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ARTICLE

New insights into US flood vulnerability
revealed from flood insurance big data
Oliver E.J. Wing 1,2✉, Nicholas Pinter3,4, Paul D. Bates 1,2 & Carolyn Kousky5

Improvements in modelling power and input data have vastly improved the precision of

physical flood models, but translation into economic outputs requires depth–damage func-

tions that are inadequately verified. In particular, flood damage is widely assumed to increase

monotonically with water depth. Here, we assess flood vulnerability in the US using >2 million

claims from the National Flood Insurance Program (NFIP). NFIP claims data are messy, but

the size of the dataset provides powerful empirical tests of damage patterns and modelling

approaches. We show that current depth–damage functions consist of disparate relationships

that match poorly with observations. Observed flood losses are not monotonic functions of

depth, but instead better follow a beta function, with bimodal distributions for different water

depths. Uncertainty in flood losses has been called the main bottleneck in flood risk studies,

an obstacle that may be remedied using large-scale empirical flood damage data.
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F looding is the deadliest and most costly natural disaster,
both in the US and worldwide, with global damages
exceeding $1 trillion since 19801. Both climate change and

continued development of flood-prone areas may enhance these
losses by up to a factor of 20 by the end of the century2.
Numerous studies have focused on quantifying future flood losses
at scales from local to global; all of which involve a translation
from the physical phenomenon of flooding (e.g., extent and depth
of inundation) to its economic impacts (e.g., dollars of damage).
This translation normally requires relationships between water
depth and the resulting asset damages, referred to as depth–damage
functions or curves. Depth–damage curves typically stipulate loss
(structural and/or content damage, in total or as a percentage of
structure value) as a monotonic function of inundation depth.
Different curves are commonly applied for different occupancy
classes (e.g., single-family residential vs. commercial) and for a
variety of construction types. Standard depth–damage functions
have been produced for different geographical regions, for example,
in the United Kingdom in the so called Multi-Coloured Manual3

and the United States which has curves compiled by the U.S. Army
Corps of Engineers4. Many researchers and practitioners use these
relationships off-the-shelf, assuming they are well-calibrated and
universally applicable. In fact, a wealth of literature notes the sub-
stantial scatter and underappreciated uncertainty in depth–damage
estimates5–8. As Freni et al.9 summarized, uncertainty derived from
depth–damage curves is the main bottleneck in estimating flood
damage for a wide variety of applications ranging from climate
change studies to cost-benefit calculations justifying massive infra-
structure projects.

By contrast, flood hazard modelling techniques have under-
gone revolutionary advancements in recent years, owing to
exponential growth in computational capacity and of high-
resolution topographic and other spatial data. These develop-
ments have heralded a step-change in our understanding of
flood hazard, even at continental and global scales2,10–12.
However, the output required for most studies is dollars (or
other currency units) of flood losses—for applied and planning
studies in particular—and the translation of hydrology to eco-
nomic loss requires passage through a depth–damage function.
For example, even a hydraulic model based on state-of-the-
science lidar topography and multibeam bathymetry and cali-
brated to within millimeters may yield damage estimates off by
an order of magnitude after translation through the depth-
damage bottleneck13.

Most applied studies of the economic impacts of flooding rely
upon existing depth–damage relationships. In the US, widely used
curves have been compiled by the Army Corps of Engineers
(USACE) and/or by the Federal Insurance Administration (FIA;
now Federal Insurance and Mitigation Administration). These
depth–damage functions are typically maintained in tabular for-
mat, specifying structure and content damages as a percentage of
structure value for a given water depth (usually in 1-foot [0.3 m]
increments) above or below the first occupied level of the struc-
ture. FIA and the USACE iteratively developed these curves
beginning in 1970 using early NFIP loss data, local Corps studies,
and the collective judgment of experts14. These US federal
depth–damage functions are employed universally in flood risk
assessments nationally (e.g. in FEMA’s HAZUS-MH software15)
and often globally. We are unaware of any systematic empirical
verification these curves, although Skaggs and Davis14 noted that
the USACE was (in 1993) “exploring the possibility of using FIA’s
massive claims database” to interrogate these damage functions.

Previous attempts to verify the reliability of depth–damage
curves have been limited by data availability. What scarce data is
available is often summarized at a high degree of spatial aggre-
gation (e.g., municipal or regional level), while specific testing of

the vulnerability component of risk models requires structure-by-
structure information. Further, even building-level losses can only
be used to evaluate vulnerability if the observed damage is
reported alongside observed hazard intensity such as local water
depth. Thus, vulnerability data that are spatially aggregated or
lack corresponding individual hazard intensity measures (e.g.,
flood depth) require modeled representations of hazard and
exposure before losses can be calculated. Many studies, therefore,
have compared how the use of different vulnerability models
impact damage estimates using modeled hazard and exposure,
but have not analyzed the validity of depth–damage curves
per se5,16–19. Other smaller scale studies have employed detailed
data and found considerable variability in the relationship
between inundation depth and damage20,21. This has led to a
proliferation of multivariate models from which, for example,
flood damage is predicted as a function of water velocity, duration
and contamination; the timing, quality, and nature of early
warnings; precautions and preventative measures applied; and/or
building quality and socio-economic status of residents21–23.
These multivariate models provide valuable information to better
understand structural fragility and societal resilience to flooding,
yet such complex approaches can be difficult to apply in standard
flood risk assessments.

Despite this growing recognition that there is weak correlation
between depth and damage, the use of monotonic depth–damage
functions in risk analyses remains widespread. This runs contrary
to literature which suggests the treatment of depth–damage
functions should be probabilistic7–9,21–24. We thus employ the
National Flood Insurance Program’s (NFIP) database of over 2M
historic flood claims to provide empirical insights into building
vulnerability in the US, where we find low agreement between
NFIP damage observations and commonly applied depth–
damage approaches. Instead, the true stochastic distribution of
depth–damage can be better characterized by a beta distribution,
where proportional damage to buildings is generally concentrated
at minimal and maximal loss. Increased water depth shifts the
beta distribution, whereby the likelihood of maximal (minimal)
damage increases (decreases). We further find vulnerability is
highly heterogeneous both within and between US states, and we
reveal that floodplain management practices have reduced vul-
nerability within specified risk areas but increased it outside
of them.

Results
Nationwide analysis of depth–damage. We analyzed 2,085,015
NFIP flood damage claims (1972–2014) from a database obtained
directly from FEMA (see Data Availability) that includes fields for
structural damages, structure value, depth of inundation above
the first occupied level, and many other categories (see Methods).
Of the 2,085,015 total claims, 976,363 records contained all of the
information (depth, damage, structure type and value) needed to
assess damage dependence on water depth. The database here
differs from claims data recently released by FEMA25, which lack
additional explanatory fields (e.g. depth) necessary for analyses of
this kind.

The NFIP claims data include a number of clear artefacts. Most
notably, depths should be in units of feet, but instead, in some
cases, seem to be recorded in inches. Anomalous numbers of
claims are recorded with depths of 12 and 24 feet and, to a lesser
extent, with higher multiples of 12 (also purportedly feet). Looking
at the overall claim frequency per unit water depth, interpolation
of numbers of claims at intuitive inch values (e.g. 6, 12, 18, 24)
suggests that ~5% of the total database is impacted by this
issue. For example, for the purported depth values of 6 feet—an
intuitive value for an insurance adjuster to select as half of 1 foot
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(6 inches)—the trend of increasing damage with increasing depth
is interrupted (Fig. 1). In this case, we cannot discern the damages
caused by 6 feet of water, since a subset of 6 inch records seem
to be present within this class. Despite this challenge, the benefit
of such a large empirical dataset is that robust trends can be
identified, and the noise generated by erroneous records is
dwarfed by the actual depth-dependence. As a result, in this study,
we restrict our analysis to low (<8) integer values of depth where
records in feet seem to dominate.

Structural damage to residential buildings with one story and
no basement constitute a majority (493,707, or 51%) of the NFIP
claims analyzed here. For simplicity, we focus on this building
type so sample sizes remain large across all subsequent analyses.
Median relative damages (damage/structure value) to this
building type (Fig. 1) increase monotonically with increasing
water depth above the base of the first occupied floor (1–8 feet),
excepting the value at 6 feet (a likely data artefact; see above),
however, the variability about these medians is extensive. For
instance, the median damage at 1-foot of flood inundation is 11%
of building value, yet the central 50% of claims range from 4%
(Q25) to 30% (Q75) damage. At 5-feet depth, the Q25–Q75 range is
19–90% damage. Single depth–damage curves lose both the
breadth and the nature of this variability. Figure 1 also shows
eight commonly used curves, compiled by the USACE or FIA,
which describe the vulnerability of one-storey residential
structures without a basement to freshwater flooding. These
functions appear internally disparate (even for similar types of
structure and flooding) and do not represent either the central
tendencies or variability of depth–damage according to the
empirical records in the NFIP claims database.

In fact, the NFIP claims data show that such relative flood
damages do not fit, and cannot be described well, by any central-
tendency distribution. The NFIP-derived distributions of damage
for each inundation depth increment (Fig. 2) are distinctly
bimodal—with a disproportionate number of claims at both the
high and low ends of the relative damage spectrum. At shallower

inundation depths, a plurality of claims lie in the 0–10% relative
damage bin. This is consistent with previous analyses of NFIP
claims that found that the majority of insured flood damages in
the US were relatively small, with a median value of $12,555
(1980–2012; single-family residences)26. In contrast, reasons why
a disproportionate number of properties suffer near complete
losses, even at relatively small inundation depths remain unclear,
and this question merits further detailed research. One potential
explanation may be the development of mold in flooded
properties which could lead to a total write-off of the structure.
With increasing depths, low relative damages account for a
progressively lower proportion of total claims, while the number
of claims within the 90–100% damage bin increases.

Thus, relative flood damages for individual depths are not
well fit by a median, mode, or any other central-tendency value.
Instead, we find that relative flood damages for each depth
increment within the NFIP claims database is better described by a
beta distribution (Supplementary Fig. 1). The beta distribution
seems to be applicable to losses for a number of different natural
hazards, and the insurance industry has been modelling vulner-
ability this way for a number of years27. Whereas the USACE and
other depth–damage curves consist of presumed central-tendency
damages that increase monotonically with increasing flood depths,
the NFIP-based losses are much better characterized by a family of
beta functions in which the controlling parameters (e.g., α and β in
Supplementary Fig. 1) cause the bimodal beta distribution to shift
and swing toward greater damages as depth increases. We illustrate
the ability of the beta distribution to represent the shape and scale
of the depth–damage relationship (i.e., Fig. 2) in Supplementary
Note 1. Supplementary Figs. 2 and 3 illustrate the degree of fit
between the beta and empirical distributions (R2 values in
Supplementary Table 1), particularly when compared to the one-
to-one depth–damage approach embodied in the US federal curves.

Further, we examine the accuracy of the US curves by using
them to estimate the damages in the claims data (given
inundation depth and structure value) and comparing these
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estimates to the recorded damage (Supplementary Table 2). In
this calculation, we use the FIA curve; the most commonly
used of the federal depth–damage functions4. Patterns in Fig. 1
were generally reflected in these results too: in aggregate,
shallow depth–damage was overestimated by ~25%, while deep
depth–damage was underestimated by ~25%. We used the
coefficient of determination to measure the predictive power
of the FIA curve, which does so by balancing the sum of
squared errors (residual variance) and the total sum of squares
(data variance); see Eq. (1). Across all depth increments,
the coefficient of determination was negative, meaning that the
damage associated with each claim is better predicted by the
mean observed damage than it is by using the FIA curve. That
is, the residual variance is greater than the data variance. Mean
absolute building-level errors in damage estimation were 84%
of the mean recorded damage across all depth increments. At 1-
foot inundation, this error rose to 105% of the mean damage.

Realistic estimations of economic flood losses thus require
both a probabilistic treatment of flood vulnerability as well as
an accurate characterization of the stochastic relationship
between inundation depth and the resulting damages—neither
of which are generally captured in the large majority of current
applications.

Regional patterns in depth–damage. Some of the broad varia-
bility in flood damages illustrated in Figs. 1 and 2 could plausibly
be the result of systematic geographical variation in vulnerability;
for example, in typical construction type, prevailing repair costs,
and other factors that may vary in different regions of the US. In
traditional applications of depth–damage curves (in the US at
least), this variation is recognized and adjusted by the use of
curves developed by different regional Districts of the USACE.
For example, the St. Paul District, covering Minnesota and
Wisconsin, stipulates that 1-foot of water causes 32% relative
structural damage to a one-story residence. In contrast, the
USACE Chicago District (northeast Illinois and northwestern
Indiana) curves suggest just 16% damage for the same 1 foot of
inundation—i.e., half the level of damage predicted for nearby
Wisconsin and Minnesota.

In order to test regional variations in depth–damage across the
US, we subdivided the NFIP claims data by zip code and by state
(Fig. 3). For regions with existing USACE District depth–damage
curves, we compared those curves (as shown in Fig. 1) with the
empirical NFIP claims for the corresponding geographical area.
These comparisons show that, for example, the characterization
of the St. Paul District as more vulnerable (higher flood fragility)
than the Chicago District (Fig. 1) is not justified; in fact, damages
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at 1-foot inundation are generally lower in the St. Paul District
(16%) than in the Chicago District (24%). Even for regional
USACE functions where the empirical data qualitatively support
the differences in the curves, local variations in flood losses (see
Fig. 3a) are far greater than similarities and differences at the state
or regional level. For example, broadly lower damages (16% at
1-foot inundation) in the Wilmington District covering North
Carolina (Fig. 3b) mask considerable within-district variation
between zip codes (1–87% damage at 1-foot). Similarly, while the
Galveston curve and the mean NFIP damage within the District
both stipulate 21% damage at 1-foot inundation, zip code-level
vulnerability varies between 2 and 74%.

To further examine the regional USACE curves, we isolated
claims arising from flooding in Chicago in July 1996 (Chicago
District), Tropical Storm Allison in June 2001 (Galveston
District), Hurricane Ike in September 2008 (Galveston District),
and Hurricane Isabel in September 2003 (Wilmington District).
Using NFIP structure values and inundation depths, the
corresponding USACE District’s depth–damage function was
applied to estimate losses (Supplementary Table 3). Total event
damages were generally well replicated by the USACE curves: for
example, Hurricane Ike losses were estimated at $447.0 million vs.
$450.0 million in recorded NFIP losses. However, this aggregate
match was a fortuitous balance that includes large over- and
under-prediction errors for individual claims (Supplementary

Fig. 4). For instance, for Hurricane Ike damages, the USACE
curves underpredicted individual losses by $284 on average, yet
the spread of errors about this mean was large: mean absolute
error was $34,213, or ~75% of the mean recorded damage for Ike
of $45,264. For all four events, the coefficient of determination
was negative, meaning building-level damages are better pre-
dicted by the mean observed damage than by the USACE curve.
The reasonable match in event damage totals amidst this
extremely low predictive capability of USACE functions for
individual losses suggests that regional curves may have been
calibrated to major flood events in aggregate, and not for single
structures, as is commonly understood.

Regional patterns in the NFIP claims data are difficult to discern
in Fig. 3. There seems to be an east–west divide in depth-damage
dependence. Areas west of the Mississippi River appear to be more
vulnerable to 1 foot of flood inundation than areas to the east. The
western US is generally more arid than the east, so that when
flood-producing precipitation does occur—one might speculate—
damages may be greater as buildings may not be constructed with
flood resilience in mind. Vulnerability in coastal areas may be
driven by claims arising from saltwater flooding, which is generally
more damaging for a given depth than freshwater flooding3. Some
NFIP flood claims were specified as being due to freshwater or
saltwater flooding, but the resulting relative damages were fairly
insensitive to flood type (Supplementary Fig. 5). As such, we do not
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Fig. 3 The impact of 1 foot of inundation across the US. These maps show the spatial distribution of relative structural damages arising from NFIP claims
where a one-story building without a basement was inundated by 1-foot of floodwater. Each spatial unit is representative of the mean damage within its
area, summarized: a by zip code tabulation area and b by state. Blank areas in a indicate where no claims data exist to generate a depth–damage
relationship.
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separate fluvial and coastal flood claims. The states with the highest
flood fragility in Fig. 3b are Louisiana, New Mexico, Colorado, and
Wyoming, but these states individually have very different patterns
and histories of flooding. NFIP claims in Louisiana are singularly
driven by losses during Hurricane Katrina in 2005. Claims in
Colorado seem to be dominated by losses during flash flooding
along the Front Range in 2013. In contrast, New Mexico and
Wyoming have experienced few loss events over the history of
NFIP. Clearly, these data should be analyzed carefully, in a rigorous
multivariate and multilevel context, but as a whole, current
assumptions regarding the geography of vulnerability based on
USACE curves do not seem to match the empirical data.

Depth–damage dependence on structure value. We analyzed
relative damages as a function of the value of each structure
(Fig. 4). These structure values are recorded in the NFIP database
as total assessed value, and differ in many cases from the insured
value, which is subject to a regulatory cap. Unsurprisingly, the
relative damage-dependence on total structure value is shown most
clearly for the proportion of claims for the lowest increment,
0–10% of each structure’s value. For 1 foot of inundation, buildings
valued >$750,000 incurred 0–10% damage for 85% of claims; for
buildings worth <$150,000, the proportion of 0–10% damage
claims is just 45%. In other words, less expensive homes are more
likely to experience greater relative damage, presumably because of
fixed costs such as for building materials and labor. This pattern
strengthens for progressively deeper depths. For example, for 8 feet

of inundation, homes valued >$750,000 experienced 0–10%
damage 62% of the time, compared to just 12% for homes valued
<$150,000. Looking at damages approaching structures’ total value
(90–100%), at 8-feet inundation, <1% of claims fell into this
category for >$750,000 homes versus 38% for <$150,000 homes.
The differences illustrate that absolute flood damages are, to some
extent, value-independent, or at least not directly proportional to
the value of a structure.

Depth–damage dependence on age and flood zone. The average
age of residential building stock in a region may impact the
degree of damages experienced during a major flood. Newer
homes may be built to higher standards, but alternatively may be
more costly to repair. Similarly, areas with more recent residential
development should have a greater proportion of structures built
after the first FEMA flood hazard maps (see discussion below)
and thus (hopefully) meet minimum NFIP regulations, most
notably construction in the 100-year floodplain above base flood
elevation (the elevation floodwaters are anticipated to reach
during a 100-year event). We tested the hypothesis that newer
residential structures would experience generally lower levels of
damage for a given water depth. As a whole, and on average, the
NFIP claims data support this hypothesis (Supplementary Fig. 6).
For example, at 5 feet of flood inundation, homes built after 1980
incurred minimal (0–10%) relative structural damage 22% of the
time, compared to just 12% of claims for pre-1950 buildings. The
same pattern is seen for shallower inundation. At 1 foot of
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inundation, 52% of claims on post-1980 buildings incurred
0–10% loss, compared to ~43% of claims for pre-1980 structures.
Generally, for a given inundation depth, newer buildings were
more likely to experience minimal relative losses (0–10%) and less
likely to experience catastrophic relative losses (90–100%) than
older buildings. Given that these relationships are for equal
inundation depths (i.e., the elevation of the building with respect
to base flood elevation is irrelevant), it appears that newer
buildings withstand flooding better than older buildings.

The NFIP database also records whether claims were on pre-
FIRM or post-FIRM structures, meaning constructed before
or after the first Flood Insurance Rate Map (FIRM) in that
jurisdiction. Post-FIRM structures comprise roughly 90% of
structures built after 1980 in the claims database. Because
owners of pre-FIRM structures may have been unaware of their
flood risk at the time of construction or purchase, NFIP policies
on most of these structures historically have been granted
subsidized premiums substantially below actuarial rates. In
addition, pre-FIRM policies include unmitigated structures on
FEMA floodplains that, at least theoretically, should not be
present among post-FIRM policies. When pre-FIRM and post-
FIRM claims are further separated as within the FEMA 100-
year floodplain vs. properties outside the floodplain (Fig. 5),
interesting contrasts emerge. Post-FIRM homes constructed
within the flood zone, meaning with recognition of flood risk,
are systematically more likely to experience low (0–10%)
damages than pre-FIRM structures. At 1-foot of inundation,
51% of post-FIRM claims within the flood zone incurred 0–10%
structural damage, compared to 43% for pre-FIRM properties.
This suggests that some degree of resilience has been added to
flood-zone properties.

Outside the 100-year flood zone, the pattern reverses, and
claims on pre-FIRM residential structures are more likely to incur
minimal damage (0–10%) compared to post-FIRM structures. At
1-foot of inundation, pre-FIRM properties outside the flood zone
experience 0–10% damage 47% of the time, compared to 42% for
post-FIRM properties. Furthermore, post-FIRM homes outside
the floodplain tend to have a higher susceptibility to catastrophic
(90–100%) damage than pre-FIRM buildings. For example, at
8-feet of inundation, 52% of post-FIRM buildings experience
90–100% damage outside the flood zone, compared to only 33%
of pre-FIRM buildings. Over the history of the NFIP, at least 27%
of flood claims and 14% of claim dollars have been for properties
outside FEMA’s 100-year floodplain (A zones and coastal V
zones). Some of these claims are due to shallow and distributed
drainage flooding; others are likely due to shortcomings of FEMA
mapping across the US28–30. But more broadly, whereas post-
FIRM homes on floodplains seem to have mitigated at least some
of their flood risk, newer residences constructed outside FEMA
flood zones are significantly more susceptible, not less, to flood
damage. For all depth increments studied here, the portion of
post-FIRM claims of 0–10% damage is less for structures situated
outside the FEMA 100-year floodplain than for structures within
it, and the portion of post-FIRM claims of maximal (90–100%)
damage is greater outside the mapped floodplain than within it.
Publication of FEMA maps may lead to complacency for those
who fall outside of designated flood zone. Since FEMA FIRMs
denote flood risk largely as binary—you are either at risk or not—
those who fall into the ‘not’ category may be less prepared and
therefore experience greater losses.

The binary nature of flood mapping in the US has been
extensively criticized31,32. Problems with binary flood mapping
include challenges to accurately specifying the 100-year flood
limit; for example, data constraints such as the limited length and
availability of streamflow records. In addition, climate change,

human modifications of rivers and floodplains, and other sources
of hydrologic non-stationarity have shifted, and are shifting, flood
probabilities in ways not currently accounted for in FEMA
mapping33,34. Furthermore, FEMA mapping only covers roughly
60% of contiguous US land area and often does not capture
flooding on small streams or from intense localized rainfall11.
More localized analyses have documented the impact of binary
zonation on flood risk; particularly, how it impairs effective
mitigation activities outside the specified risk zone35,36. Further,
the binary system has been observed to cause a clustering of
development in the unregulated areas around the boundary of
the risk zone, leading to significant ‘off-floodplain’ losses37,38.
Analysis of nationwide flood insurance claims adds further weight
to the conclusions of previous studies: that the US should
consider transitioning to a program where flooding is contoured
and communicated beyond single-probability, in-or-out flood
risk.

Discussion
A wide variety of applications currently rely upon flood
depth–damage curves that provide a single damage value cor-
responding to a given inundation depth for each structure type
(e.g., one-story residential). Those damage values are assumed to
be central tendencies that are representative of the underlying
variability and increase monotonically for all increments of
additional water depth. A detailed examination of empirical
losses in the large NFIP claims database suggests that those
assumptions may be invalid, and that flood risk quantified from
existing depth–damage functions may significantly mis-
characterize flood vulnerability at the level of individual struc-
tures and often more broadly. While a monotonic relationship is
intuitive for flooding of a single structure—where each additional
increment of flood depth should add incrementally to damage to
that structure—for large populations of flooded structures, the
monotonic function does not apply. Using the NFIP claims,
damage instead can be described by a beta distribution, where
most losses are concentrated at the low and the high extremes of
the relative damage spectrum. With each incremental increase in
inundation depth, the beta distribution shifts and rolls towards
the maximal-damage mode. This variability in depth–damage is
not adequately described by any central tendency. For example, if
100 buildings were flooded to a depth of 4 feet, assuming that all
100 uniformly incur the median of 38% damage is very different
from a bimodal or beta distribution in which 22 buildings
experienced <10% damage, 16 buildings experienced >90%
damage, and the remaining 62 something in between (10–90%).
Plans for effective disaster preparedness, response, recovery, and
mitigation all require a correct understanding of these relation-
ships39. Indeed, many billions of dollars of infrastructure
investment and risk management decisions in the US are based
on cost-benefit analyses that employ existing depth–damage
curves. In general, these curves overestimate damages induced by
shallow-water flooding—which comprises the large majority of
losses—and generally underestimate damages by deep inunda-
tion, compared to the NFIP data.

Looking forward, large empirical datasets, such as the NFIP
claims analyzed here, could be the basis for a multivariate,
probabilistic approach to flood damage estimation that explicitly
captures the stochasticity in depth–damage. Geographic varia-
tions in vulnerability (east/west divide, in/out of the FEMA flood
zone), building age (as well as pre/post FIRM), structure value,
and other fields not explored here (e.g., wall and foundation type)
may aid in the refinement of more realistic functions, ultimately
leading to flood risk assessments of increased validity. Such data
also shed light on the effectiveness of floodplain management
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decisions in the US. While post-FIRM properties within the
FEMA 100-year flood zone appeared more resilient to flooding
than pre-FIRM properties, this phenomenon switches outside of
the 100-year flood zone. This observation further highlights the
fallacy of binary risk zonation.

We have entered an era where industry and governments are
increasingly looking for solutions from big data, meaning large
and complex data sets from which predictive lessons can be
learned through rigorous analysis. In June 2019, FEMA publicly
released a version of its >2 million NFIP claims records, with
identifiable property locations and most other data fields
removed25. The full data set, a portion of which was analyzed
here, contains rich information for managing flood risk across the
US and beyond. The power of large empirical data sets is that
their volume can reveal patterns even when obscured by over-
lapping independent variables and data error and uncertainty. We
encourage FEMA to share a larger portion of its data, including

more precise location information, and allow the research and
actuarial communities to better measure, map, and model present
and future flood risk.

Methods
National Flood Insurance Program claims database. We analyzed 2,085,015
flood damage claims from the U.S. National Flood Insurance Program (NFIP), over
the period 1972 to 2014. This confidential database was obtained directly from
FEMA and includes fields for total structural damages, value of the structure, and
depth of inundation above the first occupied floor as recorded by a loss adjuster. A
number of entries for individual structures in the database are blank due to
incomplete data; others have been modified by FEMA (e.g., latitudes and long-
itudes of locations rounded to the nearest 0.1°) due to confidentiality concerns.
Metadata on each data field are provided from FEMA’s Transaction Record
Reporting and Processing (TRRP) documentation40. In order to construct an
analog to USACE depth–damage functions, we filtered the data so that entries
contained: total property value (actual cash value in whole dollars), total building
damage (actual cash value in whole dollars; not insurance payout), and water depth
(relative to the lowest occupied floor of the building, in feet). Entries for these fields
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are derived from NFIP-certified loss adjusters’ reports. Data points containing
positive values for all three fields numbered 976,363. From this total, we focused on
the most common building type: a one-story residential structure without a
basement. Data fields including number of floors and basement type were sourced
from the flood insurance application related to the claim. All data necessary for the
analyses here were available for 493,707 flood losses to one-story residences
without basements.

Scenario-based analyses. Analyses were performed under different scenarios so
that different depth–damage relationships could be compared across different
geographies, for different ages of building, for different values of building, when
considering the flood management context when the claim was made and the
building was constructed, and for specific historic flood events. When comparing
across different geographies, the mean damage at each depth increment was
sampled for each state and zip code, which are derived from the flood insurance
applications. For different ages of building, vulnerability was split depending on the
date of original construction or substantial improvement, whichever was more
recent. For different values of building, stratification of vulnerability was guided
by the total value of the building. When comparing flood management contexts,
claims were split according to whether a building was situated in the FEMA
100-year flood zone and whether it was constructed before or after the publication
of the map of this zone. These provide insights into whether, where, and how
vulnerability differs across the US. Finally, for the event-based analysis, claims were
extracted depending on whether the zip code fell within the considered USACE
District and if the date of loss was during the considered event.

US federal depth–damage curves. We calculated the coefficient of determination
(CoD; Eq. 1) to indicate the predictive power of US federal curves:

CoD ¼ 1�
PN

n¼1 Dn
fed � Dn

nfip

� �2

PN
n¼1 Dn

nfip � Dnfip

� �2 ð1Þ

where N is the number of claims, D is damage, and the subscripts fed and nfip
indicate whether the damage was estimated using federal curves or was from the
empirical NFIP claims database respectively. If US federal curves were more
informative than simply using the empirical mean, CoD > 0. Where it was not—
that is, residual variance when using USACE curves exceeds the variance in the
claims data itself—CoD < 0.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
US depth–damage curves are available from the corresponding author upon request. A
redacted version of the NFIP claims used in this analysis is available from ref. 25, though
many of the fields necessary for replication of this study are missing. The full(er)
database employed here is considered confidential, although enquiries for its availability
may be sent to OpenFEMA@fema.dhs.gov.

Received: 16 December 2019; Accepted: 24 February 2020;

References
1. Munich Re. NatCatSERVICE https://natcatservice.munichre.com/ (2019).
2. Winsemius, H. C. et al. Global drivers of future river flood risk. Nat. Clim.

Change 6, 381–385 (2016).
3. Penning-Rowsell, E. et al. Flood and Coastal Erosion Risk Management: A

Manual for Economic Appraisal. (Routledge, London, UK, 2013).
4. Davis, S. A. & Skaggs, L. L. Catalog of Residential Depth-Damage Functions

used by the Army Corps of Engineers in Flood Damage Estimation IWR-92-R-3
(USACE Institute for Water Resources, Fort Belvoir, VA, 1992).

5. Bübeck, P., de Moel, H., Bouwer, L. M. & Aerts, J. C. J. H. How reliable are
projections of future flood damage? Nat. Hazards Earth Syst. Sci. 11,
3293–3306 (2011).

6. Merz, B., Kreibich, H., Schwarze, R. & Thieken, A. Review article “Assessment
of economic flood damage”. Nat. Hazards Earth Syst. Sci. 10, 1697–1724
(2010).

7. McGrath, H., El Ezz, A. A. & Nastev, M. Probabilistic depth–damage
curves for assessment of flood-induced building losses. Nat. Hazards 97, 1–14
(2019).

8. Lehman, W. & Nafari, R. H. An empirical, functional approach to depth
damages. E3S Web Conf. 7, 05002 (2016).

9. Freni, G., La Loggia, G. & Notaro, V. Uncertainty in urban flood damage
assessment due to urban drainage modelling and depth-damage curve
estimation. Water Sci. Technol. 61, 2979–2993 (2010).

10. Sampson, C. C. et al. A high-resolution global flood hazard model. Water
Resour. Res. 51, 7358–7381 (2015).

11. Wing, O. E. J. et al. Validation of a 30 m resolution flood hazard model of the
conterminous United States. Water Resour. Res. 53, 7968–7986 (2017).

12. Dottori, F. et al. Increased human and economic losses from river flooding
with anthropogenic warming. Nat. Clim. Change 8, 781–786 (2018).

13. Bates, P. D. Integrating remote sensing data with flood inundation models:
how far have we got? Hydrol. Process. 26, 2515–2521 (2012).

14. Skaggs, L. L. & Davis, S. A. Variations in Residential Depth-Damage Functions
used by the US Army Corps of Engineers in Flood Damage Estimation.
(Association of State Floodplain Managers, Atlanta, GA, 1993).

15. Scawthorn, C. et al. HAZUS-MH flood loss estimation methodology. II.
Damage and loss assessment. Nat. Hazards Rev. 7, 72–81 (2006).

16. Jongman, B. et al. Comparative flood damage model assessment: towards
a European approach. Nat. Hazards Earth Syst. Sci. 12, 3733–3752 (2012).

17. Apel, H., Aronica, G. T., Kreibich, H. & Thieken, A. H. Flood risk analyses—
how detailed do we need to be? Nat. Hazards 49, 79–98 (2009).

18. Dutta, D., Herath, S. & Musiake, K. A mathematical model for flood loss
estimation. J. Hydrol. 277, 24–49 (2003).

19. Merz, B. & Thieken, A. H. Flood risk curves and uncertainty bounds. Nat.
Hazards 51, 437–458 (2009).

20. Merz, B., Kreibich, H., Thieken, A. & Schmidtke, R. Estimation uncertainty of
direct monetary flood damage to buildings. Nat. Hazards Earth Syst. Sci. 4,
153–163 (2004).

21. Thieken, A. H., Olschewski, A., Kreibich, H., Kobsch, S. & Merz, B.
Development and evaluation of FLEMOps—a new flood loss estimation
model for the private sector. WIT Trans. Ecol. Environ. 118, 315–324
(2008).

22. Merz, B., Kreibich, H. & Lall, U. Multi-variate flood damage assessment: a
tree-based data-mining approach. Nat. Hazards Earth Syst. Sci. 13, 53–64
(2013).

23. Schröter, K. et al. How useful are complex flood damage models? Water
Resour. Res. 50, 3378–3395 (2014).

24. Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D. & Scorzini, A. R.
INSYDE: a synthetic, probabilistic flood damage model based on explicit cost
analysis. Nat. Hazards Earth Syst. Sci. 16, 2577–2591 (2016).

25. Federal Emergency Management Agency. FIMA NFIP Redacted Claims Data
Set (FEMA) https://www.fema.gov/media-library/assets/documents/180374
(2019).

26. Kousky, C. & Michel-Kerjan, E. Examining flood insurance claims in the
United States: six key findings. J. Risk Insur. 84, 819–850 (2015).

27. Michel, G. Risk Modeling for Hazards and Disasters (Elsevier, 2017).
28. Blessing, R., Sebastian, A. & Brody, S. D. Flood risk delineation in the United

States: how much loss are we capturing? Nat. Hazards Rev. 18, 04017002
(2017).

29. Department of Homeland Security. FEMA Needs to Improve Management of
Its Flood Mapping Programs OIG-17-110 (Office of Inspector General,
Department of Homeland Security, Washington, DC, 2017).

30. Wing, O. E. J. et al. Estimates of present and future flood risk in the
conterminous United States. Environ. Res. Lett. 13, 034023 (2018).

31. Kousky, C. & Kunreuther, H. Improving flood insurance and flood-risk
management: Insights from St. Louis, Missouri. Nat. Hazards Rev. 11,
162–172 (2010).

32. Wing, O. et al. Millions more Americans face flood risks than previously
thought. Eos 99, 16–18 (2018).

33. Pinter, N., Jemberie, A. A., Remo, J. W. F., Heine, R. A. & Ickes, B. S. Flood
trends and river engineering on the Mississippi River system. Geophys. Res.
Lett. 35, L23404 (2008).

34. Villarini, G., Serinaldi, F., Smith, J. A. & Krajewski, W. F. On the stationarity
of annual flood peaks in the continental United States during the 20th century.
Water Resour. Res. 45, W08417 (2009).

35. Highfield, W. E., Norman, S. A. & Brody, S. D. Examining the 100-year
floodplain as a metric of risk, loss, and household adjustment. Risk Anal. 33,
186–191 (2013).

36. Highfield, W. E. & Brody, S. D. Evaluating the effectiveness of local mitigation
activities in reducing flood losses. Nat. Hazards Rev. 14, 229–236 (2013).

37. Patterson, L. A. & Doyle, M. W. Assessing effectiveness of national flood
policy through spatiotemporal monitoring of socioeconomic exposure. J. Am.
Water Resour. 45, 237–252 (2009).

38. Brody, S., Blessing, R., Sebastian, A. & Bedient, P. Examining the impact of
land use/land cover characteristics on flood losses. J. Environ. Plan. Manag.
57, 1252–1265 (2014).

39. Thieken, A. H., Kreibich, H., Müller, N. & Merz, B. Coping with floods:
preparedness, response and recovery of flood-affected residents in Germany in
2002. Hydrol. Sci. J. 52, 1016–1037 (2007).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15264-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1444 | https://doi.org/10.1038/s41467-020-15264-2 | www.nature.com/naturecommunications 9

https://natcatservice.munichre.com/
https://www.fema.gov/media-library/assets/documents/180374
www.nature.com/naturecommunications
www.nature.com/naturecommunications


40. Federal Emergency Management Agency. National Flood Insurance Program
Transaction Record Reporting and Processing Plan (FEMA) https://
nfipservices.floodsmart.gov/manuals/jan_2015_consolidated_trrp.pdf (2015).

Acknowledgements
Oliver Wing and Paul Bates were supported by EPSRC grant EP/R511663/1. Paul Bates
was also supported by a Leverhulme Research Fellowship and a Royal Society Wolfson
Research Merit award.

Author contributions
O.E.J.W. wrote the paper together with N.P., P.D.B., and C.K.; O.E.J.W. performed the
analyses. All authors aided in the conceptualization of the research and interpretation of
the results.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15264-2.

Correspondence and requests for materials should be addressed to O.E.J.W.

Peer review information Nature Communications thanks Antonia Sebastian and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15264-2

10 NATURE COMMUNICATIONS |         (2020) 11:1444 | https://doi.org/10.1038/s41467-020-15264-2 | www.nature.com/naturecommunications

https://nfipservices.floodsmart.gov/manuals/jan_2015_consolidated_trrp.pdf
https://nfipservices.floodsmart.gov/manuals/jan_2015_consolidated_trrp.pdf
https://doi.org/10.1038/s41467-020-15264-2
https://doi.org/10.1038/s41467-020-15264-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	New insights into US flood vulnerability revealed�from flood insurance big data
	Results
	Nationwide analysis of depth–nobreakdamage
	Regional patterns in depth–nobreakdamage
	Depth–nobreakdamage dependence on structure value
	Depth–nobreakdamage dependence on age and flood zone

	Discussion
	Methods
	National Flood Insurance Program claims database
	Scenario-based analyses
	US federal depth–nobreakdamage curves
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




