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This thesis presents advances in computational modelling, analysis and techniques that can

be used to study mission critical topics in fusion. Energetic particles is an important field of

research since information about the plasma state can be encoded in the fast-ion distribution

function. Energetic ions can resonate with plasma waves in a fusion device, degrade plasma

performance or confinement, and damage the inner walls of the vessel. There is a need

in the community to better understand the fast-ion distribution function, improve plasma

performance, and mitigate unwanted impacts from wave-particle interactions.

In chapter 2, the weight function for 3-MeV protons produced in d(d,p)t fusion reactions

between a fast ion and a thermal deuteron is developed. The weight function W (X) is a

diagnostic sensitivity to phase-space variables X that relates the measured signal C to the

distribution function F (X) through the equation C =
∫
W (X)F (X) dX. The algorithm

developed here accounts for the complications associated with the curved “sightline” tra-

jectories of the escaping protons. Time-reversed orbits are initially calculated to get the

effective solid angles and sightlines for the range of incident proton velocity vectors. Syn-

thetic diagnostic code FIDASIM [Plasma Phys. Cont. Fusion 62 (2020) 105008] is upgraded

to accept these inputs, then calculate the reactivity averaged over the thermal distribution

of the “target” deuterons and the probability that a fast ion of specified energy and pitch has
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a gyroangle that is consistent with the kinematic equations along each of the sightlines. The

outputs of this upgraded version of FIDADSIM are verified using independent calculations

on the Mega Amp Spherical Tokamak.

In chapter 3, a conceptual design to diagnose the lifetime of spin polarized fusion experiments

using existing port geometries is developed at DIII-D. The cross sections for the D-T and

D-3He fusion reactions are increased by as much as 50% if the fuel remains spin polarized

parallel to the magnetic field in magnetically confined fusion experiments. The goal in this

chapter is to assess the feasibility of lifetime measurements of spin polarization, in magnetic

fusion relevant conditions, on the DIII-D tokamak using relative changes in charged fusion

product (CFP) loss measurements that depend upon the differential fusion cross section

dσ/dΩ. Relative measurements that capture changes in the escaping CFP pitch, poloidal,

and energy distributions are studied in two realistic TRANSP calculated plasma scenarios

(high Ti and beam-plasma). Ideal CFP detection, a realistic assessment of CFP signals and

reduced chi-squared χ2
r calculations show polarization lifetime measurements are feasible for

the thermonuclear (high Ti) scenario.

In chapter 4, Machine Learning (ML) models are developed to automatically detect Alfvén

eigenmodes (AE) and these models achieve high performance (True Positive Rate = 90%

and False Positive Rate = 14%). ML-based models can be useful for real-time detection and

control of AEs in steady-state plasma scenarios. These ML systems can be implemented into

control algorithms that drive actuators for mitigation of unwanted AE impacts. Using labels

created from a curated database [Heidbrink, et al., Nucl. Fusion ‘20], Machine Learning-

based systems are trained using single chord and crosspower spectrograms to predict the

presence of 5 AEs (EAE, TAE, RSAE, BAE and LFM). The advantages of using the CO2

interferometer to detect AEs, and the results from a comparison between inputs (single chord

and crosspower spectrograms) and another comparison between two different ML models

(Reservoir Computing Network and Long Short-Term Memory Network) are covered here.
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Chapter 1

Introduction

Energy is important to the livelihood of developed and developing nations. Basic needs such

as warm food, clean water and safe shelter all require energy. In the case of an emergency,

a charged mobile phone or medical device can save one’s life. Generally speaking, the

quality of life substantially improves with more energy worldwide, see Panel (a) of Figure 1.1.

However, energy produced by burning oil, coal, and gas directly exacerbates extreme climate

change since large quantities of emitted carbon dioxide (CO2) get trapped in our atmosphere.

Global warming, ice melt and rising sea levels are hindering the natural development of our

ecosystems. Panel (b) of Figure 1.1 shows that the Human Development Index increases at

the cost of more pollution to the earth’s atmosphere. Alternative energy sources like solar,

wind or hydroelectric are better, but these all depend upon environmental stimulus and

intermittent weather conditions. There is a need for a fundamentally new source of energy

that is clean, abundant and sustainable.
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Figure 1.1: The Human Development Index (HDI) [5] is a value that considers three param-
eters: 1) a long-healthy life, 2) being knowledgeable, and 3) standard of living. There is a
strong positive correlation between energy use per person and HDI (panel a). However, CO2

emissions similarly increase and cause harm to the planet (panel b). Figures are adapted
from [6].
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1.1 Fusion Energy

Nuclear power can be produced from fission or fusion reactions. Although naming looks a

bit similar and both reactions are exothermic, the two processes are very different from each

other. In a fission reaction, a heavy and unstable nucleus is split into two lighter nuclei and

can release energy in the process. The oppositie scenario takes place in a fusion reaction,

where two light nuclei combine to form a larger nucleus and release energy. Naturally

occurring fusion happens in the sun, where large gravitational fields pull nuclei into the core.

The nuclei have large amounts of kinetic energy to overcome the electrostatic repulsion and

get close enough such that the nuclear strong force activates a fusion reaction. The mass

difference between the reactants and products is converted into kinetic energy according to

Einstein’s formula:

E = mc2 (1.1)

where the speed of light c = 3 × 108m/s. This mass difference is significantly larger for

fusion reactions than it is for fission reactions, see Figure 1.2. Although fission power

plants currently contribute to electricity grids throughout the world, they are dangerous

since harmful weapons-grade radioactive waste is produced in the fuel rods. On the other

hand, the anticipated amount of activation in the materials is substantially less for fusion

power plants. The fusion fuel comes from water and abundantly safe materials found in

nature. Also, there is no risk of nuclear weapons proliferation or a power plant meltdown for

a fusion device. In a future where nuclear power plays an important role in the production

of clean energy, controlled nuclear fusion is the most promising candidate.
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Figure 1.2: The binding energy curve demonstrates energetically favorable regions for fusion
and fission reactions on the left and right of the nuclear stability region (blue dashed column),
respectively. Since deuterium, H2, and tritium, H3, are low on this curve, relatively larger
amounts of energy can be produced from fusion reactions between these two nuclei. Figure
is adapted from [7].
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There are many nuclear reactions that are useful for the production of fusion energy, and

the most promising three for magnetic confinement fusion are the following:

D + D −−→
50%

T (1.01MeV) + p (3.02MeV)

−−→
50%

3He (0.82MeV) + n (2.45MeV)

(1.2)

D + T −−−→
100%

α(3.5MeV) + n (14.1MeV) (1.3)

D + 3He −−−→
100%

α(3.6MeV) + p (14.7MeV), (1.4)

where D is deuterium (“heavy” hydrogen 2
1H), T is tritium (“heavier” hydrogen 2

1H), α is 4
2He,

n is a neutron, and p is a proton. From these equations, the most favorable is D-T fusion

(Equation 1.3) since it has the largest cross section at low energy and can produce large

amounts of energy. Figure 1.3 shows the reactivity averaged over a Maxwellian distribution

function for all three reactions.

The triple product is a useful metric of success in magnetic confinement fusion that indicates

the necessary conditions to reach “ignition” (self-sustaining plasma), and for a D-T plasma

it is defined as follows:

nTτE ≥ 3× 1021m−3keVs, (1.5)

where n is the ion density, T is the ion temperature and and τE is the energy confinement

time [8]. In an ignited state, the plasma temperature is sustained against energy losses by

the internal alpha self heating produced from the fusion reactions. Energetic lasers were

recently used to compress a small pellet of D-T fuel to the high temperatures and pressures

needed to achieve “ignition” at the National Ignition Facility [9]. The planned International

Thermonuclear Experimental Reactor (ITER) is a magnetic confinement fusion device and

projected to achieve ignition within the 10–20 keV range [10]. Parts of this thesis contributed

to the overall goal of reaching ignition in magnetic confinement fusion energy research.
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Figure 1.3: Reactivities for the three most promising fusion reactions calculated using Table
VII of [11]. D-T fusion can be 1–2 orders of magnitude higher than the other two reactions.
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1.2 Tokamaks

The word Tokamak is Russian and means toroidal apparatus for the production of controlled

nuclear fusion reactions in a high temperature plasma. Originally conceptualized by Soviet

physicists Igor Tamm and Adrei Sakharov in the 1950s [12], these devices are donut-shaped

vessels that produce strong magnetic fields and confine plasma. Some authors maintain

that spherically shaped devices are the leading candidate for a fusion nuclear science facility

(FNSF) [13], but conventional (D-shaped) tokamaks also play an important role in fusion

since they can withstand intense pressures and excel in plasma shaping capabilities.

The toroidal coordinate system (R, ϕ, Z) used to describe the plasma inside a tokamak is

shown in Figure 1.4. The major radius and elevation are denoted by R and Z, respectively.

The spatial coordinate (ϕ) that wraps around the axis of symmetry (R = 0) is positive in

a right-handed (thumbs up) orientation. The 2D coordinate system perpendicular to the

toroidal direction (cross-sections of the plasma) is the poloidal plane and characterized by

minor radius r and poloidal angle θ. The “origin” of the poloidal plane (R = R0) is the

torus axis and usually located in the core of the plasma.

External coils are used to produce the helical magnetic fields of a tokamak, see Figure 1.5.

The center stack and outer poloidal field coils produce an electric field in the plasma that can

drive current in the toroidal direction. This plasma current produces the poloidal magnetic

field. An array of coils that encircle the torus produces the toroidal magnetic field. The

resulting field is helical and winds around the vessel about the machine axis.
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Figure 1.4: A diagram of the toroidal coordinate system (R, ϕ, Z) commonly used to describe
tokamak plasmas. The poloidal radius and angle are denoted by r and θ. Also, R0 is the
location of the torus axis (usually aligns with the magnetic axis in fusion research). Figure
is from [14]
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Figure 1.5: A schematic design of the fields and currents of a fusion device. An array of coils
produces the toroidal field. The center stack and poloidal coils drive a plasma current that
produces a poloidal magnetic field. Both fields create a net helical field that wraps around
the device in the toroidal direction. Figure is from [15]
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To get a burning plasma, inductive and non-inductive methods are used to raise the tem-

perature. For inductive methods, currents are driven through the center stack of coils in the

middle of the device that produce a plasma current and raise the temperature via “ohmic”

heating. Inductive current drive requires a pulsed reactor system and can create issues as-

sociated with thermal cycling of the walls and a pulsing magnetic circuit design [16]. For

non-inductive methods, Neutral Beam Injection (NBI) or radio-frequency (RF) waves are

used to heat the plasma. Injected neutrals can thermalize and impart their energy onto the

bulk plasma. Resonant RF waves can change the cyclotron motion of bulk ions (or electrons)

and raise the temperature. Additionally, these non-inductive heating mechanisms can create

a small population of fast ions (a class of super-thermal particles) that are important to

study. Section 1.3 discusses them in greater detail.

The DIII-D National Fusion Facility is the largest operational tokamak in the United States.

There are eight NBI systems at DIII-D available for heating the plasma. Also, two types

of RF heating are available: ion cyclotron resonance heating (ICRH) and electron cyclotron

resonance heating (ECRH). Fast ion populations can be produced during DIII-D experiments

that utilize these heating mechanisms. DIII-D is a well diagnosed tokamak with several

fluctuation diagnostic systems that can be used to indirectly study the effects of fast-ion

driven instabilities. Diagnostic and plasma information could be relayed to actuators for

real-time control of AEs in DIII-D experiments [17–20]. Figure 1.6 shows a cutaway of the

DIII-D tokamak.
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Figure 1.6: A cutaway 3D view of the DIII-D tokamak. The toroidal and poloidal field coils
are located outside the walls of the vessel. The divertor region safely extracts lost particles.
Figure is from [21]
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1.3 Fast Ions

In order to get into the self-sustaining burning plasma regime, NBI and RF heating are

commonly used to raise the temperature of the plasma and produce fusion reactions. Fast

ions are a type of energetic particle born from these processes with the following gyroradius

and speed ordering [22]:

ρf ≫ ρi ≫ ρe

ve ≫ vf ≫ vi ,

(1.6)

where the subscripts f , i and e denote fast ion, thermal ion and thermal electron, respectively.

The energy of thermal ions can be between 1 keV to 10 keV, and fast ions are commonly

between 50 keV to 100 keV. In ITER-like burning plasmas, fast ions are expected to have

energies in the MeV range.

Distribution functions are used to describe thermal and fast ions. An arbitrary distribution

function, F , depends on position, r, and velocity, v (plus time, t). The background thermal

plasma is relatively simple since it can be described using a thermal Maxwellian distribution

function. On the other hand, the fast-ion distribution function is anisotropic without a

functional form. The spatial component of the fast-ion distribution function can be expressed

in cylindrical coordinates: radius R, elevation Z, and toroidal angle ϕ. Since tokamaks can

be considered an axisymmetric device, the toroidal angle is usually omitted and fast ions can

be described using only R and Z. The velocity component is usually described in the guiding

center coordinate system with respect to the magnetic field: energy E, pitch p = v∥/v, and

gyroangle γ. Since the gyroangle is assumed to be uniformly distributed over 0 to 2π, this

dimension is omitted and the fast-ion distribution function is reduced to four dimensions

(E, p,R, Z). Figure 1.7 shows an example of a fast-ion distribution function studied in

chapter 2.
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Poorly behaved fast ions can create issues for the prospects of an ignited burning plasma.

Fast ions can resonate with a class of plasma wave instabilities called Alfvén eigenmodes [23].

Resonant fast ions can transfer energy to the wave, drive the plasma unstable and degrade

energy confinement [24, 25]. Also, particle redistribution can expel fast ions from the plasma

[24–30] and damage the inner walls of the vessel [31, 32]. Uncontrolled fast ions transfer

less energy to the thermal plasma and deteriorate fusion performance. Understanding the

distribution of fast ions and their interactions with AEs is an important field of research.
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Figure 1.7: An example fast-ion distribution function for an actual Mega Amp Spherical
Tokamak (MAST) discharge #29908, which is studied in greater detail in section 2.6. Since
the distribution function is multi-dimensional, projections are plotted here for visualization
purposes. Panel (a) shows integration over spatial coordinates R and Z and projection onto
(E, p)-space. Panel (b) shows the fast-ion density (integration over velocity space).
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1.4 Outline

This dissertation is a computationally oriented project in energetic particle research primarily

focused on three areas:

• Development of 3 MeV proton weight functions (verified on MAST-U)

• Conceptual design of Spin Polarized Fusion Experiments at DIII-D

• Machine learning-based classification of fast-ion driven instabilities at DIII-D

Chapter 2 discusses the phase-space sensitivity of 3 MeV proton diagnostics and the imple-

mentation of the algorithm into the FIDASIM framework [33–35]. Chapter 3 uses the tools

developed for the 3 MeV proton weight calculations and generalizes them to produce Charged

Fusion Product (CFP) diagnostic signals for the conceptual design of spin polarized fusion

experiments at DIII-D. Chapter 4 builds Artificial Intelligence (AI) to detect AEs using CO2

Interferometer data and expert-made labels on DIII-D. The first four appendices provide

supplementary details for chapter 3 and discuss: A) numerical methods used to calculate

CFP signals in the high Ti scenario, B) the generalization of the velocity-space probability

factor originally calculated for beam-plasma signals produced from D-D reactions, C) the

implementation of the CFP algorithm in FIDASIM, and D) an alternative method to more

accurately assess uncertainties in the CFP calculations. Appendix E comments on Machine

Learning methods that were initially used to detect AEs prior to the training of Recurrent

Neural Networks discussed in chapter 4.
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Chapter 2

Velocity-space Weight Function of 3

MeV Protons

2.1 Introduction

The weight function plays a key role in Energetic Particle research. The weight function

W (X) describes the sensitivity to phase-space variables X of a diagnostic signal and is

used in forward modeling of expected signals [33], in tomographic inversions to infer the

distribution function [36] and for qualitative interpretation of experimental dependencies

[37]. Mathematically, W determines which portions of the energetic particle distribution

function F (X) contribute to a measured signal C,

C =

∫
W (X)F (X) dX. (2.1)

Weight functions have already been developed for many fast-ion diagnostics such as fast-ion

D-alpha (FIDA) [38, 39], collective Thomson scattering [40], neutral particle analyzer (NPA)

[33, 41], neutron [42–44], gamma-ray [45, 46] and fast-ion loss detector [47] diagnostics. In the
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present work, an algorithm to calculate W for a 3 MeV proton diagnostic such as the one at

MAST [48] is developed. To date, the majority of these weight functions were developed for

two-dimensional velocity space but recent work [39] utilizes three-dimensional orbit weight

functions.

In the ∼ 0.4 T field of MAST, the 3-MeV proton gyroradius is so large that ions escape

in (approximately) one half of a gyro-orbit. Although we specifically consider the MAST

diagnostic installation, the algorithm developed here applies equally to more complicated

situations, such as the 3-MeV proton orbits that were used to measure d-d spatial profiles

during lower hybrid and neutral beam heating in the 5 T Princeton Large Torus [49]. It

should also be noted that the basic algorithm applies to any escaping charged fusion reaction

product, including the 1.0 MeV triton produced in d-d reactions and the 15 MeV proton

produced in d-3He reactions.

The MAST diagnostic measures 3 MeV protons produced in d(d,p)t fusion reactions between

fast ions and thermal deuterons in the plasma core. (As discussed below, protons are also

produced in beam-beam and thermonuclear reactions.) The emitted protons escape the toka-

mak on curved orbits, pass through a collimating structure, and are detected. Conceptually,

the calculation is analogous to calculation of the weight function of a neutron spectrometer

but there are complications. Unlike with neutrons, photons, or neutrals, the “sightlines”

are curved trajectories that depend upon the proton velocity; the orbit curvature also alters

the solid angle accepted by the collimator. A further complication is that the energy of the

emitted proton depends upon the velocities of the reactants and the direction of emission,

so the “sightline” itself depends upon the reaction kinematics, with the consequence that

different proton energies probe different volumes in both velocity and configuration space.

Because the d-d reaction is anisotropic, the reaction probability also depends upon these

velocities.

The presented algorithm takes all of these complications into account. Section 2 provides
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an overview of the approach. Section 2.3 explains how to compute the effective solid angle

of the curved “sightlines” that are accepted by the collimating structure. Calculation of

the rate of relevant d-d reactions involves two steps: the basic reaction rate (Sec. 2.4.1)

and determination of the portion of the fast-ion population that produces a proton with

the measured energy and trajectory (Sec. 2.4.2). The computational approach adopted

to calculate these weight functions is described in Sec. 2.5, followed by verification of the

calculations in Sec. 2.6. Section 2.7 contains formulas for velocity-space and orbit weight

functions and shows an example for a MAST detector. Conclusions appear in Sec. 2.8.

2.2 Formulation of the problem

If the signal-to-noise ratio of the instrument permits, the measured quantity is an energy-

resolved count rate at the detector. We express the d-d reaction in standard nuclear physics

notation 2(1,3)4, where particle 2 is the thermal deuterium, particle 1 is the fast ion, particle 3

is the 3-MeV proton, and particle 4 is the triton. Our concern is the d(d,p)t reaction so

m1 = m2 = 2mp, m3 = mp and m4 = 3mp, with mp the proton mass. The measured energy-

resolved count rate is C(E3,∆Ebin), where E3 is the proton energy and ∆Ebin is the energy

resolution of the measurement.

A limitation of the present work is that the calculated weight function applies exclusively to

reactions between an energetic “fast-ion” population and a slower, thermal population. In

other words, the fast-ion (particle 1) is the beam, particle 2 is a thermal deuterium reactant,

particle 3 is the measured 3-MeV proton, and particle 4 is undetected. This type of reaction

is customarily called “beam-plasma” in fusion research. In reality, “beam-beam” reactions

between pairs of fast ions and “thermonuclear” reactions between pairs of thermal deuterons

also occur; in both of these situations, the two reacting ions often have comparable speeds.

Since the beam-plasma reaction rate depends linearly on the fast-ion distribution function,
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its weight function is well-suited for tomographic inversion to infer the distribution function

using standard matrix methods; this is not true for beam-beam reactions. However, on two

devices where 3-MeV proton diagnostics are currently implemented or planned, MAST-U

[48] and NSTX-U [50], beam-plasma reactions predominate. For example, in the L-mode

NSTX-U plasma of [51], beam-beam reactions constitute < 11% and thermonuclear reactions

constitute < 1% of the total rate. Similarly, in the MAST experiments of [52], beam-beam

reactions constituted ∼ 10% of the total.

Since the escaping proton orbits are essentially collisionless (fractional energy change <

10−6), the phase-space volume accepted by the detector can be related to the phase-space

volume traversed by the curved “sightlines,” so the measured count rate is [53]

C(E3,∆Ebin) =

∫ ∫ ∫
dl dA dΩS(r,v3), (2.2)

where
∫
dl represents integration over the sightline,

∫
dA represents integration over the

detector area,
∫
dΩ represents integration over the solid angle accepted by the collimating

structure, and S(r,v3) represents the emissivity (in reactions/volume-time) of protons that

are emitted at position r along the sightline with the correct values of E3 and solid angle. As

in the formulation of the weight function for a neutron collimator [42], the emissivity can be

divided into two pieces, one piece that describes the d-d reactivity for the selected reaction

kinematics, and another piece that describes the number of fast ions that can produce a

proton with the velocity v3 accepted by the specified sightline,

S(r,v3) =

∫
dv1

∫
dv2R(v1,v2,v3, r)pgyro(v1,v2,v3)f1(v1, r)f2(v2, r). (2.3)

The emissivity R depends upon the d-d cross section (including anisotropy), the relative

velocities of the reactants |v1 − v2|, and the emitted proton’s velocity v3. In Sec. 2.4.1,

the integration over the distribution function f2 of the target deuterons is incorporated
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into the emissivity R, making R a function of the ion temperature Ti, the rotation velocity

vrot, and the deuterium target density nd. In this work, the fast-ion distribution function

f1 is represented by a guiding-center distribution function F (v∥, v⊥, r); the third velocity

coordinate, the gyroangle γ associated with the fast gyromotion, is assumed of uniform

probability and is not explicitly shown. (Here, v∥ is the component of the fast-ion velocity

along the magnetic field B and v⊥ is the magnitude of the perpendicular velocity.)

The function pgyro(v1,v2,v3) represents the probability density that the gyroangle of the fast

ion has the correct value to produce the measured proton. In practice, it is advantageous

[42] to consider intervals of speed v3 (or proton energy E3). If v3 is interpreted this way, pgyro

represents the probability that the selected fast ion has a gyroangle that produces protons

within the specified range of speeds.

Recall from Eq. 2.1 that the weight function is defined through the relation C(E3) =∫
W (X,E3)F (X) dX. The goal of the following sections is to simplify and rearrange Eqs. 2.2

and 2.3 into the form of Eq. 2.1 in order to extract the weight function W . To that end, the

next section explains how to simplify and calculate the
∫ ∫ ∫

dl dA dΩ term that describes

the sightlines and collimating structure. The emissivity R is simplified in Sec. 2.4.1 and

formulas for the probability pgyro are given in Sec. 2.4.2.

2.3 “Sightlines” selected by the collimating structure

The treatment of the sightlines follows [53]. Figure 2.1 illustrates the bundles of “rays”

collected by four MAST proton detectors in a particular equilibrium. Owing to the large

proton gyroradius in the ∼ 0.4 T MAST field, protons escape before they complete a full

gyro-orbit. Although the effective solid angle is largest for a central sightline, protons have

a finite probability of striking the detector for a range of different incident velocity vectors.
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Figure 2.1: Elevation (left) and plan (right) views of 3.03 MeV proton orbits (colors) that
reach the four MAST proton detectors in a particular equilibrium. The thickness of the lines
is proportional to the effective transmission T . The black lines in the elevation represent
flux surfaces (thin lines) and the inner wall of the vacuum vessel (thick line). The directions
of plasma current Ip and toroidal field BT are also indicated.

A full orbit code that integrates the equations of motion with an Adams-Bashford-Moulton

scheme calculates the trajectory represented by
∫
dl. Since the orbit is collisionless, time is

reversed in the calculation in order to calculate orbits backward from the detector into the

plasma. Each trajectory has an effective weight represented by the product
∫ ∫

dAdΩ. Since

the magnetic field changes little on the scale of the collimating structure, incident orbits with

the same velocity can be considered identical over the entire area of the detector. With this

approximation, we can replace
∫ ∫

dAdΩ by A
∫
T (Ω) dΩ, where the transmission function

T (Ω) is proportional to the fraction of the detector area “illuminated” by a particular incident

velocity vector.

Define a central velocity vector on the axis of the collimator, i.e., from the center of the

aperture to the center of the detector. Our goal is to compute AT (Ω) for a representative

sample of orbits that strike the detector. Consider a cylindrical collimating structure of
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radius a and length d (Fig. 2.2a). If the orbits were straight, velocity vectors that tilt from

the collimator axis by tan(2a/d) strike the edge of the detector. Select velocity vectors that

travel from the center of the detector to points on the aperture plane. Since the actual orbits

are curved, expand the area of the candidate points on the aperture plane by an amount

δa = ρ−
√

ρ2 − d2, where ρ is the gyroradius, ensuring that all possible velocity vectors are

considered. Use the sunflower algorithm that includes judiciously selected boundary points

[54] to uniformly sample velocity vectors on this plane. (The sunflower arrangement uses

golden ratios for angle increments and square roots for radius increments.) For each velocity

vector, calculate the actual orbit between the aperture plane and the center of the detector.

Next, to determine the fraction of the detector area “illuminated” by this velocity, use the

sunflower algorithm to uniformly sample positions on the detector plane. Shift the orbit to

various positions on the detector plane to calculate the fraction of the detector area that

is illuminated by this velocity vector. Figure 2.2b shows the portion of the detector area

illuminated by a particular incident velocity vector. This fraction is proportional to the

desired transmission function T (Ω).

To check the accuracy of this calculation, replace the actual curved orbits with straight orbits.

In this case, for small a/d, the program correctly calculates that
∫ ∫

dAdΩ = (πa2)2/d2, a

familiar result in geometrical optics.

The output of this calculation is a set of velocity vectors at the detector that have non-zero

transmission weights T . For each of these velocity vectors, follow the proton orbit backwards

in the equilibrium field. For each channel, this bundle of curved trajectories constitutes the

detector field of view or “sightline.”

Note that the measured sightlines depend upon the proton energy. Typical changes in energy

(Sec. 2.4) shift the trajectory through the plasma by a few centimeters radially (Fig. 2.3).

Although the shift is modest, the fast-ion distribution function often has a large density

gradient, so the shift in orbit must be properly treated. The transmission factors T also
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depend upon proton energy (Fig. 2.4), so this dependence is also taken into account.
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Figure 2.2: (a) Schematic diagram of a cylindrical collimator. For a given orientation of the
incident proton velocity, some orbits reach the detector (red), while others do not (blue).
(b) For a given incident velocity vector, only the red portion of the detector is illuminated.
The figure also shows the sunflower sampling of the detector area.
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Figure 2.3: (R, z) projection of orbits that enter the detector with the same orientation for
energies of 2730 (brown), 3030 (red), and 3330 keV (blue). The orbit shifts a few centimeters.
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Figure 2.4: The overall transmission of the collimator increases with energy because the
incident orbits are straighter. A variety of different incident velocity vectors are shown. The
curves are normalized to the transmission of the maximum velocity vector for E3 = 3.03 MeV.
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2.4 Reaction kinematics and probability

For the reaction 2(1,3)4, particle 2 is the thermal deuterium, particle 1 is the fast ion,

particle 3 is the 3-MeV proton, and particle 4 is the triton. The energy of the proton (Eq. 29

of [55]) is

E3 =
3

4
(Q+K) + V cos θ

√
3

2
(Q+K)mp +

1

2
mpV

2, (2.4)

where Q = 4.04 MeV, K = 1
2
mp|v1 − v2|2, V = 1

2
(v1 + v2) is the center-of-mass velocity,

and θ is the angle between V and the proton velocity in the center-of-mass frame v′
3.

For a 100 keV deuterium beam (a relatively large value for positive neutral beam sources)

interacting with typical values of v2, K
<∼0.05 MeV, a small value.

The first term on the right-hand side (RHS) of Eq. 3.2 gives the nominal proton energy of

3.03 MeV. The shift in energy from the nominal value is determined almost entirely by the

middle term on the RHS. The largest absolute value of the middle term occurs for cos θ = ±1,

so the shift in energy of the proton from the nominal 3.03 MeV value is

∆E3 ≃
1

2
v1

√
3

2
Qmp =

1

2

√
3

2
E1Q

<∼0.39 MeV, (2.5)

for E1 = mpv
2
1 = 1

2
mDv

2
1 ≃ 0.10 MeV. This implies that the fractional change in energy is

∆E3/E3
<∼13%. Equation 2.5 determines the energies E3 for which the proton spectrum is

calculated.

At any particular location in the plasma, both the orientation and energy of the proton is

known, so the proton velocity vector in the lab frame v3 is a known quantity in the following

calculations.
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2.4.1 Emissivity R

The goal of this subsection is to simplify the fusion emissivity R(v1,v2,v3, r) that appears

in Eq. 2.3.

There are three relevant rest frames. The proton velocity v3 is known in the lab frame. The

effect of the target distribution function f2(v2) on the reaction rate is most easily computed

in the rotating plasma frame. The effect of anisotropy is known in the center-of-mass frame.

The first step is to eliminate the integral over v2 that appears in Eqs. 2.2 and 2.3. After

integrating over the Maxwellian target distribution,
∫
σ(vrel)vrelf2(v2, r) dv2 becomes nd⟨σv⟩,

where nd is the deuterium density and ⟨σv⟩ is the averaged reactivity. (Here, the relative

velocity is vrel ≡ |v1−v2|.) Both nd and ⟨σv⟩ are functions of position. In the plasma frame,

the velocity of the fast ion is vpl
1 = v1 − vrot. To evaluate ⟨σv⟩ we use Eqs. 8 and 9 of Bosch

and Hale [11], using the coefficients given in their Table IV for the cross-section σ, with vpl1

for the projectile speed, and average σv over a Maxwellian target that has temperature Ti.

The resulting ⟨σv⟩ is a function of v1, vrot, and Ti.

The d(d,p)t reaction is anisotropic. Brown and Jarmie [56] parameterize the differential

cross section in the center-of-mass frame by

σ(θ) = a+ b cos2 θ + c cos4 θ. (2.6)

The coefficients a, b, and c are functions of energy and are given in their Table I. We know

θ from

cos θ =
V · v′

3

V v′3
, (2.7)
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where the center-of-mass velocity V is

V =
1

2
(v1 + ⟨v2⟩) ≃

1

2
(v1 + vrot) (2.8)

and v′
3 = v3 −V is the proton velocity in the center-of-mass frame.

The relative velocity in the center-of-mass frame is 2v′1, where v′
1 = v1 − V is the beam

velocity in the center-of-mass frame. To get the Brown-Jarmie coefficients for this particular

reaction use the relative energy to interpolate for a, b, and c. Our goal is to compute the

effect of anisotropy on the Bosch-Hale value of ⟨σv⟩ we have already found. If the reaction

was isotropic, the integral of the differential cross section over θ gives a total cross section

that is proportional to a+ b/3 + c/5, so the anisotropy enhancement/deficit factor is

κ =
a+ b cos2 θ + c cos4 θ

a+ b/3 + c/5
. (2.9)

Therefore, the reactivity for this reaction is κ⟨σv⟩ and the emissivity is ndκ⟨σv⟩.

2.4.2 Calculating pgyro

The goal of this subsection is to determine the number of fast ions in velocity space that can

produce a reaction with the specified value of v3.

Jacobsen et al. [42] calculated velocity-space weight functions for neutron spectroscopy using

the d(d,n)3He reaction. Since v3 is known, they found that the calculation is simpler in the

lab frame than in the center-of-mass frame. For simplicity, they assumed negligible target

velocity (v2 = 0) in their treatment of the reaction kinematics (but not in the calculation of

R discussed in the previous subsection). In the following, we do not make this assumption

but ultimately conclude that it is justified for typical parameters.
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Following the derivation of Jacobsen et al., the weight function for a particular fast ion with

velocity (v⊥, v∥) [or (energy,pitch)] is proportional to a factor proportional to the reaction rate

and a kinematics-dependent velocity-space factor. Symbolically, the velocity-space weight

function w(Ep1, Ep2, ϕ, v∥, v⊥,vrot, r) is found for emitted proton energies between Ep1 and

Ep2 that are emitted at an angle ϕ with respect to the magnetic field by a reaction between

a fast ion with parallel and perpendicular velocities v∥ and v⊥ and target ions that rotate at

vrot and have temperature Ti at the spatial location r. This weight function is the product of

a reaction rate and a conditional probability pgyro that depends upon the reaction kinematics,

R(ϕ, v∥, v⊥,vrot, Ti)× prob(Ep1 < E3 < Ep2|ϕ, v∥, v⊥,vrot). (2.10)

For the conditional probability, two components of the fast-ion velocity v1 are known but

the third component, the gyroangle γ, is not. The goal of the kinematics calculation is

twofold: (1) Find which gyroangles can produce a proton with the specified value of v3 and

(2) determine the value of cos θ to use in Eq. 2.9. Since gyromotion is assumed uniform, the

fraction of fast ions pgyro with the specified values of (v⊥, v∥) that can produce this proton

is equal to

pgyro =
∆γ

2π
, (2.11)

where ∆γ represents the range of gyroangles that produces protons in a specified energy

range, Ep,1 < E3 < Ep,2.

Including the plasma rotation but assuming zero temperature of the target species, the

equations of energy and momentum conservation in the lab frame are

1

2
m1v

2
1 +

1

2
m2v

2
rot +Q =

1

2
m4v

2
4 +

1

2
m3v

2
3 (2.12)
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and

m1v1 +m2vrot = m3v3 +m4v4. (2.13)

Use momentum conservation to eliminate v4 in Eq. 2.12 and replace the masses with their

values for the d(d,p)t reaction. Introduce coordinates (â, b̂, ĉ) where b̂ is along the magnetic

field, â is oriented along the perpendicular component of the emitted proton, and ĉ is or-

thogonal to the other unit vectors. Choose the origin of the fast-ion gyroangle γ so cos γ = 1

when the gyroangle is aligned with â. The fast-ion velocity is

v1 = b̂v∥ + âv⊥ cos γ + ĉv⊥ sin γ, (2.14)

the proton velocity is

v3 = b̂v3 cosϕ+ âv3 sinϕ (2.15)

and the rotation velocity is

vrot = b̂vb + âva + ĉvc. (2.16)

After substitution, the equation for the gyroangle is

v⊥

(
sinϕ− 2va

v3

)
cos γ = v3 −

3Q

2v3mp

− (v∥ + vb) cosϕ

− va sinϕ− 1

2

v21 + v2rot
v3

+
2vbv∥
v3

− v2rot
2v3

+
2vcv⊥ sin γ

v3
.

(2.17)

Since the last term on the right-hand side (RHS) is quite small, this equation is easy to solve

iteratively for cos γ.
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For the anisotropy calculation, cos θ is given by Eq. 2.7. All of the needed velocities are

known.

In practice, the rotation velocity can be neglected in the calculation of γ and cos θ. Since

Eq. B.1 is solved for cos γ, both a positive gyroangle γ+ and a negative gyroangle γ− satisfy

the equation. If rotation is neglected, these angles are equal and opposite. With rotation,

the final term in Eq. B.1 that is proportional to sin γ causes an asymmetry between positive

and negative gyroangles. However, as shown in Fig. 2.5a, even for a relatively large rotation

velocity of 2 × 105 m/s, the difference in these angles is very small. Similarly (not shown),

the center-of-mass angle cos θ depends very weakly on the sign of γ.

To get pgyro, we want to calculate a pair of gyroangles γ for two energies Ep,1 and Ep,2; this

gives us an effective width in velocity space. (We actually want to calculate this pair for

both γ+ and γ− but, since γ+ ≃ γ−, we can restrict the calculation to γ+ and double its

probability.) Note that we do not want to calculate γ for two actual orbits with different E3.

Instead, we are interested in the velocity-space spread of fast-ion gyroangles that produce

protons in a specified energy bin ∆Ebin. Use Eq. B.1 to find γhigh for Ep,1 = E3 +∆Ebin/2

and γlow for Ep,2 = E3 −∆Ebin/2. The gyroradius probability factor is

pgyro ≃
|γhigh − γlow|

π
. (2.18)

There are two potential pitfalls in the numerical calculation of γ from Eq. B.1. One pitfall

occurs when the factor v⊥(sinϕ−2va/v3) on the LHS of Eq. B.1 is zero. This occurs when the

proton is emitted nearly parallel to the magnetic field or when v1 and v3 are nearly parallel

or anti-parallel to each other; since both of these conditions occupy small velocity-space

volumes, we set pgyro = 0 for these special cases.

The second pitfall occurs when an energy bin extends beyond the maximum or minimum
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Figure 2.5: Dependence of (a) the absolute value of the normalized gyroangle |γ|/π and
(b) the probability of gyroangles in a specified energy range pgyro on proton energy for
E1 = 50 keV and a rotation velocity of 2× 105 m/s. Solid curves: lab-frame angle ϕ = π/2
and fast ion pitch v∥/v = 0.5. Dashed curves: ϕ = −π/4 and v∥/v = 0.95. Dot-dashed
curves: ϕ = π/2 and v∥/v = 0. In (a), for the solid-line case, both γ+ (red) and γ− (black)
are shown; the curves nearly overlay one another.

values of E3 that are compatible with the other selected parameters. The maximum and

minimum energies occur when the gyroangle is γ = 0 or γ = π. In these cases, Eq. 2.18 is

replaced by pgyro = γbin when γ ≃ 0 or pgyro = π − γbin when γ ≃ π. Here, γbin is the value

of γ evaluated at whichever edge of the energy bin has a value of proton energy permitted

by the kinematics.

The maximum and minimum values of E3 occur when cos γ ≃ ±1 in Eq. B.1. Use the
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quadratic formula to find that the minima and maxima values of the proton speed v3 are

v3 =
−B +

√
B2 + 4C

2
(2.19)

where

B = ∓v⊥ sinϕ− (v∥ + vb) cosϕ− va sinϕ

and

C =
3

2

Q

mp

+
v21 + v2rot

2
− 2v∥vb ∓ v⊥va.

2.5 Implementation into the FIDASIM framework

Calculation of the 3 MeV proton count rate has been implemented within the framework of

the FIDASIM synthetic diagnostic code [33]. Since detailed documentation is available on

the FIDASIM GitHub website [57], only a brief summary is provided here.

Data preparation of input files in HDF5 format occurs outside of the framework of the

FORTRAN FIDASIM code. As usual, plasma profiles, the fast-ion distribution function,

and the equilibrium are prepared using Python or IDL data-preparation routines. The

additional input quantities for the 3-MeV proton calculation are the proton sightlines and

transmission factors described in Sec. 2.3; they are listed in Table 2.1. The user specifies

an array of energies for the proton spectrum. For each detector channel, “nrays” is the

number of orbits to consider in the “bundle” of trajectories that strikes the detector. After

reading the detector geometry and the equilibrium fields, a Lorentz orbit code calculates

the time-reversed orbit (the “sightline”) and an IDL code calculates the transmission factor

(“daomega”) for each specified “ray” for each detector. A typical calculation uses 150 orbital
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Table 2.1: New inputs used by FIDASIM in the 3-MeV proton calculation.

Member Type Rank Dimension Units Description

nchan Int 0 Scalar unity Number of detector
channels

nrays Int 0 Scalar unity Number of “rays”
nsteps Int 0 Scalar unity Maximum number of

orbit steps
nenergy Int 0 Scalar unity Number of proton en-

ergies
earray Float 1 [nenergy] keV Proton energies
daomega Float 3 [nenergy,nrays,nchan] cm−2 Transmission factor
nactual Float 3 [nenergy,nrays,nchan] unity Number of orbital spa-

tial steps
sightline Float 4 [nenergy,6,nsteps,nrays,nchan] cm/s

cm
Velocity and position
in [r,phi,z]

steps, 75 rays, and 11 proton energies.

Figure 2.6 shows a flowchart of the calculation within FIDASIM. After reading the input

data, a routine converts the proton orbits (the “sightlines”) into the Cartesian coordinate

system utilized in FIDASIM. Next, bilinear interpolation is performed to find the fields and

plasma parameters at each sightline step. Calculation of the probability factor and gyroangle

described in Section 2.4.2 is the first major process in the algorithm. Inputs to subroutine

get_pgyro are the magnetic field, proton energy, fast-ion energy, fast-ion pitch, plasma

rotation and proton velocity. Although the plasma rotation is relatively small in Equation

B.1, it is kept in the computations for completeness.

Next, a gyro step is required to get the fast-ion density at the guiding center position. Since

the fields, pitch and gyroangle are known, subroutine pitch_to_vec calculates the velocity

of the fast ion. The velocity, beam mass and fields are then used to determine the guiding

center position in subroutine gyro_step using the formula for the gyroradius in [58]. Finally,

the beam energy and pitch are used to calculate the guiding center fast-ion density at the

gyro-step position.
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Figure 2.6: Flowchart for the portion of the algorithm that is implemented in the FORTRAN
FIDASIM code.

Calculating the reaction rate is the last major process of the algorithm and follows the

procedure outlined in Sec. 2.4.1. Linear interpolation is performed to determine the Brown-

Jarmie coefficients for the given beam energy. FIDASIM reads in pre-calculated tables for the
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neutron and proton branches of the D-D beam-target fusion reaction. Bilinear interpolation

is performed to calculate the proton production rate for a given thermal ion temperature and

relative velocity between the fast ion and rotation velocities. Finally, the rate is multiplied

by the thermal deuterium density.

After looping over detector channels, proton energies, orbit rays, and orbit steps, the code

outputs proton spectra for each detector channel.

2.6 Code verification

This section discusses the selection of numerical parameters, the sensitivity of the output

to two physics effects, and tests that verify that the code works properly. Two different

sets of inputs that are representative of the MAST diagnostic installation are used for these

tests. The first set is an artificial case that Netepenko used for the tests described in his

Ph.D. thesis [50]. The second is for an actual MAST discharge, #29908. In both cases, the

equilibrium is provided by EFIT [59] and the plasma parameters and distribution function

are from TRANSP [60].

An initial test found that 5 proton energies is insufficient to resolve the proton spectrum

but 13 energies provides adequate resolution. Increasing the number of orbital steps and

number of rays did not significantly affect the results but slowed down the algorithm. Thus,

nsteps=110 and nrays=50 are used in the following section.

In order to quantify the importance of the anisotropy correction factor, FIDASIM is run using

anisotropic (Eq. 2.9) and isotropic (κ = 1) cross sections. Figure 2.7 shows that inclusion

of the anisotropy of the d-d cross section makes a small difference of 4% for an injection

energy of 50 keV for MAST conditions. Because many protons are emitted near the center-

of-mass angle θ ≃ π/2, where anisotropy reduces the cross section, the isotropic calculation is
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Figure 2.7: Comparison of the proton energy spectrum calculated using the actual anisotropic
d-d cross section (solid curve) with a calculation that ignores cross-section anisotropy
(dashed).

slightly higher. Since the effect of anisotropy grows with increasing energy, proper treatment

of cross-section anisotropy is more important in facilities with higher injection energies or

RF accelerated fast-ion tails.

Figure 2.8 compares the spectrum computed using the actual proton orbits to a calculation

that utilizes the same orbits and transmission factors for all proton energies. Because higher-

energy protons have larger gyroradii, they originate deeper in the plasma, where the fast-ion

and thermal densities are larger and the emissivity is larger. Conversely, lower-energy protons

originate closer to the plasma edge where the emissivity is smaller. The result is that proper

treatment of the orbits shifts the spectrum to higher energies (Fig. 2.8). The overall effect

is modest for the MAST installation, however.
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Figure 2.8: Comparison of the proton energy spectrum calculated using the true energy-
dependent orbits and transmission factors (solid curve) with a calculation that employs
identical orbits and transmission factors for all escaping proton energies (dashed).

To benchmark the code, the calculated count rate was compared with an independent calcu-

lation using the formalism described in [50] for the inputs of MAST discharge #29908. The

calculations differ by 2-5% for different channels.

As a second verification exercise, the proton spectrum was calculated for a monoenergetic,

isotropic distribution function with cold thermal deuterons. This is a condition for which

an analytical prediction of the expected spectrum is available [61]. The calculated spectrum

has the predicted shape (Fig. 2.9).
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Figure 2.9: Proton energy spectrum for a monoenergetic (30 keV), isotropic, fast-ion distri-
bution function in a plasma with nearly stationary deuterium target ions as computed by
analytical theory (solid) and by FIDASIM (dashed).

2.7 Weight functions

The algorithm and program described so far computes the proton spectrum,

C(Ep,1 < E3 < Ep,2) ≃ A

∫ ∫
dl dΩT (Ω)RpgyroF (v∥, v⊥) dv∥ dv⊥. (2.20)

If we choose to evaluate the protons that come from a single position along the proton

“sightline,” (i.e., eliminate the integral over the sightline
∫
dl), Eq. 2.20 can be written as a

set of factors that multiply the guiding-center fast-ion distribution function F . These factors
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constitute the velocity-space weight function w2D,

w2D(E3, v∥, v⊥, r) = A

∫
dΩT (Ω)Rpgyro. (2.21)

Note that, although F is written as a function of v∥ and v⊥, it is straightforward to reexpress

the velocities in terms of fast-ion energy E1 and pitch (v∥/v) if one prefers. In addition to

its dependence upon fast-ion velocity, w2D depends upon spatial position along the line of

sight.

For forward modeling with a specified guiding-center distribution function F (v∥, v⊥, r), the

expected signal is

C(Ep,1 < E3 < Ep,2) =

∫
dl

∫ ∫
dv∥ dv⊥w2DF. (2.22)

The derived expression can also be used to find three-dimensional weight functions for orbit

tomography [39] by appropriately weighting w2D spatially based on the properties of the

selected fast-ion orbits.

As an example, Fig. 2.10 shows velocity-space weight functions for a MAST detector. In

this example, contributions to w2D have been summed over the orbit to eliminate the spatial

dependence of the weight function. The selected channel is the one with the largest toroidal

velocity component in Fig. 2.1. Owing to the Doppler shift associated with the cos θ term

in Eq. 3.2, fast ions that move away from the detector emit protons of reduced energy, while

fast ions that head toward the detector emit protons of increased energy. This is the reason

that deuterons that travel in the direction of the toroidal field are more likely to produce

a low-energy proton than deuterons that circulate against B in Fig. 2.10a. Conversely,

high-energy protons are produced most effectively by deuterons that travel opposite to the

toroidal field (Fig. 2.10c). Near the unshifted energy of 3.03 MeV, owing to the gyromotion,
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two peaks appear in the weight function (Fig. 2.10b). This occurs because one phase of

the gyromotion can cancel the parallel component of motion along B, while another phase

cancels the opposite parallel motion. The shapes of these three proton-energy-resolved weight

functions are qualitatively similar to the FIDA weight functions of [38] and are caused by

geometrical effects associated with the gyromotion. If one integrates over energy, the pitch

dependence of the weight function essentially disappears (Fig. 2.10d). However, owing to

the strong energy dependence of the d-d fusion cross section, all proton energies exhibit a

strong dependence on deuteron energy. (When integrated over proton energy and fast-ion

pitch, the energy dependence of the weight function is close to the energy dependence of the

d-d reactivity σv.) The proton signal is produced primarily by the highest energy ions in

the deuterium distribution function.

Although resolving the 3-MeV proton energy spectrum can be challenging, it has been suc-

cessfully measured previously (e.g., [62]). (The spectra were poorly resolved in MAST but

noise-reduction efforts are underway for MAST-U.) Figure 2.10 demonstrates that energy-

resolved measurements provide valuable information about the deuterium distribution func-

tion.
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Figure 2.10: Velocity-space weight functions of a MAST 3-MeV proton channel for (a)
down-shifted d-d protons, (b) unshifted protons, (c) up-shifted protons, and (d) protons of
all energies. The abscissa is the fast-ion energy and the ordinate is v∥/v relative to the
magnetic field. (Note that, since the plasma current is opposite to the toroidal field in this
example, the sign of the pitch is reversed if pitch is defined relative to plasma current, as in
TRANSP.) The same linear rainbow color table is employed in panels (a)-(c); in panel (d),
the maximum value of the color table is 3.0 times larger.
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2.8 Conclusion

An algorithm and computer program that calculates the count rate and weight function of

a 3-MeV proton diagnostic has been developed and tested. The algorithm properly treats

effects associated with curved proton orbits, as well as the anisotropy of the d-d cross section.

The algorithm and program assumes that the proton signal is produced by beam-plasma

reactions, rendering it inapplicable to plasmas with significant beam-beam or thermonuclear

reaction rates.

In future work, the 3-MeV proton weight function will be employed in tomographic re-

constructions of the fast-ion distribution function in MAST-U plasmas with proton, FIDA,

neutron collimator, and neutral particle data.
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Chapter 3

Conceptual Design of Spin Polarized

Fusion Experiments on DIII-D

3.1 Introduction

The D-T cross-section in magnetically confined fusion plasmas is increased by 50% when the

spins of both nuclei are polarized in the same direction as the local magnetic field [63, 64].

Since the increased reactivity increases alpha heating, the increase in fusion Q is even greater

than 50% without any additional requirement on plasma confinement [65]. Spin-polarized

fuel could relax the field and confinement requirements for a fusion reactor.

The retention of spin polarization in the plasma for periods comparable to the burn-up time

is imperative to the success of spin polarized fusion. Theoretically [63, 66], depolarization

mechanisms from field inhomogeneities or collisions are weak in the core of a tokamak but

the polarization lifetime has never been measured. Experiments on a mid-size fusion facility

like DIII-D can assess depolarization by inhomogeneous static magnetic fields, plasma waves,

and Coulomb collisions in realistic reactor-relevant conditions.
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Handling tritium in a research tokamak is hazardous and expensive. Fortunately, the isospin-

mirror reaction D +3 He → α (3.6 MeV) + p (14.7 MeV) has nearly identical nuclear and

spin physics as the D-T reaction [63, 64] and can be used as a proxy.

In addition to modifying the total cross section σ, spin polarization makes the D-3He fusion

cross section anisotropic. The differential cross section is [67]

dσ

dΩ
=

σ0

4π

{
1− 1

2
P V
DP3He +

1

2

[
3P V

DP3He sin
2 θ +

1

2
P T
D

(
1− 3 cos2 θ

)]}
(3.1)

where the polar pitch angle θ is the angle between the emitted charged fusion product (CFP)

and the local magnetic field at birth. The polarization factors P3He, P
V
D and P T

D depend on

the distribution of the nucleus. The sub-state population fractions in the presence of a

magnetic field are Ni, where i = +1, 0,−1 and i = +1/2,−1/2 for spin–1 and spin-1/2

systems, respectively. The spin configurations are normalized such that
∑

i Ni = 1 for each

system. The polarization factors in Equation 3.1 can then be expressed using the sublevels as

follows: helium-3 polarization P3He = N+1/2−N−1/2 ∈ [−1,+1], deuteron vector polarization

P V
D = N+1 − N−1 ∈ [−1,+1], and deuteron tensor polarization P T

D = N+1 + N−1 − 2N0 ∈

[−2,+1]. In the absence of any polarization, the D-3He reaction is isotropic, dσ/dΩ = σ0/4π.

The concept explored here is to measure unconfined fusion products from D-3He reactions

to infer changes in the differential cross section (Equation 3.1) as the polarization changes.

Although the total reaction rate depends upon the degree of polarization, its dependence

on plasma parameters such as ion temperature Ti is even stronger. Direct measurements of

the reaction rate itself for detection of the degree of spin polarization would be a challenge.

Instead, relative CFP measurements are preferred over absolute measurements since they are

less sensitive to uncertainties in plasma parameters. Three properties of the escaping CFPs

are potentially useful as monitors of the differential cross section: pitch, energy, and poloidal

distribution. Scintillator based fast-ion loss detectors (FILD) provide accurate relative mea-
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surements of the flux vs. pitch v∥/v of escaping CFPs [68]. Pulse-counting silicon detectors

can accurately measure the energy distribution of escaping 14.7 MeV protons [69]. An array

of detectors that measure the escaping CFP flux at different poloidal positions [70] is also

sensitive to the CFP v∥/v at birth. Because most D-3He reaction products are unconfined

in DIII-D, all of these techniques are potentially useful as diagnostics of reaction anisotropy.

The energy of a CFP produced by a beam with velocity v1 interacting with a target ion with

velocity v2 is [55]

E3 =
m4

m3 +m4

(Q+K) + V cos θ

√
2m3m4

m3 +m4

(Q+K) +
1

2
m3V

2, (3.2)

where Q is the fusion energy, K = 1
2
m1m2|v1−v2|2/(m1+m2) is the relative kinetic energy,

V = (m1v1 + m2v2)/(m1 + m2) is the center-of-mass velocity, and θ is the angle between

V and the CFP velocity in the center-of-mass frame, v′
3. The first term on the right-hand

side (RHS) of Equation 3.2 is the nominal CFP energy, m4Q/(m3 + m4) = 14.7 MeV for

protons and 3.6 MeV for alphas. The second term, which is usually much larger than the

third term, is a kind of Doppler shift associated with motion of the center of mass toward or

away from the detector; it determines the energy shift of the CFP from its nominal value.

In this chapter, detection of both protons and alphas are considered.

Two scenarios are covered. In the first, polarized 3He and D pellets are injected into a hot

hydrogen plasma to produce thermonuclear reactions that utilize 14.7 MeV proton and 3.6-

MeV alpha detection. In the second scenario, a tensor-polarized deuterium pellet is injected

into an L-mode hydrogen background plasma that includes neutral beam injection (NBI) of

unpolarized 3He. The persistence of changes in CFP signals yields a lifetime measurement.

A paper related to the work in this chapter [71] considers many important issues with
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minimal coverage here, including a historical overview of research on spin polarized fusion in

tokamaks, details of the relevant nuclear physics, depolarization mechanisms, and benefits

for a fusion reactor. The preparation and delivery of polarized fuel pellets is discussed in

considerable detail. This companion work also presents a candidate scenario and detection

scheme but those topics are treated more thoroughly here.

The present chapter is organized as follows. Section 3.2 presents the experimental scenarios.

In section 3.3, maximal values of cross section and tensor polarization are used to assess

ideal CFP signals at existing DIII-D ports in the thermonuclear and beam-plasma scenarios,

respectively. Next, realistic signal levels using existing polarization technology are quantita-

tively evaluated (section 3.4). A discussion of additional complications and considerations

follows in section 3.5. Conclusions appear in section 3.6. Appendices discuss the numerical

methods used to calculate thermonuclear signals, the generalization of the 3MeV proton

weight algorithm (developed in chapter 2) to calculate CFP signals from any general beam-

target reaction, and an alternative method to calculate the accuracy of the measurements.

3.2 Thermonuclear and Beam-Plasma Scenarios

The D-3He cross section σ is an extremely strong function of the relative energy of the

reactants: it increases seven orders of magnitude between relative energies of 10 and 100 keV.

As a result, to obtain an adequate count rate in CFP detectors, reactants with energies several

times 10 keV are required. One way to obtain an adequate reaction rate Rd3He is to inject

neutral beams with O(100) keV energies and utilize beam-plasma reactions. Alternatively,

thermonuclear reactions could be employed but the plasma must have ion temperatures

Ti
>∼10 keV for useful reaction rates. (The reactivity ⟨σv⟩ is 33 times larger at Ti = 10 keV

than at 5 keV.)
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The strong dependence of σ on relative energy has several implications. One implication is

that direct measurements of the reaction rates to detect changes associated with spin polar-

ization requires plasmas of extraordinary reproducibility, since a 10% change in Ti between

9 and 10 keV changes Rd3He by more than 50%, which is more than the maximum possible

change associated with polarization. Owing to this strong sensitivity, typical uncertainties

in the measured Ti and the deuterium and 3He densities could easily exceed the expected

change in signal. To circumvent this difficulty, the relative measurements described here do

not depend upon the absolute value of Rd3He

Another implication concerns the center-of-mass velocity V. For a beam-plasma scenario,

since v1 ≫ v2, the center-of-mass velocity is determined primarily by the beam velocity,

V ≃ m1v1/(m1+m2). For 80 keV 3He beam ions, Equation 3.2 then implies a Doppler shift

(in MeV) of

∆Ep ≃ V

√
8

5
mNQ cos θ ≃ 0.75 cos θ. (3.3)

Since this energy shift is large and the differential cross section depends upon θ, Equation 3.3

implies that energy-resolved CFP measurements may be a useful diagnostic of the degree of

polarization in a beam-plasma scenario.

The situation is different for a thermonuclear scenario. The fusion reactivity is

⟨σv⟩ ≡
∫ ∫

f1(v1)f2(v2)σ(|v1 − v2|)|v1 − v2| dv1 dv2, (3.4)

where f1 and f2 are the distribution functions of the two reacting species. For thermonuclear

d-3He reactions, f1 and f2 are isotropic Maxwellian distributions with most probable speeds

of vth,d =
√

2Ti/md for deuterium and
√

2
3
vth,d for

3He. Because the cross section is a strong

function of relative energy, the most probable reactions are between relatively fast deuterium

and 3He ions going in (approximately) opposite directions. Analysis of the integrand of
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Equation 3.4 shows that, at Ti = 10 keV, the average reacting deuteron has speed of 2.0vth,d,

while the average reacting 3He ion has a speed of 1.4vth,d, with an average component of

velocity opposite to the deuterium direction of −0.95vth,d. As a result, the average center-

of-mass speed of reacting ions is only 0.71vth,d and is on the order of the deuterium thermal

velocity for nearly all reactions. Hence, energy-resolved measurements of the CFP doppler

shift are not a useful diagnostic of the degree of spin polarization for thermonuclear reactions

since the resulting energy spread is too small to be experimentally measured.

3.2.1 TRANSP scenarios

As explained above, a large value of Ti is essential for a thermonuclear scenario. Fortunately,

an operational regime with central ion temperature Ti(0)
>∼20 keV is obtainable in DIII-

D. The regime exploits an internal transport barrier associated with strong E × B shear

in plasmas with large toroidal rotation to achieve high ion temperature reproducibly [72].

Figure 3.1 shows two examples of existing DIII-D discharges with quite high central ion

temperature. All existing discharges with Ti(0) > 10 keV employed deuterium neutral beam

injection into a deuterium plasma and had large beam-plasma D-D neutron rates.

In this study, we assume that the polarized D and 3He fuel is delivered in the form of cryogenic

pellets. (Neutral beam injection of spin polarized nuclei would facilitate lifetime experiments

but suitable sources are presently unavailable.) The use of spin polarized pellets precludes

the use of unpolarized deuterium beam injection to create the plasma scenario, because

deuterium beams would create a large beam-plasma D-3He reaction rate that would be

an unwanted background for thermonuclear reactions between polarized fuel. Accordingly,

we envision using hydrogen beams to create the high Ti scenario in a hydrogen (or 4He)

background plasma. Once the high Ti condition is established, polarized deuterium and 3He

pellets are injected. The resulting plasma likely will have lower values of Ti(0) than existing
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Figure 3.1: (a) Plasma current Ip, (b) injected deuterium beam power Pinj, (c) line-average
density n̄e, (d) normalized beta βN , and (e) central ion temperature Ti(0) for two existing
DIII-D discharges with Ti far in excess of 10 keV.

shots for three reasons. First, confinement is usually poorer in hydrogen plasmas than in

deuterium plasmas [73]; also, less injected beam power and torque will be available. Second,

even if the stored energy remains constant, pellet injection will lower the ion temperature by

raising the density. Third, reductions in the plasma volume and the re-orientation of some

of the beams from on-axis to off-axis may limit access to the previous conditions.

Despite these complications, a hydrogen beam heated scenario with minority populations

of polarized deuterium and 3He fuel and Ti(0) ≃ 10 keV appears obtainable. Starting with

an existing TRANSP [60] run, the ion temperature and rotation were lowered, the neutral

beams were changed to hydrogen, and the composition was altered to create a new TRANSP

run with the profiles shown in Figure 3.2. The deuterium and 3He densities are both assumed
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to be 10% of the electron density. As expected, the D-3He emissivity profile peaks strongly at

the magnetic axis (Figure 3.2d). The equilbrium for the thermonuclear scenario has plasma

current Ip = 1.1 MA, toroidal field BT = 2.1 T, and a monotonically increasing q profile

with q(0) ≃ 1.

Figure 3.2 also shows the selected profiles for a beam-plasma TRANSP scenario. In this

case, the existing shot is a low-current (Ip = 0.6 MA), 2.0 T, L-mode discharge that was

heated by a single deuterium beam that injected in the midplane in the co-current direction.

The analyzed scenario replaces the deuterium beam within the TRANSP code with an

unpolarized 3He beam with the same power, voltage, and geometry. TRANSP properly

modifies the beam deposition, orbits, and collisional slowing of the beam ions to obtain a

realistic 3He fast-ion distribution function. For the thermal plasma, we assume that a tensor-

polarized deuterium pellet has been injected, so the thermal composition is switched to

primarily hydrogen with a minority deuterium population, together with a small population

of thermal 3He fueled by the beam (Figure 3.2b). As in the thermonuclear case, the D-3He

emissivity profile peaks strongly at the magnetic axis (Figure 3.2d).

For both of these scenarios, the toroidal field is clockwise when viewed from above, so the

curvature and ∇B drifts for ions are downward. Accordingly, we consider detectors that are

located at poloidal angles that are in the lower half of DIII-D. If the toroidal field is reversed,

suitable ports are in the upper half of the tokamak.
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Figure 3.2: Assumed plasma profiles for the thermonuclear (solid lines) and beam-target
(dashed) scenarios. (a) Ion (no symbol) and electron (symbols) temperatures; (b) Electron
(no symbol), thermal deuterium (*), and thermal 3He (diamond) densities; (c) toroidal
rotation; (d) D-3He emissivity. The abscissa is the square root of the normalized toroidal
flux ρ.
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3.3 Ideal Charged Fusion Product Signals

In this section, the maximum possible effect of spin polarized fuel on CFP signals is computed

for the two scenarios described in the previous section. Realistic aspects of the calculations

are: the scenarios are plausible discharge conditions obtainable in DIII-D and the calcu-

lations utilize existing vacuum ports. However, the calculations do neglect other practical

considerations such as detector count rates and limitations in achievable pellet polarizations.

These effects are considered in section 3.4. Nevertheless, these idealized calculations have

the advantage of clearly identifying the most promising detection strategies.

3.3.1 Method

A naive, ”brute force,” approach to calculating CFP signals is to launch ions from their birth

locations and record their positions and velocities when they strike the wall; however, because

detectors typically occupy a small volume in phase space, this method is computationally

inefficient and noisy. A far more elegant and efficient approach is to follow orbits backward

in time from the detector. Since the slowing down time of charged fusion products is four-to-

five orders of magnitude longer than typical orbit times, escaping CFP orbits are collisionless

and reversible in time. Further, phase space is conserved along the orbit. Detected orbits are

effectively detector sightlines, albeit curved ones that depend upon particle energy, pitch,

and the equilibrium fields. Liouville’s theorem implies that the detector count rate is [74]

C(E3) =

∫∫∫
dl dA dΩS(r,v3). (3.5)

This method is widely employed in the magnetic fusion community and its validity is well

established. For example, in a set of beautiful experiments on TFTR, Zweben et al. com-

pared the pitch [68] and poloidal [70] distributions of promptly lost CFPs with theoretical
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predictions.

For simplicity, throughout this section, in all plotted figures, the detected orbits are assumed

to have the same detector area A and effective solid angle ∆Ω so that the count rate is simply

proportional to the integral of the emissivity over the curved sightline trajectory, C ∝
∫
Sdl.

Polarized fuel alters the differential cross section (Equation 3.1). We envision experiments

that compare signals from discharges with pellets that are unpolarized, oriented to increase

the total cross section, and oriented to reduce the total cross section. We call these three

pellet configurations “isotropic,” “enhanced,” and “suppressed.” For the thermonuclear sce-

nario that employs both deuterium and 3He pellets, the differential cross sections for these

three spin configurations are

dσiso

dΩ
=

σ0

4π

[
P V
D = P3He = P T

D = 0
]

dσenh

dΩ
=

9σ0

16π
sin2 θ

[
P V
D = P3He = P T

D = 1
]

dσsup

dΩ
=

σ0

16π

(
1 + 3 cos2 θ

) [
P T
D = P3He = 1 = −P V

D

] (3.6)

Here, the values in the right column show the selected polarizations employed in Equation 3.1.

For the beam-plasma scenario where only the deuterium pellet is polarized, the three differ-

ential cross sections are

dσiso

dΩ
=

σ0

4π

[
P V
D = PHe = P T

D = 0
]

dσ+

dΩ
=

σ0

4π

(
5

4
− 3

4
cos2 θ

) [
P T
D = 1&P3He = 0

]
dσ−

dΩ
=

σ0

4π

(
1

2
+

3

2
cos2 θ

) [
P T
D = −2&P3He = 0

] (3.7)

In both scenarios, the differential cross section depends upon the value of θ, the angle between

the magnetic field and the emitted fusion product velocity in the center-of-mass frame. This

angle is closely related to the CFP pitch angle cos−1(v∥/v), the only difference being that
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the pitch angle is normally evaluated in the lab frame. Here, we define the “pitch” as the

ratio of the toroidal velocity to the total speed vϕ/v at the detector. In general, the value of

pitch changes along the orbit, so the value of cos θ in Equation 3.6 and Equation 3.7 is not

identical to the detected pitch (a) because v∥/v changes along a guiding center orbit and (b)

because θ is evaluated in the center-of-mass frame. Nevertheless, to leading approximation,

the detected pitch is closely related to cos θ, so different pellet polarizations should cause

differing pitch dependencies at the detector.

Figure 3.3 shows that this expectation is correct, especially for 14.7 MeV protons. This

figure plots the integral of the emissivity over the detected orbit,
∫
S dl, as a function of

detected pitch for the three different differential cross sections in Equation 3.6. Since most

of the reactions take place near the magnetic axis (Figure 3.2d), it is the value of the pitch

angle near the magnetic axis that determines the differential cross section. Nevertheless,

comparison of the dashed and solid curves in Figure 3.3a shows, for 14.7 MeV protons,

evaluation of dσ/dΩ using the detected pitch yields nearly the same result as using its

actual value at the birth location. Examination of the detected proton orbits (Figure 3.3c)

explains why this is the case. At this port, the detected orbit is simply a single Larmor

orbit, so v∥ hardly changes. (Detailed tracking of the pitch along the orbit shows that the

actual change between detector and core is 0.10.) All three signals decrease as the detected

pitch increases because the shrinking gyroradius samples farther from the magnetic axis,

where the emissivity is smaller. For 14.7 MeV protons in this configuration, in addition to

its dependence on the spatial emissivity profile, the detected pitch distribution is directly

sensitive to changes in differential cross section.

The situation is more complicated for 3.6 MeV alpha detection. Since the alpha Larmor

orbit size is half as large as for 14.7 MeV proton orbits, now the detected sightline samples

a portion of the guiding center orbit (Figure 3.3c). Consequently, the pitch at the detector

is no longer the same as the pitch near the magnetic axis, so the approximation that the
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detected pitch is approximately cos θ no longer holds. (Notice the difference between the

dashed and solid lines in Figure 3.3b). Detailed tracking along the orbit shows that the

pitch changes by 0.5 between the detector and the core for the orbit with initial pitch of

0.6. Another difference is that, at its peak, the predicted signal is much larger than for the

14.7 MeV orbit. This is because the orbital “sightline” is much longer near the magnetic axis

than the 14.7 MeV orbit that makes a single pass through the central region (Figure 3.3c).

Similar calculations for the beam-plasma scenario reinforce these conclusions. Since the

toroidal field of 2.0 T is similar to the 2.1 T thermonuclear scenario, detected 14.7 MeV

protons execute a single Larmor orbit and the detected pitch is nearly identical to the pitch

at the magnetic axis, as in the thermonuclear example. However, since the current of 0.6 MA

is considerably lower than the 1.1 MA current of the thermonuclear case, the guiding-center

orbits of detected 3.6 MeV alphas are more poorly confined, so the detected pitch is closer

to the pitch at the magnetic axis than in the thermonuclear case.

In the following subsections, calculations such as those shown in Figure 3.3 appear for both

14.7 MeV protons and 3.6 MeV alpha orbits at poloidal angles of −100°, −77°, −56° and 0°

for both the thermonuclear and the beam-plasma scenario. Also, additional complications

for the calculations in the beam-plasma scenario are considered.

3.3.2 Thermonuclear Scenario

Several simplifications are permissible for calculations in the thermonuclear scenario. First,

since the center-of-mass velocity V is small, no distinction between the center-of-mass frame

and the laboratory frame in the calculation of the differential cross section is required.

Second, also because V is small, the Doppler shift in Equation 3.2 is modest and only modify

orbital velocities by <∼1%, so only CFPs at the nominal birth energy need be considered. The

calculated values of
∫
S dl for the three different differential cross sections (Equation 3.6)
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Figure 3.3:
∫
S dl vs. pitch vϕ/v at the detector for (a) 14.7 MeV protons and (b) 3.6 MeV

alphas measured at the midplane port for enhanced, isotropic, and suppressed differential
cross sections (solid lines) in the thermonuclear scenario. The dashed curves are the variation
that would occur if the pitch stayed constant on its orbit. The symbols indicate the values of
pitch for the four orbits plotted on the right. (c) Elevation of DIII-D. The thin black curves
are flux surfaces; the thick black curve represents the vacuum vessel wall. The overlaid nearly
circular orbits are 14.7 MeV proton orbits with values of pitch of 0.2 (red) and 0.8 (cyan);
the 3.6 MeV alpha orbits have pitch of 0.6 (yellow) and 0.8 (green). The diamond symbols
indicate the locations of the four ports examined in this study.

for four different DIII-D ports appear in Figure 3.4a-d and Figure 3.5a-d for protons and

alphas, respectively.

As discussed previously, owing to large anticipated variability in the total reaction rate,

an actual experiment will rely primarily on relative measurements to assess the degree of

nuclear polarization. Consequently, the most promising detection geometries are ones where

the shapes of the curves vs. pitch (or port location) differ for the enhanced, isotropic, and

suppressed cases. In Figure 3.4(e) and Figure 3.5(e), the pitch dependence of the enhanced
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(solid lines) and suppressed (dashed lines) cases for each port are shown after normalization

by the isotropic prediction. (The graphs plot piū/(uip̄), where pi and ui are the polarized

and unpolarized signals at a particular pitch value and p̄ and ū are the average polarized and

unpolarized signals for the entire array.) For proton detection, the large difference between

the enhanced and suppressed cases for the 0◦, −56◦, and −77◦ ports (Figure 3.4e) indicates

that measurement of the pitch dependence of the 14.7 MeV proton flux at any of these ports

is a promising detection technique. In contrast, the similarity of the curves in Figure 3.5e

indicates that pitch-resolved measurements of 3.6 MeV alphas at a single port are unlikely

to provide useful information.

With an array of detectors, one could compare the ratio of the flux vs. poloidal angle. This

is shown for protons and alphas in Figure 3.4f and Figure 3.5f, respectively. (Here, the

signals for the different polarizations are normalized by the flux for that polarization at the

−56◦ port.) Here, the situation is reversed: since the enhanced and suppressed curves are

similar for the proton case, a poloidal array of 14.7 MeV proton detectors is unlikely to

provide useful polarization information. On the other hand, since the curves differ markedly,

measurement of the 3.6 MeV alpha flux with three detectors situated at poloidal angles of

−100◦, −77◦, and −56◦ is a very promising detection technique.

Representative orbits for these two promising arrangements appear in Figure 3.6. For pitch-

sensitive proton detection from the −56◦ port (Figure 3.6a), detected orbit sightlines all

transit close to the magnetic axis but, as in the example of Figure 3.3, the pitch at the

magnetic axis is close to the detected pitch, ensuring strong sensitivity to the differential

cross section. In contrast, for the poloidal array of 3.6 MeV alpha detectors, strong sensitivity

is obtained by measuring different guiding center orbits that all pass through the magnetic

axis with different values of pitch (Figure 3.6b). (The orbit detected at a poloidal angle of

−56◦ has little parallel velocity near the magnetic axis, while the orbit detected at −100◦

has a larger value of |v∥/v|.)
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Numerical details about the calculation of
∫
S dl appear in Appendix A.

Figure 3.4: (a-d)
∫
S dl vs. pitch for enhanced, isotropic, and suppressed differential cross

sections for 14.7 MeV proton detection at four different ports for the thermonuclear scenario.
(e) Dependence of the flux for the enhanced (solid) and suppressed (dashed) differential cross
sections relative to the isotropic dependence for the same four ports. The curves have been
normalized so that the total flux in both cases are equal. (f) Relative flux after integration
over pitch vs. port location for the enhanced, isotropic, and suppressed differential cross
sections.
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Figure 3.5: Same as Fig. 3.4 but for 3.6 MeV alphas.
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Figure 3.6: (a) Projection of a pair of 14.7 MeV proton orbits that are very sensitive to
the differential cross section in the 1.1 MA thermonuclear equilibrium; these are the proton
orbits with pitch of 0.4 and 0.8 in Figure 3.4b. (b) Projection of three 3.6 MeV alpha orbits
whose ratio is very sensitive to the differential cross section; these are the alpha orbits with
the largest values of

∫
S dl in Figure 3.5b-d.
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3.3.3 Beam-plasma Scenario

Calculations of CFP signals from beam-plasma reactions are more challenging. For beam-

plasma reactions, the energy shift from the nominal value in Equation 3.2 can be appreciable.

Chapter 2 shows that the emitted CFP energy depends on the velocities of the reactants and

the direction of emission, so the “sightline” trajectory depends upon the reaction kinematics,

with the consequence that different CFP energies probe different volumes in both velocity

and configuration space.

Ideal energy resolved count rates are calculated in this section. We express the d–3He reaction

in standard nuclear physics notation 2(1,3)4, where particle 2 is the thermal deuterium,

particle 1 is the 3He beam, particle 3 is the detected CFP, and particle 4 is undetected. Our

concern is with both products of the d(3He,p)t reaction, i.e. the representation of particle

3 and 4 are interchangeable. Thus, m1 = 3mp, m2 = 2mp, m3 = mp or 4mp and m4 =

4mp or mp, respectively, where mp is the proton mass. The measured energy-resolved count

rate (Equation 3.5) is C(E3,∆Ebin), where E3 is the CFP energy and ∆Ebin is the energy

resolution of the measurement.

Similar to the formulation for collimated neutron detection [42], Equation 3.5 and Equa-

tion 2.3 can be divided into two parts. One part describes the d–3He reactivity for the

selected reaction kinematics, and the second part describes the number of fast ions that can

produce a CFP with the velocity v3 accepted by the specified sightline,

S(v3, r) =

∫
dv1

∫
dv2R(v1,v2,v3, r)pgyro(v1,v2,v3)f1(v1, r)f2(v2, r). (3.8)

The emissivity R depends upon the D-3He cross section (including anisotropy), the relative

velocities of the reactants |v1 − v2|, and the emitted CFP’s velocity v3. Integration over the

thermal distribution function f2 is merged into the emissivity R, making R a function of

the ion temperature Ti, the rotation velocity vrot, and the deuterium target density nd. The
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velocity space factor pgyro(v1, v2, v3) represents the probability density that the gyroangle

of the fast ion has the correct value to produce the measured proton. Equation 2.11 An

expression for pgyro for detection of 3-MeV protons produced in D-D reactions appeared in

chapter 2. The generalization of pgyro for arbitrary reactant mass appears in Appendix B

and supplementary details about the algorithm in FIDASIM are in Appendix C.

There are three relevant rest frames to consider. The CFP velocity v3 is known in the lab

frame. The effect of the target distribution function f2(v2) on the reaction rate is most

easily computed in the rotating plasma frame. Effects from anisotropy are computed in the

center-of-mass frame. Refer back to chapter 2 for supplementary details.

Calculations are done within the FIDASIM framework [33, 34]. A new version of the CFP

algorithm based on the work in chapter 2 is developed to calculate Equation 3.5 for diag-

nostics that measure CFPs produced from D-3He fusion reactions between a 3He beam ion

distribution function and a thermal deuteron. Initial calculations of time-reversed CFP or-

bits compute effective solid angles and sightlines for the relevant range of incident proton or

alpha velocity vectors. For each sightline, using the precomputed orbit as input, FIDASIM

calculates the reactivity averaged over the thermal distribution of the ‘target’ deuterons from

Bosch and Hale coefficients [11] and the probability pgyro that a fast ion of specified energy

and pitch has a gyroangle that is consistent with the kinematic equations. The code can be

viewed online on the FIDASIM GitHub page [57], and documentation is found at [35].

Pitch spectra for the three polarization modes in Equation 3.7 for the previously mentioned

DIII-D ports are shown in Figure 3.7a-d and Figure 3.8a-d for protons and alphas, respec-

tively. The interpretation is similar to the thermonuclear case. Since large variations are

observed between the dσ+/dΩ and dσ−/dΩ cases, Figure 3.7e suggests that measurement

of the pitch dependence of the 14.7 MeV proton flux at any of the four ports is promising,

whereas the similarity of the curves in Figure 3.8e shows that pitch-resolved measurements

of 3.6 MeV alphas at a given port would not provide useful information.
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Figure 3.7: (a-d) Flux vs. pitch for the three differential cross sections of Equation 3.7 for
14.7 MeV proton detection at four different ports for the beam-plasma scenario. The signals
are integrated over energy. Panels (e) and (f) are in the same format as Figure 3.4 e&f,
where red, green, blue, and cyan are −100°, −77°, −56° and 0° in panel (e), respectively.

Comparisons of the ratio of the flux vs. poloidal angle appear in Figure 3.7f and Figure 3.8f

for protons and alphas, respectively. Again, the takeaways are similar to the conclusions

for the thermonuclear scenario. Proton detection shows little variation and alpha detection
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Figure 3.8: Same as Figure 3.7 but for alphas.

shows large variations between the dσ+/dΩ and dσ−/dΩ cases. A poloidal array of detectors

measuring 3.6 MeV alphas would provide useful information, whereas an array of 14.7 MeV

proton detectors would not.

Energy resolved spectral signals for protons are shown in Figure 3.9 for the four ports.
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Because the Doppler shift is proportional to V cos θ (Equation 3.2), the CFP energy is

sensitive to the dependence of the differential cross section dσ/dΩ on the emitted pitch θ.

Consequently, to a large extent, the energy dependence resembles the pitch dependence. For

example, large values of pitch have stronger signals for the dσ−/dΩ case, while the dσ+/dΩ

case produces stronger signals for small pitch. As a result, when the predicted signals are

integrated over pitch, as in Figure 3.10, low energies that are associated with large pitch have

the strongest signals for the dσ−/dΩ case but higher energies that are associated with small

pitch have the largest signals for the dσ+/dΩ. In particular, the −56° port in Figure 3.10c

shows the largest variation in energy.

In contrast, the alpha energy spectrum is insensitive to the type of polarization. This is

expected, since most alphas measured at a particular port are emitted with nearly identical

pitch (Figure 3.8).

The best proton and alpha orbits for the beam-plasma scenario are shown in Figure 3.11.

Similar to the thermonuclear scenario, the −56◦ port (Figure 3.11a) is best for pitch-sensitive

proton detection since sightlines pass near the magnetic axis. On the other hand, a poloidal

array is best for 3.6 MeV alpha detection since each port samples a narrow range of orbits with

the values of pitch that allow the sightline to pass near the magnetic axis (Figure 3.11b). This

is encouraging since the beam-plasma signals utilize a lower-current (0.6 MA) equilibrium

than the higher current (1.1 MA) thermonuclear scenario, implying that the choice of an

attractive detector configuration is not strongly dependent upon the equilibrium. Using

FIDASIM to calculate CFP signals, the conclusions of this section match the thermonuclear

scenario, and additionally show that energy-resolved detection of 14.7 MeV protons is a

possible detection technique. (Energy detection is even more favorable if the beam is higher

energy and more tangential than the DIII-D beams.)
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Figure 3.9: FIDASIM calculated energy distributions for 14.7 MeV proton detection in the
beam-plasma scenario for the four ports. All three polarization cases are shown. Signals are
integrated over successive intervals of pitch ≃ 0.25.

3.4 Accuracy estimates

The previous section showed several promising options for detection of the degree of polariza-

tion, including a pitch-resolving 14.7-MeV proton detector for both the thermonuclear and

beam-plasma case, a poloidal array of 3.6-MeV alpha detectors for the thermonuclear case,

and energy-resolved proton measurements for the beam-plasma case. But these calculations

all assumed ideal detectors and polarizations. This section provides realistic, quantitative

assessments of the feasibility of these detection techniques.
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Figure 3.10: Beam-plasma proton spectra integrated over pitch for the four detector ports.

The first practical complication is that current technology cannot produce fuel pellets with

100% polarization. A reasonable value for vector polarization of 3He is 0.65 [71]. For deu-

terium, one approach uses an H-D capsule and another approach uses a 7Li-D capsule. The

expected values for the H-D capsule are 0.4 for the vector polarization and 0.12 for the

tensor polarization [71]. The 7Li-D capsule can potentially deliver larger values of 0.70 and

0.41 for the vector and tensor polarizations, respectively. In the evaluations displayed in

the following figures, we consider the more conservative H-D values for the thermonuclear

case, i.e., P V
DP3He = ±0.26 and P T

D = 0.12 in the expression for the differential cross sec-

tion (Equation 3.1). For the beam-plasma assessment, we use the more optimistic value of

P T
D = 0.41 associated with the 7Li-D pellet. (Significant dσ−/dΩ tensor polarization varia-
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Figure 3.11: (a) Projection of two 14.7 MeV proton orbits with pitch of 0.2 and 0.9 in the
beam-target equilibrium. (b) Projection of four 3.6 MeV alpha orbits. Pitch at the detector
is different for all four ports and orbits pass near the magnetic axis.

tion is not presently available.) Although these are likely values using existing technology,

new schemes discussed in [71] should be able to produce P V
D = 1 and P T

D = 1 and possibly

even P T
D = −2 but require extensive research and investment [71]. Figure 3.12(a,b) compares

the normalized differential cross sections used in section 3.3 with the realistic cross sections

used here.

A second practical complication is detector count rates. According to Equation 3.5, in

addition to
∫
S dl, the count rate depends upon the area of the detector and its solid-angle

resolution. To estimate these, we assume a fast-ion loss detector similar to one currently

installed on DIII-D [75]. This detector has a rectangular 1-mm by 3-mm aperture that
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Figure 3.12: Comparison of the ideal differential cross sections (solid lines) used in section 3.3
with the realistic differential cross sections (dashed lines) employed in section 3.4 for the
(a) thermonuclear and (b) beam-plasma cases. (c) Sensitivity of the thermonuclear D-3He
emissivity profile S to 5% uncertainty in Ti and 10% uncertainties in nD and n3He. The
error bars show one-sigma uncertainties at selected locations. The solid curves show the
baseline emissivity profile computed by TRANSP, together with wider and narrower profiles
employed in Figure 3.13 and Figure 3.14 to test the sensitivity of the calculations to the
emissivity profile. (d) Emissivity profiles employed in analysis of the realistic beam-plasma
case.

provides ∼ 5◦ resolution in pitch and ∼ 15◦ resolution in gyroangle; for this geometry, the

coefficient that multiples
∫
S dl is approximately 3 × 10−5 cm2. The number of counts also

depends upon the desired temporal resolution, which depends upon the rate of decay of the

polarization. Theoretically, the polarization state is expected to decay slowly [63], so we

assume 50-ms time bins in our analysis.

A third practical complication is the sensitivity of predicted signals to the integrated emis-
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sivity
∫
S dl. It was stressed in section 3.1 that relative measurements are less sensitive than

absolute measurements to the large uncertainties in the overall reaction rate, but the same

strong sensitivity also complicates interpretation of relative measurements. Figure 3.12(c)

shows that reasonable estimates of the uncertainties in Ti, nD, and n3He substantially broaden

or narrow the thermonuclear emissivity profile. Similarly, in the beam-plasma case, uncer-

tainties in the fast-ion and deuterium density profiles can broaden or narrow the emissivity

profile [Figure 3.12(d)]. In addition, the escaping orbits, which are the effective sightlines,

depend upon the equilibrium reconstruction. To test the sensitivity to uncertainties in equi-

librium reconstructions, an EFIT equilibrium [59] from a nearby time that differs from the

baseline reconstruction by typical random error is selected, and the calculations of
∫
S dl are

repeated.

Figure 3.13 and Figure 3.14 show the results of calculations that employ these assumptions

about pellet polarization, detection efficiency, and emissivity and equilibrium profiles for

the thermonuclear scenario. The error bars shown on the figures are the one-sigma errors

associated with counting statistics, the square root of the number of counts. One observation

is that predicted signal levels are significant, in the range of 2 × 104 cps for pitch-resolved

proton detection and 2× 105 cps for alpha flux measurements. A second observation is that,

as expected, the results are sensitive to the emissivity profile and equilibrium; however for

a given assumed set of profiles, the difference between the curves for different polarization

states is similar.

To assess quantitatively the accuracy of these candidate measurements, we consider the null

hypothesis that the polarized data are consistent with unpolarized signals and compute the

reduced chi-squared χ2
r. If χ

2
r is significantly greater than unity, the candidate measurement

detects polarization with high confidence but, if χ2
r
<∼1, the measurement is unable to reliably

detect polarization. The procedure for calculating χ2
r
<∼1 is well defined for random errors

but proper assessment of systematic errors is more challenging. We have used two methods
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Figure 3.13: Realistic synthetic thermonuclear data for enhanced (P V
DP3He = 0.26, P T

D =
0.12), unpolarized (P V

DP3He = P T
D = 0), and suppressed (P V

DP3He = −0.26, P T
D = 0.12)

polarizations for a 14.7 MeV proton detector at the −56◦ port. The calculations assume
pitch angle resolution of 5◦, gyroangle resolution of 15◦ and temporal resolution of 50 ms.
Both (a) raw counts and (b) signals after normalization by the total detected flux (b) are
shown. For each polarization case, the four curves represent calculations with the baseline
emissivity profile and equilibrium (thick lines with triangles), the narrow emissivity profile of
Figure 3.12(c) and baseline equilibrium (dash-dot lines with diamonds), the wide emissivity
profile of Figure 3.12(c) and baseline equilibrium (dashed lines with *), and the baseline
emissivity profile but different equilibrium reconstruction (dotted lines with X symbols).
Note: Some error bars are smaller than the symbol size.
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Figure 3.14: Realistic synthetic thermonuclear data for detection of the 3.6 MeV alpha flux
with detectors at three different poloidal angles. The calculations assume 50-ms temporal
resolution, 15◦ gyroangle resolution, and measurement of all significant escaping pitch angles.
The figure format is the same as Figure 3.13.

that yield similar conclusions; the simpler but less rigorous treatment appears here, while

a more rigorous and complicated method is documented in Appendix D. For application

of the simpler method to the relative measurements in Figure 3.13b and Figure 3.14b, the
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CFP Polarization χ2
r (H-D) χ2

r (7Li-D)
Proton Enhanced thermonuclear 4.4 16.3
Proton Suppressed thermonuclear 2.6 4.9
Alpha Enhanced thermonuclear 5.8 19.4
Alpha Suppressed thermonuclear 4.2 8.2
Proton Tensor polarized beam-plasma 0.13 1.7
Alpha Tensor polarized beam-plasma 0.08 0.9

Table 3.1: Estimates of χ2
r for synthetic data calculated using Equation 3.9. The third

column assumes P V
D = 0.40 and P T

D = 0.12 and the fourth column assumes P V
D = 0.70 and

P T
D = 0.41. Values much greater than unity indicate confident detection.

Figure 3.15: Realistic synthetic data for detection of 14.7 MeV protons at the −56◦ port
for unpolarized and tensor polarized deuterium pellets with P T

D = 0.41. The calculations
assume pitch angle resolution of 5◦, 15◦ gyroangle resolution, and 50-ms temporal resolution.
The figure format is the same as Figure 3.13(b).

reduced chi-squared is

χ2
r =

1

N − 1

N∑
i=1

(∆si)
2

σ2
i

. (3.9)
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Here, N is the number of measurements (15 for protons and 3 for alphas), σ2
i is the random

error associated with counting statistics for the polarized and unpolarized measurements and

their normalizations (added in quadrature), and ∆si is the difference between the polarized

and unpolarized calculations for each measurement. To take account of the systematic

errors associated with uncertainties in the emissivity profile and equilibrium reconstruction,

the smallest value of |∆si| of the four curves is utilized. The results of this calculation

(Table 3.1) indicates that confident detection is feasible for the thermonuclear cases. Both

the enhanced and the suppressed polarization states supply useful information. As shown

in more detail in Appendix D, alpha detection is less sensitive to potential systematic errors

and more accurate.

In the last column, Table 3.1 shows calculated values of χ2
r for the larger polarization values

provided by 7Li-D capsules. With this degree of polarization, extremely high confidence is

obtained for both protons and alphas. However, there are caveats. First, this evaluation

assumes the same deuterium density as for the H-D case but, owing to the higher Z of

lithium compared to hydrogen, a smaller pellet is probably needed to keep the increase in

electron density manageable. On the other hand, lithium injection is usually favorable for

tokamak operation [76] so its presence may assist high Ti operation. Second, the
7Li(p,α)α

fusion reaction produces a background. At the 75 keV energy of hydrogen beam injection

in DIII-D, the reaction cross section is ∼ 10−28 cm2 [77], which implies a beam-plasma

emissivity an order of magnitude smaller than the thermonuclear d-3He emissivity. The

reaction releases 17.3 MeV of energy, divided between the alphas. This implies that the

proton and alpha diagnostics must include some energy and/or gyroradius discrimination to

avoid this unwanted background.

In contrast to the thermonuclear case, uncertainties in the analyzed beam-plasma scenario

compromise confident detection, even for the higher polarization values of 7Li-D pellets

(Table 3.1). Proton measurement of tensor-polarized 7Li-D pellets is the most sensitive
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Figure 3.16: Time evolution of the fitted vector polarization P V
DPHe for hypothetical pitch-

resolved 14.7 MeV proton data from the −56◦ port. The P V
DPHe coefficient is inferred from

data similar to Figure 3.13, assuming that P T
D is given by Equation 3.10. Each symbol and

error bar is from an ensemble of trials with randomly generated counting statistics. The
lines are from subsequent exponential fits to the P V

DPHe coefficients. The hypothetical data
assumed a P V

DPHe exponential decay time of 0.40 s; the exponential fits to the generated
data are 0.45± 0.04 and 0.35± 0.04 s for the enhanced and suppressed cases, respectively.

but, as shown in Figure 3.15, the curves and error bars for the unpolarized and tensor-

polarized cases partially overlap, a reflection of the smaller difference between the polarized

and unpolarized cross sections [Figure 3.12(a,b)] and the lower reaction rate [Figure 3.12(c,d)]

for the beam-plasma case compared to the thermonuclear case. Evidently, a 3He beam that

produces more reactions or summation over multiple shots or over larger time intervals is

required for confident detection in this case. Alpha detection (not shown) is less sensitive

than proton detection for this scenario.

In an actual experiment, one imagines making measurements like those shown in Figure 3.13

and Figure 3.14 in successive discharges with enhanced, suppressed, and unpolarized pellets.

In each discharge, measurements are acquired for hundreds of milliseconds to track the decay

of the polarization over time. Figure 3.16 shows hypothetical data from such an experiment

for pitch-resolved 14.7 MeV proton emission from a thermonuclear plasma. The analysis for
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that figure assumes that

P T
D = 2−

√
4− 3(P V

D )2, (3.10)

which is the initial tensor polarization associated with thermal equilibrium in a solid deu-

terium pellet. However, it should be noted that the different polarization terms P T
D , P

V
D , and

PHe may decay at different rates in an actual experiment. Nevertheless, the analysis shows

that proton data suffice to measure the polarization lifetime with <∼15% accuracy.

Synthetic data like those analyzed to produce Figure 3.16 can be used to estimate the one-

sigma uncertainty in the inferred polarization. For pitch-resolved 14.7 MeV proton data

from the −56◦ port in a thermonuclear experiment, the uncertainty in P V
DPHe is ∼ 0.04. For

14.7 MeV proton data from the same port in a beam-plasma experiment, the uncertainty

in P T
D is ∼ 0.10. For a poloidal array of three 3.6 MeV alpha detectors, the uncertainty

associated with counting statistics in inferring either P V
DPHe in a thermonuclear experiment

or P T
D in a beam-plasma experiment is very small (< 0.01), implying that systematic errors

will determine the ultimate resolution.

Although we emphasize individual relative measurements here, in an actual experiment,

all available data would be utilized in a unified framework, including measurements of the

total D-3He rate, Ti and nHe profiles measured by charge exchange recombination (CER)

spectroscopy [78], and the nD profile measured by the main-ion CER diagnostic [79]. In that

regard, inclusion in the diagnostic suite of a gamma-ray detector that measures the total

D-3He rate is particularly attractive.

In addition to the primary branch that produces the 14.7 MeV proton and 3.6 MeV alpha,

the D-3He reaction also produces a pair of gammas at 16.9 MeV and 15.4 MeV, with a

branching ratio of approximately 4.5 × 10−5 at fusion relevant energies for the 16.9 MeV

gamma [80]. The differential cross sections for these reactions are sensitive to the D and
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Figure 3.17: Angular dependence W (θ) of the differential cross section for gamma emission
to the ground and first excited state for D and 3He nuclei with parallel or anti-parallel spins.
These distributions assume the ideal case of 100% polarization of the initial D and 3He spins.

3He spin states. The differential cross section is the product of three factors: the square of

a reduced matrix element, the branching ratio for gamma decay of the 5Li nucleus, and an

angular weight W (θ), where θ is the angle of emission of the gamma relative to the local

magnetic field. The evaluation of W for 5Li gamma decay is analogous to the calculation

outlined in Appendix A of [71] for the α + proton final state. As shown in Figure 3.17, the

two gammas depend differently on the emission direction; both are sensitive to the alignment

of the D and 3He spins.

If gammas are detected “with equal efficiency” from all possible locations throughout the

torus, and so from points with all possible field direction at the moment of fusion, then one

effectively integrates over the plottedW distributions. While it may not seem obvious at first

sight, the integrals of the γ(0) and γ(1) distributions are in fact identical; this is true for both
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the case with parallel D and 3He spins, as well as for the anti-parallel case. Furthermore,

the integral of W with parallel initial spins is three times larger than the integral of W with

anti-parallel spins, and that is true for both γ(0) and γ(1). This factor of three is the same

polarization enhancement that occurs in the alpha + proton final state.

In principle, with a collimated gamma detector such as the vertically viewing instrument that

measures emission at ∼ 90◦ at JET [81], one could exploit the differing angular dependencies

of the two gammas in Figure 3.17 to detect the polarization state of the nuclei. Because the

natural line widths of the two gammas are quite large (Γ0 = 1.2 MeV and Γ1 = 6.6 MeV,

respectively), the measured spectrum must be deconvolved to infer the relative contributions

of each gamma but, with adequate energy resolution and counting statistics, that can be

done accurately [82, 83].

Unfortunately, owing to the low branching ratio, the count rate is too low for collimated

gamma measurements in DIII-D. To obtain adequate counting statistics, a detector should

have large intrinsic efficiency, large area, and large solid angle. Estimates indicate that a

∼ 103 cm3 bismuth germanate (BGO) scintillator mounted just outside the vacuum vessel

would measure > 104 cps in the thermonuclear shots. Because such a detector would detect

gammas with many values of θ from a large spatial volume, the measurement is insensitive

to uncertainties in emission profile and equilibrium reconstructions (
∫
S dl), thus providing a

valuable complement to the primary CFP diagnostics. In discharges with large D-D neutron

rates, the large (n,γ) background produced by 2.45 MeV neutrons can obscure the relatively

weak D-3He gamma peak but, in our thermonuclear scenario, the D-D rate is orders of

magnitude smaller than in those discharges, so the (n,γ) background should be manageable.

A review of gamma-ray diagnostics in tokamaks appears in [84] and an example of successful

recent detection appears in [83].
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3.5 Discussion

The previous section gave a realistic, quantitative assessment of experimental feasibility. In

this section, additional complications and considerations are discussed, often qualitatively.

There are multiple issues associated with delivery of the pellet fuel. The actual preparation

and delivery of spin-polarized pellets has many challenges that are discussed in detail else-

where [67]. To summarize, we envision filling gas-discharge-polymer (GDP) shells like those

used in inertial fusion research [85] with polarized fuel. For the 3He, the nuclei are polarized

prior to diffusing through the shell; for deuterium, the pellet contains both H and D so RF

can be used to transfer H spin to D. Once prepared, the shell pellets are injected vertically

into the tokamak from a 77 K cryogenically cooled gun for the 3He pellets and a 2 K gun

for the H-D pellets [71].

A measurement of the polarization upon entry into the tokamak is desirable since, due to

inhomogeneity of the magnetic field, some nuclei may depolarize during pellet injection.

For example, the loops of a superconducting quantum interference device (SQUID) located

at the end of the flight tube could be used to measure fluctuations in the magnetic field

produced from changes in the depolarization of the nuclei upon entry. If this depolarization

mechanism is operative, it will occur too rapidly to be detected accurately by the CFP

measurements. On the other hand, as long as the signal-to-noise ratio remains adequate,

if the actual injected polarization differs somewhat from the expected (or measured) value,

this does not preclude study of the other depolarization mechanisms (such as wave-induced

depolarization), since one could still infer the lifetime of polarization from a time series of

accurate CFP measurements.

Another issue related to pellet delivery is that, most likely, the fuel will be deposited away

from the magnetic axis. Central deposition is achievable with large pellets but large increases

in density are incompatible with the desired high Ti regime. The injected pellets resemble the
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“shell pellets” employed in disruption mitigation experiments [86]. The required quantity

of 3He fuel is similar to the amount of argon delivered in the shell-pellet experiments. For

example, in a disruption mitigation experiment, a 2-mm-diameter pellet with 10 atm argon

fill delivered its payload near a normalized minor radius of ρ ≃ 0.4 [86]. Central deposition

is enhanced by pellet injection from the high-field side [87] so, if this is compatible with

preservation of the polarization during injection, high-field side (or vertical) injection is

preferable to low-field side injection. The calculations presented above assume centrally

peaked nd and n3He profiles (Figure 3.2b), so, almost certainly, some convective inward

transport is required to bring the fuel into the high fusion emissivity region. Inward transport

rates are scenario and species dependent and are not well established for the desired plasma

conditions. A likely timescale is 50-100 ms. Empirically, low collisionality favors density

peaking [88] and the desired regime has low collisionality. In TFTR experiments, 3He puffed

at the plasma edge reached the core with inward transport times of ∼ 100 ms [89]. Thus,

we anticipate inward transport of the pellet payload to the high fusion emissivity region

will occur on an acceptable timescale in an actual experiment, but this assumption requires

further study and experiments.

Another issue that requires further research is the optimal size of the pellets. In the absence

of large MHD or changes in confinement regime, the stored energy often remains roughly

constant after pellet injection, so the fractional increase in density is approximately equal

to the fractional reduction in temperature, ∆n/n ≃ −∆T/T . The thermonuclear D-3He

reaction rate is proportional to nDn3He⟨σv⟩, with the reactivity being a strong function of

Ti. Although smaller pellets have lower values of nDn3He, the reaction rate is not necessarily

lower than assumed in our thermonuclear scenario, since ⟨σv⟩ is larger for a smaller reduction

in Ti.

A related issue is the timing of pellet injection. Ideally, to measure the polarization lifetime

for as long as possible and to isolate different possible depolarization mechanisms, the fuel
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would immediately be heated to high temperature. However, pellet injection into a high Ti

regime with properties resembling the desired one often triggers disruptions or confinement-

degrading neoclassical tearing modes [90]. It may be necessary to inject less fuel than

assumed in section 3.2, so repeat discharges might be required to achieve suitable accuracy.

Alternatively, injection prior to the high-power phase could prove more stable but this might

prevent detection of relatively rapid depolarization mechanisms. Once again, additional

experiments to establish the best scenario are desirable.

Backgrounds associated with D+D fusion reactions are manageable. There are two back-

grounds to consider, one associated with the D+D → 2.4 MeV neutron + 0.8 MeV 3He

branch and another associated with the D+D → 3.0 MeV proton + 1.0 MeV triton branch.

For equal deuterium and 3He concentrations at Ti = 10 keV, the emissivity of each of these

D+D branches is 1.3 times larger than the D-3He emissivity. The concern for the neutron-

3He branch is that 0.8 MeV 3He ions produce secondary ”burnup” D-3He reactions as they

slow down [91]. Most 0.8 MeV 3He ions produced in D-D reactions are confined in a 1.1 MA

plasma but, for an average electron temperature of ⟨Te⟩ = 2.5 keV, only 6× 10−3 of the 3He

ions produce a secondary D-3He reaction as they thermalize, so secondary reactions produce

14.7 MeV protons and 3.6 MeV alphas at < 1% of the thermonuclear D-3He rate.

The proton-triton branch is of greater concern. The orbits of 3.0 MeV protons and 1.0 MeV

tritons are very similar to 3.6 MeV alpha orbits. Moreover, as discussed below, the differen-

tial cross section for the D+D reaction has an unknown but likely significant dependence on

spin polarization, so it is essential to distinguish the D+D fusion products from the D+3He

ones. A scintillator-based FILD detector is envisioned for the pitch-resolved 14.7 MeV mea-

surement. Since the gyroradius of the 14.7 MeV proton is 2.2 times larger than the 3.0 MeV

proton gyroradius, the two proton “spots” on the FILD scintillator plate are widely sep-

arated and easily distinguished. However, for the 3.6 MeV alpha flux measurement, the

gyroradius is only 1.2 times larger, so a different discrimination method is required. Here,
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one could exploit the difference in range between protons and alphas in a pulse-counting en-

ergy measurement. The range of a 3.0 MeV proton in silicon is 92 microns, while the range

of a 3.6 MeV alpha is only 15 microns. If one uses a thin ∼ 15 micron silicon detector to

measure the alphas, their ∼ 3 MeV peak can be readily distinguished from the lower-energy

pulses deposited in the detector by the protons and tritons.

Since DIII-D normally operates in deuterium, it would be simpler operationally to study

the polarization lifetime using D-D fusion reactions rather than D-3He reactions. The com-

plication with D-D reactions is that, although they are known to be anisotropic even with

unpolarized fuel [56], the dependence of the differential cross section on spin polarization

is controversial theoretically. Hence, although it is likely that there is some dependence,

the magnitude of the expected effect is unknown. Nevertheless, one can imagine making

measurements with polarized and unpolarized deuterium pellets in scenarios similar to the

ones described here. For the thermonuclear case, only deuterium pellets would be injected;

for the beam-plasma case, an unpolarized deuterium beam would replace the unpolarized

3He beam. The confinement of the 3 MeV protons produced in D-D reactions is nearly

identical to 3.6 MeV alpha confinement, so the alpha flux detectors (perhaps with thicker

silicon diodes) could be used to measure the escaping 3 MeV protons. Since the D-D reaction

rate is comparable to the D-3He rate for those conditions, count rates remain adequate. If

either scenario produces a measurable dependence on polarization, then the lifetime of the

polarization could be inferred from the rate of decay of the effect, even without knowledge

of the expected initial value.

Although DIII-D should provide reactor-relevant tests of depolarization by plasma waves

and Coulomb collisions, DIII-D is not equipped to study depolarization at the walls under

reactor-relevant conditions. DIII-D is a graphite-wall device and carbon is predicted to retain

too much tritium for use in a reactor [92]. Depolarization at a metal wall is predicted to

be more rapid than with a carbon wall [93]. Another likely difference is the importance
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of recycling. In DIII-D, even during divertor operation, nuclei often return to the plasma

after interacting with the wall. Depending on the ultimate design of the divertor, recycling is

likely to be less important in a reactor. The majority of escaping fuel will be reprocessed. As

an aside, although polarizing the fuel adds additional complexity and cost to a fusion power

plant, in a D-T reactor, reprocessing of tritium is absolutely essential [94], so polarizing the

fuel merely adds an additional step to the multi-step tritium recovery process.

An attractive alternative approach that is not currently possible on DIII-D is to use ion

cyclotron resonance heating (ICRH) of a dilute 3He population to produce a large beam-

target D-3He reaction rate. (DIII-D is not equipped with an ICRH capability but many

other facilities are.) Minority heating of 3He at its fundamental cyclotron frequency [95]

has been employed in tokamaks for decades and is a very effective way to create a fast-

ion population at energies that produce abundant D-3He reactions [22]. For example, on

the Princeton Large Torus (PLT), a population of ICRH-accelerated 3He ions with energies

in the 100-400 keV range produced large reaction rates [96] and energy-resolved 14.7 MeV

proton measurements showed that the perpendicular energy of the reacting 3He ions was

much larger than the parallel energy [69]. A possible scenario is to accelerate a small 3He

population (concentration ∼ 5%) to ∼ 200 keV energies in a 4He plasma, then inject a

tensor-polarized deuterium pellet. In a device where 14.7 MeV protons escape with little

change in pitch (as in PLT), the signals from collimated proton detectors at two different

pitch angles (such as 40◦ and 90◦) would be directly proportional to dσ+/dΩ (Figure 3.12b);

measurements of the energy spectra [69] would confirm the origin of the reactions. The

ideal device for such an experiment has (i) magnetic fields that are large enough to confine

∼ 400 keV 3He ions but low enough that 14.7 MeV protons readily escape and (ii) relatively

small volume in order to minimize the amount of polarized fuel required for adequate signals.
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3.6 Conclusion

Polarized fuels could significantly enhance the performance of a burning plasma, provided

that the polarizations are retained for periods comparable to the burn-up time. This chapter

focuses on detection of polarization-dependent changes in the differential cross section dσ/dΩ

in order to measure the lifetime of spin-polarized fuel. A suitable facility needs unconfined

fusion products to facilitate detection, either polarized beams or hot (Ti
>∼10 keV) plasmas

to produce adequate count rates, and reactor-relevant depolarization mechanisms. DIII-D

provides all three. The most promising detection strategy is a poloidal array of 3.6 MeV

alpha flux detectors. A pitch-resolving 14.7 MeV proton detector located at a poloidal

angle of −56° is also sensitive. Both detection schemes are sensitive for a wide range of

plasma currents. For either detection strategy, polarizations that either enhance or suppress

the total cross section provide detectable signals. Quantitative assessment of uncertainties

shows that these strategies can detect the presence of polarization with high confidence, even

for the less than maximal values of polarization available with existing technology. Although

substantial technical challenges must be overcome to successfully deliver the polarized fuel to

the plasma core, this study shows that, if those obstacles are surmounted, accurate lifetime

measurements of the polarization are feasible on DIII-D.
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Chapter 4

Alfvén Eigenmode detection using

Machine Learning on DIII-D

4.1 Introduction

The successful operation of planned nuclear fusion devices such as ITER depends on con-

fined populations of super-thermal particles that heat fuel ions for a self-sustaining plasma

burn [97]. If confined, alpha particles born from fusion reactions can provide the heating

required to reach ignition. If these alphas become unconfined, they can carry away fusion

power and damage the first walls [98, 99]. The heat loss can be replaced using auxiliary

heating mechanisms such as neutral beam injection (NBI) or radio frequency (RF) waves

and both of these methods can create populations of fast ions that are useful for momentum

transfer and current drive [100]. Fast ions born from fusion reactions or external heating can

resonate with special types of plasma waves called Alfvén eigenmodes (AEs) [23, 101, 102],

transfer energy to the wave, drive the plasma unstable and degrade energy confinement [24,

25]. Also, particle redistribution can expel fast ions from the plasma [24–30] and damage
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the inner walls of the vessel [31, 32]. Therefore, studying fast ions and controlling AEs is

imperative for the realization of controlled nuclear fusion.

Real-time control of AEs in high performance burning plasmas without damage to the inner

walls is a high priority objective for the Plasma Control System (PCS) at ITER [103, 104].

It is currently an important goal to determine the best set of external actuators in order to

control AEs and alpha losses [17]. Suitable techniques include electron cyclotron resonance

heating (ECRH) and current drive, and neutral beam injection. Since AEs can appear for

short time scales on the order of milliseconds, simple feed-forward physics models are used

to detect and control AEs. There is a need in the community for models with quick response

times that could accurately detect the presence of AEs in real-time experiments.

Machine Learning (ML) applications in magnetic confinement fusion energy are growing and

exciting opportunities exist in the fast-ion physics research field. Currently, the largest ap-

plication of ML is in the area of disruption mitigation, where models are trained to prevent

the rapid loss of thermal and magnetic energy during a quench of the plasma [105–112].

Surrogate model generation and experimental planning also benefit from data-driven meth-

ods [113]. On the other hand, ML in fast-ion research is a relatively new field. For example,

Alfvénic and magnetohydrodynamic modes were detected using deep learning-based models,

manually-labeled targets and magnetics on TJ-II [114] and COMPASS [115]. More examples

used supervised learning to detect AEs [114–116], and data mining techniques combined with

clustering for extraction of plasma fluctuations [117, 118].

In recent years, significant advancements have been made in detecting and controlling AEs

using electron-cyclotron emission (ECE) data on DIII-D. Originally, in-shot variation of

neutral beam energy showed promise for AE control [18], then the first active real-time

control of AEs in a tokamak utilized modulated beams to tune the drive for AEs using

feedback from high resolution ECE signals [31]. Shortly after, the Large 2009–2017 DIII-

D AE Energetic Particle Database [119] was created to better understand low frequency
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AEs and was later used for machine learning analysis in two papers [120, 121]. Deep Neural

Networks were trained using ECE data in both studies. Reservoir Computing Networks

(RCN) and Multi-layer Perceptron (MLP) Networks were trained in the former and latter

study, respectively, and both achieved high performance. section 4.2 of this chapter discusses

the Large AE-EP Database in more detail.

In this work, we focus on training Recurrent Neural Networks and labels created from the

Large AE-EP Database, but use CO2 interferometer data instead of ECE since there are

several advantages: 1) calculating crosspower spectrograms between two chords is common

in the fast-ion physics community since AE patterns can be highly visible in this represen-

tation of the data, 2) the 1D phase signals are routinely processed by the Plasma Control

System for nearly every discharge and can be used for real-time control in future DIII-D ex-

periments, and 3) although ECE measurements are high resolution and can measure AE

fluctuations with good signal-to-noise, issues associated with resonances and cutoff frequen-

cies pose challenges for AE detection. Using the CO2 interferometer for AE identification is

useful for reliably detecting AEs since it does not have limitations with cutoffs. For reasons

2 and 3, more shots are available in the Large AE-EP Database to train data-driven models.

The baseline technique was initially trained to detect AEs using CO2 Interferometer data in

a conference paper [3], and we report significant advancements here.

Building from our prior work, the primary objective of this chapter is to study the per-

formance by comparing the following: 1) different feature sets (simple magnitude and

crosspower spectrograms), 2) recurrent neural networks (RCN vs LSTM), and 3) stacking

outputs vs individual crosspower. The state-of-the-art (SOTA) technique in [120] used 40

stacked time-domain signals of ECE data and created labels from the Large AE-EP Database

to train an RCN. We instead use spectrograms of CO2 interferometer data, and individually

forward pass each chord through both Neural Networks one-at-a-time and compare the re-

sults. The aim is to match our prior performance by training with CO2 interferometer data
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for the potential long-term goal of creating an ML detector that could be useful in real-time

AE control.

This chapter is organized as follows: the CO2 interferometer on DIII-D, labels from the Large

AE-EP Database and important challenges are discussed in section 4.2. The results of model

and feature comparison are shown in section 4.3. Correlation analysis between predictions

and metadata (equilibrium, beam, etc.) are reported in section 4.4. Conclusions appear in

section 4.5.

4.2 Experimental Data

DIII-D is a well diagnosed tokamak housing many diagnostic systems that measure the effects

of AEs, with large amounts of available data from decades of experimental campaigns. Elec-

tron cyclotron emission [122], CO2 interferometry [123], beam emission spectroscopy [124],

and magnetic fluctuation diagnostic systems [125] can be used to study the effects of fast-

ion driven instabilities. Diagnostic and plasma information can be relayed to actuators for

real-time control of AEs in DIII-D experiments [17–20].

The two-color vibration compensated CO2 interferometer is a real-time system routinely

used for feedback control of the plasma state at DIII-D. Additionally, it can provide useful

information about the internal mode structure of AEs since it observes the AE induced

density perturbations with a resolution in the ∆(nL)/nL ∼ 10−5 range at the frequencies

of interest. A layout of the CO2 interferometer for an example equilibrium is displayed in

Figure 4.1. All four chords (3 vertical and 1 horizontal) are digitized for 9 seconds per shot

at a rate of 1.67 MS/s, and the CO2 phase data are studied in this work since AE frequencies

are well above typical mechanical vibration frequencies. Also, the phase data are processed

in real time by the Plasma Control System at DIII-D, making the AE detector in this work
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applicable for actuator driven mitigation of AE impacts.

In the past, identfication of AEs was usually done in a post-shot framework using crosspower

spectrograms of CO2 interferometer data and other AE fluctuation diagnostics (or plasma

parameters). Doing spectral analysis is useful since generating spectrograms can remove

low frequency noise and machine vibrations seen in the 1D signals. Although this method

worked, it can be time consuming and requires extensive domain knowledge. In this work,

we automate the identification process by training RCNs and LSTMs using simple and

crosspower spectrograms of CO2 interferometer data.

The original curated Large AE-EP Database was created to investigate the dependence of

AE stability on plasma parameters in over 1,139 shots [119]. It includes the occurrences of six

plasma instabilities: ellipticity (EAE), toroidal (TAE), reversed-shear (RSAE), beta-induced

(BAE), low-frequency mode (LFM), and energetic particle-induced geodesic acoustic mode

(EGAM) [119]. Table I of [120] shows a description of these modes. Times were selected

when the various AEs were stable, marginal, or unstable. The number of time stamps

per discharge was chosen to sample changes in plasma parameters and mode activity in a

representative fashion. Time stamps usually appear in the middle of a type of activity, and

many occur during the first 1.9 s since some AEs depend on the q profile and q steadily

evolves during that phase of the discharge.

There are several challenges using the Large AE-EP Database and they are addressed here.

The time stamps need to first be made binary and we adopt the one-hot encoding method

described in Table II of [120]. We consider AEs originally marked unstable as being present

in the discharge and mark them as 1, otherwise flags are reassigned to 0. Figure 4.2 shows

the presence of AEs over the selected 1069 shots studied in this chapter. Since predicting

single time stamps is a challenge for ML-based methods, the re-assigned flag for all AEs are

widened over ±125ms. This completes the creation of the labels used to train the RCN and

LSTM in this work. The third challenge is shown in Figure 4.3, where the distribution of
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labels is imbalanced and heavily skewed towards TAE and RSAE. This imbalance motivates

using true positive rate (TPR) and false positive rate (FPR) as the metrics of success since

the accuracy metric would be 94% if a model always predicted 0. TPR and FPR are defined

as follows:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

(4.1)

where TP = true positive, FN = false negative, FP = false positive, and TN = true negative.

Although the ML classifiers train using information over the entire discharge and the original

curated label is only available at discrete random times, TP and FP are modified such that

a given prediction is reassigned only if an AE label is nearby within a window of ±140ms.

Lastly, CO2 interferometer, ECE and magnetics were all used to originally classify AEs in

the Large AE-EP Database, which creates a classification challenge since a certain mode

might show up more clearly in a different diagnostic than the CO2 interferometer.

Given these challenges, our prior work using ECE data accomplished true positive rate =

91% and false positive rate = 7%, (Table III of [120]). Our aim here is to match or improve

these results using different feature sets of a new diagnostic system (CO2 interferometer)

and recurrent neural networks (RCN vs. LSTM).
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Figure 4.1: The elevation view of the CO2 interferometer installed on DIII-D for shot
#178631. Three vertical chords are located at Rm of 1.48m, 1.94m and 2.10m, and the
radial chord is horizontal on the midplane. The black curves are the magnetic flux surfaces
(the last closed flux surface is in blue). The magnetic axis is denoted by the blue × symbol.
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Figure 4.2: The presence of AE label vs. shot number shows TAE and RSAE are labelled
frequently across many experimental campaigns. LFM, BAE and EAE have relatively sparse
representation in the database.
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Figure 4.3: The occurrence of labels for the training set (801 shots) and validation set
(268 shots) are skewed towards TAE and RSAE. The sets are randomly shuffled to preserve
distribution shape. In comparision, there are barely any LFM or EAE instances throughout
the database.
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4.3 Comparisons and results

In an effort to discover the best performing Machine learning-based model for this new

CO2 interferometer project, several methods are explored in the following order: 1) Linear

Regression, 2) Multi-Layer Perceptrons, 3) Convolutional Neural Networks (convnet), and

4) Recurrent Neural Networks. A brief, qualitative summary for the regression, MLP and

convnet classification appear in Appendix D. Details about the linear baseline classification

for single chord analysis using CO2 interferometer data are shown in [3], and significant

advancements are made in this work. Here, three major goals are addressed:

1. Compare the features of different inputs, i.e., simple magnitude and advanced crosspower

spectrograms. The extraction of these different feature sets is discussed in subsec-

tion 4.3.1

2. Determine the best performing recurrent neural network (RCN or LSTM) for this

study. The different models are introduced in subsection 4.3.2.

3. Compare the performance of stacking outputs vs. crosspower combinations (2 sim-

ple spectrogram chords and 1 crosspower calculation). Results are shown in subsec-

tion 4.3.3.

4.3.1 Inputs

The inputs for both recurrent neural networks are simple magnitude and advanced crosspower

spectrograms. These are windowed Fourier transform calulations using a window length of

4.9ms and overlap of 80%. The spectrograms are downsampled using a maxpool function

and the final input shapes are (time, frequency) = (140, 508). Maxpooling is commonly

used in computer vision tasks and produced good results in this work. For the LSTM model,
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spectrograms are “cut” into 280ms windows, concatenated and fed into the model. For the

RCN case, windowing is not implemented and the model processes 1D vectors of frequencies

per training step. More details about the input preparation for the LSTM model can be

viewed in Section III of [3].

4.3.2 Architectures

The Python toolbox PyRCN (Python Reservoir Computing Networks) [126] is used for

optimizing and training the RCN in this classification project. We utilize the more common

RCN architecture, Echo State Networks (ESNs) [127], to perform the classification of AEs.

Also, the hyper-parameter optimization routine is handled within the PyRCN framework

and is based on the search strategy introduced in [128].

A 2-layer RCN is developed by sequentially stacking two RCNs [129] on top of each other.

It has been shown in [128–130] that stacking RCNs increases the temporal model capacity

and reduces errors learned in early layers by rectifying their outputs in the subsequent

layers. Larger capacity (more temporal information) can improve the RCN’s performance in

detecting specific AEs such as LFM. Figure 4.4 shows a diagram of this architecture. The

RCN processes a timestamp vector of frequency values (Nfreq × 1) and uses the provided

labels (Nmodes × 1) to train the readout layer. The output of the first RCN are scores for

each of the five AEs. This output vector is then fed into the second RCN as input and the

second readout layer is trained using the same labels. The final outputs are rectified scores

for each AE.

The hyperparameter optimization strategy closely follows the method described in Section

3c of [128]. Table 4.1 shows the results from the hyperparameter optimization routine for

both layers. The process uses a 3-step sequence of searches for the hyperparameters input

scaling, spectral radius, bias scaling and leakage. The steps of the method are as follows:
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1. Perform a random search for the input scaling and spectral radius while the bias scaling

and leakage terms are held constant.

2. Fix the leakage to 1 and search for the bias scaling.

3. Search for the leakage term.

Step 1 determines the balance between forward and recurrent connections, Step 2 can intro-

duce more non-linearity into the system, and Step 3 determines the attention the network

gives to temporal information in the inputs. The hyperparameters at each step are selected

based on the minimization of the mean squared error (MSE) curve.

The LSTM model consists of three layers using Long-Short Term Memory cells, one dropout

layer and four layers using Multi-layer Perceptrons. This type of architecture will consider

memory in the inputs and generate AE scores. Refer to [3] for more information about this

model. The hyperparameters shown in Table 4.2 are optimized by sequentially scanning

values and analyzing predictions over three selected discharges.
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Figure 4.4: Schematic of the stacked 2-layer RCN used to classify AEs trained with simple
and crosspower spectrograms. The input layer of the first RCN is connected to a reservoir
of nonlinear neurons and gets mapped to a higher dimensional space, where the data are
more separable. The readout layer of the first RCN is trained using linear regression and
processed as inputs for the second RCN. The second reservoir consists of less neurons since
less model capacity is needed to rectify the mistakes of the first layer. The final outputs are
AE scores.
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Table 4.1: The results from the hyperparameter optimization routines used to train the
RCN network. A sequential search hyperparameter optimization strategy is used to train
the readout layers of the stacked 2-layer RCN. Final values for each hyperparameter and
each layer are reported in the final two columns.

Hyper-

parameter
Range Distribution Layer 1 Layer 2

Input scaling 1× 10−5 to 1 uniform 0.03 0.09

Spectral radius 0 to 2 uniform 1.27 0.39

Leakage 1× 10−5 to 1 log uniform 0.71 0.71

Bias scaling 1× 10−2 to 1 uniform 0.27 0.13

Alpha 1× 10−5 to 10 loguniform 6.60 0.00
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Table 4.2: Similar to Table 4.1, only for the LSTM network. A simple sequential scan is
implemented here. Final values are listed in the last column.

Hyperparameter Range Step size Final

Optimizer Adam, Adamax, RMSprop N/A Adam

Learning rate 10−2 − 10−6 ×10−1 10−4

Layers (LSTM)

Nodes (LSTM)

2− 9

32− 256

+1

×2

3

64

Layers (MLP)

Nodes (MLP)

1− 3

64− 512

+1

×2

3

128

Dropout layers 1− 3 +1 1

Dropout threshold 0.25− 0.75 +0.25 0.5
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4.3.3 Results

A data-driven convention is initially implemented to evaluate the performance of the model,

and detailed analysis of the predicted errors follow. Thus, the TP and FP metrics are

modified such that the time slice of each prediction is reassigned if any AE label information

is available within a window of ±140ms of the predicted timeslice. Two examples at the

end of this section show a few observed errors. Also, comparisons here evaluate performance

over all four CO2 interferometer chords.

The classification results that compare the RCN and LSTM model for simple and crosspower

spectrograms are summarized by Table 4.3. The results for the simple spectrograms are

nearly equal or better than crosspower spectrograms for the RCN and LSTM model. Also,

the RCN performs slightly better than the LSTM model when using simple spectrograms.

The LSTM can trigger slightly stronger predictions than the RCN. This is visible in the

slightly higher TPR for EAE and FPR for TAE and RSAE. Figure 4.5 is a specific example

with a lot of AE activity that demonstrates the feature set comparison using the RCN and

LSTM models.

Both models might be slightly overestimating detection of TAE and RSAE since the FPR

is relatively higher for these AEs. Since AE scores of the RCN are slightly lower, the over-

estimation effect is smaller. In regions where the AI failed, this is likely due to several

reasons: 1) models are overfitting to training data, 2) noise in the CO2 interferometer spec-

trograms, 3) latency associated with sparse time stamp, 4) general AI error. However, there

are cases where the AI is working well, but an error is assigned. Possible reasons for this are

the following: Incorrect value assigned to curated database through A) ∆t label extension

and B) calling no label stable, and C) some cases can be ambiguous. Figure 4.6 illustrates

some of these points. Despite these issues, both models are capable of learning the patterns

associated with AEs in this database and achieve high performance.
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The RCNmodel demonstrates better results, and additional advantages include finer resolved

predictions and the training speed for an RCN can be faster than for an LSTM. The RCN

improved the linear baseline technique in [3] substantially since the memory of the model is

higher with the addition of reservoirs containing random recurrent connections. Figure 4.7

shows the effect of adding a second layer to the RCN model. This effect is similarly observed

when adding a third layer and increasing the number of nodes to 64 for the LSTM model.

In an effort to determine the set of chords with the highest AE detection, we check the

performance for one chord, two-stacked chords or one crosspower combination using the F2

score. This metric is a harmonic mean of the recall (TPR) and precision
(

TP
TP+FP

)
metrics,

where β = 2 in the following equation:

Fβ =
1 + β2

β2

Recall
+ 1

Precision

. (4.2)

The metrics TP and FP are further modified here by an additional ∆t = ±71ms in the

calculation of the F2 score to capture more information per chord from the discharges. These

values are collected into a confusion matrix shown in Figure 4.8. For the upper diagonal

(crosspower), the best performing combinations are V2R0, V3R0 and V2V2. The anecdotal

favorite combination in the control room during experiments at DIII-D is V2R0 and the

RCN model scores highest for this combination. For the lower diagonal (stacking outputs),

adding predictions from V2 to V1 and any chord to R0 slightly improves the performance

of V1 and R0, respectively. Although these differences are small, additional AE information

from different chords might be needed when predicting using chords V1 or R0. Lastly, the

darkest shaded region indicates that predictions for chord V2 achieve the best performance.
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Table 4.3: Comparison of results using simple and crosspower spectrograms for the RCN and
LSTM models. RCN predictions are made binary (0 and 1) using AE scores = 0.05, 0.15,
0.11, 0.07 and 0.08 for the five AEs listed in the left column. Similarly, the LSTM threshold
values are 0.06, 0.13, 0.13, 0.10 and 0.07. The RCN trained using simple spectrograms is
the top performer.

SIMPLE CROSSPOWER

RCN LSTM RCN LSTM

AE TPR FPR TPR FPR TPR FPR TPR FPR

EAE 0.60 0.07 0.77 0.07 0.72 0.07 0.70 0.06

TAE 0.93 0.18 0.94 0.26 0.89 0.14 0.94 0.28

RSAE 0.94 0.19 0.91 0.29 0.89 0.15 0.92 0.28

BAE 0.80 0.23 0.79 0.23 0.69 0.13 0.79 0.27

LFM 0.81 0.05 0.80 0.10 0.64 0.02 0.78 0.07

TOTAL 0.90 0.14 0.90 0.18 0.85 0.10 0.90 0.18
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Figure 4.5: A comparison of the raw RCN and LSTM predictions using simple magnitude
(panel a) and advanced crosspower (panel b) spectrograms for shot #178631. The simple
spectrogram is calculated for chord V2 and the crosspower is between chords V2 and R0. The
red vertical ticks and horizontal strikethroughs indicate the curated time stamp and label,
respectively. The purple pixels are raw predictions for the RCN and LSTM models. Regions
where the purple pixels overlap the red strikethroughs are considered good agreement. The
dotted regions are times where the curated database doesn’t indicate anything, yet the model
is robust enough to capture the AE activity observed in the spectrograms.
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Figure 4.6: AE labels, thresholded predictions and simple magnitude spectrograms for shot
#170669. The colored predictions are denoted as follows: TP = green, FP = orange,
FN = red, and TP = black. White vertical lines in the spectrograms indicate the original
timestamp. Error type 1 is due to effects from overfitting, since the model could be triggering
scores for LFM due to the overall pattern of the discharge. Error type 2 occurs due to noise
in the spectrograms. Error type 3 is attributed to time delays for predictions. Error type
4 is categorized as a general AI error, where the model failed to predict correctly. Letter A
indicates an incorrectly assigned error since there is still activity but the ∆t extension of the
label is too short. Letter C also indicates an incorrectly assigned error due to ambiguity in
the discharge.
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Figure 4.7: LFM and EAE predictions using the RCN model for shots 178636 and 175985
for CO2 chord V2. A second reservoir recitifies the mistakes made by the first layer and
produces better predictions for the least common modes in the database.

106



Figure 4.8: F2 scores for the crosspower (upper diagonal), stacked chords (lower diagonal)
and single chord (right vertical bar) comparison using the RCN model. Stacking chords can
perform better than crosspower, and chord V2 performs slightly better than the other three
chords.
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4.4 Analysis of metadata

Additional information in the Large AE-EP Database can be used to study model inter-

pretability, and correlations between misclassification and operating regime parameters. The

following inferred and experimental data data are available [119]: 1) EFIT equilibrium re-

constructions [59] provide plasma shape, magnetic field, and beta information, 2) kinetic

temperature, plasma rotation, and electron and impurity densities from between-shot profile

fitting algorithms, and 3) information about neutral beams such as injected power, energy,

voltage and orientation. The goal is to determine if there are any tendencies with misclas-

sification by calculating Pearson correlation coefficients, r, between TPR and FPR with all

68 parameters in the database for the validation set.

Although many parameters have coefficient values near zero for both TPR and FPR, we

report parameters with the highest values here. For the AE labels, BAE has the strongest

Pearson correlation coefficient with values of −0.22 and −0.21 for TPR and FPR, respec-

tively. For the plasma parameters, the strongest correlation for TPR is with pitch-angle-

scattering (PAS) time on axis, and for FPR is with an analytical calculation of the BAE

frequency; see Figure 4.9. The r for PAS with TPR and BAE frequency with FPR are 0.20

and −0.17, respectively. In both cases, there are about 500 points used in the comparison,

and an |r| ≃ 0.20 indicates that the dependence is either non-existent or very weak. Thus,

there is no evidence of any dependence on the operating regime—suggesting that we could

safely use the identifier throughout this parameter range and likely somewhat beyond.
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Figure 4.9: Points for the strongest Pearson correlation coefficient, r, in the comparison
between AE metrics (TPR & FPR) and metadata are shown here. In panel a, the pitch-
angle scattering (PAS) time is the 90-degree scattering time in the NRL Formulary [131]. The
r between PAS and TPR is 0.20. In panel b, the BAE frequency is from Eq. (1) of [132], and
the r with FPR is −0.17. Since most of the analysis shows low correlation values, concerns
regarding the RCN model failing to predict AEs at the limits of the parameter range are
alleviated.
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4.5 Conclusion

Recurrent neural networks are trained using CO2 interferometer data and labels from the

Large AE-EP Database on the DIII-D tokamak. Two models (RCN and LSTM) are trained

separately using simple and crosspower spectrograms. The additional steps required to

calculate crosspower are unnecessary since the predictions are similar for both types of

inputs. Both models are trained using one CO2 chord per training step and achieve high

results. The RCN performance is slightly higher with True Positive Rate = 90% and False

Positive Rate = 14%. Detection using any single chord is feasible (V2 is slightly better than

the other three). Since the model is primarily trained using labels marked during the current

ramp phase, more cases labelling the steady-state portion of the discharge would improve

generalizability. Lastly, analysis of the metadata demonstrates that the RCN model still

works at the limits of the experimental parameter ranges.

The CO2 Interferometer is commonly used in fluctuation analysis, acquires data for nearly

every DIII-D experiment, is available in the Plasma Control System in real-time, and doesn’t

have issues with cutoff frequencies. Given these results and advantages, it is strongly recom-

mended to detect AEs using RCNs trained with simple magnitude spectrograms calculated

using the vertical chord passing near center (Rm = 1.94m at DIII-D).

Future work would consist of implementing the RCN reported in this chapter into real-time

control algorithms to detect AEs at DIII-D. The state-of-the-art detector currently installed

on the Plasma Control System is an RCN that trained using ECE data with 8000 and 500

nodes for Layer 1 and Layer 2, respectively. It processes time domain signals and makes

predictions in approximately 400 microseconds for each time step. The RCN developed in

this work is smaller for both layers (4000 and 50 nodes). Although there is an additional step

of calculating spectrograms, the RCN trained using CO2 Interferometer data could have a

similar or faster response time during real-time experiments. Implementation of Fast Fourier
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Transforms into the PCS is currently under consideration and we plan to test it in the near

future.
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Chapter 5

Conclusions and Outlook

This work produced novel computational methods to study topics in fast-ion physics. The

first part developed 3 MeV proton weight functions verified using MAST-U data. The second

part showed that accurate lifetime measurements of spin polarized fuel are feasible on DIII-

D. The third part trained machine learning-based classifiers to identify Alfvén eigenmodes

using CO2 interferometer data and an expert labelled database on DIII-D. The following

sections suggest possibilities for future work in these three areas.

5.1 Velocity-space tomography

Understanding fast ions born from fusion reactions is a goal for the worldwide energetic

particle community since they can damage the first walls if unconfined and can provide the

heating needed for an ignited burn via alpha self-heating [133]. Fast-ion diagnostics play

an important role in this endeavor since they provide information about the plasma and

facilitate better understanding of the fast-ion distribution function. Diagnostic velocity-space

weight functions can be used to infer the fast-ion distribution function from experimental
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measurements. Equation 2.1 can be discretized into matrix form as follows:

C = W · F, (5.1)

where the rows of W consist of weight functions for each individual measurement and the

elements of F are local “pixels” of the distribution function. Inverting this equation for F is

a challenge since this is an over-determined system of equations with usually noisy diagnostic

data. Several reconstruction methods exist in fusion energy research [134–141] and it would

be interesting to apply a similar method implementing the 3 MeV proton weight functions

developed in this work in combination with FIDA, neutron collimator, and NPA data.

5.2 Measure the lifetime of spin polarization

Spin polarized D-T fuel can increase the number of fusion reactions by 50% if the nuclear

spins remain polarized in the same direction as the magnetic field. Measuring the lifetime of

spin polarization is important for a successful spin polarization fusion program. Using the

conclusions from this work, installation of charged fusion product detectors at DIII-D would

be an exciting step forward towards this goal. Orbits detected at the wall can provide in-

formation about the emitted charged fusion product pitch angle near the core, where most

of the fusion reactions take place. In this thesis, pitch-resolved measurements of 14.7 MeV

protons at the −56◦ port, and an array of alpha flux detectors showed the strongest sensitiv-

ity to different polarization modes. A preliminary next step for SPF lifetime measurements

would be to install 3-MeV proton detectors born from D-D reactions since detected orbits

are similar to 3.6 MeV alphas. Since the 3-MeV proton diagnostic can easily be repurposed,

successful D-D experiments can pave the way forward for CFP detection during SPF exper-

iments at DIII-D. Additionally, the following challenges need to be addressed in the near

future: 1) produce a high Ti scenario, 2) deposit pellets into the core, 3) define size of pellets,
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and 4) determine timing of pellet injection.

5.3 Alfvén eigenmode prediction and control

Improving scientific understanding of the plasma state and steering it away from danger-

ous instabilities is an important goal for commercially viable fusion reactors. Data-driven

models can provide real-time monitoring of the plasma in reactor relevant scenarios since

they can be trained quickly, require a minimal set of physics information as input and can

make predictions faster than the time scales of instabilities. The recurrent neural networks

developed in this thesis are suitable options for these needs and they directly contribute

to Priority Research Opportunity 4 in the Report on the Advancing Fusion with Machine

Learning Research Needs Workshop [113].

Implementation of this CO2 interferometer detector into the Plasma Control System in up-

coming experiments at DIII-D would be the logical next step. Since global normalization

of the CO2 interferometer signals is a challenge using simple techniques, using 1D Convolu-

tional Neural Networks (convnet) is a suitable candidate to eliminate the FFT preprocessing

step. The filters of the convnets are theoretically capable of learning the frequency informa-

tion directly from the signals with sufficient model capacity (deep layers and many nodes).

Alternatively, implementing real-time Fourier transformation capabilities on several GPUs

or FPGAs might be an easier option since this doesn’t require additional neural network

training. ECE signal streams can be integrated and parallelized with CO2 interferometer

data for multimodal machine learning. A feedback controller can use the outputs of this

model for AE prediction and control in a reinforcement learning framework.
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Appendix A

Numerical methods to calculate

thermonuclear signals

Equation 3.5 states that the CFP countrate C is C(E3) =
∫∫∫

dl dA dΩS(r,v3), where dl

is over the sightline trajectory, dA is over the detector area, dΩ is over the solid angle

accepted by the detector collimating structure, and S(r,v3) represents the D-
3He emissivity

(in reactions/volume-time) of CFPs that are emitted at position r along the sightline with

the correct values of detected energy E3 and solid angle Ω. This appendix sketches the

methods used in the calculations of subsection 3.2.1 and section 3.4.

EFIT [59] is used to reconstruct the equilibrium, so the axisymmetric magnetic field B is

known on a cylindrical (R, z) grid. CFP orbits are computed by integrating the Lorentz

force law dv/dt = qv × B using the Adams-Bashford-Moulton method. Since the orbit is

followed in reverse, the “initial” conditions for the calculation is actually the position and

velocity of the CFP at the detector (r,v). The (r,v) coordinates of the orbit is stored in

1 cm steps. The guiding center orbit calculated using the code described in the Appendix of

[142] is used to ensure that orbits correctly terminate when they reapproach the wall.
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The emissivity profile S is a function of the flux coordinate ρ, the square root of the normal-

ized toroidal flux. To compute
∫
S dl, the equilibrium reconstruction is used to map orbital

spatial positions into ρ, then S is inferred through interpolation. The local pitch cos θ needed

for evaluation of the differential cross section in Equation 3.1 is computed at each step from

v ·B/vB. The values of
∫
S dl plotted in subsection 3.2.1 are actually

∑
S(r) dσ/dΩ(v)∆l

summed over the orbit.

In the evaluations of actual signal levels in section 3.4, greater care of the
∫∫

dAdΩ term is

required, since a realistic detector samples a range of orbits. Since the detector area is small

compared to the orbit size, the approximation [74]

∫ ∫
dAdΩ ≃ A

∫
T (Ω) dΩ (A.1)

is used, where T (Ω) is a transmission factor that depends upon the angle of the orbit at the

aperture. Here, we assume rectangular apertures oriented to select gyroradius and pitch.

Since the 14.7 MeV proton trajectory is sensitive to initial gyroangle, a 5×5 gyroangle-pitch

grid is used in Figure 3.13. For alpha flux, the orbits are insensitive to initial gyroangle but

very sensitive to initial pitch, so a large number of initial pitch values (e.g., 81) are used for

the calculations shown in Figure 3.14.
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Appendix B

Generalization of pgyro

The goal is to generalize the factor that considers the number of fast ions in velocity space

that can produce a reaction with the specified value of v3 for any general CFP. Generalization

of pgyro follows Section 4.2 of [1] and important parts of the derivation are described here.

Masses, mi, in the equations of energy and momentum conservation in the lab frame are left

general. Using the coordinate system described in the paper, v1, v2 and v3 are inserted into

the conservation equations and yields the following

v⊥

(
2µ1 sinϕ− µ1µ2

µ3

2va
v3

)
cos γ = (1 + µ3)v3 −

q

µ3v3
− (2µ1v∥ + 2µ2vb) cosϕ

− 2µ2va sinϕ+
(µ2

1 − µ1)v
2
1

µ3v3
+

(µ2
2 − µ2)v

2
2

µ3v3

+
2µ1µ2

µ3v3
(vbv∥ + vcv⊥ sin γ)

(B.1)

where µi = mi/m4 and q = 2Q/m4.

To get a general pgyro factor, we want to calculate a pair of gyroangles γ for two energies

E3,high and E3,low; we are interested in the velocity-space spread of fast-ion gyroangles that

produce protons in a specified energy bin ∆Ebin. Equation B.1 is used to determine γhigh

131



for E3,high = E3 +∆Ebin/2 and γlow for E3,low = E3 −∆Ebin/2. The gyroradius probability

factor is pgyro ≃ |γhigh − γlow|/π .

An issue in calculating Equation B.1 occurs when an energy bin extends beyond the per-

missible values of E3 that are compatible with the other selected parameters. To find the

permissible regime, the maximum and minimum values of E3 are found from Equation B.1

when cos γ ≃ ±1. Using the quadratic formula to find the extreme values of v3 yields

v3 =
−B +

√
B2 − 4AC

2A
(B.2)

where A, B and C are defined as

A = 1 + µ3

B = 2µ1(∓v⊥ sinϕ− v∥ cosϕ)− 2µ2(vb cosϕ+ va sinϕ)

C = − 1

µ3

[
q − (µ2

1 − µ1)v
2
1 − (µ2

2 − µ2)v
2
2 − 2µ1µ2(vbv∥ ∓ v⊥va)

]
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Appendix C

Calculate CFP signals in FIDASIM

The preprocessing and main algorithm for the charged fusion product diagnostic calculations

within the FIDASIM framework are outlined here. The CFPD table is prepared in the pre-

fida step and merged with the usual FIDASIM inputs. This part of the algorithm is written

in IDL and an example for α detection at pitch = 0.6 is shown below.

;Inputs

result_dir = ’/home/results/’

inputs_dir = ’/home/inputs/’

tables_dir = ’/home/tables/’

transp_file = inputs_dir+’132224 H02.CDF’

current_fractions = double ([0.52811315 , 0.26870434 , 0.20318251])

basic_inputs = {device :"DIII -D",$

einj :72.5, pinj :1.7, current_fractions:current_fractions ,$

lambdamin :647.0d0 ,lambdamax :667.0d0,nlambda :2000 ,$

n_fida :5000000L,n_npa :5000000L,n_nbi :50000L, $

n_pfida :50000000L,n_pnpa :50000000L,lambdamax_wght :667.d0 ,$

n_halo :500000L,n_dcx :500000L,n_birth :10000L,$
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ne_wght :50, np_wght :50, nphi_wght :100, emax_wght :100.0d0 ,$

nlambda_wght :1000, lambdamin_wght :647.d0 ,$

calc_npa:0, calc_brems :0,calc_fida :0, calc_neutron :0,$

calc_bes:0,calc_dcx:0,calc_halo :0,calc_cold :0,$

calc_fida_wght :0, calc_npa_wght :0, calc_pfida :0,$

adaptive:0,split_tol :0.d0,max_cell_splits :1,$

calc_cfpd:3, calc_birth :0,calc_pnpa :0,$

result_dir:result_dir ,$

tables_file:tables_dir+’atomic_tables.h5’}

;Beam grid

basic_bgrid = {nx:70,ny:50,nz:100,$

xmin :100.d0,xmax :240.d0 ,$

ymin :-50.d0,ymax :50.d0 ,$

zmin :-100.d0,zmax :100.d0 ,$

alpha :0.d0 ,beta :0.d0 ,gamma :0.d0,$

origin :[0.d0 ,0.d0 ,0.d0]}

;Beam (needed to get prefida to run , but not used in cfpd algo)

nbi = test_beam (0.d0)

;Grid

g = readg(inputs_dir+’g132224 .02005 ’)

rmin = min(g.r)*0.95d0 *100.d0

zmin = min(g.z)*1.05d0 *100.d0

rmax = max(g.r)*1.05d0 *100.d0

zmax = max(g.z)*1.05d0 *100.d0

nr = fix(abs(rmax -rmin)/2 + 1)

nz = fix(abs(zmax -zmin)/2 + 1)

grid = rz_grid(rmin ,rmax ,nr ,zmin ,zmax ,nz)

;Equilibrium

fields = read_geqdsk(inputs_dir+’g132224 .02005 ’, grid , rho=rho , g=g)
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fields = create_struct(fields ," geqdsk",g)

fields.time *= 1.d-3 ;[s]

;Distribution function

fbm = read_nubeam(inputs_dir+’132224 H02_fi_1.cdf’,grid , btipsign=btipsign)

;Plasma

plasma = extract_transp_plasma(transp_file , fields.time , grid , rho)

;Inputs

inputs = create_struct (" comment",’Pitch analysis for He3(d,p)He4’,$

"time",fields.time ,$

"shot",g.shot ,$

"ab " ,3.01602931914d0,$

basic_inputs , basic_bgrid)

inputs = create_struct (" runid","none", inputs)

;CFPD

nrays = 1

nchan = 4

nsteps = 1375

earray = 2850 + 75.* findgen (24) ;3.6 MeV alphas

pitch = 0.600

pitch_id = ’600’

;Detector orientation

orientations = fltarr(3, nchan) ; [vr , vphi , vz]

orientations [*,0] = -[-2, pitch*sqrt ((( -2) ^2+( -1) ^2)/(1- pitch ^2)), -1];V1

orientations [*,1] = -[-1, pitch*sqrt ((( -1) ^2+( -1) ^2)/(1- pitch ^2)), -1];V2

orientations [*,2] = -[+0, pitch*sqrt (((+0) ^2+( -1) ^2)/(1- pitch ^2)), -1];R1

orientations [*,3] = -[+1, pitch*sqrt (((+1) ^2+( -2) ^2)/(1- pitch ^2)), -2];R0

inputs.runid = ’He3_NBI_a_ ’+pitch_id
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;Creates the sightline array and defines the CFPD table

cfpd = spf_cfpd(result_dir+’/’+inputs.runid+’.idl’, inputs_dir+’g132224

↪→ .02005 ’, earray , v=orientations , amu=4, z=2, nsteps=nsteps , nrays=

↪→ nrays , step =.08)

;Write

prefida , inputs , grid , nbi , plasma , fields , fbm , cfpd=cfpd

end

Using the prefida inputs, the CFP signals in FIDASIM are calculated with the following

FORTRAN code. For conciseness, structure names cfpd% and inputs% are removed in the

snippet below. Refer to our GitHub [57] page for the full details of the code.

subrout ine c f pd f

!+ Ca lcu la te charged fu s i on product count ra t e and weight func t i on us ing a

↪→ f a s t−i on d i s t r i b u t i o n func t i on F(E, p , r , z )

r e a l ( Float64 ) , dimension (3 ) : : vi , vi norm , v3 xyz , xyz , r gy ro

r e a l ( Float64 ) , dimension (4 ) : : mamu

r e a l ( Float64 ) , dimension (21) : : ptcharr

i n t e g e r : : i

type ( L o c a lP r o f i l e s ) : : plasma

type ( LocalEMFields ) : : f i e l d s

r e a l ( Float64 ) : : pgyro , vnet square , f a c to r , vabs

r e a l ( Float64 ) : : eb , p itch , e r e l , rate , kappa , gyro , fbm denf , t o l

i n t e g e r : : i e , ip , ich , ie3 , i ray , i s t

! ! d e f i n e p i t ch − array

do i =1, 21

ptcharr ( i )=r e a l ( i −0.5) ∗2 . /20 . 5 − 1 .

enddo
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a l l o c a t e ( f l u x ( nenergy , nchan ) )

a l l o c a t e ( weight ( nenergy , nchan , fbm%nenergy , fbm%npitch ) )

f l u x = 0 . d0

weight = 0 . d0

! Masses are in [ kg ]

mamu(1) = beam mass

mamu(2) = H2 amu

i f ( c a l c c f pd . l e . 2 ) mamu(3) = H1 amu

i f ( c a l c c f pd . eq . 3 ) mamu(3) = He4 amu

i f ( c a l c c f pd . eq . 1 ) mamu(4) = H3 amu

i f ( c a l c c f pd . eq . 2 ) mamu(4) = He4 amu

i f ( c a l c c f pd . eq . 3 ) mamu(4) = H1 amu

ra t e = 0 . d0

f a c t o r = 0 .5 d0∗fbm%dE∗fbm%dp∗ dl ! 0 . 5 f o r TRANSP−p i t ch (E, p) space f a c t o r

channe l l oop : do i ch=1, nchan

E3 loop : do i e 3 =1, nenergy

ray loop : do i r ay =1, nrays

s t ep l o op : do i s t =1, nsteps

i f ( i s t . gt . nactua l ( ie3 , i ray , i ch ) ) c y c l e ray loop

! ! Ca l cu la t e p o s i t i o n and v e l o c i t y in beam coo rd ina t e s

c a l l c o n v e r t s i g h t l i n e t o x y z ( ie3 , i s t , i ray , ich , xyz , v3 xyz )

! ! Get f i e l d s at s i g h t l i n e p o s i t i o n

c a l l g e t f i e l d s ( f i e l d s , pos=xyz )

i f ( . not . f i e l d s%in plasma ) cy c l e s t ep l o op

! ! Get plasma parameters at s i g h t l i n e p o s i t i o n

c a l l get plasma ( plasma , pos=xyz )

i f ( . not . plasma%in plasma ) cy c l e s t ep l o op
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! ! Loop over energy / p i t ch /gamma

p i t ch l o op : do ip = 1 , fbm%npitch

p i t ch = fbm%pi tch ( ip )

energy loop : do i e =1, fbm%nenergy

eb = fbm%energy ( i e )

! ! Get the p r obab i l i t y f a c t o r

c a l l ge t pgyro ( f i e l d s , earray ( i e 3 ) , eb , pitch , plasma ,

↪→ v3 xyz , pgyro , gyro , mass amu=mamu)

i f ( pgyro . l e . 0 . d0 ) cy c l e ene rgy loop

! ! Ca l cu la t e f a s t−i on v e l o c i t y

c a l l p i t c h t o v e c ( pitch , gyro , f i e l d s , vi norm )

vabs = sq r t ( eb /( v2 to E per amu ∗fbm%A) )

v i = vi norm∗vabs

! ! Correct f o r gyro o rb i t

c a l l gy ro s t ep ( vi , f i e l d s , fbm%A, r gyro )

fbm denf=0

i f ( d i s t t yp e . eq . 1 ) then

! get F at gu id ing cente r p o s i t i o n

c a l l g e t ep den f ( eb , pitch , fbm denf , pos=(xyz+

↪→ r gy ro ) )

end i f

i f ( fbm denf . ne . fbm denf ) c y c l e ene rgy loop

! ! Ca l cu la t e e f f e c t i v e beam energy

vnet square=dot product ( vi−plasma%vrot , vi−plasma%

↪→ vrot ) ! [ cm/ s ]

e r e l = v2 to E per amu ∗fbm%A∗ vnet square ! [ kev ]

! ! CFPD product ion ra t e and an i so t ropy term
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c a l l g e t b t r a t e ( plasma , e r e l , rate , branch=1)

i f ( c a l c c f pd . eq . 1 ) c a l l g e t ddpt an i s o t ropy (

↪→ plasma , vi , v3 xyz , kappa )

i f ( c a l c c f pd . ge . 2 ) c a l l g e t dhe3 an i s o t ropy (

↪→ plasma , vi , v3 xyz , f i e l d s , kappa )

weight ( ie3 , ich , i e , ip ) = weight ( ie3 , ich , i e , ip ) &

+ rat e ∗ kappa ∗ pgyro &

∗ daomega ( ie3 , i ray , i ch ) &

∗ f a c t o r / ( fbm%dE∗fbm%dp)

f l u x ( ie3 , i ch ) = f l ux ( ie3 , i ch ) + ra t e ∗ kappa &

∗ pgyro ∗ daomega ( ie3 , i ray , i ch ) &

∗ fbm denf ∗ f a c t o r

enddo energy loop

enddo p i t ch l o op

enddo s t ep l o op

enddo ray loop

enddo E3 loop

enddo channe l l oop

end subrout ine c f pd f
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Appendix D

Estimate of χ2r including systematic

uncertainties

To obtain a more accurate assessment of the experimental accuracy that includes the ran-

dom errors associated with counting statistics and the systematic errors associated with

uncertainties in the emission profile and CFP orbits, the following procedure is adopted.

1. Select one of the thermonuclear cases (enhanced or suppressed polarization; proton or

alpha detection) as calculated by the baseline prediction (Figure 3.13 or Figure 3.14.)

The data points for the original prediction are {Ci}.

2. Use a Gaussian random number generator with
√
Ci as the one-sigma error to generate

a set of synthetic data {Di}.

3. Normalize the synthetic data, D̄ =
∑

i Di/N , where N is the number of synthetic data

points.

4. These normalized synthetic data are compared with a different set of predicted data

{Pi} that use a different emissivity profile or a different assumption about the spin
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CFP Di Pi: Baseline Wide Narrow EFIT
Proton Enhanced Enhanced 1.0 8 3 3
Proton Enhanced Unpolarized 13 17 9 14
Proton Suppressed Suppressed 1.0 1.2 3.3 1.1
Proton Suppressed Unpolarized 7 6 12 7
Alpha Enhanced Enhanced 1.0 1.0 1.3 1.7
Alpha Enhanced Unpolarized 11 12 8 7
Alpha Suppressed Suppressed 1.0 1.0 1.0 1.1
Alpha Suppressed Unpolarized 7 6 9 10

Table D.1: Typical values of χ2
r for proton detection using 15 pitch measurements or alpha

detection using 3 flux measurements (first column) for synthetic data with the polarization
listed in the second column. The expected values Pi are for the polarization state in the
third column for the

∫
S dl case listed in the fourth through seventh columns.

polarization.

5. Calculate the reduced chi-squared,

χ2
r =

1

N − 1

∑
i

(Pi/P̄ −Di/D̄)2/σ2
i , (D.1)

where σi is the random error in Di/D̄ associated with counting statistics.

6. Calculate χ2
r for multiple trials for the different

∫
S dl models and assumptions about

polarization. Tabulate the results.

The results of this procedure appear in Table D.1. To interpret this table, consider first the

rows where the polarization of the synthetic data is the same as the assumed polarization

of the prediction. Ideally, if the prediction was insensitive to the assumed emission profile,

χ2
r ≃ 1 for this case. However, the first row of the table shows that χ2

r ≃ 8 if the baseline

emissivity profile is replaced by the wide profile; this indicates strong sensitivity to exper-

imental uncertainties in S. The second row shows the same synthetic data compared with

the unpolarized predictions. Ideally, this would give a value of predicted χ2
r much larger than

any of the values in the first row. However, in this case, the smallest value in the second row

is only slightly larger than the largest value in the first row; this indicates that uncertainties
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in S may prevent confident determination of the polarization state. Now examine the last

two rows in the table. For alpha detection of suppressed polarization, the flux is insensitive

to the assumed emissivity profile, so χ2
r ≃ 1 when the suppressed case is compared with

any suppressed prediction. On the other hand, when the suppressed case is compared with

the unpolarized predictions, χ2
r
>∼6 for all of them. Polarization can be detected with high

confidence for this case. Similarly, the middle rows of the table show that proton detection

of suppressed polarization is detectable, as is alpha detection of enhanced polarization.
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Appendix E

Additional AI trained to detect

Alfvén eigenmodes

The crosspower spectrograms were initially used to train Linear Regression, Multi-layer Per-

ceptron (MLP) and Convolutional Neural Networks. For regression, Tikhonov regularization

is used as follows:

Wout =
(
RTR+ αI

)−1
RTD, (E.1)

where R is the data, D are the labels and α is the regularization parameter. For the MLP

network, the models are nearly the same as the LSTM model described in subsection 4.3.2,

only without the LSTM block. Lastly, the convnet contained a sequence of 5 convolutional

and max pooling layers followed by a small MLP block for the final classification.

All models were capable of detecting the most common modes (TAE and RSAE) and strug-

gled to detect the other three modes (BAE, EAE and LFM). This is likely due to the lack

of memory in the models. However, the convnet was capable of performing slightly better

when trained over the entire discharge (similar to the popular cat-dog classification problem)
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instead of the windowing technique described in subsection 4.3.2. Although temporal infor-

mation is lost when training over the entire discharge, the convnet is capable of predicting

the presence of these modes within approximately 10% of the results reported in this paper

for the recurrent neural networks.
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