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Abstract. The Generalized LR (GLR) parsing algorithm is attractive
for use in parsing programming languages because it is asymptotically
efficient for typical grammars, and can parse with any context-free gram-
mar, including ambiguous grammars. However, adoption of GLR has
been slowed by high constant-factor overheads and the lack of a general,
user-defined action interface.
In this paper we present algorithmic and implementation enhancements
to GLR to solve these problems. First, we present a hybrid algorithm
that chooses between GLR and ordinary LR on a token-by-token ba-
sis, thus achieving competitive performance for determinstic input frag-
ments. Second, we describe a design for an action interface and a new
worklist algorithm that can guarantee bottom-up execution of actions for
acyclic grammars. These ideas are implemented in the Elkhound GLR
parser generator.
To demonstrate the effectiveness of these techniques, we describe our ex-
perience using Elkhound to write a parser for C++, a language notorious
for being difficult to parse. Our C++ parser is small (3500 lines), efficient
and maintainable, employing a range of disambiguation strategies.

1 Introduction

The state of the practice in automated parsing has changed little since the intro-
duction of YACC (Yet Another Compiler-Compiler), an LALR(1) parser genera-
tor, in 1975 [1]. An LALR(1) parser is deterministic: at every point in the input,
it must be able to decide which grammar rule to use, if any, utilizing only one
token of lookahead [2]. Not every context-free language has an LALR(1) gram-
mar. Even for those that do, the process of modifying a grammar to conform to
LALR(1) is difficult and time-consuming for the programmer, and this transfor-
mation often destroys much of its original conceptual structure. Nonterminals
cease to correspond to sub-languages, and instead come to represent states in the
token by token decomposition of the input. Instead of describing the language

to be parsed, the grammar describes the process used to parse it; it’s more like
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a hand-crafted parsing program, but crammed into Backus-Naur Form. This is
very unfortunate, since the grammar is the most important piece of the parsing
specification.

The main alternative to a long battle with shift/reduce conflicts1 is to aban-
don automatic parsing technology altogether. However, writing a parser by hand
is tedious and expensive, and the resulting artifact is often difficult to modify
to incorporate extensions, especially those of interest in a research setting. The
Edison Design Group C++ Front End includes such a hand-written parser for
C++, and its size and complexity attest both to the difficulty of writing a parser
without automation and the skill of EDG’s engineers.

This paper describes improvements and enhancements to the Generalized LR
(GLR) parsing algorithm that make its performance competitive with LALR(1)
parsers, and its programming interface flexible enough for use in a variety of real-
world scenarios. These enhancements are demonstrated in the Elkhound parser
generator.

1.1 The State of GLR

The Generalized LR parsing algorithm [3–5] extends LR by effectively main-
taining multiple parse stacks. Wherever ordinary LR faces a shift/reduce or re-
duce/reduce conflict, the GLR algorithm splits the stack to pursue all options in
parallel. One way to view GLR is as a form of the Earley dynamic programming
algorithm [6], optimized for use with mostly deterministic2 grammars. It can use
any context-free grammar, including those that require unbounded lookahead or
are ambiguous. Section 2 explains the GLR algorithm in more detail.

GLR is a much more convenient technology to use than LALR(1). It does
not impose constraints on the grammar, which allows rapid prototyping. Fur-
ther, unlike the Earley algorithm, its performance improves as the grammar
approaches being deterministic, so a prototype grammar can be evolved into an
efficient parsing grammar incrementally.

However, while GLR is asymptotically as efficient as ordinary LR for deter-
ministic input, even mature GLR implementations such as ASF+SDF [7] are
typically a factor of ten or more slower than their LALR counterparts for de-
terministic grammars. Consequently, users are reluctant to use GLR. The poor
performance is due to the overhead of maintaining a data structure more compli-
cated than a simple stack, and traversing that data structure to find reduction
opportunities.

Existing GLR parsers build a parse tree (or a parse forest, in the case of
ambiguous input) instead of executing user-specified actions at each reduction.
They build such a tree because it allows the tool to control sharing and the
representation of ambiguity. However, because the user cannot control the rep-
resentation of the parser’s output, applicability is limited. Most commonly, the

1 A parse state in which the parser cannot decide whether to apply a grammar rule
or consume more input is said to have a “shift/reduce” conflict. If the parser cannot
decide which grammar rule to apply it has a “reduce/reduce” conflict.

2 In this context, a grammar is deterministic if it is LALR(1).



user of a parser would like to build an abstract syntax tree (AST) instead of
working directly with a parse tree. Or, the analysis task might be simple enough
to do during parsing itself. Traversing a parse tree afterwards to simulate on-line
reduction actions would once again incur the kinds of performance problems that
inhibit adoption.

1.2 Contributions

First, to improve parsing performance on deterministic fragments of grammars,
we present an enhancement that allows the parser to dynamically switch between
GLR and ordinary LALR(1) at the token level of granularity. The information
needed to soundly decide when LALR is sufficient is easily maintained in most
cases. Even though it must operate on the GLR data structures, the LALR parser
core is much faster because it can make much stronger assumptions about their
shape and about the possible sequences of upcoming parsing actions. With this
improvement, parsing performance on deterministic grammars is within 10% of
good LALR implementations such as Bison [8].

Second, we present a design for a set of user-specified action handlers that
gives the user total control over representation decisions, including subtree shar-
ing. Further, we present a crucial modification to the GLR algorithm that ensures
the action handlers are executed in a bottom-up order (for acyclic grammars);
the original GLR algorithm cannot make this guarantee.

2 The GLR Parsing Algorithm

Since the reader may be unfamiliar with the GLR parsing algorithm [3–5], this
section contains a brief explanation of the key points. For a more thorough
description see [9], an expanded version of this paper.

As with LR3 parsing [10, 2], the GLR algorithm uses a parse stack and a
finite control. The finite control dictates what parse action (shift or reduce)
to take, based on what the next token is, and the stack summarizes the left
context as a sequence of finite control state numbers. But unlike LR, GLR’s
parse “stack” is not a stack at all: it is a graph which encodes all of the possible
stack configurations that an LR parser could have. Each encoded stack is treated
like a separate potential LR parser, and all stacks are processed in parallel, kept
synchronized by always shifting a given token together.

The encoding of the GLR graph-structured stack (GSS) is simple. Every node
has one or more directed edges to nodes below it in some stack, such that every
finite path from a top node to the unique bottom node encodes a potential LR
parse stack. Figure 1 shows one possible GSS and its encoded stacks. In the case
of an ε-grammar [11], there may actually be a cycle in the graph and therefore

3 GLR is built on top of the finite control of an LR parser, such as LR(0), SLR(1),
LALR(1) or even full LR(1). Elkhound uses LALR(1). In this paper we use the term
LR to refer nonspecifically to any of these.
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Fig. 1. An example graph-structured stack. Each node is labeled with its parse state
number.

an infinite number of paths; Elkhound can handle ε-grammars, but they are not
further considered in this paper.

The GLR algorithm proceeds as follows: On each token, for each stack top,
every enabled LR action is performed. There may be more than one enabled
action, corresponding to a shift/reduce or reduce/reduce conflict in ordinary
LR. A shift adds a new node at the top of some stack node. A reduce also adds
a new node, but depending on the length of the production’s right-hand side, it
might point to the top or into the middle of a stack. The latter case corresponds
to the situation where LR would pop nodes off the stack; but the GLR algorithm
cannot in general pop reduced nodes because it might also be possible to shift.
If there is more than one path of the required length from the origin node, the
algorithm reduces along all such paths. If two stacks shift or reduce into the
same state, then the stack tops are merged into one node. In Figure 1, the node
with state 6 is such a merged node.

When the algorithm performs a reduction, it executes the user’s action code.
The result of an action is called a semantic value, and these values are stored on
the links between the stack nodes.4 When a reduction happens along a particular
path, the semantic values stored on the links in that path are passed as arguments
to the reduction action. If two different reductions lead to the same configuration
of the top two stack nodes, i.e. the resulting stacks use the same final GSS link,
the algorithm merges their top-most semantic values. Each of the merged values
corresponds to a different way of reducing some sequence of ground terminals to
a particular nonterminal (the same nonterminal for both stacks): an ambiguity.
The merged value is then stored back into the link between the top two stack
nodes, and participates in future reduction actions in the ordinary way.

3 GLR/LR Hybrid

When using a parsing grammar for a programming language, the common case
for the GLR algorithm is to have only one top stack node, and one possible parse
action. That is, for most of the input, the ordinary LR algorithm would suffice.
For our C++ grammar about 70% of the parse actions fit this description.

4 It would be incorrect to store values in the stack nodes themselves, because a node
at the top of multiple stacks must have a distinct semantic value for each stack.
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Fig. 2. In this graph-structured stack, each node is labeled with its deterministic depth.

It would therefore be profitable to use LR when possible because perform-
ing reductions is much simpler (and therefore faster) with LR, and reductions
account for the bulk (about 80% for the C++ grammar) of the actions during
parsing. The main cause for slower reductions with GLR is the need to inter-
pret the graph-structured stack: following pointers between nodes, iteration over
nodes’ successors, and the extra mechanism to properly handle some special cases
[5, 9] all add significant constant-factor overhead. Secondary causes include test-
ing the node reference counts, and not popping and reusing node storage during
reductions.

To exploit LR’s faster reductions, we need a way to predict when using LR
will be equivalent to using GLR. Clearly, LR can only be used if there is a unique
top stack node, and if the action for the current token at the top node’s state is
unambiguous. If that action is a shift, then we can do a simple LR shift: a new
top node is created and the token’s semantic value is stored on the new link.

However, if the action is a reduce, then we must check to see if the reduction
can be performed more than once (via multiple paths), because if it can, then
the GLR algorithm must be used to make sure that all possible reductions are
considered. To enable this check, we modified the algorithm to keep track of
each node’s deterministic depth, defined to be the number of stack links that
can be traversed before reaching a node with out-degree greater than one. The
bottom node’s depth is defined to be one. Figure 2 shows an example. Any time
the enabled reduction’s right-hand side length (call it n) is less than or equal to
the top node’s deterministic depth, the reduction will only touch parts of the
stack that are linear (in-degree and out-degree at most one). Therefore a simple
reduction can be performed: deallocate the top n nodes, and create in their place
one new node whose link will hold the reduction’s semantic value.

Maintaining the deterministic depth is usually easy. When a node is created
its depth is set to one more than that of its successor. When a second outgoing
link is added to a node, its depth is reset to zero. When a node’s depth is reset,
if any nodes point at it, their depths are also potentially affected and so must
be recomputed. This happens rarely, about 1 in every 10,000 parse actions for
the C++ grammar, and can be done efficiently with a topological sort (details
omitted due to space constraints).

An important property of the hybrid scheme is that it ensures that the pars-
ing performance of a given sub-language is independent of the context in which



it is used. If we instead tried the simpler approach of using LR only when the
stack is entirely linear, then (unreduced) ambiguity anywhere in the left context
would slow down the parser. For example, suppose a C++ grammar contains
two rules for function definitions, say, one for constructors and another for or-
dinary functions. If these rules have an ambiguity near the function name, that
ambiguity will still be on the stack when the function body is parsed. By al-
lowing ordinary LR to be used for the body despite the latent ambiguity, the
parsing performance of the statement language is the same in any context. As
a result, the effort spent removing conflicts from one sub-language is immedi-
ately beneficial, without having to chase down conceptually unrelated conflicts
elsewhere.

As shown in Section 6.1, the hybrid algorithm is about five times faster than
the plain GLR algorithm for grammars that are LALR(1) or inputs that exercise
only the LALR(1) fragment of a grammar.

4 User-Specified Actions

The GLR algorithm’s flexibility provides two basic challenges to any implemen-
tation that associates arbitrary user code with the reduction actions. First, while
alternative parses are being pursued, semantic values are shared between the al-
ternatives. Second, if multiple parse trees can be constructed for a region of the
input, the semantic values from the different interpretations have to be merged.

As a running example, we use an ambiguous grammar for sums:

E → E + E | b (EEb)

E E E

E+E E+E

E+E E+E

b + b + b

merge yielded to caller

t1 t2 t3 t4 t5

v5

v6 v7

v4

v1 v2 v3

v8

Fig. 3. A parse forest for the EEb grammar.

Figure 3 shows a parse forest for
the input “b + b + b”.

4.1 Sharing Subtrees

When a reduction action yields
(produces as its return value for
use by subsequent reductions) a
semantic value such as v1, the
value is stored in a link between
two stack nodes. If that link is
used for more than one subse-
quent reduction, then v1 will be
passed as an argument to more
than one action; in Figure 3, v1 has been used in the creation of v4 and v6.

Depending on what the actions do, there may be consequences to sharing
that require user intervention. For example, if explicit memory management is
being used, unrestricted sharing could lead to objects being deallocated multiple
times; or, if the analysis is trying to count instances of some construct, sharing
could cause some subtrees to be counted more than once.



To allow for a range of sharing management strategies, Elkhound allows the
user to associate with each symbol (terminal and nonterminal) two functions,
dup() and del(). dup(v) is called whenever v is passed to a reduction action,
and its return value is stored back into the stack node link for use by the next
action. In essence, the algorithm surrenders v to the user, and the user tells the
algorithm what value to provide next time. When a node link containing value
v is deallocated, del(v) is called. This happens when the last parser that could
have potentially used v’s link fails to make progress. Note that these rules also
apply to semantic values associated with terminals, so t2 and t4 will be properly
shared. As a special case, the calls to dup and del are omitted by the ordinary
LR core, since semantic values are always yielded exactly once (dup immediately
followed by del) in that case.

Typical memory management strategies are easy to implement with this in-
terface. For a garbage collector, dup() is the identity function and del() does
nothing (this is the default behavior in Elkhound). To use reference counting,
dup() increments the count and del() decrements it. Finally, for a strict own-
ership model, dup(v) makes a deep copy of v and del() recursively deallocates.
This last strategy is fairly inefficient, so it should probably only be used in a
grammar with at most occasional nondeterminism. In any case, the design nei-
ther requires nor prohibits any particular memory management strategy.

4.2 Merging Alternatives

If the grammar is ambiguous, then some inputs have more than one parse tree.
In that case, semantic values representing the competing alternatives for the dif-
fering subtrees must be merged, so each nonterminal has an associated merge()

function in the Elkhound API. For example, in Figure 3, semantic values v6 and
v7 arise from different ways of parsing the same sequence of ground terminals,
so the algorithm calls merge(v6,v7) and stores the return value v8 back into the
stack node link for use by future reduction actions.

Now, the user has at least three reasonable options in a merge(v6,v7) func-
tion: (1) pick one of the values to keep and discard the other one, (2) retain the
ambiguity by creating some explicit representation of its presence, or (3) report
an error due to unexpected input ambiguity. Option (3) is of course easy to do.

Unfortunately, options (1) and (2) don’t always work in conventional GLR
implementations, because reductions and merges are not always performed in
a bottom-up order. As shown below, it is possible to yield a semantic value to
a reduction action, only to then discover that the yielded value was ambiguous
and needed to be merged. Because of this order violation, actions are severely
constrained in what they can do, because they are given incomplete information.

To illustrate the problem, consider the grammar SAdB and the GLR algo-
rithm’s activities while parsing “d”:

S → A

A → d | B

B → d

(SAdB)
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Fig. 4. There are two possible reduction sequences for the SAdB grammar, depending
on reduction order. Square boxes are stack nodes, and rounded rectangles represents
the result of running the user’s reduction action code. Dotted lines show the flow of
semantic values; they resemble parse tree edges.

For reference, Figure 4a shows the states of the finite control. In Figure 4b,
the d has been shifted, creating the node with state 1, and the actions for A → d

and B → d have been executed, creating nodes with states 2 and 3. The dotted
lines reflect dependencies between semantic values. But from there the algorithm
can proceed in two ways because there are two top nodes that can reduce.

First, Figures 4c and 4e show the sequence of GLR stack configurations when
the node in state 3 reduces first. First (Figure 4c), the action for A → B runs.
Then, because this reduction leads to another stack configuration with state 2
on top of (pointing to) state 0, the algorithm merges the two semantic values for
nonterminal A as well as the stacks themselves. Finally, (Figure 4e) the action
for S → A runs. The semantic value corresponding to A → B participates in the
final result because A was merged before it was passed to the action for S → A.
No information has been lost, and this is good.

On the other hand, Figures 4d and 4f show an alternative sequence, where
state 2 reduces first. In that case, the action for S → A runs immediately
(Figure 4d), and this is in fact the final result of the parse. Then (Figure 4f),
the action for A → B and the merge() for A run, but nothing more is done with



either value; the parser has already performed the reductions corresponding to
state 2. The effect of one of the possible parses is lost, which is bad.

The problem stems from the fact that conventional GLR does the parsing
work for each token using a worklist of stack nodes. Since each node is processed
in its entirety, performing all reductions enabled at that node before the reduc-
tions for any other node, certain reductions are forced to occur together. Thus,
it isn’t always possible to pick an order for processing the stack nodes that will
ensure bottom-order action execution.

To guarantee bottom-up actions, we must use a finer-grained worklist. Specif-
ically, we will put reduction opportunities themselves in the list, instead of stack
nodes. As each stack node is created, the algorithm computes the set of enabled
actions. Shifts are postponed until the end of the phase (as in conventional
GLR), and reductions are inserted into the worklist. The reduction worklist is
maintained in a sorted order, according to this partial order:

– Rule 1. Reductions that span fewer tokens come first.
– Rule 2. If two reductions A → α and B → β span the same tokens, then

A → α comes first if B →+ A.

In Figure 4, Rule 2 would force A → B to execute before S → A since
S →+ A. In general, reductions executed in this order are guaranteed to be
bottom-up, assuming the grammar is acyclic.5 The proof has been omitted, but
appears in [9].

It should be noted that traditional GLR implementations cope with the ac-
tion order problem by the way they construct their parse trees. For example, the
algorithm described in [5] uses “Symbol” nodes to represent semantic values,
which can be updated after being yielded since they are always incorporated by
reference. Since the user’s code is not run during parsing, it cannot observe that
the semantic value is temporarily incomplete. We think that requiring users of
Elkhound to write actions that are similarly tolerant would be too burdensome.

5 Case Study: A C++ Parser

To verify its real-world applicability, we put Elkhound to the test and wrote
a C++ parser. This effort took one of the authors about three weeks. The
final parser specification is about 3500 non-blank, non-comment lines, includ-
ing the grammar, abstract syntax description and post-parse disambiguator (a
limited type checker), but not including support libraries. The grammar has 37
shift/reduce conflicts, 47 reduce/reduce conflicts and 8 ambiguous nonterminals.

This parser can parse and fully disambiguate most6 of the C++ language, in-
cluding templates. We used our implementation to parse Mozilla, a large (about
2 million lines) open-source web browser.

5 If the grammar is cyclic then Rule 2 is not necessarily consistent, since it could be
that both B →+

A and A →+
B.

6 Namespaces ([12] Section 7.3) and template partial specialization ([12] Sec-
tion 14.5.4) are not currently implemented because they are not needed to parse
Mozilla. We foresee no new difficulties implementing these features.



The C++ language definition [12] includes several provisions that make pars-
ing the language with traditional tools difficult. In the following sections we ex-
plain how we resolved these parsing difficulties using the mechanisms available
in Elkhound.

5.1 Type Names versus Variable Names

The single most difficult task for a C or C++ parser is distinguishing type
names (introduced via a typedef) from variable names. For example, the syntax
“(a)&(b)” is the bitwise-and of a and b if a is the name of a variable, or a type-
cast of the expression &b to type a if a is the name of a type.

The traditional solution for C, sometimes called the “lexer hack,” is to add
type names to the symbol table during parsing, and feed this information back
into the lexical analyzer. Then, when the lexer yields a token to the parser, the
lexer categorizes the token as either a type name or a variable name.

In C++, the hack is considerably more difficult to implement, since a might
be a type name whose first declaration occurs later in the file: type declarations
inside a class body are visible in all method definitions of that class, even those
which appear textually before the declaration. For example:

int *a; // variable name (hidden)

class C {

int f(int b) { return (a)&(b); } // cast!

typedef int a; // type name (visible)

};

To make lexer hack work for C++, the parser must defer parsing of class
method bodies until the entire class declaration has been analyzed, but this
entails somehow saving the unparsed method token sequences and restarting the
parser to parse them later. Since the rules for name lookup and introduction are
quite complex, a great deal of semantic infrastructure is entangled in the lexer
feedback loop.

However, with a GLR parser that can tolerate ambiguity, a much simpler
and more elegant approach is possible: simply parse every name as both a type
name and a variable name, and store both interpretations in the AST. During
type checking, when the full AST and symbol table are available, one of the
interpretations will fail because it has the wrong classification for a name. The
type checker simply discards the failing interpretation, and the ambiguity is
resolved. The scoping rules for classes are easily handled at this stage, since the
(possibly ambiguous) AST is available: make two passes over the class AST,
where the first builds the class symbol table, skipping method bodies, and the
second pass checks the method bodies.

5.2 Declarations versus Statements

Even when type names are identified, some syntax is ambiguous. For example,
if t is the name of a type, the syntax “t(a);” could be either a declaration of a



variable called a of type t, or an expression that constructs an instance of type
t by calling t’s constructor and passing a as an argument to it. The language
definition specifies ([12], Section 6.8) that if some syntax can be a declaration,
then it is a declaration.

Using traditional tools that require LALR(1) grammars, and grammars for
language fragments A and B, we would need to write a grammar for the language
A\B. This is at best difficult, and at worst impossible: the context-free languages
(let alone LALR(1) languages) are not closed under subtraction.

The solution in this case is again to represent the ambiguity explicitly in
the AST, and resolve it during type checking. If a statement can either be a
declaration or an expression, then the declaration possibility is checked first.
If the declaration is well-formed (including with respect to names of types vs.
names of variables) then that is the final interpretation. Otherwise the expression
possibility is checked, and is used if it is well-formed. If neither interpretation
is well-formed, then the two possible interpretations are reported to the user,
along their respective diagnostic messages.

5.3 Angle Brackets

Templates (also known as polymorphic classes, or generics) are allowed to have
integer arguments. Template arguments are delimited by the angle brackets <

and >, but these symbols also appear as operators in the expression language:

template <int n> class C { /*...*/ };

C< 3+4 > a; // ok; same as C<7> a;

C< 3<4 > b; // ok; same as C<1> b;

C< 3>4 > c; // syntax error

C< (3>4) > d; // ok; same as C<0> d;

The language definition specifies that there cannot be any unparenthesized
greater-than operators in a template argument ([12], Section 14.2, par. 3). By
recording grouping parentheses in the AST, we can select the correct parse with
a simple pattern check once all possibilities have been parsed.

A correct implementation in an LALR(1) setting would again require recog-
nizing a difference between languages. In this case it would suffice to split the
expression language into expressions with unparenthesized greater-than symbols
and expressions without them. It is interesting to note that, rather than endure
such violence to the grammar, the authors of gcc-2.95.3 chose to use a prece-
dence specification that works most of the time but is wrong in obscure cases:
for example, gcc cannot parse the type “C< 3&&4 >”. This is the dilemma all
too often faced by the LALR(1) developer: sacrifice the grammar, or sacrifice
correctness.

5.4 Debugging Ambiguities

Building the C++ parser gave us a chance to explore one of the potential draw-
backs of using the GLR algorithm, namely the risk that ambiguities would end



up being more difficult to debug than conflicts. After all, at least conflicts are
decidable. Would the lure of quick prototyping lead us into a thorn bush without
a decidable boundary?

Fortunately, ambiguities have not been a problem. By reporting conflicts,
Elkhound provides hints as to where ambiguities may lie, which is useful during
initial grammar development. But as the grammar matures, we find ambigu-
ities by parsing inputs, and understand them by printing the parse forest (an
Elkhound option). This process is fundamentally different and more natural than
debugging conflicts, because ambiguities and parse trees are concepts directly
related to the grammar, whereas conflicts conceptually depend on the parsing
algorithm. Consequently, debugging ambiguities fits easily among, and is in fact
a very small portion of, other testing activities.

6 Performance

In this section we compare the performance of Elkhound parsers to those of other
parser generators, and also measure in detail the parsing performance of the C++
parser (itself written in C++), to test the claim that our algorithm enhancements
in fact yield competitive performance. The experiments were performed on a
1GHz AMD Athlon running Linux. We report the median of five trials.

6.1 Parser Generators

For comparison with an LALR(1) implementation, we compare Elkhound to
Bison, version 1.28 [8]. Bison associates user action code with each reduction,
and generates a parser written in C.

For comparison with an existing GLR implementation, we used the ASF+SDF
Meta-Environment [7]. The Meta-Environment contains a variety of language-
processing tools, among which is a scannerless GLR parser [13]. We used the
Meta-Environment bundle version 1.1.1, which contains version 3.7 of the SGLR
component. This package is written in C.

To measure the speed of Elkhound’s ordinary LR parser, we measured its
performance against Bison and ASF+SDF on the following LALR(1) grammar,
also used in [14]:

E → E + F | F

F → a
(EFa)

All parsers were run with empty actions, i.e. as recognizers, and using trivial
(one character is a token) lexers. As shown in Figure 5a, the Elkhound LR parser
core is only about 10% slower than Bison, whereas ASF+SDF is a factor of ten
slower than both. When Elkhound’s hybrid mechanism (Section 3) is disabled,
parsing slows down by a factor of five. This validates the hybrid design: the
overhead of choosing between LR and GLR is almost negligible, and the speed
improvement when LR is used is substantial.
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Fig. 5. Parser performance (log-log scale).

To measure the full GLR parser, we also measured performance on the highly
ambiguous EEb grammar, reproduced here:

E → E + E | b (EEb)

This grammar generates the language described by the regular expression b(+b)∗.
As shown in Figure 5b, Elkhound’s performance is very similar to that of

ASF+SDF. This suggests that the algorithm modifications previously presented,
especially the use of a worklist of reductions instead of stack nodes (Section 4.2),
does not substantially compromise GLR performance. Note that both require
Θ(n4) time; for grammars with such a high degree of ambiguity, GLR is often
slower than the Earley algorithm [6].

6.2 C++ Parser Performance

To test the C++ parser and measure its performance, we used it to parse Mozilla
1.0. Mozilla has about 2000 source modules in its Linux configuration, averaging
about 30000 preprocessed lines each. We selected six of Mozilla’s modules at
random to measure.

Table 1 shows several measurements for each file. Parsing time is reported
in milliseconds. “No-LR” is parse time when the LR parser is disabled, and (×)
is the ratio of No-LR to Parse. The ratios show that while the GLR/LR hybrid
technique is certainly beneficial, saving about a factor of two, it is not as effective
for the C++ grammar as it is for a completely deterministic grammar such as
EFa, where it saves a factor of five. Of course, the reason is that the C++ parser
cannot use the LR parser all the time; on the average, for our current grammar,
it can use it only about 70% of the time. Further effort spent removing conflicts
would presumably raise this percentage.



Table 1. C++ Parser Performance (times in ms).

Elkhound gcc-2.95.3 gcc-3.3.2
Preprocessed File Name Lines Parse No-LR (×) Disamb Parse (×) Parse (×)

nsUnicodeToTeXCMRt1.i 9537 16 36 (2.25) 50 60 (1.10) 80 (0.83)
nsAtomTable.i 19369 104 179 (1.72) 296 270 (1.48) 480 (0.83)
nsCLiveconnectFactory.i 24055 80 167 (2.09) 273 250 (1.41) 230 (1.53)
nsSOAPPropertyBag.i 26807 173 298 (2.30) 418 460 (1.28) 740 (0.80)
nsMsgServiceProvider.i 39215 209 378 (1.81) 545 560 (1.35) 1270 (0.59)
nsHTMLEditRules.i 49566 495 827 (1.67) 934 1140 (1.25) 2170 (0.66)

“Disamb” is the time for the post-parse disambiguator to run; the sum of the
Parse and Disamb columns is the total time to parse and disambiguate. “gcc-
2.95.3” and “gcc-3.3.2” are the time for two versions of gcc to parse the code
as measured by its internal parse time instrumentation, and (×) is the ratio of
Elkhound total parse time to g++ parse time. Remarkably, the Elkhound C++
parser is typically only 30–40% slower than gcc-2, and usually faster than gcc-3.

7 Related Work

Performance In the worst case, the GLR algorithm takes O(np+1) time, where p

is the length of the longest right-hand side. Converting the grammar to Chomsky
normal form would thus make the bound O(n3) but would destroy conceptual
structure. Kipps [15] suggests a different way to achieve O(n3) bounds, but with
high constant-factor costs.

User-specified Actions ASF+SDF intends its users to write analyses using a
sophisticated algebraic transformation (rewrite) engine. While the actions are
not arbitrary, they are nonetheless powerful. The advantage is the availability of
a number of high-level notations and tools; the disadvantage is the impedance
mismatch with components outside the ASF+SDF framework. In particular, its
internal ATerm [16] library prohibits destructive updates.

Bison allows user-specified actions, and recent versions of Bison include an
extended parser that emulates GLR by copying the stack instead of building
a graph, and executing user actions by traversing the parse forest afterwards.
Copying the stack leads to exponential worst-case time, and tree traversal is
expensive. It’s intended for grammars with only minor deviations from LALR(1).

Disambiguation Many systems support some form of declarative disambigua-
tion. Several static conflict resolution schemes such as precedence and associa-
tivity [17] or follow restrictions [18] are implemented in Elkhound. Since it uses
a conventional LR finite control, it is straightforward to support such schemes.

Dynamic, parse-time disambiguation in Elkhound is supported through the
keep and merge functions. ASF+SDF has related reject and prefer directives.
reject does declaratively what keep does imperatively, namely to recognize a



language difference such as A\B. When B is already described as a nontermi-
nal in the grammar, reject is more convenient; when B is ad-hoc or context-
dependent, the flexibility of keep is handy. Similarly, prefer can be simulated
imperatively by merge, but merge can also choose to retain the ambiguity.

Wagner and Graham [19] argue for post-parse semantic disambiguation, in
an incremental GLR parsing setting. We follow their lead with a batch parser.

Other Algorithms The first parsing algorithm for the entire class of context
free grammars was the Earley dynamic programming algorithm [6], with run-
ning time Ω(n2) and O(n3). A number of variations and refinements have been
proposed [20, 21, 14, 22, 23], but none has yet emerged as a practical algorithm
for parsing programming languages.

By adding backtracking to a deterministic algorithm, one can achieve the
effect of unbounded lookahead. Conventional systems that do this include BtYacc
and ANTLR; one can also use higher-order combinators in a functional language
to do the same [24]. However, since they do not yield all parses for an ambiguous
grammar, many of the techniques presented in Section 5 would not be possible.

8 Conclusion

This paper presents two key enhancements to the GLR algorithm. First, the
GLR/LR hybrid substantially improves performance for deterministic grammar
fragments. Second, the use of a reduction worklist instead of a node worklist
enables user-defined actions to be executed in bottom-up order.

We then demonsrate the benefits of each improvement by the process of
constructing a parser for C++. User-written actions, especially during ambiguity
merging, are capable of effectively disambiguating troublesome constructs, and
the resulting parser comes close to matching the speed of a production compiler.

We believe GLR parsing is a valuable tool for language research, and towards
that end Elkhound and its C++ parser have been released under an open-source
(BSD) license, available at
http://www.cs.berkeley.edu/~smcpeak/elkhound .

References

1. Johnson, S.C.: YACC: Yet another compiler compiler. In: UNIX Programmer’s
Manual (7th edn). Volume 2B. (1979)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley (1986)

3. Lang, B.: Deterministic techniques for efficient non-deterministic parsers. In
Loeckx, J., ed.: Automata, Languages and Programming. Volume 14 of Lecture
Notes in Computer Science. Springer (1974) 255–269

4. Tomita, M.: Efficient Parsing for Natural Language. Int. Series in Engineering and
Computer Science. Kluwer (1985)

5. Rekers, J.: Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, Amsterdam, The Netherlands (1992)



6. Earley, J.: An efficient context-free parsing algorithm. Communications of the
ACM 13 (1970) 94–102

7. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The syntax definition formalism
SDF - reference manual. SIGPLAN Notices 24 (1989) 43–75

8. Donnelly, C., Stallman, R.M.: Bison: the YACC-compatible Parser Generator,
Bison Version 1.28. Free Software Foundation, 675 Mass Ave, Cambridge, MA
02139 (1999)

9. McPeak, S.: Elkhound: A fast, efficient GLR parser generator. Technical Report
CSD-02-1214, University of California, Berkeley (2002)

10. Knuth, D.E.: On the translation of languages from left to right. Information and
Control 8 (1965) 607–639

11. Nozohoor-Farshi, R.: GLR parsing for ε-grammars. In Tomita, M., ed.: Generalized
LR Parsing. Kluwer (1991) 61–75

12. International Organization for Standardization: ISO/IEC 14882:1998: Program-
ming languages — C++. International Organization for Standardization, Geneva,
Switzerland (1998)

13. Visser, E.: Scannerless generalized-LR parsing. Technical Report P9707, University
of Amsterdam (1997)

14. Alonso, M.A., Cabrero, D., Vilares, M.: Construction of efficient generalized LR
parsers. In: WIA: International Workshop on Implementing Automata, LNCS,
Springer-Verlag (1997)

15. Kipps, J.R.: GLR parsing in time O(n3). In Tomita, M., ed.: Generalized LR
Parsing. Kluwer (1991) 43–60

16. van den Brand, M., de Jong, H.A., Klint, P., Olivier, P.A.: Efficient annotated
terms. Software Practice and Experience 30 (2000) 259–291

17. Earley, J.: Ambiguity and precedence in syntax description. Acta Informatica 4

(1975) 183–192
18. van den Brand, M., Scheerder, J., Vinju, J.J., Visser, E.: Disambiguation filters

for scannerless generalized LR parsers. In: Compiler Construction. (2002) 143–158
19. Wagner, T.A., Graham, S.L.: Incremental analysis of real programming languages.

In: ACM Programming Language Design and Implementation (PLDI). (1997) 31–
43

20. Graham, S.L., Harrison, M.A., Ruzzo, W.L.: An improved context-free recognizer.
ACM Transactions on Programming Languages and Systems (TOPLAS) 2 (1980)
415–462

21. McLean, P., Horspool, R.N.: A faster Earley parser. In: Compiler Construction.
(1996) 281–293
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