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Barriers that have separated different domains of physics and isolated engineers within the silos
of their own expertise have been continually eroding in recent decades. Potential exotic devices
of the future continue to be actualized through designs which are optimized by evoking multiple
engineering disciplines. One such family of novel devices are electrically small multiferroic
mechanical resonance-based antennas, which couple acoustic and electromagnetic
phenomenon, allowing for sizes which are roughly five orders of magnitude smaller than
conventional antennas. As such, the ability to understand these tiny and more efficient antennas
through the development of a numerical algorithm benefits a wide array of industries by allowing
engineers to optimize designs without undue prototyping. For example, such a numerical
algorithm would allow smaller conformal antennas on the outer skin of aircraft to be designed
faster, as well as small minimally invasive implantable biomedical antennas which may serve a

myriad of functions to improve patient quality of life.
i



The first chapter of this work provides a history of antennas, highlighting limitations to motivate
interest in pursuing mechanical resonance-based radiators. Background information on the
operating principle of these antennas and a literature survey follows. The second and third
chapters then formulate the numerical model by presenting the continuum form of all requisite
equations in the former chapter and then discretizing these expressions in the latter chapter. The
finite difference time domain method is leveraged for discretization and all relevant numerical
artifacts such as boundary conditions, interface conditions, and excitations are derived. The
algorithm is then validated versus analytical solutions in the fourth chapter of this work to
champion the reliability of the proposed numerical framework. The dissertation capstone is the
fifth chapter which utilizes the code to conduct simulations on novel devices, demonstrating a
large boost in performance with respect to the state of the art.

This dissertation also features guidelines for prospective modelers based on lessons learned from
the author during the model formulation process. Device simulations from chapter 5 also provide
engineers with useful counsel on future piezoelectric antenna array designs. This work presents
a comprehensive procedural guide for the full-wave simulation of mechanical resonance-based
antennas, effectively bridging a gap in the existing literature which deals almost exclusively in

lower fidelity equivalent circuit models.
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CHAPTER 1: BACKGROUND AND HISTORY

In this chapter, a brief history of the multiple dynamic equations which mechanical
resonance based (MRB) antennas utilize will be presented. Both multiferroic (MF) antennas and
piezoelectric antennas (PEAs) fall under this umbrella. Then, the history of antennas will be
discussed, with special emphasis on current issues affecting new designs within the aerospace
and biomedical industries, amongst others. A statement on what ferroic materials are, and how
they can be combined in composite structures to achieve coupling between electric and
magnetic energy (for multiferroic antennas) will follow. Since piezoelectric antennas operate
under similar principles, a brief discussion on these devices follows. Penultimately, a word on
what multiferroic (MF) and piezoelectric antennas are, and the physical principals that undergird
these novel devices will be provided. Lastly, an overview of the dissertation will conclude the
chapter.

1.1 Introduction

Antennas are devices which are designed to radiate and receive electromagnetic signals
and are the bedrock for successful performance within wireless communications systems. In
recent decades the demand for a paradigm shift in antenna design has echoed through
academia and industry alike as new applications in electrically lossy environments continue to
emerge and data rate increases continue to be desirable. This is additionally spurred on by the
benefit of integrating system components to reduce the noise floor, and the need to miniaturize
antennas operating at low frequencies. The antennas of the future, therefore, need to be
smaller, more efficient in lossy environments, conformal to ground planes while avoiding the
platform effect, amongst other requirements. All which hint at a mechanical resonance based
(MRB) antenna solution, the simulation of which requires the numerical integration of multiple
dynamic systems including Newton’s laws, Maxwell's equations, and potentially the Landau-

Lifshitz-Gilbert (LLG) equation in the case of multiferroic antennas.
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In this chapter, these three dynamic equations will be introduced first. Then a history on
antennas will be presented in order to paint the picture of the current challenges in antenna
design, and to argue why multiferroic and piezoelectric antennas rise to these challenges.
Ferroic orders, stress, strain, and linear elasticity will then be introduced. Ferromagnetism and
ferroelectricity will then be discussed in order to understand what a multiferroic system is.
Finally, mechanical resonance based (MRB) antennas will be discussed in detail.

1.1.1 Multiple Dynamic Systems w/ History

In 1687, Sir Isaac Newton’s pivotal work “Mathematical Principles of Natural Philosophy” is
first published, revolutionizing mathematics and physics alike [1][2]. Among the key insights
provided by the Principia, as it is often truncated, are the law of universal gravitation and a
derived form of Johannes Kepler’s laws of planetary motion. So important is this work that
Newton’s own annotated copy is kept in the Wren Library at Trinity College, Cambridge (see

Figure 1-1) and a 1% edition copy recently sold for $3.7 million [3].

Figure 1-1: Sir Isaac Newton along with a picture of his own personal copy of his Principia

The most important part of the Principia for this work are Newton’s laws of motion. More
specifically, the primary concern is in the conservation of linear momentum which states that, in

order to have any accelerations, there must be a net force on a body. As stated, this implies the
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mass is constant which is a consistent assumption herein. This is the fundamental equation
when considering mechanical wave fluctuations. For example, consider a wave propagating

horizontally through a medium while generating vertical displacements as shown in Figure 1-2.

Figure 1-2: Bulk shear wave propagation and the effects on an element originally on the

centerline.

Note that it has been assumed that vertical planes remain plane and do not change
orientation during the motion (bulk shear wave [4]). The forces acting on the edges of a square
element are drawn at different stages of the wave. Note that when the element is above the
centerline, the net forces cause downward acceleration back toward the centerline. A similar
behavior is observed when the element is below the centerline. In mechanics of materials terms,
the acceleration is said to be caused by a “stress divergence”, where the stress (denoted T in
Figure 1-2) is a second order tensor describing the force over area acting on a body [4-6]. This
will be explored more in section 1.1.3 and in chapter 2.

In addition to linear momentum, angular momentum is similarly related to the net torques
acting on a body. This leads to the symmetry of the stress tensor in mechanics, but interestingly
also has impact in the realm of magnetics. This is due to an intrinsic property of electrons to act
like tiny magnets [7-11], hinted at by the Stern-Gerlach experiment [7] and others, known as

spin. This was first proposed in 1924 by Uhlenbeck and Goudsmit [8][9] in response to failure of
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contemporary models of the electron which only considered angular momentum generated as
the electron orbits the nucleus (orbital angular momentum). The angular momentum aspect is
important because moving charges create magnetic fields, as first demonstrated by Hans
Christian Oersted in 1819 when he discovered magnetic fields around a current carrying
conductor [12][13], beginning the field of electromagnetism. Therefore, electron magnetic
properties cannot be divorced from the angular momentum that creates them, the two are
synonymous and the study of their interaction is known as micromagnetics. To facilitate
understanding, consider the simplest case of a magnetic field being generated by charge

motion, namely the current loop shown in Figure 1-3:

L

Figure 1-3: Magnetic dipole moment generated by current loop.

As the electron revolves with velocity v a current i is generated in the opposite direction.
This generates an angular momentum L and magnetic dipole moment m simultaneously, which
are anti-parallel to one another since the electron has a positive mass but a negative charge.
Within a material, the spin angular momentum of the outer valence electrons couple to the
orbital angular momentum. The orbital and spin motion then couple to the lattice, generating
macroscopic magnetic moments within the material in what are known as magnetic domains
[8][9]. On the macroscale, the parameter of interest is typically the dipole moment per unit
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volume, which is known as the magnetization [14] and is on the same level of importance in
mircromagnetics as displacement is in mechanics. A conservation of angular momentum
equation exists for the electron as first proposed by Landau and Lifshitz in 1935 [15]. This was
later modified by Gilbert in 1955 [16] to what is now known as the Landau-Lifshitz-Gilbert (LLG)
equation which governs micromagnetics. Both forms are widely in use today and demonstrate
that the motion of the magnetization is precessional in nature, like a spinning top, about an
effective magnetic field excitation. For the sake of brevity, the details are left for Chapter 2.

In 1861-1862, James Clerk Maxwell introduced an early form of his famous equations within
a four-part series “On Physical Lines Force” [17-20] and later he compiled his work into “A
Treatise of Electricity in Magnetism” in the form of twelve equations [21]. It was not until 1893
that Oliver Heaviside condensed Maxwell’'s equations down to the four that are widely used
today [22-24]. Maxwell's equations are the governing equations behind electromagnetic

radiation [25], and are summarized in Figure 1-4:

Divergence

Figure 1-4: Maxwell’'s Equations, (a) Gauss’s Law, (b) Gauss’s Law for Magnetism, (c)

Ampere’s Law, (d) Faraday’s Law

Maxwell’s equations are split into two sets, known as the divergence equations and the curl
equations. Gauss’s Law (Figure 1-4a) states that the number of electric flux lines D diverging
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from a point in space is proportional to the charge density p,, in that space. Therefore, If the net
charge within a surface is zero the amount of flux lines going out equals the amount coming
back in. Gauss’s law for magnetism (Figure 1-4b) states that the divergence of the magnetic flux
lines B from a point must be zero always. In other words, there is no such thing as a magnetic
monopole. Wherever a north pole exists, there must be a south pole and vice versa. More
interesting in terms of electromagnetic radiation are the curl equations. Ampere’s law (Figure
1-4c) states that any form of electric current J will induce swirling magnetic field lines H whose
direction may be determined by the right-hand rule, namely placing one’s right thumb in the
direction of the current and wrapping the fingers in the direction of magnetic field. Conversely,
Faraday’s law (Figure 1-4d) states that any form of magnetic current M will induce swirling
electric field lines E whose direction may be determined by the left-hand rule, namely placing
one’s left thumb in the direction of the current and wrapping the fingers in the direction of
electric field. This back-and-forth induction of EM fields is what produces electromagnetic
waves, and Maxwell was the first to postulate that light itself was this type of wave [21]. This set
the stage for the explosion of antenna technology that started with Rudolph Hertz and continues
to this day.
1.1.2 Antenna History and Motivation

Antennas fundamentally act as the components that propagate EM energy out into free
space (transmitter) or accept EM energy from free space (receiver). By Ampere’s law of
induction, a current through a wire will be surrounded by swirling field lines, but these will not
detach from the current source and propagate. To accomplish such radiation, the current itself
must change with time, in other words charges must be accelerated not simply moved at
constant velocity. Accelerations, however, need not be generated by changing velocity
magnitude, directional changes also produce this effect. Therefore, the current carrying wire

may be curved, bent, terminated, etc. in order to produce an antenna [26].



In 1886, Professor Heinrich Rudolph Hertz was the first to demonstrate wireless
electromagnetic communication [26-28] when he was able to produce a spark within the gap of
a metallic square loop antenna by first producing a spark in a nearby transmitting dipole

antenna, as shown in Figure 1-5:

/ ; End Loaded Heinrich Rudolph Hertz
_Dipole Antenna (2/22/1857 - 1/1/1894)
M \ Loop Antenna
Induction Coil ; ]
o | f EM Radiation
H 74N PN
! Sl LN
E ‘g \-.4} ,\\. S ,/\\“-_/’/ ;
O—1— s

Figure 1-5: Heinrich Hertz along with his 1886 complete radio system.

This was performed within Professor Hertz’s laboratory; it was not until 15 years later that
Guglielmo Marconi successfully transmitted long distance. In 1901, Marconi sent the first
transatlantic signals from Poldhu in Cornwall, England, to St. John’s, Newfoundland [26-28]. His
transmitting antenna was an array, rather than a single element, composed of 50 vertical wires
arranged in a fan-like configuration, while his receiving antenna was a 200m wire pulled and
supported by a kite. This great success may have been the dawn of the antenna era, but it was
met with some skepticism at first from those that did not believe that radio waves could bend to
match the curvature of the Earth [28]. Even amongst believers there was controversy, as the

Cable Company served Marconi with a writ to cease and desist as transatlantic communications



was within their exclusive domain. In the end, however, the truth and positive impact of what
happened that day in 1901 could not be denied and wire related antennas would go on to
dominate the state of the art for decades to come.

World War Il saw the rise of novel antenna designs which took advantage of aperture fields
(waveguide apertures, horns) as well as bouncing signals off reflective surfaces (reflectors) and
other methods. This was not only driven by the war itself, but also from the fact that reliable
microwave sources became readily available in the 1940s [27][29]. Shortly thereafter, the
microstrip patch antenna was proposed in the 1950s [30-32] but not fully investigated until the
1970s. This type of antenna is comprised of a metallic patch printed onto an electrically thin
grounded dielectric material which when excited produces radiating aperture fields along two
slots [26][29][30] as shown in Figure 1-6. This occurs because the device size between the two
radiating slots is roughly a half wavelength. Therefore, the surface normals (7) and electric
fields (E) on the slots are both opposite in direction with respect to one another, yielding two

effective magnetic currents (M) with the same sense (M = E x #) [25][30].

Radiating Slots

Dielectric Substrate €, > 1

Ground

Figure 1-6: Microstrip Patch Antenna

The patch antenna is given special attention here due to its wide use in both military and
civil applications including cellphones, biomedical systems, and radar. This is because patch

antennas may be readily integrated into arrays conformal to surfaces, at low-weight and low-
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cost [30]. As such, the fundamental question for any novel antenna designs is this: “how is this
antenna any better than just printing a piece of copper onto a board?”. This question has proven
surprisingly difficult to overcome for many exotic devices currently under investigation. In order
formulate an answer it is important to remember that patch antennas struggle with the prevalent
miniaturization issues when made sufficiently electrical small (< 1,/50) with respect to 4,, the
free space EM wavelength. These issues are reduced radiation resistance, large stored vs.
radiated energy ratios (Q-factors), and reduced radiation efficiency as ohmic losses become
more pronounced [33-37]. This is further exacerbated if the electrically small antenna is
radiating near a conductive surface due to the platform effect [38], or if the antenna is operating
within lossy electrically conductive environments such as through the water [39], ground [40], or
the human body [41]. Platform effect reduction augments the performance of conformal
antennas [30] which are widely used in the aerospace industry [42-45], while improvements in
water communications would benefit submarine applications [46] and through body
communication aids the implantable device industry [47-50], just to name a few beneficiaries. In
the remainder of this introductory section, the ohmic losses, platform effect, and lossy
environment issues will be discussed in-depth along with potential solutions. It is then shown
that all these potential solutions point to multiferroic antennas, which will be examined in section
1.2 along with piezoelectric antennas which partially solve these issues.

In 1827, Georg Ohm publishes his work on electrical resistance [51] which gave rise to
Ohm’s law, a now seemingly obvious equation which states that electrical energy is lost as
current passes through a wire [52]. This energy loss increases drastically as wire diameter is
decreased, the same way that car speeds inevitably drop when there are less lanes on the
highway [53], or the way fluid velocity drops just upstream of an orifice [54]. As such, drastic
miniaturization in wired devices, by five orders of magnitude for example, would be akin to

shutting all but one lane down in a multi-highway network, or trying to suck a milkshake out of a



coffee straw. Clearly, for such shrinkage of device dimensions to occur, wire-based methods,
which dominated the antenna space for over 40 years, had to be replaced by some other
methodology for many applications. To this end, Mechanical resonance based (MRB) antennas
are electrically driven by a voltage across electrodes, rather than current through wires [55],
eliminating this issue as will be discussed further in section 1.2. Although this is substantially
beneficial, ohmic losses are mentioned first since this advantage is one that mechanical
antennas share with other antennas (e.g., patch antennas). These antennas suffer from other
miniaturization issues that MRB antennas (multiferroic and piezoelectric) can utterly avoid
however, which will be discussed in section 1.2.2.

The platform effect is caused when the antenna element operates using electrical currents
which are tangent to a nearby conducting surface. This is caused by the near cancellation of the
radiation due to the anti-parallel image currents that are generated by the presence of the
conductive surface when in close proximity [25][26][29]. Additionally, a large amount of energy
is stored between the current and the conducting surface which increases the Q-factor [38]. If
the antenna were magnetic current driven, however, the image current would be parallel
instead, and the near cancellation effect/energy storing issue would be eliminated [25][26][29].
Fortunately, multiferroic antennas produce EM radiation through magnetization fluctuations and
are therefore magnetic current antennas capable of operating conformal to a ground plane. This
coupled with the relaxed miniaturization issues discussed in the previous paragraph make them
particularly effective in the Aerospace industry as the conformal antennas currently utilized
require a cavity just below the aircraft outer mold line (surface) [56]. The issues created by
these cavities are reduced internal real estate, increased weight, and lightning strike
complications just to name a few. A multiferroic antenna acting in a receive mode can respond
to incident tangential magnetic fields which are maximal at the ground plane, and thus not

require subsurface cavities. Although piezoelectric antennas are not magnetic current driven
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devices and therefore will still experience the platform effect, aerospace applications exist for
these devices as well. Trailing wire technology, currently utilized for low frequency transmission,
can be optimized using a mechanically resonating piezoelectric as an impedance matching
network for example.

Since lossy environments are characterized by free electric charges within the media,
magnetic current driven multiferroic antennas also benefit since their reactive near field region is
dominated by magnetic fields rather than electric fields. As such, more efficiency is realized in
the reactive region of the antenna since the magnetic fields do not lose energy moving charges
around the same way that electric fields do. It is not surprising then that magnetic current
antennas outperform their electric equivalents within lossy media [57]. The importance of
developing such magnetic current antennas cannot be underemphasized in the biomedical
implantable device industry. For example, the current state of the art in the implantable
pacemaker (PM) space is the leadless PM. Unfortunately, these devices are limited to single
chamber pacing support and therefore only suitable for a minority of patients [48]. However,
leadless pacemaker networks can alleviate these issues by allowing multi-chamber support, and
magnetic current multiferroic antennas can act as the voice between these devices. In this
biomedical area, piezoelectric antennas cannot provide value unfortunately.

Mechanical resonance based (MRB) antennas clearly fill a need in today’s antenna design
space. To fully understand their function, ferroic orders are introduced along with linear elasticity
in the next section. Ferromagnetism and ferroelectricity are discussed next in order to
subsequently discuss multiferroic composite devices. A discussion on MRB antennas will follow
in section 1.2.

1.1.3 Ferroic Orders and Linear Elasticity
Ferroic materials spontaneously exhibit an order parameter under certain conditions

(typically certain temperature ranges). Thus far the magnetic order parameter, magnetization,
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has been introduced and the mechanical order parameter, strain, has been hinted at. In section
1.1.4, the electric order parameter of polarization will be discussed. Ferromagnetic materials will
therefore spontaneously contain a magnetization within the crystal structure below a certain
temperature and ferroelectric materials will similarly contain a spontaneous polarization below a
certain temperature. This temperature is known as the Curie temperature (or point), named after
Pierre Curie [58] whose contributions will be discussed further in the sections that follow. What
happens at the Curie point is that the material goes through a phase transition which alters the
crystal structure by an amount large enough to break a certain type of symmetry. For example,
a cubic structure may become elongated in one direction (tetragonal) below the Curie point,
breaking cubic symmetry as it becomes ferroelectric. The way in which the different ferroic
orders break symmetry will be discussed in subsequent sections, but first stress, strain,
ferroelasticity, and linear elasticity will be discussed.

The concept of stress is introduced in order to relate the forces acting on surfaces to the
elastic reactions within the material volume (from springy atomic bonds), which is performed
using Cauchy’s stress theorem [4-6]. This is as opposed to body forces, which already act
everywhere within the volume and therefore need no such description in terms of stress.
Gravitational forces are the most notable example, which is convenient, since if gravity only
acted on the surfaces of our body, we would have strange droopy skin. The stress is the force
acting over an area and is typically depicted by examining a differential cube as shown in Figure
1-7. Proper description of stress therefore requires knowledge of the direction of the force, and
the surface normal on which the force acts. When the force and surface normal are orthogonal,

shear stresses are produced.
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Figure 1-7: Stresses on an element with the normal and shear components marked.

Note that the stress tensor is symmetric and has six unique components, three normal and
three shear. Strain is a measure of how much a differential element changes geometrically as
stresses act on it. This language is intentionally vague as strain neither necessitates changes in
shape, nor changes in volume. It is therefore convenient to classify strain in terms of normal
strain (elongations/contractions Figure 1-8a) and shear strain (changes in angles between two
edges of the element Figure 1-8b). It is also helpful to talk about strain in terms of its hydrostatic
components (those that retain the shape but change the volume Figure 1-8c), and its deviatoric
components (those that change the shape of the element but retain the volume Figure 1-8d).
Note in Figure 1-8 that whenever a change in shape occurs, there will inevitably be an angle
change (shear) somewhere within the element (even if only at a rotated axis). In fact, there will
be some degree of shear in all but the “principal axes” which are the eigenvectors of the stress

tensor. Herein, the normal and shear stress/strain description is utilized.
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Figure 1-8: Strain and its descriptions, (a) Normal strain, (b) Shear strain, (c) Hydrostatic

strain, (d) Deviatoric strain.

Ferroelastic materials are inherently non-linear, having a hysteretic stress/strain curve, and
exhibit a spontaneous strain due to the presence of at least two asymmetric and stable
“orientation states” [59-62]. A crystal in one orientation state can then be switched to another
orientation state through mechanical stress. An example of a pure ferroelastic is lead phosphate
whose ferroelasticity comes from an interesting interplay that occurs between a lead atom, and

six oxygen atoms within its unit cell as shown in Figure 1-9:

Figure 1-9: Ferroelastic mechanism within lead phosphate.

The lead atom bonds more closely with two of the oxygen atoms at the expense of the other
four yielding three possible and stable configurations. A specimen will then be comprised of a
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heterogenous set of these three orientation states. During mechanical loading, the Pb atom can
be forced toward another orientation in a process called “ferroelastic switching”, and this new
state may be retained even after the loading is removed, yielding a “plastic strain” and hysteretic
behavior. This ferroelastic process is surprisingly similar to what is seen in ferroelectric and
ferromagnetic materials. In fact, the magnetic equivalent to plastic strain is “remnant
magnetization” which forms the basis for the memory devices widely in use today.

Although a vibrant field of research, pure ferroelasticity is not of interest in the analysis of
mechanical resonance based (MRB) antennas, and ferroelasticity is only useful where it
intrinsically couples to another ferroic order. What concerns multiferroics researchers is linear
elasticity, in which the stress and strain are related linearly through the use of the
“stiffness/compliance tensor”. This will be discussed in more detail in Chapter 2.

1.1.4 Ferroelectricity

An electric dipole moment is created whenever two opposite charges are separated by a

distance [ and is equal to the charge multiplied by the separation length [63][64], directed from

the negative charge to the positive charge as shown in Figure 1-10a.
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Figure 1-10: Electric dipole moment per volume (polarization P), (a) Simplest dipole, (b)

Lead Zirconate Titanate (PZT) with asymmetry & and polarization P marked.
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When asymmetries exist within the unit cell, these dipole moments can be macroscopically
present within a material, where it is more convenient to reference the dipole moment per unit
volume known as the “polarization”. Lead Zirconate Titanate (PZT) is a famous case as shown
in Figure 1-10b where the asymmetry § and polarization P are clearly marked [65]. Additionally,
in the direction of asymmetry/ polarization, the lattice is distorted (tetragonal), destroying the 3-
fold cubic symmetry, and opening the door for mechanically driven electric field fluctuations
within the material. For example, note in Figure 1-10b that if compression was applied to the
long axis the asymmetry would naturally decrease along with the polarization [63]. Alternatively,
if an elongation occurred along the long axis the asymmetry/polarization would increase. This is
known as the direct piezoelectric effect, which is linear, and was first discovered by Pierre and
Paul-Jacques Curie in 1880 [66], though it was first thermodynamically postulated by Lord
Kelvin in the early 19" century [63]. The converse effect where electric fields drive mechanical
distortions was deduced mathematically by Gabriel Lippman in 1881, and experimentally
demonstrated by the Curie brothers later that same year [63].

All nonlinear ferroelectric materials exhibit linear piezoelectricity when subjected to small
excitations, but not all piezoelectric materials are ferroelectric. To see a fundamentally
ferroelectric phenomenon, start by noting from Figure 1-10b that the direction of asymmetry is
not arbitrary but rather pointed normal to the faces of the unit cell, known as the easy directions,
and as such there are six for PZT. Applying an external electric field toward an easy axis that is
not parallel to the polarization can therefore lead to the polarization becoming unstable thus
switching to the new easy axis, and this state will remain even after the excitation has been
removed. This “ferroelectric switching” is a nonlinear behavior akin to pushing a ball in a valley
(energy well) over a hill into another valley [67][68]. Figure 1-11 demonstrates switching from an

electric field applied orthogonal to the original polarization direction (90° switching), though
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antiparallel ferroelectric switching can also occur (180° switching), as well as mechanically

induced “ferroelastic switching”.
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Figure 1-11: Switching of polarization direction, see also [Lynch] for accurate picture of
asymmetries within PZT, (a) small electric fields producing a distortion of the unit cell. Removal
of the excitation at this point will return the cell to the original state, (b) large electric field has
now caused the polarization to switch to a new easy axis, (c) Removal of the large excitation

does not change the polarization direction but does decrease the polarization magnitude.

If an electric field is applied to a bulk material with randomly oriented polarizations, a
macroscopic order can be achieved through ferroelectric switching and the material is
subsequently said to be “poled” in the direction of the DC field. From Figure 1-11a it is clear that
electric fields can also produce shear strain (y) in the material in addition to the normal strain
(elongation/compression) previously discussed. Herein the focus will be on the linear converse
piezoelectric effect induced by high frequency excitations.

1.1.5 Ferromagnetism

In a ferromagnetic material, exchange interactions occur between adjacent dipole moments

which favor parallel alignment [9], thus creating macroscopic magnetizations as shown in Figure

1-12 for iron.
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Figure 1-12: Ferromagnetism, (a) alignment of magnetic dipoles within Iron below the Curie

temperature, (b) Mirror symmetry failing to represent the reality of ferromagnetism within Iron,

(c) Mirror plane with time-reversal symmetry properly representing ferromagnetism of Iron.

Above the Curie temperature, the iron atoms still exhibit a dipole moment, but the thermal
energy is too high for any order to be seen as the dipoles oscillate about without aligning. Based
on the discussion on ferroelectricity in section 1.1.4, it may be expected that the cubic cell of
iron is distorted by the presence of the spontaneous magnetization, but the three edges of the
unit cell (lattice parameters) of iron at room temperature agree to five significant figures, though
it is expected that some distortion does indeed take place. This applies to more than just iron,
the d-orbital valence electrons within transition metals generally resist distortions typical of
ferroelectrics, making it difficult for any single-phase material to exhibit both ferroic orders
simultaneously [69]. It may therefore be hard to understand exactly how ferromagnetic iron
breaks symmetry, but this may be understood by observing the two mirror planes shown in
Figure 1-12. Examining one of the mirror planes in Figure 1-12b reveals that the dipole moment

of the adjacent iron atoms is invertedly reversed during the mirror operation. If this is not clear,
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one may stand in front of a mirror, put their right thumb up and note that the fingers on their
mirror image are wrapping around as if left-handed. Ferromagnetic iron, therefore, breaks mirror
symmetry, even if otherwise perfectly cubic in shape, when cooled below the Curie temperature.
To account for this, after the mirror operation is performed, a “time-reversal” is also performed,
as shown in Figure 1-14c, and thus ferromagnetic iron is said to have “time-reversal symmetry”.
Additionally, a ferromagnetic specimen will generally not be composed of a homogenous
magnetization vector but rather be split up into a heterogenous set of “magnetic domains”. This
occurs because magnetizations oriented normal to material boundaries increase the number of
magnetic flux lines leaving the material which will then do work on any nearby charges. As such
having a single magnetic domain is a high energy state, which is counteracted by a
“‘demagnetization field” (demag for short), also known as shape anisotropy (since material
surface normals determine the directionality of this effect). Demag is therefore what drives

magnetic domain formation as shown in Figure 1-13 [8][9]:
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Figure 1-13: Single vs. Multi-Domain energy within a ferromagnetic material.

Still, there are such materials which extend large magnetic flux into free space known as
permanent magnets. To understand why note that the magnetizations within a material will not
be arbitrarily oriented but rather favor certain lattice directions known as “easy-axes” due to

what is known as “magnetocrystalline anisotropy” or MCA for short. “Hard” magnetic materials
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contain large MCA which counteracts demag, and as a result are capable of maintaining large
“surface poles” (surface magnetizations normal to the surface). MCA arises since the valence
electron spin couples to the orbital momentum and both couple to the lattice of a material
resulting in easy and hard directions. The lattice itself is slightly distorted from this, opening the
possibility of magnetic field driven elongations to occur known as magnetostriction. This is

represented in Figure 1-14.
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Figure 1-14: Magnetostriction, (a) pictorial representation, (b) typical strain (AL) vs. magnetic

field (H) plot with demonstration of linear piezomagnetism.

Note in Figure 1-14a that the elongation effect will occur in the same manner if the magnetic
field excitation H were reversed yielding a quadratic-like response as shown in Figure 1-14b.
Also, if a bias field is maintained and small perturbations are applied to the system, a linear
response will result. This is known as linear “piezomagnetism” and is of particular importance in
this work. James Prescott Joule first discovered magnetostriction in 1847 when he found that an
iron bar would change length when magnetized [70][71]. The inverse also holds as shown by
Villari in 1864 [72], when he discovered that stress induced dimensional changes produced

magnetization changes in ferromagnetic materials. Magnetostriction is not limited to normal
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stresses and strains, as Gustav Wiedmann discovered in 1858 that torsion was produced in a
rod when electric current flowed through it [63]. Recall that, by Ampere’s law, this means that
were circumferential magnetic fields, namely along the curvilinear plane of shear stress. The
inverse was discovered the same year by Carlo Matteucci and is known as the Matteucci effect
[73].
1.1.6 Multiferroics

A multiferroic material is one that exhibits more than one ferroic order simultaneously [74]
and is a field of research growing in popularity since the turn of the century [75-84]. The term is
somewhat interchangeable with “magnetoelectric” material since the goal of researchers
investigating multiferroics is to combine the ferromagnetic and ferroelectric orders together such
that magnetic fields drive polarization changes (direct magnetoelectric effect DME), or, more
importantly, electric fields drive magnetization changes (converse magnetoelectric effect CME).
This cross-coupling of the ferroelectric and ferromagnetic orders has proven difficult within
single phase materials since the d-shell electrons necessary for ferromagnetism reduce the
tendency for the symmetry breaking lattice distortion necessary for ferroelectricity [69].
Additionally, the CME necessary for magnetic current antennas is more difficult to achieve than
the DME due to realigning magnetic domains which inhibit large changes in observable
magnetic fields. However, as shown in the previous two sections, combining ferromagnetics
with ferroelastics (magnetostriction) and ferroelectrics with ferroelastics (piezoelectricity) is
relatively simple. This opens the door for the ferroelastic order to be used as a telephone to
communicate between electric and magnetic order parameters in a novel way using “multiferroic
composites”. In this section, the “multiferroic tetrahedron” (Heckmann diagram) will be
presented first to facilitate understanding. Then, the history of multiferroics will be discussed.
Finally, multiferroic composites will be presented.

A summary of the last three sections is represented in Figure 1-15:
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Figure 1-15: Multiferroic triangle containing ferroelasticity, ferroelectricity, and

ferromagnetism along with the name of each multiferroic effect.

All processes that cross from one ferroic order to another have been labeled in Figure 1-15.
Note that, strictly speaking, magnetostriction and piezoelectricity are multiferroic in nature but
usually the term multiferroic is used to describe the direct and converse magnetoelectric effects.
For this reason, technically piezoelectric antennas are also multiferroic antennas and a more
accurate name for the magnetic current antennas discussed thus far is magnetoelectric
antenna. Herein, multiferroic will be used interchangeably with magnetoelectric and
piezoelectric driven devices will be referred to as such without evoking the term “multiferroic”.
This is the popular nomenclature within the multiferroic research community. Diagrams like the
one shown in Figure 1-15 have been named "Heckmann diagrams" [85-87], which were
modified by Nye in 1957 [88], and are sometimes depicted with an additional axis for
temperature (T) with entropy (S) as the order parameter [86]. Therein lies some unfortunate

confusion, as Figure 1-15 depicts the stress and strain using the same letters respectively, as
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opposed to the much more widely used sigma (o) for stress, and epsilon (¢) for strain that
mechanical engineers use. This is because electrical engineers use those Greek letters for
conductivity and permittivity respectively, highlighting an interesting human element of multi-
domain physics, namely that there will be some overlap in symbols. Since mechanical
resonance based (MRB) antenna analysis utilizes the isothermal assumption, the use of T for
stress and S for strain, for which there is some precedent [4], will only be a minor inconvenience
in Chapter 2 when the laws of thermodynamics are evoked.

The first three milestones of multiferroics have already been discussed herein. These are 1)
Oersted’s discovery that electric currents induce magnetic fields in 1820 [12][13], 2) Joule’s
discovery of magnetostriction in 1842 [70][71], and 3) The discovery of the piezoelectric effect
by the Curie brothers in 1880 [63][66]. In 1894, the Curie brothers are the first to investigate the
magnetoelectric effect [89], though they were completely unsuccessful due to some incorrect
crystal symmetry assumptions. In 1926, Debye coins the term “magnetoelectric” [90], predating
the term “multiferroic”, coined by Schmidt in 1994 [91], by almost 70 years. In 1958, Landau and
Lifshitz, the same men who first proposed the governing equation of micromagnetics [15],
provide a theoretical basis for the magnetoelectric effect [92]. The search for a commercially
viable magnetoelectric then took decades before bearing fruit in 2002, when Ryu et al
experimentally advertised giant multiferroic coupling [93] of magnetic to electrical energy (DME).
In order to accomplish this, a single-phase material was not used, but rather a heterogenous
laminated composite as first proposed by Van Suchtelen in 1972 [94]. This has led to an influx
of interest in generating the magnetoelectric effect through the use of composite structures.

Multiferroic composites tackle the problem of the lack of commercially viable
magnetoelectric materials by mechanically bonding ferroelectric and ferromagnetic material

within a laminate [95-98] as shown in Figure 1-16:
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Figure 1-16: Simplest multiferroic composite.

This is the simplest design there is, but all multiferroic composites include a piezoelectric
material sandwiched between two electrodes, one of which is grounded, somewhere within the
layout. A voltage is applied to these electrodes, causing an electric field to pass through the
piezoelectric and generating a mechanical deformation through the converse piezoelectric
effect. This deformation is not apparent to the entire system simultaneously, therefore
mechanical waves must communicate this distortion to the rest of the device. Eventually these
mechanical waves impinge upon the ferromagnetic material causing deformation. This
deformation induces magnetization changes, through magnetostriction, that have their origin in
the voltage applied at the electrodes (electric field in the piezoelectric), thus achieving the CME.
In the next section, the use of multiferroic composites in the design of antennas will be
discussed.

1.2 Mechanical Resonance Based (MRB) Antennas

Thus far, Mechanical Resonance Based (MRB) antennas have been discussed indirectly
and this section will focus on these devices. First, it is prudent to review all the terms so far.
Herein, an MRB antenna includes both multiferroic antennas and piezoelectric antennas.
Multiferroic antennas are those where the converse magnetoelectric effect is utilized to produce
magnetic current. Piezoelectric antennas produce polarization current utilizing mechanical
stresses and are therefore technically also multiferroic but will not be referred to as such herein.
There is a more general class of devices known as mechanical antennas which encompass

both MRB antennas and rotating dipole devices. These latter antennas will be discussed in
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Section 1.2.4. Herein, whenever the term “mechanical antenna” is used, MRB antennas are
being referred to unless otherwise stated.
1.2.1 History

The first instance of mechanically driven EM waves is quite alien to the discussion so far as
the outgoing wave was a single pulse generated not by a multiferroic composite, but rather by a
rapid change in EM boundary conditions generated by an implosion [99][100]. The setup was to
generate magnetic flux within a conducting cylinder with an explosive charge fashioned to the
outer circumference. Upon explosion the radius of the shell would rapidly decrease, producing
an increase in magnetic flux, and generating a pulse. This dates to Joseph Fowler in 1944 [100],
though the first work to be openly published on the subject was not until 1952.

The next advancement towards mechanical antennas was performed by Rowen in 1961
[101] where he investigated the potential for EM radiation from a spherical specimen of Yttrium
Iron Garnet (YIG), which is a magnetostrictive. The spherical geometry was utilized to avoid the
complex nature of shape anisotropy (demag), as the research focused on the anisotropy
introduced by static strains (magnetoelastic anisotropy [14]). As such, the potential for
microwave generation was merely proposed but not demonstrated. Also, since the strains were
applied directly without the use of a piezoelectric, this is not a magnetoelectric antenna but
represents a significant step in the right direction.

Analysis on EM radiation from standalone piezoelectric antennas (PEAS) in the absence of a
magnetostrictive were subsequently performed by multiple authors spanning three decades.
Mindlin studied the problem in 1973 [102] but claims that Tiersten was the first to conduct the
study in 1970 [103], though the original paper appears to be lost. This early analysis was on an
infinite quartz plate, having a shear stress excitation applied to the top and bottom, with the goal
of attaining an equation for the radiated power. The full Maxwell’s equations were used

everywhere, including inside of the piezoelectric quartz plate. In 1989, Lee continued this study
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except with the electrostatic assumption applied within the piezo and full Maxwell’s in the
surrounding vacuum [104]. Interestingly, the analytical radiated power predicted with and
without this assumption only exhibited a percent difference of 1071°. This allows for fully
coupled numerical models of piezoelectric antennas (PEAS) to be compared with much simpler
models utilizing the electrostatic assumption for the purposes of verification testing. Lee also
considered the case of electric excitations applied tangential to the quartz plate, which Mindlin
had previously ignored. Lee went on to generalize his work in a 1990 paper [105].

The first instance of a multiferroic composite being proposed for antenna applications was in
2008 when Petrov et al [106] argued that the simultaneous high permittivity and permeability of
these laminates would allow for miniaturization. Later that same year, a group out of
Northeastern University led by Nian Sun experimented with augmenting patch antenna
performance through the addition of thin ferrite films thus constituting a multiferroic composite
[107]. Electric field was used to alter the magnetic properties resulting in a frequency
reconfigurable antenna.

In 2009, a group out of the Boeing corporation with Robert J. Miller at the helm filed a patent
for a multiferroic antenna [56]. The patent widely documents many of the complications that
state of the art antennas exhibit in aerospace applications, some of which have been discussed
in section 1.1.2. The work was mainly concerned with the operation of the multiferroic antenna
acting as a receiver immune to the platform effect. The goal was that incident magnetic fields
would excite strains in a magnetostrictive which would then excite voltages across nearby
bonded piezoelectric materials.

In 2011, the Translational Applications of Nanoscale Multiferroic Systems (TANMS)
Engineering Research Center (ERC) begins work on multiferroic antennas. This ERC is led by
Dr. Greg Carman and comprised of researchers from multiple universities, including Nian Sun

who has already been mentioned in this section. Some early work was performed by Scott
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Keller [108]. In 2014, Zhi (Jackie) Yao continues this research as part of the Digital Microwave
Laboratory (DML) under Ethan Wang [109]. She presents a 1D finite difference time-domain
(FDTD) model for a Bulk Acoustic Wave (BAW) multiferroic antenna [110] as shown in Figure

1-17.
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Figure 1-17: BAW resonance-based antenna, from [110].

The operation of such BAW MF antennas will be explored in the next section and this
concept has been adopted by subsequent researchers [111-113]. Yao et al. then expanded on
this topic in a journal publication in 2015 [114] in which she calculated the theoretical lower limit
of the Q-factor for an infinite plate MF antenna much like Chu [33] for general electrically small
antennas. A major assumption used within this model is that only one displacement is relevant
(uniaxial strain approximation). Another assumption is that the magnetostrictive material is acted
on by a sufficiently large bias field such that only a single magnetic domain exists. In addition, it
is assumed that this domain is only acted on by small perturbations, which allows for a
linearization of the LLG equation. The strategy is then to integrate this linearized equation into
the magnetic constitutive relation to write magnetic field update equations. The magnetization in
not updated directly. The code implicitly updates the electric field using a tridiagonal system of

equations.
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That same year of 2015, Scott Keller et al. along with the Northrop Grumman Corporation
submit a patent for a Surface Acoustic Wave (SAW) Multiferroic antenna [115] as shown in

Figure 1-18:
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Figure 1-18: SAW multiferroic antenna from US patent [115]

This configuration is not 1D like the proposed BAW device of Figure 1-17 since the strain is
relevant in more than one direction. This SAW MF antenna device utilizes intertwined “fingers”
of piezoelectric material to convert EM energy into surface waves which then induce
measurable voltage changes in downstream electrodes spaced a quarter acoustic wavelength
apart.

In January 2017, the Defense Advanced Research Projects Agency (DARPA) holds a
“Proposer’s Day” for the A MEchanically Based Antenna (AMEBA) project [116]. The goal is to
develop antennas that operate at very low frequency (VLF 3-30kHz) to communicate across the
globe by utilizing the Earth and the ionosphere as a waveguide at <6dB/1000km attenuation, as
well as antennas that operate at ultra-low frequency (ULF 0.3-3kHz) in order to penetrate water,
soil, and rock, allowing underwater and underground communication [117]. Currently, the US

Navy utilizes the Naval Radio Station Cutler in Cutler, Maine in order to transmit at 24kHz
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(12.5km wavelength) to good effect, but the station antenna array is about 1.2 miles in diameter
and uses 1.8 megawatts of power [118-121]. DARPA therefore desires VLF and ULF
transmitters with reduced size and power consumption for future high penetrating portable
communications. This highlights a key benefit of multiferroic transmitters, the devices can either
operate at microwave frequencies with dimensions at the micrometer level (e.g., for use in
implantable devices), or be made at the tens of centimeters level to operate at VLF (e.g.,
AMEBA Earth-ionosphere communications).

The same year of 2017, Domann performs on eigenmode analysis to compare multiferroic
and conventional antennas [122]. Using a Green'’s function approach, an equivalent
piezoelectric and piezomagnetic current is utilized based on a prescribed strain rate. These are
used to determine the electric and magnetic fields surrounding the device and the radiated
power. Due to the small device size relative to the EM wavelength (< 4,/50), a comparison to
the infinitesimal dipole is appropriate and conducted. It was concluded that multiferroic antennas
outperform conventional antennas at this small size.

Later in 2017, Nan et al [111], under Nian Sun, experimentally test both a nanoplate
resonator (NPR) and thin-film bulk acoustic wave resonator (FBAR) multiferroic antenna in
response to the lack of measurements of magnetoelectric coupling at very high frequency (VHF
30-300MHz) and ultra-high frequency (UHF 0.3-3GHz). This task had yet been performed due
to low-signal levels from the MF antenna and difficulties in isolating that signal from contributing
elements other than the magnetostrictive. The desired strong coupling was observed which
impressed Zaeimbashi et al [123], as in 2019 these researchers, working in the biomedical
implant field, proposed to use a planar array of these antennas, implanted at the cerebrospinal
fluid-gray matter interface (CSF-GM) in order to establish communications with a transceiver

located just outside the scalp.
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Also in 2017, Kim et al investigated a multiferroic receiver that is similar to a strain rosette
[112]. Within the device, five BAW resonators, like those shown in Figure 1-17, were setup at
angles of 0°, 30°, 45°, 60°, and 90°. The goal was to measure the change in resonant frequency
caused by incident magnetic fields due to the delta E effect, where E denotes the elastic
modulus (stiffness) of the magnetostrictive (not an electric field). Since this effect depends on
the re-orientation of magnetic domains within the magnetostrictive, the change in resonant
frequency for a BAW device biased parallel to the incident magnetic field will be smaller than
that of a BAW device biased orthogonal to the same field. As such, not only is the magnetic field
detected, but the orientation is also detected, as advertised by the authors.

In 2018, Yao et al expand the 1D code developed in 2015 [124][125], to 3D while ignoring
Newton’s laws. As such this is not work on multiferroic antennas specifically but represents a
significant steppingstone toward the first fully coupled solver, which will be discussed shortly.
The most significant innovation in this code is the use of a “field-splitting strategy” to deal with
magnetic field discontinuities at the magnetostrictive/air interfaces. These arise due to the use
of the linearized LLG equation. This rigorous treatment of material interface conditions allows for
the demagnetization field to be fully accounted for, which is typically the most time-consuming
part of any simulation involving micromagnetics.

In 2019, Kubena along with colleagues at HRL laboratories and Rutgers University perform
work on a multiferroic RF receiver [126]. The device is made up of two piezoelectric quartz
resonators, one serving as a frequency reference and the other experiencing frequency shifts
induced by incident magnetic fields due to a bonded FeGaB magnetostrictive. The frequencies
are then compared using integrated electronics allowing the incident magnetic fields to be
measured.

Additionally in 2019, Schneider tests 1D multiferroic antenna in the shape of a rod under

uniaxial stresses [127]. The setup includes a PZT piezoelectric stack of circular cross section
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experiencing a variable applied voltage. This induces compressional waves to propagate into a
magnetic field biased FeGa magnetostrictive material bonded in series with the PZT. As the
FeGa was stressed, a search coil would measure the changes in magnetic flux from within the
material and a near field probe from without. It was found that the magnetic flux oscillations
within the FeGa increased with the magnitude of the electric field applied to the PZT. The most
interesting result from this study is that there was a peak in magnetization oscillations as a
sweep of the magnetic bias field was performed. At no bias field, the oscillation magnitude is
zero and the stress/strain hysteresis is maximal because the stress wastes energy moving
magnetic domain wails around that have no macroscopic order. At large bias fields, the
magnetic domains are too stiff to want to change direction and the mechanical hysteresis is
virtually zero since no domain wall motion takes place. At just the right bias field, the magnetic
domain walls move in an orderly fashion, producing optimal oscillations of magnetization. This
trend was seen both within the FeGa, and in the surrounding air. This presents a modeling
challenge, as multi-domain magnetostrictives experiencing domain wall motion are not properly
characterized by the linearized LLG equation.

Also in 2019, Yao proposes a method to relax linear LLG assumption within her code by
introducing the magnetization as a field to be updated, as well as swapping the implicitly
updated field from electric field to magnetic field [128]. To focus on this effort, the 1D form of
Newton’s equation leveraged in previous iterations of the code were dropped, like in her 2018
work [124][125], meaning that a fully coupled 3D Maxwell's, Newton’s, and non-linear LLG
solver remains elusory. The coupling of non-linear magnetic behavior at RF frequencies dates
to Suhl in 1956 [129].

In 2019, Xu et al experimentally demonstrate a multiferroic antenna operating in the
transmitter mode [121]. The device was made up of a piezoelectric PZT core with

magnetostrictive Metglas bonded on the top and bottom. Interesting from the study, the
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radiation pattern of the antenna was measured and seen to take the “donut” shape typical of
magnetic dipole antennas. Typically, however, in conventional antennas, the magnetic dipole is
not in fact driven by a magnetic current but rather by an electric current loop. However, the
multiferroic antenna radiation under study is driven by magnetization fluctuations, and therefore
represents a true magnetic current. As such, the multiferroic transmitter was found to have
anywhere from 103 to 10* times higher efficiency over a loop antenna with the same area. A
similar study was performed in 2020 by Dong et al [130] where it was additionally proposed that
an array of multiferroic antennas would increase the range of effective communication.

In 2020, Yao et al publish a paper on the first fully coupled solver to simulate a BAW
multiferroic antenna [131]. The solver employed the alternating direction implicit (ADI) finite
difference time-domain (FDTD) scheme in order to utilize an intermediate time step between the
EM and acoustic physics. Otherwise, 100,000-time steps would need to pass on the
electrodynamic side, before any useful information is transmitted on the acoustic side. The
paper leveraged the field-splitting strategy described in [124][125] to model demagnetization
effects. The major assumptions of the solver were uniaxial strains (1D Newton’s), and a single
domain magnetostrictive under small RF perturbations (linearized LLG). The numerical results
demonstrate that the optimal radiated power and efficiency are achieved when the acoustic
resonance and the FMR occur at the same frequency. More details on this solver are given in
Chapter 3.

Also in 2020, Rangriz et al simulated a magnetoelectric antenna for the purposes of
establishing communications in implantable biomedical devices [132]. The approach was to
model magnetostrictive FeGaB using a non-linear constitutive relation [133] rather than the full
LLG. The EM fields in the near field around the device were then calculated using a low
frequency approximation to Maxwell’s equations, though the exact equation utilized was not

presented. Then the surface equivalency theorem was used to perform a near to far-field
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(NTFF) transformation of the results in order to determine scattering parameters. Altogether the
approach was a nice compromise between accuracy and complexity.

Finally in 2022, Kevin Luong and Ethan Wang comprehensively attack the modeling of
magnetoelastic coupling within magnetostrictives in the absence of electrodynamic wave
propagation [134]. This was performed to highlight the limitations of contemporary approaches
of modeling magnetoelastic coupling within MF antennas solely through constitutive relations,
like in [135], without evoking the full LLG equations governing the magnetization dynamics in a
highly frequency dependent manner. The analysis focused on the linearized form of the LLG
equation however, though this version is highly appropriate for many multiferroic antenna
designs, e.g., those that utilize thin film magnetostrictives biased such that only a single
magnetic domain is present. Since devices under these conditions have their magnetizations
saturated in the direction of biasing, the only magnetoelastic coupling coefficients that can
induce magnetization oscillations are those related to shear stresses. The results of this
analytical study show that this is indeed the case as, for example, the optimal coupling in an iron
material biased in the z-direction is achieved when a normal stress is applied 45° off axis, i.e.,
such that the magnetization experiences the maximum amount of shear. The study also
demonstrates other interesting properties of magnetoelastics, namely that the resonance
frequency for the coupling becomes higher with stronger magnetic bias fields due to shifts in the
FMR frequency. Note that since this study focused on single domain magnetoelastics, this does
not discredit experimental work that claims normal stress driven magnetizations oscillations, as
the magnetostrictives in these works presumably had not been fully saturated.

One of the largest issues facing MF antennas is the small bandwidths (BWs) associated with
the large total Q values since the bandwidth is inversely proportional to the Q. For example, an
antenna resonating at 10kHz with a Q of 100,000 will have a bandwidth of 0.1Hz which is

unpalatable and real MF antennas have had BWSs on this order. Direct antenna modulation
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(DAM) is one way to approach this problem but in 2022 the authors of [136] attempted to tackle
the issue buy fabricating a MF antenna with 3 resonant regions based on the composite
stackup. Resonant region 1 (R1) was fixed on the bottom and composed of an electrode-AIN-
FeGa-electrode stack up. Resonant region 2 (R2) was the same but included a Al;O3 layer on
top and R3 was the same as R2 save the bottom was a traction free boundary. Due to the three
different resonance frequencies, the BW was increased. Altering the resonant frequency by
changing the device capacitance via semiconductor relay switches and discrete capacitors is
likely a better alternative, however.

Also in 2022, Rostami et al. [137] proposed modelling of a MF antenna via finite element
software Comsol. A comparison with a micro-loop antenna of equivalent size was also
performed demonstrating that the micro-loop was too small to produce resonance, radiation,
and matching with a 500hm transmission line. This is not surprising as traditional EM driven
antennas with dimensions on the order of the mechanical wavelength are too small to exhibit
the spatial fluctuations necessary to radiate and essentially become lumped elements. Since a
full-wave fully coupled simulation was not performed, near-field and far-field parameters were
derived in a roundabout way utilizing equivalent circuits on the software CST. Interestingly, the
mechanical viscous damping parameter was chosen as 1e-4 which is significantly lower than
the 0.02-0.025 value that agrees well with experimental values of AIN [131]. As such, the
efficiencies within the paper are likely overpredicted.

In June 2022, Will-Cole et al., as part of Professor Sun'’s lab, released a NEMS antenna
“tutorial” [138] which gives an overview of the relevant equations, material properties, and
experimental results performed on MF antennas at Northeastern University.

In April of 2023, Zheng et al. [139] from the TANMS organization published a work in which
a MF antenna similar to that of Figure 1-18 was simulated and experimented. The difference

being that the antenna did not include alternating plus and minus electrodes (IDTs) on top of a
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substrate, but rather positive electrodes laced between magnetostrictive material with a large
ground electrode below the piezoelectric substrate. Etching vias were also used so that an air
cavity could be generated beneath the antenna, maximizing piezoelectric strain. The antenna
was characterized in both the receiving and transmitting modes. For transmission, an
electrostatic elastodynamic simulation was performed utilizing finite element software Comsol
so that the device geometry could be properly tuned to induce a mechanical standing wave in-
plane orthogonal to the driving electrodes. The stresses within the magnetostrictive material
were then subsequently input into a micromagnetic solver which utilizes the LLG equation to
calculate magnetization fluctuations. These fluctuations are then fed into a magnetic dipole
simulation to calculate far-field parameters. As such, the analysis consisted of three uncoupled
simulations performed in series.
1.2.2 Operating Principles

Magnetoelectric coupling in MF composites at RF frequencies has been investigated by
multiple authors as seen in the previous section as well as in [140-146]. Using MF
heterostructures allows the designer to bypass the two main issues with scaling down antennas
to the micrometer level, namely, ohmic losses, as discussed in section 1.1.2, and wavelength
constraints. Traditional antennas, like dipoles, have physical dimensions on the order of the
wavelength of the EM radiation being propagated at the frequency of operation [26][27]. This
concept of size being proportional to wavelength is true of all resonating devices. A notable
example is the size of a trumpet operating at high frequency/pitch (short wavelength), which is
relatively small compared to a tuba operating at low frequency/pitch (long wavelength). This
also applies to MRB antennas of course, except that the resonance driving EM radiation is
acoustic rather than electromagnetic. In the GHz range the EM wavelengths are 5 orders of
magnitude longer than that of acoustic waves [114][131]. This is fundamentally because the

speed of light is much faster than the speed of sound as shown in Figure 1-19:
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Figure 1-19: Linear dispersion relation (frequency w vs. wavenumber k) demonstrating 5
orders of magnitude difference in acoustic to EM wavelength at the same frequency. The slope
of the dispersion relation is the wave speed (group velocity). Note that the EM wave speed

(Vgm) is much larger than the acoustic wave speed (V gcoustic)-

Therefore, mechanical antennas, which utilize acoustic waves to generate magnetic field
fluctuations, can be made significantly smaller than traditional antennas and are multiscale in
nature. In other words, these novel devices turn waves that generate sound, into waves that can
be received by a wireless communication system. This is the fundamental mechanism
motivating multiferroic antenna research which also applies to piezoelectric radiators discussed
in section 1.2.3. The operation of a multiferroic antenna is shown in Figure 1-20, for the initial

single time period.
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Figure 1-20: Initial period (T) of operation for a simple multiferroic antenna. AV is the voltage
differential across the two electrodes. The upper and lower mechanical boundary conditions are
both traction free. The ordering was chosen such that the reader can follow along with the
acoustic wave during propagation. The t=0 time designation was given to (a) to emphasize that
the voltage cannot change instantaneously across electrodes, and therefore only (a) and (c)
could possibly be the initial state. The magnetostrictive has a single magnetic domain, which is
achieved using a magnetic bias field. The device is thin-film, meaning that the in-plane
dimensions are significantly larger than the thickness (1D uniaxial strain case). The piezoelectric

is poled out-of-plane (z-direction)

The thickness of the multiferroic antenna is half of the acoustic wavelength (A4coustic/2
[114][131]), and the quarter period (T/4) steps shown in Figure 1-20a-e will now be described in
detail: (a) At t=0 a voltage input generates a compressional wave which begins to propagate to
the upper and lower traction free boundaries of the device at the acoustic wave speed. Note

however that there are still no electric potential (voltage) gradients as the voltage differential
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between the electrodes cannot change instantaneously. Since the acoustic wave has not had
time to propagate there is no stress/strain anywhere in the material nor are there electric fields
in the piezoelectric or magnetization changes in the magnetostrictive. (b) At t=T/4 the
compression wave has hit the upper and lower boundary of the antenna, generating a negative
stress/strain throughout the device and producing a change in magnetization within the
magnetostrictive. There are also electric fields and polarization changes in the piezoelectric due
to the voltage differential. The compression wave reflects off the boundary as an expansion
wave since the boundary is traction free and therefore cannot hold any strain. (c) At t=T/2 the
reflected expansion wave has reached the center of the device, undoing the effects of the initial
compressional wave. Simultaneously, the voltage input is now generating an additional
expansion wave which interferes constructively with the reflected expansion wave. This
constructive interference is the mechanism behind acoustic resonance. (d) At t=3T/4, the
expansion has now propagated through the entire device, producing a positive stress/strain and
inducing a change in magnetization in the magnetostrictive with the opposite sense as that
produced at time t=T/4. The expansion wave reflects off the upper and lower boundaries as a
compressional wave. (e) At time t=T the system is back to its original configuration with an
additional voltage induced compressional wave constructively interfering with the reflected
compressional wave. (f) Since the voltage excitation frequency is the same as the first acoustic
harmonic frequency, mechanical resonance is achieved with a half sine wave eigenfunction
(mode). This is accomplished since the device has a thickness equal to half of the acoustic
wavelength (A,.0ustic/2)- If additionally, the acoustic resonance and the ferromagnetic
resonance (FMR) occur at the same frequency, the magnetizations within the magnetostrictive
precess, optimally producing alternating magnetic currents which propagate into free space as

EM waves. As it concerns resonance, there are three possibilities as shown in Figure 1-21:
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Figure 1-21: Three potential cases of resonance, (a) the frequency input f;, is equal to the
FMR frequency, (b) fi, is equal to the first acoustic resonant frequency fqcoustic: (C) fin iS €qual

to both the FMR frequency and f 4coustic

In Figure 1-21a the FMR frequency is input at the electrodes, but this does not coincide with
the first acoustic resonant frequency. The acoustic wave will therefore be some amalgamation
of acoustic harmonics which excite the magnetostrictive layer in a disorganized fashion. The
result is small amplitude magnetization fluctuations and a weak signal. In Figure 1-21b the input
frequency equals the first acoustic harmonic, generating a half sine wave stress profile through
the thickness of the device. These stresses induce magnetization changes that sometimes aid
the precessional motion and sometimes hinder it. Again, the result is a weak signal. In Figure
1-21c the first acoustic harmonic induces precessional motion in the magnetic material such that
every time the magnetization is back to its initial position the wave excites it again in the same
way, reinforcing its motion. In other words, the acoustic resonance frequency and the FMR
frequency are the same. The result is large macroscopically detectable magnetization
precessional motion which generates a strong signal. There has been much research performed
on acoustically driven ferromagnetic resonance (ADFMR) in recent years for SAW devices [147-
151], though the phenomenon has been predicted for BAW device as well [131].

Now that the operation of the multiferroic antenna design in Figure 1-20 has been explained,
some additional observations will now be explored. First, since the EM wavelength is around 5

orders of magnitude larger than the device, the difference in electric field within the electrode-
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piezo-electrode driving sandwich is small. Therefore, unlike patch antennas, the effective
magnetic currents on the lateral walls (radiating slots in Figure 1-6) of the sandwich are opposite
in direction, cancelling out. This stackup therefore acts as a lumped circuit capacitor with current
1 90 degrees out-of-phase with voltage V. Thus, the electric field fluctuations within the piezo
are reactive in nature, storing energy rather than radiating it, alleviating concerns that the
piezoelectric is affecting the far-field radiation pattern of the antenna. Also, small fringing electric
fields near the capacitor will die off too quickly to be of importance from a performance
standpoint. For modeling purposes, this suggests full Maxwell’s equations are not required
within the domain of the driving sandwich and therefore this region could be simulated
separately. However, the full elastodynamic set of equations still applies within this volume.

Second, note that the polarization vector only changes in magnitude, while the
magnetization only changes in direction. As such, normal stresses applied to the magnetization
can only induce significant changes if sufficiently strong enough to induce ferroelastic switching.
To counteract this, note that when the device is unstrained, the magnetization is slightly canted
vertically. This is so that the magnetization vector experiences shear strains rather than only
normal strains (recall from Figure 1-8 that shape changes always imply shear at non-principal
directions). This canting of the magnetization is accomplished by the application of an out-of-
plane bias magnetic field. Unfortunately, due to the high degree of shape anisotropy favoring in-
plane magnetizations, this bias field will need to be exceedingly large. Shape anisotropy has
another implication. Note from Figure 1-20f that the precessional motion of the magnetization at
FMR is depicted as a right circular cone. In reality, shape anisotropy will force this cone to
flatten into a more ellipsoidal shape such that the magnetic current is mostly in-plane. This is not
a hinderance since any out-of-plane magnetic currents would suffer from the same platform

effect that in-plane electric currents do because of image currents.
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Another way of getting the magnetization to experience shear strains that avoids the need
for an out-of-plane bias field would be to excite a thickness shear mode, not unlike those
investigated analytically by Mindlin [102] and Lee [104][105]. Since it is not reasonable to place
electrodes on the lateral walls of the device, due to the small thickness, horizontal electrical
excitations are not possible for thin-film devices. Therefore, a more reasonable way to excite
thickness shear modes is to have an in-plane poled piezoelectric material as shown in Figure

1-22:

'lacoustic

2

Figure 1-22: Thickness Shear Mode Multiferroic Antenna

Thin-film piezoelectrics poled in-plane are currently challenging but this could open up the
possibility for future fabrication and material science research on the topic. Still, these difficulties
are why emerging technologies have begun to shift focus towards piezoelectric antennas which
will be discussed in the following Section 1.2.3 and are simulated in Chapter 5.

Another way of improving the performance of the antenna in Figure 1-20 is to note that the
half sine wave first eigenmode, due to the traction free boundaries, will be retained if an

additional layer is added to the stackup as shown in Figure 1-23:
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Figure 1-23: Multiferroic antenna with acoustic buffer.

The acoustic buffer has the effect of ensuring a higher stress region within the
magnetostrictive layer [131], thus boosting the performance by generating a higher magnetic
current. Any added layers will need to be impedance matched (same wave speed) to the rest of
the stackup to ensure that the mechanical waves only reflect at the traction free boundaries
rather than at the interfaces as well. This is a concern whenever interfaces between two
materials exist however, and therefore even the original configuration of Figure 1-20 must take
impedance matching into account. If the planar nature of the device may be sacrificed, another
approach is to allow the thickness of the magnetostrictive layer to increase until an axial bar like
configuration is reached. This however would introduce difficulties of retaining a single magnetic
domain since shape anisotropy would no longer heavily favor in-plane magnetizations. This
again highlights why research focus has shifted towards piezoelectric antennas, at least within
the aerospace industry.

The discussion so far has focused on 1D bulk acoustic wave (BAW) devices, but more
complex surface acoustic wave (SAW) devices are also possible and will require the use of the

full 3D Newton’s laws.
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Figure 1-24: SAW multiferroic antenna, a) Structure and physical coupling mechanism, b)

Cross section of the antenna.

Within the SAW device a voltage excitation is applied to the electrodes inducing surface
shear waves to propagate within the piezoelectric substrate triggering magnetization changes
within the intertwined magnetic islands. Such devices have proven exceedingly difficult to
fabricate and model, providing motivation for further research. Although a piezoelectric material
could conceivably be used instead in Figure 1-24, generating a 3D piezoelectric antenna, it is
much simpler and optimally effective to utilize 1D piezoelectric devices loaded with metal wire to
boost dipole moment and fill a 3D volume. This concept will be discussed in the subsequent
Section 1.2.3.

While simulation of multiferroic devices is needed, the analysis performed herein is
exclusively on piezoelectric antennas due to shifting interest into these radiators by
organizations such as DARPA. Multiferroic devices, being the most general case, will continue
to be discussed in this text but future work is needed to modify the numerical framework
provided in Chapter 3 to tackle the multiferroic antenna problem.

1.2.3 Piezoelectric Antennas (PEAS)
The conversation so far has revolved around magnetic current multiferroic antennas, but

these are not the only type of antennas that leverage mechanical resonance as the radiation
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mechanism. Indeed, polarization oscillations can also be utilized to propagate EM radiation by
effectively swapping the magnetostrictive material with piezoelectric material within designs
similar to those discussed in section 1.2.2, in what are known as piezoelectric antennas (PEAS).
These will no longer be magnetic current antennas and will therefore suffer from drawbacks
largely trivial to MF antennas such as the platform effect (for currents tangential to the ground
plane), and near field degradation within lossy environments. These issues do not come without
counteracting benefits, however. For example, the magnitude of polarizations can be changed
in contrast to magnetizations, and therefore, normal stresses may always be used to induce
polarization changes unlike MF antennas utilizing single domain magnetostrictives. Also, the
need for a bias field is eliminated. Impedance matching issues can additionally be eliminated if
the same piezoelectric material is used within the driving sandwich and the radiating volume.
Lastly, piezoelectric resonator antennas are much easier to model and verify with commercial
software as the EM fields within the piezoelectric are the same whether electrostatics or full
Maxwell’s are utilized [104]. Therefore, if a very low frequency (VLF) transmitter is desired that
is not placed within a dielectric lossy environment, a PEA solution should be chosen from a
simplicity standpoint. Since readily available magnetic sensors can already receive in lossy
environments [121] this would work wonderfully for portable transmitters located above water
sending signals to underwater equipment like submarines. However, for scuba diver to scuba
diver communications, or signhals sent within implantable device networks, these radiators would
work poorly. As such, there is a need that can be filled by piezoelectric radiators though
multiferroic antennas have broader applicability at the cost of increased complexity.

There are two main configurations of PEAs, axial bar radiators, and planar radiators as
shown in Figure 1-25a and b respectively. Note that planar radiators have two main
configurations. In the first (top of Figure 1-25b), Poisson’s effect is utilized to generate

resonance in-plane orthogonal to the electrodes. The PEA must have a surface that is not
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completely covered by an electrode, otherwise the device would act as a capacitor. In the
second (bottom of Figure 1-25b) the PEA is configured much like the MF antennas of section
1.2.2, producing a thickness resonance mode. Due to large depolarization (polarization current
orthogonal to large surface area), it is not recommended that planar devices be utilized, and
only axial dumbbell designs are simulated in Chapter 5. Recall from Section 1.2.2 that
multiferroic antennas like those at the bottom of Figure 1-25b also suffer, though from separate

issues. The rest of this section focuses on the history of these PEA devices.

Piezoelectric

]

Ground

Piezoelectric

0000000006

ttttttttteeteetteanetes

Ground

-

(a) (b)
Figure 1-25: Piezoelectric Radiator Configurations, (a) Axial bar (dumbbell) design, (b)

Planar designs.

As indicated previously the earliest work on piezoelectric radiators was performed by Mindlin
[102], and decades later the research was continued by Lee [104][105]. Since this work has
already been discussed in section 1.2.1, the conversation herein will fast-forward to 2019,

where Kemp et al [152], out of Stanford, perform experiments and simulations on a low
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frequency piezoelectric radiator. The device was a homogenous rod of Lithium Niobate (LN),
9.4cm long, with mechanical resonance around 35kHz. The antenna was fixed in the center and
traction free on both ends with voltage excitation at the bottom. This produced a half sine wave
stress profile which in turn caused the transmitter to behave like a dipole, due to piezoelectric
coupling, but with an efficiency greater than 300x that of traditional antennas. The authors also
compared experimental measurements of the input impedance with a multiphysics finite
element model, as well as an equivalent circuit model. Within the equivalent circuit model, an
RLC resonating circuit was used to model the mechanical resonance with the electromechanical
coupling modeled by a transformer.

Piezoelectric radiators need not be in the shape of rods, however, as planar designs also
exist as investigated by Hassanien et al in 2019 [153]. This work focused on a disk-shaped
device where the bottom planar face was covered with a ground electrode, and the top
electrode was confined to an area hugging the outer circumference. When excited, mechanical
waves propagate towards the center of the device, producing the desired resonance. Since the
piezoelectric is poled out-of-plane, this produces polarization currents normal to the ground
plane which are not hindered by image currents, reducing platform effect. Hassanien continues
his work through two publications in 2020 [154][155], in which he proposes adding unipolar
electrets to the maximally displacing portion of a MEMS resonator to increase radiation, similar
to Weldon [156] who proposed placing charge on the tip of vibrating carbon nanotubes to
radiate EM waves. This crosses into the space of bulk mechanical motion driven antennas
which is discussed in section 1.2.4.

Also in 2020, Dong et al [157] modeled a stress source within a piezoelectric radiator using
the finite difference time-domain (FDTD) method. As a simplification, these researchers did not
use the elastodynamics equation at all, but rather modeled the stress input as a lumped voltage-

resistance source. Also, an unconditionally stable solver was not utilized, and results were not
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presented, only derivations. Still, this represents a novel idea within the space. Interest in
piezoelectric radiators has continued into 2021 as well [158][159], with Yong et al. [160]
provided a summary of some prominent designs in 2022.

In 2023, Xu et al. [161] attempted to tackle the problem of small bandwidth in piezoelectric
resonator antennas by utilizing PMN-PT as the radiating material. Unfortunately, there appears
to be some confusion in the paper as the authors argue that the inverse piezoelectric effect
inherently involves ferroelectric switching and is therefore a cause of significant friction. While
poling of a piezoelectric does indeed involve ferroelectric switching, the linear piezoelectric
effect only involves a displacement of the asymmetrical ion within each crystal, not a full
switching, hence why piezoelectricity is a linear effect. Coincidently, the authors argued that the
electrostrictive effect would be better for radiation, which would indeed suffer from temperature
increases. Also, the disk-shaped resonator that was tested included electrodes on the top and
bottom of the PMN-PT that covered the entire surface in contrast to Hassanien’s previous work
[153]. Due to the electrically tiny size, this disk was therefore an energy storing capacitor rather
than an energy radiating antenna and any received power measured from their receiving loop
antenna was from reactive near fields that do not contribute to radiation. The authors attempted
to show that the received power during their measurements was indeed from the PMN-PT by
measuring a device that only includes the electrodes and wires, but their measurements were
made only within 10s of meters away, easily within the near field. Therefore, the increased
received power was from the non-radiating near fields produced from the PMN-PT. Any claims
about increased bandwidth are therefore also suspect. This problem of resonant capacitors
being advertised as mechanical antennas is a wider issue as Cao et al. [162] appear to have
fallen into the same trap. Still, Xu et al. [160] are quite accurate that materials with low
mechanical to electrical energy conversion (like LN) are not well suited for mechanical antenna

applications.
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In 2023, Gao et al. [163] experimented with adding conducting material to the piezoelectric
antennas to increase the effective length. Essentially, metal wire was added along the axial
direction of the cylindrical antenna such that the resonating piezoelectric material would act as
an impedance matching element. While innovative, Gao et al. did record smaller efficiencies
than that of Kemp [152] when the antenna was of the same size or slightly larger. Interestingly,
in the device, the piezoelectric bar has electrodes on the top and bottom, so it does not seem
that the mechanical portion of the device is radiating anything. Therefore, it appears that the
authors were able to hit the upper radiation efficiency bound (from [164]) for metallic electrically
small antennas (MESAS) with a device that has only metallic radiating elements by utilizing a
piezoelectric resonator for impedance matching. This could mean that further improvements in
efficiency may be possible if the electrodes are moved around such that the piezoelectric
material also radiates. This marriage between novel piezoelectric antennas and the classic
current carrying wire is the optimal method of generating large dipole moments within a 3D
space. Thus, 1D axial bar PEAs are the preferred configuration and 2D/3D devices are not
considered herein.

Finally, in 2023, DARPA sent out a Broad Agency Announcement (BAA) seeking proposals
for electrically small receivers (TA1) and transmitters (TA2) under the name “Macaroni”. The
name was originally meant to be Marconi (in honor of the first transatlantic communication [26-
28]) but due to a clerical error was changed to Macaroni. The exact performance metrics are
classified, and the bidding process ended on October 10, 2023, when final proposals were due.
Notable amongst the TA2 bidders is the Northrop Grumman Corporation, in partnership with
Greg Carman and Ethan Wang of the University of California, Los Angeles. Although this
proposal was ultimately not funded, the technical approach described in the proposal was well

received and simulations in Chapter 5 of this work cover much of the proposed innovations.
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1.2.4 Alternative Mechanical Antennas (Mechtennas)

In section 1.1.2, the radiation mechanism in antennas was described as fundamentally
originating from charge acceleration, and in section 1.2.2, it was shown that magnetization
oscillations are a magnetic equivalent to this phenomenon. So far, piezoelectric radiators have
been presented as devices that produce the former, and multiferroic antennas have been
presented as devices that produce the latter, both of which are strain driven methods. However,
even if the mechanical antenna is thought of as rigid (not deformable), radiation will still occur if
bulk mechanical motion is applied. This may be in the form of spinning an electric dipole
(Bipolar Electret [154]) or permanent magnet, or linear acceleration of an electric monopole
(Unipolar Electret [154]) as shown in Figure 1-26. The usefulness of unipolar electrets is mainly
in the augmentation of multiferroic radiators [154][156]. As such, the remainder of this section

will focus first on oscillating electric dipoles and then on spinning magnets.

\ 4
Unipolar Electret Bipolar Electret
(a) (b) (c)

Figure 1-26: Bulk mechanical motion driven antenna concept, (a) Electric monopole under

linear acceleration, (b) Oscillating electric dipole, (c) Oscillating magnet.

The earliest study of oscillating electric dipoles appears to have been made by a curious
astrophysicist in 1976 [165] who noted the following: 1) gravity and acceleration are often
indistinguishable, 2) charge acceleration fundamentally drives EM radiation, and 3) small

positive charges appear near the surface of rotating objects. Therefore, rapidly rotating dense
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celestial bodies should produce at least small amounts of radiation. While curious, this
appeared to be a novelty until Bickford picked up the idea in 2017 for the purpose of super low
frequency (SLF 30-300Hz) communications by spinning an electric dipole at 167Hz [166]. The
idea was put forward again by Barani in 2018 [167] and expanded on by Bickford in 2019 [168]
where he proposed a linear mechtenna composed of layers of electrets where adjacent layers
were displaced anti-parallel with respect to one another.

The study of spinning magnets started in the 1950s [169][170], and later in 1978 [171],
again with researchers based in astrophysics. Research then increased in frequency in
2014/2015 when Garraud et al began studying oscillating dipoles for the purpose of low
frequency wireless power transfer with a potential application aimed toward wireless battery
charging of biomedical implants [172][173]. Selvin, working under Ethan Wang, then presented
on the topic of oscillating dipoles in a conference in 2017 [174], highlighting some of the main
issues with the oscillating dipole method in general, namely that a 1kHz signal will require an
angular speed of 60,000rpm, leading to frictional issues with additional complications introduced
by frequency modulation for information transfer.

Prasad then takes up the mantle of researching spinning magnets, presenting at
conferences in 2017 [175] and 2018 [176], and publishing in 2019 [177] on “magnetic pendulum
arrays”. These configurations use diametrically polarized permanent magnetics in a linear array

as shown in Figure 1-27.
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Figure 1-27: Magnetic pendulum array, from [Prasad 2019]

The adjacent elements within the array will align to one another, producing a self-biased
system, and the coils surrounding the bars induce an RF magnetic field that excites oscillations.
This innovative design was proposed in order to significantly reduce the mechanical loss
associated with mechtennas. It was shown that the pendulum array efficiency was about 7dB
higher than that of the coils operating alone.

Active research in mechtennas has continued [178-182], but the drawback of these
antennas is the large inertial forces induced, producing structural integrity concerns [127], and
the general power inefficiency of the proposed designs with limited magnetic field strength for
long-range communications [130]. The applicability to the biomedical industry also appears to
be limited, if not nonexistent, edging multiferroic antennas ahead within the mechanically driven
EM radiator design space. However, for up to 1kHz, rotating magnet antennas still truly shine

and appear to have a healthy future.
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1.3 Dissertation Overview

Thus far in chapter 1, important preliminary concepts have been presented to discuss the
operation and history of traditional antennas, microstrip antennas, and mechanical antennas.
Three dynamic systems (elastodynamic, electrodynamic, micromagnetic) were also introduced
along with the ferroic orders. Piezoelectric and piezomagnetic materials were described, along
with how these materials can be combined into magnetoelectric (multiferroic) composites which
can be made to radiate EM energy. The method by which these multiferroic antennas overcome
the current issues facing antenna miniaturization was presented. A summary of the remainder of
this dissertation follows.

In chapter 2, all relevant equations describing the electro-magneto-mechanical system,
necessary for modeling multiferroic antennas, are presented. First the balance laws are
discussed. Then, the 1% law of thermodynamics will be evoked to demonstrate the conditions
under which the input power equals the output power. Then, the 2" law of thermodynamics will
be utilized, yielding an inequality that imposes restrictions on the constitutive relations. The laws
of thermodynamics provide insight into how coupling between EM and mechanical fields can
take place through constitutive relations. Then, the uncoupled and coupled constitutive relations
are described. Finally, a brief discussion on dissipation is presented in the context of quality
factors and other terms that may be more familiar to engineers. A summary of all the equations
is then provided at the end of the chapter. All equations are presented in continuum (non-
discretized) form.

In chapter 3, the discretized finite difference equations are presented along with the relevant
derivations. These equations are used to update the EM fields, stress, velocity, and
convolutional history variables. The order in which the updates occur is described with
reasoning for why the parameters are best updated in that manner. Discussions about interface

conditions, excitations, boundary conditions, and PML expressions are also provided.
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In chapter 4, validation cases are discussed that test the mechanical, electrodynamic, and
micromagnetic portions of the code. Comparison to analytical solutions and commercial
software are both performed and numerical experiments are conducted to develop best
practices for modelers. Validation cases include but are not limited to aperture antennas,
electric dipoles, 1D mechanical bars, and infinite line sources.

Lastly in chapter 5, simulations on mechanical antenna devices are performed and
discussions on antenna performance are conducted. The devices are compared to the
theoretical limits for electrically small antennas and far field parameters are presented.
Radiation efficiencies are presented and compared to the state of the art with tips on how to
improve performance for future designs. Conclusions are drawn as to the efficacy of mechanical

antennas to meet the challenges of future antenna platforms.
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CHAPTER 2: MULTI-PHYSICS MODEL DEVELOPMENT

Multiferroic antennas function by mechanically bonding piezoelectric material to thin film
magnetostrictive material. The piezoelectric may then be excited by attached electrodes which
then propagates acoustic waves to the bonded magnetostrictive generating magnetization
fluctuations. Some of the mechanical energy is then dissipated due to magnetic loss within the
material and some is propagated out into free space as an EM wave [131]. Therefore, any
numerical algorithm wishing to properly characterize a small multiferroic antenna must be
capable of not only dealing with the multi scale nature of the physics involved but also solve
three sets of coupled partial differential equations: Landau-Lifshitz-Gilbert (LLG) equation
governing micromagnetics within the magnetostrictive, Newton’s Laws governing the acoustic
waves, and Maxwell’s laws governing EM waves. Currently existing finite element software like
COMSOL Multiphysics have been shown to be able to solve these equations in the absence of
EM waves [74][183]. Previous Work done by the TANMS ERC solved these equations including
EM waves by utilizing an unconditionally stable multi-scale solver under a uniaxial strain state
and in the absence of piezoelectric radiating elements [110][114][131]. This is sufficient to
model a bulk acoustic wave (BAW) multiferroic antenna but is incapable of modeling 2D and 3D
devices like those that utilize surface acoustic waves. The solver tackled the multi-scale
problem by using a special finite difference time domain (FDTD) algorithm which will be adopted
herein, where the exercise of including piezoelectricity is performed. The result is an algorithm
capable of modeling mechanical resonance-based antennas which may be used to design
exotic new devices.

This chapter deals with the derivation of all required equations in continuum form. These are
split into two categories; balance laws, which remain unchanged when cross-coupling is
introduced, and constitutive relations, where the coupling terms in a system involving multiple

physical domains arise. Convolutional methods will be discussed when appropriate for
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describing lossy media. The equations herein are written in indicial notation unless otherwise
specified.
2.1 Balance Laws
2.1.1 Conservation of Electron Angular Momentum

Since magnetism originates from the intrinsic property of spin within the electron and the
orbit of the electron about the nucleus of the atom, conservation of the associated angular
momentum is particularly significant within magnetic materials. Following the approach by
Landis [184] two micro-force systems are introduced that are power conjugate with the
magnetization order parameter: one representing the surface interactions between magnetic
domains, and the other representing magnetic forces within the volume of each magnetic

domain. The power from these micro-force systems may be written as follows:

jffniMidV, f(ﬁanidA (2.1)

Where n; is the surface normal of differential area dA, dV is a differential volume element,
M; is the magnetization, {j; is the surface micro-force tensor, and r; is the volumetric micro-

force vector. Utilizing these micro-force systems, the angular momentum balance may be

written as:

Uy -
jf ekjiMj(pinpdA-l_jjf EkjiMjT[idV = .[j y—szdV (22)

Where Z—" = y is the gyromagnetic ratio of the electron magnetic moment to angular
0

momentum, and as such is used to express the time derivative of angular momentum with
respect to the time derivative of magnetization. Applying the divergence theorem and

recognizing that the balance must apply to any arbitrary volume vyields:

Ho -
€kjiM; (Spip + i) + €xjiMjpCpi = V_oMk (2.3)
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Equation (2.3) relates the micro-force systems to the time derivative of magnetization, which
incorporates changes in the direction and magnitude of the magnetization vector with time. The
micromagnetics literature often makes assumptions about the magnitude of the magnetization
and the forces acting along the direction of magnetization. To take advantage of these
assumptions the cross product of equation (2.3) with respect to magnetization is taken yielding:

Ho .
emknekjiMnMj(cpi,p + T[i) + emknekjiMnMj,pzpi = y_oemanan (2-4)
Equation (2.4) no longer provides information on how the micro-forces effect the
magnetization magnitude since the components of the micro-forces in the direction of the
magnetization have been eliminated by the nature of the cross product. For example, had the
micro-forces been completely in line with the magnetization vector then the left-hand side of

equation (2.4) would be zero since the rate of change of magnetization would be parallel to its

direction and be eliminated by the cross product. Recall the following identity:
Emkn€kji = (8nj6mi - 6ni6mj) (2.5)

Using (2.5), equation (2.4) may be written as:

Ho .
= Y EmienMn My

(6nj5mi - 5ni6mj)MnMj((pi,p + ”i) + emknekjiMnMj,p(pi —
0

- |M|2({pm,p + T[m) - MmMn((pn,p + T[n) + emnkeijanMj,p{pi

(2.6)

Ho .

= — EmnicMn My,
Yo

Where M;M; = |M|? has been used. Also note that some manipulation of the indices has
been performed. The last term on the left-hand side of the equality in equation (2.6) has been
altered using the following property of permutations,

Emikn€kji = —€mkn€ijk = €mnk€ijk
The term on the right-hand side in equation (2.6) was altered using the anti-commutative

property of the cross product (a X b = —b X a),
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EminMnMi = —€minMp My, = Eppic MMy,

Following the assumptions made by Landis [184] the micro-forces parallel to the
magnetization are assumed to be quasi-static. This means that changes in magnetization occur
such that the micro-forces are in equilibrium at every instant in time. Changes in magnetization
amplitude are also assumed to occur at much shorter time scales than those associated with
directional changes in magnetization. Therefore, the work being done by micro-forces in the

direction of the magnetizations is assumed zero:
My (Cpnp + 1) =0 (2.7)

Therefore, equation (2.6) is simplified by equation (2.7) to:

Ho . 1
(pm,p + Ty, = sz Emnk Mn M) — |M|2 EmnkEijk]\/lnjwj,p(pi (2-8)
0

By tinkering with the indices, this may also be written as:

Ho . 1
Gjij = M2y, €ijkMiMy — e €ijk€rrsMiMspCpr — T (2.9)
0

Equation (2.9) is the balance of electron angular momentum and will be leveraged in section
2.2.1 when the power balance is performed consistent with the continuum thermodynamics
approach contained herein.

2.1.2 Conservation of Linear Momentum in Viscoelastic Media
If surface tractions t; (forces) are applied to the outer boundary of a body, the conservation

of linear momentum equation is written as [185]:

& ([ pesty = [[ riaas [[f nav 2.10)

Where b; is the body force, p is the volumetric mass density, and v; is the velocity which is
the time derivative of the displacement. The density is assumed to be time invariable, and the
differential volume (dV) is assumed to not change appreciably (small deformation). Therefore,

the time derivative may be moved into the volume integral and applied to the velocity directly. In
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order to combine the traction term, which acts on the surface, to the inertial and body force
terms, which act on the volume, Cauchy’s stress theorem is applied:
t; =Tijn; (2.11)
Now the divergence theorem is used, and it is recognized that the balance must apply to
any arbitrary volume yielding:
pv; = Tijj+ b; (2.12a)
Equation (2.12a) is known as the elastodynamic equation, or Newton’s law, or the
mechanical balance equation. All three are appropriate. Often when considering elastic waves,
the body force term is ignored (though not by necessity), and the divergence of stress is seen
as the sole driving mechanism for mechanical accelerations as was alluded to in section 1.1.1.
pv; = Tij (2.13b)
When excitations are slow (low frequency) the mechanical wavelength may be large
compared to the dimensions of the structure and the body may be considered rigid for dynamic
analysis as is the case for engineers working on mechanisms like steering systems and landing
gear. Alternatively, if the excitations are exceedingly slow (quasistatic) then the system may be
modelled as a deformable body with stresses/strains not evolving with time. These
approximations are not appropriate herein and equation (2.12) will be used to write update
equations for the velocity.
2.1.3 Maxwell’s Equations w/ Modification
Maxwell’s equations governing the electrodynamics, pictorially represented in Figure 1-4,

are presented below in equations (2.13a-d) [25]:

Guass's Law Di; = py (2.13a)
Guass's Law for Magnetism Bii=0 (2.13b)
Faraday's Law of Induction B+ M} = €ijkEj k (2.13c)
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Ampere’s Law with Maxwell’s Addition D; + oi;E; +Jf = €ijkHy,j (2.13d)

Where D is the electric flux, p, is the volume charge density, B is the magnetic flux, M5 is
the magnetic source current, ¢ is the electric conductivity, and /5 is the electric source current.
For the purposes of this work, Maxwell’s divergence equations (2.13ab) are not particularly
interesting as the proper choice of finite difference lattice automatically satisfies both
expressions [186-188].

When dealing with lossy material, Maxwell’'s equations may be written with the spatial
derivatives in terms of complex frequency shifted (CFS) stretched coordinates [187]. To see
how this is the case, ignore sources and substitute E = E,e/®t into Ampere’s law to get the

following in free space:

](L)EUEJO + O'UEJO = eiijk,j (214)
Where ¢;; is the electric permittivity which relates the electric flux D; to the electric field E;.

Equation (2.14) may be rewritten as:

ngijsjkEl(c) = Eiijk,j (215)
Where,
Ok
Sik = Oji + ﬁjeljz (2.16)

Where ﬁfl is the inverse permittivity, and the complex s;; terms are called the stretching

coefficients [189] and may be used to model lossy conductive material. Faraday’s law may be

similarly written:
jousicHr = €jiEjk (2.17)
Where y;; is the magnetic permeability and:

*
u Ok

ijkk = 6]k + ,le]_w (218)
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Where ,8]’.; is the inverse permeability and a;), is the purely theoretical magnetic conduction

tensor. Both s;; and s;; will be equal if the following matching condition holds:

*

Bjiou = 3};0170 S Sk = Sjk (2.19)
In the literature, the stretching coordinates are always written in free space and, since the

conductivity tensors are diagonal, using a single index yields:

0;
Jwéey

si=1+ (2.20)

Ampere’s and Faraday’s law are then written divorced from indicial notation for now, as

shown below for the x-projection of Ampere’s law [189]:
e o (2.21)

Equation (2.21) reveals that the s values may be modified to introduce a real stretch of the x,

y, and z coordinates by replacing unity in (2.20) with some value k; > 1 as shown below:

O;

Si = K; + (2.22)

Jwégg
Note above that if the material is lossless (s; = k;) then the stretching of the coordinates is
apparent from the s, dy and s,0z terms in (2.21). The stretched coordinate metrics s; can
therefore be thought of as a generalized way of including both stretching and loss into the
system. Of course, if the s values were set to unity, there would be no stretching and the original
lossless Ampere’s law would be recovered. A further generalization was proposed by Kuzouglu

and Mittra [190] to shift the pole away from w = 0 as follows:

Oi
Si=kK; +

ajoe @z

Where «; is a positive real number which accomplishes the pole frequency shifting effect.
The full benefit of this choice of stretched coordinate metrics will be explored more fully in

chapter 3. Following the nomenclature of [191], define 5; = s;"!, which may be written as:
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s = 1 _ a; + jwey _l_ KL'ZEO (2 24)
LT __ 0 ki +o; +jrwey, K % '
ai+jweo i i TJK; 0 i +K€0+]a)

Performing inverse Laplace transformation produces:

(al i

aae) (e = _5@) + (D) (2.25)

51(6) = 00 e

Where 6(t) is the dirac delta function and,

(&4 0L),
e ‘€ Kieo) H(¢) (2.26)

o;
ql(t) - KLZE

0

Which is the impulse response of the stretched coordinate metric with H(t) being the
Heaviside step function. Since multiplication in the frequency domain is equivalent to
convolution in the time domain, transforming the modified Maxwell's equations into time domain

will require the use of convolution integrals. Ampere’s equations may therefore be written as

follows:
. _10H, 10H, [ 0H,(1) y(r)
Dy + 0 Ex +)3 = K, ay K, 0z o (y(t - T)T ZZ( - ) (227&)
) 10H, 10H, x(T) t Z(‘L’)
Dytoywky+ly =3 """ ox j G,(t—1) Cx( - 1) (2.27b)
. . 10H, 10H, [ X(T)
D, + 0,,E, +]; = K, Ox S ay (x(t - T) dT - f Zy( - ) (227C)
Which may be shortened by using the following “history variables”:
¢ 0H, (1) 0 [ E{aqrg)e-n Oy m=xyz
<I>m=f t— dr = — "f q=xy,z 2.28
Hmq O_Kq( 7) T e, e Ha o ( )
Therefore,
. 1 0H, 1 OH
Dy + OxxEx +Jx = iy ay Kz 9z + Ppyzy — Puy; (2.29a)
1 0H, 1 0H,
D + O'ny +]y + CDHXZ - cDHzx (229b)

rcz 0z Kk, Ox
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. 1 0H, 1 0H,
D, +0,.E, +]; = K_W T v dy CI)ny - cDny (2.29¢)
x y

An important point will now be made, note that the electric flux D and the conduction current
oE have been reintroduced. This is to allow more general constitutive relations to be utilized
later, along with lossy conduction currents that do not require convolution. A constitutive relation
and conduction current have already been assumed when deriving the impulse response of the
stretched coordinate metrics, however, so there appears to be a contradiction. Herein,
heterogeneous structures with surrounding air are modeled, and it is desirable to use one and
the same equation everywhere in the simulation space. As such, it is assumed that wherever
the stretched coordinate metrics are utilized the medium is vacuum, and wherever more general
constitutive relations or non-convolutional lossy environments are located, the g; components of
the metric are zero. As such, equations (2.29a-c) will degenerate into the non-contradictory
equations necessary to model the physics at each discretized point in space. These modified
Ampere’s equations will later be used in the finite difference chapter to derive the finite
difference equations. The modified Faraday’s equations may be written by utilizing the matched

stretched coordinate metric of equation (2.19) as follows:

B+ M = 10E, 1 6E t @ )6Ey(r) J t @ )aEz(r) p 230

Kk, 0z Ky 6y o- & Ve, & o S ' dy ' (2:303)
. 10E, 10E, [t 0E,(t ) OE, (T)
s — - - 2.

By+ M= —SE- gt ) G- zz(t 7) (2.30b)

B+ acs = dE, 10E, (* « )aEx(r)d RN O 2 30
Ky 0y Ky ax o G-t dy T o Gt—7 (2.30c)

This may be similarly shortened by introducing the following “history variables”:
t 0E,, (1) o, (¢ —i(a +ﬁ)(t—r) 0E,, m=xyz

bpyy =f t— dr = — qf oL ——dr, q=xYy2 2.31
E q O_Zq( T) aq T KCZIEO _e aq T miq ( )

Therefore,
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_10E, 10E

Bx + M; KZE — K_y ay + cDEyZ — CDEzy (232&)

B S = 10E, 10E, ® ® b
y+ y—aax_x_zg‘}‘ Ezx = YExz (2-32)
. s 10E, 1 aEy

B, + M7 = K, 0y 1 0% + Dpyy — Ppyy (2.32¢)

This use of history variables is leveraged in recursive convolution algorithms which will be
discussed throughout this text. The basic idea is that the system output right now depends on
the entire history of the system inputs and the history variable records the progressive effect of
all previous inputs. The curl equations expressed in this section may be further truncated into

indicial notation by considering the following primed coordinates:

dx' = K, (x)dx, dy' = x,(y)dy, dz' = s,(2)dz

This yields:
Di + 0yjE; +J§ = €jricHijr — €ijkPuy, (2.33)
Bi + Mis = Eijk’Ej,k, + EijchEjk (234)
Where,
0 CDny CDHXZ 0 q)Exy q)Exz
Py, = Py, 0 Py, |, Qp, = ¢, 0  @p, (2.35a/b)
Prye Phyy, 0 ®e,, Pe, O

2.2 Thermodynamics

The process flow chart for deriving the constitutive relations through thermodynamics is

shown in Figure 2-1 [184][192]:
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Perform Power Balance (1% Use Balance Laws and Utilize Clausius-Duhem Inequality (2"
Law of Thermo), Include Divergence Theorem to Law of thermo) by Substituting the
Heat Flux and Generation Simplify the Equation Divergence of the Heat Flux Vector

Introduce Time Derivative of the Assume Isothermal Coupling like terms will yield an
Helmholtz Free Energy s to Eliminate conditions and expand expression for relevant parameters in

the TS term within the Inequality q; as a total differential terms of  and produce a damping term

Finally Y can be Expanded using a Taylor Series with Sufficient Terms, and the
Constitutive Relations Determined by using the Necessary Expressions to
oy

Satisfy the 2" Law Inequality such as 0y = o
&ij

Figure 2-1: Flow chart for determination of constitutive relations.

These steps are followed in this section with the coupled constitutive relations presented in
section 2.3. For simplicity, the uncoupled constitutive relations are presented first in section
2.2.2.

2.2.1 First Law Power Balance
The principle of total conservation of energy for the thermo-electro-magneto-elastic system

is expressed as:

[[f av + & [[f S oatav

= fj(fiui + (]ln]Ml - El-]-kE]-Hkni - qinl-)dS + jf (blul + h)dV

(2.36)

Where the first two terms on the left-hand side are the time rates of change of the internal
and kinetic energies respectively. Now focusing on the surface integral on the right-hand side;
The first and second terms are the mechanical and magnetic powers transferred at the surface
of the system. The third surface integral term is the energy carried by EM waves out of the
surface of the system and as such contains a minus sign. The final term in the surface integral
is the rate of heat flux (g;) out of the system and therefore also contains a minus sign. The
volume integral on the right-hand side includes the body forces acting on the system and the
heat generation within the system respectively. Applying Cauchy’s stress theorem (t; = T;jn;) to

equation (2.36) yields:
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[[f v + & [[f Soacav

= ff(TUnJul + (]ln]Ml - EijkEijni - qini)dS + ff (blul + h)dV

(2.37)

Now that all surface integral terms include the surface normal, the divergence theorem may
be applied. Also, the differential volume does not change substantially during system operation,
therefore the time derivative acting on the kinetic energy may be moved inside the integrand,

yielding the following results:

[ oo+ [

. , : : 2.38
= ff (T, + Tijigj — €4 (Bj iHi + EjHi) + i jMy + M (2.38)
+ biui - qi,i + h)dV

Utilize Maxwell's equations (—¢;j,E;; = =V X E = By, and —¢;jHy,; = V x H = D)) to get:

ﬂf Udv+ﬂf puidV d

_ ' . . . . . 2.39
= fff(Tl]']ul + Tijul-'j + HiBi + EiDi + Cji,jMi + (jiMi,j + biui ( )
+ HiBi — CIi,i + h)dV

Equation (2.39) may be simplified further by noting the following geometric relation between

displacements and strains:
1 1 .
uj = E(ui,j + Ilj,i) + > (ui,j - uj,i) = Sij + wyj (2.40)
Where Si,- is the time rate of change of the green strain tensor (linear), and w;; is the time
rate of change of the rotation tensor, which is clearly anti-symmetric. Since the Cauchy stress
tensor is symmetric, then:
Tijij = 0 (2.41)
Substituting (2.40) and (2.41) into (2.39) yields,
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([ vav s [f v

= ﬂ (Tj ji; + TiSij + HiBy + E;D; + (i iM; + (M j + by (2.42)
—qi; +h)dV
Assuming the continuity of the integrands gives:
U = (Tijj + b — piy); + TijSij + HiB; + E;D; + (i jM; + (jiM; j — qi; + h (2.43)

Noting that the terms in the parenthesis zero out by the elastodynamic equation and

substituting in equation (2.9) for the divergence of the magnetic surface micro-force {j;, yields

[184]:

U =TS + (WeijijM TiE Tz Eijk€krsMiMs pCor — ﬂi) M; + ;iM; ;
Yo (2.44)

+ HiBi + EiDi - qi,i +h
Note that equation (2.44) has re-introduced the volumetric micro-force term (r;). Simplify
further by noting that,

Ho

|M|2 El]kM MkM 0

Since this is the dot product of two perpendicular vectors, therefore:

U=T;S;+ ( |1V}|2 €ijkE€krsMiMspCpr — ”i) M;
(2.45)
+{iM;;j + HiB; + E;D; — q;; + h
Which defines the time derivative of the volume specific internal energy. Further treatment
requires the use of the second law of thermodynamics in its continuum form.
2.2.2 Second Law of Thermodynamics
The second law of thermodynamics on a continuum may be stated in the following form

[185]:
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68 > S?Q (2.46)

Where 65 is the change in volume specific entropy as the system goes from one equilibrium
state to another, §Q is the amount of heat added to the system per unit volume during the same
process, and T is the temperature of the system on an absolute scale. Note here that T and S
are now being used to represent temperature and entropy respectively in addition to stress and
strain. Since the latter two are second order tensors, any confusion should be eliminated by
observing the indices. The equality holds for processes that are reversible (non-dissipative).
Following the methodology of Mal [185], to apply this to systems that are not spatially
homogenous or in thermodynamic equilibrium S, T, and internal energy U are assigned the
values they would have as state functions if the system were to be in equilibrium at every instant

in time. Therefore, the heat added to the system may be written as:

fﬂ 5QdV = [— fj qinidS+ﬂjth] 5t (2.47)

Substituting equation (2.47) into equation (2.46) to get:

ﬂ 5SAV > [—f q;tlid5+ﬂf;dv]6t (2.48)

Apply the divergence theorem to the surface integral in equation (2.48) and use the quotient

rule of differentiation to get:

jf 55dv> fff q‘ q”T h)dv]at (2.49)

Since this may be applied to any arbitrary volume, the integrands may be directly related:
L4l lLT h’
55 > [—q 1 ] 5t (2.50)
Taking the limit of equation (2.50) as &t approaches zero, then multiplying by T yields:

. T
TS > T —qii +h (251)
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Equation (2.51) is the Clausius-Duhem dissipation inequality which is the continuum form of
the second law of thermodynamics. Introduce the Helmholtz free energy (y) which is defined as
the ability of a system to do work in a constant temperature environment:

Ty =U—TS (2.52)

Where the product TS is the work that the system gets “for free” from the isothermal
environment (hence the negative sign). The time derivative of the Helmholtz free energy is thus:

Y=U~-TS—TS (2.53)

Combining equations (2.51) and (2.53) yields:

. T . .
2l g ht TS -0 (2.54)

But the divergence of the rate of heat flux vector and the rate of heat generation has already

arisen in equation (2.45), therefore equation (2.54) above is rewritten after substitution:

- = [_TijSij + (— €ijk€ersMiMspCpr + Tfi) M; = {;M;j — H;B; — E;D; + U

M?2
. (2.55)
+ 75—y
Or, by rearranging terms in equation (2.55):
. CIiT,i . 1 .
Y+ I T;jSi; + (W €ijk€krsMiMspCpr + TTi) M;
(2.56)

—{;iM;; — H;B; —E;D; + TS <0
The inequality of equation (2.56) will lead to conditions on the constitutive equations which
will be explored by considering the electrical, mechanical, and magnetic portions separately in
the following sections 2.2.2.1-3. As a preliminary, to demonstrate the methodology used, say
that a purely thermal system is considered, then eq (2.56) may be reduced to the following:

. . T
¢+Ts+%so 2.57)
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It now becomes necessary to explicitly state the order parameters on which the material free
energy depends, which in this case is the temperature:
Y =y(T)
The variable chosen has work conjugate counterpart (entropy S) which may have been
chosen instead. For linear systems the variable chosen is immaterial and therefore the variables
most convenient for the derivation should be used. By the chain rule the time rate of change of

the free energy is expanded as:

oy
p=—t (2.58)

Substituting equation (2.58) into equation (2.57) and combining like terms yields:

o . qiT;
- b~ 2.59
<6T+S)T+ <o (2.59)

The first term can be made to always satisfy the equality condition by the following relation

which is well known in the thermodynamics literature [193]:

oY

SZ—ﬁ

(2.60)

For the second term, note that, since q; and T; are always anti-parallel and T is measured in
an absolute scale, equation (2.59) suggests that the rate of heat flux should take the following
form:

q; = ki;T; (2.61)

Since the system herein is considered to be isothermal, these relations are only meant to
highlight the methodology used in the subsequent three sections and will not be utilized to
update any fields within the numerical formulation proposed herein.
2.2.2.1 Purely Electrical Constitutive Relation

From eq (2.56), a purely electrical system has the following relation to the free energy [194]:

Y — Eb; < 0 (262)
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The order parameter on which the material free energy depends is electric flux:

Y =9(Dy)
By the chain rule the time rate of change of the free energy is expanded as:

oY

3n; > (2.63)

Y=
Substituting equation (2.63) into equation (2.56) and combining like terms yields:

(%?—E)mso (2.64)

Which can be made to always satisfy the equality condition by the following relation which is

well known in the literature [194]:

d
.

3D, (2.65)

This term leads to the inverse permittivity tensor ;; (slope of the E vs. D curve) if the

relation above is differentiated with respect to the electric flux:

0E, 0%y
aD;, ~ aD;aD;

= B = €;;" (2.66)

No additional terms related to dissipation appear in equation (2.62) as electrical losses are
captured within Maxwell’s equations (balance laws) rather than the electrical constitutive
relation. This represents a subtle difference with the mechanical domain, which does include
losses in the constitutive relation rather than the balance law (elastodynamic equation) as
shown in the next section 2.2.2.2.
2.2.2.2 Purely Mechanical Constitutive Relation

From eq (2.56), a purely mechanical system has the following relation to the free energy:

Y — T8, <0 (2.67)
Where the second term is referred to as the “stress power” [185]. A simple method of

determining the relationship between free energy and stress can be made if a purely elastic
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system is considered. This means that no losses, or plastic (permanent) strains are present.
Therefore, there is no distinction between the total linear strain (S;;) and the elastic strain (Sfjl ,

namely:

N =

S =Sy =5 (i +u)

The free energy is thus a function of the strain only, and, by the chain rule:

. o 0S;;
P(Si;) = % E)tj (2.68)

Substitution into the 2" law inequality yields:

a—w—T.. S;ii<0 (2.69)
BSU Y U=

Which may be satisfied always if the following holds:

oY

Relation (2.70) is quite familiar to structural engineers and leads to the stiffness tensor c;jy,
(slope of T;; vs. S;; curve) if differentiated with respect to the strain:

oT; %y
39Sq 05,08 UM

(2.71)

If, however, inelastic losses are considered, there are many methods that may be used to
modify the relations above. One popular method, consistent with the literature on viscoelasticity
[195], is to consider the Maxwell representation of the so-called “Standard Linear Solid (SLS)”

shown in Figure 2-2:

71



Coor Toos S

VVVAVAVY

T,§<+0O n,TY, a O=>T,S

c,TY, S,

YAAVAYAYA

Figure 2-2: Standard Linear Solid (SLS) 1D Mechanical Model Maxwell Representation

As shown, the standard linear solid consists of a spring, with stiffness c,, in parallel with a
“Maxwell Fluid” which is a spring (c) in series with a dashpot with damping parameter n. A
stress T and stain S are applied to the system at the ends, and the corresponding stresses and
strains in the springs and dashpot are shown. If a Heaviside step function were applied, the
stiffness ¢ would eventually relax away and the system would exhibit the stiffness c,,, hence the
subscript, and therefore ¢, is a time independent stiffness term. In this case, the stiffness
exhibited by the system an infinitesimally small amount of time after loading is ¢, = ¢ + ¢, and
therefore ¢, is the instantaneous stiffness. In mechanical systems, series elements share the
same force with differing displacement, and parallel elements share the same displacement with
differing force. Assume, for simplicity, that the system has unit area and length so that there is
no distinction between stress and force, as well as strain and displacement. Note that the strain
across the dashpot (@) is inelastic and that the corresponding viscous stress, which is shared by
the series spring, is as follows:

TV =nda =cS, =c(S—a) (2.72)

Also, since the force is split between the parallel branches, the following relation holds for
the total stress T.

T=Te +T" =S +1na

Or alternatively,

T=Te+T" =CoS+c(S—a)=cyS—ca
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It can be shown, by using the series and parallel relations, that this constitutive relation for

the standard linear solid may be re-written as follows:

T +ET = ¢S +qS (2.73a)
=1 _ 00 _ ¢
g=-, q=n—_=Ec (2.73b, ¢)

Where E is a time constant that depends on the damping parameter and stiffness ¢, which
generally vary in each direction yielding a time constant tensor. Equation (2.73a) may be written
as follows:

T = ¢S + E[coS — T]

Which may be generalized to three dimensions as follows:

Tij = ¢Skt + Eijra [RomnSmn — Tia (2.74)

This form of the relation is important as it will be assumed that the magnetic damping may
take the same form in section 2.2.2.3 in order to acquire a dissipative term in the magnetic
constitutive relation. Note that the elastic free energy (inside the springs) for the system is as

follows for the 3D case:
1. 1
1,[)(Sl],al]) :ETU SU+§TU(SU —Ofij) (275)

This may be expanded using the chain rule as follows:

61,[) aSij 61/1 a(lij 61/1 . 1
= _ITVG
aSij Jt +6ai]- at aSijSU 2 i (276)

W (Siy @) =
Substituting equation (2.76) into the 2" law inequality (2.67) yields:

G .1
—l/’—Ti,. Sij — =Tl <0 2.77)
35, 2°U

The inequality (2.77) may therefore be satisfied always under the following conditions:

oY .
Tij =5 T =MNijulu (2.78a, b)
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This definition of the viscous stress ensures that the system dissipation is non-negative,

which may be seen by considering the 2" law inequality in terms of a dissipation function

2)mech :

oY - .
<_OS-- - Tij>5ij — Dimecn (Sijy aijy dij) < 0 (2.79)
ij

Which yields the following definition of the mechanical dissipation function:

. 1 .. 1 o
Dinecn (Sijy aij, dij) = ETi?'akl = 5 Mijladij A =0 (2.80)

The purely mechanical losses of (2.80) are those where bulk mechanical motion is lost to
unorganized nanoscale lattice vibrations (friction/thermal losses), which is called mechanical
“‘damping” herein. In contrast, the mechanical energy loss from transfer to electrical energy
(piezoelectric effect) or to magnetic energy (magnetostriction) is referred to as energy
“conversion”. Both damping and conversion are combined under the umbrella of “dissipation”.
Converted energy may then go on to be dissipated due to loss mechanisms within other
domains of physics, such as Gilbert (magnetic) damping, or propagated out as EM radiation.
The goal of introducing mechanical losses was then to apply the viscoelastic methodology to the
magnetics equations to model magnetic damping. As such, the level of complexity introduced by
using the SLS is not necessary. Therefore, a further simplification will now be made in that the
spring with stiffness c in Figure 2-2 is removed (Kelvin solid model) which yields the following
relation:

T = Tspring 4 dashpot — ¢ 4 775

Which may be generalized into three dimensions as follows:

Tij = ¢Sk + NijraSw (2.81)

Where the last term on the right-hand side is a mechanical damping term, as utilized by Auld
[4], that acts to resist deformation and attenuate acoustic waves. The 7;j,; damping tensor

always has the same form as the stiffness tensor and is populated using acoustic quality factors
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which are frequency dependent. Further discussion on quality factors is presented in section
2.4. Equation (2.81) will be used to write update equations for the stress within the numerical
formulation presented herein.

2.2.2.3 Purely Magnetic Constitutive Relation

From eq (2.56), a purely magnetic system has the following relation to the free energy [194]:
P+ (%EijkekrijMs,prr + ”i) M; — {;M;j —HiB; <0 (2.82)
The order parameters on which the material free energy depends are three-fold:
Y = (B;, M;, M; ;)
By the chain rule the time rate of change of the free energy is expanded as:

LIy L VL

= 2w

Substituting equation (2.83) into equation (2.82) and combining like terms yields:

oy . (0 1 : oY :
(G_BL — Hi) B; + (a—M + WfijkekrijMs_p(pr + T[L-) M; + M — (ﬁ Mi,j <0 (284)

Ignoring the M; term for now, eq (2.84) above can be made to always satisfy the equality

condition by the following relations:

oY oY

H, = —, o=
0B i oM, ;

(2.85a, b)

These are the terms not related to dissipation. The first term (a) leads to the inverse

permeability tensor 35 (slope of the H vs. B curve) which may be seen by differentiating (2.85a)

with respect to the magnetic flux:

0H; 0%
0B; B;0B;

=B = i (2.86)

The second (b) is a statement that the surface micro-force tensor is related to the

magnetization gradients and therefore associated with the exchange energy within the thickness
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of magnetic domain walls where such gradients are non-zero. In the absence of domain walls
(single domain) this term may be ignored completely.

Now focusing on the volumetric micro-force in (2.84), this satisfies the inequality if written as
follows [184]:
(o

1 .
|M|2 El]kEkTSM Msp{pr) - ﬂMi (2-87)

T = —

The governing equation of micromagnetics may now be determined by substituting this

expression for m; back into the balance of angular momentum equation (2.9):

Ho 1
Zji,j |M|2 EijM Mk |M|2 GukekrsM Msp{pr
61/) . (2.88)
+ ( |M|2 El]kEkTSM Msp(pr + ﬁM )
Canceling and Rearranging terms yields:
1 oY 1 B
H_o((ji'j _W) |M|2 El]kM M, + M (2.89)
l
Define the effective magnetic field as follows:
1 oy
H."’ff=_< __) _
i Uo (JLJ aMi (2 90)

This effective magnetic field will be explored more in section 2.2.3, for now substitute (2.90)

into (2.89):

B . 1
HS —#—Mi e €M M, (2.91)
0

Taking the cross product of equation (2.91) with respect to magnetization yields:

B . 1
€ijiM; (H;ff—EMk) e €} jk Ekrs Mj My M (2.92)

Since the isothermal assumption has been utilized, the fact that the magnetization

magnitude is nearly constant at any given temperature will be leveraged. It is often assumed in
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the micromagnetics literature that the magnitude of magnetization is equal to the saturation

magnetization. Applying this assumption to equation (2.92) yields:

B\ 1.
€ijkM; (Hiiff - EMk) = %Mi (2.93)

The relationship between the damping factor g and the more familiar gilbert damping factor

ais B =% = 2 therefore:
YoMs Y Mg

1 .

HoY Mg M")

Where equation (2.94) is the Landau-Lifshitz-Gilbert (LLG) equation describing the
precessional motion of the magnetization vector about the effective field. Note that the equation
involves the torque that causes the precession in the form of eijijH,fff in addition to a
damping term of the form EijijMk- Since the magnitude of the magnetization is assumed
constant, this term acts to damp out directional (transverse) changes in the magnetization. The
LLG equation is written such that each term has the units of magnetic torque (M x H). Note that

this leads to a term with units of time in front of the Gilbert damping torque:

a

-
'~

T oYM

(2.95)

The significance of this time constant will now be explored. Consider the 2" law inequality if
the magnetic microforce tensors were not considered, namely:
¥ — HB; < 0 (2.96)
This applies for a purely magnetic system in the absence of micromagnetic considerations.
Now assume that the magnetic system behaves like the standard linear solid (SLS), presented
in section 2.2.2.2, where magnetic flux is analogous to strain, and magnetic field is analogous to

stress. The magnetic free energy would then be:
d 1 o] 1 d da
¥(B;,BY) = S HBi + S Hj (B; — B?) (2.97)
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Where B¢ and H? are dissipation fields and H;” is the magnetic field after a large amount of

time has passed since a step excitation was applied. Equation (2.97) may be expanded using

the chain rule as follows:

oY oB; oY aBE a9y . 1
B., B} = —— ——t =B, ——HB? 2.98
Substituting this into the 2" law inequality of (2.96) yields:
oY .1
(a—Bi— Hl-) B; —EHidB{i <0 (2.99)
The inequality may therefore be satisfied always under the following conditions:
(2.1004, b)

o .
Hf = nyBf

Hi=—,
' 9B

This definition of the viscous stress ensures that the system dissipation is non-negative,

which may be seen by considering the 2" law inequality in terms of a dissipation function Dinag

oY . .
(ﬁ - Hl-) B; — Dag (B BE, BE) <0 (2.101)
L
Which yields the following definition of the mechanical dissipation function:
(2.102)

. 1 1 L
Dmag(Bi:B{i'Bld) = EHidB{i = EijleJd =0

These damping fields have yet to be related to the Gilbert damping seen within the LLG
equation (2.94), however. To begin to write a relation, note that the magnetic constitutive

relation will take the same form as eq. (2.74) for mechanics (repeated below), namely:

Tij = ¢fiaSkt + Eijic[RimnSmn — Tt (2.74)
H; = B} B; + Ei;[ BB — Hjl (2.103)
(2.104)

Eij = Mikkj
Note that the inverse permeability is analogous to the stiffness in this comparison. Lossy

magnetic materials under a constant bias field [14] exhibit an instantaneous permeability ﬁ})k
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(shortly after a step excitation is applied) that is equal to the free space value with no

directionality, therefore:

BY. = 1 (2.105)
jk — .
Ho

Additionally, recognize that the time independent inverse permeability §;7 is the Bi’j. term that

was used previously. This yields:
U & B

Interestingly, the bracketed term is the exact definition of the magnetization:

1
0

Therefore, by substituting eq. (2.107) into (2.106) the magnetic constitutive relation may be

written as follows:
H; = Bf;B; + E;;M; (2.108)
Where the following relations hold:
ﬂilj'ﬂjk =8k, iy = Ho(ij + xif) (2.109a, b)
Here, u;, and x;; are the magnetic permeability and susceptibility respectively. The goal
now is to populate the time constant tensor Z;; using additional physical arguments. Firstly, note
that the form of eq. (2.108) suggests that the magnetic damping field HY, discussed in eq.
(2.100b), may also be written as follows:
HE = nyBf = —E;M; = =y M; (2.110)
Note that Hid is the damping field which resists the precessional motion of the

magnetization. Also, from (2.5.4), the relation of the damping magnetic flux field to the

magnetization is:

Bf' = —peM; (2.111)
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Which states that the damping magnetic field is anti-parallel to the magnetization in an

isotropic material. The second order damping tensor :Z; will now be defined by arguing that H?,

defined in eq. (2.110), is antiparallel to the time rate of change of magnetization (M;) as shown
in Figure 2-3. This is argued to be the case because the damping field resists magnetization
precessional motion, therefore the :E damping tensor is a positive scalar since any change in
directionality of the damping magnetic field would cause it to no longer be anti-parallel to the
time rate of change of magnetization.

HE = _51?;ch = _ETM]. (2.112)

Figure 2-3: Magnetic Damping Field
Note that eq. (2.112) yields the desired result, namely a damping field which is antiparallel to
M;. In order to determine the value of the damping constant E7, it is now postulated that the
damping field must produce the same torque as the Gilbert damping torque within the LLG

equation, therefore:

: a :
€jiMiHE = —ET € MMy, = —— €3 M; My, (2.113)
YoMs
This yields:
B = - ——=1 (2.114)
- YoMs '

Therefore, the magnetic damping tensor that was introduced degenerates into time constant

7, the importance of which is further elaborated on in the next section. The time constant is
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positive since the gyromagnetic ratio of the electron is a negative value (due to the negative
charge of the electron). Note that the time constant is proportional to the damping constant a
which was introduced in section Error! Reference source not found. to satisfy the 2" law of
thermodynamics by utilizing the dissipation micro-force r; and therefore eq. (2.114) is an

indirect relation between these terms. The magnetic constitutive relation may now be written as:

By = uliH; + ——ul, (iBj - H,-) (2.115)
YoMs Ho

The permeability terms above are time independent and represent the slope of the magnetic
flux (B) versus magnetic field (H) curve at an area of interest (bias magnetic field with small
excitations). The viscoelastic approximation to the micromagnetic damping presented herein is
a good first approximation for linear piezomagnetic systems but must be modified in order to
match the LLG solution [196]. Some of the shortcomings of the viscoelastic analog are
summarized in section 1.5 of [197].
2.2.3 Taylor Series Expansion of Free Energy

Thus far in the formulation purely electrical, mechanical, and magnetic forms of the free
energy have been presented, yielding constitutive relations in the absence of cross-coupling
between physical domains. An expression for the fully coupled free energy has not been
provided, however a well-behaved function can be approximated by a Taylor series expansion
[192], taken with respect to a reference state. In multiferroic antennas a DC bias magnetic field
(HP®) is applied in order to saturate the ferromagnetic material. For this reason, it is useful to
think of the reference state for the magnetic field and the magnetization as HP¢ and M,
respectively. This means that the H; and M; terms that appear in the 2" law of thermodynamics
are fluctuations of these fields with respect to HP¢ and M,. Therefore H; represents the dynamic
magnetic field driven by electromagnetic fluctuations governed by Maxwell’s equations. This has

a corresponding magnetization which is as follows:
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Mimaxwell — Xgerj (2.116)

In the reference state it is also assumed that the material is unstrained. Performing the

expansion on the free energy yields:

oy oy 0y 0y Y oy
1/) 1/) 65'” Y +6aij a” +0Bl l+6Di ¢ +6Ml l+6Ml-J- v

D;D;

1/ 0% 0% 5B 0%y
aD;op;

—[— ..
" 21\ 35,050

+ oy M;M; + oY M; iMy; + 2 oy
aMian . aMi_jaMk_l LTl aSijaBk

9% 9% 9%
2 2Y D42 Sy +2—F BB
295500,k T 2 a5 dag UK T 25,088 )

SijBk (2.117)

J

1 93y 23y
+3 ( B;B;B;

Y G SuS
95,0508y > K>mn ¥ 3B.58 3B,

93y

+———— M;M;M;, + - | + 0*
IM; oMM, T )

Where 0* represents all terms of order 4 and above. Recall that when performing an
expansion, all independent fields are held constant, save the fields that appear in the

derivatives. For example, zone in on the following terms:

() e 550
0S;j0Sk dij,Bi;Di.Mi,Mi,j,Bid,T’ 0B;d Bjei

Where all of the fields that are held constant are now explicitly stated through the use of

Sijij,Di,M,M;;,T

subscripts. For brevity these superscripts are almost always omitted in this work. Many of the
terms in (2.117) may be eliminated by making some physical observations [192]. If the
reference configuration is in a cubic state, all linear terms are removed since the energy should

change by the same amount regardless of whether any order parameter changes positively or
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negatively. For example, a tensile strain on a bar loaded axially increases the strain energy by
the same amount as a compressive strain of the same magnitude. Similarly, a clockwise
rotation of the magnetization vector changes the energy by the same amount as a
counterclockwise rotation. Also, the energy related to magnetization gradients is assumed to be

an uncoupled quadratic term, therefore:

Ay = ! 621/)55+621/JBB+62¢DD+621/1 M;M
v=vrg 0S;;0S,, U7 " aB;aB; "t " apap; v T oMM, U
0%y 0%y 9%y
——— M; My, +2=———5;iBy +2=———3S5;:D
+aMi_jaMk_l o Mit ¥ 0S;;0B;. Y et 0S;;0D; V"
9%y 9%y
2 " .. 2" B.RB4..
MR PR 9B;0BL > (2.118)
. oy SiiSkiSmn + v B;B;B
31\05;j0S3 08y 7™ T 0B0B;AB), K
3y
—— M;M;M; + - |+ 0*
+6Mi6Mj6Mk oM Mic >+

This process of eliminating terms can be continued until a general form of the Helmholtz free
energy is found. In section 2.3, the electric, magnetic, and mechanical constitutive relations are
considered in their coupled states, and further terms are eliminated. First, a cubic ferromagnet
will be considered in order to further elaborate on the effective magnetic field (Hfff) within the
LLG equation (2.94). In this case, the free energy may be written as:

1
W(Sij, M;, M, ;,B;) = —poM;HE*" + EAijklMi,ij,l + KijiaM;M;M; M; +
(2.119)
Kijximn MMM MM, M, + %Cijkl(sij - Sir;'l)(skl — Sg1) — %P—OMiHid

The first term on the right-hand side is the energy associated with an externally applied
magnetic field. The second term is the exchange energy which models the effects of the
magnetization gradients on the material free energy. This term gives the magnetic domain walls

energy and thickness since a domain wall is defined as a finite region in which magnetization
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gradients are non-zero. The third and fourth terms model magnetocrystalline anisotropy energy.
These higher order magnetization terms are necessary to model the “easy” directions within a
magnetic material. The fifth term models the strain energy and includes the magnetoelastic
terms. The last term is the energy associated with the demagnetizing field H**™%?. The free
energy can therefore be written as follows:

W(eij, My, My, Bj) = Eext + Eex + Eanis + Edemag + Eel (2.120)

Where E,,; is the external energy density, E.,, is the exchange energy density, E ;s is the
magnetocrystalline anisotropy energy density, Egemqg is the demagnetization energy density,
and E,; is the elastic energy density.
2.2.3.1 Energy Terms

The energy terms in the previous section are how written out explicitly in terms of the
direction of magnetization m; where,

M; = Mgm; (2.121)

This is done because certain energy terms are only a function of the direction of the
magnetization and not on its magnitude. The external energy density E.,; iS the energy
associated with an applied external magnetic field and is written as:

Eoxt = —toMsmiHF™* (2.122)

Note that this energy is minimized when the magnetization is parallel with the external field
and maximized when antiparallel.

The exchange energy density E,, is the energy associated with magnetization gradients and
as such is necessarily associated with the magnetic domain walls. This term is expressed in
terms of the exchange stiffness constant 4., as:

Eex = Aexmyjm j (2.123)

The anisotropic energy density E, ;. is the energy associated with the intrinsic material

preferred directions of magnetization and is expressed as:
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Eanis = Ki(mim3 + m3m3 + mimi) + K,(mfm3m3) (2.124)
Which draws an energy surface in real space with energy wells in the magnetic easy
directions within the material.

The demagnetization energy density Eg.mq4 iS the energy associated with surface free poles

and may be written in terms of the demagnetizing field as follows:
1 demag
Edemag = — 2 HoM;H; (2.125)

This energy is minimized when the magnetization is in the same direction as the
demagnetizing field. Since the system creates this field itself, the %2 term is included which is
typical in self energizing systems since the material should not be counted once as the exciter
and once as the potential being excited. This energy is particularly important since magnetic
domains form in order to minimize magnetostatic energy. When full Maxwell’s equations are
utilized within a simulation and the material interface conditions are enforced, the
demagnetization field is determined automatically by the solver [131].

The elastic energy density E,; is the strain energy associated elastic strains which in the

case of isothermal ferromagnetic materials may be defined from the total strain (S;;) as follows:

Sij=Si +SI — Sff =5, (2.126a, b)
Therefore:
1 elcel 1 m m
Eer = 5 CijuaSySia = 5 Cujia(Sij = Si7) S = S (2.127)

Where S/ is the magnetostriction, the strain caused by magnetization, which for a cubic

crystal may be written as:

3 1 ]
5/1100 (mimj - 5) l

Il
-

sm —

" (2.128)

Ellnmimj i :/:]
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Where 1,4, and 1, are the saturation magnetostriction constants in the <100> and <111>
crystallographic directions respectively. In other words, these constants represent the strain in
the material in the <100> or <111> direction when all the magnetization vectors in the material
are pointed in the <100> or <111> direction respectively. Note that if the material is saturated in
the <100> direction (m; = 1,m, = m3 = 0) the magnetostriction will be:

A100 0 0
Sii = [ 0 —Ai00/2 0 ] (2.129)
0 0 —Ag0/2
2.2.3.2 Effective Magnetic Field
The effective magnetic field was defined previously in equation (2.90) which is repeated

here for convenience:

0y ) (2.130)

1
HET :_( I
i Ho (]l.] aMl
Recall also that the surface micro-force tensor is equal to the derivative of the free energy

with respect to the magnetization gradients, therefore:

alp AEX Aex
Sjij = <Wu>, = <2M_52Mi,j ]_ =257 Mij; (2.131)

N

Therefore {j; ; is proportional to the divergence of the magnetization gradients and accounts

for the exchange energy, therefore:

gt — gex _ 1 oy
' HoMs a"li

i

= HE* + HE* + HE™S + HIT™9 4 gme (2.132)

Where the exchange magnetic field is separated since this field is a function of
magnetization gradients, whereas all other magnetic fields are a function of magnetization.
Recall Hf* is an externally applied magnetic field, and:

2A
HexX = % . 2.133
1 MOMS L] ( )
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Zmi

Hianis - _ 7 [Kl(mjz + mlzc) + Kz(mjzm,%)] (2.134)
HoMs
H["® = _icifkl(skl - Slrcrll)ﬁ (2.135)
HoM amj

For single magnetic domain simulations, the exchange field is zero.
2.3 Coupled Constitutive Relations

In section 2.2.2 the uncoupled constitutive relations for a purely electrical, mechanical, and
magnetic system were introduced. It was then shown in section 2.2.3 that the free energy may
be expressed in terms of a Taylor series expansion that includes cross-coupled terms. In this
section the fully coupled constitutive relations will be presented that include the multiferroic
effects of piezoelectricity and piezomagnetism. The mechanical constitutive relation will be
presented first, which is used to write update equations for the stresses. The magnetic
constitutive relation will be presented next, which is used to update the magnetic fields and to
derive the implicit electric field update equations known as the ADI-FDTD equations. Lastly, the
electric constitutive relation is presented which is also used to derive the ADI-FDTD equations.
2.3.1 Mechanical Constitutive Relation

The mechanical constitutive relation may be written utilizing the proposed Taylor series

expansion and the Clausius-Duhem inequality as follows:

p_ 10
YT oS 208

GE 02
< v > SijSiki + 2 <—¢) SijBrk
051j0Sk1) 5 ... 05ij0B) .

(2.136)

+2 oy SiiDy + 2 oy S +
aSUaEk B Tk OSUaakl BE- ijakl

Where the electric dependent variable has been switched to E rather than D, which will

simplify the ADI algorithm derived in chapter 3 since the ADI equations update the electric fields
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not the electric fluxes. The higher order (non-linear) terms in (2.136) will be ignored, and the

subscripts denote, for brevity, only some of the fields that are to be held constant, therefore:

azlp azl/J azlp
Ty = (aSijaSkl>BEa... St <aSijaBk>aE... Pt <asijaEk>B - &

RV >
+(— a
<65U6“H B.E-- “

The first term in parenthesis is the instantaneous stiffness tensor cioj,d discussed in section

(2.137)

2.1.2 (stiffness when no viscous effects exist ¢ = ¢® + ¢), which is measured at constant
magnetic flux, inelastic strain, etc. To recover the SLS constitutive relation of section 2.2.2.2, the
final term is the negative of the stiffness which relaxes away over time (c;jx;). The second and
third terms are piezomagnetic and piezoelectric coupling tensors which are well documented in
the IEEE literature [198][199] and elsewhere [194], therefore:
Tij = ¢Skt = Pt Bie = higtiDic = Cijra @i (2.138)
Which may be re-written into the equivalent expression:
Tij = Skt = ity Bk — higtiDic + Nijia i (2.139)
Where the fields to be held constant at measurement have now been omitted, and the
superscripts on the third order coupling tensors denote piezomagnetism (PM) and

piezoelectricity (PE) respectively. The third order h;j; coupling tensors relate the EM induced

stress terms (T} and T};%) to the EM fields that induce them, namely:

oTEM oTEE
PM __ L PE __ lj
W =35 hbE = 3D, (2.140a, b)

Also, di}{ and dif; are the piezomagnetic and piezoelectric strain coupling tensors which

relate the magnetostriction to the magnetic field (H;) and the electrically driven strain to the

electric field (E;) respectively, namely:
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PM PE
dPM = aSi}' PE _ aSij

= A =gn (2.141a/b)

There are also e;j;, and g;j, coupling systems and the relation between the different
coupling tensors is provided in [194]. The “h-form” utilized herein has proven to be the most
convenient and stable. The mechanical portion of (2.139) may be solved via a convolution
integral approach. Instead, the Kelvin solid approximation (ay; = Si;) will be used [200] yielding:

Tij = ci5aSia — Mty B = Riet: Dic + MijraSa (2.142)

Since Kelvin solids include only one stiffness term, the super-script will be dropped. The
system of equations (2.142) is linear, and therefore may be readily inverted yielding the
following:

Sij = SijaTi + gri) Bie + 955Dk — SijraliimnSkimn (2.143)

Where s, is the compliance tensor, which is the inverse of the stiffness tensor, and:

PM _ pH PM _ 3, PM PE _ pe€ PE __ j PE
gkij - ﬁkmdmij - hkmnsmnijl gkij - .[’)kmdmij - hkmnsmnij (2-1443-1 b)

Where ,B,ffm and fy,, are the inverse permeability and inverse permittivity respectively.
Alternatively, these strains may be related to the magnetic and electric flux through the use of

the g;ji coupling tensors as shown in equations 2.144a/b below:

PM PE
PM _ 95ij PE 95Sij

9kij = 3p. 9k = g, (2.145a/b)

These strains are in contrast to the total strain (S;;) in eq. (2.143) which may now be seen to
be the summation of the elastic strain (Sfjl = sijiTri), driven by fluctuating stresses, the
magnetostriction (S7* = gx// By), driven by fluctuating magnetic fields, the piezoelectric strain
(S5 = gki;Di), and the subtraction of a damping strain term (S = s; jxiMkimn Skimn)- This
relation, written below in (2.146), therefore states that the total strain, plus the strain lost to

viscoelastic damping, is equal to the sum of all strains induced in an undamped system:
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Sy = SE+ S+ SEE =S5 = (wy; + ) /2 (2.146)
From eq. (2.145) and (2.140), the stress may therefore be rewritten as shown below:
Tij = CijuiSEl (2.147)
Note that equation (2.147) regresses back to the expected mechanical relation when the
electromagnetic and damping terms are zeroed out (S;; = s;jxTx)- The acoustic damping term,
as utilized by Auld [4], acts to resist deformation and attenuate acoustic waves. The 7,
damping tensor always has the same form as the stiffness tensor and is populated using
acoustic quality factors which are frequency dependent. The equation for the stress is now re-
written in rate form, with strain rates replaced by velocity terms using the strain-displacement
relation (2.146):
Tij = CijiaVit — higtj Bie = RietiDic + ijia Vi (2.148)
This is the so-called velocity-stress formulation [4], since the displacement is not utilized.
Note that this allows for the use of a 1% order time derivative in the damping term which enables
the modeler to bypass the use of a convolution integral. In fact, the relaxation function for the
Kelvin solid representation utilized herein is as follows:
Grxxx(t = T) = Coxex H(E = T) + N 6t — 7) (2.149)
Where H(t) is the Heaviside step function and §(t) is the Dirac delta function. Therefore, the
Kelvin solid model produces sudden step changes in the stress due to changes in strain which
is readily input into a finite difference scheme without the use of a convolution integral. The
velocity is determined by utilizing the elastodynamic equation in the following form:
Tijj = Py (2.150)
The piezomagnetic strain coupling tensor, truncated to include only the terms related to

shear stress, may be written as follows for a system biased in the xy-plane:
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cs?2dP¥  —cs?dfM 0 —s2dPM —csdPM s(s? — c?)dPM

d,ffjv-’ =|—c?sdf¥  c%sdPM 0 csdf) c2df) c(c?—sP)dbM
csdfM  —csdfM 0 sdfM cdPM (52— cR)dlM (2.151)
c = cose, s = sing

Where ¢ is the biasing angle measured from the x to the y axis. Generally, however, due to
shape effects, the tensor will differ slightly from this but still retain the same form for the in-plane
biasing case. Additionally, Hexagonal 6mm symmetry is assumed for the piezoelectric [4].

Therefore, the coupling tensors and inverse permeability/permittivity tensors are as follows:

PM PM PM PM PM PM PM PM

oexx dxyy 0 dxyz yexz dxxy dxyz dyexz dxxy

PM _ PM PM PM PM PM PM PM PM
d'jk - dyxx dyyy 0 dyyz dyxz dyxy dyyz dyxz dyxy

dPM dPM 0 dPM dPM dPM dPM dPM dPM

ZXX zyy zyz ZXZ zZXy zyz ZXZ ZXy
(2.152a/b)
0 0 0 o dff o0
PE __
bje=| 0 9 op ds 0 0
d3y dz; d3z3 0 0
_ 1 0 O_
,Bp!clx ﬁ)lcly 0 Exx
U u 1
Bl = Byx Byy 0 , fj= o — 0 (2.153a/b)
/ 1 Eyy
o 0 — 1
Uzz 0 0o —
I €51

Tensor multiplication should now be clearer. The magnetoelastic coupling term (gF¥) is not
as intuitive in the current state so it is beneficial to simplify as follows:
gikl = Bladiki =

[ B + Biydywe + Bizowy  Byx@onx + Byylynx + Byoonx  Bixluox + Blylyxx + Brodrex ]
| Bix dyyy + ﬁ;y dyyy + Bz dzyy ﬁ;x dyyy + :ByTy dyyy + ﬁ;z dzyy B Ayyy + ﬁzTy dyyy + B2 dzyy |
Bixduzs + Biylyss + Bizdosz  Byxduas + ByyQyse + Byaozs Bixlasz + Blyyzs + Biodss
z(ﬁlx dxyz + ﬁ;y dyyz + ﬁ;z dzyz) Z(ﬁ;x dxyz + ﬁ;ydyyz + ﬁ;z dzyz) Z(ﬁsz dxyz + ﬁ;y dyyz + ﬁsz dzyz)
2(Bix s + Biyyss + Bizdoxs)  2(Byxtoxs + Byylyxs + Byodons)  2(Blates + Blydyas + Blzdsns)
Z(B;xdxxy + ﬂ;y dyxy + ﬁ;z dzxy) Z(ﬂ;x dxxy + .B;y dyxy + ,8;zdzxy) Z(B;rxdxxy + BzTy dyxy + Bszdzxy)

(2.154)

Where all terms were assumed non-zero for generality. Zeroing out the appropriate terms in

(2.154) using (2.152) and (2.153) yields:
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ﬂ;xdxxx + ﬁ;ydyxx .E;xdxyy + ﬁgydyyy
rg;xdxxx + ﬁ;ydyxx [’);x Ayyy + :[’);y dyyy

dzxx dzyy
| UL, i

0 2 dzyz 2 dzxz

d
i - 2 zXy
nuZZ nuZZ

T
Hzz

Multiplying this by the magnetic induction current, and multiplying the piezoelectric coupling

tensor by the electric field rate yields:

(B + By B + (B + Blyclyer By + 225,
(ﬁgg‘xdxyy + ﬂ};deYY)Bx + (ﬁ;xdxyy + B;ydyyy)l?y + CLZ#BZ
| ) 3

9B = | 2|y + Bladyne )+ (B + BBy + 2228

(2.155a)

. 7
2| (BT + Bl ) B+ (Blaclns + By By + 22 |
ZZ

. . gy -
2| (BLadhany + BTy yay ) B+ (B + By oy )By + 52 |
ZZ

hraDy = (R5FD, REFD, REED, RYED, hifD. 0)

Therefore, each of the stress components, for a piezomagnetic/piezoelectric heterostructure

may be written as:

f — B B B
Tex = Cxxxx Vx,x + CxxyyVy,y + CxxzzVz,z

B T T B T T >
- [Cxxxx(ﬁyxdxxx + ﬁyydyxX) + Cxxyy(ﬁyxdxyy + ﬁyydyyy)]By (2_156a)
B B
Crxxx@zxx T Coxyyd . PE . _
- === /,lT AL Bz - h31 D 2zt ngxxxvx,x + ngxyyvy,y
44

B .
+ nxxzzvz,z
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0 Z(B;‘xdxyz + B};ydyyz) Z(ﬁ};xdxxz + ﬁ;‘ydyxz) Z(B;xdxxy + ﬂ};ydyxy)
0 Z(B;xdxyz + ﬁ};de}’Z) Z(B;xdxxz + ﬁ;ydyﬂ) z(ﬁ}?xdxxy + :Blfydyxy)
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Tyy = CoxyyVax + CoyyyVyy + CoyzzVsz
- [Cfxyy (ﬁzxdxxx + ﬁ;ydyxx) + ngyy (ﬁzxdxyy + ﬁ;ydyyy)]Bx
B T T B T T -
- [Cxxyy (ﬁyxdxxx + Byydyxx) * Cyyyy (ﬁyxdxyy + Byydyyy)]By

B B
| Cxxyydaxx + Cyyyyd

T
#ZZ

zyy | r PE - B . B .
B, = h31 D + Mxxyy Vxx + NyyyyVUyy
B .
+ NyyzzVz,z
i — ~B B B
TZZ - Cxeva,x + nyZZvy,y + CZZZZ‘IJZ,Z
B T T B T T >
- [Cxxzz (,Bxxdxxx + .Bxydyxx) + nyzz(ﬁxxdxyy + :Bxydyyy)]Bx

- [Cfxzz (ﬁ;xdxxx + ﬁ;ydyxX) + Cyzz (ﬁ;xdxyy + ﬁ;ydyyy)]By

B B
Cxxzzdzxx + nyzzdzyy - PE ¢ B . B .
- [ MT Bz - h33 DZ + NoxxzzVx,x + NyyzzVy,y
zZ

+ ngzzzf}z,z
7"yz = CalfgzyZ(vy,z + vz,y)
= 2¢3zy, {(ﬁgxdxyz + ﬁ;ydyyZ)Bx + (ﬁ;xdxyz + ﬁ;ydyyZ)By

ZYZ P PE 1 . .
+—= BZ} — his Dy + 15,y (0y 2 + 72y)

ZZ

sz = ngxz(vx,z + vz,x)
- 2("chizxz {(ﬁgxdxxz + ﬁ;ydyxz)Bx + (ﬁ;xdxxz + ,Bg;ydyxz)By

. PE . . .
%Bz} - hlS Dx + 7');»)Ec?z;»cz(vx,z + vZ.X)

ZZ

+
Txy = nyxy(”x.y + vy,x)

- Zcfyxy {(ﬁ;xdxxy + ﬁ;ydyxy)gx + (f@xdxxy + ﬁ;ydyxy)gy

dzxy . . .
+ ul BZ} + ngyxy(vx,y + vy,x)

ZZ

(2.156b)

(2.156c)

(2.156d)

(2.156¢)

(2.156f)

Note that the T, constitutive relation (2.156f) is left unchanged by piezoelectricity which

occurs because the piezoelectric is poled normal to the xy-plane. Equations (2.156a-f) are
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appropriate for writing a time marching scheme which will be explored in chapter 3 which
focuses on finite differencing. The piezomagnetic terms will be omitted in that section however
as industry interest and research have shifted toward piezoelectric devices.
2.3.2 Magnetic Constitutive Relation

In the magnetic constitutive relation, it is simpler to consider the form when the stress (T;;) is

the independent variable, rather than the strain (S;;), and then invert the relation, both of which

are acceptable for linear systems. The magnetic constitutive relation in this case is:

oY 1a<aZ¢> (62¢>

¢ aBl ZaBl aBlaB] T,Md~~~ v aBlaT]k Ma... Lk

(2.157)
0%y
+2(——| BB +--|+--
<aBlaBJd>T o
Or,

55, 2 (a0) . ™ ),
H,:< B; + Ty+|—===7] B 2.158
' aBlaB] T,Md"' g aBlaT}k Ma... N aBlaB]d T ! ( )

The IEEE literature defines the first two terms in parentheses as the inverse permeability ﬂi"j

PM

and the piezomagnetic tensor g;;c respectively [198][199], and the novel third term is a

magnetic damping tensor discussed at length in section 2.2.2.3, yielding:

¢ (13 H) (2.159)
YoM;s \lo ' ' .

H; = 5531' — 9k T —
Here, a magnetoelastic field Hjm"’ may be identified as follows:
HMe = gf;?kaz (2.160)
Where Hjme is the magnetic field driven by fluctuations in stress. Relation (2.159) may also

be inverted yielding:

a 1. .
YoMs Ho
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When this relation is put in rate form, higher order time derivatives appear which are
handled using a convolutional approach as presented next:
2.3.2.1 Convolution Approach

When incorporating the magnetic constitutive relation into an ADI-FDTD algorithm, the rate

form of (2.161) must be utilized as follows:

. . . a 1. .
This introduces 2" order time derivatives which are inconsistent with the 15t order
derivatives in the rest of the algorithm. To avoid this, a convolution integral may be utilized

[195]. Expand the constitutive relation of (2.159) as follows in (2.163a-c), which applies for a

material with coupling in the x and y-directions:

H, = B" B, + B" B +L(l3 —H) (2.163a)
X = Pxx“x xy*=y VOMS Lo X X .
_ou i a 1. . b
Hy = BY.B, + By, B, + m(gsy — Hy) (2.163b)
H, = BB, + — (13 H) (2.163c)
z ZZ"-Z )/OMS ,u() zZ zZ .
Bix Biy O
5= By By O (2.163d)
0 0 B

Where, in order to focus on magnetic dissipation, the piezomagnetic terms have been
removed, and will be added again later as superposition applies for this linear system.

Transforming into Laplace space yields:

A, =pB" B, +B" B, +— (15 _) (2.164a)
X — FPxx*“x xy*=y VOMS Lo X X .
_ 45 @ = as (1 _ _
Hy = BisBe + Bl By + - (— B, iy ) (2.164b)
YoMs \ito



_ i as (1 _ _
A, =pLE,+ (—BZ - HZ) (2.164¢)

Simplification yields:

_ MBL. 1 1 1 _

Hx={y—° sPax —|+—= ]}Bx+y° Sﬁ”[ —5 (2.165a)
a s+al pgls+a

_ MBher 1 7- MB,,

g, = Lot s y"[ ]Bx+{y° i ”[ } 3 (2.165b)
a s+a a s+a ;10 s+a
_ yOMsﬁé‘z[ 1 ] 11 s s

={—==—)+— 2.165c

H, { a s+a +,uo[s+a] B, ( )

Where a = 11 = y,M,/a is the inverse relaxation time. Input the following magnetic flux

impulses:
_ 1
B;(t) =BYs(t), -  Bi(s)= EB?, i=xy,z (2.166a/b)
Therefore:

— VoMsﬁfctx[ 1 1 [ 1 ] 0 VOMSBJPCLY[ 1 ] 0
= — 2.167a
Hy { a s(s+a) +u0 s+a B + a s(s+a) By ( )

_ YoMBy 1 o (YoMByy [ 1 1711
_ ~[=_]lpo 2.167b
Hy a [s(s + a)] B + a [s(s + a)] + Uo [s + a] Y ( )
— )’oMsﬁ;z[ 1 ] 1[ 1 ] 0
= — 2.167
H, { a s(s+a) +y0 s+a B; ( )
Performing inverse Laplace transformation and simplifying yields:
1
H(6) = (B + (= Bl e} B + (1 =005 (2.168a)
1
Hy(t) = B.(1 — e=2)BY + {,Byy <u_ - ﬁyy) -af}Bg (2.168b)
H 1 U —at 0

Hy(0) = (B + (o= ) e B (2.1680)

Which may be re-written as:
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H;(t) = G;;()B) (2.169)
Where the G tensor components are the time dependent inverse permeability terms and the
unit impulse response functions for the magnetic field. Note that if the free space permeability
tensor is input above all time dependent terms zero out and the expected free space constitutive
relation is recovered, namely H; = B} /u,. For modelling general loading conditions, the impulse
response function may be written for an impulse applied at time t with response recorded at

time t and summed for all time as follows:
t 0B;
Hi = f Gij(t—‘[)—d‘[ (2170)
- Jt
To be clear, the constitutive relation is expanded out as follows:
t 1 N T:): t ) ¥
H,(t) = fo_ [ﬁ,’jx + (#—0 - ﬁ,‘jx)e a(e T)] a—:dr + fo_ Bry(1—eaC T))Wdr (2.171a)
t dB t 1 dB
Hy(t) = f B (1- e ) S ar f B+ (o )| S2ar @aTin)
0 T 0 Ho T

H,(t) = ft_ [’352 + <M_10 — ﬁé‘z) e—a(t—r)] aaliz

dr (2.171c)

Similar to section 2.1.3, history variables may be introduced to simplify equations (2.171a-c),

and these are defined as follows:

1 t 9B m=xnyz
Dy = <_ - B~ )j et Lgr q=xyz (2.172a)
Ho ) Jo- dt m=q
t 0B m=ay
Prg = —Bl f et lgr, =y (2.172b)
0 m#q

In other words:

Dy Dy O
Ppg = | Py @y 0 (2.173)
0 0 &,

Therefore, after reintroducing piezomagnetism, the magnetic constitutive relation may be

written as follows:
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H; = BB — gk Tike + @i (2.174)
Where 1; is a vector populated by ones. Inputting the magnetic constitutive relation (2.174)
into an unconditionally stable and 2" order accurate finite difference scheme is covered in
Chapter 3. Although this methodology may be utilized to model magnetic damping in multiferroic
antennas, the device simulations of Chapter 5 will not utilize magnetic damping as only
piezoelectric antennas are considered. Still, a validation case for this proposed methodology is
provided in Section 4.3.
2.3.3 Electrical Constitutive Relation
Utilizing the stress and electric field as independent variables, any piezoelectric materials
within the simulation space are governed by the following electric constitutive relation [198]:
D; = €/E; + e[S (2.175)
This is written in rate form to facilitate incorporation into Ampere’s law which involves the
displacement current D;. Assuming that the piezoelectric material is poled out-of-plane in the
global z-direction, and is transversely isotropic, yields the following strain coupling and

permittivity tensors:

0 0 0 0 efE o €&xx 0 0

efx=10 0 0 oPE o | ;=0 € 0 (2.176a, b)
PE _PE P 15
€31 €317 €33 0 0 O 0 0 Esz

This constitutive relation will be substituted into Ampere’s law in the finite differencing
chapter in order to derive the finite difference equations.
2.4 Quality Factors and Dissipation

The dissipation discussed thus far in the context of the 2" law of thermodynamics may
seem foreign to some readers more familiar with concepts such as loss tangent (tan (§)), quality
factors (Q), and complex material properties. For example, often authors will express the

mechanical stiffness as:
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Tij = CijiaSia = (Cljia + JCijr) S (2.176)
Where c;;;,; and c;j; are the real and imaginary parts of stiffness c;jy,; respectively and a

loss factor can then be defined as:

14

c 1
tan(6) = 7 = 5 (2.177)

This is referred to as a “tan delta” since, on the complex plane, § is the angle from the real
axis to the imaginary axis (E"' is opposite, and E’ is adjacent). In (2.177), Q is the quality factor
(g-factor) which is typically assumed to be frequency dependent in the following fashion
[201][202]:

Qf = constant (2.178)

By observing (2.176) and (2.177), the conversion of the g-factor to a viscoelastic damping
parameter (n) is [4]:

!

c

=3 (2.179)

n

From (2.178) and (2.179) it is seen that the viscoelastic damping parameter is assumed
frequency independent and therefore the viscoelastic damping is more fundamental than Q.
Different g-factors need to be measured for different resonant modes. Q is a measure of how
high the output is at resonance while tan(§) is a measure of how much the output is attenuated
at resonance. Every dissipation mechanism will have a Q associated with it, and the total Q (Q;)
may be computed as follows [138]:

1 w1

= 2 — (2.179)
i=1

Where N is the number of dissipation mechanisms (both from energy loss and energy

conversion). The Q for a mechanical antenna may be most simply written as:

1 1 1

= +
Qt Qrad Qmech

(2.180)
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Where Q,..4 is the g-factor associated with radiation and Q,,,..; is the g-factor associated
with mechanical losses. Each individual Q; may be defined as:

2wW.
Q; = TT‘”“Z (2.181)
L

Where Wr,:: is the total energy stored within the system and P; is the power dissipated by
the specific dissipation mechanism. Based on (2.179) and (2.180) the Q,ecp IS ideally
maximized and the Q,,4 is ideally minimized, hence why sometimes authors will describe a high
Q as a favorable result and sometimes as an unfavorable result. The total Q may be determined
by taking the resonant frequency (f,-) and dividing by the half-power bandwidth (Afyp), which is

the range of frequencies where the dissipated power is half of the maximum or higher:

Q = I (2.182)

 Afup

This expression will be used to determine the total g-factors for the devices simulated
herein. The radiation efficiency (e,,4) Of an antenna may be defined [152] by taking the ratio of
the Q; with a theoretical bound (Q,) [33-35][164]:

Crad = % * 100% (2.183)

a

Equation (2.183) does not need to be used to determine the efficiency in the proposed
numerical framework however since the input and radiated power are directly computed. Other
authors use this approach however to approximate radiation efficiency from a measured Q
value [152].

2.5 Summary of Equations

As a capstone to this chapter, all the equations presented will be summarized in table format

to prepare for their discretization into finite difference form in the next chapter. The balance laws

are shown below in Table 2-1:
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Newton’s Laws pv; = Tij Mechanics

Di + 0yEj +J; = €;jrcHy jt — €ijk Py
Maxwell’s Equations Electrodynamics
Bi + M = €30 Ej it + €1k P,

1 . a .
LLG Equation — M, =€, MHY —— .. M:M Micromagnetics
q JTRY% i El]k Kk ﬂOVMs El]k jM Kk g

Table 2-1: Balance Laws

The constitutive relations are as shown in Table 2-2:

. n _ BD PM PE B,D .
Mechanical Tij = CijiaVii — hiij B = MiijDie + i1 Vi
: N Sp PE
Electrical D; = €;Ej + ejjrvjk
. _ pH PM
Magnetic H; = B;iBj — giji Tjk + ®ij1;

Table 2-2: Constitutive Relations

Within the constitutive relations of Table 2-2, three different coupling tensors are referred to
which can be confusing. Fortunately, Table 2-3 documents all the expressions for piezoelectric
materials [194]. For piezomagnetic materials, the expressions are identical [199], simply

substitute H for E, and B for D.

Independent Variable Form Piezoelectric Relation
T =cPS—hD
S,D h-form E = —hS + 5D
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S=sET +dE

T E d-form
D =dT +€"E
=sPT D
T,D g-form S=s +gT
E=—-gT+p3'D
— ~E
S E e-form r=c S_i,E
D =eS +¢€’E

Relationships Between Constants

— T — E
dnij - enmgmij - enklsklij

— S — E
enij - Enmhmij - dnklcklij

— nRT — D
gnij - ﬁnmdmij - hnklsklij

— RS — D
hnij - ,Bnmemij - gnklcklij

T S _
€Enm — €nm = dnklemkl

D E _
Cijkt — Cijki = €mijhmi

Table 2-3: Types of Fundamental Piezoelectric Relations

These equations may be used to acquire update equations directly for all fields save the

electric fields. These will require the use of Maxwell’s equations as well as the electric and

magnetic constitutive relations. The result is a tri-diagonal system known as the ADI-FDTD

equations. This will be discussed in the subsequent chapter on the finite difference

discretization of the equations contained herein.
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CHAPTER 3: FINITE DIFFERENCE ALGORITHM

Herein, the numerical formulation for modelling a mechanical resonance-based antenna is
described. The continuum equations in Chapter 2, summarized in Section 2.5, are necessary to
model a piezoelectric resonator antenna as shown in Figure 3-1, where a z-poled piezoelectric

material is assumed.

Piezoelectric

N

EM Radiation

O ys

Figure 3-1: Typical mechanical axial resonance based piezoelectric antenna.

In the figure, an electrical source sends current IS into electrodes sandwiching piezoelectric
material producing potential difference VS across the electrodes. This generates field E5 within
the piezoelectric. Due to the device size being electrically small, the x and y components of the
electric field, along with the fringing fields, are assumed to be zero between the electrodes. The
electrically small size also means that Maxwell’s equations do not need to be evoked in this
region as the feedline current I° is equal and opposite to the polarization current. The electrode
+ piezo + electrode stack therefore acts as an energy storing capacitor rather than an energy
propagating antenna. Also, since field E is within a piezoelectric material, mechanical stress
and strain/velocity will be produced. This stress and strain will propagate in the axial direction of

the mechanical bar via elastodynamics and resonate mechanical modes based on the
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mechanical boundary conditions (half-sine wave mode for traction free boundaries shown in
Figure 3-1). In this case, only the axial stress T,, will be excited and, although in-plane velocities
v, and v, are non-zero via Poisson’s effect, only T,, and v, are required to find a unique
solution via (3). These resonant mechanical fields T,, and v, generate electrical polarization
current P within the mechanical bar which lie outside of the electrodes via the direct
piezoelectric effect. As such, this polarization current will induce EM radiation per Maxwell’s
equations. After simulating these effects, the fields immediately surrounding the antenna are
input into a post-processer to determine far-field performance. A general overview is seen in
Figure 3-2. Any numerical framework claiming to model piezoelectric antennas must somehow

perform each task in the figure and this chapter highlights one such methodology.

Post Processing

Input
Near Fields

Calculate Far-Fields

! Simulation

Induce Voltage/Electric Fields

|

' Induce Mechanical Resonance |

1

1

|

1

|

1 s i
1L via Piezoelectricity J
1
|
1
1
|
|
|

L

Calculate Radiation Intensity

!

Induce Polarization Current Calculate Radiated/Input Power

|

Induce EM Fields Near the 1
\ Radiator ]!

Calculate Efficiency

o o e e e e e o

Figure 3-2: General flow of the goals for a mechanical antenna simulation.

In numerical analysis it is common to take the differential equations that govern the physical
system everywhere and instead formulate new versions that are only approximations at discrete

points. One popular approach is the finite difference time domain (FDTD) method in which the
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spatial and temporal derivatives are analyzed across finite intervals. To demonstrate this, recall

the definition of a derivative in equation (3.1):

of _ fu+bdu,-) = f(u,-)
— = lim

ou  Aus0 Au

(3.14)

Where any number of dependent variables exist. The finite difference approach relaxes this

definition by removing the limit and allowing the interval (Au) to be finite as in equation (3.2a):

izf(u_FAu’...)_f(u’...) (32a)
du Au
The interval may be the difference in any dependent variable, and the expression above is
known as a forward difference since the fields is being analyzed just ahead of the current

location. Backward and central differences also exist and are, respectively:

of flw-)—flu—Ay-) (3.2b)

ou Au .
of flu+du/2,-)—fu—A~Au/2,-) (3.2¢)
ou Au |

In terms of the nomenclature utilized herein, the n index defines the time with the i, j, and k

indices defining the X, y, and z directions respectively:

t = nAt (3.3a)
x =ilAx (3.3b)
y =Jjby (3.3¢)
z =kAz (3.3d)

Herein, the spatial location of each field is written in parenthesis, the time step is written
using superscripts, and the tensorial information (e.g., the direction of the field) is written using

subscripts as shown in equation (3.4a) for a 1% order tensor:

iy, k) = fry,2(i8x, jAY, kDz,nAL) = f (%, 7,2, 1) (3.4a)
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The values of n, i, j, and k need not be integers, in fact most fields contained herein are not
rectified at an integer time step or spatial location. Whenever a field varies spatially but not

temporally, the spatial indices are expressed using superscripts as shown in equation (3.4b):

xlgjflg = fx,y,z(iAx:jAy' kAz) = fx,y,z(x' Y, Z) (3-4b)
This is performed to shorten the notation, as some of the equations herein become lengthy.
When the equations become quite long herein, all terms will have their temporal (if applicable)

and spatial designations within the superscript, namely:

T = 12 (i0%, jAY, kDZ) = foy 1 (2,7, 2, ) (3.40)
Herein, an unconditionally stable method known as the alternating direction implicit finite
difference time-domain (ADI-FDTD) method is utilized in which the evolution of fields from time
nAt to time (n + 1)At is split into two subiterations. The 1% sub-iteration updates the fields from
nAt to (n + 1/2)At, and the 2" from (n + 1/2)At to (n + 1)At. This method will be described in
more detail in sections 3.6, 3.7, and 3.8.
3.1 Methodology
When leveraging the finite difference method, the left- and right-hand sides of the equation
must be rectified at the same time and spatial location. This rule is known as spatial and
temporal homogeneity. As an example, consider the elastodynamic equation in the absence of
body forces described in section 2.1.2:
pv; =Ty ; (2.12b)

In finite difference form, the z-component is as follows:
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4<'+1'+1k> n4<'+1'+1k>
|’z \'!T2l Ty V2 !t Ty

[ 1 1
_ n 1 [
=2 _sz(1+1,]+2,k) sz(l,]-l-z,k)]
(3.5)

[ (L L o1
+E_T;lz(1+§,]+1,k>—T;lZ(l+§,],k)]

+—_TZ’;(i+l,j+l,k+l> —ng(i+1,j+l,k—1)]
Az 2 2 2 2 2 2

Examining each individual term in (3.5), all differences are defined at time t = nAt, and point
x=({+1/2)Ax,y = (j+1/2)Ay, and z = (k + 1/2)Az. This homogeneity rule is typical of finite
difference equations but may be broken in special cases. Note in the equation above, only one
term is defined at a future time step (n + 1/4) with all other fields being known, either from the
previous time step or from the initial conditions. This is therefore an explicit update equation for
the velocity in the z-direction. Both explicit and implicit methods are utilized herein.
3.2 Grids

The spatial definition of the tensors updated using the FDTD method conform to grids with
many useful properties. These spatial grids are discussed next.
3.2.1 Electromagnetic Yee Grid

Within electrodynamic simulations it is necessary to map out the discrete points in which the
3-components of the electric and magnetic fields will be determined. As a first pass it may seem
prudent to collocate all fields at a single point similarly to how displacements are all collocated
within the finite element method in structural analysis. However, within the finite difference
method, so-called “staggered” grids produce 2" order accurate central differences for spatial
derivatives if the fields are mapped out properly. The most famous is the Yee grid first

introduced by K.S. Yee in 1966 [177] as shown in Figure 3-3:
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Figure 3-3: The Yee grid utilized for FDTD simulations.

In the space lattice, the magnetic field nodes lie on the face centers pointed in the normal
direction and the electric fields are along the center of the cell edges and tangential to the
edges. The locations of the electric and magnetic fields can be swapped so that the electric
fields instead lie on the face centers, but all equations derived herein use the grid above. Also
shown in Figure 3-3 is the magnetic interface which is half a cell staggered from the electric
interfaces that are collocated with the cell faces. These interfaces will be discussed in section
3.3.1. Note in Figure 3-3 that the H fields are surrounded by swirling E fields (Faraday contour)
and that the E fields are surrounded by swirling H fields (Ampere contour). This essentially puts
each field at the center of a Faraday or Ampere loop and allows for central difference equations
to be readily written which are 2" order accurate. Additionally, it can be shown that the space
lattice is divergence free in the absence of free charges [177-179] essentially satisfying two of

Maxwell’s equations upfront, namely Gauss’s law for electricity and magnetism.
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3.2.2 The Staggered Mechanical Grid

Mechanical spatial lattices are defined based on which system of dependent variables are
utilized to approximate the PDEs. For example, a single PDE in terms of displacement may be
written as follows:

Pl = CijriUi,1j (3.6)

Where the material stiffness is assumed to be spatially independent. Modelers that utilize
this PDE make use of the so-called “conventional” grid [192] in which the three displacement
components are collocated and defined at the corners of the unit cell and the stress terms do

not appear as shown in Figure 3-4:

Figure 3-4: Conventional mechanical finite difference grid.

When the so-called Velocity-Stress formulation [4][192][193] is used, the velocity and stress
are treated as the dependent variables, as in equation (2.12b), and two sets of PDEs are used
to update the mechanical fields. This allows the PDEs to be written in terms of the first time and
spatial derivatives similar to Maxwell's equations. 2" order accurate central differences for the
spatial divergence of the stress in the elastodynamic equation (2.12b) and the spatial gradients

of the velocity in the mechanical constitutive relation (2.148) in rate form may be achieved by
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utilizing a staggered finite difference grid [192-194]. Figure 3-5 shows the spatial lattice utilized

herein:
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Figure 3-5: 3D Staggered mechanical finite difference grid.

This cell looks similar to the Yee grid utilized in electrodynamics in that the shear stresses
are along the cell edges and tangent to the edges, like the electric field, and the velocities are at
the face centers and normal to the surface, like the magnetic fields. Curiously however, the
normal stresses are all collocated at the center of the cell which is a consequence of the fact
that the mechanical grid is not divergence free like the Yee grid. If it were divergence free,
dynamic motions would be absent since the stress divergence is proportional to the
acceleration. This also leads to additional complications as it relates to boundary conditions as
will be discussed in section 3.4.2. For now, it is prudent to note that the velocity fields in Figure
3-5 are surrounded by diverging stress fields, as is expected from the elastodynamic equation,

and that the stress fields are surrounded by the velocity gradients, as is expected from the
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mechanical constitutive relation. To help visualize the former, consider the x-component of the
elastodynamic equation:
Px = Texx + Tayy + oz (3.7)
Examining these terms, the three spatial derivatives diverge from a single point, namely the

location of the v, field as shown in Figure 3-6.
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Figure 3-6: Stress divergence centered at the velocity terms.

It can similarly be shown that the grid is such that the velocity gradients are collocated with
the appropriate stress terms. Although the 3D grid has been presented in this section, only 1D
uniaxial stress simulations are performed herein. For these simulations, only stress T, and
velocity v, need be considered.

3.2.3 Field Values at Off-Grid Locations

If it is desired to know the value of a field at a spatial location offset from where it is defined

by Figure 3-3 and Figure 3-5 then averaging between nearest grid points is necessary. Recall

from Figure 3-5 that the stresses are defined at the unit cell center, namely at x = (i + 1/2)Ax,
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y=({+1/2)Ay,and z = (k + 1/2)Az. Say it is desired to know the normal stress T,, at z = kAz
instead; Spatial averaging would yield the following value:
(P VRS VT N (U FES S N (E RS me) I
2 2 2 2 2 2 2 2 2
For spatial locations that do not bisect grid points, averaging would be more complex than
what is seen in (3.8), but herein bisection points are considered.
3.3 Interface Conditions
An interface is defined herein as the nodes where two or more materials meet with differing
material properties. This is distinct from boundaries, which are the nodes where the simulation
space is terminated. In this section, electrodynamic and mechanical interface conditions are
explored.
3.3.1 EM Interfaces
The following relations (3.9a/b) must hold at all material interfaces [25][26]:
Jsurface =AXH,  Mgyrface = E X 11 (3.9a/b)
Where 1, is a unit vector normal to the interface and Jsrrace @aNd Mgyrfqce are the electric
and magnetic surface currents, acting at the interface, respectively. In the absence of surface
currents these relations state that the tangential electric and magnetic fields must be continuous
across a material interface. Looking again at Figure 3-3, the E fields are tangential to the unit
cell faces and the H fields are tangential to a cube that is half a cell staggered from the unit cell.
Say two different materials are stacked on top of one another in a heterogenous structure and

label the bottom and top layers as material 1 and 2 respectively as shown in Figure 3-7.
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Figure 3-7: Electric and magnetic interfaces.

The plane where the electrical interface conditions are satisfied will coincide with the cube
face, as highlighted in blue, but the magnetic interface conditions are satisfied on a plane half a
cell above as highlighted in yellow. Within the figure all fields at an interface are labeled with an
“i” superscript and those fields which uniquely belong to materials 1 and 2 are similarly labeled
with corresponding superscripts. It is informative to note that the magnetic field located at the
electrical interface corresponds to material 1 alone. This raises a question; what material
properties should be utilized at the interface between multiple materials? This question is
answered in the subsequent section.
3.3.1.1 Electric and Magnetic Property Definition

It is important to note that not only must the EM fields be defined spatially but also the
permittivity and permeability which are necessary for update equations. Consider that the

electrical quantities are defined at the center of each cell, and the magnetic quantities are

located at the corners as illustrated in Figure 3-8:
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Figure 3-8: Spatial definition of electric and magnetic material properties.

These are not defined arbitrarily but such that spatial interpolation always returns an
average permittivity and permeability at all interfaces between different materials. For further
clarification consider a corner interface between four materials with different properties as
shown in Figure 3-9. Additionally, assume that the permittivity and permeability of the materials

are diagonal matrices.

3) - (2)
cMa ' // cMag
I Z
I 4_1/"
1
H 4 H Vi
/1 o (3) Yo o .(2) %—e
a CEle CEle
I HS HS
. H
(4) I e S 7
CMag/:{._ -~ =% €yag] ' * t x
! @il | Ey
1
I I IE z
L7 o (4) v o (1)
c ’ c
’ : Hx’ Ele E, : Ele

Figure 3-9: Corner Interface Between Four Different Materials
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In the figure, only interface fields are shown for clarity. Note that these EM fields are not

collocated with the corresponding material properties necessary for the update equations thus

necessitating spatial interpolation of the permittivity and permeability terms. Say the interface

occurs at the spatial location (i,j,k) shown as a red dot in the figure. An update equation will now

be written for the interface electric field at point (i+1/2,j,k) shown as a purple dot. From this, the

x-component of Ampere’s law may be written as follows:

1.
L+§,],k
xx

At

|

nis

2 . 1 . n 2 . 1 .
E, <L+§J'k)_Ex (t+§,],k)

=$[H§‘(i+%,j+%,k)—Hg(i+%,j—%,k)] (3.10)

o L (R e B (R |
vl AN R R AU

Note that both sides of the equation are determined at the same spatial location if the

permittivity term is defined at (i + %] k). Since this is not the case, spatial interpolation needs

to be performed. By rearranging terms, an update equation for E,, may be written as follows:

E

X

1 1
(450K

=E

i/ 1
. 2(l+i,],k)
1 {At[H"<'+1'+1k
1.1, 1 1.1, 1 1.1, 1 1. 1, 19|y |z (LT 50 —,)
1| i+5j+5k+5 it+5,j—5k+5 i+5,j+5k—5 it+5,j-5k—5 Ay 2 2 (311)
E[Gxxz 22y 2PN 2R 22 2]

H"<'+1' 1k) At[H"('+1'k+1) H"('+1'k 1)]}
2\!Tyl Ty Y AN Y B A U A A

The permittivity term shown is the average permittivity between the four materials. It can

similarly be shown, by examining H, at (i,j + %,k + %) that the magnetic permeability will also

require spatial interpolation, yielding an average, or effective, permeability.

3.3.2 Mechanical Interfaces

The traction and the displacement at all mechanical interfaces must be continuous. Also,

when considering interfaces between two or more materials with different stiffness and density it

is important to make a distinction. Previously it was observed that on the EM side, when using
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the Yee grid, two interfaces must be considered; electrical interface planes that line up with the
faces of the unit cell and magnetic interface planes that bisect the unit cell (half a cell
staggered). When dealing with mechanical fields however, only one interface exists. This
highlights an interesting distinction between electrodynamics and elastodynamics, namely that
the former deals with two sets of fields with two sets of constitutive relations while the latter only
deals with one set of fields. It should not be surprising then that there is only one interface
condition when dealing with mechanical fields. This leaves a question to be answered; should
the mechanical interface planes line up with the unit cell like electrical interfaces or should the
planes be half a cell staggered like the magnetic interfaces? Consider the latter approach,

resulting in the interface planes shown in Figure 3-10a:
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Figure 3-10: Potential mechanical interfaces.

The glaring problem with this is that all normal stresses are continuous across any interface
plane, but this is not the case. Only one normal stress is continuous across an interface, and it
is the one that is normal to the interface. It is then clear that the mechanical interfaces must be

along the unit cell planes as shown in Figure 3-10b. Again, there are questions left to be
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answered, namely that the interface planes only guarantee continuity of the shear stresses and
one velocity component so what about the normal stress and the other two velocity
components? These questions may be answered by considering mechanical properties which
are discussed in the next section.
3.3.2.1 Mechanical Property Definition

At this time, it is important to note that not only must the mechanical fields be defined
spatially but also the density, stiffness, and the discretization (for graded meshes) which are
necessary for update equations. Consider that the mechanical material properties are defined at

the center of each cell as shown in Figure 3-11.:
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Figure 3-11: Spatial definition of mechanical material properties.

These are not defined arbitrarily but rather such that spatial interpolation always returns an
average shear stiffness and density at all interfaces between structural elements. For further
clarification consider a planar interface between two materials with different stiffness and
density normal to the z-direction as shown in Figure 3-12. Label the bottom layer as material (1)

and the top layer as material (2) with properties having corresponding subscripts.
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Figure 3-12: Vertical mechanical interface.

As shown, two shear stresses (T,,, Ty,) and one velocity term (v,) are defined at the

interface which is highlighted yellow. Note that these mechanical fields are not collocated with
the material properties necessary to define them thus necessitating spatial interpolation of the
stiffness and density terms. Say the interface occurs at the spatial location (i,j,k), then the

spatial definition of the velocity v, may be written as:

1

('+1 o k)—
ve\itg ity k) =1 ey
7\ Pw

1
T 1{ [sz(l-f-l]-l- k) xz(l]+ k)]
i+§,j+§,k+§)

P

+A1y [Tyz<l+; j+1, k) yz(l+; i, k)] (3.12)

O R
Note that both sides of the equation are determined at the same spatial location and that the
density term shown is the average density between the two materials. The normal stresses
require no spatial interpolation since these are collocated with the stiffness terms and are never
evaluated at the interface of different materials. Based on this, the normal stress in the z-

direction can be written as follows:
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T, ('+1 '+1k+1)
zz (1 2:] 2: 2

1 i+%,j+%,k+% i 1 1 o1 1
c [Ux(l+1,]+E,k+§)—vx(l,]+z,k+5)]

- E xxzz

(3.13)
1 i+%,j+%,k+%

o1 1 o1 1
+Ecwzz [vy(1+5,j+1,k+5)—vy(l+§,},k+5)]

1 vl jegked 101 11
+Eczzzz [UZ(L+E,]+E,k+1)—vz(1+§,]+i,k)]

So, the T,, is dependent on the velocity term at the interface, namely v, (i + %,j + % k )

Since the velocity at the interface considers both materials, the normal stress near the interface
is also affected by the interface even though it is not evaluated there. In fact, complete traction
continuity and velocity continuity at interfaces may be guaranteed by proper inclusion of the
material properties [192]. Next, take for example the T,,, field represented by the double headed

orange arrow pointed in the x-direction. This field is surrounded by an equal number of ¢, ,

shear stiffness terms from each material.

SOLYNS EACLYS Y NCN LRI
(3.14)
+c§22)yz<i +%,j—%,k+%) +c§22)yz(i +%,j +%,k+%)]syz(i +%,j,k)
Note that both sides of the equation are determined at the same spatial location and that the
stiffness term shown is the average stiffness between the two materials. It is additionally
important to note that the 4 terms are necessary in case of a line interface between 4 different

materials. This case is shown in Figure 3-13 for a line interface in the x-direction (corner) at the

(i,j,k) spatial point which is colored red.
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Figure 3-13: Mechanical corner interface.

Note that all line interfaces are simply two plane interfaces converging together, and in this
case only the T,,, shear stress is evaluated at the interface which may be written as:
et 2w ety N, 1, ]
Tyz(l * z‘J’k) - 4[Cyzy2(L taimgk 2) +Cyzyz(‘ *2 2'k+2)

3.15
+c(3) 1 ( )

mz(i +%,j+ 2,k+%) +c§‘§’y2(i +%,j+%,k—%)]5ﬂ(i +%,j,k>

Therefore, the shear stiffness requires four terms since generally the shear stresses may be
at the interface of four different materials.
3.3.3 Piezoelectric

As seen in this section, interface conditions are met via spatial averaging of the material
properties. As such, there exist piezoelectric interface conditions which are satisfied via proper
placement of the piezoelectric coupling coefficients. These will differ slightly based on which
coupling coefficients are used as shown in the following sub-sections.

The interface condition between a piezoelectric and a dielectric is derived herein. The air
interface is a special case of this derivation. Recall that the tangential D is not continuous at an
interface, and tangential E is continuous. Refer to region (1) as the space containing the
piezoelectric material and region (2) as the space containing the dielectric. The z-component of
Ampere’s law is:
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e |02 (ke g) =02 (6 e+ 3)
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Say that spatial location (i,j, k+ %) is at an xz-planar interface. Split the D, terms into D,

and D,,, which are located just to the interior and exterior of the piezoelectric at the interface

respectively, therefore:

1

1 |
il 1y Dy (bik+g) 4Dy (iik +5) (3.17)
D, (l j k +§> = >

Substituting (3.17) into Ampere’s law (3.16) yields:

2 Dz(l)1 (l’j’ k+ ) + DZ(Z)1 (l’j' k+ %) _ Dz (i’j' k+ %) + Dz (i'}'; k+ %)
At 2 2

_1Hn+;, 1,k 1 Hn%, 1,k 1
| (g g) = (1= gk +5)

1[H"("+1k+) H"( k+1>]
Ayl BTy Lj =g k3

The constitutive relation for the dielectric, assuming diagonal permittivity, is the following:

(3.18)

1

n+ (2) . 1
DZ(Z) (l j k+ ) Ez(z) ( i,j,k+ 5) (3.19a)

Where € is the permittivity of the adjacent dielectric (for air €. = ¢,). Since distinct (but
equivalent) piezoelectric constitutive relations may be used, the following subsections discuss
using the d-form and the e-form [194] separately, both assuming a z-poled class 6mm
tetragonal crystal. Note that, since discontinuity leads to D, being split, the d and e-form are the
only constitutive relations that should be used for determining interface conditions as these
contain the flux on the left-hand side of the equation (i.e., using h and g-forms would not be

appropriate).
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3.3.3.1 d-form Piezoelectric Interface Condition
From the d-form of the piezoelectric constitutive relations, the interface adjacent electric flux
within the piezoelectric is:
n+s 1 n+t 1 n+t 1 n+l 1
., _ .. .. ¢)) ..
Dz(1)2 (l,],k + E) =ds; [Txx(f) (l,], k+ E) + Tyy(i) (1,], k+ E)] +dy; Tzz(lz) (l,], k+ E)
(3.19b)

1
T (. . 1
+el )EZ(1)2 (l,], k+ E)

Here, a{)) and 4{? are the piezoelectric coupling coefficients, and e.\" is the constant stress
permittivity of the piezoelectric material. Use E,1y=E,»)=E, from tangential E continuity, and

substitute the constitutive relations (3.19a-b) into Ampere’s law (3.18):

2l [ (o DY s (e D] B () s
si| o [T (e ) # 1 (ko )| + 507 (0 +z)
T(D) | (2 1
(Ezz t €, n+§<_. l)
— 5 E, i,j,k+ >
d§11) - 1 .. 1 d;? o 1
=S [ (i 3) + By (1 3)| -5 T (1 +3) (3.20)
3.20
() , (2
€ +e€ . 1
_(H%E;l(w’kjLE)
1 Hn+§<,+1 ,k+1> Hn%(_ 1 ,k+1)
_Ax y l 2;]; 2 y l 2,], 2
1 [H”(' ,+1 k+1) H”(' 1 k+1>]
Ay x \bJ 2' 2 x\LJ 21 2
Rearrange:
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2 E, *(ijk+3
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+ At Hn+%<'+1 'k+1) Hn+%<, 1 'k+1)
zAx y l 2!]! 2 y l 2,], 2
At [Hn(,,+1k+1) Hn(" 1k+1)]
(T (3.21)
_T TZz(l) (lﬁj;k +E)_TZnZ(1) (l’]'k+5)
€]
_ 4

n+% . k 1 n .. k 1 n+% o k 1
> Txx(l) (l;], + E) = Texc1) (l;], + E) + Tyy(l) (l,], + E)

. 1

As expected, the permittivity is averaged while the piezoelectric dT products are multiplied
by a factor of %2 with respect to the interior value. The % factor may be achieved by averaging
the d terms, just as the permittivity, while utilizing the interior normal stresses at the interface.

Mechanically, for the shear free case, no piezoelectric interface conditions need be
considered as only the velocity terms exists on interfaces/boundaries and the velocities are
updated using the elastodynamic equation, which makes no mention of coupling coefficients.

More generally, at a corner interface, a factor of ¥ will appear on the piezoelectric terms as
the D, term is split into D, (1), Dy (2), D53y, @nd D,y (Where material (1) is the piezoelectric),

yielding:
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A

Therefore, define the permittivity and piezoelectric coupling coefficients as follows:

@ ©) )

T(1)
€ (i j k + 1) _ (EZZ + EZZ + EZZ + e-ZZ
zz v -
2 4
1.1, .1 1.1, 1 1.1, .1 1.1, .1 (3.23a)
l+§']+i'k+§ l—i,]+§,k+i l+§']_i'k+i l—E,]—E,k+§
( ZZ + ZZ + ZZ + EZZ
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l+§,j+i,k+§ L—E,]‘Fi,k‘i’i l+E,]—E,k+§ L_i'}_f'k+i
1) d3g +dg, +dyg tdg, 3.23b
d33(ijk+—>=—d33= .
' 2 4 4
di+%,j+%,k+% N di—%,j+%,k+% N di+%,j—%,k+% N di—%,j—%,k+%
i ( . 1 dé? 31 31 31 31 (3.23¢)
31\ L, +_> =—==
2 4 4

These definitions can be applied generally, with interface conditions handled via use of the
internal stress only.
3.3.3.2 e-form Piezoelectric Interface Condition

From the e-form of the piezoelectric constitutive relations, the interface adjacent electric flux

within the piezoelectric is:
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1
S (L . 1
+ €, Ez(1)2 <l,], k+ E)
Here, {2 and e} are the piezoelectric coupling coefficients, and 5" is the constant strain
permittivity of the piezoelectric material. The rest of the derivation follows the same vein as that

of the d-form in the previous section, yielding the following expression for the electric field in the

case of a corner interface:

S(1) (2 3) (©))
(e,,” + €, +¢€,, +6, En+% (i ikt 1)
4 z ' 2

s 2 3 4)
D)
4 z\bIETY

At Hn+% o1 'k+1 Hn+% 1 'k+1
" 2nx | (”’2'1' 2) y (l 2 2)
Lo b ) - L )
20y [\ T T ) T\ T T (3.24)

€3] 1
€33 n+s (. . 1 L. 1
e (Szz(f) (l,], k + E) — S5 (l,], k + E))

83(‘1) n+% L. 1 n o 1 n+% N 1
L Sxx(l) (l!]; k + E) - Sxx(l) <l,], k + E) =+ Syy(l) (l,], k + E)

1
— St (i, Jok+ E))
Therefore, define the permittivity and piezoelectric coupling coefficients as follows:

¢! 2 3) 4
(EZZ( ) + EZZ) + EZZ + 6;2)

Ezz(l',j,k+§)= 4
+2j 4t k4t —Sj+5 ks 42Tl 11,1 (3.259)
LA b L SRS T L B Sh K
zz zz zz zz
B 4
i+1,j+1,k+l i—l,j+1.k+l i+1,j—1,k+1 i—l,j——,k+—
. P A I Shr bl DR Sh L BT Al
ey \ % 33 33 3 (3.25b)
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These definitions can be applied generally, with interface conditions handled via use of the

(3.25¢)

T A T e SN o S A o e
(ezzz 222+ezzz+ezzz>

internal stress only.

Note from this and the previous section that the electric flux is tangential at the electric
interface and therefore not continuous. This leads to averaging of the d and e piezoelectric
coupling tensors along with the permittivity tensor. The g and h piezoelectric coupling tensors
[194][198] must not be averaged then during FDTD simulations as it is accurate to utilize

average d, e, €, and €. If the g or h-form are used, then these should be averaged as follows:

Lo1..1 1 1.1 1 1.1 1 1.1 1
dl+f‘]+f’k+7 n dl_?]+7’k+7 n dl+E']_§'k+E n dl_f']_f’k-'—f
1 33 33 33 33
922 (Lik +3) = T T T DT T (3.262)
ity z =%y 24 2l z )
zZZ zZ zZZ zZZ
TR NE e S A T E T SR S A P Y
2 2 2 +e 2 2 2 +e 2 2 2 + 2 2 2
1 31 31 31 31
has (i, Jk+ E) - (3.26b)

., 1.1 1 1.1 1 1.1 1 1.1 1
L+§,j+§,k+i + l_i']+7'k+§ + €l+i']_i'k+_ L__J__'k+i
zz Y4 ZZ

All the piezoelectric interface conditions herein have been determined for collocation with D,
or E,. Other similar expressions may be written for the x and y-directions also yielding spatially
averaged material properties.

3.4 Boundary Conditions

Boundaries are defined as nodes outside of which fields are no longer updated. This means
that the mechanical boundaries will generally not coincide with the EM boundaries, as the outer
surface of any solid structure acts as the mechanical boundary, whereas the EM portion of the
code may encompass surrounding air beyond the structure. It is therefore fruitful to treat

mechanical and EM boundaries as separate entities.
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3.4.1 Electromagnetic Boundary Conditions

In the context of the EM physics, boundaries are planes where the simulation space is
truncated, therefore requiring special treatment unlike interfaces. This special treatment is
known as the boundary condition and the subsequent sections cover some such relations as
they pertain to electrodynamics.
3.4.1.1 Perfect Electric Conductor (PEC)

A perfect electric conducting surface is a theoretical boundary that has infinite free charges
to dissipate electric fields. As such any incident tangential electric fields are immediately used to
move these free charges and therefore no such fields may exist on these surfaces [178][179].
Since magnetic fields are created by swirling Faraday contours, this implies that the normal
magnetic field is also zero at the PEC boundary:

Etangentiar = 0, Evormar = max/min, Hyormar = 0, @ PEC boundary (3.27)

Of course, no such surfaces exist but many highly conductive materials may be accurately
modeled using this approximation and, within this study, the ground electrode is modeled as a
PEC. Since EM waves are transverse in nature, the zeroing out of the tangential electric fields
has the effect of perfectly reflecting all incident waves. As such, PECs are often used to model
infinite arrays of radiators using image theory. Consider for example an infinite electric line

source as shown in Figure 3-14:
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Figure 3-14: Infinite electric line source.

This continuous line source produces a cylindrical wavefront that propagates in the radial
direction as shown in Figure 3-14a. When modeled in a discretized simulation space however,
the continuous line source must be split up into dipole point current sources that produce a
spherical wavefront as shown in Figure 3-14b. This does not perfectly recreate the cylindrical
wavefront, especially near the source, but as the discretization size Az is made smaller and
smaller the accuracy increases at the cost of an increased number of nodes and therefore
simulation time. This is a constant trade-off in numerical analysis that must be made and
requires some engineering intuition. Of course, the simulation space cannot contain infinitely
many nodes in the vertical direction to recreate the infinitely long line source. At some location
the simulation space needs to be truncated to keep the number of nodes finite. In this case a
PEC is appropriate due to its ability to perfectly reflect incident EM waves by zeroing out the
tangential electric fields. This becomes clear when looking at Figure 3-14c¢ where it is shown
that the PEC has the effect of creating an imaged dipole just outside the simulation space. The

reflection of the dipole just within the simulation space can therefore be thought of as the
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incident wavefront from this imaged dipole as shown in the zoomed in image in Figure 3-14c.
The infinite electric line source is simulated in section 4.2.2.
3.4.1.2 Perfect Magnetic Conductor

A perfect magnetic conducting surface is a theoretical boundary that has infinite free
magnetic charges to dissipate magnetic fields. As such any incident tangential magnetic fields
are immediately used to move these free magnetic charges and therefore no such fields may
exist on these surfaces [178][179]. Since electric fields are created by swirling Ampere contours,
this implies that the normal electric field is also zero at the PMC boundary:

Htangential =0, Hpormar = max/min, Enormar =0, @ PMC boundary (3.28)

Of course, no such surfaces exist as free magnetic charge is a theoretical construct but
often systems may be modeled by theoretical equivalents which may include fictional magnetic
currents. Aperture antennas for example may be modeled using electric and magnetic current
sources which act over the aperture [25][26]. As such, PMCs may be used to model periodic
structures just like PECs when appropriate.
3.4.1.3 Absorbing Boundary Conditions

When performing simulations, it is often necessary to model an infinite region where a wave
propagates away from the device of interest never to return. Cleary in terms of computer
memory, this infinite simulation space is not realizable and as such truncation of the simulation
space is necessary. The boundaries of this practical simulation space will ideally exhibit perfect
transmission and no reflection of any incident waves will occur and these are known as
absorbing boundary conditions. These date back to 1975 where Taflove referred to them as
“soft lattice truncation conditions” [196] and later as “radiating boundary conditions” by Holland
in 1977 [197]. There are many ways of attempting to realize zero reflection at a boundary, and

herein so called “one-way wave equations” are utilized which only allow the wave to propagate
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in one-way, namely away from the simulation space. To derive these one-way expressions, the
3D wave equation is written as [178]:

0%U 0%U 0%U 1 0%U

- = =G6U =G%G™ 3.29a
6x2+6y2+622 c? ot? GU=6"6"u ( )

Where, G* and G~ denote the one-way wave operators yielding the following analytical

boundary conditions at x=0,h, which apply for any angle of incidence:
G1U(0,y,2z) =0, G*U(h,y,z) =0 (3.29b/c)

The theory for equations (3.17a-c) was first derived by Engquist and Majda in 1977 for
Cartesian FDTD grids [198], and was later applied to the electromagnetic field equations by Mur
in 1981 [199]. The largest setback of this one-way wave approach is that equations (3.29b/c)
are pseudodifferential operators which disallows direct numerical implementation. (3.29b/c)
Therefore these must be approximated by Taylor series first and these approximate terms only
exhibit perfect absorption at broadside (normal wave incidence). Mur derived both 15 (Murl)
and 2" (Mur2) order finite difference versions of these boundary conditions [199] and Trefethen
modified the expressions such that perfect absorption can be achieved at oblique incidences
rather than broadside [200]. The Murl ABCs are often utilized in ADI-FDTD due to the light
computational load w.r.t the 2" order version. Yang applied the Murl conditions to the ADI-
FDTD formulation in 2005 [201]. The 1% order accurate absorbing boundary condition for an EM

wave traveling in free space is shown below and applies to the 1D, 2D, and 3D cases [178]:
GtU=—F-—=0 (3.30)

This approximation holds when the spatial variation tangential to the boundary is small, in
other words, when the wave impinges upon the boundary at or near normal incidence. The
minus corresponds to the start of the simulation space (left/back/bottom) and the plus for the
end of the simulation space (right/front/top). U is a scalar field that may be any electric or

magnetic field that is evaluated at the boundary and is tangential to the boundary. If the
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simulation space is aligned with the electrical interface, then the U field will be the tangential
electrical fields, as is the case herein. Since the normal H-field component at the boundary does
not require external electric fields to update, Faraday’s law may still be used. E-field update,
however, will require H-field components outside of the simulation space, and will therefore

instead use the following one-way wave boundary conditions:

0E 10E 0FE 10E 0E 10E J0E 10E
=0 —2X--"2=y, Z__—_Z_ =1 —2+-"2=0), Z4—Z-0
x dx c ot ox ¢ ot X = Ty +c ot dox +c ot
9E, 10E, 9E, 10E, 9E, 10E, dE, 10E,
=0: _— = —_— = =L.: —_— —_ —_ =
y=0 dy ¢ ot 0, dy «c ot 0 y=1i, oy NPT 0, dy ot 0
0E, 10E, 9E, 10E, 0E, 10E, 9E, 10E,
=0 —X--lFEog 2o g=,; —X4-—Eopg —Xp-2=
d 0z ¢ Ot 0z ¢ 0Ot 2=k 5y +c ot 0z +c ot

(3.31a-f)
Using central differences, the following is derived for the z = L, = N,Az boundary (3.31f) in
standard FDTD:
ol (o o) o o) 20 (o e 2) 52+ 3 1)
b B (i My = 1) 4 B (45N — B2 (14 5, = 1) = E2 (i 4.3,703,)] = 0

(3.32a)

1 n+1--1 n--l n+1--1 n--1
Az Ey (l,]+§,NZ)+E3,<1,]+E,NZ)—E3, (l,]+§,NZ—1)—Ey<l,]+E,NZ—1)

1 n+1--1 n+1--1 n--1 n--1
+20At[Ey (l,j+§,NZ—1)+Ey (l,]+§,Nz)—Ey(l,j+§,NZ—1)—Ey(l,j+§,Nz)]=0

(3.32b)
Solving for the fields at the boundary and the future time step yields:
(e =g ) s Gl (o) (o) 0339
Ep+ (i,j + %,Nz) = E} (i,j + %,NZ - 1) + H[E}}“ (i,j + %,NZ - 1) —E} (i,j +%,Nz)] (3.33b)

In the ADI-FDTD formulation these equations will be slightly modified due to the presence of
the 2 sub-iterations yielding the following for the 1% sub-iteration if the same methodology is
followed:
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And for the 2" sub-iteration the equations are simply evolved half a time step:

1 1 1 cAt — 2Az
E;+1(i+§,j,1vz>=E:+2(i+§,j,1vz—1>+ [

1 el o1
cAt + 20z Ex (l"'i'f’Nz—l)—Ex 2(l+§,1,Nz)] (3.34¢)

n+s

i, . 1 (. .1 cAt — 2Az
E}* (z,]+§,NZ)=Ey (l,]+E,NZ—1>+

o1 e |
m E;,H—l (l,] +E'NZ_1)_EJ/ Z(l,] +E,NZ):| (334d)

The 24 ADI-FDTD equations for the Murl absorbing boundary conditions are tabulated

below:
E2 (042 k) = En (14 k) + 2B g LY o1k
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Table 3-1: Murl absorbing boundary conditions for ADI-FDTD.

Since the fields at the absorbing boundary rely on the future time step fields just next to the
boundary, the ABC fields should be evaluated just after the for loops solving for the interior
fields.
3.4.1.4 Perfectly Matched Layers (PMLS)

As described in section 3.4.1.3, absorbing boundary conditions based on one-way wave
equations can introduce significant error when incoming waves deviate from normal incidence.
One method of bypassing this issue is to introduce lossy layers adjacent to the boundary which
absorb the incoming waves over a distance. Strategies along this line of thinking were first
introduced in 1983 by Holland and Berenger [202][203], though these early attempts still
suffered from requiring normal incidence. The true explosive growth of the method commenced
when Berenger introduced the perfectly matched layer in 1994 [204]. Within this methodology,

the lossy layers are matched to the adjacent simulation space such that incident waves do not
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change direction as they transmit into the lossy PML region which is backed by a PEC boundary

condition as shown in Figure 3-15:

Interior Lossy V\

Simulation PML
Space Region o
<3
A,
Incident
Wave ~

Figure 3-15: Concept of PEC-backed PML regions.

The idea is for all incident waves entering the PML region to die out before bouncing off the
PEC and re-entering the simulation space. The loss within the PML region is introduced into the
numerical algorithm through the complex frequency shifted (CFS) [178-182] stretched
coordinates [205-207] which modify Maxwell’s equations, as discussed in section 2.1.3, allowing
for the same generalized update scheme to be applied both in the interior and PML regions. The
approach highlighted in section 2.1.3 is known as the convolutional PML (CPML) method and,
although other strategies exist [208-210], this method, coupled with CFS stretched coordinates,
has proven superior for dampening out evanescent (hon-propagating) modes [180], although
the complementary operator method is another non-PML solution for the evanescent absorption
problem [211]. As such, the PML layers may be brought much closer to the radiating elements,
which is a must for multiferroic antenna simulations due to the 5 orders of magnitude difference
in EM and mechanical wavelengths. To better understand why using CFS stretched coordinates

is effective in the near field, recall equation (2.23) for the stretched coordinates below:

St =Kt (2.23)
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The real components of s; constitute a stretch of the finite difference cell, and the imaginary
parts constitute a wave dampening effect. Rewrite equation (2.23) as follows:

o;/2me,
a; .
2ﬂ60+]f

Si=K; +

(3.35)

Note that at low frequencies (f < «a;/2me,) the stretched coordinate is essentially real,
producing a stretch of k; + 0;/a;. At high frequencies, equation (3.35) yields both a real stretch
and complex dampening effect. These low and high frequency regions are split by the threshold

frequency defined below:

]

fthreshold = (3.36)

2meg

In radiation problems, the outgoing waves are generally an amalgamation of multiple
frequencies propagating together with low frequency components being evanescent modes, and
high frequency components radiating into the far-field, where “low” and “high” are relative to the
device cutoff frequency. Therefore, a; is defined such that the threshold and cutoff frequencies
are equivalent so that low frequency evanescent modes experience a real stretch and
exponentially decay naturally [180][208], while high frequency radiating modes experience the
loss introduced by the PML layers. The CPML methodology was applied to ADI-FDTD in 2001
by Gedney [212], yielding what is termed herein as CPML-ADI-FDTD.
3.4.2 Mechanical Boundary Conditions

Recall that the Yee spatial grid is set up such that both of Gauss’s laws are satisfied
automatically meaning that the condition that the normal component of the magnetic flux and
electric displacement must be continuous at a boundary is automatically satisfied everywhere
within the simulation space. For mechanical fields however the spatial grid is not setup to
automatically satisfy traction continuity which may be seen by the fact that the normal stresses
are evaluated at the center of the cell where no EM fields are evaluated. To show that this is the

case, a traction free surface is considered in the next section.
135



3.4.2.1 Traction Free Surfaces

A traction free surface bounds the outer area of a solid structure without external forces
applied, and motion is permitted. Within the finite difference grid, this boundary is aligned with
the unit cell like the electrical interfaces. Various methods exist to numerically implement these
boundary conditions within the FDTD method [192-194]. Due to the small-time step utilized
herein (relative to the mechanical stability requirement), a relatively simple method was chosen
to avoid undue inaccuracies and was adopted as explained below.

Consider a traction free surface with outward normal in the positive z-direction (top
boundary). Evaluation of the non-zero velocity at the surface will involve the adjacent boundary

shear stresses which are zero (traction free).

n+1 Tl+1

1 1 1 1
T,,* (i + E,j, kt(,p) =0, T,° (i,j +§,kwp> =0 (3.37)

Also involved will be the normal stress just below and above the z-directed velocity term

which has the following update equation:

3 1
nty/.001 0, 01 nty/, o1, 01
v, 4(1+5,]+5,kt0p)=vz 4(L+E,] +E’kf0p)+

[
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11 1 1.1 1
45 j+5Ktop=7 | itz it5Ktopts
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(3.38)

Pay Az

The densities and stresses located at (k;,, + 1/2)Az are outside the structure and require

attention prior to implementation of (3.38). Since the stress is zero at the boundary, the following

anti-symmetry equation may be applied to deal with the out-of-bounds stress terms:

1 1
nt> (. 1 1 1 n+> (. 1 1 1
T,, 2 (l + E,} +E,ktop +§) =-T,, 2 (l +E'] +E;ktop _E) (3.39)

Note that (3.26) produces a zero normal stress at the boundary located at z = k;,,Az when
spatial averaging is applied (see section 3.2.3). In (3.39), the stress just outside the boundary is

fictious rather than an actual physical stress and therefore this stress should not be applied to
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the exterior nodes directly, as the EM portion of the code would then erroneously utilize these
stresses. Instead, (3.39) should be handled using if-statements within the code.

The density just outside the material may be defined to be zero in what was referred to as a
“vacuum formalism” by Zahradnik et al. in 1993 [213] but was previously proposed by Boore in
1972 [214]. It is tempting to utilize this method due to being easier to implement on more
generic structures, but in 1996 Graves [194] warned of numerical issues that this formalism
presents so the practice of utilizing the density (and stiffness) of the nearest neighbor node is

utilized herein, consistent with authors such as Ugural [215], therefore:

1.1 1 1.1 1
pl+f']+7:ktop+§ = pl+7'] tokeor—3 (3.40)
() @®

The velocity update equation at the boundary is now as follows:

ntzooo 1.1 1
ned nal 1 1 AtT,, (l+§!1+7’ktl)p—§)

o101 2 (. .
v, 4(l+5,]+§,kmp)=vz 4(1+§,]+§,kmp>—

(3.41a)

1.1 1
l+§.}+§;ktop_§
(€]

Azp
Thus far, at the boundary, the traction free conditions have been applied either directly
(3.37) or through anti-symmetry (3.39) and an expression for the velocity defined at the
boundary has been derived (3.41). Continuity of all velocity terms is required, however, so the
tangential v, and v, seem to also require a boundary condition but note that these are not

defined at the boundary. Regardless the traction free surface effects the tangential velocities

half a cell to the interior as follows:
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Zp(l,} +7,kmp—7)Az
n+% o1 1
v, (l+§,],kmp—§)
n+% 1 1
=v, (l+§,],kmp—5)
+ a [T"+%('+1 ke —2) = T2 (1, gy — =
1 1 xy (T mp——)— Xy (w. top__)
2p (1475, k +5) 2 2 (3.41¢)

At

2p(i+%,j,k+%)Ay

1

n+% o1 1 ; 1
+ Tyy (l+§’1+§’ktop_§)_Tyy (l+§,}—§,kmp—§)

At

A (i h 1)
2p(i+5.).k+5)Az

Therefore, the tangential velocities adjacent to the boundary will be affected by the
boundary from the zeroing out of shear stresses. These conditions may be handled without the
use of any if-statements since the shear stresses at the surface are always zero from proper
definition of for-loops. The boundary conditions shown here for a horizontal plane may be
modified for planes normal to the in-plane direction following the same methodology. For the
case where two planes meet (at a corner) the only field shared by both planes is a shear stress
which for both planes is zero, so no special if-statements are necessary outside of the ones
already used for the velocity components normal to the boundary.
3.4.2.2 Fixed Boundary

For a fixed boundary, all velocity terms are zero while tractions at the boundary are
unrestricted. Say a fixed boundary is normal to the z-direction on the bottom of the device (at
z = kpo+Az = 0, then there are two non-zero shear stresses at the boundary which require
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velocity components just below the simulation space in order to resolve. The update equations

are as follows:

nis

7,1 nfi L
Tyz (l + E:]:kbot> = Tyz (l + El]lkbot)

4 El( hjthkports | i—mjtakports | IteitBkpor—s
2 4\ yzyz yzyz yzyz
k-1 1 [ k1 1 w1 1 (3.42a)
+ Cyyz 3|2z \ % (l+§,J,kbot+§)—Vy (l+§']'kbat—5)
1 n+% 1 1 n+% o101
+E v, (l+§’]+i’kb0t)_vz (l+5;1_iukbat)
i 1 1
T Z(i,j +E'k) = T,?Z(i,j +E'k)
At i+djedies  i-Ljetrst  irljele-d
+7Z<CXZ)2(Z 7y sziz 7t xz;%z e
(3.42b)

. 1.1 1 1 1
i—=jtrk—=\1|1 [ n+g3/. . 1 1 nig(s ., 1 1
+c,2 2 2)5[_Az (Vx * (t,] + 50 kot + f) -, * (l.] + 5 Kpor = E))

1 [ sl 1 1 ntd 1 1
+E(VZ 4(i+§,j+i,kbot)—vz 4(i_§'j+ilkbot)>:|
The velocities directly adjacent to the fixed boundary adhere to the following anti-symmetry

conditions:

1 1

R R B (TR T B M (FE PN S ] (PR (3.43alb)

Where the terms just below the boundary are just outside the simulation space and are
therefore imaged, rather than physical, fields. The averages of the velocities in equations
(3.43a/b) are located at the fixed boundary and are equal to zero as expected.

At fixed boundaries it is appropriate to take the stiffness from the adjacent material and

apply it to a phantom node just outside the simulation space [215], therefore:

P S | 1 .1 ..1 1
l+§,]+7,kbot+7 _ l+7,]+§,kbot—?

=c, 2 (3.44)
ijij ijij

Substituting (3.44) and (3.43a/b) into equations (3.42/b) yields:

139



i1 o1
Tyz z (" +EJ]J kbot) = T;lz (" + El]lkbot)

At 1 i+l jilkpod i——}+— kbut+— n+ 1 1
+ 75 <Cy232/z 2 2 + Cyzgzzz —17 (l + = ] kbg[ 2) (345&)

1 ntzy, 11 it 101
+E v, (l+5,]+5'kb0t)_v2 <l+§,]—§,kbot)
il 1 o1
T2 (14 3 Knot) = T8 (6 + 3. Koo

(i +5 Ko+ 3) (3.45b)

+—5 xzxz xzxz

At1 1+2,j+%.kbot+ l——l+ kbot"“
22

(g ob) o e 3 ))]
3.4.2.3 Normal Velocity Prescribed

When a velocity normal to a boundary is applied, the two co-planar shear stress terms will

be affected. Suppose a z-directed velocity is applied at the top boundary of the device:

+1 1 +1 1 1
vZn 4( ,] += kmp) ntg (i +§,j +§,kmp) (3.46)

ZPrescrlbed
The shear stresses at the excitation plane are T, and Ty,. In the simplest case of a uniform
velocity input, the shear terms must necessarily be zero everywhere (since shear stresses
would warp the excitation plane, destroying the uniformity), therefore:

n+s

o1 n+1 1
TyZz(l+E,],ktop):o, T (l j4= kt0p> 0 (3.47a/b)

3.4.2.4 Normal Traction Prescribed
In this case, rather than anti-symmetry for the normal stress, the following applies at the

boundary:
[ ez 11 1 nbz/o 11 1 s 11
7| T (l+§,1 +§.kmp+§)+TZz (L+E,J +§,kmp—§) =TZZPresmbed<l+E,] +§,km,,) (3.48a)

This yields the following imaged stress above the surface:

1 1 1
+2(; 11 1 +3 11 L0101 1
T Z(i + 500+ 5 keop +§) _ o2 ( =+ kmp) ™ 2(i+§,j+§,ktop _E) (3.48b)

ZZprescribed zz
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So, the normal traction applied at the boundary may be modelled as the following vertical
velocity:

n+3

(. 1.1
v, (L+§,j+5,kwp>

T'I.+1

= 1 1
= ‘UZ 4(1 +E,j+z,ktop)
(3.49)

n+s 101
(l+§,]+§,kt0p)

At [
. 1 . 1 ZZprescribed
p (L tot 7,kmp) Az

+

A LI

Where the shear stress terms do not appear since the applied traction is normal to the
boundary surface, i.e., zero shear stress. The horizontal velocity terms just below the free
surface remain unaffected.
3.5 Unified Grid

A spatial lattice containing all the information needed to write update equations is shown in
Figure 3-16. More specifically, the spatial locations of the EM fields discussed in section 3.2.1,
the mechanical fields shown in 3.2.2, the EM material properties of section 3.3.1.1, and the

mechanical material properties of section 3.3.2.1, are all presented in the figure.
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Figure 3-16: Unified spatial grid for mechanical antenna simulations.

Figure 3-16 also reiterates the physical significance of the EM and mechanical field
placement (e.g., to create Ampere contours). Recall also that the material properties are defined
such that average material properties are utilized at interfaces. Although a full 3D mechanical
grid is presented in Figure 3-16 for completeness, only 1D mechanical simulations are
performed herein.

3.6 ADI-Methodology for Homogenous Free Space with Source Currents

In this section the alternating direction implicit methodology will be derived for free space
simulations in the absence of piezomagnetism and piezoelectricity, to simplify the description
while providing a basic understanding of the approach. The process flow is shown in Figure

3-17:
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Figure 3-17: Process flow for the free space ADI method.

The accuracy of this method is highlighted in [218][219]. First, the z-component of Faraday’s

law is written in finite difference form as follows:

252 (12 ) = 82 (42 )] 20 (14242 )
acl’z \'Tl Ty 2\t Ty z \!Tyl Ty

1 1 1 1 1
-5 E:+2(i+i,j+1,k>—E:+2(i+E,j,k>] (3.50)

—i[E}}(i+ 1,j+%,k) —E},‘(i,j+%,k)]

Note that the magnetic flux current B and the curl of the electric field V x E are evaluated at
time t = (n + 1/4)At, with the latter term achieving this by having the spatial derivative E, ,,
evaluated at t = (n + 1/2)At, and E,, , at t = nAt. This is in stark contrast to the magnetic
source current term M, which is defined at time t = (n + 1/2)At. This time mismatch has been
shown to be optimally accurate by Hagness et al. [220][221] and represents a situation where
the temporal homogeneity of the finite difference expression need not be rigorously applied.
Since the E, terms are not yet known, (3.50) is implicit (in the y-direction) and further treatment
is necessary before Faraday’s law may be used as an update equation. Equation (3.50) could
have also been made implicit in the x-direction, and this is accomplished in a 2" sub-iteration.

The magnetic constitutive relation for a vacuum environment is as follows:
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1 1
Bz — o H;H'i (3.51)

Z

n+1/2

Combining (3.50) and (3.51) and solving for H, yields:

n+1

H 7('+1 '+1 k)
: \itzdts
—H"('+1 '+1k>+ At 15'”%(4]L '+1k) E"%('+1 'k)
ST T ) Ty |t M2 T x T\t (3.52)
O [e (i 1+ 20) = B (1 k)|~ 2 (42 4 1.0)
2ughx 1Y \' T T y\M T ) Topy e T2 Ty
The electric constitutive relation for a vacuum environment is as follows:

1 1
D2 = E2 (3.53)

The x-component of Ampere’s law will now be written, which again will involve an implicit
direction which is alternated in the 2" sub-iteration (hence the name alternating direction

implicit):
AP (R A I (P | B (P
2 |Px it w\it 50 I, “\i Rk
Ll (el et ) (142 -2 ) (3.542)
- z l 2;] 21 z 13 2;] 2;
1[H”('+1 ‘k+1) H“('+1 ik 1)]
Azl \! T ) T P T g ETy

Note in (3.54a) that the H, terms are implicit. Also, the time sampling for the electric current

is identical to the magnetic case. Substituting (3.52) and (3.53) into (3.54a) yields:
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2€g

=0 En+;(i+l 'k)—E"(i+1 'k)
At |7 20 x\tT)
1 1 At [ neg 1 nty 1
HQ(i,j+—,k+—)+ E, <i+—.j+1.k)—Ex <i+—,j.k)
2 2) " 2py0y 2 2
At 1 1 At nid 1 1
- [E;<i+1,j+—,k)—E;(i,j+—,k)]——MZ (11+ Lk + )
2010 Ax 2 2 2 2
1 1 At [ neg 1 nis 1
—H;l(i,j——,k+—>+ E, <i+—,j,k)—Ex (i+—,j—1,k)
2 2/ " 2pyny 2 2
At 1 1 At nig 11
2 [E§<i+1,j—5,k)—E;(i,j—i,k)]+—2# M, (i,j——,k+—>
0 X

by

(3.55)

1[H“('+1'k+1) mr i+ 2k 1] n+%('+1'k)
Az |\t T Ty y<l 27 2) ~Jx T\t
Note in (3.55) that now the only fields determined at future time step n + 1/2 are x-directed

electric field terms which occur along a y-directed cut of three nodes, namely j — 1, j,and j + 1

This so-called “y-cut” equation may be simplified as follows:

(At)? En+% 1 1k 1 (At)? En+%( 1 K
4po€o(Ay)? % <l * 2 ] ' ) T 2po€o (AY)2[ e 2 ) )
(At)z n+d (

1 1
_—E Z(i Y j 1: )
4pgen(Ay)? Tt k

(e daa) gt d b))
=Bt k) o ay e Pt g Lo =7

[H"(+1 k+1> H"<'+1'k 1)]
ZEOAZ kg y\! T3y

(3.56)
BN CO LN Py CUNPTSINE S T P
4uoeoAxAy[ ( tLity >_ Y (l'] o )]
+(A7t)2 En<'+1' 1k> En<" 1k>
4u060AxAy[ J T R) T A B Ty ]

(At)? Mn+%(_+1 '+1k) Mn+%(.+1. 1k)
dpoeody | \'T Ty 2 \!Tl Ty

At n+1 1 K
e ( 2" )
The y-cut equation (3.56) may be written in matrix form as follows:
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0 0 0 0] .5_2\ I
1+2¢, -, 0 0 0 /Ei K
0 -¢ 142, ¢ 0 0 E;‘_l _ Flf‘_1
0 0 —Cy 1+ 2, —Cy 0 E,]C FIJ
0 0 0 —c, 1+2¢ pitt pitl (3.57a)
)] 0 0 0 x: 1:
(at)?

CHp = ———, n= — cut equation
"= e (bn)’ y q )

Where the n subscript denotes the cut on ¢, the F; (forcing) terms are composed of
everything on the right-hand side of (3.56), and the known matrix on the left-hand side is tri-
diagonal in nature, reducing computational load. Equation (3.57a) may be written in more

compact form as:
[My] (Ex*Y%) = (Fy) (3.57h)
Where the electric field vector contains all the E, field components along the y direction at a
specific i and k node. Say that the simulation space has N, X N,, X N, nodes in the X, y, and z
directions respectively. As such, matrix M,, will be a N,, X N,, matrix and (3.57b) will need to be
solved N, X N, times to completely update the E, field within the simulation space. This process
will also occur for the E,, and E, fields through the z-cut and x-cut equations respectively, thus

advancing the simulation from time t = nAt to t = (n + 1/2)At and finishing the first sub-

iteration. In matrix form this may be written as follows:

En+1/2

M, [Ny, X N, ] 0 0 X F,
0 M,[N, X N,] 0 EpY = F (3.58a)
0 0 My [Ny X Ny]| \ pn+1/2 F3

z
In the second sub-iteration, the direction of implicit definition is alternated, yielding for

example the following for the x-component of Ampere’s law:
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2l op (12 ) =072 (142.0)
ac|x U x \tTod
1 Hn+%(_+1 _+1k) Hn+;<_+1 , 1k> (3.54b)
- VA l 2;] 2’ z 13 2!} 21 '

1 1 1 1 1

_ n+1|(; B | _ygnt+t1(; g S

AZ[Hy (l+2’]’k+2> Hy (l+2'1’k 2)]

Due to this alternation, the update equation for E, will now be the z-cut equation. Repeating

the process from the first sub-iteration, the following matrix representation describes the second

sub-iteration:

M,[N, x N,] 0 0 EZ+t F,
0 My [Ny X Ny] 0 Ejtt | = <F5> (3.58b)
0 0 My [Ny x Ny ]|\ g1 Fy

Updating electric fields utilizing (3.58a) and (3.58b) yields an unconditionally stable method
[216]. Therefore, the Courant-Friedrichs-Lewy (CFL) stability time step At¢FL [177], governing
electrodynamics, may be ignored:

min(Ax, Ay, Az)

At = CFLN * At°F = CFLN =
V3c

(3.59)

Where the CFLN factor expresses what multiple of At¢F that the simulation time step At is.
Herein, this factor varies in the range from 1 to ~100,000 (matching the mechanical time step).

If the numerical volume is not free space but remains homogenous, then the equations of
this section may still be used by substituting @y, — u,ie and €, — €,€5, where u, and €, are the
relative permeability and relative permittivity respectively of the homogenous space.
3.7 ADIfor Heterogeneous Spaces

Previously the simulation space was assumed to be homogeneous and, therefore, no
interfaces existed, and the spatial location of the material properties was not considered. More
generally, material properties are as defined by Figure 3-16, therefore the magnetic constitutive

relation is:
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1 1
Bn+§( 1’] 4= k) l+2]+ an+2 ( 1’] 4z 1 k) (3.60)

z ZZ z

Where the permeability is collocated with the magnetic fields via spatial averaging:
i 2 ] (‘ul] Jk ;—;1,],k + ,u;'é-'_l'k + 'u;ZLl,]+1,k) (3.61)

Substitution into Faraday’s law and rearranging yields:

n+

o101
H, (L+E,]+E,k)

—H"('+1 '+1k>
=hz |t 2;] 2’

N| =

At ntr (1 nts (1
B (s 1)~ (4 1)
i+j+5k 2 2

2 272y, (3.62)
—A—k[E"(l+1]+1 k) E"(1]+1 k)]
lZ-IZ-21+2 Ax
At n+i

M, 7('+1 ok

—_—— i+5,j+5,

il 1,772 2 2 )
l+2,]+2,k

Y44

The electric constitutive relation is as follows:

1 1
n+s 1 i+1 gk _n+s 1
2. : 2’ 2. .
D, (l+5.],k> €. E, ( +E,j,k> (3.63)
Where,
1. 1.1 1 1 1.1 1
i+5,),k 1 i+, ,]+ k+ i+5,j—5k+5 i+5, ]+ k- i+5,j—5k—5
2 — 2 27 272 2’ 27 2 2
€’ = 4( x 2+ ey + €y + €pex > (3.64)

Substituting (3.63) into Ampere’s law and utilizing (3.62):
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At

1 1
nts o 1 nts 1
+ E, l+5,]+1,k -E, l+5,],k

i+ tak
2‘LLZZ

B 15 -8 (450
B i+ L+ k) = Ep i)+,
2ppx L7\ TR AN

At Mn+%< 11 k) H”< 11 k)
- i+=,j+=k)—HNi+=,j—=,
TEPR P 27 "2 ANE (3.65)
ZZ
At nts (. ) nts (. .
+ 1 E “\i+-,jk|—-E, “|li+t-,j— Lk
i+5 =5k
2'uzz Ay
L P
i+1,j—=k|- Lj—=, )]
i+gj—gk L7 2 g

At nig( 11
+—' 1.1 Mz (l+5,j—5,k)
L+7,]—7,k
ZZ
1 [H"('+1 _k+1) H"<'+1 - 1) At n+;(_+1 ,k)
az | Pt gty ) =Wy (it gk =o)| =5/ “\itg)

Which yields the following “y-cut” equation:
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At)? 1 1
- (80) E:+2(i+—,j—1,k)
l+2] 2k I.+ Jk 2

4, (Ay)?
(At)2 1 1 niz (o1
+]1+ — 1 — 1 E, (L-I-E,],k)
+ Jk(A )2 ;:z,j—j,k z;z-j,ﬁ?,k
At)? 1 1
- ()1 E 2 +—,j+1,k>
i+5,j+5k 1+ Sk 2
e, (8y)?
(1
= E} (l+§,],k)
P [H”<'+1 '+1k> H"<'+1' 1k)]
slie L2\t Ty 2\t Ty
2€,,° Ay
1 1 1 (3.66)
___ = |yn n(iy— il —__
Tl (e gk g) = (i)
Zexx
OO s (1 + 1) = 5y (o4 2.0)
— l ) - - L a0
l+1]+1k i+ }k Y g 2 v b 2
272
- AxAy
(at)? . o1 |
[E}}(L+1,]——,k)—E§l<l,]——.k)]
L+2] Zk i+l ]k 2 2
7z AxAy
At)? 1 1
- ( ) M:+2(' J+ ,k)
i+

ke i+ gk
ylu

o101 z
l+7,]—7,k

ZZ

P k)
20 T2 %)| T
2

At ]n+% ( + 1 . k)
- 1 l _' )
i+ ik 2/

exx

Note that (3.66) simplifies to the homogenous case when the material properties have no

spatial dependence. The tridiagonal system of equations for the 15t and 2" sub-iteration will be:

n+1/2
My, [N, X Ny 0 0 Ex F,
0 M, 1[N, X ;] 0 By = <F> (3.67a)
0 0 My1 [Ny X Ny] | \ pn+1/2 F3
z
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0 My, [N, X Ny ] 0 Ex | = ( F
0 0 Myz[Ny X Ny] E;l+1 F6

M,,[N, x N,] 0 0 Ertl F,
= ( ) (3.67b)

Note that an extra subscript is now used for the tri-diagonal matrices to delineate the first
and second sub-iteration. Generally, the n-cut matrices only exhibit M,,; = M,,, = M,, when
Uex = Hyy = Uz Herein, the simulation space is assumed to be magnetically homogenous (i.e.,
1ij = uod;j everywhere) and thus the tri-diagonal matrices for like cuts will be the same.
Regardless, to maintain some degree of generality, the CPML-ADI-FDTD equations derived
subsequently will assume a diagonal permeability with pi,, # u,, # p,,. As a final note for
readers familiar with material science, the expressions x-cut, y-cut, and z-cut herein refer to the
fact that the three unknown electric fields within the ADI-FDTD equations lie along a x, y, and z-
directed line respectively. The term “cut” does not refer to a crystalline orientation of a material
under investigation.
3.8 Convolutional Perfectly Matched Layer (CPML) ADI-FDTD w/ Mesh Grading

The CPML-ADI-FDTD equations will now be derived where the flow is the same as that of
the previous two sections except that modified versions on Maxwell’s curl equations are utilized
to produce graded meshes as well as perfectly matched layers (PMLS). Since the equations
begin to be quite lengthy within this section, spatial definition of the fields is placed as a
superscript to shorten the expressions. Also, to sponsor clarity, all six ADI equations are
explicitly provided.
3.8.1 Faraday’s Law w/ CFS Stretched Coordinates

Faraday’s law is used to write update equations for the magnetic flux (B;) and is substituted
into the magnetic constitutive relation to generate the update equations for magnetic fields (H;).
Whenever Faraday’s law or Ampere’s law are evoked in an update equation, a different form for
the 15t and 2" sub-iteration will result since the direction of the implicit fields alternate each sub-

iteration (Alternating-Direction Implicit scheme). Recall that Faraday’s law, relating the magnetic
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currents to the left-handed curl of the electric field, was modified by stretched coordinate metric
s; in section 2.1.3 yielding history variables which included a decaying exponential term. This
enables the use of a recursive convolution algorithm which allows the response of the system at
time t, due to a series of impulses at time 1, to be determined. Algorithms of this type are used
extensively herein and involve what are known as history variables. These are so named
because they include the progressive effect of the series of impulses on the present response.
In other words, these variables track the history of the system excitations and were defined in

equation (2.31):

‘ OE, (T o, (t —Y(a,+%)t-v) OE m=xy,z
CDqu — f (q(t _ T) m( )d‘[ - _ q f e Eo<aq+l€q)(t T)_de’ q=x7yz (231)
0~ 6q K(EEO - aq m # q

Note that the history variable is zero in free space (when g, = 0) and say that a =

1 O‘q . . . . . .
E—O(aq + K—q) is the inverse relaxation time (the time it takes a perturbed system to return to

equilibrium). Faraday’s law was defined as follows:

0 () Exy D,

=[®Pg, 0 g, (2.35b)
Pp CI)Ezy 0

Dp,

Utilizing the following primed coordinates:
dx' = K, (x)dx, dy' =x,(y)dy, dz' = k,(z)dz
In equation (2.34), the M; terms are the fictional magnetic source currents which are
included here since some problems allow actual sources to be modeled using these terms. For
example, aperture antennas, where the EM fields are known over the aperture, may be
modelled using electric and magnetic source currents [25-27]. This is beneficial since the ADI-
FDTD algorithm, as proposed herein, does not allow for electric fields to be input explicitly but

equivalent magnetic source currents, defined by M = E X 7 (see eq. 3.9b), present no issue.
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The history variables will be written in finite difference form first, before returning to the full
Faraday’s law of equation (2.34), with the goal of deriving update equations. For input into a
finite difference algorithm say t™+1/2 = t™ + At™*1/2 where the superscript indicates the nt"
time step. For a fixed step solver and two sub-iterations we have time increment At™+1/2 =

At/2, for all n but the current notation will be kept until the end of the derivation. The history

variables at times t™ and t™*1/2 are as follows:

o, (" oE,
n _ __"4 —a(t"-1) M 4 3.68a
Emq Kczlfof— e aq T ( )
n+i aq t"2 —a(tnk—‘r) 0E,,
(DEmZ - e —dr
4 Kg€o Jo- dq
(3.68Db)
O-q tn+Atn+1/2 —a(tn+Atn+2—T> aEm
S [T % g,
Kg€o Jo- dq
Where the CDE:;Z/Z integral in (3.68b) may be split into two and the exponential term
expanded as follows:
n+l o, (" -a<At”+%) JE (/2 —a<tn+%_r) JE
2 . __91 —a(th-1) ZFm OEm
Ppmg = Zeo f_ e e T 3 dr+ftn e 3 dr (3.68c)
Substituting equation (3.54a) into (3.54c) yields:
n+x —a<Atn+%) o, e/ —a<tn+%—‘r> o0E
b 2= on 4 ——d 3.68d
Emq — € Emgq ngo o e aq T ( )

Assuming that the time step is small enough, the midpoint rule may be used to approximate
the electric field gradient within the integrand, but, as noted by [212], more efficient and
accurate results may be obtained if the time designation is as follows:

tn+% —a(tn-%—‘r) aEm th
f e —dt = f
t a tn

n q

+1/2 _a(tn+%—r) 9E,,
) o P
aq r=¢n+1/2
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n+t n+% n+§
AE e—a(t i AE, 2\ 1 (1_ aMn+2> AE,,
a Ag a Agq
tTL

Therefore, the history variable update equation is as follows:

1
n+s
2 _ _—aAt"
CDqu =e d)qu

1 1 AE.?
oL (i)

Zera v (3.68¢)

Where the first term on the right-hand side of (3.68e) is the time decay of the history variable
at time step t™ after time increment At™*'/2 and the second term adds on the additional
component of the history variable due to field increment AE™*/2, now substitute in At™+1/2 =

At/2, as well as the inverse relaxation time constant, to get:

1
1 At At n+y
1 AE
CI)Z;ZCI =e ( q Kq)ZE()cDqu + Uq e ( q Kq)ZEO _ 1] m (369)
Kq(Kqaq + 0g) Aq

So far, no spatial indices have been included in order to facilitate a general derivation of the
history variable update equations. However, the history variables will, in general, vary in space.
For example, the components of the stretched coordinate metric can vary in the direction of
stretching, but only in this direction so that the planar boundaries remain plane with a consistent
number of cells. The AE,,, term will also have unique spatial indices depending on the history

variable. For clarity, all the history variables are presented in Table 3-2.
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Table 3-2: History variables for modified Faraday’s law.

These expressions will be used in the subsequent two sections to derive the finite difference
form of the modified Faraday’s law for the first and second sub-iterations respectively. Note that
the history variables in Table 3-2 may be adjusted for algorithms without sub-iterations by
replacing n + 1/2 with n + 1, as well as all At/2 terms with At.

Within the finite difference equations that follow in this chapter, the k; real stretching factor
will include an additional subscript, either E or H, which is introduced due to the staggered finite
difference grid. To understand why, note that the space between electric fields and magnetic
fields is not the same in Figure 3-18. Within the figure, an xz-planar cut is shown with the solid

blue lines representing the cell edges and the dashed grey lines representing the bisections.

E, E,

1.7%%.....3 A £, 4

” Skl7'Ay  SkyAy
JAny — o) .
;cyAy = KyHAy

K] Ay
(a) (b)
Figure 3-18: Definition of k for update of magnetic fields (a) and electric fields (b).
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Note that where mesh grading (stretching) is occurring the relevant spacing, k, Ay vs.
Ky Ay, required to update the magnetic and electric fields respectively will differ (since rcj;"l *

K;; generally), thus requiring a distinction to be made.

3.8.1.1 First Sub-lteration

Faraday’s law may be written in finite difference form for the first sub-iteration as follows:

2 Bn+%("+1k+1) B"("+1k+1>
ac|ox \BI T TR oAb TS

[ (1 m e 1) = B (i 2 k)
“kaz| o \" TR y \W Ty
(3.70a)
1 ""1k1 n,,kl Mn%,,lkl
. Ay[Ez("”' +g) =B (bt g)| =902 (1) 4504 5)
yH
O D AN S |
+CDEyz(l,j+E,k+§)—¢)Ezy<L,]+E,k+E)
23n+%(_,1k1 B""lk 1)
R OASAES REAUESAES
[ (e ) - £ (k)
iax| 2 \'TPETR) TR SRR
(3.70b)
(e (12t 1) = 83 (42 k)] =607 (14 2 e+ 2)
P F\E+5 F\E+o 0 y itz ikt
I U | A D |
+(I)sz(l+E']‘k+5)_¢Exz(l+§']'k+5)
2 B""%(' L k+1) B”(' s k+1)
Atz \W TR TR TR \W T Ty
1 n+s 1 n+d 1
=B (i 54 1) = B (145,50
K]HAy 2 2
Y (3.70c)

n+s

! [E"('+1'+1k) E"("+1k)] M 2('+1'+1k>
rigax Y \N T Ty v\ Ty 2 T Ty

n 1 1 n 11
+ d)Exy(L +E,j +E,k> —q)ny(l"rE,j +E,k>
Note that the history variables in equations (3.70a-c) are temporally inhomogeneous, being

defined at t = nAt, similar to the magnetic source current terms. This method was found to be
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computationally optimal and accurate by [212]. From this, update equations for magnetic flux

may be acquired as follows:

1 1 1 At = z
B:+ (l]+7k+ ) Bn(l]+7k+ ) 7[En+2(11+7k+1) E+(lj+ k)]
2Kk, Az

s y[E”(L}+1 k+1) E;“(i,j,k+%>] (3.71a)

At] mile 1 1 W (1 1 L1 1
_7Mx (l']+§’k+§)_q}Eyz(l,]+E'k+i)+®Ezy(l‘]+E,k+§)

B %('+1‘k+1)—3“('+1'k+1>+ At E"+%('+1'k+1) E"+%("k+1>
y T T E T T T ax | T T ) TR (R T

[E"(l+1,],k+1) E"(z+;,],k)] (37lb)
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1 1 1
an+z<i+§,j+2,k)

1 1 At n+d 1 n+l 1
— n{; i _ 2(; _ g — 2(; B
= B} (1+2,]+2,k>+2K;HAy[Ex (l+2,}+1,k) E, (z+2,],k)]
(3.71c)

e CAGRUEE O REA O]
_% M:+%(i+%,j+%,k) cDExy<z+2,]+; k)+<Dny<L+ ,]+1 k)]
For these equations to be utilized the future electric fields (at time t = (n + 1/2)At) must
already be known and therefore the magnetic flux is updated after the electric fields.
3.8.1.2 Second Sub-Iteration
The update equations for magnetic flux for the second sub-iterations may be acquired by
alternating the direction of the implicit electric fields within the curl expression and forwarding all

other time designations by a half time step as follows:
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Note that the magnetic source current is still rectified at the half time step as championed in
[216][217]. Indeed, all source currents are evaluated at the half time step including the electric
source currents present in Ampere’s law.

3.8.2 Magnetic Constitutive Relations

Though a complex magnetic constitutive relation was defined in section 2.3.2, the
simulations performed in Chapters 4 and 5 assume a diagonal permeability with no magnetic
damping and no piezomagnetism, namely:

Hi=BiB;,  Bhimje = S (2.174)

Where uj is the permeability and ﬁi’; is the inverse permeability. Discretization of the x, vy,

and z components yields the following updates equations for the magnetic fields for the first

sub-iteration:
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Where spatial interpolation is utilized for the material properties as usual and it is assumed

that the magnetic flux is known at the time of the magnetic field update. Therefore, update the

magnetic fields after the fluxes. For the 2" sub-iteration, simply advance the time designations

half a time step as follows:

P § 1
Tl+1,l,]+i,k+§ _

X

1.1
n+Li+5,).k+5 _
y

1.1
n+Li+5,j+5k _
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Ljtgkts (3.74a)
XX

1 n+1,i+%,j,k+%
i+a ks Y (3.74b)
vy

1 n+1,i+%,j+%,k
L e (3.740)

ZZ

These constitutive relations are combined with Faraday’s law as in Sections 3.6 and 3.7.

3.8.2.1 First Sub-lteration

Substitution of the magnetic constitutive relation into Faraday’s law yields the following for

the first sub-iteration:
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Where the spatial definition is now included in the superscript of all fields since the

equations are beginning to be unruly in length.

3.8.2.2 Second Sub-lteration

(3.75a)

(3.75h)

(3.75¢)

In the second sub-iteration the direction of implicit definition is swapped in Faraday’s law

yielding the following expressions:
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These expressions are substituted into Ampere’s law which is also modified to allow for
graded PML regions. Ampere’s law will be presented soon but first the electric constitutive
relation shall be discussed.

3.8.3 Electric Constitutive Relation
The electric constitutive relation for a non-piezoelectric orthotropic material is, as previously

presented in Section 3.7, repeated here for the 1% sub-iteration:

1.,.1. 1. 1.,1.
n+7,t+§,],k _ l+7,],kETL+§,l+E,],k (3.77&)
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y yy y
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Where all three components are now provided as all ADI expressions are explicitly provided
herein. In the 2" sub-iteration, the expressions are the same, simply advance all time

designations by half a time step as follows:

1. L1, 1.
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These relations will be substituted into modified Ampere’s law which is presented in the
following section.
3.8.4 Ampere’s Law w/ CFS Stretched Coordinates

Now that the electrical constitutive relations have been derived, Ampere’s law in finite
difference form is written in preparation for deriving the ADI-FDTD equations. Additionally,
Ampere’s law is used to write update equations for the electric displacement fields (D;), though
these may be determined in post processing outside of the main update scheme. Recall that
Ampere’s law was modified by stretched coordinate metric s; in section 2.1.3 which, like the
magnetic damping case and Faraday’s law, included a decaying exponential term which allows

for the use of a recursive convolution algorithm with the following history variables:

¢ 0H,(t o, [t -Xa,+%29)t-1) OH. m=Xxyz
®imq =f ot -0y LD gy %0 f el 0 gy (2.28)
0~ dq KZ€0 Jo- dq m#q

Note that, again, a history variable which is zero in free space (when g, = 0) is attained and
say thata = Ei(aq + ﬁ) is the inverse relaxation time. Therefore, Ampere’s law is as follows:
0

Kq

Di + 0iE; + i = €j1cHy jr = €ijic P, (2.33)
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0 O] Hiy Dy,

Py = Py, 0 Py, (2.35a)
Dy, CDHZy 0

Which utilize the following primed coordinates:
dx' = Kk, (x)dx, dy’ =k, (y)dy, dz' =s,(z)dz
The history variables will be treated first before returning to the full Ampere’s law above. For
input into a finite difference algorithm say t™*1/2 = t™ + At™*1/2 where the superscript indicates
the nt" time step. For a fixed step solver and two sub-iterations we have time increment
At™1/2 = At /2, for all n but the current notation will be kept until the end of the derivation. The

history variables at times t™ and t"*'/2 are as follows:

o t N )¢
— 2‘1 e -0 M 4o (3.79a)
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1 niy 2 o AmH+1/2 W
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Where the CDZ;',;/Z integral may be split into two and the exponential term expanded as
follows:
ntk a, & —a(Athr%) n  OH, (/2 —a(thr%—T) d0H,,
P, 2= —— f e e —Zgr 4 f e —drt (3.79¢)
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Substituting (3.79a) into (3.79c¢) yields:
1 n+1/2 1
n 1 —a(AtHZ) o t —a(tHZ—r) aHm
CDH+2 — e Og — zq e ™ dr (3.79d)
ma Kg€0 Jyn 0q

Assuming that the time step is small enough, the midpoint rule may be used to approximate
the magnetic field gradient within the integrand, but, as noted by [211], more efficient and
accurate results may be obtained if the time designation is as follows:

n+ 172

1 1
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Where the first term on the right-hand side is the time decay of the history variable at time
step t™ after time increment At™*/2, and the second term adds on the additional component of
the history variable due to field increment AH™*%/2 now substitute in At™*1/2 = At/2, as well as

the inverse relaxation time constant, to get the history variable update equation:

1 0q\ At
nty _ %t )zeo g 9
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q\Kqlq T Oy

1

aq\ At nt+ay

i G e | U (3.80)
Aq

So far, no spatial indices have been included in order to facilitate a general derivation of the
history variable update equations. However, the history variables will, in general, vary in space.
For example, the components of the stretched coordinate metric can vary in the direction of
stretching, but only in this direction so that the planar boundaries remain plane with a consistent
number of cells. The AH,,, term will also have unique spatial indices depending on the history

variable. For clarity, all the history variables are presented in Table 3-3.
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Table 3-3: History variables for modified Ampere’s law.

These expressions will be used in the subsequent two sections to derive the finite difference
form of the modified Ampere’s law for the first and second sub-iterations respectively. Recall
that an additional subscript, E or H, is required for the constituents of the stretched coordinate
metric (k, o, and a) as shown in Figure 3-18. As a final note, the history variables in Table 3-3
may be adjusted for algorithms without sub-iterations by replacing n + 1/2 with n + 1, as well as
all At/2 terms with At.
3.8.4.1 First Sub-iteration

The modified Ampere’s law with source currents and conductivity may be discretized into

finite difference form as follows:
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Note that H, ,,, H, ,, and H,, , in (3.81a), (3.81b), and (3.81c) respectively are defined

implicitly at the future time step. The history variables ®},, are defined at time nAt, rather than
(n + 1/2)At, since numerical experiments performed by previous investigators have shown that
this time sampling is more efficient and accurate [211]. As such, the history terms will not affect
the tridiagonal matrix. The J¢ and /S terms are the conduction and source currents respectively,
with the time sampling left intentionally ambiguous since special considerations must be made.
It is intuitive to sample the source current J$ such that temporal homogeneity is maintained, but
it has been shown that time sampling should occur at t = (n + 1/2)At for both sub-iterations
[216][217], which curiously produces an overall consistent scheme despite the loss of
consistency for each half time step. Note that this corresponds to a forward scheme in the 1%
sub-iteration and a backward scheme in the 2" sub-iteration, therefore this may be thought of
as a forward-backward scheme. For the conduction current term, a widely utilized method is to

take a temporal average of the electric field as follows:
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Taflove [178] also referred to this as a semi-implicit approximation, which is appealing as
temporal homogeneity is maintained. This method does indeed work but produces stability

issues for highly conductive media as will been demonstrated shortly. For now, substitution of

(3.82) back into Ampere’s law (3.81a-c) yields the following:
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; += k+1> Hn+%("+1k 1)
ZEAZ ” 2 x \W Ty 2
(3.83b)
(g g (504 0)
xEA ’] ' 2’] 2’
o 1 1 1 1 1
—% E;HZ (i;j +E, k) +E31/1 (i'j +§' k)] _];;2 (i'j +§,k) + (D;}Ixz - cDsz
2 (0% (14 2) - op (1k+ )
|-z L], 2 z \LJ) 2
1 Hn+%<,+1,k+1) Hn+%<. 1.k+1)
Tlax|y Ul Tg) T T T
(3.83c)
1 | 1
<11+ k+) H’?(l']_f'k-l_f)]
yEy
Oz7 7'l+1

-5 E, (ljk+ )+E (l],k-l- ] ]zS (l],k-l- )+<I>ny Dy

Equations (3.83a-c) may be used to write update equations for the electric displacements:
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nir (o1 o1 At [ ned
D, <L+E,],k)=D}J(l+E,],k>+

H 7('+1'+1k H"+%'+1' Ly
- L, 2lits i+, )— , (L ~j-=, )
ZK;,EA)/ 2 2 2 2

At [H"('+1'k+1) H"('+1'k 1)]
2k nz LY\ T T ) T T T

B Oy At
4

(3.84a)

nadoo 1 ol 1 At ity 1
E, (l+z,j,k>+Ex(l+E,],k) —7]x5 (H—E,j,k)

Atp (0 1 n (i, 1.
# 7 [l (14 300) = O (14 3.0.0)]

At [ n+s

Dn+%(--+1k)-m(--+1k)+ B (142 k+3) Hn+%(--+1k )
y i,j >k ) =Dy i, > 2K§EAZ x L] 2’ 2 x 23] 2 2

At [H"('+1‘+1k) Hn(- 1'+1k)]
2 Al 2\ T2 T “\'T Ty

Ot nt/ 1 afs 1 At nitr 1
— Ey (l,j+§,k)+Ey(l,j+§,k) —7]3,5 (l,]+§,k)

(3.84b)

Aty o1 L1
| Ohes (1 + k) = @ler (174 7.8
05 (1) = 02 (ks 2) o [ (e D e ) - (1= 2 e D)
) R AU ) R v L U R ) R A U A
At [H"("+1k+1) g (i) 1k+1)]
2 Ayl 2\ TR ) T T T
i (3.84¢)

OBt [ ned( 1 ol 1] At nel/ 1
7 E, (l,j,k+§)+EZ (l,],k+§) —7125 <L,],k+i)

Aep (1 A |
+ > [Cbﬂyx (l,], k + E) — Pixy (l,], k + E)]
Now the finite difference forms of Ampere’s law (3.83a-c) may be treated for use in the ADI-

FDTD equations by first substituting in the electric constitutive relations (3.77a-c):

P 1. 1. P o1 1.,1..1 1.,1. 1
l+§'1'kEn+§'H'§']'k _ 61+§,],kEn,L+§,],k At n+§,t+§,]+§,k _ Hn+§'L+§’J_§'k
xx x - Faxx x 2 j A z z
KyE y
11 11 ik 1.1, 1
B At [ nitzik+s _ Hn,l+7,],k—§] _ Oy At [En+§,l+§,],k + En'L+7'1'k] (385&)
k y y x x

2K Az 4

At n+divsjk At (Dn,i+%,j,k cbn,i+%,j,k

2 Jxs 2 | T Hzy Hyz
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Ei,j+%,k ntgijtgk i,j+%,kEn,i,j+%,k At ntgijtpks Hn+%,i,j+%,k—%
vy y vy y 2 Az| x
1
1,]+7,k
At n.i+%.j+%,k_Hn.i—%.j+%.k Loy, At En+%,i,j+%,k N En.i.j+%.k (3.85b)
2Kt Ax z 4 Y Y
1.1 o1 1
_ E n+zijt5k + E ¢n,t,]+i,k _ (Dn,l,]+§,k
2 yS 2 Hxz Hzx
1 1.1 o1 1.1, .1 1.1, .1
Likty ntsijkts  Ljkts nijkty At n+7,L+E,],k+E_ n+5i=5,jk+s
€2z z - tzz EZ +2 i A y Hy
KLpAx
Lik+s
At RS T T S T CUUA] malijeel  nijral
-— AN T _ZZT E 22 g z (3.85¢)
2K, Ay
VE
At n+lijk+s At nijk+s  nijk+s
- 7125 2 (Dny - (Dny

The spatial definitions of the fields in (3.85a-c) are now included in the superscripts as the

expressions are becoming lengthy. Rearranging terms yields the following:

o1, o1
1.1, 45,0k 5k 1.
n+git5. )k _ 4 xx — Oy At n,i+3.jk
x ihik Lk *
de,., Oy At
2At ntdits e nadivdj-lk
+ P L1, HZ z2 z _HZ a2 2
l+7,],k l+7,],k j
de,, +o0,,° At KyEAy
(3.862)
2At nitejkis  mitejk—t
- 1. 1. Hy - Hy
l+7,],k l.+7,j,k k
de,.,° +o,° At)kpAz
24t g itk (Dn,i+%, ke ch,H%,j,k
ihik  imjk xs Hzy Hyz
4e€,, + 0y At
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P | .1
i,j+5k L,j+5k
2" _ o 2

1...1 o1
n+sijtzk 4Eyy yy At nij+yk
y - L1 o1 y
Lj+5k Lj+5k
4eyy + Ty At
1...1,.1 1...1, 1
+ 2At Hn+7,1,]+§,k+7 _ Hn+7,L,]+7,k—7
. Lj+ak i,j+%,kA kA x x
€yy t+ oy, t|k;pAz
2At nitsjtak  mi-gjtek
- 1 1 H, —H,
4 ij+zk i,j+7,kA i A
€yy +o,, t|Kkyplx
20t migigk _ gniitgk | o niitgk
A i,j+%,k i,j+%,kA yS Hxz Hzx
€y © T Oy t
L1 |
1., 1 L,j,k+§ l,],k+§ L 1
En+7,l,_],k+7 _ 4Ezz —0,, At nijkt+s
z - A .. z
L,j,k+7 l,],k+2
4'EZZ ZZ At
1.1, .1 1. 1., .1
+ 2At HTL+7,I.+7,],}C+7 _ Hn+7,l—7,],k+7
Likty | Ljkty ; Y Y
4e,, +o0,, °At|)Kk,pAx
o101 1,1
3 2At nijtzkty Hn,l,]—i,k+§
Likts ikt \ x *
4e,, “to, CAt)Kr,pAy
1,. .1 o1 |
2At ntgiikty cbn'u'k+7 + ¢n,l.1,k+7
Hyx Hxy

- 1
L,],k+7
(4-622

]
i+ [ s
a,

2At

Y74

(3.86b)

|

(3.86¢)

Note that the expressions for the unknown electric fields above contain unknown magnetic

fields on the right-hand side which are known via equations (3.75a-c). Substituting in these

unknown magnetic fields will yield the CPML-ADI-FDTD equations. The electric field update

equations above, utilizing ;;, may be used in applications where the simulation space does not

contain highly lossy media, however, if conductive material is present, stability issues may arise

due to the coefficient of the E;* term which will change signs:

46;1; - O'iiAt
4'631j + O'L'iAt

1 lossless
=>0 o < 46£/At
<0

Oji > 4'63;/At
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Various authors [222-224] have attempted to deal with the highly conductive case by
utilizing time sampling schemes that differ from (3.88), but herein any highly conductive material
is either modeled as a PEC or through use of recursive convolution to avoid stability issues,
especially at the high CFLN factors heavily leveraged in mechanical antenna simulations. Thus,
no more mention of g;; is made and modelers of mechanical antennas should not use this term.
3.8.4.2 Second Sub-lteration

For the second sub-iteration the magnetic fields defined at the half time stepn + 1/2 are
again defined temporally as such, and the implicit definition now migrates to the latter magnetic

terms in the alternate directions. This yields the following:

2 1 1 1
E[th‘“ (450K =2 (14500 ")]

1 n+% . 1 . 1 n+% . 1 . 1
[Hz (l+5,]+5,k)—Hz (l+E,]—E,k)

=xi Ay
; (3.88a)
1 o1 1 o1 1 i1 .
'KEEAZ[”?“(I+5'1"‘+z)‘”3“(1+5'1"“5)]-/xsz(”zmk)wﬂz;
1
n+s
_d)Hy;
v D"“(ij+1 k)—D +Z<ij+— k)
A y 4 2; y , 2'
L HH%(' 4 k+1) H'”%(- ik 1)
= iLj+=, Z) - [y
kknz| ¥ J 2 2 x J 2 2 (3 88b)
1 11 C1 1 il 1 ol
_K;;EAx[”?l(”E'f+§"‘)‘H?“(l‘z'f+5"‘)]—fysz(wg,k)wmf
1
n+s
Py
|0z (i,j,k + 1) — D, (i.j. k+ _)
t| 7 2 z 2
1 n+% o1 1 n+% 1 1
_KiEAx[Hy (L+§’J'k+f)_Hy (L_Ey],k+5)
(3.88c)

1

1) Ay

o1 1 o1 1 il 1 n+l
[0 (it gk g) = (s =gk )| =7 (w0

1

n+s

— 2
(Dny

The update equations for the electric displacement may then be derived as follows:
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D,’;“(i+%,j,k) :D:+%(i+%,j,k> +2K§j[H:+%(i+%,j+%,k> —H:+%(i+%,j—%,k>]
~rm [ (14 gk 3) =1 (14 k= 3) - A (14 30k) (3.89a)
+% cb,':y%(i +%,j,k) —¢Z;% (i +%,j,k>]

Dyt (i,j +%,k) = D;+%(i,j+%,k) +ﬁ[H:+%(i,j+%,k+%) —H:+%(i,j+%,k—%)]
- ZKZAX [z (i =y +%,k> — (i 2 +%,k>] —%1;;% (01 +%,k> (3.89b)

At n+%.‘1 n+%__1
+7 D s (l,] +§'k)_¢yzx (l,]+§,k)

et (i s 1 n+% . 1 At n+% 1 1 n+% o1 1
D} (l,j,k+—)=Dz (l,],k+—) Hy (L+E,],k+z)—Hy (L—E,],k+i)

o
2 2) T2kl Ax
At 11 1 1\] At ned 1
_ n+1(; ;4 = “Y_ygn+1(; ;_ = il | 2 (i _
21 Ay [H" (” Tkt 2) Hx (” 2kt z)] 2z (”’ et 2) (3.89c)

At n+% . 1 n+% . 1
+7 ¢ny<1,],k+i)—¢>ny(l,],k +E)

In preparation for the derivation of the ADI-FDTD equations, substitute in the electric

constitutive relations (3.78a-c) into (3.88a-c) and solve for the unknown electric field as follows:

nHLitLIK | mgitdjk At nidithjtik  nilivkj-tk
x = Ex N Hz - Hz
I.+7,],k j
2€,, KyEAy
At nALiFL kR ntLitdjk—s
dtgikty itz k=
— ) H, (3.90a)
l+7,],k Kk
26, Kyplz
At N4+ jk ¢n+%,i+%, ik q)n+%,i+%,j,k
i+%j K xS Hzy Hyz
26,
En+1,i,j+%,k _ En+%,i,j+%,k At Hn+%,i,j+%,k+% Hn+%,i,j+%,k—%
Y Y A jHek x o
Jrk g
2ey, © KAz
At Hn+1,i+%, jpk Hn+1,i—%,j+%,k
ik z z (3.90b)
Zeyy K, g AX
1...1 1, .1 1...1
_ At ntzijtzk ®n+§,l,1+§,k + q)n+7,t,]+7,k
o1 yS Hxz Hzx
L,j+§,k
vy
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.. 1 1. . 1 1. 1. 1 1. 1. 1
n+1,ijk+s _ En+7,1,],k+§ + At Hn+7,L+7,],k+§ _ Hn+7,l—§,1,k+7
z z .. 1 y y

1,],k+7 i
2€,,  “KygAx
At Hn+1,i,j+%,k+% Hn+1,i,j—%,k+%
T x T Hx (390C)
Sty
2e,,  “KypAy
1.. 1 1., 1 1., 1
_ At n+3iik+y _ q)n+7,l,},k+7 + cbn+7,1,],k+7
Pk 1zs Hyx Hxy
Sy
2€

74

These expressions for the unknown electric fields, (3.86a-c) in the 1% sub-iteration and
(3.90a-c) in the 2" sub-iteration, will be used to determine the CPML-ADI-FDTD equations in
the following section. This is done by substituting in the expressions for the unknown magnetic
fields, (3.75a-c) for the 1% sub-iteration and (3.76a-c) for the 2" sub-iteration, derived from
substituting the magnetic constitutive relations into Faraday’s law in Section 3.8.2.

3.8.5 CPML-ADI-FDTD Equations

Now that expressions for the future magnetic and electric fields have been attained by
utilizing the magnetic/electric constitutive relations and Maxwell’s equations, the ADI-FDTD
equations may be derived. These will be different for each sub-iteration.
3.8.5.1 First Sub-Ilteration

Recall that the expressions for the unknown electric fields (obtained from inputting the
electric constitutive relations into Ampere’s law) contained unknown magnetic fields on the right-

hand side. These unknown magnetic fields were determined via substitution of the magnetic

H'™2 terms

constitutive relations into Faraday’s law. Thus, by substitution of the unknown

(3.75¢) into the E""*/? expression (3.86a), the following is acquired:
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At n,i+%,j+%,k At n+%,i+%,j+1,k n+%,i+%,j,k
+ 1 H, + 1.1 E, - E,
i+7,j,k j i+§’j+i’k j
2€,, KyEAy 2u,, KyHAy
P | L. 1 1. 1.1 ..1..1 L0101
At ni+Ljtzk En,l,]+7,k _ At Mn+7’L+E'1+E'k _ q)n,z+7,]+7,k + q)n,z+§,]+i,k
it jtak y y ajrak| ? Exy Eyx
2/"lzz KxHAx 2~uzz
.01.01 1. 1..1.
_ Hn’H'E'J_E'k + At En+7,l+?],k | pnipitzi-Llk
z 1.1 X x
i+ j—5k
2u,, K, Ay
. .1 .01 1.1 1.1 1.1
_ At ni+lj-zk  nij-gk At Mn+§'1+i']_i'k _ (Dn‘H'E']_?k N ¢n,1+§,]—§,k |
5 itgiak A y y ) injmk |7 Exy Eyx
MZZ Kx X #ZZ
1. 1 1. 1 . . L1 1.
_ At Hn,1+7,],k+§ _ ni+3. k=5 At ]n+§,l+§,] k _ ch,I.+§,] k " (Dn,l+7,],k
H_l ik y i+l ik xS Hzy Hyz
27k kA 2t
2Exx KzgBZ Exx

(3.91)

This may be simplified into the y-cut equation as follows in (3.92a). Recall that the term “y-

cut” refers to the three unknown electric fields that appear in the tri-diagonal matrix which lie

along a y-directed cut of the simulation space (i.e.,aty = (j — DAy, y = jAy,andy = (j —

1)Ay). The term y-cut does not refer to a crystalline orientation. Indeed, even when discussing

homogeneous free space simulations in Section 3.6, the terms x-cut, y-cut, and z-cut were

used.
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2 1.1, 2 1. 1.
At En+§,l+7,]+1,k " At 1 1 En+§,l+7,],k

L, 1. 1.1 X 1. 1.1 1.1 x
i+5,),k l+7.1+7.kKj W Ay2 4Ez+7.1,kKj Ay2 Kj i+5,j+5k j-1 i+mj-mk
xx zz YEyH y xx yE Y yH"zzZ yH zz
2 1.1
B At n+5i+5,j-1k
1. x
i+5,),k i+5j-5k 1
2 20 2 J . 2
46xx zzZ KyEKyH Ay
n,i+sjk At ni+; ]+%,k n,i+%,j—%,k At n,i+%,j,k+% n,i+%,j,k—%
- Ex 1, z - Hz 1. y — 1y
i+5,).k j i+5,),k k
2€,, yEAy 2€,," KyplAz
Atz 1 n,i+1,j+%.k En'i'j+%'k 1 n,i+1,j—%,k En,i,}'—%,k
itmik ; itk \ 7 Y itk \ 7 y
4e Kby Axk: Ay |u
xx xH yE zZ 7z
2 1.1.1 1.1 1.1
B At 1 ntgitpitzk ¢n,1+§,]+§,k + ¢n,L+E,1+?k
1. 1.1 z Exy Eyx
i+5)k i+5,j+5k
4e K. Ay
xx YE Hzz
1..1.1 1.1 1.1
_ 1 Mn+7,t+7,]—7,k _ q)n,l+7,]—§,k + q)n,l+§,]—7,k
1. 1 z Exy Eyx
it+5,j—5k
HZZ

(3.92a)
This process is repeated for £} **/? (3.86b) where Hy *'/? (3.75a) is substituted in yielding

the following z-cut equation:
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At? En L]+ Jk+1 At? 1 1 n+2,L]+ k
y + y

,]+ Lk L,]+ k+2 k k i,j+5 ,k L]+ k+ lj+ k——
2 2 k 2 k k-1
vy XX KzeKz HAZ 4'Eyy AZ Kzt My zH Mxx
At? n+ I.]+ k—1
- 1
Lj+ Kk I.j+ k— 2 ko k=1
2
4'Eyy #xx KzeKzy Az
o1 .1 1 L. 1 1 1.1
ni,j+sk At ni,j+5k+5 ni,j+s,k—> At ni+s,j+5,k nt——]+ K
=F 2 + H 2 2 _ H 2 2 _ H 2 2" H
y .. x X 1 z z
2 Lj+5K A 2 Lj+zk A
€yy °© KypAz €yy © Kyplx
At? 1 nij+lkds nijkts 1 nij+1k-2  nijk-3
1 T 1\ E2 —E, - T 1\ Ez —E,
Litzk . Ljtgkts Lj+zk-3
4e,, 7 K KgpAYAZ |1y 75
At? 1 Mn l]+ k+ q)m,]+ k+ 2, q)n,l}+ k+
4 ,]+2,k k A l]+ k+ * Eyz Ezy
€yy
Lo 1 1 L1 1
_ 1 Mn+ L,j+ _ q)m,]+7,k—i + q)n,t,j+i,k—7
.1 1 x Eyz Ezy
Lj+5k—5
xx

At n+ l,]+ k nl}+ k Tll]+ Kk
- ]+ yS cDsz Hzx
Zeyy

(3.92b)

n+1/2

Finally, the process is repeated for E, (3.86¢) where H;‘“/Z (3.75b) is substituted in

yielding the following x-cut equation:
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At? N4tk At? 1 1 n4gi ke
T 1 1. E, 1+t ——= — 1T 1.1 z
i,j,k+5 l+—,1,k+ iLjkt5 . i+5,7,k+ . =5, k+5
€ 2 2 K' K' sz 4e ZKl AxZ K,'L 2 2 K.l 1 2 2
zz vy XE"™xH zzZ XE xHﬂyy xXH nuyy
2 1. . 1
_ At n+gi=1jk+5
.. 1 z
l.,],k+ i— 2]k+2 i i—1 2
4e,, vy Kypkyn Ax
.. 1 1. 1 L1, 1 .01 1 .01 1
_ En,L,],k+E + At Hn,L+E,],k+E _ Hn,L—E,],k+§ _ At Hn'l']+7'k+f _ Hn'”_f‘k+§
z ; y y ; x x
I.,],k+§ i I.,],k+7 j
2e,, xeAx 2e,, KyEA
At? 1 nitgik+l  nitjk 1 ni—gjk+l  ni-sjk
- T E, —E, -—— | Ex —E,
ijkts }k+— ikt
47 Tk il pepg 272
zz KznKxg /ly Auy_’y
2 1..1. 1 .
_ At 1 n+5, 45, k45 (Dn,l+§,} k+> ch,HZJ k+3
. 1. 1 y Ezx Exz
4 1,1,k+2 i A L+7,],k+7
€2z Kxg vy

i~ jikts
Hyy
At n+,i,j,k+ (Dn,i,j,k+% cDTLI.j k+5
i+ zS Hyx Hxy

(3.92¢)

The above y-cut (3.92a), z-cut (3.92b), and x-cut (3.92c) expressions are used to update

En+1/2 En+1/2 n+1/2

. , E, and E,

respectively. Update expressions in the 2" sub-iteration may

similarly be derived and are presented in the following section.
3.8.5.2 Second Sub-Iteration

In the 2" sub-iteration, expressions for E}** (3.90a), E}** (3.90b), and EZ** (3.90c) are
modified via substitution of H}}*! (3.76b), H}** (3.76¢c), and H}*! (3.76a) yielding the z-cut

(3.92d), x-cut (3.92e), and y-cut (3.92f) update equations provided below respectively:
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At? nHLitg k1 At? 1 1 n+Litg ik
EX + o1, 1 + N 1 EX

i+ ,]k L+ ), k+ i+ ,]k i+5,),k+5 i+5,j,k—5
2 2 2 k k 2 2 k 2 k 2 2 k-1 2 2
4'6xx vy KzeKzH Az 4'Exx AZ Kzu vy Kzu l’tyy
At? nHLitE k-1
2
T 1., 1. x
i+5,),k i+5,jk—5
2 2 2 2
4Exx #yy KZE KzH AZ
n+%,i+%,j,k_ At n+1L+2,]+ K rL+1 2,] 2,k
= Ex + 1 HZ Hz
L+2,]k ]-
2€,, yEAy
1..1. 1 1
B At Hn+7,z+71,k+7 B Hn+ l+2,] k—
i+1jk Y Y
26,27 1k pg
xx ZE
At? 1 nbLitLiks  nbnijkts
1. Ez —-E,
4 L+7,jk . A A ]k+
€xx xH szE 4 y
1. . 1 1.. 1
_ 1 <En+§,l+1'],k—7 . En+7’l'1’k_7
P 1 z z
i=5)k+5
vy
At? 1 n+d L+2,] k+ n+11+2,] k+ n+11+2,j k+
+ y (bsz chxz
I.+2,jk k 2,] k+
de,., A4 Hyy
1 n+%,i+%,j,k—% q)n+%,i+%,j,k—% q)n+%,i+%,j,k—%
i+1j k—l y Ezx Exz
202
vy
B At n+%,i+%,j,k B q)n+%,i+%,j,k + q)n+%,i+%,j,k
1. ]xS Hzy Hyz
L+§,],k
2€,,

(3.92d)
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At? n+1,i+1,j+%,k At? 1 1 n+1 L,j+ K

v + 1+ + Ey
,]+ k I.+2,]+ k i i 2 I.]+ ,k i 2 i i+5, ,]+ ,k i—1 ,]+ k
46yy y44 KxgKxH Ax 4'Eyy Kxg Ax Kxn #zz xH
At? En+1l 1]+ k
Ljtak i—djtak , 7
4'Eyy Hyy KxEKxH Ax
1...1 1 1...1 1
,j+ At n+5,0,j+5,k+5 n+35,0,j+5,k—5
— E + H 2 2 2 _ H 2 2 2
J+ e x x
26yy K,pAz
1. 1.1
_ At Hn+ 4= ,j+ k Hn+7'1_7'1+5'k
L1 z z
L,}+7,k i
26y, 7 Kypghx
At? 1 n+11+2,]+1k En+%,i+%,j,k
Ljtgk L+2,]+ K\ X x
4e,,, xEAx;cyHAy

1. 1. 1. 1.
_ 1 En+§,l—7,]+1,k _ En+7,t—7,],k
; ]+ \x x

ZZ

At? 1 n+2,l+2,]+ Lk n+§,t+2,}+ k n+2,1+2,]+ Lk
+ .. z q)Ex + CDE X
L,]+ ; ]+ Kk Y 4
4Eyy xEA
1. 1.1 1.1..1 1. ]
_ 1 n+7,1—7,]+7,k _ (Dn+7,l—7,]+7,k + q)n 2,1 2,]+2,k
i—%j+%k z Exy Eyx

ZZ

At n+ L}+ k n+ l]+ K > ,]+ k
- ]ys (I)sz + chzx
I.]+ k

ZEyy

(3.92¢)
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At? En+1,i,j+1,k+% At? 1 1 n+Lij kg

- + |1+
.. 1 ...1 1 z .. 1 L1 1 .01 1 z
l,],k+7 l,]+7,k+7 i 2 l,],k+7 j 2 j l,j+7,k+7 j-1 L,]—f,k+7
46 M Xy Ay de,,  TrypAYT \KypyHy Kyn Hax
YEY Y. Y V.
At? n+Lij-1k+s
.. 1 ..1 1 z
Lik+s Lj-5k+s j  jq 2
4e,, xx KyeKyy Ay
1. . 1 1..1. 1 1. 1. 1
_ntgijkts At nitpikty  nAgi-gjkis
= Ez S E— H H
.. y y
l,j,k+7 i
2€,, “KypAx
1...1 1 1.. 1 1
_ At H‘n+§,t,j+§,k+§ _ Hn+§,t,]—§,k+§
.. 1 X X
l,],k+§ j
2e,,  “KyplAy
At? 1 n+%,i,j+%,k+1 En+%,i,j+%,k
Lik+y k itakts\ Y y
4'Ezz KyEAy Kzh Az Hyx
1.. 1 1.. 1
_ 1 En+7,1,]—7,k+1 _ En+7,1,1—§,k
.11 y y
L,]—i,k+7
xx
2 1...1 1 1...1 1 1...1 1
+ At 1 npljtypkts ¢n+§l'1+§'k+i + q)n+i,t,}+§,k+i
.. 1 .1 1 X Eyz Ezy
Lik+s j Ljt+5k+s
4e,, yEAy Hoex
1.. 1 1 1.. 1 1 1.. 1 1
_ At nizlj—gktz ¢n+51,]—5,k+2 + ¢n+§,l,1—§,k+§ ]
.01 1 X Eyz Ezy
2 Lj=5kty
Hoex
1. . 1 1. . 1 1.. 1
_ At n+50jk+s _ C])n+z'l']'k+7 + q)n+7,l,],k+2
iik 1/zs Hyx Hxy
okt
Ze

zZZ

(3.92f)
For the uniaxial stress piezoelectric antenna problems investigated in Chapter 5, only the
update expressions for E,, (3.92c) and (3.92f), need be modified beyond what has been
provided in this section. Thus expressions (3.92a), (3.92b), (3.92d), and (3.92e) are already
sufficient for the simulations performed herein. In the following sections, EM boundary

conditions are further explored.
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3.8.5.3 Perfect Electric Conductor Boundary Conditions

Now that the tri-diagonal ADI equations have been derived, the EM boundary conditions are
revisited. Within this section the following tri-diagonal matrices are synonymous: M; — M,4,
M; > Myy, M3 > My, My > My,, Ms —> M,,,, Mg — M_,. Firstly, consider the perfect electric
conductor (PEC) boundary condition by writing the equation for the (N,-1)" row of the E,, z-cut

equation, where N, is the number of nodes in the z-direction:
1
n+s
TRM,(i,j,N; —1,N, — 2)E, 2(i,j,N, — 2)
. "+% .. 3.93
+ TRM,(i,j, N, — 1,NZ = D)E, 2(i,j,N, — 1) (3.93)

1
. . n+_ . . . .
+ TRMZ(l']'NZ - 1'NZ)Ey z(l']lNZ) = ql(l)])NZ - 1)
Where TRM, (i, j, m,n) is the component of the tri-diagonal matrix M, associated with the it"
and j' node and located in the mt" row and the nt"* column. The forcing vector is g; and note

that a similar equation involving E, also exists. If there is a PEC boundary condition at z=N,A,

then:

1
n+s .
E, 2(i,j,N;) = 0 (3.94)

Combining (3.93) and (3.94) yields:

1
TRM, (i, j, N, — 1,N, — 2)E,, 2(i,j, N, — 2)
(3.95)

1
+ TRMy(i,j, Ny = LN, = DEy 2(1,j,N; = 1) = qu(0j, N, = 1)
Since there is no boundary E, (i, j, N,) term in (3.95), the top PEC boundary may be

modelled by eliminating the final row and column from the tri-diagonal matrix. It is convenient
however to maintain the N, x N, size of M,, and this may be accomplished by keeping a

diagonal term at the end of the matrix rather than truncation:
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TRM,(N,,N,) =1,  TRM,(N, — 1,N,) = TRM,(N,,N, —1) = 0 (3.96)

Therefore the Ni" row of the tri-diagonal matrix yields:

E;”%a,,-, N,) = q1(i,j, N,) (3.97)

Zeroing of the tangential electric fields (E, and E,) is accomplished by setting the forcing
vector g, equal to zero and never updating it, which may be accomplished by omitting the
boundary node N, in any for loops. Recall that at a PEC the normal magnetic fields are also
zero and this condition may also be imposed by never updating these fields through the use of
for loops. A similar procedure may be followed for all 5 other potential boundaries, and for the
second sub-iteration.
3.8.5.4 Perfect Magnetic Conductor Boundary Condition

For a perfect magnetic conductor, the boundary is shifted half a cell into the simulation

space. Consider again the (N,-1)"" row of the E,, z-cut equation:
n+s
TRM,(i,j, N, — 1,N, — 2)E, 2(i,j,N, — 2)
n+s
+ TRM,(i,j,N; — 1,N, — DE, *(i,j,N; — 1) (3.98)

1
. . n+_ . . . .
+ TRM,(i,j, N, — 1:Nz)Ey 2(1,],1\/2) =q:1(Lj,N, — 1)
The E,, field at z=N,A, is now being determined outside of the simulation space. Fortunately,

by image theory, the external electric field is known as shown in Figure 3-19 [225]:

Ey" 0 (N) :

: I,x
|
|
|

Figure 3-19: Imaged electric field across a PMC boundary.
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As such:

1 1
E)2(i,j,N,) = E) 2(i,j,N, — 1) (3.99)

Therefore,

1
TRM, (i, j, N, = 1, N, — 2)E,, 2(i,j, N, — 2)
+ [TRM,(i,j,N, — 1, N, — 1) (3.100)

n+y

+ TRM,(i,j,N, — 1, NZ)]Ey ;(i,j, N,—1)=q.(i,j,N, — 1)

Note that the coefficient in front of the E,, (i, j, N, — 1) term changed and the boundary term
E,(i,j, N;) is gone in (3.100). Therefore, the top PMC boundary may be modelled by
modification of the (N,-1)" row/column term of the tri-diagonal matrix and elimination of the last
row/column. A diagonal term may again be added to maintain the N, x N, size of the matrix like

the PEC case.

The two tangential magnetic fields at the PMC are zero:

H;H%(i,j, N, —1) = H;”%(i,j, N,—1)=0 (3.101)
This condition may be imposed by never updating these fields through the use of for loops.
3.8.5.5 Absorbing Boundary Conditions
In treating absorbing boundary conditions within the ADI-FDTD some special considerations
must be made at the nodes adjacent to the boundary plane. To explain this, recall the Murl
ABC equation for Ey at z=N,Az from Section 3.4.1.3.

1 1
n+s cAt — 2Az| n+=
E, 2(N) =E}(N,— D) +———|E, °

o By S0 =D~ EF(N,) (3.102)

This equation may be used to update the fields on the k=N, plane. Additionally, in the first

sub-iteration, the update equation for the y-directed electric field is the z-cut equation which will
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require special treatment for the Ey fields just below the top ABC plane (at k=N,-1). The tri-
diagonal matrix for a finite device in the z-direction (one that does not touch the absorbing
boundary) yields the following at row NZ-1 for arbitrary node in the xy-plane (omiti and j
designations used in the previous two sections):

1 1
+5 +5

TRM,(NZ — 1,NZ — DE, *(N, — 1) + TRMy(NZ — 1,NZ)E, 2(N,)

(3.103)
1
+ TRM,(NZ —1,NZ — 2)E;+2(NZ -2)=q;(NZ-1)
Note that these equations are evaluated within free space, therefore the free space values
for all coefficients may be used. Substituting (3.102) into (3.103) yields:

1
+2

TRM,(NZ - 1,NZ — DE, (N, — 1)

+ TRM,(NZ — 1,NZ) {E; (N, — 1)
(3.104)

!
Ey 2(Nz - 1) - E;}(Nz)]}

4 cAt — 2Az
cAt + 2Az

1
+ TRM,(NZ —1,NZ — 2)E;+2(NZ -2)=q;(NZ-1)
To reiterate, it has been assumed that piezomagnetic material does not touch the upper

boundary of the simulation space which will lead to additional coupling terms since the electric

fields in the y and z directions are coupled in the first sub-iteration. Re-writing (3.104) yields:
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1
+2

TRM,(NZ — 1,NZ — 2)E, (N, — 2)

+ {TRMZ(NZ —1,NZ—1)

cAt — 2Az

n+s
+ N 2
cAt + 20z

. — 1) (3.105)

TRM,(NZ — 1, NZ)} E,

_ cAt — 2Az
T CcAt + 2Az

TRM,(NZ — 1, NZ)E}(N,)
— TRMy(NZ — 1, NZ)E}(N, — 1) + ¢, (NZ — 1)

The absorbing boundary conditions introduce additional terms on both the left- and right-
hand side of the equation. The former is taken care of within the portion of the code where the
ADI coefficients are defined and the latter is included in the portion of the code where the time
marching scheme is contained, both through the use of if statements. (3.105) applies to the
entire plane one cell adjacent to the boundary. The corresponding ABC condition for electric

fields in the x-direction in the first sub-iteration is:

cAt — 2Az

1
n+s
- E 2 En 3.106

1
n+s
Ex Z(Nz) = Eyrcl(Nz - 1) +

This may be applied directly at the k=NZ plane without special treatment being necessary at
the k=NZ-1 plane since the update equation for Ex is not the z-cut equation in the first sub-
iteration. In the second sub-iteration however, a similar treatment is performed utilizing the
following condition:

n+z cAt — 2Az

1
n+>
EMI(N,) =E_ ?(N,—1)+ AT A, E}MY(N, - 1) —E, 2(N,) (3.107)

X

Substitute (3.107) into the tri-diagonal matrix at row NZ-1 as follows:
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TRM,(NZ —1,NZ — 1)E}*1(N, — 1)

n+s

1
+ TRM,(NZ —1,NZ2) {Ex 2(N, - 1)

(3.108)
cAt — 2Az

1
n+s
+ m[EQH(Nz —-1)—E, Z(Nz)]}
+ TRM,(NZ — 1,NZ — 2)E}*(N, — 2) = q¢;(NZ — 1)
Re-writing (3.108) yields:

TRM,(NZ — 1,NZ — 2)EP*1(N, — 2)
+ {TRM4(NZ —-1,NZ-1)

cAt — 2Az

— " TRM,(NZ —1,NZ){EMY(N, — 1
t At 20z a( )}x Wz = 1)

(3.109)
_ cAt — 2Az

1

n+5
=————TRM,(NZ —1,NZ)E_ *(N
Cﬁt 22 4( )x (Z)

1
2

— TRM,(NZ — 1, NZ)E, 2(N, — 1) + q;(NZ — 1)

The equations for the nodes adjacent to the ABC’s are tabulated in Table 3-4:

TRM,(1 2)5”% (2 ik + 1) + {TRM (1) + A 2B e 0)}5'”%(1 ik + 1)
15t sWheE, T\&l kTS ST At 2ax W jEs LIRS
= A A e (LOYER (0., k + 2 = TRM, (LOYER (1), +2) + py(1
x—Ax _CAt+2AX 3(' z(!]r 2) 3(!) z(r]r 2) pl()
i=1 ni1fo i, L ) { cAt — 2Ax } n+1( o1 )
. TRM;(1,2)E] (2,] +50k) +{TRMS(L1) + ————C TRM(LO)| EJ* (L) + 5.k
At 2 E™E (0, + 2 k)~ TRM,LETE (1) + k) + (1
TeAt+2ax St y('J 2’) st y('] 2')q2()
n+d cAt — 2Ax n+d
TRM;(NX — 1, NX — 2)E, 2(N, — 2) + {TRM3(NX —LNX = 1) + o TRM(NX — 1, NX)}EZ (N, - 1)
1$t
cAt — 2Ax n n
=1, = S TRM5(NX = LNX)EP(N,) = TRM(NX = 1L,NX)E} (N, = 1) + py(Ny = 1)
—Ax TRMy(NX — 1, NX — 2)ET*\(N, — 2) + {TRMg(NX — 1, NX — 1) + o 2% rpr (vx — 1, NX) L EZF I (N, — 1)
s ’ v o 5 ’ cAt + 2Ax ® ’ v
2nd
cAt — 2Ax el al
= o ns TRM(NX = 1LNX)E) 2(Ny) = TRMS(NX = 1,NX)Ey (N = 1) + g (N = D
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rRM,(L2)E" 2 (142 2,k) + {TRM Wi+ B2 e 0)}5'”% ( +1 1k
1t 1"‘(l2") BT CAE + 20y R 12")
_ cAt —2Ay nf 1 nf. 1
y = Ay = mTRMl(l,O)EX (l + E, 0, k) TRM1(1,0)EX (l +E, 1, k) + 7'1(1)
= 1 cAt — 24 1
j=1 TRM 12E”+1('2k —) {TRM 1)+ " gy 10}E”+1('1k —)
| 6(')2 ’-:,+2+ 6(,)+CAt+2Ay 6(:) z ’-::+
2[1
At 20y ey (10)E"+% L0k +2) — TRM, (10)E”+% Lk +2) 4 (1
T CAc+2ay ez (l" 2) 6\ L5z (l" 2) P2(1)
1 cAt — 2A 1
TRM,;(NY — 1,NY — 2)E:+2(Ny -2)+ {TRMl(NY —1,NY —1) + ﬁTRMl(NY - 1,NY)} E:+Z(Ny -1)
1st
cAt — 2Ay
y=L, = mTRMl(NY — 1, NY)E}(Ny) — TRM;(NY — 1, NY)EX(N, — 1) + 11 (N, — 1)
—A S cAt — 2Ay S
y TRMg(NY — 1, NY — 2)E}**(N, — 2) + {TRMé(NY —1,NY —1) + ————TRMg(NY — 1,NY)}E;” (N, —1)
ond cAt + 2Ay
cAt — 2A 1 1
- ﬁmms(w — 1,NY)E, "(N,) = TRMg(NY — 1, NY)E, 2(N, — 1) + p, (N, — 1)
TRM,(1 2)E"+%(' 4l 2) + {TRM (1) + B2y a 0)}5'”%(' s 1)
1t 2eEy W Ty 2 T At + 287 ARy W Ty
cAt — 27z 1 1
7=Az = mmmu,ow; (i,j +E’0) — TRM,(1,0)E} (i,j +-, 1) +q:(1)
k=0 TRM,(1 2)E"+1('+ Ly 2 +{TRM ¢! 1)+CM_2AZTRM ¢! 0)}En+1 i + Lin
ond S 2’]’) R Y P S (l 2'1'>
cAt — 2Az nig/ 1 nig (o1
:mTRM4(1,0)Ex (Z+E,], 0)—TRM4(1,0)EX (l+—,], 1) +T2(1)
n+s cAt — 2Az n+y
TRM,(NZ —1,NZ — 2)E,, (N, - 2) + {TRMZ (NZ = 1,NZ = 1) + o - TRM,(NZ — 1,NZ)}Ey (N, —1)
1st
cAt — 2Az n n
z=1, = i on, TRM2(NZ = 1, NZ)E}(N,) — TRM(NZ = 1, NZ)E}(N, = 1) + ¢y (N, — 1)
— cAt — 2Az
Az TRM,(NZ — 1,NZ — 2)EI*Y (N, — 2) + {TRM4(NZ -1,NZ-1)+ mTRM4(NZ -1, NZ)}E}}“(NZ -1)
2nd
cAt — 2Az 1 1
= o TRM,(NZ — 1,NZ)E, 2(N,) = TRMy(NZ — 1,NZ)E, 2(N, — 1) + r,(N, — 1)
Table 3-4: Free space Murl equations for nodes adjacent to ABCs.

Sections 3.6, 3.7, and 3.8 fully define the electrodynamics utilized herein. In the following

sections, the mechanical expressions will be introduced and coupled to the CPML-ADI-FDTD

equations of this section (3.92a-f) via piezoelectric coupling coefficients.
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3.9 Uniaxial Stress Update Equations w/ Piezoelectricity

Now that the CPML-ADI-FDTD methodology has been introduced, the 1D mechanical
update equations with piezoelectricity will be presented so that the final coupled ADI equations
will be clear. The expressions are first presented in continuum form and then discretized.
Additionally, guidance for how to temporally define the mechanical stress and velocity is
provided.
3.9.1 Mechanical Expressions in Continuum Form for Uniaxial Stress

When one dimension of a material is much larger than the other two, as in an axial bar, the
normal stresses in the two short dimensions are negligible compared to the normal stress in the
axial direction. If additionally, there are no shear stresses then the problem is 1-dimensional and

the following relations hold:

T,, # 0 (3.110a)

Tex = Tyy = Tyy = Ty = Txy = Syz = Sxz = Sy = 0 (3.110b)
Sz %0 (3.110c)

Syx =Syy # 0 (3.110d)

Where the axial direction is assumed to be the z-direction and the material is assumed to be
either isotropic or transversely isotropic about the z-axis. Thus, the stress, strain, and velocity

relations are as follows:

C
Sex = Syy = —ﬁ% (3.111a)
T2z = Ez222522 (3.111b)
Erzzz = i = Crr27 — Z%Cjﬁ (3.111c)
piy =0 (3.111d)
pvy =0 (3.111e)
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PV, =T,z (3.111f)

Where E,,,, is the Young’s modulus and s,,,, is the compliance relating S,, to T,,. The
“piggybacking” strains (S, and S,,,) from Poisson’s effect are not necessary to find a solution
mechanically. Additionally, piezoelectric descriptions where coupling is via stress (e.g., d-form
and g-form [194]) will not need to invoke Poisson’s effect (since there are no Poisson’s
stresses) and piezoelectric descriptions where coupling is via strain (e.g., h-form and e-form)
cover Poisson’s effect through the h;; or e5; terms. Thus, Poisson’s strains (if properly
accounted for) are not needed to find a solution to the piezoelectric problem either. The method
of accounting for the Poisson’s strains in a piezoelectric problem where coupling is via strain is
presented in the following section.

3.9.2 Piezoelectric Coupling Under Uniaxial Stress

Emerging technologies are beginning to leverage mechanically 1D axial bar piezoelectric
antennas [152]. These devices are the simplest to manufacture and provide significant boosts to
dipole moment at electrically small sizes compared to metallic antennas. This 1D axial bar
configuration is optimal for piezoelectric devices to minimize depolarization, since the poling and
polarization current are in the axial direction and the cross-section is small compared to the
length. Therefore, mechanically 1D PEA devices are not only easier to model but also ultimately
perform better than 2D/3D devices, especially when metal wiring is added as in [163].

For a purely mechanical system, equations (3.68a-f) are enough to write update equations.
Herein, however, piezoelectric coupling [194][198] will be added in. If stress is used for
piezoelectric coupling (e.g., when using D = dT + €TE), then the uniaxial stress state makes
writing update equations simple as only one mechanical term appears (namely, the non-zero
stress). If, however, the strain is used for piezoelectric coupling (such as when using D = eS +

€SE) within a uniaxial stress problem, then Poisson’s strains will appear, complicating the
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formulation. These Poisson’s strains may be eliminated by solving for the cross-sectional strains
and performing substitutions as highlighted next.

Within this section, Voigt’'s notation is leveraged. Also, numbers are used for subscripts on
material properties and letters are used for subscripts on fields. By the mechanical constitutive
relation (2.148), and by using h3; = hs, and Sy, = S,,,,, the cross-sectional stresses being zero
leads to:

Tex =T,y =0= (Cﬁ + ClDZ)Sxx + 6?3522 — h31D, (3.112)

Where viscous damping is ignored for brevity and coupling tensors like h, d, g, and e always
denote piezoelectric coupling within this chapter (piezomagnetism is ignored). Solving (3.112)
for the cross-sectional strain S, gives:

D
C13 h34
ZZ +

D, (3.113)

Sxx = —

D D D D
C11 T2 C11 T2

Substituting (3.113) into the T,, term in (2.148), and simplifying yields:

(C%)Z 2Cf3h31
TZZ = <C3?3 - ZM SZZ - h33 - m DZ (3114)

Where the coefficient in front of strain S,, in (3.114) is the Young’s modulus at constant flux
(EZ;) and the coefficient in front of D, is the effective piezoelectric coefficient hs3 po;. These
effective properties take Poisson’s effect into account and are denoted by the subscript “Poi”
herein. Similarly, the z-component of the electric constitutive relation (2.175) will include
Poisson’s (e31) terms for a strain coupled (e-form) uniaxial stress problem:

D, = €53E, + 2e31Syx + €335,, (3.115)

Where (3.115) utilizes e3; = e3; and Sy, = S,,,. Since the strain coupled e-form was used in

(3.115), an equivalent expression for the cross-sectional strain may been written as follows:

E
_ G3 €31
E E ©zz E E
€11t Cip €11t C1

E, (3.116)

Sxx =
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Equation (3.116) is equivalent to (3.113). Thus, there are multiple ways to arrive at an

equivalent solution if care is taken with all coefficients. Substitute (3.116) into (3.115):

2e3; 2e31c13
D,=|€e33+———+|E, +|e35——+]S 3.117
z ( 33 C1E1+sz z 33 Cf1+C1Ez zZ ( )

Where the coefficients in front of the E, and S, terms are the effective permittivity €35 p,;
and piezoelectric coefficient es3 p,;. Recall, these terms are not unique, even though their
numerical value is, as there are multiple ways to acquire equivalent terms. For example, the
effective permittivity for strain coupling under uniaxial stress may also be written as:

2 S ¢.D D
2ez; €33(c11 + ¢12)

E E — D D
c11 t ¢z €1y e — 2e31hsy

s _ S
€33poi = €33

(3.118)

Effective properties do not vary much from those that do not take Poisson’s effect into
account. For example, in X4B PIN-PMN-PT (utilized for simulations herein), the effective
permittivity and regular permittivity vary by about 3%.

This section highlights that either stress or strain may be utilized for piezoelectric coupling
within a 1D uniaxial stress configuration. Additionally, both methods are equal in complexity if
effective properties are derived when using strain for coupling.

3.10 Stress Driven Piezoelectric Antenna for Uniaxial Stress

If a uniaxial stress T, is present, and the piezoelectric tensor has a non-zero d5 coefficient
somewhere in the simulation space, then additional currents will appear in the forcing vector of
the CPML-ADI-FDTD equations. First, consider the electric constitutive relation assuming a
diagonal permittivity tensor:

1 1 1
pz = e§3E:+2 n d33Tzn+2 (3.119)

z Z
For both sub-iterations, the piezoelectric term will affect the E, update matrix expression
only as the non-zero T,, effects E, exclusively. The E, x-cut and y-cut equations for the 15t and

2" sub-iterations respectively are derived following the same process as Section 3.8 yielding:
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(3.120b)
Note that a piezoelectric driven electric field is now present in the forcing vector for both
sub-iterations, and that this piezoelectric term includes an unknown stress. For example, in the

first sub-iteration the piezoelectric term is written in shorthand as:

.. 1
i,jk+5
1.. 1 2 1.. 1
n+3,i,j,k+5 d At . n+5ijk+s
w33 pntatt (3.121)
Zdsy o1 zz
I.,_],k+2
2e

Y74

It is not recommended that this unknown stress issue be rectified via substitution of the

stress update equation, as this will introduce additional unknown electric fields and the
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computationally elegant tri-diagonal matrices will be lost. Attempts to perform simulations for
this case also yielded unstable results. If, however, the stresses are hard sourced (i.e., when
stresses are known a priori), then there is no longer an issue. In this case, the elastodynamic
equation is no longer evoked and a decoupled formulation results. Thus, a full-wave mechanical
simulation is bypassed, increasing computational efficiency at the cost of reduced accuracy.
Work from Lee in 1989 [104][105] suggests that the stresses and electric fields within a
piezoelectric radiator are not significantly changed whether Maxwell's equations are used to
update the surrounding EM fields however, therefore the approximation described herein is
reasonable. This uncoupled stress driven formulation is utilized in Chapter 5 to simulate an
infinite piezoelectric plate.

To solve the fully coupled problem, a simpler approach is to leverage the fact that the
velocity terms are a quarter time step staggered with respect to the EM fields and the stresses.
Therefore, the strain rate is completely known in terms of velocities and a piezoelectric
constitutive relation in terms of strains (e.g., h-form or e-form) is more palatable. A derivation
involving strains is presented in the following section.

3.11 Strain Driven Piezoelectric Antenna for Uniaxial Stress

If a uniaxial stress T, is present, and the piezoelectric tensor has non-zero e;; and es;
coefficients somewhere in the simulation space, then additional currents will appear in the
forcing vector of the ADI-FDTD equations. First, consider the electric constitutive relation in rate
form:

1 1 1 1
. n+g LN+ n+; n+x

4 _ .S 4 4 4 3.122
D = EZZE + 2@31 Ux'x + €33 VZ,Z ( )

zZ zZ
Where v; are the internal axial velocities and e34 is the Poisson’s coupling term. The method
of accounting for the Poisson’s term was covered in Section 3.9. Note the temporal

homogeneity of the expression which is the reason this is the preferred method of coupling

Maxwell’s to Newton’s law via piezoelectricity. For both sub-iterations, the piezoelectric term will
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affect the E, update matrix expression only. The electrical constitutive relation in rate form is

substituted into Ampere’s law yielding the following x-cut and y-cut expressions for the 1%t and

2" sub-iterations respectively:

At? n+%,i+1,j,k+% At? 1 1
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Note that effective properties are utilized to account for Poisson’s effect. Since leapfrogging

(explicit conditionally stable updating) is utilized on the mechanical side, the velocities are

already known. Also, the tri-diagonal matrices remain intact.

Once the electric fields are known the magnetic fluxes and fields are calculated via

Faraday’s law and the magnetic constitutive relations respectively. Then the electric fluxes may

be calculated via Ampere’s law. The stress and velocity are then updated using the mechanical
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constitutive relation and the elastodynamic equation respectively as discussed in the following
sections.
3.11.1 Stress Update Equations

The stress is updated via the h-form of the mechanical constitutive relation utilizing effective

properties that consider Poisson’s effect as follows:

D+
n+lpt nk+t E At [ n+lker n+ik
T 2 2 _ T 2 33 v 4 —v 4
zz - zz ZKk A z z
zZH Z
1 1. . 1 . . 1
fet+> ntolinejing k+3 NiingJint K+ (3 124a)
- h33 poi | Dz -D, '
N33 n+%,k+1 n+%,k n—%,k+1 n—%,k
+ E v, -V, -V, + v,

Where (3.124a) assumes that the electric flux has already been updated this time step so
the stress must be updated after the flux. The acceleration gradient in (3.124a) used for
damping is taken from a slightly earlier time t = nAt and therefore the finite difference
expression (3.124a) is not strictly temporally homogenous. This use of a previous time step for
the mechanical damping term is consistent with [131] and does not induce significant error due
to the mechanically tiny time step used in the simulations. Since the stress T, is internal to the
piezoelectric antenna, and the electric flux D, is uniform along the cross-section of the bar, the i
and j indices are any that would place D, within the device (i.e., not in free space or at the
interface). These indices are denoted as i;,; and j;,+ in (3.124a). The mechanical constitutive
relations used to update the stress are identical in the second sub-iteration since none of

Maxwell’s equations are present. Simply move all fields forward by a half time step, namely:
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The stress update occurs after the EM fields are updated but before the velocity which will
now be discussed.
3.11.2 Velocity Update Equations

The velocity within the simulation space is updated using the elastodynamic equation which
is an expression of the balance of linear momentum and is therefore unaffected by
magnetoelastic and piezoelectric coupling. The equation may be written as:

pv; = Tjj | (2.12b)

Recall that the velocities are temporally defined at times t = Y(1-%2)At, T = 1,2,3, ... (i.e.,
staggered with the stress and EM fields). The velocity at time t = 1/4At is known since the
stresses at time ¢t = 0 is known. Thus, the update expressions for the 15t and 2" sub-iterations
yield velocities at times t = (n + 3/4)At and t = (n + 5/4)At respectively. Since (2.12b) is
relatively simple, the general update expressions will be briefly derived and then simplified for
the uniaxial stress case. Equation (2.12b) may be expanded and written in the following finite

difference form for the 2" sub-iteration:

o1 1
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The update equations may ea

sily be acquired from (3.125a-c) and are as follows (where

mesh grading kappa terms are also added in):
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Since these update equations do not involve Maxwell’s equations, the form is the same in
both sub-iterations, simply subtract % to all time designations (n+%2—n+1, n+3/4—-n+5/4) in
(3.117a-c) to acquire the form for the 1% sub-iteration. For the uniaxial stress case, the velocity

update expressions for the 15t and 2™ sub-iterations respectively are as follows:

3 1.
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Thus, all of the fields within the main simulation space are now accounted for. Recall
however that there exists an electrostatic region between the driving electrodes that is modeled
separately, but simultaneously, for simplicity (i.e., by not needlessly evoking full Maxwell’s
equations within an electrostatic region). This so called “Source Space” will contain fields that
also need to be updated and will now be discussed.
3.12 Source Space Formulation
Excitations discussed thus far such as stress inputs, displacement inputs, electric currents,

and magnetic currents are suitable for a myriad of important problems, but herein the input is
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voltage across electrodes. The setup will be as is shown in Figure 3-20, where a current source
I with source resistance Rg feeds current Iz 4, into an electrode-piezo-electrode driving
sandwich producing voltage differential V34, across the electrodes. The dimensions tangential
to the ground plane are W, and W, and the out-of-plane length is L,. The electrodes are

assumed to be infinitely thin.

Radiating Electrodynamic Simulation Space

I____.(__________

|

| r Huygen's Box 1 1
| ' 11
| ' I
I : Near Fields | i 0] | [
[ | Element I

|

| ' I
PEC Qround Plane| ) :
Iy S “Is N\ " Tlgaw I I
I R ‘i BAwl' I
I S 1’Rs VVV I
h | | | | | | | | | | | | | l

Non Radiating Electrostatic “Source Space”
Figure 3-20: Source space formulation where an electrostatic region (source space) is
coupled to an electrodynamic region (simulation space) by utilizing interface velocity. Both the

source and simulation spaces utilize elastodynamics.

Assuming that all dimensions are on the order of the mechanical wavelength (~107° A5y), the
polarization current within the driving sandwich cancels out the electrode current and as such
the piezoelectric material within the source space produces no EM radiation. The driving portion

therefore acts as a resonating energy storing capacitor (essentially a BAW filter) and thus the
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electrostatic assumption is warranted in this region. The source space is coupled to the
simulation space through the interface velocity V, shared by both regions and elastodynamics is
applied along the entire solid structure. Therefore, the mechanical resonance can be
communicated across both the simulation space and the source space. The bottom mechanical
boundary can be made either fixed or traction free.

Now that the source space formulation has been introduced, the relevant expressions shall
be derived. Due to the small electrical size, only the out-of-plane electric fields are non-zero
within the piezoelectric and these fields vary only in the out-of-plane dimension which is taken
as the z-direction. The electrical constitutive relation in rate form, assuming tetragonal 6mm
symmetry, is therefore as follows:

é(,gj:% (1e+ %) A %)) = Eigzb;”% - Z—Z’ (vZn:%(k +1)- v:SJ%(k)) (3.128)

The subscript “S” is used to identify source space for all fields as well as the spatial
discretization. The time step is the same in both the source space and simulation space, thus no
subscript is used for At. The displacement current is related to the electrode current density

(Jgaw), Which is uniform, as follows:

e+t n+i
DZ 4 — _]BAM4-/ (3129)

Note that the displacement current and the electrode current are equal in magnitude and
opposite in direction which is why the capacitor does not radiate energy. The following relation

holds for the current density:

1 1 1 : " v
Lo 1 [ M In+z] _ U Veaw (3.130)
BAW W, W, BAW W, W, S Rs W, W, S Rg

Where all currents are as described in Figure 3-20 and V4, may be written as follows for

N,s nodes within the source space:
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k= NZS 1 1
v = ZZ (EZ 2 (1e+5) + B2 (K +E)> Az (3.131)

Combining equations (3.128) — (3.131) and solving for the unknown electric fields yields:
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" 20z ( e - Vs 4("))

Assuming 3 cells (4 nodes) within the source space, equation (3.132) may be written as a

matrix expression:

n+% 1
EZS (k + E)
1+a a a al 3 R
a 1+a a ||E 2(k+_) =F (3.133a)
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n 5 At n+— AzgAt ke=Nzg=1 1 _ hs3 At _
(k + ) 25 R D B (k + E) s ( e+ 3) ol 4(k + 2))

Often the source space does not occupy more than a 20" of a mechanical wavelength and
therefore it is not necessary to involve more than three cells such as in equations (3.133a-c).
The matrix inversions that are required are thus not computationally heavy. The velocities and
stresses within the simulation space may be updated using the elastodynamic and constitutive

equations respectively as before, except the stress update utilizes (3.129):
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The interface velocity is updated as follows:
3 1 1

Tl+z _ Tl+Z At Tl+§ 1 Tl+§ 1

UZS (NZS) - UZS (NZS) + 2 (AZ + AZS) TZZ E - TZZS NZS - 5 (3134b)

P\T2

Where the average spatial discretization is used which produces 2" order accurate
mechanical results [237]. User's may input a modulated Gaussian pulse as source current
density /s to simulate a ringdown and calculate mechanical antenna performance by utilizing a
near to far-field (NTFF) transformation to acquire the far-field parameters such as radiated
power P,,4. The input power may then be calculated by taking the FFT of the voltage and

current and utilizing:
1 - 9
Py = Ereal[VBAW X Ig ] (3.135)

The radiation efficiency may then be readily calculated as:

e _ Praa
rad —
P in

(3.136)

Therefore, this input methodology allows for the radiation efficiency to be calculated with
high fidelity. The source space formulation herein will be independently validated vs. the
analytical solution of a BAW filter device in Chapter 5. Now that the piezoelectric antenna
problem has been numerically formulated, it is necessary to focus on post-processing of the
data. Herein, the major post-processing that occurs is inputting the near-field data into a near to
far-field (NTFF) transformation to acquire far-field performance characteristics. This will be
discussed next.

3.13 Near to Far-Field (NTFF) Transformations
For the mechanical antenna simulations studied herein, the simulation space representing a

physical volume (i.e., excluding PML layers) will always lie in the near field of the radiator. As
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such, a method of converting near field numerical results to far-field data is invaluable. To
accomplish this, a fictional rectangular volume (Huygen surface), of dimensions 2x,, 2y,, 2z,
may be constructed surrounding the radiator, and, using the surface equivalency theorem
[25][26][178], may use tangential fields calculated from the FDTD simulation in order to
determine the following equivalent currents on the surface of the volume:

Ji = €ijin;Hy

Mis = €;jrniEj

This yields the following electric source currents on the surfaces orthogonal to the global x,

y, and z-directions:

fi=t, J=-Hj+Hk A=-i JJ=Hj-Hk (3.137a)
A=}  JE=H,i-Hk,  A=-j J=-H,i+Hck (3.137b)
fi=k  JF=-Hi+Hj A=-k Ji=Hi-Hj (3.137¢)

And the following magnetic source currents:

fi=i, M7=Ej—Ek  A=-1 M =-Ej+Ek (3.137d)
A=}  MS=-Ei+Ek fA=-j MS=Eji-Ek (3.137e)
fi=k, M7=El-Ej fA=-k M =-EJl+E;j (3.137f)

Where the EM fields in (3.137a-f) are at the surface of the fictional volume, and therefore will
require some spatial averaging for the magnetic fields which are staggered by half a unit cell.
Following the approach by [25], these equivalent source currents may be input into the following

integrals:

No = ﬁ(]}cos@cos@ +J,,c0s0sin® — J,sinf) /K7 cos¥ s’ (3.138a)

Ny = ff(_ijin(D + ], cos@) efkr'cos¥ g st (3.138b)
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Lo = ff (M.cosBcos® + M, cosfsing — M,sing) e/k7'cos¥ ds’ (3.138c¢)

Ly = ff(—ﬁxsin® + My cos®) elkr'cos¥ ggr (3.138d)

Primed values above are source coordinates, for example, ds’ in (3.138a-d) is a differential
area on the Huygen surface within the simulation space. The unprimed 8 and @ are the
spherical coordinates pertaining to the far-field observation point, therefore the near-field EM
fields within the simulation space are used as sources through (3.137a-f) to determine the
integrals (3.138a-d) which apply outside the simulation space. The breve accent marks denote

that these are phasor quantities, and the exponential terms may be determined as follows:

A==i, r'cos¥ = tx,sinfcosP + y'sinbsin® + z'cosb (3.139a)
i = 4j, r'cos¥ = x'sinfcos® + y,sinfsin® + z'coso (3.139Db)
il = +k, r'cosW = x'sinfcos® + y'sinfsin® + zycosb (3.139c¢)

Where the primed values (x', y’, and z') denote points on the virtual surface within the near-
field/simulation space and 6/9 still describe the far-field observation point. Therefore, for every
observation point (8/9), the collective effect of all EM fields on the virtual surface nodes (x', y’,
and z") must be summed up through integrals (3.138a-d). This process is then repeated for
different 6/¢ values to develop a complete picture of far-field performance, like radiation pattern

and radiated power. The EM phasors in spherical coordinates are determined from as follows:

E =0 (3.140a)
e jkr

Fo~ _ 7 N 3.140b
Eo = ——— (Lg +noNg) ( )

_ jkeTIRT _
~ — 3.140c
Ep =—— (L —noNg) ( )
H =0 (3.140d)
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Hy = — N, L 3.140
) = (No + Lg/n0) ( f)

Where 1, = \/m = 377 is the free space impedance and r is the radial distance of the
observation point to the source. For the purpose of simulations using the FDTD method, the
spatial location of both the L and N terms must lie on the virtual surface, and as such two spatial
interpolation terms must be used for the magnetic fields. The radiation intensity and total power

may then be calculated respectively as follows:

2
U(,8) = L [|Bs(r,0,0)|" + |Eo(r, 6, 0)| (3.141)
21

2T T
Prgg = j J Usin0d0do (3.142)
0 0

These values may now be used to create far-field radiation pattern charts. The procedure is
clarified with an example.
3.13.1 NTFF Transformation of Planar Array on PEC

In the case of an unphased planar array mounted on a ground plane normal to the z-
direction, the radiation moves in the positive z-direction only, and therefore only the surface with

A = +k need be examined for NTFF transformation. On this surface, the source currents are as

follows:

Substitution into the L and N terms (3.138a-d) yields:

Xo Yo
No = f f (=H,cos0cos® + HycosOsin@)e k(X' sinbcosb+y'sinbsind+20cos6) gy’ gy’

—Xo Y ~Yo

Xo Yo
N@ = J .[ (HySin(Z) + chos(z))ejk(X'Sin9C05®+y’sin95in(Z)+zocose)dx’dy’

—Xo Y ~Yo
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X0 Yo
Ze = f (EyCOSQCOS® — E‘xCOSQSin@)ejk(x’sinecos®+ylsinesin(25+zoCose)dx/dy/
—Xo0 Y ~Yo

Xo Yo
ZQ) = f f (—E'ysin(b — Excos(D)efk(X’Si”9C05¢+y’Si"95i"¢+ZOCOS‘9)dx’dy’
—X0“~Yo

The far-field electric and magnetic phasors may then be determined.
3.13.2 General 3D NTFF Transformation

The procedure of Section 3.13.1 must be repeated for each absorbing boundary condition
utilized in the simulation, meaning that generally all six surfaces enclosing the radiator will

require unique L and N terms. These are summarized in Table 3-5:

Zo Yo

[ — . — ; ; I in i ’

Ne-H — f (—HZCOSHSan) _ Hys”lg)ejk(xosmecosqﬂy sin@sing+z cose)dyrdzr
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>
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~Zo Y ~Yo

Zo Yo
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~Zo ¥ ~Yo

Zo Yo
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—Z0Y~Yo
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¥—1 ¥ . = . i — i [ . 12
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~Zo Y Yo

Zo Yo
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Zo rXo
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X0 Yo

v _ T - -~ . . 7. I P
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Xo Yo
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Table 3-5: NTFF equations.
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Since all multi-physics radiators investigated herein are mounted on a ground plane, the 7 =
—k terms are unused. For this linear system, the far-field response generated by the six

surfaces may be added together to acquire the total response by superposition:

Np = Nji+ Nt + N7 + N7 4+ NjF 4 Ny & (3.143a)
Ny = Nt + Nyt + N7 + Ny + NjF + Ng* (3.143b)
Lo=ILi+Ig + I} + 1 + L5+ L5~ (3.143c)
Ly =Lyt + L5t + Ly + L) + Lk + L5* (3.143d)

The determination of the far-field EM fields may then proceed using equations (3.124a-d)
and Table 3-5, then substituting into equations (3.140a-f). Thus, the entire process of
determining the performance of a piezoelectric antenna has now been discussed. This process
is lengthy, so it is helpful to review the process briefly as presented in the following section.

3.14 Numerical Framework Overview

The process of modeling piezoelectric antennas presented thus far is summarized in Figure
3-21. First, the input current J is used to update the source space electric fields, stresses, and
velocities via (3.133a-c), (3.134a), and (3.127a-b). Then the terminal voltage Vs may be updated
via (3.131). The simulation space electric fields are then updated implicitly using the CPML-ADI-
FDTD equations; (3.192a) for E; *'/2, (3.192b) for E) "'/, (3.123a) or (3.120a) for E; /2,
(3.192d) for Ex**, (3.192e) for Ej}**, and (3.123b) or (3.120b) for E7**. The magnetic flux,
magnetic field, electric flux, and history variables may then be readily updated using Faraday’s
law (3.71a-c) (3.72a-c), the magnetic constitutive relation (3.73a-c) (3.74a-c), Ampere’s law
(3.84a-c) (3.89a-c), and Table 3-2/Table 3-3 respectively. Stress is then updated using the
mechanical constitutive relation (3.124a-b) followed by velocity being updated by the

elastodynamic equation (3.127a-b).
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Figure 3-21: Simulation flow chart for piezoelectric antenna simulations via CPML-ADI-FDTD

method.

The 2nd sub-iteration then follows the same flow after which the next time step commences.
The process should be iterated until the mechanical damping decays the signal enough to allow

for FFTs to be performed without introducing significant spectral leakage.
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CHAPTER 4:  VERIFICATION TESTING

This chapter focuses on verifying that the three major constituents of the code, i.e., the
mechanical, electrodynamic, and magnetic damping portions, are working properly. This is
accomplished through comparisons with analytical solutions and/or commercial codes.

4.1 Mechanical Test Cases

Mechanically, the elastic waves are assumed to move such that one stress is non-zero
known as the uniaxial stress approximation. This assumption is justified if the specimen under
load has one dimension at least an order of magnitude larger than either of the other two (i.e.,
for a slender bar shaped device). A wealth of sources document how such 1D problems
behave, [238] being one. This section compares the FDTD simulation to both analytical
solutions and commercial software.

4.1.1 1D Quasistatic Bar Problem under Force Input

A 2x2x20cm mechanical bar fixed on one end and with a 100Hz harmonic force input
(100Ibf/445N) on the other (see Figure 4-1 bottom insert) was simulated using the code. The
input frequency is significantly below (<10%) the first resonant frequency of the bar and
therefore this problem is quasistatic. The bars tip displacement is plotted as a function of time
and compared to the analytical solution [238]. There are 40 finite difference cells utilized along
the length of the bar (5mm discretization). The maximum amplitude error is 2.84% and no
discernable error in phase is present. Therefore, these results provide confidence in the

mechanical portion of the ADI-FDTD code.
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Figure 4-1: 1D mechanical bar operating at a near static frequency (<10% of 1% harmonic).

4.1.2 On Resonance 1/4 Wavelength Mechanical Bar under Gaussian Base Excitation

A 100x100x500um mechanical bar which is traction free on one end and with an on
resonance 5MHz Gaussian pulse base excitation (2.5nm magnitude) applied on the other (see
Figure 4-2 bottom insert) was simulated using the code. The axial stress (T,,) 50um away from
the base is plotted as a function of time and compared to the results from a simulation
performed using the Comsol multiphysics software [239]. Since the boundary conditions are
such that the bar is a quarter wavelength resonator, there are 5 finite difference cells utilized
along the length of the bar (100um discretization) to achieve a 20 cell per wavelength spatial
sampling. The maximum amplitude error is 2.59% and no discernable error in phase is present.

Therefore, these results provide confidence in the mechanical portion of the ADI-FDTD code.
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Figure 4-2: On resonance Gaussian base excitation mechanical bar problem.

4.2 Electrodynamic Test Cases

This section focuses on the validation of any electrodynamic portions of the code and post-
processor and exists to inspire confidence in the results presented in Chapter 5.
4.2.1 Aperture Antenna Study

A problem that was solved early on to check that magnetic and electric currents could be
input simultaneously and still produce accurate results was the aperture antenna problem.
Aperture antennas radiate by forming an area (aperture) of relatively uniform electric and
magnetic fields known as the aperture fields (E, and H, respectively) which are often generated

using a waveguide. A rectangular aperture antenna is shown in Figure 4-3:
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Figure 4-3: Rectangular Aperture Antenna with electric field along the y-direction and

magnetic field along the negative x-direction.

Within the literature [25][26], analytical solutions may be found for such a case in the form of
far-field approximations which assume that the waveguide has allowed an area (aperture) to
contain uniform electric and magnetic fields which oscillate, radiating EM waves into free space.
These aperture electric and magnetic fields may then be mapped to equivalent electric and

magnetic currents by utilizing the following relations.

Jo=AxH, M;=E,x#A (4.1)
An aperture antenna simulation was performed utilizing a 1m cube volume with aperture
dimensions of 5x5cm in the xy-plane, and a y-directed aperture electric field. All boundaries are
Mur 1st order (Murl) absorbing boundary conditions (ABCs) [210] and the system was allowed
to radiate for 5 cycles at 400MHz with the time step set to 2 times the CFL condition with a
spatial discretization of 1cm. The aperture is located at the center of the simulation space. The

analytical solution, for the z-directed electric field, applies only for the far field and is as follows:

E_IEaI(1+cost9>. (ﬁa.g @)- (ﬁb '0'@)' . 45
z = 7Br \sinfcos@ sin > sinfBcosP | sin > sin@sin® | sin (w Br) 4.2)

Where a, and b are the in-plane dimensions of the aperture antenna which are both equal to
5cm in this case, and the independent variables are in terms of spherical coordinates about a
coordinate system with its origin at the geometrical centroid of the aperture. A plot comparing

the z-directed electric field obtained from both the far-field analytical solution [25] and the ADI-
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FDTD algorithm is plotted as a function of time in Figure 4-4. The electric field was calculated at
the point (x=0, y=0.46m, z=0m) on a coordinate system whose origin is at the center of the
aperture. The far-field analytical solutions have a phase error of up to /8 [25] which is
represented using error bars on the analytical solution in the figure. The phase error is caused
due to proximity of the MURL1 boundaries. This is also observed for the infinite line source case
in section 4.2.2.1, where the phase error is removed by moving the MUR1 boundaries further

away.
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Figure 4-4: Plot comparing E, from the numerical simulation and the analytical solution.

As can be seen in Figure 4-4, the ADI solution stays within the error bar of the analytical
phase solution. The noise in the ADI-FDTD solution is a result of the excitation not initially being
zero which can be rectified by using a modulated Gaussian pulse [240]. Modulated Gaussian
pulses are utilized in sections 4.2.2 and 4.2.4. Noise is also produced by numerical reflection
and Higher order ABCs reduce this type of noise, but these ABCs are difficult to implement

within the implicit ADI methodology without compromising the tri-diagonal matrix [241]. These
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results provide confidence in the general response of the code including stability, however,
some phase shifts and small oscillation errors emanating from the ABC boundary conditions are
present. These errors may be minimized by placing the ABCs further from the source which
may be accomplished by cell stretching, as shown in subsequent sections of this chapter.
4.2.2 Infinite Line Sources

Sources of this type involve an infinitely long linear currents which may be electric (Figure
4-5a) or magnetic (Figure 4-5b) in nature. For the electromagnetic validation of the code,
consider first an infinite z-directed electric line source, excited at 400MHz (1(™ = 0.75m), as
shown in Figure 4-5a. The PECs are included to replicate the infinite source currents in the
vertical z-direction by image theory (see section 3.4.1.1). Due to the infinite length in the z-
direction, there are no spatial variations in that direction, and this is a 2D problem in the

rectangular coordinate system.

PEC Z PMC Z
‘ 4_1 O 4_1
X,y X,y

3 o

ABC ‘ ABC| |ABC ABC
.

:/—jz | MZ
PEC PMC ®
(a) Electric (b) Magnetic

Figure 4-5: Infinite line source cases w/ boundary conditions.

For this case, the analytical solution for the z-directed electric field as a phasor (denoted

using a breve accent) is written below [25]:
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Ex(p) = ~Io 5> o (kp) = j¥o(kp)] (4.32)

Where p is the cylindrical radial coordinate, which originates at the line source, w is the
circular excitation frequency, k is the wavenumber, J,/Y, are Bessel functions of the 15/2" kind
respectively, and I, is the magnitude of the line current which is input as 1mA. The steady state

instantaneous field is as follows:
_ RefF,elon} — _p ko T (ot "
E,(p,t) = Re{EZeJ“’ } =—I, ) []O(kp) cos (a)t 2) + Yy (kp)sin (a)t 2)] (4.3b)

Where the /2 phase shifting is included to represent a sinusoidal input. If a modulated
Gaussian pulse solution is sought, equation (4.3b) is modified as follows:

_(t=tq—p/c)?

% []o (kp) cos (wt — g) + Yy (kp)sin (wt _ %)] o () (4.30)

E,(p,t) ==l

Where t,, is the pulse half-width, t; is the time delay at the source, and p/c is the additional
time delay as the wave propagates to the observation point (c is the speed of light). This latter
time delay term may be ignored when the observation point is electrically close to the radiator,

i.e., when in the extreme near field which is the case in this section. The Gaussian pulse

parameters were chosen as follows:

t—->t+At/2 (4.4a)
tqg = 3.6/f (4.4b)
tw = 1.2V2/f (4.4¢)
(t—tq—p/c)? (t+At/2-3.6/f—p/c)?
e (lzw)z - e 2(1.2/1)? (44d)

Where f is the input frequency and At is the sampling time. Equation (4.3b) generally
applies in both the near and far-field and is compared to numerical results in the following

sections, along with the modulated Gaussian pulse solution (4.3c).
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4.2.2.1 Small/Medium/Large Study

An initial study using three simulated spaces, i.e., a small (0.1m cube), medium (1x1x0.1m),
and large (2x2x0.1m), were conducted with the ADI-FDTD code as shown in Figure 4-6. The
simulation space was varied to better understand the influence of the MUR1 absorbing
boundary conditions on the numerical solution as the boundaries are moved closer to radiating

elements.

Large = 2m

Medium = 1m

L Small = 10cm L

i
PEC
4cm ‘ x,yqj
r !
Observation J ‘ I
Point :/_

PEC

ABC ABC ABC 10cm ABC

Figure 4-6: Small/Medium/Large Study Geometry

The MUR1 ABCs shown in Figure 4-6 are applied in both the x and y directions. In this study
the discretization, time step, and observation point are consistent across all three simulations
such that the only variation between runs is the proximity of the absorbing boundaries to the
radiator. The discretization for all runs is 1cm (Ax = Ay = Az = 1c¢m). Figure 4-7 shows the
simulation results for the z-directed electric field (E,) compared to the general analytical solution

(eq. 4.3b) at an observation point x=0.04m from the source for this axisymmetric problem.
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Figure 4-7: E, Results from the infinite line source study, for all three simulation space sizes,

at the observation point which is 4cm away from the line source.

The time step was set to 2 times larger than what is required for stability (CFLN=2). If
conventional FDTD were utilized, the results from using this time step would be unstable, but in
this ADI-FDTD algorithm the results are not only stable but accurate (with the exception of a
phase and amplitude error in the 0.1m small cube) as shown in Figure 4-7. The initial ripples in
the ADI results for all three cases are expected transients prior to the system reaching steady
state. The phase and amplitude error in the 0.1 m small cube are attributed to the first order Mur

absorbing boundary conditions (MUR1 ABCs) [210] utilized in the (xy) directions. It is difficult to
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implement higher order ABCs in ADI simulations [241] and thus, to use the ADI approach, ABC
boundaries should be placed as far as possible from the source. As can be seen, these errors
are absent in the medium and large simulations. Note that, since the spatial discretization, time
step, and wavelength are consistent across all simulations, the cause of this phase lag and
amplitude error is not numerical dispersion as this is the same in all three cases. Indeed, the
cause is that the 1% order Mur absorbing boundaries have been brought too close to the source
currents, producing errors. This error may be minimized by stretching the finite difference grid in
the xy-plane such that the ABCs are pushed further away from the radiating source currents, or
by utilizing PEC-backed lossy perfectly matched layers (PMLs) rather than MUR1 boundaries.
Both these methods may be used simultaneously to produce stretched PML regions as will be
discussed in the next section.
4.2.2.2 Stretched/Lossy Regions within Progressively Shrinking Simulation Spaces
Often it is necessary to move the simulation boundaries electrically close to the radiating
elements due to the computational expense of modeling electrically small radiators as well as in
complex coupled problems such as multiferroic antennas requiring both electromagnetic and
mechanics modeling. In the case of mechanical resonance-based antennas, the simulation
space must shrink to on the order of 1/10,000™ of the free space EM wavelength when using a
uniform grid of 200x100x100 cells or less to be able to model the structure using conventional
computational platforms. However, placing absorbing boundaries based on one-way wave
equations, such as the MUR1 ABC [210], introduce significant error to the simulated results, as
illustrated in the previous section. Therefore, other approaches need to be considered such as
stretching the finite difference mesh so that the simulated boundaries are mathematically
pushed further away from the radiator even though the number of elements has not increased.
In this graded mesh design, the mesh is geometrically fine near the radiator and progressively

coarser near the boundaries. The following subsections explore this avenue of boundary error
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reduction on progressively shrinking simulation spaces to gain insight on the multi-physics
simulations performed in Chapter 5.
4.2.2.2.1 10cm Cubic Simulation Space

First consider the geometry of Figure 4-8, which is identical to the infinite electric line source

problem shown in Figure 4-5a with relevant simulation parameters now defined:

f = 400MHz
Ao = 75cm
CFLN =2

In — Plane
ABCs

Figure 4-8: 400MHz Infinite line source within a 10cm cubic unstretched simulation space.

E, is measured 1cm away from the source.

The size of the simulation space is identical to the “small” case discussed in the
“Small/Medium/Large Study” Section 4.2.2.1 (i.e., a 0.1m cube), but with finer spatial sampling
in the x and y directions. The observation point is also now closer to the source (1cm away) with
respect to the Small/Medium/Large Study (4cm away). The numerical results for E, at the

observation point shown in Figure 4-8 are compared to the analytical solution in Figure 4-9:

222



E, (V/m)

Analytical ———ADI-FDTD

Figure 4-9: E, at observation point from infinite line source case shown in Figure 4-8.

There is an amplitude and phase error present in these results, like the “small” case
previously exhibited (Figure 4-7), caused by the ABCs. To reduce this error, a scheme for
stretching the cells is introduced as shown in Figure 4-10. In this figure, the 12 cells adjacent to

the boundaries are stretched while the center 16x16 grid remains unstretched (at Ax = Ay =

2.5mm).
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Figure 4-10: 12-cell In-plane stretching scheme for the infinite line source problem.

In the design of this ADI-FDTD code there are three input parameters related to coordinate

stretching; the maximum stretching (x™%*), the number of cells across which the stretching

occurs, and the polynomial factor describing the fashion in which the stretch increases from 1 to

K™% (m=1=linear, m=2=quadratic, ...). Utilizing a 12-cell stretched region with k™** = 10, and

m = 1 yields:
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k™Ma* = 10, 12-cell, m=1, CFLN=2
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Figure 4-11: Infinite line source results for E, for an initially 20cm cubic simulation space

with 16,,4,=10, 12-cell, m=1, and CFLN=2.

As can be seen in Figure 4-11, the phase error has been virtually eliminated (compared to
Figure 4-9) and the amplitude error significantly reduced as a result of the stretching. Some
degree of noise has been introduced into the results; however, this can be mitigated with the
use of higher m-factors as well as using a modulated Gaussian pulse input so that the initial
input is near zero.

At this time, it is helpful to show one approach to producing more accurate results with a
note that there are multiple methods that can be used. For example, Figure 4-12 shows a 14-
cell PEC-backed unstretched PML region as contrasted with the 12-cell ABC approach shown in

Figure 4-10:
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Figure 4-12: 14-cell In-plane PML region for the infinite line source problem.

Figure 4-13 shows the results for a modulated Gaussian pulse rather than a sinusoidal
input. In this model the reflection error is set to e~1¢, and a linear interpolation scheme is utilized
(m=1). As shown, accurate results are achievable when the stretched region, backed by an
ABC, is replaced by a unstretched PML region, backed by a PEC at this size. Therefore, some
level of experimentation is open to the modeler with some guardrails in place to ensure
accuracy. For example, k™%* should not cause the spatial discretization to become greater than

AEM /20 within the stretched region.
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Figure 4-13: Infinite line source results for E, for an initially 10cm cubic simulation space

with reflection error R(0)=e~1°, 14-cell, m=1, and CFLN=2.

4.2.2.2.2 1cm Cubic Simulation Space

In this section the simulation space and discretization utilized in the previous section are
reduced by an order of magnitude while maintaining the same time step by increasing the CFLN
factor to 20 from 2. The goal of this study is to retain accuracy as the number of cells is
progressively reduced until the unstretched size is on the order of 10~*A5M. This dimension

represents the simulation space required for mechanical resonance-based antenna simulations.

For clarity, the simulation space is shown in Figure 4-14:
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Figure 4-14: 400MHz Infinite line source within a 1cm cubic unstretched simulation space.

E, is measured 1mm away from the source.

The results for E, at the observation point shown in Figure 4-14 for an unstretched

simulation space are shown in Figure 4-15:

E, (V/m)
S T = T I T U R ST |

Analytical ——ADI-FDTD

Figure 4-15: E, at observation point from infinite line source case shown in Figure 4-14.
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Note that there is significant amplitude and phase error within the simulation results caused
by the absorbing boundaries. In order to mitigate this, the stretching scheme shown in Figure

4-10 is utilized again with k,,,,, = 150 and m = 2 to produce the results in Figure 4-16:

K™M* = 150, 12-cell, m=2, CFLN=20

Time/(s)

. : 0.8 120 1.40
1 x10-8

E, (V/m)
o
=}
g
o
]
[=]
3
=}
A
=
8

ADI-FDTD Analytical
Figure 4-16: Infinite line source results for E, for an initially 1cm cubic simulation space with

Kmax=150, 12-cell, m=1, and CFLN=20.

The phase error has been virtually eliminated in Figure 4-16, and the amplitude error has
been significantly reduced, though some noise has been introduced. The noise can be mitigated
by utilizing a modulated Gaussian pulse rather than a sinusoidal input along with unstretched
PML layers to yield the results in Figure 4-17. As shown in Figure 4-17, the amplitude and
phase error are within 10%. Further improvements may be achieved by reducing the time step

or beginning to implement both stretching and lossy PML layers simultaneously.
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R(0) = e™%6, 14-cell, m=1, CFLN=20

£, (V/m)

Analytical - CPML-ADI-FDTD
Figure 4-17: Infinite line source results for E, for an initially 1cm cubic simulation space with

R(0)=e1%, 14-cell, m=1, and CFLN=20.

4.2.2.2.3 1mm Cubic Simulation Space

In this section the simulation space and discretization utilized in the previous section are
reduced by another order of magnitude (i.e., from 1cm to 1mm) while maintaining the same time
step by increasing the CFLN factor to 200 from 20, see Figure 4-18. The goal continues to be
shrinking the simulation space until the unstretched size is on the order of 10~#A5™ as is the

case required for mechanical resonance-based antenna simulations.

230



Z
|l
X
f = 400MHz
Ag =75cm E, 2 1mm
4
CFLN =200 .k—-——Observation Point
In — Plane ’______:IA2=100,um
ABCs Imm

iAx = Ay = 25um
Figure 4-18: 400MHz Infinite line source within a 1mm cubic simulation space. E, is

measured 100um away from the source.

The results for E, at the observation point shown in Figure 4-18 for an unstretched

simulation space are shown in Figure 4-19.

E, (V/m)
(V] E=1 W %] = (=] [ %] w F=Y [V,]

Analytical ———ADI-FDTD

Figure 4-19: E, at observation point from infinite line source case shown in Figure 4-18.
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As can be seen, there is significant amplitude and phase error within the simulation results.
To mitigate this, the stretching scheme shown in Figure 4-10 is utilized again with x,,,,, = 1500

and m = 2 to produce the results in Figure 4-20:

K™% = 1500, 12-cell, m=2, CFLN=200

1
3
2
— 1
E_ 0 Time (s)
< 0.00 0.3o 0.40 0.60 0.0 1.00 1.0 1.40
w7 x10-8

IS

Analytical ADI-FDTD
Figure 4-20: Infinite line source results for E, for Imm cubic simulation space and

Kmax=1500, 12-cell, m=2, and CFLN=200.

Figure 4-20 shows the phase error has been virtually eliminated but the amplitude error
persists, and significant noise is present due mainly to the initial excitation being non-zero.
Regardless, it is interesting that the results are not unstable even with a cell aspect ratio of
1500. To reduce the amplitude error, the time step may be reduced by a factor of 10 by
reducing CFLN to 20, yielding the results of Figure 4-21. Note that the degree of noise has
increased. An increase in m-factor will reduce the noise slightly, but the best method of noise
reduction is to switch to a modulated Gaussian pulse input such that the initial excitation is near

zero as will be shown in the following section.
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Figure 4-21: Infinite line source results for E, for Lmm cubic simulation space and

Kmax=1500, 12-cell, m=2, and CFLN=20.

4.2.2.2.4 100um Cubic Simulation Space

In this section the simulation space and discretization utilized in the previous section are
reduced by an order of magnitude (to 100um from 1mm) while maintaining the same time step
by increasing the CFLN factor to 2000 from 200, see Figure 4-22 compared to Figure 4-20. The
unstretched simulation space is now 4,/7500 in size, and therefore has dimensions comparable

to mechanical resonance-based antenna simulations.
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Figure 4-22: 400MHz Infinite line source within a 100um cubic unstretched simulation

space. E, is measured 10um away from the source.

The results for E, at the observation point shown Figure 4-22 for an unstretched simulation

space are shown in Figure 4-23:

E, (V/m)

Analytical ———ADI-FDTD

Figure 4-23: E, at observation point from infinite line source case shown in Figure 4-22.

Note that there is significant amplitude and phase error as well as noise within the

simulation results. Given the absence of such high amplitude noise within the unstretched
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results of larger simulation spaces (see Figure 4-9 for example), the noise present in Figure

4-23 is caused partly by the close proximity of the MUR1 ABCs utilized. To improve accuracy,

the stretching scheme shown in Figure 4-10 is utilized again with k,,,, = 15000 and m = 2 to

produce the results in Figure 4-24:

E; (V/m)

Figure 4-24:

Kk™a* = 15000, 12-cell, m=2, CFLN=2000

Time '(s)

0.00 o.3o 0.40 0.60 0.80 1.00 1.30 1.40
x1078

Analytical ADI-FDTD
Infinite line source results for E, for 100um cubic simulation space and

Kmax=15000, 12-cell, m=2, and CFLN=2000.

The phase error has been virtually eliminated but the amplitude error persists. Regardless, it

is interesting that the results are not unstable even with a cell aspect ratio of 15,000. To reduce

the amplitude error, the time step may be reduced by a factor of 20 to CFLN=100, and the m-

factor increased to 4, yielding the results of Figure 4-25:
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K™% = 15000, 12-cell, m=4, CFLN=100
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Figure 4-25: Infinite line source results for E, for 100um cubic unstretched simulation space

and K,,4,=15000, 12-cell, m=4, and CFLN=100.

As well as exhibiting improved amplitude accuracy, the amplitude of the noise has also
increased in Figure 4-25. The noise is virtually eliminated by utilizing a modulated Gaussian
pulse as shown in Figure 4-26. Note that a 10.1% amplitude error persists. To further improve
the results, the time step may be reduced, or the stretched region may be extended, or a PEC-

backed PML region may be introduced, or all the above as shown in the following sections.
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k™A% = 15000, 12-cell, m=2, CFLN=100
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Figure 4-26: Gaussian pulse excitation for the initially 200um cubic infinite line source

problem.

Note that much of the noise has been eliminated by switching to the modulated Gaussian
pulse, but some noise persists. This is the noise introduced by the MUR1 ABCs which can be
eliminated by switching to stretched PML layers.
4.2.2.2.5 Variable k Study

Recall that x4, = 15,000 was chosen in Figure 4-26 such that there are 20 cells per free
space EM wavelength (A5™ = 20k,,,,A) at the coarsest spatial sampling. This standard is widely
used in numerical analysis and a study was performed to prove that this rule is adequate for

mechanical antenna analysis as shown in Figure 4-27:
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Figure 4-27: Results from study where the value of k,,4, is varied. The steady state

analytical solution and numerical results are based on a sinusoidal modulated Gaussian pulse

input. The region where the amplitude error is most pronounced is shaded and expanded for

clarity. K, = 15000 corresponds to 20 cells per free space EM wavelength.

Figure 4-27 shows the results for three «,,,, values (15,000, 30,000, & 10,000)

corresponding to the coarsest spatial discretization of 20, 10, and 30 cells per wavelength

respectively. The error compared to the analytical model increases as k,,,, moves further from

the 20 cells per wavelength standard. When k,,,,, = 30,000 the error increases to 12% since the

spatial sampling is considered too coarse as well as some phase error is introduced. When

Kmax = 10,000 the error increases to 12.2% since the reduced amount of stretching brings the

MUR21 ABCs closer to the radiator. Therefore, the k4, Value should be chosen such that there

are 20 cells per wavelength to maximize the separation between the ABCs and the radiating

elements, while maintaining adequate spatial sampling.
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4.2.2.2.6 Stretched Region Increase

Since increased separation of the boundary from the radiator yields more accurate results,

including more cells within the stretched region is beneficial. This is illustrated in Figure 4-28 for

the 100um infinite line source problem discussed in 4.2.2.2.4, with the time step maintained at

CFLN=100:

E, (V/m)

1

0 = \/ \(5
Lo s
2

40x40x10, 12-cell 40x40x10, 14-cell 50x50x10, 20-cell
Error: 10.1% Error: 8.3% Error: 7.2%

Analytical

Figure 4-28: Effect of larger stretched regions on accuracy for the infinite line source

problem on a 100um cubic simulation space.

As seen in the figure, larger stretched regions increase the accuracy but with diminishing

returns. For example, going from a 12 to 14 cell stretched region increases the amplitude

accuracy from 10.1% to 8.3%, but further increasing the stretched region to 20-cells only

increases the accuracy to 7.2%. Also note that, to achieve the 20-cell stretched region, the

number of in-plane cells is increased from 40 to 50, adding computational load. The utilization of
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a 14-cell stretched region therefore is seen to strike a balance between accuracy and
computational efficiency for this case.
4.2.2.2.7 Time Step Reduction Study

Perhaps the most intuitive way to improve results within an electrically small simulation

space is to reduce the time step. This is achieved within the ADI-FDTD algorithm by reducing

the CFLN factor.

5

Time (s)

2.0
x 1078

E, (V/m)

CFLN=100 = CFLN=50 CFLN=25 e CFLN=10
Error: 10.1% Error: 7.2% Error: 3.3% Error: 2.1%

Analytical

Figure 4-29: Effect of time step reduction on the accuracy of the infinite line source

simulations.

Figure 4-29 shows the influence of for different CLFN (i.e. 100, 50, 25 & 10) as compared to
the analytical results. As can be seen, for each time step reduction a corresponding

improvement in accuracy is achieved with diminishing returns smaller than CFLN=25 for this

case.
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4.2.2.2.8 PML Stretched Region
Figure 4-30 shows results for a 14-cell stretched PML region (see Figure 4-12 where
stretching is now included as well) where the reflection error is set to e~1¢, a cubic interpolation

scheme is used (m=3), and k4, = 15,000 stretching is applied.

E
— 2
L'QN
-5
Analytical CPMLCFLN=100 =——CPML CFLN=50 CFLN=100 ——CFLN=10
Error: 5.2% Error: 1.2% Error: 8.3% Error: 2.1%

Figure 4-30: Comparison of analytical, stretched, and stretched PML results for E, for the

infinite electric line source problem.

At CFLN=100, the stretched PML solution (CPML) exhibits a 5.2% amplitude error, an
improvement over the 8.3% error demonstrated when only stretching is used at this time step.
Also, with removal of the MUR1 ABCs the low amplitude noise is eliminated in the CPML
solution. The most accurate results exhibited by a scheme that utilizes stretching only (2.1%)
was shown in Figure 4-29 when CFLN=10 was used. This particular result is repeated in Figure

4-30 (see green line) in order to compare to the CPML solution with CFLN=50, which displayed

241

Time (s)

x 1078



an error of 1.2%. Therefore, including PML layers within a stretching scheme improves the
accuracy of results even while utilizing larger time steps.
4.2.2.2.9 CPML w/ Pre-Stretched Regions

Since the PML layers include a fictitious (non-physical) loss the fields within the lossy layers
are also fictitious and only the interior nodes contain true near field data which may be used to
analyze antenna performance. It can be beneficial then to include a real stretch within the
interior nodes, prior to introducing fictitious PML loss, to increase the size of the interior space
without increasing computational load. Unfortunately, a degradation of accuracy occurs when
the real stretch (k) factor is not equal to 1 at the onset of the PML layers. Therefore, the interior
nodes must be stretched then compressed back to the original size within the interior as shown

in Figure 4-31:

Interior Nodes | PML Layers
|

Radiator

Ay

Stretchless /Lossless

Stretch | Stretch
Increasing| Reducing
I

Stretching
+ Loss

PEC

Figure 4-31: Interior stretching scheme adjacent to PML layers.

The pre-stretching scheme shown in Figure 4-32 is utilized for the infinite line source, where
the PML scheme is the same as that utilized in the previous section (i.e., 14 cells, kyax =
15,000). Within Figure 4-32 the numbers between the nodes are the kappa (real stretch) factors,
the degree of stretching of the cell with respect to the original 2.5um. As such, the 2" node from

the line source is now the observation point which is 10um away.
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Figure 4-32: Infinite line source pre-stretching scheme.

This scheme will exhibit lower accuracy than the standard stretched PML scheme without

interior stretching shown in Figure 4-12, but the accuracy is reasonable as shown in Figure

4-33:

5 AT
4 I“\ﬂ_-’: .............
a
3 ._ -I .“|
2 | - .';
Tl | I'a 5
= | b Time (s)
= 00— \/ k|
= 0 .5 | 1 2
-1 { o x1078
2 J | |
\ /
3 n /
4 \( J
-5
Analytical CFLN=50 Pre-Stretched CFLN=50 CFLN=100
Error: 1.2% Error: 3.91% Error: 5.2%

Figure 4-33: Comparison of analytical, stretched PML, and pre-stretched PML results for E,

for the infinite electric line source problem.
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As shown, a slight reduction in accuracy at the same time step occurs when pre-stretching
to an interior simulation space of over 3x the original size. This will be beneficial if a comparison
to experimental near field values is desired, as measurements will typically take place at
distances several times that of the geometric size of the radiator which governs the smallest
discretization size. Though this pre-stretching method is useful, it was not utilized during any of
the device simulations or comparisons performed in Chapter 5.
4.2.2.3 Infinite Mechatronic Line Source

If the infinite electric line currents (J,) of section 4.2.2.2 are replaced by an infinite line of
normal stresses T,, which are collocated in space and time (see Figure 4-34), then electric

fields will be generated if the piezoelectric coefficient d5% is not equal to zero.

» Z
| PEC
| X
f = 400MHz I 10um
1o = 75cm ¥ E, $100um
PE /‘ | Tzz {
dsz #0 ¢ 1 ] —— Observation Point
|
|
In — Plane e —— :IAz=10mn
PMLs
& PEC % 100um

Ax = Ay = 2.5um

Figure 4-34: Infinite Mechatronic line source.

If the magnitude of the mechanically driven current and the electrically driven current is
identical, then the magnitude of the generated electric fields will also be identical:
V2l = |d55 T | (4.5)
This is demonstrated in Figure 4-35, where E, results from section 4.2.2.2 were also

included for comparison.
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Figure 4-35: Mechatronic and electric infinite line source comparison.

As shown, when utilizing the same time step, identical results for E, are seen whether
driving radiation via electric source current or via the stress induced direct piezoelectric effect.
4.2.2.4 Infinite Magnetic Line Source

As mentioned in section 3.8.5.4, PMC boundaries require some special treatment within the
ADI-FDTD framework with implicit electric field update, and boundaries aligned with electrical
interfaces. To verify that the PMC boundaries are operating properly an infinite magnetic line
source is leveraged, in contrast to the infinite electric line source utilized in previous sections. In
this new model the approach illustrated in Figure 4-5b was simulated under the same input
frequency, time step, spatial discretization, etc. of the infinite electric line source investigated in

the previous section with the magnitude of the input current equal to I, = 377mA.
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Figure 4-36: 400MHz Infinite magnetic line source within a 100um cubic simulation space.

H, is measured 10um away from the source.

A 14-cell PEC-backed stretched PML region surrounds the line source in the xy-plane (see
Figure 4-10 and Figure 4-12) with a reflection error of e =16, maximum stretch of 15,000, and an
m-factor of 3. By duality theorem, the steady state time domain solution of the z-directed

magnetic field (H,) for a sinusoidal input is as follows:

WEg

H,(p,t) = Re{ﬁzej‘“t} =—I, e []O(kp) cos (wt - %) + Yy (kp)sin (wt — g)] (4.6a)

Where p is the cylindrical radial coordinate, which originates at the line source, w is the
circular excitation frequency, k is the wavenumber, J,/Y, are Bessel functions of the 152" kind
respectively. This may be multiplied by a Gaussian pulse for comparison with a modulated
Gaussian pulse simulation:

2
(g

H,(p,t) = —I, ? []O(kp) cos (wt - %) + Yy (kp)sin (a)t — %)] e f

Where f is the input frequency and At is the time sampling. In this section, the observation

point is A5 /75,000 away and equation (4.6b) may be used for comparison with modulated
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Gaussian pulse excited simulations. The results, comparing the CPML-ADI simulation to the

analytical solution for various time steps, are plotted in Figure 4-37:
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Figure 4-37: Infinite magnetic line source results comparison for 100um simulation space

with time step reduction.

The amplitude and phase error in the numerical solution is reduced with progressively
smaller time steps. The zoomed in image within Figure 4-37 reveals slight error in phase within
the CFLN=50 and CFLN=25 simulations but with low amplitude error (6.1% and 3.5%
respectively).
4.2.2.5 Conclusions from Line Source Results

To summarize this section 4.2.2, both infinite line source cases shown in Figure 4-5 have
been investigated on a simulation space where the smallest spatial discretization is 15™/3e5.
This was done to verify that the CPML method is capable of accurately modeling
electrodynamics problems operating on computational volumes originally on the order of

AEM[1e4 in size, as these are the length scales modelers operate on when simulating
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mechanical resonance-based antennas. The results demonstrate that errors as low as 1.2%
may be achieved when the time step is 50x the stability requirement and the maximal mesh
grading is 15e3 (see Figure 4-30) by utilizing the CPML method with stretched PML layers
placed 15M/5e4 away from the source.
4.2.3 Near to Far-Field Algorithm Check

The near to far-field transformation is a string of code within the post-processing script that
needs verification testing. This is performed by utilizing the analytical solution of the infinitesimal
dipole (i.e., no numerical values are utilized). This allows the verification of the NTFF transform
to occur separately from the ADI-FDTD algorithm, easing the debugging process. The phasor
electric fields for the dipole solution in spherical coordinates, which apply to either the near or

far-field, are as follows [25][26]:

K _ Iplcost 1 —_ipr
r(1,0,0) = - 1+—]e (4.7a)

o . Blylsind 1
Eg(r,0,0) = jo 3

1 —jpr

4nr
Ey(r,0,0) =0 (4.7c)
Where 1, is the free space impedance, I, is the magnitude of the current, g is the
wavenumber, and [ is the length in which the current acts which should be at least an order of
magnitude smaller than the wavelength so that the dipole may be considered infinitesimal. Also,
r, 8, and @ are the spherical coordinates centered at the dipole point source. In the far-field, the

analytical solution is determined by eliminating the »=2 and =3 terms from the general solution:

E- =0 (4.8a)
g Iylsinf .
Eg = jno ﬁ—im e IBT (4.8b)

These far-field values produce the following radiation intensity and radiated power:
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U, 8) = 2T_770 (|Eo(r,0,0)[" + |Es(r,0,0)]"] = zr_no [Re{Eo)’ + Im{Eq)]

r? I,lsin@sinBry> I,lsinfcosBr\>
= 2_[(% u) + (Tlo u) ] (4.9)
No 4ntr 4mtr
Mo (ﬁlolsine)z
) 4t
2T T 2 .7 2
. No (Blol .3 no(BloD)
= = — | — = —— 4.10
Praa J;) fo Usin0d0do = 2n 5 (4n) J; sin® 0 do o ( )

Note that the radiation intensity is independent of @ and has sin? 8 dependency, which is the
famous “donut” omnidirectional pattern characteristic of dipoles. The NTFF algorithm radiation
intensity and radiated power results are compared to equations (4.9) and (4.10).

The NTFF algorithm accepts near field time-domain data (non-phasor) in rectangular
coordinates, and then transforms into far-field phasor data in spherical coordinates. Therefore, it
is hecessary to convert into rectangular coordinates and to determine the instantaneous values.
To convert equations (4.7) to steady state time domain expressions multiply by e/“t and take

the real component of the product:

E(r,0,0,t) = Re{E(r,0,0)e/*t}

_ Iylcos6 B L (wt—Fr)
E.(r,6,0,t) = Re {770 T (1 ﬁr) el }
E(r 8 _ Iplcos6 1 411
+(1r,0,0,t) = U v—— cos(wt — Br) + Esm(wt — pr) (4.11a)
B Blylsing i (4 1 (wt—pr)
Eg(r,6,0,t) = Re {770 — (,[)’r +j (1 (BT)2)> e’
_ PBlplsing [ 1 1 .

Eg (r,0,0,t) = No W(E cos(wt — ﬁ?") + (W - 1) sin(wt — ﬁ?")) (4.11b)

Which may be re-written in rectangular coordinates via the following transformation:
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Ey sinfcos® cosOcos® —sin@] /E,
Ey | = [sin@sin@ cos@sin®  cos® (E9>
E, cosf —sind 0 0
=T %{7sin6cisz®C059 (cos((ut —Br) + %sin(wt — Br))
(4.12a)
cosOcosPsind ]
BT (Ecos(wt Br) + <(ﬂ 2~ )sm(wt - ﬁr))}
y = no%{sin@siﬂ <cos(wt —Br) + %sin(wt - ﬁr))
(4.12b)
cos@sin@sind )
ﬁT(E cos(wt — Br) + ((ﬁ 2~ )sm(wt — ,87"))}
=10 ;0; {CO: 6 (cos(wt —Br) + [),ism(wt - ﬁr))
(4.12¢)

_ ﬁSi;ie (%cos(a)t pr) + ((ﬁ )2 >Sin(wt - ﬁr))}

Where the spherical coordinates may be written in terms of rectangular coordinates as

follows:

X
acos <— , y=0
z VxZ + 2)
r=4x%+y?+2z2 0 = acos (;), Q= x N Y (4.12d)
—acos (—), y<0
VX% + y?
Equations (4.12) describe the electric field from an infinitesimal dipole in the near or far-field.

Similarly, the magnetic fields induced by an electric infinitesimal dipole are as follows:

H.(r,0,0) = Hy(r,6,0) = 0 (4.13a/b)
,BIOISLnG 1 _ipr
Ho(r,0,8) = j——— (1 = ) (4.13c)

The time domain equivalent is:

H(r,0,0,t) = Re{H(r, o, (Z))ej“)t}
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Iylsind 1 .
Hy(r,6,0,t) = Re {jﬁ"— (1 + —) ef(wt-ﬁﬂ}

4nr jpr
Hy( Mt)_momne[1 (wt — Br) — sin(wt )] 414
0(r6,0,t) =— — [)’TCOS wt — Br) — sin(wt — Br (4.14)
Which may be re-written in rectangular coordinates:
Hy sinfcos@® cosOcos® —sin@] /0
Hy | = |sin0sin® cosOsin® cos® 0
H, cosf —sinf 0 Hg
_ Blylsin@sinb [ 1 ) ]
H, = — yy— Br cos(wt — Br) — sin(wt — Br) (4.15a)
Ho— BlylcosPsind [ 1 (wt ) — sin(ot )] 4.15b
y = - br cos(wt — fr) — sin(wt — Br (4.15b)
H,=0 (4.15¢)

The time dependent EM fields (4.12 and 4.15) are then converted to phasors via a Fast
Fourier Transform (FFT) which is embedded in the NTFF transformation algorithm. Of course,
the FFT could have been bypassed by utilizing the original phasor analytical solutions (4.7 and
4.13), but this is a luxury that is not afforded to the time domain data that comes from the ADI-
FDTD simulation. Therefore, validation of the NTFF code requires that the FFT be performed on
rectilinear data.

Three dipole cases are run for this validation effort. In the first, the dipole is applied at the
center of the simulation space. In the second, the dipole is bisected by an xy-planar PEC,
requiring imaged EM fields to be used to perform the NTFF transform. In the third case, the
dipole is placed in a corner with the adjacent boundaries tangential to the dipole being set to
PMCs and the adjacent boundary normal to the dipole set to a PEC. These cases are shown in

Figure 4-38:
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Figure 4-38: NTFF validation cases, (a) dipole applied at the center, (b) dipole bisected via
orthogonal PEC such that half the fields used for the transformation are imaged, (c) Dipole cut
into eight components using orthogonal PEC and two tangential PMCs such that 7/8ths of the

fields used for the transformation are imaged. Case (c) is referred to as the “corner dipole”.

Due to field staggering within the divergence free Yee grid, the actual location of the
excitation can vary by half a cell with respect to what is shown in Figure 4-38.
4.2.3.1 Centered Dipole

First, a 400MHz 1mA harmonic source is input along length | = Ax = Ay = Az = A=
1.25um = 2™ /600,000 at the center of the simulation space. The electrically tiny discretization
is roughly equal to the spatial sampling required of a mechanical wave at the same frequency
(=~ AMech 120). Since the EM fields are taken from the analytical solution (no simulation
performed) the time step is immaterial as long as enough samples are taken per period to
acquire clean frequency data (20 samples per period herein). A Huygen box with sides of length
2a is placed around the dipole and various values for a are investigated as shown in Figure

4-39:
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Figure 4-39: Huygen boxes around a dipole at the center of the simulation space.

The radiation intensity calculated via NTFF transformation using EM fields at each Huygen
box were compared to the analytical solution (4.9) at the excitation frequency as shown in
Figure 4-40. The radiation pattern is omnidirectional about the xy-plane (no ¢ dependence),

therefore only one planar cut is reported herein.
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Figure 4-40: Radiation Intensity comparison to the analytical solution for multiple Huygens’s

boxes with the dipole at the center of the simulation space.

The closest Huygen’s box is the only one that exhibits an undue error which is seemingly

caused by the fact that the dipole excitation contacts only this Huygen’s box. This will be further

hinted at in the bisected and corner dipole cases where the Huygen’s boxes used never touch

the radiator and undue error (>10%) is not seen. Examining Figure 4-40 NTFF results from all

the other Huygen’s boxes yield acceptable results. Observing the zoomed in image in Figure

4-40, the a = 3A, 4A, 6A, and 8A cases are all virtually identical (<5% variance) and in excellent

agreement with the analytical solution (<5% error). Therefore, when performing the NTFF

transform, the modeler need only verify that two different Huygen’s boxes produce virtually

identical results to verify convergence and accuracy. The radiated power at the excitation

frequency from the NTFF transform is 1.098e-15 Watts, which corresponds to a 0.16% error

with respect to the analytical solution.
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4.2.3.2 Dipole Bisected by Orthogonal PEC

Utilizing again the 400MHz 1mA harmonic source input along length [ = Ax = Ay = Az = A=
1.25um = 2™ /600,000 from the previous section, the excitation is now applied at the bottom of
the simulation space (z = Az/2 =~ 0) and bisected by an orthogonal PEC as shown in Figure
4-45. As mentioned in the figure, the bisecting PEC may be a symmetry boundary condition, or
it may represent a physical ground plane. Regardless, the NTFF algorithm maps the fields
within the simulation space to imaged fields below the PEC when performing the transformation.
The results need not be modified if the PEC represents a symmetry boundary condition. In the
case of a physical ground plane, the radiation intensity of the bottom hemisphere must be

zeroed out, and the radiated power will be half.

6A

4A
3A
2A
A

)

PEC (Ground Plane or Symmetry)

Dipole

Figure 4-41: Huygen boxes around a dipole bisected by an orthogonal PEC.

The radiation intensity, calculated via NTFF transformation using EM fields and imaged EM
fields at each Huygen box, was compared to the analytical solution (4.9) at the excitation
frequency as shown in Figure 4-42. The radiation pattern is omnidirectional about the xy-plane

(no @ dependence), therefore only one planar cut is reported herein.
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Figure 4-42: Radiation Intensity comparison to the analytical solution for multiple Huygen’s

boxes with the dipole bisected by an orthogonal PEC.

In this case, none of the Huygen'’s boxes contact the excitation and therefore all cases have
error within tighter margins (<30%). Observing the zoomed in image in Figure 4-46, the a = 34,
4A, 67, and 8A cases are all virtually identical (<5% variance) and in excellent agreement with
the analytical solution (<5% error). Therefore, when performing the NTFF transform, the
modeler need only verify that two different Huygen’s boxes produce virtually identical results to
verify convergence and accuracy. The radiated power at the excitation frequency from the NTFF
transform is 1.098e-15 Watts, which corresponds to a 0.15% error with respect to the analytical
solution.
4.2.3.3 Corner Dipole

Utilizing again the 400MHz 1mA harmonic source input along length [ = Ax = Ay = Az = A=
1.25um = 25M /600,000 from the previous section, the excitation is now applied at the corner of

the simulation space (x = Ax/2 = 0, y = Ay/2 = 0, and z = 0) as shown in Figure 4-43:
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Figure 4-43: Huygen boxes around a dipole at the corner of the simulation space.

The radiation intensity calculated via NTFF transformation using EM fields and imaged EM
fields at each Huygen box were compared to the analytical solution (4.9) at the excitation
frequency as shown in Figure 4-44. The radiation pattern is omnidirectional about the xy-plane

(no ® dependence), therefore only one cut is reported herein.
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Figure 4-44: Corner Dipole Radiation Intensity comparison to the analytical solution for

multiple Huygen’s boxes.

In this case, none of the Huygen'’s boxes contact the excitation and therefore all cases have
error within tighter margins (<15%). Observing the zoomed in image in Figure 4-44, the results
from all but the smallest box are virtually identical (<5% variance) and in excellent agreement
with the analytical solution (<5% error). Therefore, when performing the NTFF transform, the
modeler need only verify that two different Huygen’s boxes produce virtually identical results to
verify convergence and accuracy. The radiated power at the excitation frequency from the NTFF
transform is 1.097e-15 Watts, which corresponds to a 0.05% error with respect to the analytical
solution.

4.2.4 Infinitesimal Dipoles
A pivotal electrodynamic problem is the infinitesimal dipole case which herein is simulated to

verify agreement with the ADI-FDTD code.
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4.2.4.1 Far-Field Electric Dipole

Consider a simulation space that is cubic, with edge lengths equal to 3x the free space EM
wavelength as shown in Figure 4-45. The z-directed electric field will be compared to the
analytical dipole solution at the observation point which is located a distance a from the dipole in

both the x and y directions:

Jz

Dipole 2
Observation (,-
\
Point \éEz ?g) /
a ’ X
+
ABC

Figure 4-45: Geometry for infinitesimal dipole problem. A single quadrant of an xy-planar cut
that bisects the simulation space is shown. The dipole and the observation point both lie on this

plane. 1% order MUR1 absorbing boundary conditions are used on all six boundary planes.

The general analytical solution for the infinitesimal dipole, which applies both in the near and
far-field, was written in the NTFF validation section and is repeated here in rectangular

coordinates:

E,=ng %{M (cos(wt —pr) + %sin(wt — [)’7‘))
(4.12a)
cosfcosPsinf ( 1 1 )
BT (E cos(wt — pr) + (W — 1) sin(wt — Br))}
E, = nogiw (cos(wt —Br)+ [%sin(a)t — ﬁr))
(4.12b)
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Ipl (cos? 6
Br

z=TM05 12 <cos(a)t - pr) + isin(wt - ﬁr)>
(4.12c)

2
- B 51r21r9 <% cos(wt — pr) + ((/;%)2 - 1) sin(wt = ﬁr))}

X
acos <— , y=0
z JxZ + 2)
r=+x%+y?+22 0 = acos (;), Q= N Y (4.12d)
—acos <—>, y<0
VX% + y?
These equations describe the electric field from an infinitesimal dipole in the near or far-field.

Similarly, the magnetic fields induced by an electric infinitesimal dipole are as follows:

H,=— W [% cos(wt — Br) — sin(wt — ﬂr)] (4.15a)
Iylcos@sing [ 1

H, = MC:% [ﬁ_r cos(wt — Br) — sin(wt — ,b’r)] (4.15b)

H,=0 (4.15c)

A comparison between the analytical and numerical solutions at a = 1/4 (see Figure 4-45) is
presented in Figure 4-46. The input frequency is 400MHz and the magnitude of the input current

is ImA.
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Figure 4-46: Infinitesimal dipole results comparison for E, atx =y = a = 1/4.

Figure 4-46 shows good agreement between the ADI-FDTD numerical solution and the
analytical solution. As the observation point is moved closer to the MUR1 boundary conditions
(a = 31/4) a degradation of results manifests as spurious ripples after the pulse dies out as

shown in Figure 4-56:
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Figure 4-47: Infinitesimal dipole results comparison for E, at x = y = a = 31/4 (halfway
between the radiator and the MUR1 ABCs). Spurious ripples after the modulated Gaussian

pulse dies out are observed due to the close proximity of the MUR1 ABCs.

To eliminate the ripples, 14-cell wide perfectly matched layer regions may be added directly
adjacent to the boundaries which are switched from MUR1 ABCs to PECs. In this model the

reflection error is set to e~%* within the lossy PML layers and the loss is increased in cubic

fashion (m=3) yielding the results of Figure 4-48:
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Figure 4-48: Infinitesimal dipole results comparison for E, atx =y = a = 34/4. This is
halfway between the radiator and the PECs and directly adjacent to the onset of the PML layers.
Spurious ripples after the modulated Gaussian pulse, seen previously in Figure 4-56, are no

longer present.

Figure 4-48 reveals that spurious numerical artifacts may be eliminated by using PEC-
backed PML layers. All EM fields within these PML layers are non-physical however, so PML
layers should not be used when physical near-fields are to be investigated at distances an order
of magnitude of the dimensions of the radiator away or more (i.e., when validation with
experimental near-field data is performed). In these cases, ABC backed stretched regions are
preferable.
4.2.4.2 Far-Field Mechatronic Dipole

If the point current source (J,) of the previous section 4.2.4.1 is substituted by a point stress
source (T,,), identical electric fields will be created if the following relation holds:

Ul = |dE5 T, (4.5)

Where d%f is the piezoelectric coefficient coupling normal stresses in the z-direction to the

parallel electric fields (assuming the material is poled in the z-direction). This is demonstrated in
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Figure 4-49, where the stress input is compared to both the source current input case and the
analytical solution with excellent agreement observed.

r = 3V2A/4
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Figure 4-49: Mechatronic Dipole E, time history comparison for r = 3v/24/2. The analytical,

source current, and stress input cases all have the same 1mA effective current.

A logarithmic plot of the electric field magnitude versus distance r is below in Figure 4-50:
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Figure 4-50: Mechatronic Dipole ET*** vs. r comparison. The analytical, source current, and

stress input cases all have the same 1mA effective current.

Errors begin to increase closer to the radiator due to geometric issues as the length Az over
which the electric current acts becomes roughly equal to the distance r of the measurement.

4.2.4.3 Far-Field Magnetic and Mechnetic Dipole

If the point current source (J,) of the previous section 4.2.4.1 is substituted by a point
magnetic current source (M,) then a magnetic dipole is achieved. The magnetic current will be

present in Faraday’s law by definition and the ADI forcing vector by substitution. The analytical

solution is acquired via duality theorem.

12

pr

I,! (cos?6
No2T

(cos(wt —pr) + isin(a)t - ﬁr))
(4.16)

sin?0 (1 1 )
- B > ﬁ—rcos(a)t —Br) + (W — 1) sin(wt — Br)

Where I, is the magnitude of the fictional magnetic current (I,,, = M,AxAy), n, Is the free

space impedance, and g is the wavenumber. Note that the magnitude of H, will equal E, from

the 1mA electric dipole case of section 4.2.4.1 if:
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u
Im =n8lo = E—z(lmA) =142V (4.17)

Additionally, a point stress source (T,,), will create identical magnetic fields if the following

relation holds:
| M| = |d53'T,,| (4.18)
Where d} is the piezomagnetic coefficient coupling normal stresses in the z-direction to
the parallel magnetic fields (assuming the material is poled in the z-direction). The stress rate

may be input into the code through the magnetic constitutive relation:

1 1 PM 1
1 1 = Atdss . n+s
H Z=pr+— (B2 —pp|-—33¢""2 (4.19a)
z to \ * 21 7
1 1 PM 1
11 = Atd33 . n+s
H;l+1 — H:+2 +_(BZTL+1 _ BZn+2> — > 33 TZZ 2 (419b)
Ho Ko

Since the stress is assumed to be uniform, the stress gradient terms appearing in the ADI
forcing vector will be zero. Thus, the mechnetic dipole excites magnetic fields through a
piezomagnetic current term that appears in the constitutive relation rather than a magnetic
current term in Faraday’s law. Fantastic agreement is demonstrated in Figure 4-51, where the

stress input is compared to both the magnetic source current input case and the analytical

solution at observation distance r = 3v21/4.
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Figure 4-51: Mechnetic Dipole H, time history comparison for r = 3v/24/2. The analytical,

magnetic source, and stress input cases all have the same 142V effective voltage.

A logarithmic plot of the magnetic field magnitude versus distance r is below in Figure 4-52:

1000

31/2
\ M,,T,A -
\ H
‘ r e ‘2“\
< \
z \ PML Y
£ 100 ¥
= A Y
s ~
- ™
= e Analytical .
gy _
ADI Mz_in e S
ADI Tzz_in e -
10
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8
r(m)

Figure 4-52: Mechnetic Dipole H*** vs. r comparison. The analytical, magnetic source, and

stress input cases all have the same 142V effective voltage.

4.2.4.4 Corner Dipole Case
Mechanical antennas are electrically small enough that many behave as infinitesimal

dipoles, especially those with dipole-like geometries (e.g., the SLAC piezoelectric antenna
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[152]). As such, symmetry conditions may be leveraged to analyze the performance of such

antennas with a computational load reduced by a factor of 8 as shown in Figure 4-53 for a z-

directed excitation. The dipole (point source) is applied at the corner of the simulation space

with the two adjacent tangential boundaries set to PMCs generating 3 parallel virtual sources as

shown in Figure 4-53(b). The adjacent normal boundary is set to a PEC, generating another 4

virtual currents. These 8 sources (1 real, 7 virtual) allow for the dipole to be modelled using an

eighth of the computational space.
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Figure 4-53: Corner dipole case where only the corner cell is represented. Since PMC

boundaries truncate half a cell inward, an “empty region” will be present where all fields are not

updated. This region does not affect the simulation results. (a) 2D representation showing the

current input into the simulation (2P

showing the spatial location of the effective excitation (J,

Eff ectwe)

) and virtual currents (JYirtwal) (p) 3D representation

The dipole will now effectively act half a cell staggered in the xy-plane and aligned with the

cell interface in the z-direction (i.e., collocated with the H, field) as shown in Figure 4-53(b).
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Since this effective point excitation is the amalgamation of the other 8 sources, the input must
be set to an eighth of the intended value (e.qg., if a 1mA is to be studied, then input 1/8mA at the
corner). The corner dipole continues to act over the length Az and the area AxAy.
4.2.4.4.1 Far-Field Corner Dipole Case

A comparison between the analytical solution and the corner dipole simulation is made for
x =y =a = 14.51/20 in Figure 4-54 where good agreement is demonstrated. The excitation is
1mA and 400MHz with the discretization set to A= 1/20 and PML layers added as in the
previous case (see 4.2.4.1) except now only a 30x30x30 cell simulation space is necessary

(due to symmetry conditions of Figure 4-53).
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Figure 4-54: Corner infinitesimal dipole case results comparison at x =y = a = 14.51/20

with r = \/x% + y2.

A comparison of the electric field magnitude versus distance r is below in Figure 4-55:
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Figure 4-55: Corner dipole case comparison of E, vs. r between the analytical solution and

the ADI-FDTD simulation.

Errors begin to increase closer to the radiator due to geometric issues as the length Az over
which the electric current acts becomes roughly equal to the distance r of the measurement.
Regardless, both near-field and far-field points are observed to agree with the analytical
solution.
4.2.4.4.2 Progressive Shrink Study for Corner Dipole

The corner dipole case will now be validated on progressively shrinking simulation spaces
such that the finest discretization is on the order of 1/20 of the mechanical wavelength at the
excitation frequency. The source is a 400MHz 1mA infinitesimal dipole. Consider the geometry
of Figure 4-56 where the symmetry boundaries are as presented in section 4.2.4.4. the other
three boundaries are MUR1 ABCs. Adjacent to these ABCs are 16-cell stretched regions with

k™% = 30 and m = 3, such that most of the computational space is stretched.
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Figure 4-56: 400MHz 1mA corner dipole case within a 20 x 20 x 20 cell cubic simulation

space. E, is measured at a distance r away from the effective source.

The goal is to measure EM fields at distances several times larger than the finest
discretization (A,,;) which in multiferroic antenna simulations will be related to the mechanical
wavelength as A, < Amecn/20. This is crucial when comparisons are to be made with
experimental data which is often taken at distances orders of magnitude larger than the physical
dimensions of the mechanical antenna (see [152]). As such, most of the observation points are
within the stretched region and therefore MUR1 ABCs were used instead PEC-backed PMLs.
Inclusion of non-physical PML losses within this stretched region would thus produce erroneous
results at such observation points. The modeler may choose instead to retain both the boundary
adjacent PMLs and the ability to make comparisons with experimental results by including a
purely stretched region interior to the outer PML region and this methodology will be discussed
later in this section.

The numerical results with CFLN=1 for E, vs. r are compared to the analytical solution in

