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INTRODUCTION

The use of CD4+FoxP3+ regulatory T cells (Tregs) to inhibit graft vs host disease (GVHD) 

following allogeneic hematopoietic stem cell transplantation (aHSCT) has been explored 

for more than a decade [1–10]. Both donor and host Tregs have been demonstrated 

to possess regulatory potential to ameliorate experimental GVHD [11–12]. Clinical 

trials infusing donor and cord blood derived Tregs in aHSCT patients have reported 
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their safe application and results from prior and ongoing studies have shown promise 

[13–15, NCT00529035/NCT01937468/NCT03912064/NCT02991898/NCT01660607 and 

NCT04013685). Challenges nonetheless remain for their widespread usage as an effective 

strategy for regulating clinical HSCT [16]. Patient applications necessitate that sufficient 

Treg numbers (donor or host) will be available at the time of an HSCT. Historically, 

a similar requirement involving availability and access to sufficient numbers of donor 

stem / progenitor cells was resolved through development of mobilization procedures in 

the donor prior to transplant [17–21]. Peripheral blood (PB) from donors for allogeneic as 

well as autologous HSCT could be obtained following stem / progenitor cell mobilization 

regimens and successfully transplanted resulting in hematopoietic engraftment and graft 

versus leukemia (GVL) activity [21,22]. These regimens typically consist of the infusion of 

filgrastim (G-CSF) and plerixafor, as some individuals respond inadequately to filgrastim 

failing to mobilize sufficient CD34+ HSC into the peripheral blood to enable harvest of 

sufficient numbers (~5×106 HSC / kg) for transplant [19, 21, 23].

Notably, with regard to the present studies, G-CSF and plerixafor can also effectively 

mobilize hematopoietic progenitors in mice [19,24]. Here, we report an experimental 

aHSCT protocol in which donor mice were prepared using G-CSF alone or with plerixafor 

regimens to mobilize stem/progenitor cells while enabling concomitant expansion of 

their peripheral CD4+FoxP3+ Treg compartment. Mobilized animals were administered 

TNFRSF25 agonists together with low dose IL-2 (rhIL-2LD) to rapidly and markedly 

expand the CD4+FoxP3+ Treg compartment [5,6,25]. Utilizing multiple donor / recipient 

strain combinations involving MHC-matched and MHC-mismatched genetic disparities, the 

findings demonstrated efficient and simultaneous donor HSC / progenitor cell mobilization 

and Treg expansion. Transplant of PB from such donors resulted in diminished GVHD as 

assessed by clinical score, histopathology and immune parameters. We conclude HSC/PC 

mobilization was effective in the presence of Treg expansion and the donor HSC/PC 

populations exposed to TNFRSF25 agonists and rhIL-2LD were functional post-transplant in 

recipients. Additionally, donor Tregs could be efficiently expanded in the presence of G-CSF 

+ plerixafor and subsequently were functionally suppressive in recipients. Lastly, using 

MLL-AF9 leukemia cells, graft vs. leukemia responses (GVL) remained intact in animals 

transplanted using this “dual” donor stem/progenitor cell and Treg expansion protocol, 

consistent with prior observations that Treg amelioration of GVHD does not abolish anti-

tumor activity [5,9]. In total, these findings support the notion that during the donor stem / 

progenitor cell mobilization process, targeting and activating Tregs using a two receptor, i.e. 

TNFRSF25 + CD25 pathway strategy can result in a potential translational approach using 

PB for allo-HSCT with reduced GVHD severity while maintaining GVL.

MATERIALS AND METHODS

Animals:

C57BL/6J (B6; stock: 000664), B6-CD45.1 breeder (stock: 002014) (H2b), LP/J (H2b), 

B10.D2 (H2d) and C3H.SW (H2b) mice were purchased from The Jackson laboratory 

and maintained in University of Miami animal facilities. The FoxP3 reporter mice on a 

C57BL/6 background (B6-FoxP3RFP= B6-Fir) were originally provided by R. Flavell (Yale 
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University, New Haven, CT). Wild-type BALB/c (H2d) mice were purchased from Taconic 

Biosciences or The Jackson Laboratory. BALB/c-FoxP3.DTR were obtained from the Fred 

Hutchinson Cancer Center. NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were obtained 

from the University of Miami animal core. All mice were used at 6–12 weeks of age 

and were maintained in pathogen-free conditions at the University of Miami (UM) animal 

facilities. All animal procedures used were performed under protocols approved by the UM 

IACUC.

Flow cytometry:

Commercial antibodies for use in flow cytometry were purchased from BD Biosciences 

(San Jose, CA), Biolegend (San Jose, CA), or eBioscience / ThermoFisher (Waltham, 

MA). All antibodies used in this study are included in Supplemental Table I. Single-cell 

suspensions were prepared from different organs (spleen, peripheral lymph nodes [pLN]), 

bone marrow (BM). Peripheral blood (PB) was collected in heparinized tubes. Peripheral 

blood mononuclear cells (PBMCs) were isolated by standard Ficoll density gradient 

centrifugation. Next, 106 cells were pre-blocked with anti-mouse CD16/CD32 and stained 

with different antibody combinations. Intracellular staining was performed according to 

standard procedures. The following mAbs to the indicated molecules and their fluorescent 

labels were used in this study: CD4, CD8, CD19, CD25, CD44, CD62L, KLRG1, CD39, 

CD73, I-COS, Nrp-1, PD-1, CTLA-4, Ly-6C, Ki-67, Annexin V, H2Kb, H2Kd, CD45.1 and 

CD45.2.

Stem/Progenitor cell mobilization:

Donor mice were treated with recombinant murine G-CSF (Biolegend, San Jose, CA) 

or Neupogen (Filgrastim, AMGEN, Thousand Oaks, CA) for 4 days (2.5 ug/mouse sc) 

sometimes followed by Plerixafor (AMD3100, (Sigma-Aldrich, St. Louis, MO) (5mg/kg sc) 

on Days −1 and Day 0. PB was collected and PBMC obtained by density centrifugation (see 

below) followed by staining with monoclonal antibodies to c-kit (CD117), Ly6A/E (Sca-1), 

CD11b, Ly6G, CD4, CD8, CD19 and FoxP3 (see Suppl Table I).

Staining was assessed via flow cytometry (see above) and phenotypic analysis to 

identify populations in the peripheral blood of un-mobilized and mobilized mice for 

Hematopoietic Stem and Progenitor Cells (HSPCs) including: HSCs (Hematopoietic Stem 

Cells Lin−Sca-1+c-kit+ = (LSK which contain MPP: multipotent progenitors) CD150+ 

CD48− cells), CLPs (Common Lymphoid Progenitors Lin− IL-7R+ Sca-1low c-kitlow), 

GMPs (Granulocyte – Macrophage Progenitors Lin− Sca-1− c-kit+ CD16+CD32+ CD34+), 

MEPs (Megakaryocyte – Erythroid Progenitors Lin− Sca-1− c-kit+ CD16−CD32−CD34−) 

and CMPs (Common Myeloid Progenitors Lin− Sca-1− c-kit+ CD16−CD32− CD34+) that 

reside within Lin-Sca-1−c-Kit+ (LK) population.

Treg cell expansion:

TNFRSF25 agonists - (fusion protein: TL1A-Ig, mAbs: 4C12, mPTX-35 (Heat Biologics / 

Pelican Therapeutics) were administered intraperitoneally. TL1A-Ig+rIL-2 (recombinant 

IL-2): in vivo treatment with TL1A-Ig (on days 1 to 4) and human rIL-2 (10,000 units / 

injection) on Days 4,5 and 6. Recombinant mouse IL-2 and α-IL-2 monoclonal antibody, 
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clone JES6–5H4, were purchased from ThermoFisher Scientific, (Waltham, MA.). TL1A-Ig 

was generated in our laboratory as described previously14.

Xenogeneic human to mouse transplantation with ex-vivo expanded human Tregs

PBMC were isolated from human mobilized (Filgrastim) peripheral blood by ficoll 

separation and viable T cells counted (all human cells were obtained from consented 

donors according to IRB approved (20160363). NSG mice were irradiated (2 Gy, total body 

irradiation) and transplanted the following day with 6×106 PBMC which included 3.6 ×106 

T cells and ~2×104 CD34+ cells from the same PBMC donor.

Cryopreserved PBMC from healthy donors mobilized with Neupogen were thawed 

and phenotyped and Tregs (defined as CD4+CD25hiCD127lo) were obtained by cell 

sorting (>98.0% Foxp3+). Sorted Tregs (5 × 105/well/ml) were cultured in 24-well 

plates with anti-CD3/CD28 Dynabeads (4:1 ratio of Dynabeads to cells, ThermoFisher 

Scientific) and human IL2 (500 unit/mL, Novartis) in OpTmizer CTS™ T-cell expansion 

medium (designated as SFM) (Life Technologies) on day 0, and then subcultured in 

SFM with human IL2 (500 unit/mL) for 7–8 days. Post-culture analysis assessed by 

CD4+FoxP3+CD127lo expression indicated significant Treg expansion with maintenance of 

high FoxP3 expression (>98%). Tregs were counted and added to the PBMC at a 1:1 ratio. 

Mice were monitored 3x per week for GVHD clinical score (as above), weight loss, and 

survival until 6 weeks post-transplantation.

Hematopoietic stem cell transplantation: Models for HSCTs used were: 1) a major 

MHC-mismatched model (B6→BALB/c). Female BALB/c mice were conditioned with 7.5–

8.0 Gy total body irradiation 1 day prior to transplantation, and 2) an MHC matched minor 

antigen mismatched model (LP/J or C3H.SW→B6). B6 female mice were conditioned with 

10.0 Gy TBI on the day of transplantation. Peripheral blood (see above) cells were obtained 

from the appropriate donor animals for each experiment. Donor cells were stained for T cells 

(anti-CD4, clone RM4–5; anti CD8, clone 53-6-7) and adjusted to 0.5×106 to 1.0×106 T 

cells per mouse. In some experiments, tumor cells (B6-MLL-AF9GFP) previously generated 

by our laboratory were employed [26]. B6 H2b tumor cells (6.0×103) were added to the PB 

population prior to infusion into recipients. Recipient mice underwent transplantation (day 

0) via i.v. infusion using a 0.2 mL volume via tail vein injection. GVHD was assessed by 

monitoring recipients for changes in total body weight, clinical signs, and overall survival. 

Clinical scores for GVHD were recorded for individual mice. Recipients were scored on a 

scale from 0 to 2 for 5 clinical parameters: weight loss, diarrhea, fur texture, posture, and 

alopecia according to our previous published studies using a modification of the scoring 

system previously reported [5, 6,27].

DT depletion of Tregs in vitro.

BALB/c-FoxP3-diptheria toxin knock-in mice were either mobilized only, mobilized + Treg 

expanded and mobilized + expanded then given (1μg) diphtheria toxin. Cells from PB were 

then obtained at 24 hrs. after DT was given and plated in round bottom 96 well plate 

(100,000 cells/well). Anti-CD3 (2C11) hybridoma protein G 1μg/ml was added to the wells. 

Three and four days later wells were manually counted.
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Histologic Analysis

Briefly, GI tissues from animals 5–7 weeks after aHSCT were fixed in 10% formalin and 

embedded in paraffin. Sections were stained with hematoxylin-eosin (H&E) and images 

were acquired using the Keyence BZ-X700 microscope. Tissue samples were scored 

following a modified system described by Kaplan D, et al using the multiple parameters 

hyperplasia, inflammation, submucosal edema and necrosis [28].

Statistical analyses: Numbers of animals per group are described in the figure legends. 

All Figure panels include data sets obtained from individual animals. All graphing and 

statistical analysis were performed using GraphPad Prism 9 (La Jolla, CA). Significance 

of differences between two experimental groups were determined using two-tailed unpaired 

t test. For experiments comparing more than two groups, data was analyzed using a one-

way ANOVA with a post-hoc Tukey’s multiple comparisons test. For survival analyses, 

a Kaplan Meyer (Wilcoxin) test was performed. Statistical tests performed are indicated 

in the figure legends. Significance indicated by * p < 0.05, ** p < 0.01, *** p < 0.001, 

ns=non-significant. Data shown are means ± SEM.

RESULTS and DISCUSSION:

Development of a regimen to induce concomitant stem / progenitor cell mobilization and 
highly elevated Treg levels in mouse peripheral blood.

To test a potential strategy whereby Tregs present in transplanted donor blood could be 

assessed for their ability to ameliorate GVHD, a protocol to induce mobilization of stem / 

progenitor cells (HSC/PC) together with elevated levels of circulating Tregs was developed. 

Mice were initially examined for mobilization following the administration of G-CSF alone 

or together with plerixafor (Fig. S1A).

Neupogen (Filgrastim: rG-CSF) was administered to B6 mice (H2b) over 4 consecutive 

days and PB analyzed for c-kit expression and several hematopoietic cell markers including 

CD11b and Ly6G. Significant increases in the overall levels of c-kit+ cells as well as 

CD11b+ and Ly6G+ populations were noted compared to untreated peripheral blood (Fig. 

S1B).

In vivo mobilization with G-CSF together with plerixafor concomitantly (simultaneously) 

resulted in multifold increase of HSCs and MEP, CLP and GMP lineage committed 

progenitors numbers in the PB of mobilized B6 mice (Fig. 1A–E). Frequencies of HSC 

and lineage committed progenitors including MEPS, CLPs, GMPs and LSKs were elevated 

in these mobilized B6 mice (Fig. 1A–E). Additionally, the numbers of progenitor cell 

populations were increased in peripheral blood from mobilized B6 animals (Supplemental 

Table 2). Mobilization was confirmed in an independent mouse (LP/J) strain following 

administration of Filgrastim + plerixafor where elevated levels of c-kit+ populations as well 

as granulocytes and monocyte cells were readily apparent in mobilized vs untreated mice 

(Fig. 1F–H). To manipulate the Treg compartment concomitantly with mobilization, some 

animals also received a fusion protein (TL1A-Ig FP) specific for TNFRSF25 and rhIL-2LD 

which induces proliferation of CD4+FoxP3+ Tregs [5,29]. Treated animals demonstrating 
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mobilization also exhibited highly elevated Treg (>30% CD4+FoxP3+ / CD4+) levels as 

assessed by frequency and numbers (Fig. 1I legend).

To verify the ability to target Tregs via TNFRSF25 in mice undergoing HSC/PC 

mobilization, a third strain (B10.D2, H2d) was administered Filgrastim + plerixafor and 

either TL1A-Ig + IL-2LD or an anti-TNFRSF25 specific agonistic mAb (4C12) plus 

rhIL-2LD (Fig. 1J–M) [5]. Heightened levels of c-Kit+, myeloid cells and monocytes were 

detected in mobilized animals receiving either TNFRSF25 agonistic reagent (TL1A-Ig FP 

or 4C12mAb) (Fig. 1J,K,L). Levels of Tregs were markedly increased in all mobilized 

animals who also were treated with anti-TNFRSF25 agonists as evidenced by frequency and 

numbers (Fig. 1M legend).

Phenotypic and functional assessment of Tregs in blood following mobilization with or 
without TNFRSF25 and CD25 stimulation

Following in vivo stimulation with TLIA-Ig FP+ rhIL-2LD, PB Tregs were analyzed to 

assess the impact of 2-pathway TNFRS25 and CD25 stimulation on their phenotype. 

Increased levels of Tregs following administration of the expansion protocol, characterized 

by diminished frequencies of central Tregs Ly-6C+ and significantly elevated levels of 

effector Tregs in the 2-pathway stimulated animals compared to unmanipulated PB were 

detected (Fig. 2A, B). Mobilization alone tended to affect the Treg populations in a similar 

although less impactive manner. Additionally, Tregs from mobilized and Treg expanded 

animals compared to animals undergoing mobilization alone expressed elevated levels 

of ICOS-1 and Nrp-1 (Fig. S1C). Notably, prior findings demonstrated that TL1A-Ig + 

rhIL-2LD in vivo expanded Tregs exhibited higher suppressive function evidenced by a lower 

Treg:Teff ratio required to ameliorate GVHD [6].

pSTAT5 expression was examined in PB from untreated, mobilized and mobilized + Treg 

expanded animals. Following the final IL-2LD injection, pSTAT5 levels were markedly 

elevated on PB Tregs (but not Tconv) only from the mobilized and Treg expanded animals 

(Fig. 2C, S1D) demonstrating that the downstream IL-2R signaling pathway was functional 

in these CD4+FoxP3+ cells. To directly assess suppressive capacity, PBMC were obtained 

from untreated, mobilized and mobilized plus Treg expanded animals and cultured with 

an anti-TcR (CD3) mAb (Fig. 2D). Stimulation by the anti-TcR mAb in cultures from 

animals mobilized and concomitantly Treg expanded resulted in substantially reduced cell 

numbers compared to cultures established from mobilized only or untreated animals (Fig. 

2D). Following mobilization and Treg expansion in FoxP3-diptheria toxin knock-in mice, 

Tregs were depleted in vivo with DT prior to in vitro PBMC culture. DT depletion of Tregs 

abolished the suppression of the anti-CD3 mAb T cell response (Fig. S2A). These findings 

illustrate a correlation between the diminished in vitro responses by PB T cells in samples 

and the presence of elevated levels of Treg cells in PB.

Allogeneic transplantation and analysis of GVHD using peripheral blood from non-
mobilized, mobilized or mobilized and Treg expanded donors

Experiments were next performed to compare the GVHD capacity of donor blood from 

FoxP3RFP knock-in donor B6 mice undergoing either mobilization only or mobilization 
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together with concurrent Treg expansion (Fig. S1A). Based on the levels of CD4+ and 

CD8+ T cells in the donor PB, cell numbers were adjusted, and all recipient BALB/c 

mice received 1×106 total T cells. A third group of BALB/c recipients received spleen 

cells also recovered from mobilized only B6-FIR donors (1×106 total T cells). Recipients 

receiving either blood or spleen cells from mobilized only donors generated significant 

GVHD clinical scores (Fig. 2E). In contrast, recipients receiving donor PB from mice 

concomitantly mobilized and Treg expanded exhibited significantly lower GVHD clinical 

scores (Fig. 2E) and within the first month post-HSCT contained higher frequency of Tregs 

in the PB (Fig. S2B). Additionally, 4/5 vs 1/5 mice survived to one month if the mobilized 

donor PB had been Treg expanded using TL1A-Ig+ IL-2LD (data not shown). Treg expanded 

donors were alive at 1 month, only 1/5 Transplants were independently performed utilizing 

MHC-matched minor histocompatibility antigen mismatched LP/J (H2b) donors and B6 

(H2b) recipients. Recipients of concurrently mobilized and Treg expanded donor PB (Fig. 

2F) and exhibited significantly reduced GVHD clinical scores compared to recipients of PB 

from either untreated or mobilized only (Fig. 2G).

Our prior studies found that individual treatment with rhIL-2LD alone or TL1A-Ig 

(or anti-TNFRSF25mAb) alone resulted in the TNFRSF25 agonists inducing a greater 

frequency of PB (spleen and lymph nodes) Tregs within the CD4 compartment although 

combining stimulation of both CD25 and TNFRSF25 induced the highest levels in these 

compartments [5,6,25]. Transplants using mobilized and rhIL-2LD treated donors compared 

to transplants using mobilized and rhIL-2LD plus TL1A-Ig Treg expanded donors did 

not show any statistically significant difference in survival benefit (Fig. S2C left panel). 
However, the recipients of mobilized and rhIL-2LD Treg expanded donors demonstrated 

little improvement in clinical GVHD scores compared to recipients of mobilized donors 

receiving rhIL-2LD plus TL1A-Ig to expand Tregs (Fig. S2C right panel). Notably, 

mobilized donors receiving only the TNFRSF25 agonist, TL1A-Ig also did not result in 

improved survival compared to recipients of control (mobilized only) donors (Fig. S2D left 
panel). Again, there was no statistically significant difference in survival benefit between 

groups transplanted with mobilized donors who were either Treg expanded with one reagent 

(TL1A-Ig) or the combination of TL1A-Ig+IL-2 (Fig. S2D left panel). However, in contrast 

to recipients of mobilized and rhIL-2LD treated donors (Fig. S2C, right panel), these 

mobilized and TL1A-Ig only treated Treg expanded donors exhibited diminished GVHD 

clinical scores (Fig. S2D right panel). Again, the strongest amelioration of GVHD score 

were detected in recipients of mobilized together with combination TL1A-Ig+IL-2LD Treg 

expanded donors (Fig. S2D right panel). Pathology evaluation of GI tissue indicated 

significantly reduced damage in recipients of mobilized and concomitantly Treg expanded 

donors compared to recipients of mobilized only or untreated donors (Fig. S2E).

To begin assessing potential clinical application of this strategy, LP/J mice were 

concomitantly mobilized and treated with an agonistic anti-TNFRSF25 mAb provided to 

our laboratory by Pelican Therapeutics. This specific mAb is an anti-human TNFRSF25 

containing several amino acid differences from the original hamster anti-mouse reagent 

(4C12mAb) in the complementarity determining regions [30,31]. Treg levels in PB were 

>30% of CD4+ T cells in stem cell mobilized and mPTX35+IL-2LD treated donor animals 
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(Fig. S3A). PB assessed ~ two weeks post-HSCT indicated that Treg levels were elevated in 

recipients of mobilized and Treg expanded compared to mobilized only donors (Fig. S3B). 

Overall weight (not shown) and clinical GVHD scores were decreased in B6 recipients of 

mobilized and mPTX35 Treg expanded donors compared to recipients of mobilized only 

(Fig. 2H).

Recipients of mobilized allogeneic peripheral blood containing elevated levels of Tregs 
mediated GVL against leukemia cells

To assess if animals receiving mobilized PB from donors who were concomitantly Treg 

expanded could affect graft vs. leukemia (GVL) responses, MLL-AF9 B6 tumor cells were 

administered at the time of C3H.SW⟶B6 HSCT. Some animals underwent an HSCT 

using mobilized syngeneic donor PB (B6->B6) and also received MLL-AF9 cells. As 

anticipated, GVHD was reduced in recipients of tumor + mobilized + Treg expanded donors 

compared to tumor + mobilized recipients (Fig. 3A). Tumor cells were readily identified 

in the spleen and marrow of recipients of syngeneic, mobilized PB donors ~1 month 

post-HSCT, (Fig. 3B, left panels). As morbidity ensued, blood was collected shortly prior 

to anticipated death. In contrast, recipients of mobilized allogeneic PB (Fig. 3B, middle 
panels) had very low levels of detectable tumor cell and mobilized allogeneic PB containing 

elevated levels of expanded Tregs (Fig. 3B, right panels) did not contain detectable tumor 

at early time points examined (Fig. 3B). At later time-points post-HSCT, low tumor levels 

could again be detected in some of the allo-HSCT recipients (Fig. 3C). In total, while no 

apparent difference in the GVL response was observed assessing recipients of mobilized vs. 

mobilized + Treg expanded donors, the former demonstrated significantly higher levels of 

GVHD (Fig. 3A). Earlier studies examining the use of Treg cells to ameliorate experimental 

GVHD in mice did not find ablation of GVL activity (9). Notably within this context, several 

clinical trials have reported that donor Treg infusion does not increase leukemia relapse in 

patients (32–36).

Ex-vivo expanded human donor Tregs inhibit xenogeneic GVHD development in animals 
receiving transplants of mobilized human peripheral blood

The ability of donor human Tregs to inhibit GVHD induced by mobilized human 

PB cells was also examined. PBMC from healthy donors mobilized with Neupogen 

were aliquoted and cryopreserved prior to use. Subsequently, a sample was phenotyped 

for T conventional (CD4+FoxP3−), CD8 (CD8+CD4−FoxP3−) (not shown) and Tregs 

(CD4+CD8−CD25+FoxP3+CD127lo) (Fig. S3C). CD4+CD25+CD127lo T cells (Treg) were 

obtained by cell sorting and cultured with anti-CD3/CD28 Dynabeads and IL-2 (Methods) 

for 7–8 days (Fig. S3C). Post-culture analysis indicated significant Treg expansion (~30x, 

Fig. S3D) with yields ranging from 0.4 to 1.2×108 (Fig. 3D left panel) and maintenance of 

high FoxP3 levels (>98%) (Fig. 3D right panel). Expanded donor Tregs were then mixed 

with PBMC from a freshly thawed aliquot of the same donor and transplanted (1:1) into 

NSG mice. Recipients receiving PBMC from the mobilized donor without Tregs exhibited 

severe GVHD and did not survive >21 days post-transplant (Fig. 3E). In contrast, recipients 

of PBMC containing ex-vivo expanded Tregs had significantly diminished GVHD clinical 

scores and 100% survival through 5 weeks post-HSCT (Fig. 3E+F) as well as higher levels 

of hu CD4+FoxP3+ Tregs compared to recipients of mobilized PB without ex-vivo expanded 
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Tregs (Fig 3G, left panel). Human CD45+ CD4 and CD8 T cells were present 1–2 weeks 

post-transplant in all mice, however, the frequency of CD4 and CD8 T cells was much 

higher in non-Treg treated recipients (Fig 3G, middle and right panel). Cell proliferation 

was assessed two weeks post-transplant and Tconv cells (CD4+FoxP3−) in animals receiving 

PBMC without added in vitro expanded donor Tregs exhibited elevated Ki67 expression 

compared to Tconv cells in Treg treated recipients which expressed barely detectable Ki67 

(Fig. 3H). In total, recipients of allogeneic mobilized human PB without ex-vivo expanded 

donor Tregs contained higher levels of donor CD4 Tconv and CD8 T cells with increased 

Ki67 expression compared with recipients of human Tregs.

Concluding remarks—GVHD remains the major immunological complication 

preventing more wide-spread application of aHSCT. According to the CIBMTR, among 

adult recipients of matched related donor transplants as well as among adult recipients of 

unrelated donor transplants, mobilized PB cells is the most common graft type accounting 

for ~80% of all transplants through 2019 https://www.cibmtr.org/ReferenceCenter/

SlidesReports/SummarySlides/pages/index.aspx). A number of labs including our own have 

been exploring potential applications of CD4+FoxP3+ T cells (Tregs) to ameliorate GVHD 

[1–15,25]. The ability to concomitantly mobilize stem cell donors and effectively augment 

the peripheral Treg compartment could represent a clinically useful advance. We have 

previously reported a two pathway Treg expansion strategy developed by our lab to amplify 

the suppressive effect of the donor inoculum and diminish GVHD in experimental transplant 

recipients [5,6]. The present studies established a procedure to concurrently induce stem/

progenitor cell mobilization and Treg expansion in murine HSCT donors by infusion of 

TNFRSF25 agonistic fusion protein and IL-2LD into donors receiving G-CSF+/−plerixafor. 

The findings demonstrated that both the expanded Tregs and progenitor cells were functional 

as evidenced by survival and suppression of GVHD. It should be noted that at present, 

an FDA approved human anti-TNFRSF25mab is not available. Nonetheless addition of in 
vitro expanded human Tregs to mobilized human PB - as did mobilized mouse PB together 

with in vivo expanded mouse Tregs - suppress GVHD. Importantly, concomitant donor 

mouse treatment in vivo with rIL-2 and G-CSF did not provide GVHD protection nearly 

as effective as donors administered anti-TNFRSF25+CD25 agonists. Therefore, the use 

of IL-2 infusion alone while mobilizing human donors is not likely to be as effective to 

suppress GVHD. Accordingly, we posit that for translational purposes, co-administration of 

an FDA approved anti-TNFRSF25 together with a CD25 (IL-2) agonist would be required 

for donor treatment to produce PB that would optimally ameliorate GVHD. Nonetheless, 

the xenogeneic GVHD data also supported another potential translational strategy i.e., using 

ex-vivo expanded donor Tregs (anti-CD3 beads + hulL 2) added to mobilized human PB. 

Since prior studies did not identify any lingering phenotypic or pathologic changes in blood 

or tissues following the transient two pathway Treg cell expansion protocol employed here 

[5], we posit there is potential for administering anti-TNFRSF25 and anti-CD25 reagents in 
vivo to manipulate the donor – and potentially the host - CD4+FoxP3+ compartment as a 

novel approach for GVHD prophylaxis [37,38].
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Highlights

• Donor peripheral blood in mice undergoing stem/progenitor cell mobilization 

can be concurrently treated in vivo with reagents targeting and expanding 

their Treg compartment.

• Use of this PB for MHC-matched and in MHC mismatched HSCT transplants 

ameliorated GVHD while maintaining GVT.

• Addback of ex-vivo expanded donor human Tregs from mobilized PB to the 

same mobilized PB donor resulted in marked reduction of xenogeneic GVHD.
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Fig. 1. Tregs can be expanded concomitantly with HSC and progenitor cell increases in 
peripheral blood following mobilization with Filgrastim and plerixafor infusion.
(A-E) B6-Fir,H2b mice were administered rGCSF (2.5ugs / injection) on Days 1–4 daily 

and plerixafor (5.0mgs/kg) on Days 4 and 5. (Fig. S1). Peripheral blood was collected in 

the morning of Day 5, 1 hr. following plerixafor injection and PBMC isolated (Methods). 

Following staining with selected mAbs and analysis via flow cytometry, (A-E) mobilization 

treatment resulted in 24-, 29-, and 60-fold increases of HSC (A) MEP (B) and LSK (C) 
populations respectively. CLP (3 fold) (D) and GMP (34 fold) (E) were also elevated 

compared to control (peripheral blood from non-injected normal mice). Data represents 

results of pooled peripheral blood from 2 mobilized B6-Fir male mice. (F-I) Mice (LP/J, 

H2)b were mobilized as above, and administered TL1A-Ig fusion protein and rhIL-2LD. 

Increased levels of c-kit+ and WBC fractions (F-H populations calculated within the 

non-lymphoid fraction) together with elevated Treg frequency following mobilization and 

treatment with TL1a-Ig and rhIL-2LD. Data represents pooled peripheral blood from 5 

individual mice in each group (n=5 mice / group). (I) FoxP3+ Tregs within the CD4+ 

population. Numbers of Tregs were calculated for each group indicated (1.0ml peripheral 

was collected from each mouse, PBMC collected and pooled (n=5/group). Total PBMC 

were counted and Treg numbers calculated based on the frequency of CD4+FoxP3+/CD4+ 

cells. Untreated: 7,502; Mobilized: 102,538; Mobilized plus Treg expansion: 914,514. (J-M) 
Targeting TNFRS25 with a second agonist (mAb 4C12) also expands Tregs in mobilized 

peripheral blood. B10.D2 (H2d) mice were mobilized and Treg expanded with either 

TL1A-Ig (50ug) or mAb 4C12 (100ug) plus rhIL-2LD. (J-L) Heightened levels of c-kit+, 
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myeloid cells and monocytes were detected in mobilized animals receiving eitherTNFRSF25 

agonistic reagent. (M) Levels of Tregs were increased in all mobilized B10.D2 animals 

treated with either agonist (n=2 for mAb 4C12+IL-2LD), n=2 for TL1A-Ig+IL-2LD) vs 

non-mobilized B10.D2 animals (n=4): Cells per 200ul of peripheral blood = Non-mobilized, 

818–984; Mobilized via 4C12, 1640, 2476; mobilized via TL1A-Ig, 1485,3320. (J-M) Data 

were collected from individual mice and are expressed as mean ± SD and were analyzed by 

one-way ANOVA with Bonferroni correction for multiple comparisons. *P < .05; **P < .01; 

***P < .001; ****P < .0001.
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Fig 2. Tregs Expanded with TL1a-Ig and IL-2(LD) in mobilized donor peripheral blood (PB) 
exhibited suppressive activity and ameliorated GVHD.
Mice were injected i.p. with TL1A-Ig (50ug) (days 1–4) and IL-2 LD (days 4 to 6). 

Mice administered TL1A-Ig+IL-2LD showed an increase in overall Treg (CD4+ FoxP3+) 

frequency in mobilized (rGCSF + Plerixafor) plus Treg expanded PB versus mobilized 

or untreated mice (A,F). (B) Diminished frequencies of central Tregs and significantly 

elevated levels of effector Tregs were present in mobilized plus Treg expansion compared 

to mobilized or untreated mice. (C) One hour after the last IL-2 injection (combined 

TL1A-Ig+IL-2LD), pSTAT5 staining showed heightened activation of PB Tregs compared 

to Tcon CD4 T cells. (D) Decreased T cell proliferation in mobilized peripheral blood 

in animals concomitantly Treg expanded. PBMC were activated with anti-CD3 mab and 

assessed for proliferation after 72 and 96 h (E) GVHD was diminished in animals receiving 

mobilized and Treg expanded donor cells. MHC-mismatched HSCT (B6→BALB/c) using 

T cells from donor B6-Fir mice PB either mobilized or mobilized plus Treg expanded 

(TL1A-Ig+IL-2LD) adjusted to contain 1.0×106 total T cells. Clinical scoring is presented. 

(F-H) GVHD was diminished in animals after an MHC-matched minor histocompatibility 

antigen mismatched HSCT (LP/J -> B6) using T cells from donor PB mobilized (rGCSF 

+ Plerixafor) plus Treg expanded (TL1A-Ig fusion protein + IL-2LD) versus mobilized 

only. (G) and mPTX mab+IL-2LD (H) adjusted to contain1.0 ×106 total T cells. (F) Treg 

and Ly6G+ granulocyte levels in PB donors for the transplant results in panel (G) are 

shown. Values are means ± SEM and were analyzed by multiple variable analysis using 
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ANOVA. A P-value < 0.05 was considered significant. (E,G) a 2-tailed unpaired t-test. was 

used for comparisons between 2 experimental groups (H) *P < .05; **P < .01; ***P < 

.001.Significance indicated by * p < 0.05, ** p < 0.01, *** p < 0.001, ns=not significant.
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Fig 3. Maintaining mouse GVL and suppressing xenogeneic GVHD : Transplants with mobilized 
mouse and mobilized human peripheral blood.
(A-C) An MHC-matched transplant C3H.SW⟶B6 HSCT was performed. Mice received 

PB T cells from either mobilized only (rGCSF) or mobilized (rGCSF) plus expanded Treg 

donor C3H.SW mice. MLL-AF9 B6 tumor cells were administered to all mice at the time of 

transplant. (A) GVHD was reduced in recipients of MLL-AF9+mobilized + Treg expanded 

donors compared to MLL-AF9 + mobilized only recipients. (B) Representative flow contour 

plots of spleen and bone marrow cells 28–30 days post-HSCT from individual recipients 

of BM only (syngeneic, C3H.SW), mobilization only (allogeneic, B6), and mobilization 

(allogeneic, B6) + Treg expansion (TL1A-Ig + IL-2 LD). (C) GVL is maintained in 

animals with reduced GVHD. Allo-HSCT recipient groups were examined for MLL-AF9 

presence post-HSCT. Tumor cell frequency was always greater in the recipients of syngeneic 

mobilized PB donors compared to levels in recipients who received allogeneic mobilized 

PB without or with expanded Tregs. (D-H) Addition of ex-vivo expanded human Tregs 

to mobilized human peripheral blood suppresses xeno GVHD. Sorted Tregs isolated from 

huPB were cultured and expanded for 7 days using aCD3/aCD28 beads (Fig. S3C). (D) Treg 

numbers and FoxP3 expression at Day 7 of culture are shown prior to use in transplant. NSG 

mice were irradiated on day −1 and injected with mobilized huPBMCs with or without these 

expanded huTregs on day 0 (n=8 mice/group). (E,F) Mice treated with huTregs exhibited 

significantly less lethality and better clinical GVHD scores. (G) Mice receiving huTregs 

with huPB showed persistence of elevated Treg levels in PB, less huCD8+ and conventional 
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CD4+ T cell levels in the blood 13 days post-transplant compared to recipients of huPB 

without Tregs. (E) Representative histogram and graph of individual mice illustrating 

huCD4+ Tconv proliferation in blood 13 days post-transplant. *** p<0.001; **** p<0.0001.
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