may be determined. In this preliminary study, this 

uniform stress case is used to verify agreement between the simulated and analytical 𝐸𝑧
𝑖𝑛𝑡 and 

𝐷𝑧
𝑖𝑛𝑡 for the infinite piezoelectric plate of Figure 5-4. The goal is to further assess the accuracy of 

the proposed computational model. For this study, the uniform stress is known a priori. Thus, 

piezoelectricity is now utilized but elastodynamics is still omitted to solely focus on validating the 

EM fields internal to the piezoelectric. 

 

 

Figure 5-4: Infinite plate of piezoelectric material resting on a ground plane. (a) In-plane 

directions for the 1.26𝝁m thick plate are the x/y axes, and the material is Aluminum Nitride AlN 

poled in the z-direction. (b) Numerical formulation of the infinite plate problem. The ground plane 

is modeled as a PEC with out-of-plane radiation absorbed by PEC-backed 14-cell thick PML 

region. Infinite periodicity in the xy-plane is accomplished with PMC boundaries. Since the 

piezoelectric material is in contact with the PMC boundaries (w = L), the filling density  is 

100%. Stresses are input within the plate, inducing an electric response via the piezoelectric 

effect. (c) First of four simulations performed at a filling density of 3.3% (w = 1.26m). (d) 
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Second simulation performed at filling density  of 13.2% (w = 2.52m). (e) Third simulation 

performed at  of 29.8% (w = 3.78m). (f) Fourth simulation performed at  of 82.6% (w = 

6.3m). 

 

Numerically, an infinite plate may be modeled by using in-plane periodic boundaries (PMCs 

in this case) and allowing the piezoelectric material to contact these boundaries as shown in 

Figure 5-4(b). If the piezo material does not contact the PMCs, then an infinite rectangular 

regular array will be generated with filling density . Each array element has a width of wx = wy 

= w and the simulation space width (from PMC to PMC) is Lx = Ly = L = 6.93𝜇m. Therefore,  = 

(w/L)2 = 100% for an infinite plate. The relevant simulation parameters are tabulated in Table I 

where the piezoelectric material is Aluminum Nitride (AlN): 

 

Symbol Description Value 

𝒅𝟑𝟑 Piezoelectric Constant 4.9597e-12 C/N 

𝝐𝟏𝟏
𝑻  Permittivity 9.2081𝜖0 

𝝐𝟑𝟑
𝑻  Permittivity 10.1192𝜖0 

𝜿𝒛
𝒎𝒂𝒙 Max Mesh Grade 29,800 

∆𝒙=∆𝒚 Spatial Sampling 0.63m 

∆𝒛 Spatial Sampling 1.26m 

fin Input Frequency 400MHz 

|Tzz
in| Stress Magnitude 10MPa 

Table 5-1: Input parameters for infinite piezoelectric plate analytical validation. 

 

As highlighted in Figure 5-4(c-f), four simulations are performed at increasing filling 

densities. For a 10MPa 400MHz Gaussian pulse stress excitation, a comparison of the 

centroidal Ez field between the analytical solution for an infinite plate ( = 100%) and numerical 

results at filling densities of 3.3%, 13.2%, 29.8%, and 82.6% is shown in Figure 5-5(a): 
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Figure 5-5: Results comparison between simulated fields within the centroid of the 

piezoelectric plate at various filling densities  and analytical values for  = 100%. As the 

simulated filling densities near 100%, the numerical results converge to that of the analytical 

solution as expected. (a) Electric field Ez vs. time comparison. (b) Electric flux Dz vs. time 

comparison. 
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In Figure 5-5(a), as the piezoelectric filling density is increased closer to 100%, the 

simulated electric field at the plate centroid converges to the infinite plate analytical solution of 

equation (5.3). In Figure 5-5(b), the internal electric flux 𝐷𝑧  is compared at the same centroidal 

location and the simulation results again converge to the analytical solution of equation (5.2), 

namely to zero, as the simulated filling densities approach 100%. Thus, good agreement is 

reached between the code and the analytical expressions. A discussion on the expected 

radiation from such a piezoelectric plate follows. 

The enlargement of the piezoelectric surface area normal to the polarization currents, as  

increases, induces worsening self-depolarization within the plate (shape anisotropy). Since the 

spacing between elements is simultaneously decreasing, mutual depolarization is also 

exacerbated (the concept of self and mutual depolarization is further elaborated on in Section 

5.4). This depolarization degrades the radiation from the plate. When  = 100%, no radiation 

will be seen as predicted by (5.2). Thus, the infinite piezoelectric plate can only radiate if in-

plane polarization currents are present, e.g., for a thickness shear mechanical mode as in 

[102][104][105].  

Thus, the fields within the piezoelectric are accurate per this infinite plate analytical 

comparison and the fields surrounding a radiator in the extreme near field are accurate per the 

SLAC experimental comparison of Section 5.1. The algorithm is therefore performing well and 

may be used to provide design guidance to engineers working with piezoelectric antennas. First, 

however, the input strategy of Section 3.12 is checked in the following Section 5.3. 

5.3 BAW Resonator Validation 

The mechanical antennas investigated herein are more accurately modeled when driven by 

an electrode-piezoelectric-electrode stack up as introduced in Section 3.12. When no radiating 

elements are added, this is a BAW filter device with traction free boundaries on the top and 
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bottom producing a half-sine wave mechanical mode as shown in Figure 5-6. Due to the half-

sine wave mode, there needs to be at least 10-cells within the source space. 

 

 

Figure 5-6: BAW Filter where the electrodes are assumed infinitely thin and the piezoelectric 

is thin enough that the uniaxial strain approximation is warranted. The source resistance is open 

circuited to adhere to the analytical solution. 

 

Herein a modulated Gaussian pulse of source current 𝐼𝑆 is the initial excitation which is 

directly applied at the terminals since the source resistance 𝑅𝑆 is open-circuited (𝐼𝑆 = 𝐼𝐵𝐴𝑊). 

This induces terminal voltage 𝑉𝐵𝐴𝑊 which then induces stress 𝑇𝑧𝑧 within the piezoelectric 

material. Due to inclusion of viscous damping, this induced stress rings down (decays) over 

time. Once the stress is <5% of the original value, the simulation is terminated and FFTs are 

performed on the voltage, current, and stress to determine frequency results. The damping is 

therefore essential, as, if no damping occurs, then significant spectral leakage occurs in the FFT 

results (i.e., FFT assumes original signal is periodic so, if it starts at zero, it should end at zero). 

The input impedance vs. frequency may then be determined as the ratio of the voltage to the 

current. The analytical solution for the input impedance to this device is [243]: 

 𝑍 = (
1

𝑗𝜔𝐶
)(1 − 𝐾𝑡

2
𝑡𝑎𝑛(𝑘𝑑)

𝑘𝑑
) (5.4) 

𝐶 =
𝜖𝑧𝑧

𝑆 𝑊𝑥𝑊𝑦

𝑊𝑧
, 𝑊𝑧 = 2𝑑, 𝑘 =

2𝜋

𝜆
, 𝐾𝑡

2 =
𝑒33

2

𝑐𝑧𝑧𝑧𝑧
𝐷 𝜖𝑧𝑧

𝑆 =
𝐾𝑙

2

𝐾𝑙
2 + 1

, 𝐾𝑙
2 =

𝑒33
2

𝑐𝑧𝑧𝑧𝑧
𝐸 𝜖𝑧𝑧

𝑆  
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Where 𝑊𝑧 is the thickness of the filter, 𝑑 is the half-thickness, 𝑊𝑥/𝑊𝑦 are the in=plane 

dimensions, and 𝐾𝑡
2/𝐾𝑙

2 are piezoelectric coupling figures of merit (FoMs). These FoMs 

represent the amount of mechanical energy that is converted to electrical energy and vice versa 

[114], where 𝐾𝑡
2 applies for a transversely clamped material (uniaxial strain) [243] and 𝐾𝑙

2 

applies for a uniaxially stressed rod [198]. Since 𝑐𝐷 is stiffer than 𝑐𝐸, energy conversion per 

volume will be larger in axially excited rods than in thickness excited plates for strong 

piezoelectrics like PMN-PT and PZT. Herein, aluminum nitride (AlN) is utilized and Table 5-2 

documents relevant input parameters (parameters not listed may be derived): 

 

Parameter Value Units Description 

𝑐𝑧𝑧𝑧𝑧
𝐷  419.1 GPa Mechanical Stiffness 

𝜂𝑧𝑧𝑧𝑧
𝐷  0.025 Pa-s Viscoelastic Damping 

𝜌 3300 Kg/m3 Density 

𝜖𝑧𝑧
𝑆  9*8.854 nF/m Permittivity 

𝑑 7.043 𝜇m Device Half-Thickness 

𝑓 400 MHz Input Frequency 

𝑒33 1.55 C/m2 Piezoelectric Coupling Coefficient 

𝐶 1.1225e-13 F Device Capacitance 

𝐾𝑡
2 0.0719 Decimal AlN Thickness Mode FoM 

∆𝑧𝑆 1.409 𝜇m Spatial Discretization 

∆𝑡 6.25 ns Temporal Sampling 

Table 5-2: Inputs into BAW Filter validation study. 

 

A comparison between the simulated and analytical impedance is presented in Figure 5-7: 
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Figure 5-7: Comparison of the simulated and analytical impedance Z. 

 

Note that good agreement is seen with the largest disparity occurring near and at resonance 

which is caused by the inclusion of mechanical viscous damping within the simulated results. 

For example, the simulated results predict a left-shifted resonance frequency and underpredict 

the output at resonance, both of which are characteristic of a damped system versus an 

undamped system. The damping had to be included in the simulation since the induced 

stresses needed to ring down prior to performing a fast Fourier transform (FFT) on the time 

domain data. This is to avoid spectral leakage in the frequency domain results. The results 

presented in Figure 5-7 are therefore satisfactory. The analytical solution for the stress within 

the BAW filter is as follows: 

 𝑇𝑧𝑧(𝑧) =
𝑒33𝐷𝑧

𝜖𝑧𝑧
𝑆 [

cos(𝑘𝑧)

cos(𝑘𝑑)
− 1] (5.5) 

The datum is defined such that the top electrode is at z=d, the bottom electrode at z=-d, and 

the center along the thickness is z=0. A comparison between the simulated and analytical stress 

is presented in Figure 5-8: 
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Figure 5-8: Comparison of the simulated and analytical stress measured at the center of the 

device where the stress is maximal. 

 

Good agreement is again observed for the stress. Therefore, the source space portion of the 

code is seen to accurately model the BAW filter device which gives confidence in using this 

input strategy to model mechanical resonance-based antennas. This input strategy is leveraged 

in the next Section 5.4, where the bottom mechanical boundary will be fixed rather than traction 

free to model symmetry. Also, the top mechanical boundary will act as an interface between the 

electrostatic source space and the electrodynamic simulation space (see Section 3.12). 

5.4 Infinite Planar Array of Piezoelectric Antennas 

Fully coupled simulations where both Newton’s laws and Maxwell’s equations are utilized to 

update fields within the simulation space simultaneously will now be used to characterize the 

performance of an infinite planar array of piezoelectric antennas. These arrays are the future as 

emerging technologies require larger dipole moments from ever shrinking electrically small 
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antennas. These arrays will induce detrimental mutual depolarization effects amongst elements, 

however. Thus, an understanding of this mutual depolarization effect is desperately needed. 

This section first defines depolarization and provides an expression predicting its effects within 

an array. Next, the radiation performance of a single element within an array is characterized vs. 

the spacing. Lastly, the array radiation efficiency is presented which reveals a performance 

peak. 

5.4.1 Predicted Depolarization 

Depolarization is any effect where a piezoelectric material generates a current that is contra 

to polarization current within either itself or another piezoelectric. The former effect we refer to 

as self-depolarization which is analogous to demagnetization within magnetostrictive materials 

and is generally what is referred to when the term depolarization is used. The latter effect 

occurs when multiple piezoelectric antennas are brought close together, on the order of the 

physical dimensions of the device, which we refer to as mutual depolarization. This effect is not 

as widely discussed and will become increasingly problematic as larger dipole moment 

requirements are pressed on emerging technologies. In this section the coupling Figure of Merit 

will be discussed as this is an important factor in depolarization. Then, a prediction of the mutual 

depolarization effect will be derived. 

The coupling Figure of Merit (FoM or KE
2) is a measure of efficiency in electrical to 

mechanical energy transfer, or vice versa, within a piezoelectric material [198] and is provided in 

(5.6) for coupling in the poling direction via extensional (non-shearing) mechanical modes. 

 𝐾𝐸
2 =

𝑑33
2

𝑠33
𝐸 𝜖33

𝑇  (5.6) 

In (5.6) sE is the mechanical compliance (inverse of stiffness) at constant electric field. Also, 

although multiple Figures of Merit exist, no subscripts are added to KE
2 for brevity since only the 

coupling between the electric field and extensional mechanical stress in the poling direction is 

operative herein. A KE
2 value of 1 represents a scenario where all electrical energy is converted 
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to mechanical energy and a KE
2 value of 0 (d33=0) represents a material where no 

electromechanical coupling takes place. 

An expression predicting the effects of depolarization, both self and mutual, will now be 

derived. Within the piezoelectric, the dominant electric field and mechanical normal stress will 

be in the poling direction yielding the following constitutive relations. 

 (
𝑆𝑧𝑧

𝐷𝑧
) = [

𝑠33
𝐸 𝑑33

𝑑33 𝜖33
𝑇 ] (

𝑇𝑧𝑧

𝐸𝑧
) (5.7) 

Due to polarization within the piezoelectric the Ez term in (5.7) will differ from the incident 

(external) electric field Ez
i and the relation between the two fields may be written as: 

 𝐸𝑧 = 𝐸𝑧
𝑖 −

ψ

𝜖0
𝑃𝑧  (5.8) 

Where Pz is the polarization density (dipole moment p per volume), 𝜖0 is the free space 

permittivity, and ψ is a depolarization coefficient that is related to the geometrical features of the 

piezoelectric antenna. For long slender rods, ψ approaches zero and equals one for an infinite 

plate. From (5.8), the internal flux may be written as: 

 𝐷𝑧 = 𝜖0𝐸𝑧 + 𝑃𝑧 = 𝜖0𝐸𝑧
𝑖 + (1 − ψ)𝑃𝑧 (5.9) 

Using the electric constitutive relation in (5.7) along with (5.8) and (5.9), the polarization 

density may then be written as: 

 𝑃𝑧 = 𝜖0𝜒33
𝑇 𝐸𝑧 + 𝑑33𝑇𝑧𝑧 =

𝜖0𝜒33
𝑇

1 + ψ𝜒33
𝑇 𝐸𝑧

𝑖 +
𝑑33

1 + ψ𝜒33
𝑇 𝑇𝑧𝑧 (5.10) 

Where 𝜒ij
T is the electric susceptibility at constant stress. The coefficients in front of the 

incident field Ez
i and the stress Tzz are the effective permittivity and piezoelectric coupling 

coefficient of the system respectively, namely: 

 𝜖33
𝑇,𝑒𝑓𝑓

=
𝜖0𝜒33

𝑇

1 + ψ𝜒33
𝑇  (5.11) 
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𝑑33

𝑒𝑓𝑓
=

𝑑33

1 + ψ𝜒33
𝑇  

(5.12) 

Both (5.11) and (5.12) degenerate back to the original value for a long slender isolated 

element (i.e., for ψ ≈0). After manipulation, the mechanical constitutive relation in (5.7) may also 

be written in terms of the incident electric field as follows: 

 𝑆𝑧𝑧 = (𝑠33
𝐸 −

ψd33
2

𝜖0(1 + ψ𝜒33
𝑇 )

)𝑇𝑧𝑧 +
𝑑33

1 + ψ𝜒33
𝑇 𝐸𝑧

𝑖  (5.13) 

For large susceptibility 𝜒33
T≫1 (𝜖33

T≈ 𝜖0 𝜒33
T), the FoM of (20) becomes: 

 𝐾𝐸
2 =

𝑑33
2

𝜖0𝜒33
𝑇 𝑠33

𝐸  (5.14) 

Substituting (5.14) into (5.13) yields the following constitutive relation and effective 

compliance, respectively: 

 𝑆𝑧𝑧 = 𝑠33
𝐸,𝑒𝑓𝑓

𝑇𝑧𝑧 + 𝑑33
𝑒𝑓𝑓

𝐸𝑧
𝑖  (5.15) 

 
𝑠33
𝐸,𝑒𝑓𝑓

= 𝑠33
𝐸 (1 − 𝐾𝐸

2
ψ𝜒33

𝑇

1 + ψ𝜒33
𝑇 ) 

(5.16) 

Therefore, the effective coupling coefficient that takes depolarization into account (KD
2) is as 

follows: 

 𝐾𝐷
2 =

(𝑑33
𝑒𝑓𝑓

)
2

𝜖33
𝑇,𝑒𝑓𝑓

𝑠33
𝐸,𝑒𝑓𝑓 =

𝐾𝐸
2

(1 − 𝐾𝐸
2)(1 + ψ𝜒33

𝑇 ) + 𝐾𝐸
2 (5.17) 

In (5.17), the expected result for a long slender bar with ψ approaching zero (KD
2 ≈ KE

2) is 

achieved. Equation (5.17) is also applicable to infinite planar arrays. In this case, ψ is the filling 

density which for a regular square array is equal to the ratio of the piezoelectric cross-sectional 

area (w2 for a square cross-section) to the square of the element center-to-center spacing (L2), 

namely  = (w/L)2. Call the power radiated from an isolated antenna element Prad
Iso and the 

power radiated from antenna element experiencing mutual depolarization within an array Prad
D. 

Since the radiated power is proportional to the dipole moment squared, and the dipole moment 
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is proportional to the FoM, the normalized radiated power is synonymous with the ratio of the 

depolarized FoM (KD
2) to the FoM (KE

2) squared. Therefore, from (5.17): 

 
𝑃𝑟𝑎𝑑

𝐷

𝑃𝑟𝑎𝑑
𝐼𝑠𝑜 = (

𝐾𝐷
2

𝐾𝐸
2)

2

= (
1

(1 − 𝐾𝐸
2)(1 + ψ𝜒33

𝑇 ) + 𝐾𝐸
2)

2

 (5.18) 

Equation (5.18) is leveraged in Section 5.4.3 to compare simulated depolarization to the 

depolarization predicted in this section. 

5.4.2 Simulation Setup 

A piezoelectric antenna is placed on a PEC ground plane with in-plane periodic boundaries 

(PMCs) generating a regular square infinite planar array as shown in Figure 5-9. The Axial 

length of the bar is LA = 4.28m and the width for the square cross-section is w = LA/10. The 

spacing d is defined as the minimum distance between array elements and the normalized 

spacing is defined as d/w. The bar is excited to mechanical resonance inducing EM radiation via 

the piezoelectric effect. For this study, the power radiated by an individual element Prad
D is 

simulated at various array spacings d. The goal is to characterize how the radiation is 

diminished as d → 0 due to the mutual depolarization effect. Since the mechanical resonance 

frequency changes from the constant flux value (frcD) at d = 0 to the constant field value (frcE) as 

d → ∞ (see Section 5.2.1), the resonance frequency is also characterized versus spacing d. 

Fully coupled full-wave simulations are utilized (i.e., electrodynamics and elastodynamics solved 

simultaneously). Additional details on the model are in the following paragraph. 
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Figure 5-9: Piezoelectric antenna setup for mutual depolarization study. Cross-sectional 

dimensions are maintained so that self-depolarization is constant. (a) Single element of length 

LA = 4.28m and square cross-sectional width of w = LA/10 which justifies the uniaxial stress 

assumption. The antenna is bisected by a ground plane PEC and is fully enclosed within a 

sphere of radius a = LA/2 as utilized by Chu [33][34][35]. (b) By use of PMC periodic boundaries, 

an infinite regular square antenna array may be investigated. The minimum distance between 

elements is defined as d. On the top boundary, PEC-backed PML layers truncate the simulation 

space. 

 

Due to the bisecting PEC only the top half of the system is modeled. Input via electrode 

current is applied at the bar center across electrodes spanning 10% of the axial length, hence 

the simulated region for electrode current input (source space) is LA/20 long as shown in the 

Figure 5-9 inset. The electrode current input is a modulated Gaussian pulse generating a 

20MPa stress ringdown at the resonance frequency. The bottom and top electrical boundaries 

within the source space region are PECs, modeling infinitely thin electrodes. The mechanical 

boundaries are fixed (vz = 0) at the bottom (for symmetry) and traction free (Tzz = 0) at the top. 

The simulated near-fields are used to calculate the Prad
D via a NTFF transformation [25][187], 

where the Huygen’s box in-plane surfaces are aligned with the PMC boundaries consistent with 
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[131] and the top surface is two cells above the top of the radiator. NTFF transformations 

performed in this fashion yield the performance of a single element with cross coupling (both 

beneficial and detrimental) included. If the in-plane periodic boundaries (PMCs) are moved 

sufficiently far away, the coupling becomes negligible, and the isolated element performance is 

achieved. Since the detrimental mutual depolarization effect is dominant herein, it will be seen 

that the single element radiated power increases as the periodic boundaries are moved further 

until a plateau is reached. 

The piezoelectric utilized for these simulations is X4B PIN-PMN-PT from TRS Technologies 

[244]. The mechanical damping is assumed to be the same as AlN as both are class 4mm 

tetragonal crystals. Relevant simulation parameters are shown in Table 5-3. 

 

Symbol Description Value 

𝒅𝟑𝟑 Piezoelectric Constant 1.320E-9 C/N 

𝒅𝟑𝟏 Piezoelectric Constant -6.340E-10 C/N 

𝝐𝟏𝟏
𝑻  Permittivity 1335𝜖0 

𝝐𝟑𝟑
𝑻  Permittivity 4200𝜖0 

𝜼𝟑𝟑 Mechanical Damping 0.02 Pa-s 

𝑲𝟑𝟑
𝑬  Figure of Merit FoM 81.6% 

𝝆 Density 8141 kg/m^3 

𝑬𝟑𝟑
𝑫  Young’s Modulus 1.74E10 Pa 

∆𝒙=∆𝒚 Spatial Sampling 2.14E-7 m 

∆𝒛 Spatial Sampling 3.85E-7 m 

∆𝒛S Spatial Sampling 4.28E-8 m 

∆𝒕 Time Sampling 1.259E-11 s 

Table 5-3: Simulation input parameters for fully coupled simulations of the infinite planar 

array of piezoelectric antennas. 
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The next Section 5.4.3 concerns the performance of a single element. Next, the method of 

deriving the array performance is provided in Section 5.4.4. Lastly, the array efficiency will be 

discussed in Section 5.4.5 where a performance peak is uncovered. 

5.4.3 Single Element Performance 

Within this section, the spacing d is varied by moving the PMC boundaries by adding cells, 

grading the mesh, or both. Seven simulations were performed to calculate the single element 

radiated power Prad
D at variable 𝑑. At large spacing, Prad

D reached a plateau value equaling that 

of an isolated element (Prad
Iso) since mutual depolarization was no longer a factor. All radiated 

power Prad
D values are normalized to Prad

Iso and plotted vs. normalized spacing in Figure 5-10 

where the resonant frequency, normalized to the frcD value, is also presented.  

 

 

Figure 5-10: Single element normalized radiated power and normalized resonance 

frequency vs. normalized spacing for the infinite regular square array of Figure 5-9. Normalized 

power is per the left vertical axis and is logarithmic (hence the grid lines). Normalized frequency 
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is per the right vertical axis and is not logarithmic and thus the grid lines should not be used 

when analyzing this data. 

 

In Figure 5-10, Prad
D decays by more than two orders of magnitude if the normalized spacing 

is less than 5. Between 5 and 40 the radiated power quickly increases, and mutual 

depolarization is negligible at normalized spacing greater than 40 after which Prad
D plateaus. As 

expected, these large changes in radiation are coupled with changes in the mechanical 

resonance frequency fr. When the spacing is small, the resonance frequency is roughly equal to 

the constant flux stiffness (frcD) and as the spacing is increased the resonance frequency trends 

towards the constant electric field stiffness value (frcE). Interestingly, this shift in resonance 

frequency is still quite pronounced after the radiated power steadies at normalized spacings 

>40. For example, between d/w = 45.5 and d/w = 80.1, the radiated power increases by 1.4% 

while the resonance frequency reduces by 18.4%. This provides an interesting opportunity to 

tune resonance frequency within piezoelectric antenna arrays simply by altering the spacing 

between adjacent elements. This can potentially aid with the bandwidth issues typical of high Q 

systems.  

In Section 5.4.1, a prediction was made in equation (5.18) for how radiated power is affected 

by mutual depolarization vs. the filling density . Define L as the PMC to PMC spacing (see 

Figure 5-11) and the filling density as  = (w/L)2. A comparison of the results from Figure 5-10 to 

the predicted depolarization (5.18) is presented in Figure 5-11. 
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Figure 5-11: Comparison between the simulated (discrete points) and predicted (solid line) 

normalized radiated power vs. filling density  showing good agreement. The prediction is per 

equation (5.18) as described in Section 5.4.1. Dotted, dashed-dotted, and dashed lines 

additionally represent theoretical materials that are less susceptible to mutual depolarization. 

 

The discrete points in Figure 5-11 are the normalized radiated power from Figure 5-10, but 

now plotted versus the filling density . The solid line is the predicted depolarization from 

equation (5.18) for TRS X4B PIN-PMN-PT utilized in the simulation. Good agreement is seen 

between the model and the prediction though equation (5.18) is shown to be somewhat 

conservative. Equation (5.18) may thus be utilized by engineers to design piezoelectric antenna 

array platforms with confidence that the mutual depolarization effect is accounted for. In Figure 

5-11, the dotted, dashed-dotted, and dashed lines represent theoretical materials as defined 

within the figure legend. The dashed line is TRS X4B PIN-PMN-PT if the FoM is maintained but 

at an order of magnitude smaller permittivity. The dashed-dotted line is for TRS X4B PIN-PMN-

PT if the FoM is increased to 99% and with the permittivity remaining constant. The dashed line 

is for TRS X4B PIN-PMN-PT if the FoM is increased to 99% and at an order of magnitude 
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smaller permittivity. Clearly much larger filling densities may theoretically be achieved with 

reduced mutual depolarization if these materials are realizable. 

As shown in Figure 5-9, the PEAs under investigation fit within an enclosing sphere of radius 

a = LA/2 which is normalized by multiplication with the wavenumber (ka). The input power and 

radiation efficiency were calculated per equations (3.135) and (3.136) respectively for each 

simulation. The PEA radiation efficiency vs. ka for each spacing is compared to the theoretical 

upper limit for metallic electrically small antennas (ESAs) per [164] (labelled as Helix) in Figure 

5-12. Seven triangles represent the variable spacing simulations with d/w values labelled for 

each numerically and a solid line represents the metallic Helix configuration. In the figure, the 

SLAC antenna [152] is also included using crosses for comparison and is labelled as Kemp.  

 

 

Figure 5-12: Radiation efficiency vs. ka plot for the seven simulations performed marked as 

discrete triangles. The normalized spacing d/w for each run is labelled numerically. The solid 

line labelled as “Helix” is the theoretical upper limit of metallic electrically small antennas (ESAs) 

as reported in [164]. Also included is the predicted isolated element performance which is 
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marked as a discrete circle with d/w labelled as ∞. Finally, the SLAC antenna [152] predicted 

efficiency is marked using crosses. The SLAC authors did not directly measure efficiency but 

rather performed calculations to estimate efficiency based on device Q. As such, a range is 

provided for the SLAC efficiency in [152]. 

 

Only the single element most burdened by mutual depolarization (at d/w = 2.5) does not 

outperform the metallic ESA prediction and even this element is on par with that upper limit. 

This is particularly impressive as the axial bar design for the PEAs investigated herein is a 1D 

element and does not fill much of a 3D sphere, whereas the Helix configuration in [164] is an 

optimized spherical design. Additional improvements to PEA efficiency at static ka values are 

therefore realizable. The major reason the metallic ESAs struggle is the small radiation 

resistance exhibited which drops per square of frequency for electrically small dipoles and fourth 

order of frequency for electrically small loops [245]. The high Q resonance from the piezoelectric 

material provides low loss impedance matching and thus mechanical antennas do not suffer 

from this same affliction.  

At larger spacing, the piezoelectric elements exhibit large boosts in efficiency which plateau 

at d/w > 40. The shift in ka value is caused by the shift in mechanical resonance frequency due 

to the shift in effective stiffness. Thus, piezoelectric array elements not only radiate more 

efficiently when spacing is increased but do so at smaller ka values where higher efficiency is 

harder to achieve. The circle in Figure 5-12 is the predicted isolated element performance which 

has the same efficiency as the d/w = 80.1 simulation but with a ka value corresponding to 

resonance at frcE as this is the predicted resonance frequency for infinite spacing (isolated 

element). This isolated element exhibits 30,000 times higher efficiency than the optimized Helix 

metallic antenna at the same ka value. Before discussing the array performance in Section 
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5.4.5, the method of deriving the array efficiency from the single element efficiency will be 

presented in the following Section 5.4.4. 

5.4.4 Planar Array Radiation Characteristics 

For electrically tiny mechanical resonance-based antennas, it can be beneficial to construct 

an array of the elements, especially when device dimensions or on the micrometer scale. When 

determining array vs. single element far-field radiation characteristics, superposition of radiated 

fields needs to take place utilizing the Array Factor (𝐴𝐹) as follows: 

 𝐸𝜃,𝜙
𝐴𝑟𝑟𝑎𝑦(𝜃, 𝜙) = 𝐴𝐹(𝜃, 𝜙)𝐸𝜃,𝜙

𝑆𝑖𝑛𝑔𝑙𝑒(𝜃, 𝜙) (5.19) 

Where the array factor varies for array type, spacing between elements, and phase lag 

between elements. The radiation intensity and radiated power may be calculated as follows: 

 𝑈𝐴𝑟𝑟𝑎𝑦(𝜃, 𝜙) =
𝑅2

2𝜂0
[|𝐴𝐹(𝜃, 𝜙)𝐸𝜃

𝑆𝑖𝑛𝑔𝑙𝑒(𝜃, 𝜙)|
2
+ |𝐴𝐹(𝜃, 𝜙)𝐸𝜙

𝑆𝑖𝑛𝑔𝑙𝑒(𝜃, 𝜙)|
2
] (5.20) 

 
𝑃𝑟𝑎𝑑

𝐴𝑟𝑟𝑎𝑦
= ∫ ∫ 𝑈𝐴𝑟𝑟𝑎𝑦𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅

𝜋

0

2𝜋

0

 
(5.21) 

In the case of a rectangular xy-planar array with linear phase progression the array factor is: 

 𝐴𝐹(𝜃, 𝜙) =
𝑠𝑖𝑛 (

𝑀
2

[𝛽𝑑𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼𝑥])

𝑠𝑖𝑛 (
1
2

[𝛽𝑑𝑥𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼𝑥])

𝑠𝑖𝑛 (
𝑁
2

[𝛽𝑑𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝛼𝑦])

𝑠𝑖𝑛 (
1
2

[𝛽𝑑𝑦𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝛼𝑦])
 (5.22) 

Where 𝑀 and 𝑁 are the number of elements in the x and y directions respectively, 𝜃 and 𝜙 

are spherical coordinates with an origin at a corner of the array, 𝑑𝑥 and 𝑑𝑦 are the spacing 

between elements in the x and y directions respectively, 𝛼𝑥 and 𝛼𝑦 are the linear phase 

progression in the x and y directions respectively, and 𝛽 is the wavenumber (𝛽 = 2𝜋/𝜆𝐸𝑀). For 

mechanical antenna arrays, the element spacing 𝑑𝑥 and 𝑑𝑦 are both substantially smaller than 

the EM wavelength. For the square array examined in this section (𝑑𝑥 = 𝑑𝑦 = 𝑑), this yields 

𝛽𝑑 ≅ 0. Also, using PMCs as the in-plane periodic boundary, inherently yields an unphased 

array (𝛼𝑥 = 𝛼𝑦 = 0). Thus, the array factor for the simulations performed in this section is: 
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 𝐴𝐹(𝜃, 𝜙) ≅
𝑠𝑖𝑛(0)

𝑠𝑖𝑛(0)

𝑠𝑖𝑛(0)

𝑠𝑖𝑛(0)
 (5.23) 

Thus, L’Hôpital’s rule must be used on (5.22), using 𝑑𝑥 = 𝑑𝑦 = 𝑑 and 𝛼𝑥 = 𝛼𝑦 = 0, to rectify 

the indeterminate form of (5.23) yielding: 

lim
(𝛽𝑑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙+𝛼)→0

𝐴𝐹(𝜃, 𝜙)

= lim
(𝛽𝑑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙+𝛼)→0

(𝑀)(𝑁)
𝑐𝑜𝑠 (

𝑀
2

[𝛽𝑑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼])

𝑐𝑜𝑠 (
1
2

[𝛽𝑑𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝛼])

𝑐𝑜𝑠 (
𝑁
2

[𝛽𝑑𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝛼])

𝑐𝑜𝑠 (
1
2

[𝛽𝑑𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝛼])

= (𝑀)(𝑁) 

(5.24) 

Thus, the maximum array factor (𝑀 ∗ 𝑁) is achieved isotropically (i.e., in all directions with 

no 𝜃 and 𝜙 spatial dependence). From equations (5.20) and (5.21), the array radiated power is 

as follows: 

 
𝑃𝑟𝑎𝑑

𝐴𝑟𝑟𝑎𝑦
= 𝑀2𝑁2 ∫ ∫ 𝑈𝑠𝑖𝑛𝜃𝑑𝜃𝑑∅

𝜋

0

2𝜋

0

= 𝑀2𝑁2𝑃𝑟𝑎𝑑 
(5.25) 

The single element input power will be multiplied by the number of elements; thus, the array 

efficiency is as follows: 

 
𝑒𝑟𝑎𝑑

𝐴𝑟𝑟𝑎𝑦
=

𝑃𝑟𝑎𝑑
𝐴𝑟𝑟𝑎𝑦

𝑃𝑖𝑛
𝐴𝑟𝑟𝑎𝑦 =

𝑀2𝑁2𝑃𝑟𝑎𝑑

(𝑀)(𝑁)𝑃𝑖𝑛
= (𝑀)(𝑁)𝑒𝑟𝑎𝑑 

(5.26) 

Thus, for unphased mechanical antenna arrays, the array efficiency may be readily 

determined, once the single element efficiency 𝑒𝑟𝑎𝑑 is known, simply by multiplying by the 

number of elements. This principle will now be used to determine the array efficiency for the 

piezoelectric antenna array discussed in Section 5.4.3. 

5.4.5 Array Efficiency 

The array performance will now be considered for elements spaced in square fashion 

enclosed within a circle of diameter D (see Figure 5-13 inset). Two approaches are considered 
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for defining D. One approach is to allow D to have a fixed physical size (1mm in this case). 

Since the resonance frequency shifts with spacing, another approach is to allow D to have a 

fixed electrical size (EM/1000 in this case) such that each data point will be enclosed in a circle 

of a different physical size. The array efficiency is calculated by multiplying the simulated near-

fields and input power by the number of array elements. Due to the tiny electrical spacing, the 

array factor is nearly isotropic (spherical) as discussed in the previous Section 5.4.4, and this 

approximation is accurate. The array efficiency versus normalized spacing plot is shown in 

Figure 5-13.  

 

 

Figure 5-13: Array efficiency versus normalized spacing plot where the solid lines between 

data points are to guide the eye only. Curve with circles is for array enclosed within circle of 

fixed physical size of 1mm. Curve with triangles is for array enclosed within circle of fixed 

electrical size EM/1000. The physical size varies from 0.76mm at d/w = 2.5 to 1.3mm for d/w = 

80.1 for the fixed electrical size curve. Thus, the physical dimensions are comparable. 
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In Figure 5-13 an array efficiency performance peak is revealed for piezoelectric antenna 

array platforms. If the spacing is too large to mitigate mutual depolarization, then there will not 

be enough elements and the efficiency will suffer. If too many elements are crammed into the 

array to boost the radiation, then the mutual depolarization will destroy the efficiency. A 

performance peak is found as a balance between these two extremes at normalized spacing 

roughly between 18 and 35. 

5.4.6 Conclusion 

Full wave simulations capturing electrodynamic and elastodynamic wave physics 

simultaneously within the same simulation space were used to characterize mutual 

depolarization within piezoelectric antenna array platforms. It was found that spacing within 

these arrays should not be made too small to induce undue mutual depolarization and not be 

made too large as to limit the number of array elements. It was also observed that significant 

changes in resonance frequency could be achieved by changing the spacing between elements. 

The simulations performed provide guidance for future designs. 

5.5 Multimode Alternate Poling Piezoelectric Antenna Array 

The piezoelectric antenna platform proposed herein leverages multi-resonant elements to 

improve operational bandwidth. By modulating the 1st and 2nd axial modes (see Figure 5-14) 

multiple operational frequencies can be achieved. 
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Figure 5-14: Proposed multimode axial resonance mechanical antenna. The 1st mode is a 

half-sine wave, and the 2nd mode is a full-sine wave. Due to the positive and negative 

instantaneous stress in the 2nd mode, the poling (white arrows) is alternated such that a 

coherent polarization current (orange arrow) is generated. A finite source resistance 𝑹𝑺 is now 

included in contrast to the antenna simulations considered in Section 5.4. 

 

Higher harmonics produce a non-coherent stress profile along the axial length (tensile and 

compression coexisting) by the positive stress producing a polarization current canceling the 

current generated by the negative stress. The proposed multimode piezoelectric antenna 

platform mitigates this effect by changing the poling direction along the bar as shown by the 

white arrows. A negative stress can produce an AC polarization current in the same direction as 

a tensile stress if the poling direction is opposite. Thus “poling electrodes” are added to the top 

and bottom of the bar as shown such that complimentary polarization currents may be 

generated by the 1st and 2nd axial modes. The driving electrodes double as poling electrodes for 

this purpose. This multi-resonant system with alternating poling directions significantly increases 

the possible operational bandwidth.  
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A soft piezoelectric material like PIN-PMN-PT can also be readily repolarized at room 

temperature by applying an electric field opposite to the original polarization direction. This 

procedure is commonly practiced in both research and industrial laboratories, such as at UCLA, 

across various applications and programs. During the poling process, the material's polarization 

is flipped by 180 degrees. While repeated re-poling cycles may potentially induce minor damage 

to the crystal structure, extensive research has demonstrated that applying compressive stress 

effectively mitigates this issue [246]. Moreover, in terms of mechanical performance, it has been 

shown to surpass conventional fatigue runout tests [247]. 

Lastly in Figure 5-14, the source resistance 𝑅𝑆, ignored in Section 5.4, is now considered. 

To reiterate, this section expands on Section 5.4 in the following ways: 

• Introduces multimode resonance. 

• Introduces source resistance 𝑅𝑆. 

• Introduces concept of mechanically tuned half-power bandwidth (see Section 5.5.6) 

In this section, an infinite planar array of piezoelectric antennas is simulated at the 1st and 

2nd mode with variable array spacing to characterize far-field performance characteristics and 

provide design guidance for future array platforms. In Section 5.5.1, an often-leveraged circuit 

model will be discussed to explain open and short circuit resonance. In Section 5.5.2, the 

simulation setup is presented. In Section 5.5.3, the source resistance is varied to discern how 

the stress vs. time and radiated power vs. frequency are affected. In Section 5.5.4, the matched 

source resistance is utilized and the element spacing is varied to compare the 1st and 2nd mode 

single element performance. In Section 5.5.5, the array performance is investigated and the 

concept of the mechanically tuned half-power bandwidth is introduced in Section 5.5.6. 

5.5.1 Open and Short Circuit Performance 

As shown in Figure 5-15 the model for the piezo structure is the classical Butterworth-Van 

Dyke (BVD) model for piezoelectric resonators. This circuit model is only introduced for its 
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explanatory power and is not utilized within the simulations herein. The series RLC circuit 

represents the mechanical resonance, where Rm, Lm, and Cm represent the motion resistance 

(mechanical damping), motion inductance (kinetic energy stored particle velocity) and motion 

capacitance (mechanical stiffness stored energy) respectively. The RLC circuit is shunt with a 

capacitor C0, which is an electric property of the material (i.e., the capacitance related to the 

strain free permittivity). The relationship between the mechanical capacitance (Cm) and the 

shunt capacitance is Cm = C0KE
2. Tapping the resonator input splits the electric capacitance 

model into two parts, e.g., C0 = C01 || C02. The maximum polarization current �̇� in the motion arm 

(RLC circuit) is generated at the resonance formed by the loop of C0, Lm, and Cm, which forms a 

peak voltage across the two ends of the piezoelectric resonator that electrically radiates from 

the dipole. 

 

 

Figure 5-15: Equivalent circuit BVD model for a piezoelectric antenna with emphasis on the self-

depolarization current JSDP. The input current excitation IS and source resistance RS are also 

depicted. 
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The radiation into free space is represented by Rrad and Crad which are the radiation 

resistance representing the radiated power and the dipole capacitance that represents the 

dipolar electric energy stored in free space, respectively. Their relation to Chu’s equivalent 

circuit for electrically small dipole is described in [245]. The radiation resistance increases per 

square of the dipole length and the capacitance increases per the first order of the length. Once 

the excitation pulse current IS dies down, two extreme resonance modes exist: an open circuit 

case (RS = ∞) and a short circuit case (RS = 0). Both cases resonate at the high Q of the Rm, Lm, 

and Cm motional branch, albeit at differing frequencies. 

The polarization current (�̇�) generated by the piezoelectric coupling is split into two paths. 

One path flows back through the electric capacitance of the material which represents the self-

depolarization effect (JSDP). The other path is the equivalent radiation flow (Jrad). Due to large 

aspect ratio of 10:1 (necessary to justify the uniaxial stress assumption) of the piezoelectric 

antennas investigated herein, the self-depolarization current is negligible. Thus, the current 

flowing through capacitance C01 is equal to IBAW. The depolarization effect is exacerbated by 

proximity of additional radiators in an array. To minimize the depolarization effect and to 

enhance the radiation, one must use materials with the smallest electric capacitance comparing 

to the motion capacitance Cm, which translates to the requirement of electromechanical coupling 

Figure of Merit (FoM or KE
2). 

5.5.2 Simulation Setup 

A piezoelectric antenna is placed on a PEC ground plane with in-plane periodic boundaries 

(PMCs) generating a regular square infinite planar array as shown in Figure 5-16. The Axial 

length of the bar is LA = 4.28m and the width for the square cross-section is w = LA/10. The 

spacing d is defined as the minimum distance between array elements and the normalized 

spacing is defined as d/w. The bar is excited to the 1st (half sine wave) and 2nd (full sine wave) 

mechanical resonance modes inducing EM radiation via the piezoelectric effect. For this study, 



 
 

312 

 

precursory simulations with source resistance open-circuited (RS = ∞) are performed to 

determine the matching resistance (RS
Matched). The power radiated by an individual element Prad

D 

is then simulated utilizing RS
Matched at various array spacings d. The goal is to characterize how 

the radiation is diminished as d → 0 due to the mutual depolarization effect as well as comparing 

the 1st and 2nd mode performance. Since the mechanical resonance frequency changes from 

the constant flux value (frcD) at d = 0 to the constant field value (frcE) as d → ∞ (see Section 

5.2.1), the resonance frequency is also characterized versus spacing d for both modes. Fully 

coupled full-wave simulations are utilized (i.e., electrodynamics and elastodynamics solved 

simultaneously). Additional details on the model are in the following paragraphs. 

 

 

Figure 5-16: Piezoelectric antenna setup for multimode alternate poling study. Cross-

sectional dimensions are maintained so that self-depolarization is constant while mutual 

depolarization varies with spacing. (a) Single element of length LA = 4.28m and square cross-

sectional width of w = LA/10. This large aspect ratio both justifies the uniaxial stress assumption 

and minimizes self-depolarization. The antenna is bisected by a ground plane PEC and is fully 

enclosed within a sphere of radius a = LA/2 as utilized by Chu [33][34][35]. The 1st and 2nd 

mechanical modes are depicted and labelled accordingly. The poling (white arrow) is shown to 
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be alternating (poled up in the top half and down in the bottom half) which applies for the 2nd 

mode only. For the 1st mode, the element is uniformly poled. (b) By use of PMC periodic 

boundaries, an infinite regular square antenna array may be investigated. The minimum 

distance between elements is defined as d. The boundary opposite the bisecting PEC is 

composed of PML layers adjacent to a PEC. 

 

Due to the bisecting PEC only the top half of the system is modeled. Input via electrode 

current is applied at the bar center across electrodes spanning 10% of the axial length, hence 

the simulated region for electrode current input (source space) is LA/20 long as shown in the 

Fig. 10 inset. The source space has a PEC top and bottom boundary representing an infinitely 

thin driving electrode and symmetry respectively. Since in the 1st mode the instantaneous stress 

does not change signs along the axial direction, it is intrinsically symmetrical about the bisecting 

PEC. The symmetry condition for the 2nd mode is justified by the alternating poling which yields 

an instantaneous polarization current with consistent sense in the axial direction. The bottom 

mechanical boundary is fixed (vz = 0) for the 1st mode and traction free (Tzz = 0) for the 2nd mode 

to produce the requisite mechanical symmetry and anti-symmetry respectively. The top 

mechanical boundary is traction free for both modes.  

The electrode current input is a modulated Gaussian pulse generating a 20MPa stress 

ringdown at the resonance frequency with RS = ∞. The impedance Z is then calculated from the 

terminal voltage and current. The peak value, at resonance, of Re(Z) is the matched resistance 

(RS
Matched) which is then input and a new stress ringdown simulation is performed. The simulated 

near-fields are used to calculate Prad
D via a NTFF transformation [25][187], where the Huygen’s 

box in-plane surfaces are aligned with the PMC boundaries consistent with [131] and the top 

surface is two cells above the top of the radiator. The piezoelectric utilized for these simulations 
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is X4B PIN-PMN-PT from TRS Technologies [244]. The mechanical damping is assumed to be 

similar to AlN. Relevant simulation parameters are shown in Table 5-4. 

 

Symbol Description Value 

𝒅𝟑𝟑 Piezoelectric Constant 1.320E-9 C/N 

𝒅𝟑𝟏 Piezoelectric Constant -6.340E-10 C/N 

𝝐𝟏𝟏
𝑻  Permittivity 1335𝜖0 

𝝐𝟑𝟑
𝑻  Permittivity 4200𝜖0 

𝜼𝟑𝟑 Mechanical Damping 0.02 Pa-s 

𝑲𝟑𝟑
𝑬  Figure of Merit FoM 81.6% 

𝝆 Density 8141 kg/m^3 

𝑬𝟑𝟑
𝑫  Young’s Modulus 1.74E10 Pa 

∆𝒙=∆𝒚 Spatial Sampling 2.14E-7 m 

∆𝒛 Spatial Sampling 3.85E-7 m 

∆𝒛S Spatial Sampling 4.28E-8 m 

Table 5-4: Input parameters for the fully coupled simulation of the multimode alternate poling 

piezoelectric antenna array. 

 

In the following section, the source resistance is varied to observe the effect on the stress 

and radiated power. 

5.5.3 Variable Source Resistance Simulations 

Figure 5-17(a) and Figure 5-17(b) show results for three source resistance RS values, i.e. 1) 

infinity, 2) matched value (RS
Matched), and 3) 50 to evaluate stress ringdown and radiated power 

as a function of time and frequency respectively. The spacing for these simulations was set to 

d/w = 45.5 as at that spacing mutual depolarization is negligible (demonstrated shortly in 

Section 5.5.4) and all studies are conducted for the second mode. For all simulations, the 
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source current magnitude is the same and was set such that the maximum stress at modulated 

Gaussian pulse end (near time = 0) is 20MPa for the RS = ∞ case. 

 

 

 

Figure 5-17: Piezoelectric antenna simulations at variable source resistance: RS = ∞ (open-

circuit) case, RS = RS
Matched (matched) case, and RS = 50 (short-circuit approximation) case. All 

three simulations are performed at the 2nd mechanical mode as shown in the figure inset. (a) 

Stress ringdown vs. time. The max stress is 20MPa for RS = ∞, ~19MPa for RS = RS
Matched, and 

~2.3 MPa for RS = 50. The drop in stress is due to reduced acceptance of electrical power 

away from the idealized RS = ∞ case where all power is accepted. The stress for RS = RS
Matched 

rings down quicker than the other cases. (b) Normalized radiated power (Prad
D/Prad

Rs=∞) vs. 

frequency plot. Dashed line is for the open circuit case. Solid line is for the matched case. 
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Lastly, the dotted line is for the short-circuit approximation (50) case. The Q for the matched 

case is roughly half that of the RS = ∞ and RS = 50 cases since the former is the open circuit 

case discussed in Section 5.5.1 and the latter closely approximates the short circuit case. 

 

Figure 5-17(a) shows the matched case reaches a stress of ~19 MPa demonstrating good 

acceptance of the electrical energy from the source. The 50 case only achieves a stress of 

~2.3 MPa as the source current readily flows through RS during the initial excitation, bypassing 

the PEA. Since 50 ≪ RS
Matched (50k), the RS = 50 case closely approximates the short 

circuit case discussed in Section 5.5.1. There are three dissipation mechanisms that cause the 

stress to decay: source resistance RS, mechanical viscous damping 33, and radiation 

resistance Rrad. Since the piezoelectric material and geometry are identical for each simulation, 

the viscous damping and radiation resistance dissipation mechanisms are not altered in this 

study. Since no energy can transfer to RS in the open-circuit case (infinite resistance to flow 

yields no flow), and no energy is lost to RS in the short-circuit case (no resistance yields no 

energy loss), only the matched case utilizes all dissipation mechanisms. As such, the matched 

case is seen to ringdown quickest. In the matched case the energy within the piezoelectric 

readily crosses the terminals into RS, dissipating the energy. In the open/short-circuited cases, 

the energy remains within the piezoelectric such that 33 and Rrad are the only loss mechanisms. 

Figure 5-17(b) shows the maximum power radiated arises from RS = ∞ case which is 

because the source current perfectly transfers to the piezoelectric. Additionally, both the RS = 

50 and RS = ∞ cases have similar high Q ~600, although at different frequencies, as expected 

from Section III. In contrast the matched case yields a lower Q ~315 by approximately half. This 

is advantageous, as the bandwidth is almost doubled (see broadening of matched case peak 

vs. open/short-circuited cases). The Q for the 1st mode, while not shown, is roughly twice that of 

the 2nd (i.e., ~1200 for the open/short-circuited cases and ~600 for the matched case). Larger 
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source resistances are also required for matching. This point will be further elaborated in Table 

5-5 of Section 5.5.4. 

While the radiated power for the matched case in Figure 5-17(b) is approximately ~25% of 

the open-circuited (RS = ∞) case, this is due to the latter being a non-physical idealization where 

all the source energy is perfectly transmitted to the piezoelectric and then perfectly constrained 

within the device. For the remainder of this section, all results presented are for antennas where 

RS = RS
Matched. In the following Section 5.5.4, the single element performance will be determined 

at variable spacing d. 

5.5.4 Single Element Performance 

In this Section, the spacing d is varied by moving the in-plane boundaries via adding cells, 

grading the mesh, or both. For all simulations, the input current pulse is determined by 

demanding the maximum stress achieved in the piezoelectric is 20MPa for all cases. Figure 

5-18 shows results for seven simulations per mode (14 total) to determine the normalized single 

element radiated power 𝑃𝑟𝑎𝑑
𝐷 /𝑃𝑟𝑎𝑑,1𝑠𝑡

𝐼𝑠𝑜  on the left ordinate as a function of normalized spacing 

d/w. Also in the figure, the resonant frequency for the 1st and 2nd modes, normalized to 

constant flux resonance of the first mode 𝑓𝑟,1𝑠𝑡
𝑐𝐷 , are presented in the right ordinate axis. 
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Figure 5-18: Single element normalized radiated power and normalized resonance 

frequency vs. normalized spacing for both modes of the infinite regular square array of Figure 

5-16. Normalized power is per the left vertical axis and is logarithmic (hence the grid lines). 

Normalized frequency is per the right vertical axis and is not logarithmic and thus the grid lines 

should not be used when analyzing this data. Arrows next to each curve indicate which vertical 

axis should be used. The discrete points are simulated data and the solid lines between the 

points are to guide the eye only. Circles are for the normalized power of the 1st mode. Diamonds 

are for the normalized power of the 2nd mode. Triangles are for the normalized resonance 

frequency of the 1st mode. Squares are for the normalized resonance frequency of the 2nd 

mode. Solid horizontal lines on the left-hand side of the figure provide the mechanical 

resonance frequency at constant flux for the 1st and 2nd mode (fr,1st
cD and fr,2nd

cD respectively). 

Lastly, solid horizontal lines on the right-hand side of the figure provide the constant field 

resonance frequency (fr,1st
cE and fr,2nd

cE respectively). 
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As can be seen in Figure 5-18, at large spacing for both modes, the radiated power reaches 

a plateau value equaling that of an isolated element (Prad,1st
Iso and Prad,2nd

Iso for the 1st and 2nd 

modes respectively) since mutual depolarization is no longer a factor. For both modes, Prad
D 

decays by more than two orders of magnitude with respect to the isolated element performance 

if the normalized spacing is less than 5. Between 5 and 40 the radiated power quickly increases, 

and mutual depolarization is negligible at normalized spacing greater than 40 after which Prad
D 

plateaus. Hence the results previously discussed in Figure 5-17, where d/w = 45.5, contain 

negligible mutual de-polarization. As shown in Figure 5-18, the 2nd mode isolated element 

radiated power Prad,2nd
Iso is ~15 times larger than Prad,1st

Iso. This occurs since the electrical size of 

the antenna is larger in the 2nd mode (i.e. frequency 2x larger at fixed physical size) compared 

to the 1st. As expected from Section 5.2.1, the large changes in radiation are coupled with 

changes in the mechanical resonance frequency fr for both modes. When the spacing is small, 

the resonance frequency is roughly equal to the constant flux stiffness value (frcD) and as the 

spacing is increased the resonance frequency trends towards the constant electric field stiffness 

value (frcE). Interestingly, the resonance frequency shift is still quite pronounced at d/w > 40 

even though the radiated power is fairly constant for each case. For example, in the 2nd mode 

between d/w = 45.5 and d/w = 80.1, a change in the radiated power of 2.2% corresponds to a 

change of the resonance frequency by 18.4%. This provides an interesting opportunity to tune 

resonance frequency within piezoelectric antenna arrays simply by altering the spacing between 

adjacent elements. This can potentially address concerns with the small bandwidth issues 

typical of high Q systems. This concept will be further explored in Section 5.5.5. 

Figure 5-19 shows PEA radiation efficiency vs ka for both modes compared to the 

theoretical upper limit for metallic electrically small antennas (ESAs) per [164] (labelled as 

Helix). Also, the SLAC antenna [152] is included for comparison and labelled as Kemp. Note 

that the PEA under investigation fits within an enclosing sphere of radius a = LA/2 normalized by 
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the wavenumber (ka) and the input power and radiation efficiency were calculated per (3.135) 

and (3.136) respectively for each simulation. 

 

 

Figure 5-19: Radiation efficiency vs. ka plot for the seven simulations performed for both 

modes (14 total) marked as discrete points. Triangles are for the 1st mode and circles are for the 

2nd mode. The smallest and largest normalized spacing (d/w = 2.5 and d/w = 80.1) are labelled 

numerically and arrows indicate the direction of increased spacing for both modes. The solid 

line labelled as “Helix” is the theoretical upper limit of metallic electrically small antennas (ESAs) 

as reported in [164]. Also included is the predicted isolated element performance which is 

marked as a discrete diamond for the 1st mode and square for the 2nd mode with d/w labelled as 

∞. Finally, the SLAC antenna [152] predicted efficiency is marked using crosses. The SLAC 

authors did not directly measure efficiency but rather performed calculations to estimate 

efficiency based on device Q. As such, a range is provided for the SLAC efficiency in [152]. 

 

Figure 5-19 shows for both modes, all PEA antennas exceed the performance of the upper 

bound on metallic ESA predictions except for the single element PEA most burdened by mutual 
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depolarization (at d/w = 2.5). Furthermore, it is remarkable that even for this single element PEA 

and both modes it is on par with that upper ESA limit (though the 1st mode slightly outperforms 

the 2nd). This is particularly impressive as the axial bar design for the PEAs investigated herein 

is a 1D element and does not fill much of a 3D sphere (see Figure 5-16) as compared to the 

ESA Helix configuration in [164] representing an optimized spherical design. Therefore, while 

the PEA efficiencies represent significant improvements to optimized ESA, the PEA could be 

further optimized to increase radiation efficiency. The major reason the metallic ESAs struggle is 

the small radiation resistance exhibited which drops per square of frequency for electrically 

small dipoles and fourth order of frequency for electrically small loops [245]. The high Q 

resonance from the piezoelectric material provides low loss impedance matching and thus 

mechanical antennas do not suffer from this same problem which is fundamental to metallic 

ESA.  

Figure 5-19 also shows the 2nd mode of the PEA has much larger ka values compared to the 

1st mode. Even within the same mode, the ka value in Figure 5-19 skews to the left as d/w 

increases due to the shift in mechanical resonance frequency caused by the change in effective 

stiffness (see also Figure 5-18). Thus, piezoelectric array elements not only radiate more 

efficiently when spacing is increased but do so at smaller ka values where higher efficiency is 

more challenging to achieve. 

Figure 5-19 also shows the predicted isolated element performance for the 1st and 2nd mode 

illustrated with a diamond and square respectively. The isolated elements are assumed to have 

the same efficiency as the respective d/w = 80.1 simulations (due to the plateau) but with a ka 

value corresponding to resonance at constant field (fr,1st
cE and fr,2nd

cE for the 1st and 2nd modes). 

Recall from Section 5.2.1 that the constant field state is predicted at infinite spacing (isolated 

element). This isolated element exhibits 30,000 times higher efficiency than the optimized Helix 

metallic antenna at the same ka value in the 1st mode, and 7,000 times higher efficiency in the 
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2nd mode. Thus, when compared to the Helix configuration, the 1st mode outperforms the 2nd 

mode. This is due to the larger Q exhibited in the 1st mode as shown in Table 5-5. 

 

Mode d/w RS
Matched () Matched Q 

1 2.5 20.3e6 883 

5.5 19.7e6 925 

19.2 15.2e6 817 

23.1 13.9e6 779 

31.9 11.5e6 708 

45.5 8.84e6 616 

80.1 5.67e6 487 

2 2.5 124e3 471 

5.5 120e3 446 

19.2 90.8e3 405 

23.1 82.4e3 388 

31.9 67.9e3 358 

45.5 50.6e3 315 

80.1 34.7e3 276 

Table 5-5: Matched Q and matched resistance values. 

 

Table 5-5 provides the general trend that the 1st mode exhibits roughly double the Q as the 

2nd mode for like spacings. However, this comes with the cost of substantially larger matched 

resistance values, and thus larger voltages. The larger voltages thus make the 1st mode 

operation more unruly from a systems electronics perspective. Larger spacing does mitigate this 

issue however as smaller source resistances are required for matching. Regardless, Figure 

5-19 demonstrates that properly implemented piezoelectric antennas outperform state-of-the-art 

metallic antennas for small ka values for both modes. The array performance is explored in the 

following Section 5.5.5. 
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5.5.5 Array Efficiency for Multimode Alternate Poling Piezoelectric Antenna Array 

Figure 5-20 shows array efficiency vs. spacing of PEA elements spread out in square 

fashion enclosed within a circle of diameter D = 1mm (see Figure 5-20 inset). The array 

efficiency is calculated by multiplying the simulated near-fields and input power by the number 

of array elements. Due to the relatively small electrical spacing, the array factor is nearly 

isotropic (spherical), as discussed in Section 5.4.4, indicating the approximation is accurate. 

 

 

Figure 5-20: Array efficiency versus normalized spacing plot where the solid lines between 

data points are to guide the eye only. Array is enclosed within circle of fixed physical size of 

1mm. Curve with circles is for the 1st mode and curve with triangles is for the 2nd mode. Both 

modes experience a performance peak at approximately d/w = 20. 

 

Figure 5-20 shows an interesting array efficiency performance peak for specific PEA 

spacings. If the spacing is too large, then there will not be sufficient element density to produce 

strong radiation efficiencies. If the spacing is too small, then the presence of mutual 

depolarization between elements dramatically reduces the radiation efficiency. In between these 
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two extremes, a performance peak is found as a balance between insufficient densities and 

large depolarization influences. Attempting to approximate an operational range introduces an 

interesting novel concept as discussed in Section 5.5.6. 

5.5.6 Mechanically Tuned Half-Power Bandwidth HPBW 

To find an approximate optimal spacing range, first note that the input power is relatively 

unchanged with spacing (<10% variation). Thus, the array efficiency points in Figure 5-20 are 

synonymous with array radiation, simply multiply each point by the static input power. A 

common method of defining a performance band is by using the half-power. For example, the 

half-power bandwidth HPBW is the frequency range where at least half the peak power is 

achieved. Following this logic, the peak array efficiency value (synonymous with array power) is 

divided by two and the range of spacings that achieve at least the half efficiency (power) are 

determined. For the 1st mode, the d/w range is approximately between 10 and 40.5. For the 2nd 

mode, the range is approximately between 9.5 and 39.5. Interestingly, per Figure 5-18, changes 

in spacing correspond to changes in resonance frequency. Thus, the half-power spacing band 

may be mapped to a half-power frequency band which is referred to as the “mechanically tuned 

half-power bandwidth” herein. This bandwidth is approximately 286MHz – 378MHz (92MHz) for 

the 1st mode and 546MHz – 748MHz (202MHz) for the 2nd mode as shown in Figure 5-21 where 

each band is represented as a bar. The y-axis distinguishes the 1st mode from the 2nd. 
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Figure 5-21: Mechanically tuned half-power bandwidth HPBW for the D = 1mm piezoelectric 

antenna array of Figure 5-20. (a) As the spacing is increased, only the piezoelectric antennas 

still within the 1mm diameter are assumed to radiate (i.e., the gray semi-transparent elements 

are assumed not to radiate). The mechanically tuned HPBW determined herein is thus 

conservative. (b) The HPBW for the 1st and 2nd mode vs. the frequency in Hertz on the 

horizontal axis. The bottom bar is for the 1st mode and the top bar is for the 2nd mode. 

 

To re-iterate, the mechanically tuned HPBW is 92MHz for the 1st mode and 202MHz for the 

2nd mode. This corresponds to ~25% of the maximal frcD value for each mode (400MHz and 

800MHz respectively). Thus, a broad range of frequencies can be achieved by altering the 

spacing amongst elements within a piezoelectric antenna array. Coupling this with other 

methods, such as direct antenna modulation (DAM) [248][249], thus can potentially solve the 
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bandwidth issue for electrically small high Q piezoelectric antenna arrays. Of course, the source 

resistance will also need to be changed as the spacing is changed for optimal performance. 

Still, since the elements lying outside of the 1mm diameter are assumed not to radiate per 

Figure 5-21a, the mechanically tuned HPBW of Figure 5-21b is a conservative estimate. 

5.5.7 Conclusion 

Full wave simulations capturing electrodynamic and elastodynamic wave physics 

simultaneously within the same simulation space are used to characterize the performance of 

multimode piezoelectric antenna array platforms. It was found that spacing within these arrays 

should not be made too small to induce undue mutual depolarization and not be made too large 

as to limit the number of array elements. Also, it was found that significant changes in 

resonance frequency, while still maintaining at least half the peak radiation, can be induced 

within these arrays by changing the array spacing. This so-called mechanically tuned half-power 

bandwidth is ~25% the highest resonance frequency. The simulations performed provide 

guidance for future designs. 
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