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ABSTRACT OF THE THESIS 

 

Stable and Clumped Isotope Analyses of Last Glacial Maximum 

Pluvial Lakes to Constrain Past Hydroclimate 

 

by 

 

Lauren Mae Santi 

Master of Science in Geochemistry 

 University of California, Los Angeles, 2019 

 Professor Aradhna K. Tripati, Chair 

 

The Last Glacial Maximum (LGM; ~23,000-19,000 years ago) and subsequent 

deglaciation (~19,000-11,000 years ago) represents the last major global climatological 

transition. In the Western United States, the LGM and deglacial were both characterized by 

increased effective moisture and expansive lake systems, with most lake growth and maximum 

lake extents achieved during the deglacial period. In stark contrast, the modern Great Basin is 

characterized by aridity and low effective moisture. The factors contributing to these large-scale 

changes in hydroclimates are critical to resolve, given this region is poised to undergo future 

anthropogenic-forced climate changes with large uncertainties in model simulations for the 21st 

century. Furthermore, there are ambiguous constraints on the magnitude and even the sign of 

changes in key hydroclimate variables between the LGM and present-day in both proxy 

reconstructions and climate model analyses of the Western United States.  
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In this work, I present new stable and clumped isotope data from several ancient lakes, 

analyze this new data in concert with previously published data, and compare both new and 

existing results to climate model simulations. Radiocarbon dated samples from ancient lakes 

constrain lake elevation and the timing of lake level fluctuations. Using a hydrological modeling 

framework, clumped isotope data constrain several other hydroclimate variables including 

temperature, precipitation rate, and evaporation rate, which are all used to assess climate model 

simulations of the same hydrological variables.  

In Chapter 1, I compile new and existing radiocarbon ages from post-LGM lake basins, 

and provide an analysis of changing effective moisture through time and space. In Chapter 2, I 

provide a detailed analysis of our data from one specific basin, Lake Surprise, and provide 

evidence of evaporation depression as a key driver of lake growth. Finally, in Chapter 3, I use 

clumped and stable isotope analysis of samples collected across the Great Basin (by UCLA 

students and others) to provide evidence for spatial and temporal variation in hydroclimate. 

Concomitant analysis of proxy data and climate model simulations provides a robust means to 

understand past climate change, and by extension, predict how current hydroclimates may 

respond to expected future climate forcings.  
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ABSTRACT 
 

During the Last Glacial Maximum (LGM; ~23,000 to 19,000 years ago) and through the 

last deglaciation, the Great Basin physiographic region in the western United States was marked 

by multiple extensive lake systems, as recorded by shoreline remnants and lake sediments. 

However, temporal constraints on the growth, desiccation, and timing of lake highstands remain 

poorly understood. Studies aimed at disentangling hydroclimate dynamics have offered multiple 

hypotheses to explain the growth of post-LGM lakes; however, a more robust understanding is 

currently impeded by a general paucity of spatially and temporally robust data. In this study, we 

present new data constraining the timing and extent of lake highstands at three post-LGM age 

pluvial lakes: Lake Newark, Lake Surprise, and Lake Franklin. This data is used in concert with 

previously published data for these basins and others from the Northern Great Basin including 

Lake Bonneville, Lake Chewaucan, and Lake Lahontan to compare the timings of lake growth 

and decay over a large spatial scale and constrain how regional hydroclimate evolved through the 

deglaciation.  
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INTRODUCTION 
 

The American West is characterized by aridity and low precipitation, with many regions 

receiving less than 250 mm of rain per year. Furthermore, this region is projected to become 

even drier in the coming years, though climate models used for forecasting these changes 

disagree in the magnitude of future changes in regional precipitation (Seager et al., 2010; Scheff 

& Frierson, 2012). One approach to improve our understanding of different atmospheric 

processes that drive aridification in the West involves using paleoclimate data, in conjunction 

with data-model comparison, to study controls on past changes in the regional water balance.  

In stark contrast to the arid present-day, during the Last Glacial Maximum (LGM; ~23 to 

19 ka) and subsequent deglaciation (19 ka through ~11 ka, the onset of warming through the 

Younger Dryas and until the Holocene), the sedimentary and geomorphic record indicates that 

the region was marked by over 50 extensive lake systems (Hubbs & Miller, 1948; Mifflin & 

Wheat, 1979; Reheis, 1999; Reheis et al., 2014; Ibarra et al., 2018; McGee et al., 2018). The 

predominance of late Pleistocene lakes in this now-arid region indicates significant changes in 

the water cycle in response to changing climate forcing. Water balance calculations indicate that 

precipitation increases up to twice modern, as well as reduced evaporation rates, may be needed 

to explain the distribution of lakes at their greatest extent (e.g. Mifflin & Wheat 1979; Matsubara 

& Howard, 2009; Ibarra et al., 2014; Hudson et al., 2017; Ibarra et al., 2018; Quirk et al., 2018; 

Ibarra et al., 2019). These calculations also indicate that highstands (which largely occur after the 

LGM) cannot be singularly driven by low evaporation rates due to temperature depression 

associated with glacial periods. As such, there must be a significant contribution from 

precipitation driving these changes, particularly those leading to lake highstands (e.g., Ibarra et 

al., 2014). 
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While the most recent iteration of global climate models (PMIP3) has produced 

precipitation estimates for the LGM (21 ka), the next youngest ensemble of simulations is the 

mid Holocene (6 ka) (Braconnot et al., 2012). This large gap in time makes it difficult to tease 

apart temporal variations in atmospheric dynamics that may be contributing to lake growth. In 

fact, only one model has been used for transient simulations: Transient Climate Evolution 

‘TraCE’, run through the National Center for Atmospheric Research Community Climate System 

Model Version 3 ‘CCSM3’ (e.g. Liu et al., 2009; He, 2011). Comparison of PMIP3 precipitation 

simulations for the LGM show a general lack of agreement, indicating the atmospheric dynamics 

delivering precipitation to the region are not yet well understood (Fig. 1.1). 

One set of constraints on the mechanism(s) driving changes in hydroclimate comes from 

studies that have dated carbonates and/or subaerial deposits (e.g., organic matter in soils) from 

paleoshorelines. These chronologies can be used to provide insights into potential mechanisms 

driving lake growth, including changes in precipitation. Recent work indicates non-synchronous 

lake highstands across the Great Basin, with some studies suggesting a latitudinal trend in the 

timing of maximum lake extent (Lyle et al., 2012; Munroe & Laabs, 2013a; Ibarra et al., 2014; 

Oster et al., 2015; Egger et al., 2018; McGee et al., 2018, Morrill et al., 2018). However, at 

present, the temporal and spatial evolution of lake highstands and stillstands is not 

chronologically constrained well enough to allow for meaningful insight into the atmospheric 

dynamics driving these changes, and therefore that is the focus of this initial work.  

For this study, we collected tufa and gastropods shells from paleolake shorelines, 

including Lake Surprise, Lake Newark, and Lake Franklin (Fig. 1.2), and determined elevation-

age histories using radiometric dating based on radiocarbon analysis. We use our radiocarbon 

ages and previously published work to constrain lake hydrographs and also estimate a pluvial 
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hydrologic index for each lake to further constrain past hydroclimate change in the northern 

Great Basin. 

 

MATERIALS AND METHODS 
 
Sample Collection 

 
New samples consisted of both tufa and gastropod shells, which were collected from the 

shorelines of three closed basin paleolakes within the northern Great Basin in the western United 

States. These shorelines were identified through a combination of literature review (e.g. Reheis, 

1999; Mifflin & Wheat, 1979; Hubbs & Miller, 1948; Ibarra et al., 2014), and Google Earth 

observations. At each site, care was made to ensure that all tufa and shells were in situ. In many 

cases, this necessitated digging pits ~1 meter into the ground using shovels and/or augers 

(following Munroe & Laabs, 2013). Post-excavation, the GPS coordinates of each sample were 

recorded, and the elevation of each sample was determined using the USGS Elevation Point 

Query Service, which reports ⅓ arc-second elevation data across the continental United States 

with an elevation resolution of ~3 meters. For a subset of lake basins (Lake Chewaucan and most 

of Lake Surprise), more precise LIDAR elevation datasets are available from previous 

publications (Ibarra et al., 2014; Egger et al., 2018). 

 
Sample Preparation 

 
Tufa and gastropod shells were first rinsed by hand in deionized water (DI) to remove 

loosely-held secondary material. If deemed necessary, they were sonicated in room temperature 

DI for up to 30 minutes to remove loosely held contaminants and particles on the sample surface. 

For shells with delicate internal chambers, a small pick or tweezers were used to carefully scrape 

away internal pieces of sand or secondary carbonate. For tufa collection, small handheld drills 
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were sometimes necessary to remove carbonate from a host rock. The resulting powder from this 

drilling process was ground using a mortar and pestle until the carbonate was a homogenous 

texture.   

After creating a fine carbonate powder from each sample, a small amount of 3% H2O2 

was added to each sample and left to react at room temperature for 1-4 hours. This process is 

commonly used to remove organic material (e.g. Mering, 2015; Tripati et al., 2010; Suarez & 

Passey, 2014). Post-reaction with H2O2, all samples were dried in an oven set below 50℃, and 

placed in a desiccator for storage prior to radiocarbon analysis (Tripati et al., 2010; Suarez and 

Passey, 2014; Defliese et al., 2015).  

 
Radiocarbon Dating 

 
Age control was provided by radiocarbon dating. In this study, radiocarbon dating was 

completed via Accelerator Mass Spectrometry (AMS) at UC Irvine. The uncertainty associated 

with the calibrated AMS ages was on the order of hundreds of years (Table 1.1). Note that 

several tufas were previously collected by Ibarra et al. (2014) and dated using only uranium-

series methods (see note in Table 1.1). For all radiocarbon results (this study and others), we use 

IntCal13 to convert conventional 14C ages to calibrated 14C ages, expressed as thousands of years 

before present, “ka” (Reimer et al., 2013). Reservoir corrections for IntCal13 are made using the 

procedure outlined in Stuiver & Polach (1977), which uses independent age estimates to 

constrain correction magnitudes during each time interval. We plot the median calibrated 

probability and the 2𝜎 uncertainty. 
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Hydrologic Index (HI) 
 
The “pluvial hydrologic index” is a physical basin parameter that describes the ratio of 

lake surface area to tributary area. Historically, it has been used as a means to determine the 

partitioning of rainfall into runoff and evaporation and otherwise approximate past hydroclimate, 

assuming minimal change in drainage area and basin’s hypsometric curvature (e.g., Mifflin & 

Wheat, 1979; Reheis, 1999; Ibarra et al., 2014; Ibarra et al., 2018). We calculate the HI of each 

basin as a function of sample elevation (z) using hypsometric curves for each lake basin from the 

HydroSHEDS/HydroBASINS datasets (Lehner et al., 2008; Lehner & Grill, 2013; Messager et 

al., 2016) using Equation 1, and summarize results in Table 1.2. 

 

 𝐻𝐼(𝑧) 	= 	 +,-.	/0.,(1)
+,-.	2,345	/0.,	6	+,-.	/0.,(1)

     Equation 1 

 

For the elevations added to the literature in this study, we use elevations pinned to a United 

States Geological Survey Digital 30 m Elevation Model. We note that the HI can be related to 

hydrologic cycle variables via steady-state mass balance equations (e.g., Mifflin & Wheat, 1979; 

Reheis, 1999; Ibarra et al., 2014) but for the purposes of this study do not carry out a formal 

hydroclimate scaling analysis. 

 
Elevation Control 

 
For each of the smaller lake basins analyzed (Chewaucan, Franklin, Newark, and 

Surprise), differential isostatic rebound is not taken into consideration for recorded GPS 

elevations.  However, differential post-lacustrine isostatic rebound of up to 74 m is a known 

complicating factor at Lake Bonneville (e.g. Oviatt et al., 1992). For Lake Bonneville, most 

modern elevations plotted are translated to estimates of pre-rebound elevation using a linear 
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model described in Oviatt et al. (1992). We use isostatically adjusted lake areas calculated by 

Adams & Bills (2016). For Lake Lahontan, similar simple elevation correction models are not 

available, thus we do not correct for isostatic rebound, though we note that it may be as much as 

~22 m (Adams et al., 1999). 

 

RESULTS 
 

We compile existing age control that defines hydrographs for a subset of northern Great 

Basin pluvial lakes with new data from Lakes Franklin, Newark, and Surprise (Fig. 1.3). We 

overlay simplified schematics of the implied paleo-lake histories for each basin that have been 

created based on existing data compilations and alternative schematics for Lakes Franklin, 

Newark, and Surprise, in light of new data from this study. In order to assess spatial gradients in 

moisture balance, we also plot HI against basin-center latitude and longitude (Fig. 1.4). We 

discuss the results in order of geographic position of basin, beginning with the southernmost 

basin.  

 

Lake Newark 

Pluvial Lake Newark (39.5°N, 115.7°W) was located in east-central Nevada.  Kurth et al. 

(2011) provide eight radiocarbon ages of ancient shorelines and an estimated lake highstand 16.4 

± 0.3 ka, which is roughly coincident with that of nearby Lake Franklin (Redwine, 2003; Kurth 

et al., 2011). LGM lake levels were generally moderate, with a sharp transgression during the 

deglacial at ~16.7 ka followed by rapid decline to low levels. In this work, we provide two 

additional radiocarbon ages that increase the total range in paleolake elevations from previous 

studies and constrain moderate lake levels during the LGM and near desiccation by ~11 ka. 
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Lake Lahontan 

Lake Lahontan (38.75–40.75°N, 117.5–120.5°W) was a spatially extensive lake system 

that, at its maximum extent, covered over 22,000 km2 throughout northwestern Nevada, 

northeastern California, and southern Oregon (Russell, 1885). Lake Lahontan reached its 

highstand at 15.7 ± 0.3 ka (Adams & Wesnouwsky, 1998). This basin (and its associated 

subbasins) have been studied extensively, with radiocarbon dates from both lacustrine and 

subaerial carbonate materials (Adams, 1998; Benson et al., 2013; Benson et al., 1995; Hostetler 

& Benson, 1990; Petryshyn et al., 2016). Existing age control was compiled from Benson et al. 

(2013) and Adams et al. (2008) and schematic lake level curves after those references (as well as 

Reheis et al., 2014) are overlaid on Fig. 1.3c. During the LGM and early deglacial period, Lake 

Lahontan had a somewhat consistent shoreline at 1256 m (although there is a ~40 m spread in 

elevations at any given time). At ~17.8 ka, Lake Lahontan transgressed to a near highstand 

elevation of 1330 m, where it remained until ~14.1 ka. The 1338 m highstand at 15.7 ± 0.3 ka 

appears brief within the broader context of the higher elevation ages compiled by Benson et al. 

(2013) and Adams et al. (2008). Lahontan’s regression is constrained to a fast decline in lake 

levels to 1206 m by 13.25 ka. Following this regression, the subbasins of Lahontan were isolated 

and are constrained primarily in the Pyramid and Winnemucca subbasins (see more detailed lake 

level curve of the deglaciation in Adams et al., 2008). 

 

Lake Franklin 

Lake Franklin (40.2°N, 115.3°W) was located in northeast Nevada, on the east side of the 

Ruby Mountains. With a pre-LGM shoreline elevation of 1823 m, lake transgression started 

slowly in the late LGM, accelerated at ~17.3 ka, and culminated in a lake highstand of 1850 m at 
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~17 ka. This highstand was followed by a regression to 1820 m by 14 ka (Munroe & Laabs 

2013a; Munroe & Laabs 2013b). In this study, we report 12 new dates derived from gastropod 

shells to further refine the lake hydrograph. We modify an existing lake level curve from Munroe 

& Laabs (2013a) and overlay it on Fig. 1.3. Two high elevation samples, collected from a 

lagoonal marsh in Lillquist (1994), are not included in the lake level curve (but are plotted on the 

hydrograph), as these likely represent an overestimate of lake extent (see discussion in Munroe 

& Laabs, 2013a). While not significantly extending the temporal range of data, our dates lie well 

within previously published values on the lake hydrograph, and thus support the previously 

constructed lake level history by Munroe & Laabs (2013a). 

 

Lake Bonneville 

At its greatest extent, Lake Bonneville (38.5–43.5°N, 111.5–114.5°W) extended via 

multiple subbasins throughout central and northwest Utah, and into northeastern Nevada and 

southern Idaho. Lake Bonneville was comprised of the Bonneville Basin and the Sevier 

Subbasin, and contains the modern Great Salt Lake. This basin was spatially extensive (over 

50,000 km2), and has been studied in-depth in many publications since the original work by G.K. 

Gilbert (1890), including several recent studies constraining and compiling the lake hydrograph 

(e.g. Adams et al., 2008; Godsey et al., 2005; Godsey et al., 2011; McGee et al., 2012; Mering, 

2015; Miller et al., 2013; Oviatt, 2015; Reheis et al., 2014). Existing radiocarbon ages come 

from both lacustrine and terrestrial proxies, and have been delineated as such in Fig. 1.3. The 

existing lake level curve indicates a gradual rise in lake levels prior to the LGM, with a 

potentially rapid transgression at ~19 ka. The maximum lake level attained at Lake Bonneville 

persisted between ~19-15 ka; however, as Lake Bonneville was not a closed basin during this 
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period of time, this lake level is not representative of a true hydraulic maximum (Oviatt, 2016). 

After this period, Lake Bonneville stabilized at several lower-elevation shorelines, which have 

been denoted on Fig. 1.3. We show a simplified lake level curve after Oviatt (2015) with ages 

from all the above-mentioned studies and compilations.   

 

Lake Surprise 

Lake Surprise (41.5°N, 120°W) was located on the border of northeast California and 

northwest Nevada. The geology and pluvial history of Lake Surprise was originally studied in 

Ibarra et al. (2014) and Egger et al. (2018). Our updated lake curve indicates a gradual increase 

in lake levels throughout the LGM and early deglacial period, culminating in a rapid rise 

occurring in less than 1 ka. Ibarra et al. (2014) first dated the post-LGM highstand at ~15.2 ka, 

and finds evidence of a maximum lake extent 176 meters above modern. In more recent work, 

Egger et al. (2018) added 12 radiocarbon dates to an existing repository of 21 dated samples, 

including a new higher elevation highstand age of ~16.0 ka. This rapid rise in lake levels is 

followed by a slow decline over the next ~5 ka. In this work, we sought to fill in ages from post-

LGM but pre-highstand elevations, including new ages from the southernmost subbasin of 

Surprise Valley (Duck Flat). These ages compliment previously recorded ages at Lake Surprise 

by Ibarra et al. (2014) and Egger et al. (2018), but provide more detail by filling in missing gaps 

during the deglacial, including four tufa samples dated within ~2 ka of the highstand.  

 

Lake Chewaucan 

Lake Chewaucan (42.7°N, 120.5°W) was located in southern Oregon, and was comprised 

of four subbasins: Summer Lake, Upper Chewaucan Marsh, Lower Chewaucan Marsh, and 
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Albert Lake. Albert Lake and Summer Lake are modern lakes that become desiccated during mid 

to late summer each year, and at times completely dry up. In the past, these subbasins had 

variable connectivity, depending on the lake levels. Previously reconstructed lake levels (with 

most data deriving from Summer Lake) are compiled to produce a lake level curve for Lake 

Chewaucan (Hudson et al., 2017; Egger et al., 2018; Licciardi, 2001). Most recently, Egger et al. 

(2018) sought to reconstruct only the Summer Lake basin hydrograph due to the variable 

connectivity between the subbasins. There are two potential lake level trajectories for pre-LGM 

Lake Chewaucan, but both indicate a decrease in lake levels between 25-20 ka. Following an 

initial rise in lake levels, there is short desiccation at ~16 ka, prior to the highstand at 14-13 ka, 

where the lake reached 1356 m. Lake regression began ~13 ka, and continued throughout the 

remainder of the deglacial and into the early Holocene.  

 

DISCUSSION 

Timing of highstands and lake level fluctuations 

Lake Newark 

Although the data is sparse, there is evidence that paleolake levels increased sharply at 

Lake Newark at ~16.9 ka (Kurth et al., 2011). Two new radiocarbon dates from our study 

increase the temporal range of data, and indicate moderate lake levels prior to the LGM, as well 

as a continued decrease in lake extent during the late deglacial period.  

 

Lake Lahontan 

Data from Lake Lahontan encompasses both subaerial and lacustrine carbonates, with 

subaerial carbonates providing maximum lake extents, and most of these carbonates lying at 



 
 
 

 
 

 

 
   
 12 

higher elevations than the lacustrine carbonates within a similar time frame, as expected. The 

hydrologic history of Lake Lahontan is one of the best-constrained, due to numerous studies 

contributing hundreds of lacustrine carbonate and subaerial measurements. The implied lake 

level history is overlaid on Fig. 1.3, and indicates a rapid rise from ~1260 m after the LGM at 

~17.8 ka, to a highstand at ~1328 m, dated to 15.7 ka, before an eventual regression around 14.5 

ka (Adams & Wesnousky, 1998; Benson et al., 1995; 2013; Benson, 2008; Adams et al., 2008). 

 

Lake Franklin 

New radiocarbon ages from Lake Franklin reported in this study support the timing of the 

maximum lake extent documented by Munroe & Laabs (2013a), who put together the first 

cohesive lake history using new radiocarbon data along with existing data from Lillquist (1994). 

The oldest radiocarbon date provides evidence that Lake Franklin may have once stood above 

1850 m, indicating that an overall highstand for Lake Franklin was prior to the LGM, in contrast 

to neighboring pluvial lakes (Munroe & Laabs, 2013a). However, Munroe & Laabs (2013a) note 

that this sample (an assemblage of shells) may have been taken from the wrong stratigraphic 

unit, and for that reason, was not included in the hydrograph and is thus correspondingly marked 

with a question mark on Fig. 1.3. 

During the early LGM (22.5-20 ka), Lake Franklin stood at an elevation of ~1823 m. 

Radiocarbon ages reflecting anomalously high lake elevations in this time period (~1850 m) are 

taken from lagoonal deposits (Lillquist, 1992), and likely reflect a near-shore environment above 

the main body of the lake. These are also set apart with question marks, and not used to construct 

the hydrograph itself (following Munroe & Laabs, 2013a).  
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Continuing to the late LGM, Lake Franklin rapidly grew to ~1830 m, where it remained 

relatively stable. There are two data points from this period that are outliers: one at 1840 m and 

one at 1823 m. These were excluded from the hydrograph because there is some uncertainty 

regarding their exact GPS location and stratigraphic context (see discussion in Munroe & Laabs, 

2013a).  

Between 16.8-17.3 ka, Lake Franklin rose from 1830 to its highstand elevation of 1850 

m, a ~168% lake area increase. Munroe & Laabs (2013a) argue for a rapid and temporary 

regression during this time period, before returning again to 1850 m.  

Following the pluvial maximum, the lake stabilized at 1843 m, and then 1840 m, with 

multiple radiocarbon ages from each beach ridge indicating that lake levels may have stabilized 

at both locations more than once. The new ages from this study fit well with the lake hydrograph 

trajectory described by Munroe & Laabs (2013a), with a rapid transgression to the post-LGM 

highstand, followed by shorelines that stabilized at 1843 m and 1840 m. 

 

Lake Bonneville 

Lake Bonneville is one of the most studied paleolakes in the Great Basin, with over 300 

radiocarbon ages from lacustrine and subaerial carbonate and organic matter through the last 

deglacial (e.g. Benson et al., 2011; Kaufman & Broecker 1965; Broecker & Orr 1958; Godsey et 

al., 2011; Mering, 2015; Miller et al., 2013; Nishizawa et al., 2013; Oviatt, 2015; Reheis et al., 

2014). Due to Bonneville’s great spatial extent and depth, measurements of lake shorelines are 

approximately corrected for the effects of differential isostatic rebound that vary between 

different subbasins, with the greatest rebound in the center of the basin (Adams & Bills, 2016). 
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However, the reconstructed lake level history still shows a remarkably coherent story of lake 

level transgression and regression (Oviatt, 2016; Reheis et al., 2014).  

Previously-defined lake level histories for Lake Bonneville have identified key events in 

the evolution of the lake. The initial rise of Lake Bonneville was quite rapid, potentially due to a 

diversion of the Upper Bear River, although there are other possible mechanisms, including a 

diversion from Cache Valley into the Great Salt Lake basin (Reheis et al., 2014). The lake 

reached its highstand at 18.6 ± 0.14 ka (McGee et al, 2012; Oviatt, 2015) where its maximum 

elevation was limited by intermittent overflow. This overflow limited its maximum pluvial 

extent, and is thus a key constraint for reconstructions of lake history. Putting a dramatic end to 

this highstand, Lake Bonneville catastrophically flooded to the nearby Snake River basin prior to 

~18.2 ka (potentially much sooner, after rising to an overflow point near Red Rock Pass), and the 

shoreline stabilized at the new, “Provo Shoreline” level, where it remained for several thousand 

years (Godsey et al., 2005). The lake subsided rapidly from the Provo shoreline, and ceased to 

overflow, at about 15 ka (Godsey et al., 2011). With continued regression following the Provo 

Shoreline time, Lake Bonneville split into separate lakes, with Lake Gunnison persisting in the 

interior of the Sevier subbasin until ~10 ka, and the Gilbert-episode lake (a brief rise ~11.5 ka) 

encompassing the modern Great Salt Lake (but ~15 m higher) and extending to its west (Oviatt, 

2014).  

Samples at Lake Bonneville define a lake level “envelope”, with subaerial samples 

indicating a maximum lake elevation, and lacustrine samples indicating a minimum lake 

elevation. Subaerial samples define a consistent maximum lake elevation between ~18-20 ka, but 

are intermixed with lacustrine carbonates during other time periods (e.g., 27-23 ka and 18.0-15.0 

ka). This inconsistency could be explained by radiocarbon reservoirs within ancient Lake 
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Bonneville; however, many existing studies suggest that this effect is relatively small (Currey & 

Oviatt, 1985; Godsey, 2005; McGee et al., 2012). For example, McGee et al. (2012) show 

concordant radiocarbon and U-Th ages from Cathedral Cave in the main body of Lake 

Bonneville. Furthermore, Benson et al. (2011) show good correspondence between dates derived 

from a paleomagnetic secular variation model and radiocarbon ages from a sediment core taken 

from the western edge of the basin.  

Nonetheless, some caution should be taken when interpreting radiocarbon ages when 

concurrent dating methods are not used. Additionally, concurrence between dating methods at a 

single location does not guarantee it can be extrapolated throughout the entire basin. For 

example, one area within ancient Lake Bonneville, Tabernacle Hill, is a site of current hot 

springs, high water tables, and tufa mounds dating to pre-Bonneville times, all of which indicate 

that groundwater could have provided a source of carbon for the Provo Lake. Ultimately, there is 

no indication of a major radiocarbon reservoir, but interpretation of radiocarbon ages should still 

consider this potential source of uncertainty.    

 

Lake Surprise  

Additional radiocarbon dates from pluvial Lake Surprise (this study) largely support the 

trend in lake levels indicated by previous work (Ibarra et al., 2014; Egger et al., 2018). New data 

from ~20 to 24 ka compare favorably with existing data, whilst filling in some temporal gaps at 

20 ka. Similarly, new data collected just prior to the lake highstand at 15.2 ka is consistent with 

previous lake histories, which suggest a rapid increase in lake levels prior to the highstand 

(Ibarra et al., 2014; Ibarra et al., 2018). Several radiocarbon dates from this study show low lake 

levels until as late as almost 16 ka, indicating that Lake Surprise transgressed to its highstand 
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more rapidly than constrained by previous work, possibly suggesting a large and rapid 

precipitation forcing that is also observed at Lake Franklin and Lake Lahontan. 

 

Lake Chewaucan 

According to previous highstand estimates, Lake Chewaucan was the last studied lake to 

reach maximum levels during the deglacial, between 13-14 ka. As the most northwestern of the 

well-studied Great Basin lakes, the highstand is consistent with a northwest-trending change in 

moisture delivery. 

Fig. 1.3 shows two potential trajectories for the Lake Chewaucan prior to 25 ka, one at 

very high lake levels and the other at low levels. There are several explanations for the possible 

trajectories. For one, the Summer subbasin sample locality (from which these older samples were 

collected) contains the most active faults of the region, so samples could potentially be displaced 

from their original elevations (see discussion in Egger et al., 2018; Liccardi, 2001). Second, as 

tufa defines a minimum (but not absolute) shoreline, there is a chance that both sets of elevations 

could be correct, but the samples <1340 m formed deeper underwater. However, we view this 

explanation as unlikely; as tufa formation requires sunlight, its formation is limited to the photic 

zone near the lake surface (Egger et al., 2018; Felton et al., 2006, Nelson et al., 2005). Prior to 

the ultimate highstand elevation, there is the possibility of a slight lake desiccation around 17 ka. 

This is similar to observations made at Lake Surprise (see below; Egger et al., 2018), but not to 

the same magnitude. 
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Summary of Lake Level Histories 

Overall, we observe non-synchronicity in the timing of lake highstands, progressing from 

the southeast to the northwest during the deglacial period. In many cases, lake transgressions to 

their highstand levels (from moderate stillstand levels) happened in a relatively short period of 

time between 17 and 14 ka, while regressions tended to occur over a much longer period. New 

data from this study provides higher temporal resolution for hydrographs, and in some cases, 

extends the timeline of hydrographs. 

 

Spatial Variability in Hydrologic Indices 

The hydrologic index (HI) is a useful indicator for past water balance because it 

normalizes changes in lake elevation to basin area, such that proportional changes can be directly 

compared between basins of vastly different sizes. Assuming minimal changes in groundwater 

storage or inputs, the HI can be directly related to the mass balance of the watershed (see 

example applications in Mifflin & Wheat, 1979; Reheis, 1999; Ibarra et al., 2014). Additionally, 

when plotting HI versus latitude or longitude, trends may indicate latitudinal or longitudinal 

gradients in catchment-scale moisture balance. All sites except Lake Bonneville show an 

increase in HI following the LGM. Lake Bonneville, because it was an overflowing lake after the 

LGM (Oviatt, 2016), did not record meaningful HI for the deglacial. 

The latitudinal gradient in HI shows a significant increase in maximum deglacial HI with 

latitude, with the highest HI of 0.530 attained by Lake Chewaucan (Fig. 1.4; Table 1.2). The 

longitudinal trend in HI shows a dipole, with lower values between 115°W and 120°W (roughly 

coincident with the eastern and western borders of Nevada). Lakes in the west and east have 

contributing watersheds that include the high-altitude Sierra Nevada and Uinta Mountains, which 
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may account for part of this pattern. Here we primarily focus on a longitudinal spread (111°W to 

121°W) of lakes with minimal latitudinal variation (38°N to 43°N), and further work is needed in 

the southern Great Basin to more robustly constrain latitudinal trends. 

Overall, the lower-latitude sites with a longitude between 115°W and 120°W experience 

the smallest change in HI during the deglacial. This is likely not biased due to low sampling 

resolution, as the lake basins from the two smallest HI’s (corresponding to Lakes Franklin and 

Lahontan), have a significant amount of data, and demonstrate well-defined shorelines and 

hydrographs. The fine scale trends in moisture gradients inferred from HI values could be 

consistent with vapor transport by atmospheric rivers (Lora et al., 2016), or other transport 

mechanisms (e.g., Morrill et al., 2018; McGee et al., 2018), though further work on the 

numerous pluvial lakes in the Great Basin will be needed for this hypothesis to be tested. 

 

CONCLUSIONS 

Constraining the timing of lake highstands has important implications for understanding 

the terrestrial and atmospheric processes that transport moisture and impart changes on the basin-

scale hydrological cycle. Post-LGM lake highstands at Great Basin pluvial lakes have previously 

shown non-synchronicity, with lake highstands progressing from the southeast to the northwest 

during the deglacial period (McGee et al., 2018). This study added 22 additional carbonate ages 

to the existing repository of data, and synthesized this new data with existing data from the 

literature. Overall, new data largely supports previously noted temporal trends in lake 

highstands, with the most recent highstands occurring in the northwestern lake basins. 

New data from this study provide additional insight into previously compiled lake 

hydrographs. For example, radiocarbon ages from Lake Surprise provide more precise 
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constraints on the timing of the lake highstand, and support a fast transgression at ~16 ka, 

suggesting a large precipitation forcing similar to Lake Lahontan and Lake Franklin. 

Additionally, new ages from Lake Newark expand the temporal range of data, and provide a 

better idea of pre-LGM lake levels. Finally, new data from Lake Franklin and Lake Surprise fill 

in temporal gaps in existing data, and largely support previously constructed lake hydrographs.  

Our analysis of pluvial hydrologic index (HI) with latitude and longitude reveals 

systematic spatial trends that will provide targets for future climate modeling efforts (e.g. 

Ivanovich et al., 2016). The highest post-LGM HI values are found at high latitudes, and either 

west of 120°W, or east of 115°W. Given further work, this spatial variability in HI could be used 

to robustly infer temporal and spatial changes in atmospheric moisture sources, and will provide 

targets for future transient simulations of the deglaciation.   
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FIGURES 

 
 
Figure 1.1: PMIP3-derived precipitation anomaly maps of the western United States from individual simulations. The annual 
precipitation anomaly is calculated as LGM minus preindustrial simulation, in mm/year. The LGM simulation is set to 21 ka, 
while the preindustrial simulation represents “0 ka”. No bias correction was applied and all maps were made using the original 
resolution of the climate model output. The centroids of watershed polygons discussed in this study are plotted for reference. 
Model output is from the World Climate Research Programme's Coupled Model Intercomparison Project phase 5 (CMIP5) 
database. Labels = Lake Surprise (LS), Lake Newark (NL) and Lake Franklin (LF). Other lakes include: Lake Bonneville (LB), 
Lake Lahontan (LL), and Lake Chewaucan (LC). 
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Figure 1.2: Pluvial lakes included in this study or plotted in Figure 3. New ages are from: Lake Surprise (LS), Lake Newark (NL) 
and Lake Franklin (LF). Other lakes include: Lake Bonneville (LB), Lake Lahontan (LL), and Lake Chewaucan (LC). Blue area 
is maximum pluvial lake extent during the LGM and deglacial, digitized from Mifflin & Wheat (1979) estimates (Map made 
using Natural Earth physical vector data). 
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Figure 1.3: Radiocarbon based lake hydrographs for northern Great Basin pluvial lakes. Basins are plotted from geographic 
northwest to southeast. Lake Bonneville and Lake Lahontan data define lake elevation envelopes (see Oviatt, 2015; Benson et al., 
2013; Adams et al., 2008), with terrestrial materials delineating a maximum lake extent, and lacustrine materials indicating a 
minimum lake extent. Projected lake level histories are overlaid on each basin. Some of these lake level histories have been 
altered from previous publications based on new data from this study. Errors in calibrated radiocarbon ages represent 2𝜎 
uncertainties and elevation errors are the same as originally reported for previous data, and are	±1.5 m for this study. Chewaucan 
data after Egger et al., (2018) and Liccardi (2001), Lake Lahontan data after Benson et al., (2013) and Adams et al., (2008), Lake 
Franklin data after Munroe & Laabs (2013), Lake Surprise data after Ibarra et al. (2014) and Egger et al. (2018), and Lake 
Bonneville data after Oviatt et al. (2015) and Mering (2015).  
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Figure 1.4: Hydrologic Indices (HI) plotted as a function of basin-center latitude (a) and longitude (b), with horizontal bars 
indicating the maximum geographic span of the lake. Filled shapes indicate the maximum HI during the LGM (19-23 ka), while 
clear shapes indicate the maximum HI during the LGM and the deglacial intervals. For each reported HI, the corresponding 
timing of each highstand is indicated. HI values are reported in Table 1.2. For Lake Bonneville, the deglacial HI is the maximum 
HI prior to spillover.  
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TABLES 
Table 1.1: New Radiocarbon Ages for Northern Great Basin Pluvial Lakes 

 
*Originally collected and dated by uranium-series only in Ibarra et a. (2014). Three of the five samples are concordant (at 2𝜎) 
with uranium-series ages from the same hand-sample reported by Ibarra et al. (2014) (see their Table 5: SVDI12-T7 = 16.67 ± 
6.57; SVDI12-T4 = 19.80 ± 2.00; SVDI12-T3 = 18.33 ± 1.82).  

 
 

Table 1.2:  Calculated hydrologic indices for each basin 
 

Pluvial Lake LGM Maximum Hydrologic Index (19-23 ka BP) Deglacial Highstand Hydrologic Index (11-19 ka BP) 
Chewaucan 0.530 0.622 

Surprise 0.447 0.604 
Lahontan 0.162 0.275 
Newark 0.196 0.278 
Franklin 0.249 0.494 

Bonneville 0.380 0.628a 

a Bonneville shoreline prior to spillover at ~18 ka 
 

Lake 
Basin 

Sample Name Sample 
Type 

GPS Location 14C Age 
(ka) 

14C  
Age SD 

IntCal13 
Age (ka) 

2𝜎 min 2𝜎 
max 

Elevation 
(m) 

  HI 

Franklin FranklinRW1_60_1A Gastropod 
shell 

40,6472N;  
-115.1388W 

12.260 0.110 14.233 13.821 14.765 1826 0.21 

Franklin FranklinRW1_60_2A Gastropod 
shell 

40.1832N;  
-115.3760W 

12.370 0.120 14.466 14.044 15.020 1826 0.21 

Franklin FranklinRW1_60_2B Gastropod 
shell 

40.1832N;  
-115.3760W 

12.200 0.130 14.127 13.752 14.715 1826 0.21 

Franklin FranklinRW2_90_1A Gastropod 
shell 

40.2813N;  
-115.3760W 

12.520 0.190 14.713 14.041 15.339 1838 0.36 

Franklin FranklinRW2_90_1B Gastropod 
shell 

40.2813N;  
-115.3760W 

12.400 0.160 14.530 13.999 15.133 1838 0.36 

Franklin FranklinRW3_78_1A Gastropod 
shell 

40.2809N;  
-115.3601W 

12.480 0.120 14.654 14.163 15.122 1841 0.39 

Franklin FranklinRW3_78_1B Gastropod 
shell 

40.2809N;  
-115.3601W 

12.910 0.120 15.437 15.093 15.818 1841 0.39 

Franklin FranklinRW3_78_1C Gastropod 
shell 

40.2809N; 
 -115.3601W 

12.670 0.120 15.027 14.377 15.454 1841 0.39 

Franklin FranklinFRB_170_1 Tufa 40.6472N;  
-115.1388W 

14.730 0.180 17.925 17.492 18.362 1848 0.48 

Franklin FranklinHS1_86_1A Gastropod 
shell 

40.2477N;  
-115.1388W 

13.230 0.140 15.891 15.408 16.277 1843 0.49 

Franklin FranklinHS186_1B Gastropod 
shell 

40.2477N;  
-115.1388W 

12.980 0.160 15.529 15.088 16.029 1843 0.49 

Franklin FranklinHS1_86_1C Gastropod 
shell 

40.2477N;  
-115.1388W 

13.280 0.140 15.960 15.493 16.361 1843 0.49 

Newark NewarkLmt3_185_1 Tufa 39.4776N;  
-115.7882W 

19.420 0.250 23.383 22.777 24.001 1826 0.20 

Newark NewarkLmt4_50_1 Tufa 39.4547N; 
 -115.7790W 

9.650 0.120 10.973 10.658 11.253 1806 0.14 

Surprise SVDI12-T4A* Tufa 41.4299N;  
-119.9752W 

18.780 0.270 22.697 22.039 23.354 1439 0.33 

Surprise SVDI12-T4B* Tufa 41.4299N; 
 -119.9752W 

18.350 0.270 22.181 21.532 22.807 1439 0.33 

Surprise SVDI12-T7* Tufa 41.4280N;  
-119.9725W 

14.460 0.170 17.613 17.141 18.008 1472.5 0.42 

Surprise SVDI12-T3A* Tufa 41.4299N;  
-119.9752W 

18.030 0.280 21.823 21.083 22.443 1427.8 0.31 

Surprise SVDI12-T3B* Tufa 41.4299N;  
-119.9752W 

16.590 0.290 20.016 19.279 20.713 1427.8 0.31 

Surprise SVCW17-PT1 Tufa 40.9771N;  
-119.8755W 

13.520 0.340 16.303 15.289 17.288 1475 0.44 

Surprise SVCW17-PT2 Tufa 40.9770N;  
-119.8755W 

13.390 0.160 16.109 15.642 16.609 1475 0.44 

Surprise SVCW17-PT3 Tufa 40.9764N;  
-119.8747W 

13.790 0.190 16.684 16.126 17.258 1477 0.45 
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ABSTRACT 

The transition in the American Southwest from lakes in the late Pleistocene to modern 

aridity implies large changes in the regional water cycle, but whether changes in hydrology were 

driven by increased precipitation rates due to changes in atmospheric dynamics, decreased 

evaporation rates resulting from temperature depression and lowered solar insolation, or some 

combination of the two, remains uncertain. Here we report thermodynamically-derived estimates 

of changes in temperature, precipitation, and lake evaporation rates, as well as the isotopic 

composition of precipitation, using clumped isotope data from an ancient lake in the 

northwestern Great Basin. We use our thermodynamic estimates to evaluate the prediction skill 

of ten climate models in regional predictions for these variables. Our reconstructions indicate the 

disappearance of Lake Surprise coincided with decreasing evaporation rates. Since the LGM, 

precipitation rates have also increased, possibly due to a shift in storm tracks and/or a change in 

the average landfall location of atmospheric rivers.  
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INTRODUCTION   

The American West is characterized by its aridity and low precipitation, with many 

regions receiving less than 250 mm of rain per year. Furthermore, this region is projected to 

become even drier with ongoing anthropogenic warming (Maloney et al., 2013). During the Last 

Glacial Maximum (LGM; ~23,000-19,000 years ago) and subsequent deglaciation (~19,000-

11,000 years ago), the sedimentary record and landscape geomorphology indicate that the region 

was much wetter and marked by extensive lake systems in most inward-draining basins (Mifflin 

& Wheat, 1979; Reheis, 1999). Paleo-shoreline observations indicate that where these lakes once 

existed, dry salt flats now instead mark the landscape (Supplementary Fig. 2.S1). This dramatic 

change in hydroclimate has motivated substantial work on the response of regional climate to 

glacial-deglaciation transitions. This geological transition is also of interest because it can shed 

light on the accuracy of climate models used for simulating temperature, precipitation, and 

evaporation changes in the past and future.  

There are multiple hypotheses on the timing and importance of various mechanisms 

driving changes in regional hydroclimate in the Southwest. In the present day, the northeastern 

Great Basin has the highest seasonal precipitation in the winter months. Hence, one group of 

hypotheses have centered around the response of the mid-latitude jet stream and storm track to 

changing climate forcing (e.g. Hostetler & Benson, 1990; Kirby et al., 2013; Munroe & Laabs, 

2013); a related hypothesis highlights changes in atmospheric rivers and concomitant changes in 

atmospheric moisture convergence (Lora et al., 2017; Lora, 2018). Field and modeling studies 

hypothesize that both the strength and position of the jet stream could be important: it is thought 

that the Laurentide ice sheet deflected the jet stream south during the LGM, shifting the storm 

track and resulting in a tendency for lake highstands to occur along a SE-NW trend, modulated 
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by ice sheet regression during the deglacial (e.g. Lyle et al., 2012; Oster et al., 2015; McGee et 

al., 2018).  

Previous compilations of lake hydrographs for a range of pluvial lakes do, in fact, suggest 

that deglacial lake highstands did not occur simultaneously; instead, changes in regional 

hydrology may have occurred earlier in the southeast, progressing to the northwest through time 

(e.g. Lyle et al., 2012; Ibarra et al., 2014; Hudson et al., 2017; McGee et al. 2018; Santi et al., 

2019). A closer look indicates that this interpretation may be an oversimplification of the 

process; Wong et al. (2016) suggest that the intensity of the storm track (in terms of low level 

eddy kinetic energy) was controlled by meltwater fluxes from the ice sheet, which altered the 

meridional temperature gradient and circulation in the eastern Pacific; Lora et al. (2016) also find 

that a strengthened jet stream during the early deglaciation resulted in higher precipitation along 

most of the west coast. Other studies suggest alternative moisture sources were important during 

the LGM, like increased summer precipitation (Lyle et al., 2012), and changes in evaporation 

rates (Kirby et al., 2013; Ibarra et al., 2014).  

There is also proxy-derived evidence of evaporation depression occurring in Lakes 

Bonneville and Lahontan (e.g. Mifflin & Wheat, 1979; Kaufman, 2003; Mering, 2015), and in 

the Great Basin as a whole (Smith & Street-Perrot, 1983). Climate models indicate LGM 

increases in both summer and winter effective precipitation, P-E, in the region, but driven both 

by decreased evaporation and increased precipitation, as controlled by various components of the 

moisture budget (Lora, 2018). Although there are a number of circulation changes that have been 

suggested to explain the observed changes in hydroclimate, it has been difficult to robustly test 

them because of a lack of data constraining evaporation rates and precipitation rates.   
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From a mass balance perspective, lake growth or reduction is achieved primarily via 

changes in precipitation, evaporation, or a combination of the two (Mifflin & Wheat, 1979; 

Matsubara & Howard, 2009; Broecker, 2010). Various proxy evidence from the LGM and 

deglacial period (e.g. packrat middens, halite inclusions, tree lines, and pollen) indicate cold and 

wet conditions (Galloway, 1970; Lowenstein et al., 1998; Matsubara & Howard, 2009; Thomson 

et al., 1999). While studies have attempted to quantify past evaporation and precipitation rates, 

invoking either reduced or elevated precipitation rates compared to modern, and reduced 

evaporation rates compared to modern values (Matsubara & Howard, 2009; Ibarra et al., 2014), 

there is significant uncertainty associated with these measurements, largely due to a lack of 

accurate constraints on temperature or on water 𝛿18O. Therefore, values for reconstructed 

precipitation rates range from 80-260% of modern and evaporation rates span 12-90% of modern 

values, with temperature depressions anywhere from 3-15 ℃ (e.g. Matsubara & Howard, 2009; 

Ibarra et al., 2014).  

In this work, we use clumped isotopes, a thermodynamically-based tool for estimating 

carbonate precipitation temperatures (Ghosh et al., 2006; Schauble et al., 2006; Eiler, 2007; 

Bernasconi et al., 2018), in order to constrain past temperature and water isotope changes during 

the LGM and deglaciation for Lake Surprise, located in the northwest Great Basin. This small 

lake is in a hydrologic transition zone between the Great Basin and the Pacific Northwest. Our 

sediment geochemistry-derived data are combined with different sets of assumptions within a 

hydrological modelling framework to estimate precipitation and basin-wide evaporation rates, 

producing estimates that are thermodynamically-based. We use these results in concert with 

information on lake level fluctuations to test hypotheses about the timing and magnitude of 

hydroclimate changes, and to evaluate climate model skill. We compare clumped-isotope derived 
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results to published pollen-derived estimates of past hydroclimate (Bartlein et al., 2011; Lora et 

al., 2017). 

 

BACKGROUND 

Geologic and Climatic Setting of Surprise Valley, California  

Lake Surprise was located in the northwest Great Basin, along the borders of Nevada and 

California, contained within the modern Surprise Valley (Supplementary Fig. 2.S1). At its 

greatest extent, Lake Surprise covered 1366 km2, or ~36% of its respective watershed (e.g. 

Russell, 1927; Reheis, 1999; Personius et al., 2009; Ibarra et al., 2014; Egger et al., 2018). In 

contrast to these former hydrological conditions, potential evaporation now vastly exceeds 

precipitation; basin-wide average precipitation and pan evaporation rates are 566±165 mm/yr 

and 905±80 mm/yr, respectively (Ibarra et al., 2014). As a result, modern Surprise Valley has 

the same arid climate that characterizes much of the Great Basin; however, due to its proximity 

to the Pacific northwest, it receives more precipitation than the southern Great Basin (Guirguis & 

Avissar, 2008). 

 

Previous Work on past Hydroclimate in Surprise Valley, California 

Published studies of Lake Surprise tracked the evolution of the lake shoreline through 

time, finding an abrupt increase in effective precipitation leading to the lake highstand at 16 ka, 

followed by a much slower decline in lake levels (Ibarra et al., 2014; Egger et al., 2018; Santi et 

al., 2019). Ibarra et al. (2014) used the timing of lake level fluctuations and carbonate oxygen 

isotope measurements to constrain a mass balance model for precipitation rates, but did not have 

constraints on temperature or water 𝛿18O. Regional pollen studies also provide nearby constraints 
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on past precipitation rates; pollen data from a locality 4° north of pluvial Lake Surprise supports 

a local decrease in precipitation rates since the LGM, the magnitude of which is greater than the 

average decrease across the Great Basin (Bartlein et al., 2011). 

 

Carbonate Clumped Isotope Thermometry  

Carbonate clumped isotope thermometry is a geochemical method to constrain past 

temperatures that can be applied to sediments (e.g. Ghosh et al., 2006; Eiler, 2007; Tripati et al., 

2010; Bernasconi et al., 2018). It is based on the measurement of the overabundance of 

“clumped” or doubly-substituted bonds in carbonate groups of minerals (13C-18O-16O) above 

their stochastic distributions, which is temperature dependent (Ghosh et al., 2006; Schauble et 

al., 2006). Gas source mass spectrometry of CO2 produced through the digestion of carbonate in 

orthophosphoric acid is used to determine the abundance of the doubly-substituted isotopologue 

with a mass of 47 amu (13C-18O-16O), and the overabundance of this isotopologue in a sample 

(relative to a stochastic value) is denoted by Δ47, defined as:  

 
   Δ47 (‰) = [(R47/(R47stochastic)  - 1) - (R46/(R46stochastic)  - 1) - (R45/(R45stochastic)  - 1)]  × 1000         

            Equation 1 

 
  The utility of clumped isotope analysis lies in the thermodynamic preference for clumped 

bonds to occur at certain temperatures; clumping decreases with increased temperature, and this 

trend scales with 1/T2 (T in Kelvin). The isotope exchange reaction that forms clumped bonds:  

 

Ca12C18O16O2 + 13Ca16O3 → Ca13C18O16O2 + Ca12C16O3              Equation 2 
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takes place at equilibrium within a single phase, with lower temperatures favoring a greater 

abundance of 13C-18O “clumped” bonds (Schauble et al., 2006). Hence, the temperature of 

carbonate formation can be determined from the Δ47 parameter, without knowledge of the 

isotopic composition of the fluid in which a given sample formed. 

  In the years since the publication of the first clumped isotope measurements of CO2 (Eiler 

& Schauble, 2014) and carbonate minerals (Ghosh et al., 2006), the field of carbonate clumped 

isotope geochemistry has evolved. Calibrations have been published that incorporate data from 

numerous studies relating empirical predictions (Ghosh et al., 2006), measurement of laboratory 

synthesized carbonate (Kelson et al., 2017; Bernasconi et al., 2018), and studies in modern well-

constrained carbonate forming environments (Tripati et al., 2010). The community has explored 

interlaboratory offsets (Dennis et al., 2011) and identified best practices, including sample pre-

cleaning for some types of samples (Tripati et al., 2010) and identifying that most calibration 

discrepancies are due to differences in standardization protocols and data handling (Dennis et al., 

2011; Bernasconi et al., 2018). For this work, we use the calibration of Bernasconi et al. (2018) 

because it uses the same carbonate standard-based reference frame as our data. 

 

METHODOLOGY 

Samples  

We measured the stable and clumped isotope composition of 1 modern sample and 35 

older carbonate (tufa) samples from Surprise Valley. These samples were described and ages 

determined using radiocarbon and/or uranium-series measurements in prior publications, and are 

also described in Supplement Table 2.S1 (Ibarra et al., 2014; Egger et al., 2018; Santi et al., 
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2019). We use gas source mass spectrometry for clumped isotope (Δ47) analysis, which 

simultaneously provides carbonate 𝛿13C and 𝛿18O.  

 

Age estimates 

For all radiocarbon results, we use IntCal13 to convert conventional 14C ages to 

calibrated 14C ages, expressed as thousands of years before present, “ka” (Supplemental Table 

2.S1). We plot the median calibrated probability and the 2𝜎 uncertainty. 

 

Clumped Isotope Constrained Model for Precipitation and Evaporation 

To model the hydroclimate drivers of Lake Surprise, we combine the clumped isotope-

constrained precipitation and evaporation (P and E) modeling approach used by Mering (2015) 

on Lake Bonneville, with the isotope mass balance model of Ibarra et al. (2014) used for Surprise 

Valley, which was modified from Jones et al. (2007). Similar isotope-based mass balance 

approaches have been applied to both modern transient and Pleistocene steady-state calculations 

for other mid-latitude lake systems in the western United States and Europe (cf. Jones et al., 

2007; Ibarra et al., 2014), but fundamentally have lacked a thermodynamic constraint on 

temperature or robust estimate of water δ18O. We also include calculations from two additional 

empirically-derived equations for P and E in the Supplement (Matsubara & Howard, 2009). We 

note that the latter empirical equations depend only on temperature, and are thus not as robust as 

the precipitation and evaporation results reported in the main text.  

We calculate evaporation rates using a modified Penman equation for lake evaporation 

(Linacre, 1993), as done in previous Great Basin paleoclimate analyses (e.g. Ibarra et al., 2014; 

Mering, 2015). This equation uses mean annual air temperatures (MAATs) derived from 
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clumped isotopes and a warm-season (April - October; AMJJASO) water to air transfer function 

(Hren & Sheldon, 2012) (See Supplement).  

For precipitation estimates, we first determine the runoff coefficient, Krun, using a 

Budyko relationship, as proposed by Broecker (2010), to constrain covariation between 

precipitation and Krun. We model evaporating vapor δ18O based on the Craig & Gordon (1965) 

evaporation model (as simplified by Gat, 1996). To evaluate uncertainty, we carry out a Monte 

Carlo procedure (n=2,500 calculations per sample). We include sensitivity analyses for our 

inputs of wind speed (“u”), δ18O of precipitation (“δ18O”), Budyko landscape parameter (“⍵”), 

and relative humidity (“RH”). For the sensitivity analysis, we set each “constant” parameter to its 

mean value, and vary a single input parameter within a reasonable range of values, as implied by 

the 1σ uncertainty of the input variable.  

Reconstructed lake evaporation rates are converted to weighted evaporation rates for 

more direct comparison to evapotranspiration (“ET”) output from steady-state models. We assign 

weights to lake evaporation rates based on the size of the lake area, and to ET over land (ET as 

estimated in our precipitation model), based on the size of the tributary area. The Supplement 

describes the modeling equations used and their adaptation for Lake Surprise. 

 

RESULTS 

Shoreline Geochronology and Carbonate δ18O and δ13C Ratios 

A synthesis of Lake Surprise elevations (Fig. 2.1a) shows a rapid rise in lake levels 

occurring in less than 500 years, culminating in a highstand at 16 ka (Santi et al., 2019). This 

rapid rise in lake levels is seen in several other late Pleistocene pluvial lakes, including Lake 

Franklin and Lake Lahontan (e.g. Benson et al., 2013; Munroe & Laabs, 2013; Santi et al., 
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2019), and at Lake Surprise, is followed by a slow decline over the next ~5 ka. There is 

significant variation in carbonate and water δ18O, occurring on a ~1000 year timescale, with 

quasi-periodic behavior during the LGM (Figs. 2.1b & 2.2b, respectively). There are local 

minima in carbonate and water δ18O, coincident with the lake highstand, with increasing values 

following the lake highstand at 16 ka. At the same time, there is little evidence for temporal 

variability in carbonate δ13C (Fig. 2.1c). The strong positive covariance between carbonate δ13C 

and carbonate 𝛿18O observed in these data for Lake Surprise (Fig. 2.1d) is consistent with closed 

basin behavior and evaporative enrichment, indicating the lake system is appropriate for steady-

state isotopic analysis (e.g. Talbot 1990; Ibarra et al., 2014; Horton et al., 2016).  

 

Clumped Isotope Constraints on Past Hydroclimates 

Analysis of modern microbialites and tufas, and other types of lacustrine carbonates 

indicate this proxy can be robustly used to reconstruct temperature, with growth temperatures 

typically indicating formation in the summer or spring through fall (Petryshyn et al., 2015; 

Horton et al., 2016; Bernasconi et al., 2018). Our modern carbonate sample implies a present-day 

water temperature of 17.6±	2℃, while our LGM samples indicate an average past water 

temperature of 10.2±	1℃. Using a water to air transfer function (Hren & Sheldon, 2012; see 

Supplement), our calculated modern water temperature translates to a modern MAAT of 

10.3±	2℃, while our LGM samples correspond to an average MAAT of 0.3±	1℃. Our modern 

MAAT is similar to annually-averaged modern temperature at nearby Cedarville, CA (9.2±	1℃), 

suggesting that our calibration and transfer functions are able to accurately constrain MAAT. 

The offset between modern MAAT from Cedarville, CA and our LGM MAAT indicates 

8.9±	1.4℃ of air warming since the LGM.  
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To a first order, reconstructed water temperatures appear relatively constant throughout 

the LGM, but show a slight decrease during the early to mid-deglacial, and a local minimum at 

~16 ka, roughly coincident with the lake highstand (Fig. 2.2a). With the exception of one LGM-

aged sample, all data indicates that water temperatures were lower than modern, as estimated 

using our modern sample. 

In Figs. 2.2c-2.2d, we show reconstructed precipitation and weighted evaporation rates. 

Reconstructed precipitation rates are close to their modern values during the LGM, and stabilize 

during the deglacial period, to slightly below their modern value of 566 ±165 mm/yr. Weighted 

evaporation rates decrease throughout the LGM and stabilize during the deglacial period, and are 

below the modern pan evaporation rate at Lake Surprise as well as the modern lake evaporation 

rates at several extant Great Basin lakes (e.g. The Great Salt Lake, Salton Sea, Mono Lake; 

Meyers, 1962). 

 

Pollen Derived Estimates of Precipitation 

 Compilations of proxy data provide an invaluable means to quantify past climate, as each 

proxy is likely sensitive to different components of the water balance. For example, pollen data 

is thought to be sensitive to changes in available energy during growing seasons, while lake level 

fluctuations likely reflect changes in effective moisture, or P-E (Liu et al., 2018). Pollen data 

have already been used to provide robust quantitative paleoclimate estimates at both regional and 

global scales (Bartlein et al., 2011; Izumi & Bartlein, 2016), and have been compared and 

evaluated against other proxy estimates and results from steady state model simulations (e.g. 

Matsubara & Howard, 2009; Lora et al., 2017; Liu et al., 2018). 
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For our analysis, we compare precipitation anomalies derived from clumped isotope 

analysis to pollen and plant macrofossil precipitation anomalies from Bartlein et al. (2011), who 

include multiple estimates within the Great Basin. These estimates indicate precipitation 

anomalies (LGM minus modern) ranging from -1235 to 721 mm/yr, with a mean of -138 ± 545 

mm/yr. Hence, while pollen anomalies show a wide degree of variability, they also indicate an 

overall decrease in regional precipitation rates during the LGM, in spite of the continued 

existence and growth of lakes. 

 

Evaluation of Climate Model Simulations of Hydroclimate Change 

We compare our results to simulations carried out by nine models that participated in the 

Paleoclimate Modelling Intercomparison Project, phase 3 (PMIP3). PMIP3 produced equilibrium 

simulations for the LGM (21 ka) and the mid Holocene (6 ka). A caveat is that with only two 

reference points bracketing the LGM and deglacial period, it is difficult to make detailed 

assessments of earth climate responses to glacial-deglacial conditions, and to evaluate changes to 

water balance at local (i.e. lake basin) or regional scales (i.e. Western North America). Previous 

work comparing PMIP precipitation simulations for the LGM indicate a general lack of 

agreement between models (Oster et al., 2015; Lora et al., 2017; Lora, 2018), and thus the 

comparison of model results to proxy data offers an opportunity to evaluate model skill (e.g. 

Hargreaves et al., 2013; Lora et al., 2017; Lora, 2018).  

As a method of visually assessing individual climate model skill, we compare MAAT 

anomalies from clumped isotope analysis to MAAT temperature anomalies from steady-state 

PMIP3 climate model simulations for the LGM and pre-industrial era (Fig. 2.3). From clumped 

isotope analysis, we estimate an 8.9±	1.4℃ anomaly from LGM-averaged MAAT (0.3℃) and 
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modern MAAT at Cedarville, CA (9.2℃). In Figs. 2.4-2.5, we similarly compare average 

precipitation and weighted evaporation anomalies for all Lake Surprise samples (23-19 ka), to 

anomalies from PMIP3 simulations, with LGM-averaged precipitation and evaporation 

anomalies of -76±185 mm/yr and -368±	100 mm/yr, respectively. 

 Following Hargreaves et al. (2013), we quantitatively evaluate climate model skill using 

an equation that weighs the ability of individual climate models to simulate the Earth’s changing 

climate, as implied by clumped isotope results for MAAT, precipitation rate, and weighted 

evaporation rate (Fig. 2.6; Equation S12). Negative and zero values indicate that the models have 

little or no skill in reproducing Earth’s climatic response, while numbers approaching the 

maximum value of one indicate a high degree of model skill. We calculate model skill for 

steady-state PMIP3 models and one transient climate model: Transient Climate Evolution 

(TraCE) using the Community Climate System Model Version 3 (CCSM3) (e.g., Lora, 2016). 

On average, PMIP3 and TraCE demonstrate consistently moderate skill (~0.3-0.5) in 

reproducing past temperature and evaporation rates, with more variable skill in reproducing past 

precipitation rates: six models show slight skill in reproducing precipitation rates, while four 

have negative skill. Temperature, evaporation, and precipitation model skill averages are 0.44, 

0.27, and -0.25, respectively.   

 

Potential Sensitivity of Results to Modeling Assumptions 

Our isotope mass balance model relies on several assumptions regarding input 

parameters. We assume that RH, 𝛿18O of precipitation, u, and ω (which describes the partitioning 

of rainfall into runoff) at the LGM were identical to modern values. We include a model 

sensitivity analysis to show the effect of varying each of these four parameters within reasonable 
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ranges. Otherwise, the remaining input variables are set to their mean modern values (RH= 0.58, 

u =1.9 m/s, 𝛿18O of precipitation = -14.57‰, ω = 2.6). We show this sensitivity two ways: 1) We 

first average all sample 𝛿18O, 𝛿13C, elevation, and water temperature input values and create a 

new “average sample” on which to apply our analysis, and 2) we perform the sensitivity analysis 

on each individual sample (n = 35), and plot the median y-values. 

 

DISCUSSION 

Shoreline Geochronology and Carbonate δ18O and δ13C Ratios 

The lake hydrograph for Lake Surprise (Fig. 2.1a) indicates there was a rapid increase in 

lake levels at 16 ka, suggesting a large and rapid change in effective precipitation that is also 

observed in neighboring pluvial lakes (Ibarra et al., 2014; Santi et al., 2019). While there are 

many possible causes for this abrupt change in effective moisture, we hypothesize that it may be 

indicative of a rapid acceleration of ice sheet regression, which is thought to have begun ~15 ka 

(Lora et al., 2016). This alteration in ice sheet extent would likely be associated with a shift in 

the storm track or a change in the average landfall location of atmospheric rivers, both of which 

could increase effective moisture.  

In contrast to its rapid rise, the lake regression is much more prolonged, which is a 

notable point of contrast to other late-Pleistocene lakes, including Lake Franklin, Lake 

Chewaucan, and Lake Lahontan (e.g. Santi et al., 2019). We suggest that this gradual decrease in 

lake levels could be due to the significant depth of Lake Surprise at its maximum extent (~180 

m, versus ~90 m for nearby Lake Chewaucan; Egger et al., 2018), its high hydrologic index 

compared to more southerly lakes Franklin, Lahontan, and Bonneville (Santi et al., 2019), or the 
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relative lack of western-boundary orographic barriers, compared to other lake basins (e.g. the 

southern Cascades to the west of Lake Chewaucan) (Egger et al., 2018). 

 

Clumped Isotope Constraints on Past Hydroclimates 

We estimate 7.4±2.2℃ of water warming and 8.9±1.4℃ of air warming since the LGM 

at Lake Surprise. As a point of comparison, nearby Lake Chewaucan tufas have been used to 

reconstruct mean annual lake temperature for the modern (13 ± 2℃) and LGM (6.2 ± 2℃) 

(Hudson et al., 2017); indicating 6.8±2.8℃ of lake water warming, and 10.0±2.8℃ of air 

warming since the LGM (Hren & Sheldon, 2012). Our temperature anomaly of 8.9±1.4℃ is thus 

consistent with reconstructions from nearby Lake Chewaucan, and also with Great Basin 

temperature depressions estimated from pollen (10-11℃; Galloway, 1970), hydrologic mass 

balance modeling (10℃; Smith & Street-Perrot, 1983), and packrat midden plant assemblages 

(8℃; Thompson et al., 1999). 

Our reconstructed shift in water δ18O of ~4‰ (Fig. 2.2b) could be due to changes in the 

dominant lake moisture source; for example, the δ18O of water associated with the North Pacific 

storm track is isotopically depleted relative to the δ18O of water associated with atmospheric 

rivers (e.g. Welker et al., 2012). We also note that summer precipitation is isotopically enriched 

relative to winter precipitation, so this pattern could reflect a shift in the seasonality of 

precipitation (Welker et al., 2012). A ~4‰ change in water δ18O could alternatively be explained 

by decreasing temperature, with a change of -0.24‰ to -0.48‰ per ℃ expected for water 

cooling from a starting temperature of 20℃ (Dansgaard, 1964). We view a 4‰ change in water 

δ18O as viable, as the isotopic composition of lakes is known to change on the order of 10-15‰ 
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on geologic time scales, due to variation in both precipitation source and temperature (e.g. 

Edwards & McAndrews, 1989; Wolfe et al., 2007). 

To a first order, weighted evaporation rates at Lake Surprise decrease throughout the 

LGM and deglaciation, stabilizing below the modern pan evaporation rate of 905 mm/yr by ~20 

ka (Fig. 2.2d). While these weighted evaporation rates may not be directly comparable to pan 

evaporation rates, we interpret the sign of evaporation change as evidence of evaporation 

depression as a main cause of lake growth in the region. Further, we note that our deglacial 

evaporation rates at Lake Surprise are below modern lake evaporation rates at the Great Salt 

Lake (1070 mm/yr), the Salton Sea (2032 mm/yr), and Mono Lake (915 mm/yr; Meyers, 1962). 

There are several potential sources of uncertainty in any equation used to estimate 

evaporation rates. Empirical equations for evaporation are typically reliant on three main 

categories of controlling parameters: water supply, energy for evaporation, and water vapor 

transport. The first of these, water supply, can limit evaporation rates in water-scarce or arid 

regions, or in locations where the evaporating surfaces are frozen over. If Lake Surprise was 

frozen for significant portions of each year, actual evaporation rates would have been lower than 

our results suggest. However, since our calculated evaporation rates are already lower than 

modern pan evaporation rates, and decrease throughout the LGM and deglacial periods, our 

conclusions would not be significantly altered if we are overestimating lake evaporation.  

Our formulation for lake evaporation instead incorporates measurements constraining the 

latter two parameters: energy for evaporation, and water vapor transport. Inputs of temperature, 

latitude, and elevation all impact the amount of incoming energy for evaporation. As latitude and 

elevation have not changed significantly through time, Δ47 derived temperature is how net 

radiation (and thus, available energy) is altered in this equation.  
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Water vapor transport is also included in many models for evaporation, as it provides a 

mechanism to remove saturated air from above the evaporating surface. Many evaporation 

models incorporate measurements of wind speed, relative humidity, or vapor pressure deficit into 

evaporation estimates. Our lake evaporation model incorporates estimates of surface wind speed, 

as this is commonly measured at weather stations across the United States. As past wind speed is 

not a straightforward variable to constrain, we use modern wind speed instead, but include this 

parameter in our sensitivity analysis in the Supplement (Fig. 2.S2-2.S3). 

In Fig. 2.2c, we show estimates of past precipitation rates using our isotope mass balance 

model. We find precipitation rates to be initially elevated relative to modern; however, by the 

time of the lake highstand at 16 ka, calculated precipitation falls to below modern values. This 

finding is significant, as it implies that lake growth (and increased effective moisture) was 

achieved despite a below-modern precipitation rate. Lowered precipitation rates during the 

deglacial period are consistent with our lowered lake evaporation rates, as steady-state requires a 

long-term balance between inputs and outputs. While the rapid lake growth at 16 ka suggested by 

our data (106 m in ~500 years) does require a significant short-term surplus of precipitation over 

evaporation, the fast timescale over which lake transgression occurred (Fig. 2.1a) coupled with 

the comparatively course sampling resolution of our data, could explain why this positive P-E 

anomaly is not reflected in Fig. 2.1.    

 

Comparison with Pollen and other Proxy Data 

Existing Great Basin proxy estimates are summarized in Matsubara & Howard, 2009 

(their Table 1). Our thermodynamically-derived LGM-average precipitation rates (490 mm/yr; 

80% of modern) are in line with most Great Basin estimates calculated using different types of 
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proxies, while also helping to more accurately constrain the sign of changes which was 

previously unclear. Prior reconstructions indicate moderate levels of precipitation during the 

LGM, relative to modern, with some supporting less precipitation (e.g. 80% of modern, 

Galloway et al., 1970), the same (100% of modern, Hostetler et al.,1994), or more precipitation 

(120% of modern, Lemons et al.,1996; 130% of modern, Ibarra et al., 2014). 

Fig. 2.4 shows a direct comparison of our proxy-derived precipitation anomalies to those 

derived from pollen across the Great Basin. Pollen precipitation anomalies indicate both wetter 

and drier LGM conditions (Bartlein et al., 2011). We calculate a small precipitation anomaly at 

Lake Surprise, indicating slightly less precipitation during the LGM. Our estimate is similar to a 

pollen estimate at a similar longitude, but at 45°N.  

Our estimates of LGM and deglacial weighted evaporation rates are much lower than 

modern lake evaporation rates in the Great Salt Lake (1070 mm/yr), the Salton Sea (2032 

mm/yr), and Mono Lake (915 mm/yr; Meyer, 1962), as well as the modern pan evaporation rate 

at Lake Surprise (905 mm/yr). Similar to precipitation rates, our data indicate decreasing 

weighted evaporation rates throughout the LGM and deglacial periods (Fig. 2.2d). This trend of 

LGM evaporation change is consistent with mass balance models (-10%; Mifflin & Wheat, 

1979), thermal evaporation models (-42%, Hostetler & Benson, 1990), and tree lines/pollen (-

50%, Galloway et al., 1970), providing evidence of evaporation depression as a cause of 

deglacial lake growth.  
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Evaluation of Climate Model Simulations of Hydroclimate Change 

PMIP3 

Fig. 2.3 shows the surface temperature anomaly between the LGM and preindustrial era, 

as reproduced by PMIP3 and clumped isotope data. We find reasonable model-data agreement 

(±2℃) for all PMIP3 models, with all models and proxy data suggesting LGM temperature 

depression.   

In Fig. 2.4, we plot the precipitation anomalies reproduced by both PMIP3 and proxy 

data. Using our LGM samples from Lake Surprise, we find robust evidence for a negative 

precipitation anomaly. This finding is significant, as most PMIP3 climate models show a 

transition from wetter-than-modern to drier-than-modern climates along a line that is projected 

through northern CA. The exact latitude of this transition zone varies between models; CNRM-

CM5 shows this transition along the CA/NV border at Lake Tahoe, while NCAR CCSM4 shows 

this transition occurring along the border at the approximate location of Lake Surprise. With 

respect to our LGM precipitation average (~80% of modern), we infer that Lake Surprise may 

have been located near this transition zone. We find good model-data agreement (±100 mm/yr) 

for 6/9 PMIP3 models, with model-data discrepancies >100 mm/yr for NCAR-CCSM4, IPSL-

CM5A-LR, and MIROC-ESM. Regardless, most PMIP3 anomalies are within analytical error 

calculated for our Lake Surprise precipitation anomaly (±	185	mm/yr). 

In Fig. 2.5, we plot the average weighted evaporation anomaly, as reproduced by PMIP3 

and proxy data. We find the best model-data agreement (±100 mm/yr) for MIROC-ESM and 

MRI-CGCM3, though all models agree on the sign of the evaporation anomaly (negative). 

Overall, MRI-CGCM3 shows the best qualitative agreement with proxy reconstructions of T, P, 
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and E using clumped isotopes, indicating moderate to low precipitation rates, and lowered 

evaporation rates during the deglacial period and the transgression of Lake Surprise.  

 

Model Skill 

We report model skill for temperature, precipitation rate, and weighted evaporation, for 

both steady-state (PMIP3) and transient (TraCE) climate models (Fig. 2.6). With regard to 

temperature, we calculate positive model skill for all models, with a 10-member average of 0.42. 

We calculate positive model skill for precipitation in 6/10 models; these six models have an 

average model skill of 0.08. However, the 10-member ensemble mean for precipitation has an 

average model skill of -0.25, due to poor model skill calculated for NCAR CCSM4, FGOALS, 

IPSL-CM5A-LR, and MIROC-ESM.  

A similar assessment of climate model skill in the Great Basin was performed by Lora 

(2018), who compiled proxy estimates from sediment yields (Lemons et al.,1996), pollen and 

plant macrofossils (Bartlein et al., 2011), tufa (Ibarra et al., 2014), and uranium isotopes (Maher 

et al., 2014). Similar to Lora (2018), our top performing models with respect to precipitation 

include COSMOS, CNRM-CM5, MRI-CGCM3, while underperforming models include 

MIROC-ESM and NCAR CCSM4. Unlike Lora (2018), GISS-E2-R (p150) demonstrates 

positive model skill in this study, while FGOALS indicates negative model skill. However, as 

Lake Surprise lies along a sharp precipitation gradient in both of these PMIP3 model simulations 

(Fig. 2.4), we note that our calculation of model skill is limited by the spatial resolution of model 

output, and is sensitive to the exact model coordinates chosen as the centroid of Lake Surprise. 

As PMIP3 provides estimates of evapotranspiration (ET), we assess model skill in terms 

of weighted evaporation derived from lake evaporation, rather than lake evaporation itself (See 



 
 
 

 
 

 

 
   
 51 

Supplement). When compared to weighted evaporation rates from proxy data, we show 

consistent positive model skill for all PMIP3 evapotranspiration simulations. Overall, all PMIP3 

models and our data suggest significant evaporation depression during the LGM. The highest-

performing models—NCAR CCSM4, GISS-E2-R (p150), and MPI-ESM-P—and our data 

predict ~200-300 mm/yr of evaporation depression during the LGM. 

 

Potential Sensitivity of Results to Modeling Assumptions 

Evaporation (Fig. 2.S2 in Supplement) 

As relative humidity is increased from 45 to 65%, projected lake evaporation decreases, 

due to a smaller moisture gradient between the lake surface and overlying air. One assumption 

we make in our usage of the Linacre (1993) equation for evaporation is a constant difference 

between air and dew point temperatures, which itself is influenced by relative humidity. 

However, we note that elevated humidity would cause dew point temperature to fall closer to air 

temperature, resulting in lower calculated evaporation rates. Hence, even if LGM relative 

humidity were higher than modern values, our main conclusion (lowered evaporation rates) 

would remain the same.  

As we increase input wind speed from 0 m/s to 6 m/s, our projected lake evaporation rate 

increases. This evaporation increase occurs for similar reasons as the change resulting from 

relative humidity; strong winds can drive evaporation by removing saturated air and increasing 

the vapor pressure deficit between the air and evaporating surface. Although modest increases in 

LGM wind speed have been modeled over water (e.g. Lora et al., 2016), these changes have not 

been found over land near Lake Surprise, at least not on a fine enough spatial scale. Calculations 

of evaporation rate are insensitive to input values for water 𝛿18O or ω.  
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Precipitation (Fig. 2.S3 in Supplement) 

Similar to evaporation rates, precipitation rates are negatively correlated with relative 

humidity and positively correlated to wind speed. This is not necessarily an intuitive 

meteorological outcome, but is due to the inclusion of lake evaporation in the numerator of our 

calculation of precipitation rate (Equation S7). We find that water 𝛿18O and modeled 

precipitation are positively correlated with precipitation rate. The total range of input water 𝛿18O 

comes from modern tap water, wells, springs, and rivers. As water 𝛿18O is dependent on relative 

humidity, atmospheric water source, and other factors, there may be some temporal variability in 

water 𝛿18O, which is why it is included in this analysis. Our model is reasonably sensitive to 

changes in input water 𝛿18O, over a 4‰ range, our resulting precipitation rates roughly double. 

One benefit of clumped isotope analysis is it allows for independent constraints on water 𝛿18O 

(Fig. 2.2b). We show that lake 𝛿18O varies by ≲4‰ for the duration of our analysis.  

Finally, precipitation and ω are positively correlated. The total range of ω for this 

sensitivity analysis is chosen based on the range of interpolated values in Greve et al. (2015) for 

western North America (2 ≾ ω ≾ 3). Our mean input value (ω = 2.6) is reasonable for the modern 

western US as a whole, although this parameter is sensitive to changes in vegetation and aridity, 

both of which have changed over the last ~20 ka (e.g. Madsen et al., 2001; Greve et al., 2015). 

Overall, post-LGM precipitation rates are not significantly elevated relative to modern values, 

unless we assume wind speeds were ~50% greater during the LGM and deglacial period, relative 

to modern, for which there is no evidence to support. 
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CONCLUSIONS 

Constraining the timing of lake highstands has important implications for understanding 

the terrestrial and atmospheric processes that transport moisture and impart changes on the basin-

scale hydrological cycle. We use previously compiled lake level histories to summarize major 

events in the growth and decay of late-Pleistocene Lake Surprise. We see evidence of a fast lake 

transgression at ~16 ka, suggesting a large effective precipitation forcing. While the abruptness 

of this lake transgression is similar to nearby Lakes Lahontan and Chewaucan, the regression of 

Lake Surprise occurs more gradually than in these lake basins. We suggest this slow regression 

may be due to lake geometry, with both lake depth and hydrologic index playing a role, or due to 

the smaller orographic barriers to the west of Lake Surprise, compared to other lakes, like Lake 

Chewaucan.  

Stable isotope data does suggest a temporal trend in 𝛿18O of precipitation leading towards 

a minimum, coincident with the lake highstand at 16 ka; however, we note that this trend could 

be explained by both changing water sources or changing water temperatures. Studies typically 

suggest that the isotopic composition of water undergoing cooling (isobaric or moist adiabatic) at 

a starting point of 20℃, changes at a rate of 0.24‰ or 0.48‰ per ℃, respectively (Dansgaard, 

1964). With these numbers in mind, we note that a portion, or even all, of the 4‰ decrease in the 

𝛿18O of precipitation between the LGM and lake highstand could be explained by our estimated 

~10℃ decrease in average water temperature in the same period of time, without necessitating 

variations in moisture source. 

In addition to lake shoreline data, estimates of past temperature from clumped isotope 

analysis on lake sediments offer further insight into past hydroclimate. From a modern 

carbonate, we calculate a surface water temperature of 17.6±	2℃, and an average surface water 
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temperature of 10.2±	1℃ from our LGM age samples. Using modern air temperature at 

Cedarville, CA, we estimate 8.9±	1.4℃ of air warming since the LGM; using modern and LGM 

carbonate samples, we estimate 7.4±	2.2℃ of water warming since the LGM. From Δ47 derived 

temperatures, we estimate past evaporation rates and precipitation rates using a range of 

empirically-based equations. We find that lake growth was aided by decreasing evaporation 

rates, along with moderate precipitation rates (~ 80% of modern). 

We perform qualitative and quantitative assessments of model skill at the location of 

Lake Surprise. By showing clumped isotope derived anomalies of temperature, precipitation, and 

evaporation on PMIP3 anomaly plots, we are able to visually assess which models are best able 

to reproduce the hydroclimate anomalies implied by our data. For a more quantitative 

comparison, we calculate model skill with respect to each variable of interest. 

When applied to temperature and evaporation reconstructions, every model demonstrates 

similar positive skill scores. However, only 6/10 models demonstrate skill with regard to 

precipitation rates. Overall, the best performing models are CNRM-CM5, COSMOS-ASO, MPI-

ESM-P and MRI-CGCM3, while the poorest performing models are NCAR CCSM4, FGOALS, 

MIROC-ESM and GISS-E2-R (150). Our four top-performing models all demonstrated positive 

skill in a similar study by Lora (2018) in the Great Basin, while two of our poorest-performing 

models, NCAR CCSM4 and MIROC-ESM, are amongst the worst performers in his study. In the 

future, a similar quantitative analysis compiling estimates from different paleolakes throughout 

the Great Basin may be used as a tool to further constrain which climate models are most in line 

with proxy reconstruction on a wider spatial scale. 

We include a sensitivity analysis as a means of assessing the inherent variability in our 

model precipitation and evaporation reconstructions due to choices of input parameters: wind 
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speed, relative humidity, 𝛿18O of precipitation and the Budyko landscape parameter. While our 

results are sensitive to these input variables, we see robust evidence of decreased precipitation 

rates during the LGM and deglacial period, barring large changes in surface wind speed. 

Importantly, we note that increased moisture availability is due mostly to decreased lake 

evaporation rates rather than increased precipitation rates, because calculated precipitation rates 

are, overwhelmingly, less than or equal to modern values. 

Ultimately, this work sheds light on factors that supported ancient large-scale lakes in the 

Western US, and why they disappeared, representing a proof-of-concept for a method that is 

broadly applicable to paleoclimate reconstructions and model evaluation using sediments from 

small closed basin lakes. Similar clumped isotope reconstructions for multiple sites in the 

Western US, in concert with isotope-enabled simulations, may allow for further constraints on 

hydroclimates and the refinement of water vapor sources.   
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FIGURES

 
Figure 2.1: Lake hydrograph and stable isotope measurements. Modern values are plotted in blue and the shaded area indicates 
uncertainty associated with modern values (when applicable). 
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Figure 2.2: Reconstructed water temperature (a), water 𝛿18O (b), precipitation rates (c), and evaporation rates (d). Modern values 
are plotted in blue and the shaded area indicates uncertainty associated with modern values. 
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Figure 2.3: Mean annual surface air temperature anomaly between LGM and modern, as simulated by the 9 PMIP3 ensemble 
members, reported in ℃. The temperature anomaly is defined as LGM minus preindustrial temperatures for PMIP3, and LGM 
minus modern air temperatures for Lake Surprise. The point at the location of Lake Surprise corresponds to the average MAAT 
anomaly (-8.9 ± 1.4 ℃) calculated from Δ47 for all Lake Surprise LGM age samples (0.30± 1 ℃) and modern air temperature 
(9.2± 1 ℃).  
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Figure 2.4: Mean annual precipitation anomaly between LGM and modern, as simulated by the 9 PMIP3 ensemble members, 
reported in mm/yr. The point at the location of Lake Surprise corresponds to the average precipitation anomaly (-76 ± 185 
mm/yr) calculated from Equation S7 (490 ± 85 mm/yr) and modern precipitation rates (566 ± 165 mm/yr) for all Lake Surprise 
LGM age samples. The smaller stars are precipitation anomalies, reconstructed using pollen data in Bartlein et al. (2011). 
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Figure 2.5: Mean annual evaporation anomaly between LGM and modern, as simulated by PMIP3 ensemble members, reported 
in mm/yr. The point at the location of Lake Surprise corresponds to the average weighted evaporation anomaly (-368 ± 
100 mm/yr) derived from LGM samples (537 ± 65 mm/yr) and modern pan evaporation rate (905 ± 80 mm/yr). 
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Figure 2.6: Model skill evaluation with respect to temperature, precipitation, and evaporation anomalies.  
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SUPPLEMENT 
 

 
 
Figure S1: Map of sampling localities, with the estimated extent of pluvial lakes from the LGM and deglacial period shown in 
blue (pluvial lakes, digitized from Mifflin & Wheat, 1979 estimates). The perimeter of the Great Basin is outlined in black. The 
locations of Lake Surprise (“LS”) and other major pluvial lakes—Lake Bonneville (“LB”), Lake Lahontan (“LL”), Lake 
Chewaucan (“LC”)—are indicated on the map, as are major mountain ranges: the Sierra Nevada, the Wasatch, and the Uinta 
Mountains.  
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Table 2.S1: Clumped and Stable Isotope Data for Lake Surprise Samples 
 

Sample Name Δ47 Δ47 
SE 

δ18O δ18O  
SE 

δ13C δ13C  
SE 

14C 
Age 

14C 
Age 
SD 

IntCal13 
Age 
(ka) 

2𝜎 
min 

2𝜎 
max 

Elevation 
(m) 

SVCW 17-PT11 0.741 0.009 -3.8 0.03 3.7 0.02 13.52 0.34 16.30 15.29 17.29 1475 
SVCW 17-PT21 0.730 0.003 -3.8 0.07 3.7 0.04 13.39 0.16 16.11 15.64 16.61 1475 
SVCW 17-PT31 0.726 0.004 -3.9 0.22 3.7 0.09 13.79 0.19 16.68 16.13 17.26 1477 
SVCW 17-PT4 0.726 0.004 -3.8 0.06 3.8 0.10   8.09 0.11   9.01   8.63   9.31 1475 
SVDI 11-T14-1A 0.727 0.005 -2.6 0.10 3.6 0.18 10.79 0.05 12.70 12.64 12.76 1478 
SVDI 11-T14-1B 0.739 0.001 -2.9 0.01 4.0 0.05 10.79 0.05 12.70 12.64 12.76 1478 
SVDI 11-T14-1C 0.720 0.006 -2.8 0.09 3.6 0.06 10.79 0.05 12.70 12.64 12.76 1478 
SVDI 11-T14-E2 0.708 — -2.8 — 3.6 — 10.79 0.05 12.70 12.64 12.76 1478 
SVDI 11-T2-1 0.736 0.005 -3.1 0.21 3.9 0.10 15.93 0.07 19.21 18.99 19.46 1454 
SVDI 11-T3-2 0.731 0.005 -3.4 0.17 3.0 0.04 17.58 0.07 21.25 20.98 21.51 1438 
SVDI 11-T4-1b 0.742 0.004 -2.9 0.04 3.6 0.04 17.28 0.06 20.84 20.63 21.05 1431 
SVDI 12-T1 0.704 0.006 -3.5 0.06 3.7 0.18 17.56 0.60 21.22 20.97 21.46 1420 
SVDI 12-T10-A 0.715 0.006 -3.6 0.14 3.6 0.08 12.60 0.07 14.96 14.94 15.18 1517 
SVDI 12-T10-B 0.726 0.004 -3.3 0.06 3.5 0.13 12.60 0.05 14.96 14.94 15.18 1517 
SVDI 12-T13 0.732 0.011 -3.2 0.08 3.7 0.02 17.49 0.09 21.13 20.84 21.43 1437 
SVDI 12-T14 0.747 0.009 -3.6 0.10 3.7 0.06 12.75 0.05 15.19 15.01 15.36 1531 
SVDI 12-T14-1C 0.717 0.002 -2.5 0.12 3.6 0.01 10.79 0.05 12.71 12.64 12.76 1531 
SVDI 12-T15-B 0.712 0.015 -2.9 0.01 3.8 0.01 16.15 0.07 19.49 19.25 19.70 1433 
SVDI 12-T3-A1 0.714 0.007 -3.3 0.01 3.6 0.06 18.03 0.28 21.82 21.08 22.44 1428 
SVDI 12-T3-B1 0.724 0.005 -3.4 0.17 3.6 0.09 16.59 0.29 20.02 19.28 20.71 1428 
SVDI 12-T4-A1 0.735 0.004 -3.3 0.12 3.6 0.02 18.78 0.27 22.70 22.04 23.35 1439 
SVDI 12-T4-B1 0.741 0.005 -3.3 0.05 3.6 0.04 18.35 0.27 22.18 21.53 22.81 1439 
SVDI 12-T5b 0.721 0.001 -3.7 0.02 3.4 0.01   9.47 0.04 10.71 10.58 10.79 1444 
SVDI 12-T71 0.738 0.003 -3.9 0.29 3.7 0.09 14.46 0.17 17.61 17.14 18.01 1473 
SVDI 12-T9 0.731 0.004 -3.4 0.11 3.6 0.11 12.42 0.05 14.52 14.18 14.88 1509 
SVDI 15-AE01 0.705 0.006 -3.3 0.10 3.8 0.04 15.55 0.06 18.81 18.66 18.94 1462 
SVDI 15-AE02 0.699 0.009 -3.5 0.20 3.6 0.07 14.86 0.05 18.07 17.89 18.26 1470 
SVDI 15-AE03 0.720 0.008 -3.0 0.18 3.5 0.09 12.09 0.05 13.96 13.79 14.10 1491 
SVDI 15-AE05 0.713 0.009 -3.8 0.10 3.2 0.05 17.70 0.06 21.43 21.17 21.69 1443 
SVDI 15-AE06 0.689 0.006 -3.4 0.10 3.5 0.04 18.20 0.10 22.07 21.82 22.34 1437 
SVDI 15-BM03 0.720 0.008 -3.6 0.04 4.9 0.02 14.13 0.06 17.20 16.98 17.44 1440 
SVDI 15-BM04 0.735 0.006 -4.0 0.16 3.6 0.11 16.20 0.06 19.56 19.34 19.78 1459 
SVDI 15-BM08 0.692 0.006 -3.6 0.17 3.4 0.11 17.73 0.07 21.46 21.19 21.73 1441 
SVDI 15-BM09 0.688 0.009 -3.4 0.18 3.1 0.10 16.43 0.06 19.82 19.61 20.03 1456 
Modern Playa2 0.698 — -2.7 — 3.6 — — — — — — 1355 

 

1Indicates Samples submitted for Desert Symposium, previously unpublished 

2Indicates samples with too few runs to constrain standard error of the mean 
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Table 2.S2: Reconstructed Precipitation (P) and Evaporation (E) Rates from Two Models: 
Matsubara & Howard (M & H), or Linacre, (1993) and Ibarra et al. (2014). Units reported are 
mm/yr. 
 

Sample Name E: M&H SE E: Linacre 
(1993) 

SE P: M&H SE P: Ibarra et al. 
 (2014) 

SE 

SV15BM04 1154 254 658 46 -243 423 411 57 
SVCW 17-PT1 1460 170 695 53 173 298 427 64 
SVCW 17-PT2 1595 200 698 53 361 340 431 65 
SVCW 17-PT3 1596 216 747 62 361 361 462 71 
SVCW 17-PT4 1565 245 747 63 319 402 455 70 
SVDI 11-T14-1A 1476 321 743 62 194 506 369 69 
SVDI 11-T14-1B 1116 66 640 41 -306 152 339 58 
SVDI 11-T14-1C 1836 276 878 85 694 444 444 83 
SVDI 11-T14-E 2286 51 1230 91 1318 132 614 108 
SVDI 11-T2-1 1196 206 657 47 -181 361 351 57 
SVDI 11-T3-2 1385 230 682 52 90 402 374 59 
SVDI 11-T4-1b 992 182 623 41 -451 340 317 52 
SVDI 12-T1 1452 193 689 55 194 361 370 59 
SVDI 12-T10-A 2046 307 1022 99 964 465 619 105 
SVDI 12-T10-B 1626 202 764 62 381 319 440 73 
SVDI 12-T13 1370 425 744 69 69 673 397 69 
SVDI 12-T14 852 417 691 47 -701 610 455 65 
SVDI 12-T14-1C 1977 132 972 82 860 215 482 93 
SVDI 12-T15-B 2148 603 1181 160 1152 923 585 126 
SVDI 12-T3-A 2056 301 1030 106 1027 506 528 96 
SVDI 12-T3-B 1651 226 763 69 465 402 402 71 
SVDI 12-T4-A 1251 171 648 46 -98 319 349 55 
SVDI 12-T4-B 1011 231 635 43 -431 402 352 53 
SVDI 12-T5b 1763 83 798 70 610 194 452 74 
SVDI 12-T7 1144 169 648 44 -264 298 415 59 
SVDI 12-T9 1414 229 711 53 90 361 422 68 
SVDI 15-AE01 2430 285 1370 118 1526 465 735 126 
SVDI 15-AE02 2688 423 1028 135 1880 652 592 118 
SVDI 15-AE03 1856 356 912 95 714 548 487 94 
SVDI 15-AE05 2092 367 1071 118 1068 590 619 110 
SVDI 15-AE06 3050 305 1241 158 2401 506 666 133 
SVDI 15-BM03 1821 366 893 97 694 590 503 88 
SVDI 15-BM04 1259 254 676 50 -98 423 425 60 
SVDI 15-BM08 2931 291 1814 130 2234 485 982 156 
SVDI 15-BM09 3132 417 1302 173 2505 652 723 145 
SVDI 12-T2 1138 28 625 45 -243 132 253 50 
SVDI 12-T4 535 36 609 38 -1091 132 312 50 
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Methods supplement 

 
Clumped Isotope Analysis  

Tufa was rinsed by hand in deionized water (DI) to remove loosely-held secondary 

material. In some cases, samples were sonicated in room-temperature DI for up to 30 minutes to 

remove loosely held contaminants and particles on the sample surface. For tufa samples, 

carbonate was extracted using a microdrill. To prevent potential bond reordering due to frictional 

heating, the drill speed during this process was limited in duration and in speed. Carbonate 

powder was subsequently homogenized using a mortar and pestle and treated using dilute (3%) 

H2O2 for 1-4 hours, following a published protocol for extracting and treating carbonates 

containing trace organics (e.g. Tripati et al., 2010). Following peroxide treatment, samples were 

dried in an oven at low heat (<50℃), and stored in a desiccator prior to analysis.  

 Carbonate clumped isotope measurements were carried out using at UCLA using a 

Thermo 253 isotope ratio mass spectrometer (IRMS). At least four replicates were measured of 

each sample. Carbonate samples were weighed into silver boats and digested under vacuum 

using a McCrea-style common acid bath maintained at 90°C (89.0 to 90.5°C) before analysis. 

Sample CO2 is purified using an automated vacuum line and cryogenic freezing system, which 

isolates H2O and minor contaminant species (e.g. N2, O2, other trace gases) from analyte CO2, 

based on differential freezing points. The liberated gas passes through two separate gas traps to 

ensure removal of water and other compounds: the first containing ethanol, is kept at -76°C by 

dry ice, and the second is kept at -126°C by liquid nitrogen. The sample gas is then passed 

through a silver wool, which removes sulfur compounds. Remaining trace contaminants (e.g. 

halocarbons and hydrocarbons) are separated by passing the resultant gas through a Thermo 
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Trace GC Ultra gas chromatograph column, which is filled with a divinyl benzene polymer trap, 

Porapak Q, and maintained at -20℃.  

After purification in the GC, the sample is transferred to the mass spectrometer. Samples 

are measured with a mass 44 ion beam at 16 V, with an Oztech working gas. Each sample is 

measured for a total of nine acquisitions, with each acquisition consisting of a peak centering, 

background adjustment, and alternate cycling between sample and reference gas ionization (e.g. 

Spencer & Kim, 2015). Total measurement time is 2.3 hours per sample. For an in-depth 

discussion of this process, the reader is directed to Spencer & Kim (2015) and Huntington et al. 

(2009). 

 After reaction in the mass spectrometer, isotope ratios are calculated using the Brand 

parameter set, which provides a correction for 17O interference by specifying the ratio of 16O to 

17O (Brand et al., 2010). An acid digestion correction of 0.082‰ is applied to data to account for 

digestion at 90 °C (Defliese et al., 2015). Error on Δ47 is reported as standard error of the mean, 

as this error is minimized by increasing the number of sample replicates (Huntington et al., 2009; 

Fernandez et al., 2017). Water 𝛿18O is calculated by applying the appropriate temperature-

dependent water to calcite fractionation to measured carbonate samples (Kim & O’Neil, 1997).  

 

Hydroclimate modelling: 

Lake Evaporation Rate 

Linacre (1993) creates a robust equation for lake-based evaporation that relies on inputs 

of latitude (Lat), temperature (T), dew-point temperature (Td), wind speed (u), and elevation (z), 

and has been used for previous paleoclimate reconstructions (Jones et al., 2007; Ibarra et al., 

2014, Mering, 2015). For our primary calculations, we assume u and z have remained constant 
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through time, and that Td is offset a constant amount from temperature, which is reasonable, 

assuming small changes in RH (Linacre, 1993; Jones et al., 2007; Ibarra et al., 2014). We assume 

that T is equal to MAAT, but this assumption may bias our calculated evaporation rates to high 

values, were the lake frozen over (thus inhibiting evaporation) for a significant amount of each 

year. In our sensitivity analysis, we explore the effects of allowing u and RH to be altered within 

a reasonable range.  

 

𝐸GG/HI = [0.015 + 4 ∗ 106N𝑇 + 106P𝑍] × [NTU(VWU.UUP1)
TN6+,X

− 40 + 2.3𝑢(𝑇 −	𝑇\)]  Equation S1  

 
Weighted Evaporation Rate 

To allow for more direct comparison between our clumped isotope derived lake evaporation 

rates and PMIP3 ET rates, we create a weighted evaporation that scales lake evaporation and ET 

from our models by the size of lake area and tributary area, respectively. ET is estimated as 

precipitation minus Krun, both of which are calculated in our model (see below). 

 
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 	 (j6	klmn×/o)W	pq×/q

/r6	/q
     Equation S2 

 

Estimating Lake Area and Basin Hypsometry 

The pluvial hydrologic index, /q
/r6	/q

, or “HI” is a physical basin parameter that describes 

the ratio of lake surface area (AL) to tributary area (AW), and is a primary input in our 

precipitation rate calculation. Historically, it has been used as a means to determine the 

partitioning of rainfall into runoff and evaporation and otherwise approximate past hydroclimate, 

assuming minimal change in drainage area and a basin’s hypsometric curvature (e.g., Mifflin & 

Wheat, 1979; Reheis, 1999; Ibarra et al., 2014; Ibarra et al., 2018). We calculate the HI 
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corresponding to each shoreline as a function of sample elevation (z) using a hypsometric curve 

from the HydroSHEDS/HydroBASINS datasets (e.g. Lehner et al., 2008; Lehner & Grill, 2013). 

 

Lake Precipitation Rate 

Beginning with the time-varying (t) water balance and δ18O isotope mass balance equations for 

an inward draining lake and applying the product rule, we derive a function for calculating 

precipitation rate (modified from equations and derivations in: Jones et al., 2007; Steinman et al., 

2013; Ibarra et al., 2014). The change in lake volume (VL) is: 

  

tuv
tw
= Qy − Qz               Equation S3 

  

where Q is the input (w) and evaporative (e) fluxes. Input fluxes are assumed to be both runoff 

and precipitation at this point, but are partitioned in subsequent equations using a runoff 

coefficient. Similarly, the isotope mass balance equation is given by: 

  

   t{|
}~�v×uv�
tw

= (δ�TOy × Qy) − (δ�TOz × Qz)            Equation S4 

  

Applying the product rule to Equation S4, substituting the mass balance equation into the isotope 

balance equation and rearranging yields an expression for time-varying changes in lake water: 

  

  V�
t{|}~�v�

tw
+ δ�TO�

t(uv)
tw

= (δ�TOy × Qy) − (δ�TOz × Qz)            Equation S5 
    

  V�
t{|}~�v�

tw
= (δ�TOy − δ�TO�) × Qy − (δ�TOz−δ�TO�) × Qz      Equation S6 
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Assuming steady state and solving for precipitation rate (P), and assuming that Qe = ALEL and 

Qw = (PL×AL) + (krun×PL×(Aw–AL)), where A is area of the lake (L) and watershed (w), EL is the 

evaporation rate, and krun is the runoff coefficient, we obtain an expression for the basin average 

precipitation rate: 

 

P = �v
�W ����

(
�v

����v
)

× (|}~��6|}~�v)
(|}~��6|}~�v)

       Equation S7 

 

This equation includes the commonly used “pluvial hydrologic index”, modified by the isotope 

mass balance differences between lake water, input water, and evaporating water vapor. In 

previous work (Ibarra et al., 2014) a runoff coefficient (krun) was assumed; however, as discussed 

by Broecker (2010), modern hydrologic observations suggest a non-linear response of runoff to 

changes in precipitation (e.g. Greve et al., 2015). We use the single parameter formulation for the 

Budyko curve calibrated by Greve et al. (2015) for the coterminous United States: 

 

 1 − k��� =
��
�
= 1 + ��

�
− �1 + ���

�
�
�
�
�/�

       Equation S8 

 

where ET is evapotranspiration, Ep is potential evapotranspiration (which we approximate by 

constraints on EL from the clumped isotope results, described above), and ω is the adjustable 

calibrated Budyko landscape parameter. The use of this Budyko framework in terminal basin 

hydrologic modeling has been demonstrated in spatially explicit hydrologic modeling by 

Matsubara & Howard (2009) and Barth et al. (2016), and in similar regional modeling by Ibarra 
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et al. (2018) for Plio-Pleistocene watersheds of the Great Basin, justifying the incorporation of ω 

into this simplified isotope mass balance framework. 

Given knowledge of evaporation rates and basin hypsometry, calculation or measurement 

of δ18O values and assumptions of ω, Equations S7 and S8 can be solved simultaneously for P 

and krun, given a calculated EL and lake water δ18O from Δ47. Because of the non-linear nature of 

both equations we use a root-finding procedure to solve for the unknowns. This is carried out 

using the multiroot function in the R package ‘rootSolve’ (Soetaert, 2016), which uses a 

numerical Newton-Raphson method to find the roots of the two equations. Errors are propagated 

through random draws in the Monte Carlo routine by bootstrapping RH, Td, and u, and assuming 

normal distributions for all input variable values (mean and standard deviation) except for ω, 

which has a skewed gamma distribution as calibrated by Greves et al. (2015) for the continental 

United States.  

 

Inputs to Equation S8 

  Prior to implementing the simultaneous solution to Equations S7 and S8, several model 

variables need to be determined to populate the equations. We estimate lake evaporation rate 

(EL) using Equation S1. We also implement a transfer function from Hren & Sheldon (2012) to 

calculate MAAT from seasonal (AMJJASO) water temperatures, Tw: 

 

MAAT (℃) = -0.0146*Tw2 + 1.753* Tw - 16.079     Equation S9 

 

Basin hypsometric curves provide constraints on lake area (AL) and basin area (Aw). Lake 

water isotopic composition (δ18OL) is calculated from Δ47 derived temperature and the 
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temperature dependent equilibrium fractionation factor of Kim & O’Neil (1997). Meteoric water 

inputs (δ18Ow) into the lake are constrained from the modern average (-14.57 ± 0.6‰, 1σ), where 

we assume that source water effects and temperature effects roughly cancel (see discussion in 

Jones et al., 2007; Ibarra et al., 2014). Finally, to implement the isotope evaporation equation of 

Craig & Gordon (1965), the following assumptions are made to derive δ18Oe: 

 
1. The kinetic fractionation factor is derived from Gonfiantini (1986), where the 

fractionation factor ε is a simple function of relative humidity: 1000 ln(αkin) ≈ ε = 
14.2×(1–RH/100), where RH is relative humidity.  

2. The atmospheric vapor above the basin is in equilibrium with the incoming 
rainwater, which is calculated using the temperature dependent equilibrium 
fractionation factor equation from Majoube (1971). This parameter is needed for 
the Craig & Gordon (1965) evaporation equation to derive δ18Oe  in Equation S7. 

 

This approach differs from that of Ibarra et al. (2014) and Jones et al. (2007), who assume a 

kinetic fractionation of αkin = 0.994 for u ≤ 6.8 m/s. In similar work for closed-basin lake 

modeling (Ibarra et al., 2014; Ibarra & Chamberlain, 2015) the kinetic fractionation factor using 

the above equation from Gonfiantini (1986) was found to better approximate the range of 

possible values (given likely variations in RH), and has been used elsewhere. 

 

Alternate Equations for Precipitation and Evaporation Rates 

Rather than relying on isotopic constraints, Matsubara & Howard (2009) model lake 

precipitation as a function of temperature. This equation was calibrated in the Great Basin under 

late Pleistocene to modern conditions. Matsubara & Howard (2009) report two variations of this 

model: one assumes an aerially uniform and absolute amount of precipitation change (Equation 

S10), while the other calculates a fractional change in precipitation compared to the modern 

value (not shown). The former model was found to be more accurate for the far northern and 
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southern Great Basin, while the latter model was more appropriate for the interior of the Great 

Basin. In this supplement, we calculate precipitation using Equation S10, as this is likely more 

appropriate for the northerly Lake Surprise.  

 
P - Pm = 0.36 + 0.057× (T - Tm)           Equation S10 

P = LGM Precipitation 

Pm= Modern Precipitation = 566 mm/yr 

T = LGM air temperature 

Tm = Modern Mean Annual Air Temperature = 9.2℃  

 
Matsubara & Howard (2009) also present a simplified model for evaporation, specific to the 

Great Basin, that relies only on inputs of latitude and elevation:  

 
E[mm/yr] = (0.15×T + 0.0004×Z - 0.54)	×1000       Equation S11 

 
We report precipitation and evaporation rates from Equations S10 and S11, respectively, in 

Table 2.S2, along with our precipitation and lake evaporation estimates used in the main text. 

 

Quantifying Model Skill 

 As in Hargreaves et al. (2013), we quantify model skill using an equation that weighs the 

ability of climate models to reproduce the magnitude and distribution of temperature and 

precipitation estimates from clumped isotopes: 

 

Model Skill = 1 −	�(��6��)�

(5�6��)�
        Equation S12 
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where mi are the forecast results (from PMIP3), ni is the reference state (in our case, taken to be 

zero, or no change between the LGM and present), and oi are the observations (from clumped 

isotope analysis). As discussed in Lora (2018), results should be interpreted as a model’s skill in 

depicting past climatic changes with respect to the null hypothesis, of no change between the 

LGM and modern. A perfect simulation would have a score of 1, a score of 0 would indicate that 

the model and reference state (no change) perform equally well, and a negative score would 

indicate that model error is greater than in the case of the null hypothesis. 

 

Sensitivity Analysis  
 

 
 
Figure 2.S2: Sensitivity of reconstructed evaporation rates for “average” sample (red line) and median sensitivity of all samples 
(blue line). Modern annual pan evaporation rate is from Ibarra et al., 2014 (black line). The mean x-axis value assumed outside 
this sensitivity analysis is based on modern climate data, and is indicated by the black point. Calculated evaporation is insensitive 
to changes in input precipitation δ18O and ω.  
 
 

0.45 0.55 0.65

0
50

0
10

00
15

00

Relative Humidity

Ev
ap

or
at

io
n 

(m
m

/y
r)

A

0.57

0 2 4 6
Wind Speed (m/s)

1.9

B

−16 −14 −12
Precipitation d18O

−14.57

C

2.0 3.0 4.0
Budyko Parameter, w

2.6

D

LG
M

 E
va

po
ra

tio
n 

(m
m

/y
r)



 
 
 

 
 

 

 
   
 74 

 
 
Figure 2.S3: Sensitivity of reconstructed precipitation rates for “average” sample (red line) and median sensitivity of all samples 
(blue line). Modern annual precipitation rate is from Ibarra et al., 2014 (black line). The mean x-axis value assumed outside this 
sensitivity analysis is based on modern climate data, and is indicated by the black point.  
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ABSTRACT 

The Great Basin is a hydrographic and topographic province in North America, known 

for its overall arid climate and being the largest continuous area of endorheic watersheds. 

Remarkably, in stark contrast to the present, the province was characterized by numerous large-

scale lake systems during the Last Glacial Maximum (LGM; ~23,000-19,000 years ago) and 

subsequent deglaciation (~19,000-11,000 years ago). The contrast between these hydrological 

states indicates significant changes in the water cycle led to modern aridification, with 

hypotheses proposed including changes in moisture sources, rainfall intensity, and lake 

evaporation rates. In this study, we use a thermodynamically-based tracer, carbonate clumped 

isotope thermometry, to constrain four variables in the hydrologic budget (temperature, 

precipitation rates, lake evaporation rates, and water δ18O) at a subset of LGM pluvial lakes: 

Lake Chewaucan, Lake Franklin, Mud Lake, and Lake Surprise. Our results indicate that 

different mechanisms sustained the spatially and temporally asynchronous growth of these post-

LGM lakes. We infer that Lakes Chewaucan, Franklin, and Mud had elevated precipitation rates 

compared to modern at the time of maximum lake extent (~2.5, 5, and ~15 times modern values, 

respectively), while Lake Surprise instead had precipitation rates ~80% of modern. Furthermore, 
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our estimates of lake evaporation indicate that evaporation depression contributed to increased 

effective moisture at Lake Surprise and Mud Lake, but not at Lake Chewaucan or Lake Franklin. 

This variability in causal mechanisms for lake growth is interpreted with respect to proposed 

atmospheric forcings, and sheds light on local atmospheric variability in the western US, which 

is especially valuable in consideration of future climate change. 

 

INTRODUCTION 
 

The modern Great Basin encompasses a wide range of biomes and ecologies, but is 

largely characterized as an extensive desert region. It has consistently low levels of precipitation, 

with many regions receiving under 250 mm of rain a year, especially in the southern Great Basin 

and in the rain shadow of the Sierras (Comstock & Ehleringer, 1992). Sediments and proxy data 

paint a picture of a region that has experienced dramatic aridification due to changes in the water 

balance and major shifts in terrestrial ecosystems (Matsubara & Howard, 2009; Huntington et al., 

2010; Hudson et al., 2017; McGee et al., 2018); furthermore, this region is poised to become 

drier in the future, of major concern given its current water-stressed state (e.g. Seager & Vecchi 

2010; Cook et al., 2014; Maloney et al., 2014).  

Here we explore the use of climate proxy data for the Last Glacial Maximum (LGM; 

23,000-19,000 years ago) and deglacial period (~19,000-11,000 years ago) to understand 

mechanisms of aridification in the Great Basin. During the LGM and deglacial, large lakes and 

enhanced precipitation relative to evaporation characterized this region (e.g. Mifflin & 

Wheat,1979; Reheis, 1999; Lyle et al., 2012; Ibarra et al., 2018; Santi et al., 2019). Lake 

highstands and the timing of lake disappearance was asynchronous, including along zonal bands, 

implying that a complex interplay of factors with significant spatial variability is likely important 
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in the region (Hostetler & Benson, 1990; Negrini, 2002; Munroe & Laabs, 2012; Kirby et al., 

2013). Lora (2018) suggests there may be a symmetric response of hydroclimate in the Great 

Basin to global warming and cooling, and that the LGM may thus represent a key time period for 

the study of future hydroclimate dynamics.  

However, parsing out the specific contributions of different thermodynamic and dynamic 

processes that impact water transport to climate forcing in the Great Basin is unclear. Models and 

data provide ambiguous constraints on the magnitude of changes in temperature, precipitation, 

and evaporation rates. Proposed mechanisms for past lake shrinkage include changes in the 

strength and position of the polar jet stream (e.g. Hostetler & Benson, 1990; Negrini, 2002; 

Munroe & Laabs, 2012; Kirby et al., 2013), reduced transport by atmospheric rivers (e.g. Rutz & 

Steenburgh, 2014; Lora et al, 2015; Lora et al., 2017; Lora, 2018), increased evaporation rates 

(Smith & Street-Perrot,1983; Mering, 2015; Lora, 2018), changes in the strength and position of 

the wintertime Aleutian low and North Pacific high (COHMAP Members, 1988; Bromwich et 

al., 2004; Kim et al., 2008; Unterman et al., 2011), and/or changes in the strength of the summer 

monsoon (Lyle et al., 2012).  

 This study examines how hydrologic variables in different lakes in the Great Basin have 

evolved since the LGM using an interdisciplinary approach that draws on concepts from 

sedimentary geology, geochemistry, paleoclimate, and hydrology. We estimate temperature, 

precipitation rates, evaporation rates, and water δ18O using a thermodynamic tracer – clumped 

isotope analyses of lake sediments. As described below, field sampling of lakes and geochemical 

analysis allows us to estimate temperature and water δ18O, while sampling of closed basin lakes 

allows us to neglect runoff. Therefore, only precipitation and evaporation would dictate lake 

elevation. Thus, precipitation can be derived using mass-balance approaches that incorporate 
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basin hypsometry, while evaporation can be modeled as a function of temperature. This approach 

lets us determine the quantitative contributions of changing precipitation and evaporation rates as 

mechanisms modulating lake levels in the Great Basin through time. Sample localities cover an 

extensive spatial range that allow for insights into how climate evolved through both time and 

space, including a greater understanding of atmospheric processes that have affected the growth 

and retreat of pluvial lakes. We use this information to evaluate the regional predictions of global 

climate models, and examine how climate change can alter ecosystem water balance in the West. 

 

BACKGROUND 

Previous Great Basin Field Studies 

Lake hydrographs constructed from dated lake sediments track temporal changes in 

minimum lake level and can be interpreted as changes in effective moisture (precipitation 

relative to evaporation, or P-E) through time. In the Great Basin, existing lake hydrographs show 

evidence for an increase in lake levels beginning in the late LGM, with lake highstands occurring 

during the deglacial period (e.g. Licciardi, 2001; Adams et al., 2008; Kurth et al., 2011; Benson 

et al., 2013; Ibarra et al., 2014; Munroe & Laabs, 2014; Mering, 2015; Egger et al., 2018; Santi 

et al., 2019). It is notable that, although over 50 pluvial lakes have been documented in the Great 

Basin during the LGM and deglacial in the literature, most existing studies focus on a small 

subset, which typically include Lake Bonneville and Lake Lahontan and their subbasins (e.g. 

Hostetler & Benson, 1990; Benson et al., 1995; Godsey et al., 2005; Adams et al., 2008; Godsey 

et al., 2011; Benson et al., 2013; Miller et al., 2013; Mering, 2015; Oviatt, 2015; Petryshyn et al., 

2016), in part because of their dramatic size at their maximum extent.  
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A range of different types of proxy evidence (including packrat middens, halite 

inclusions, tree lines, and pollen) indicate cold and wet conditions, with reduced evaporation 

rates compared to modern values (cf. Matsubara & Howard, 2009, their Table 1). However, there 

is significant uncertainty associated with existing reconstructions. Reconstructed precipitation 

rates range from 80 – 260% of modern, evaporation rates between 12-90% of modern, and 

temperature depressions of 3 -15℃ (e.g. Matsubara & Howard, 2009; Ibarra et al., 2014). Hence, 

proxy data is only in rough agreement on the sign of evaporation and temperature changes 

relative to their modern values, while precipitation changes differ in their sign. Furthermore, the 

magnitude of these inferred changes varies appreciably between proxy systems. Finally, there are 

few studies that have examined how specific hydrologic variables (i.e., precipitation rate, or 

evaporation rate) vary spatially throughout the Great Basin; the most robust study that exists is 

based on pollen (Bartlein et al., 2011). 

 

Evaluation of Climate Model Simulations of Hydroclimate Change 

The International Panel for Climate Change (IPCC) is tasked with synthesizing, 

analyzing, and reporting the status of climate change at regular intervals (e.g. Pachaurie & 

Reisinger, 2007; Smith et al., 2009). Their work is largely based on climate models, which 

forecast or hindcast meteorological variables at set points in the future or the past. Paleoclimate 

studies can provide observational “benchmarks” and also enhance process-based understanding, 

both of which can contribute to improved process depiction in models that will play a critical 

role in policy and environmental planning in the decades to come.   

The Paleoclimate Modeling Intercomparison Project 3 (PMIP3) represents the latest 

cooperative modeling process involving paleoclimate data, with two relevant steady-state 
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experiments: the Last Glacial Maximum (21 ka BP) and pre-industrial era (1850). Each of these 

set points in time is denoted as a model experiment and is run under prescribed boundary 

conditions, including greenhouse gas concentrations, continental configuration, and ice sheet 

extent. Transient models (e.g. Transient Climate Evolution, ‘TraCE’, which uses the Community 

Climate System Model Version 3) are simulations run with model output available at a much 

finer temporal resolution. However, there are no model intercomparison projects akin to PMIP3 

for transient model performance.  

Proxy data are invaluable, as they provide independent constraints on the response of the 

Earth system to climatic forcings (e.g. changes in incoming insolation) and, when compared to 

climate model hindcasts, can be used to evaluate model skill on a regional level (e.g COHMAP 

Members 1988; Bartlein et al., 2011; Braconnot et al., 2012; Hargreaves et al., 2013; Otto-

Bliesner et al., 2014; Loomis et al., 2017; Lora et al., 2017; Lora, 2018). Lora et al. (2017) and 

Lora (2018) assessed model skill in reconstructing past precipitation rates in the Western US 

using a compilation of reference proxy data (e.g. sediment yields, pollen and halite inclusions), 

and compare process depiction between top-performing and under-performing climate models. 

In the western United States, simulations from PMIP3 models generally exhibit poor 

agreement in regard to past changes in hydroclimates. Several climate models disagree not only 

over the magnitude of changes, but some over the sign of their predictions; while some PMIP3 

models simulate less rainfall in the Great Basin during the LGM, others simulate more (Fig. 3.5). 

Furthermore, model output from an established transient climate model ‘TraCE’ is run at a 

relatively low resolution (3.75° by 3.75°), which is limiting, given the relative proximity of our 

four lake basins.  



 
 
 

 
 

 

 
   
 88 

To provide well-constrained assessments of model skill in the Great Basin, our study 

adds thermodynamically-based temperature, precipitation, and evaporation constraints derived 

from a set of novel approaches that utilize a stable isotope proxy, clumped isotopes. These 

constraints provide observational benchmarks for comparison to PMIP3 and TraCE model 

output. 

 

LOCALITY INFORMATION AND METHODS 

Locality Information 

Samples are derived from the shorelines of a series of closed basin paleolakes within the 

Great Basin of the western United States (Supplemental Fig. 3.S1). For this study, we collected 

carbonate sediments from paleoshorelines of Lakes Franklin, Mud, and Surprise. We chose these 

lake basins because they span a significant zonal and meridional range, and remained closed-

basin lakes even at their highest extents (e.g. Mifflin & Wheat, 1978; Reheis, 1999). We also 

include novel analysis on samples that were previously reported in published studies from Lake 

Chewaucan (Hudson et al., 2017; Egger et al., 2018), Lake Surprise (Ibarra et al., 2014; Santi et 

al., 2019), and Mud Lake (Dickerson, 2006; Dickerson, 2009).  

Lake shorelines were identified through a combination of literature review and Google 

Earth observations. At each sample locality, we recorded GPS coordinates, and the elevation of 

each sample was later determined using the USGS Elevation Point Query Service, which reports 

⅓ arc-second elevation data across the continental United States with an elevation resolution of 

~3 meters.  
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Geologic Settings of Lake Basins 

Lake Chewaucan 

Lake Chewaucan (42.7°N, 120.5°W) was located in southern Oregon, and was comprised 

of four subbasins: Summer Lake, Upper Chewaucan Marsh, Lower Chewaucan Marsh, and 

Albert Lake. Today, Albert Lake and Summer Lake are modern lakes that become desiccated 

during the mid to late summer each year, at times completely drying up. Conversely, in the past, 

these four subbasins have had variable connectivity, depending on the lake levels. Past lake 

shorelines are found between 1305-1383 m, with tufa comprising our sample set. Using modern 

weather station data from Lakeview, OR, modern day mean annual air temperature (MAAT) 

near Lake Chewaucan is 7.6 ±1°C, while mean annual precipitation and pan evaporation rates 

are 240 ± 50 mm/yr and 1075 ± 80 mm/yr, respectively. 

 

Lake Franklin 

Lake Franklin (40°N, 115°W) was located in northeast Nevada, just east of Ruby Valley. 

This pluvial lake has been previously studied in Licciardi (2001) and Munroe & Laabs (2013), 

and has an estimated highstand between 16,800 ± 130 and 15,070 ± 100 yr B.P (Munroe & 

Laabs, 2013). Lake shorelines are found between 1819-1850 m, with gastropod shells and tufa 

comprising the sample set. Modern day MAAT is 7.8 ±1°C, while the modern precipitation and 

pan evaporation rates in Ruby Valley are 191 ± 80 mm/yr and 1177 ± 90 mm/yr, respectively 

(Shevenell, 1996). Lake elevation data is compiled from Licciardi (2001), Munroe & Laabs 

(2013), and Santi et al. (2019), while all stable and clumped isotope data is from this study. 
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Mud Lake 

Mud Lake (37.8°N, 118°W), was a small lake located in southern Nevada, just south of 

Tonopah. Geological and sedimentological evidence of this region (including the nearby 

Stonewall Flat) indicates that the region once held several small lakes, one of which was Mud 

Lake (e.g. Dickerson, 2006; Dickerson, 2009). Evidence of past lake shorelines can be found 

between 1591-1609 m, with some offset around the perimeter due to Holocene age faulting 

(Dickerson, 2006). Modern MAAT at Mud Lake (Silver Peak, NV) is 11.8± 0.5°C, while 

modern precipitation and pan evaporation rates are 171 ± 80 mm/yr and 2672 ± 80 mm/yr, 

respectively.  

Previous paleoclimate analyses in the Mud Lake area are synthesized in other 

publications (e.g. Dickerson, 2006; Dickerson, 2009; Dickerson, 2014; Dickerson & Foreman, 

2014). Many regional paleoclimate analyses use desert varnish and packrat middens as proxies 

for past climate, indicating that precipitation rates were elevated to ~260% of their current value 

during the late deglacial period (Dickerson & Foreman, 2014). In this work, we report clumped 

and stable isotope values for previously published stromatolites, collected from the 

paleoshorelines of Mud Lake (Dickerson, 2006; Dickerson, 2009).  

 

Lake Surprise 

Lake Surprise (41.5°N, 120°W) was located in northeast California, and occupied the 

modern-day Surprise Valley. Importantly, this location lies in a climatic transition zone between 

the Great Basin and the Pacific Northwest, which are typically modeled as being wetter than 

modern (Great Basin) and drier than modern (Pacific Northwest) during the LGM (Kim et al., 

2008; Laîné et al., 2009; Braconnot et al., 2012). Modern MAAT at Lake Surprise is 9.2± 1°C, 
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while modern precipitation and pan evaporation rates are 566 ± 165 mm/yr and 905 ± 80 

mm/yr, respectively (Ibarra et al., 2014). Reconstructed lake hydrographs imply a rapid moisture 

forcing at ~16 ka, culminating in a post-LGM highstand at 15.19 ka, at a maximum lake 

elevation 176 meters above the modern playa (Ibarra et al., 2014; Santi et al., 2019).  

 

Carbonate Materials 

Photosynthetic requirements for carbonate formation imply that carbonate presence can 

be used to provide reasonably precise constraints on minimum lake elevation at the time of 

carbonate precipitation (e.g., Felton et al., 2006; Hren & Sheldon, 2012; Zimmerman et al., 2012; 

Ibarra et al., 2014; Petryshyn et al., 2015; Horton et al., 2016). As such, carbonate is a common 

material for clumped isotope analysis, given its ability to constrain past lake levels and its 

ubiquity in many relevant paleoclimate sites (e.g. Hren & Sheldon, 2012; Huntington et al., 

2010, 2015; Petryshyn et al., 2015; Horton et al., 2016; Egger et al., 2018). In this study, our 

carbonate samples are comprised of tufa, stromatolites, and gastropod shells, all collected from 

the perimeters of closed basin lakes (Table 3.1). 

 

Radiocarbon Dating 

Lake Surprise samples from Santi et al. (2019) were radiocarbon dated via Accelerator 

Mass Spectrometry (AMS) at UC Irvine. Ibarra et al. (2014) and Egger et al. (2018) dated 

samples by AMS at Beta Analytic, Inc. and DirectAMS, respectively. A subset of samples from 

Ibarra et al. (2014) were dated using uranium-series methods. All Lake Franklin and Mud Lake 

samples were dated using radiocarbon methods.  
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For all radiocarbon results we use IntCal13 to convert conventional 14C ages to calibrated 14C 

ages, expressed as thousands of years before present, “ka”. We plot the median calibrated 

probability and the 2𝜎 uncertainty. All sample ages are included in Table 3.1. 

 

Clumped Isotope Measurements 

Mass spectrometry was completed at UCLA on a trio of mass spectrometers (See 

Supplement), with at least four replicates of each sample. Error on Δ47 is reported as standard 

error of the mean, as this error is minimized by increasing the number of sample replicates 

(Fernandez et al., 2017). All clumped and stable isotope data is included in Table 3.2. 

 
 
Clumped Isotope Constraints on Past Hydroclimates 

 Modern microbialites, tufas, and other types of lacustrine carbonates indicate clumped 

isotope values can be robustly used to reconstruct carbonate formation temperature, with water 

temperatures typically indicating formation in the summer or spring through fall (Kele et al., 

2015; Petryshyn et al., 2015; Horton et al., 2016; Bernasconi et al., 2018). We use Δ47 to 

calculate water temperature by applying the temperature calibration equation of Bernasconi et al. 

(2018) because it uses the same carbonate standard-based reference frame as our data. Air 

temperature is derived from water temperature using a water to air transfer function from Hren & 

Sheldon (2012), which assumes preferential carbonate formation between April and October. 

Water δ18O is calculated by applying the material-specific fractionation factor of Kim & O’Neil 

(1997) to measured carbonate δ18O. 

We estimate past evaporation rates using a modified version of the Penman equation, 

derived specifically for lake evaporation, as applied in Mering (2015) and Ibarra et al. (2014). 
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This equation uses input of wind speed (u), temperature (T), dew point temperature (Td), 

elevation (z), and latitude (Lat) to estimate lake evaporation (See Chapter 2 Supplement). We 

assume past values of u, z, and Lat are identical to modern values, which themselves are multi-

year weather station averages. Temperature is derived from Δ47, and Td is assumed to be a 

constant offset from air temperature. We convert this estimate of lake-based evaporation to a 

basin-scale evaporation rate by assigning a weight to lake evaporation based on the relative area 

of the lake during each time period, and scaling evapotranspiration (a result of our precipitation 

model; see below and Chapter 2 Supplement) on land by the relative area of the tributary. 

Weighted evaporation rates are used for comparison to climate model evapotranspiration. 

Finally, we estimate past precipitation rates using a clumped isotope-constrained P and E 

modeling approach used by Mering (2015) on Lake Bonneville, combined with the isotope mass 

balance model of Ibarra et al. (2014), first used for Surprise Valley, which itself was modified 

from Jones et al. (2007). Descriptions and derivations of the above equations are included in the 

Chapter 2 Supplement.  

 

RESULTS 

Lake Level Histories as Reconstructed from 14C and U-Th Ages 

On Fig. 3.1 we compile lake hydrographs for each basin, which are interpreted as 

minimum lake levels. Hydrographs include both new data and data compiled from existing 

literature (e.g. Lillquist 1994; Munroe & Laabs, 2012; Dickerson, 2006; Dickerson, 2009; Ibarra 

et al., 2014; Hudson et al., 2017; Egger et al., 2018; Santi et al., 2019). From top to bottom, 

basins are plotted from geographic northeast to southwest, respectively. 
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Geochemical Evidence of Closed Basin Behavior from δ13C and δ18O 

Calculation of precipitation rates from clumped and bulk isotope values using a steady-

state model is dependent on the assumption that samples are taken from a closed basin; that is, 

the only input of water is from precipitation and the only output is from evaporation. One 

diagnostic tool to show closed basin character is to plot δ13C against δ18O, where strong positive 

covariance between δ13C and δ18O has been historically associated with closed basin behavior 

and evaporative enrichment (e.g. Talbot, 1990; Horton et al., 2016). A plot of δ13C against δ18O 

for each lake basin is presented in Supplemental Fig. 3.S2, with the Pearson Correlation 

Coefficient (PCC) for each data set included in each subplot. 

To a first order, all lake basins show positive covariation in δ13C and δ18O. Lake Surprise 

has the strongest covariation between δ13C and δ18O (PCC = 0.91). Mud Lake (PCC = 0.80) and 

Lake Franklin (PCC = 0.55) also show positive correlation. Lake Chewaucan demonstrates 

strong positive covariation for one sample set (PCC = 0.83), while the other instead shows a 

slight negative correlation (PCC = -0.20). We note that the latter sample set is taken from 

Summer Lake, a subbasin that supports a shallow modern lake. Overall, these data support 

closed basin conditions (with the possible exception of a few samples from Lake Chewaucan), 

thus justifying the use of a steady-state mass balance equation for precipitation.  

 

Clumped Isotope Constraints on Past Hydroclimates 

For each basin, we plot the temporal evolution of water temperature (Fig. 3.2a), air 

temperature (Fig. 3.2b), water δ18O (Fig. 3.3a), precipitation rate (Fig. 3.3b), and weighted 

evaporation rate (Fig 3.3c).  
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To a first order, average MAATs during the LGM and deglacial period at Lake 

Chewaucan, Lake Franklin, and Lake Surprise are lower than their modern values. At Lake 

Franklin, Mud Lake, and Lake Surprise, calculated MAAT decreases throughout the deglacial 

period, while it increases during the late deglacial period at Lake Chewaucan. 

Water δ18O shows both temporal and spatial variability. Samples from Lake Surprise 

have the highest temporal resolution, and indicate a maximum variability of ~4‰ in water δ18O. 

Mud Lake shows much less variability in water δ18O, although large gaps of time separate data 

points. Data from Lake Chewaucan and Lake Franklin indicate large positive excursions in water 

δ18O during relatively short (~2 ka) periods of time. While some basins indicate significant δ18O 

excursions (~10‰ in 2 ka for some lake basins), this magnitude of variability is observed in 

other lake δ18O reconstructions on similar timescales (e.g. Edwards & McAndrews, 1989; Wolfe 

et al., 2007). 

Reconstructed precipitation and evaporation rates decrease through time at Lake 

Franklin, Mud Lake, and Lake Surprise, but increase during the late deglacial period at Lake 

Chewaucan. Weighted evaporation rates demonstrate similar trends to precipitation rates. 

We estimate the thermodynamic versus dynamic contribution to changing lake levels 

(See Table 3.3 and description in Supplement), as in Ibarra et al. (2018). Results are reported for 

each lake basin, for both the LGM and deglacial period. 

 

Evaluation of Climate Model Simulations of Hydroclimate Change 

We compare our temperature and precipitation estimates to nine PMIP3 models, as well 

as one transient climate model: ‘TraCE’ (Figs. 3.4-3.8). For each plot, we show anomalies of the 

climatological variable, defined as the difference between the LGM and the modern value. For 
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comparison with PMIP3 (Figs. 3.4-3.6), we use an average of all samples dated between 19-23 

ka along with modern weather station data. We note that there are no LGM-aged samples for 

Lake Franklin. For comparison with TraCE output (Figs. 3.7-3.8), we plot an average of all 

samples dated within the corresponding period of time. On each model-data comparison figure 

(Figs. 3.4-3.8), we include the average analytical uncertainty for all samples included in the 

given time frame. While not explicitly included in this error analysis, we attach a table with 

descriptions of additional sources of uncertainty in the supplement (Table 3.S1).    

Following Hargreaves et al. (2013), we calculate model skill in reproducing the 

magnitude of temperature, precipitation, and weighted evaporation estimates, derived using 

clumped isotope analysis (Fig. 3.9). For Lake Chewaucan and Lake Surprise, we calculate model 

skill with respect to our LGM aged samples; however, for Lake Franklin, we calculate model 

skill with respect to deglacial values, as there are no LGM samples from Lake Franklin. We do 

not include a model skill analysis for Mud Lake, due to the limited number of observations. Our 

model skill for temperature ranges from a minimum of -0.62 to a maximum of 0.68, with 

generally positive model skills for Lake Chewaucan and Lake Surprise and negative model skill 

for Lake Franklin. Our model skill for precipitation ranges from a minimum of -7.76, to a 

maximum of 0.21, with overall negative skill for all three lake basins. Our model skill for 

weighted evaporation ranges from a minimum of -0.66 to a maximum of 0.64, with an overall 

positive skill for Lake Surprise and Lake Chewaucan. Overall, climate models have the highest 

skill scores for Lake Surprise, and the lowest skill scores for Lake Franklin. 
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DISCUSSION 

Lake Level Histories as Reconstructed from 14C and U-Th Ages 

Santi et al. (2019) describes lake hydrographs for Lakes Chewaucan, Franklin, Mud, and 

Surprise (Fig. 3.1), which we briefly summarize here. Overall, we observe non-synchronous 

timing in lake highstands between basins, progressing from the southeast to the northwest during 

the deglacial period. In many cases, lake transgressions to highstand levels (from moderate 

stillstand levels) happened in a relatively short period of time between 17 and 14 ka, while 

regressions typically occurred over a much longer period.  

 

Lake Chewaucan 

Lake Chewaucan was the last of the four lakes to reach highstand levels during the 

deglacial, between 13-14 ka. This timing is consistent with a previously proposed northwest-

trending change in moisture delivery during the deglacial period (Lyle et al., 2012; McGee et al., 

2018; Morrill et al., 2018; Oster et al., 2015). Despite reasonable scatter in data prior to the 

LGM, lake level trajectories indicate a decrease in lake elevation between 25-20 ka. Following 

an initial LGM lake level rise, there is a short desiccation at ~16 ka, prior to the highstand at 

1356 m, between 13-14 ka. Lake Chewaucan began to steadily recede ~13 ka, continuing into the 

early Holocene.  

 

Lake Franklin 

Between 22.5-20 ka, Lake Franklin stood at an elevation of ~1823 m, before rapidly 

transgressing to ~1830 m in the late LGM. Several anomalously high elevation samples taken 

during the early deglacial period are hypothesized to have come from a higher-elevation marsh 
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environment, rather than the lake shoreline itself (Munroe & Laabs, 2013). Lake Franklin 

reached its highstand elevation of 1850 m between 16.8-17.3 ka. The lake regression continued 

at a much slower rate than its transgression, progressing slowly over the rest of the deglacial 

period.  

 

Mud Lake 

The lake hydrograph for Mud Lake is the least constrained of the four lakes studied here. 

We note stable lake levels during the LGM and deglacial period, indicating consistently higher 

than modern levels of effective precipitation. With this given sample set, we are not able to 

discern definitive evidence of lake transgression or regression during the deglacial period.  

 

Lake Surprise 

At Lake Surprise, we see evidence of a rapid increase in lake levels at ~15.8 ka, prior to 

an ultimate highstand at ~16 ka. This rapid precipitation forcing is also observed at Lake 

Franklin and Lake Lahontan (e.g. Benson et al., 2013; Munroe & Laabs, 2013; Santi et al., 

2019). Following its highstand, the hydrograph shows that Lake Surprise regressed over a much 

longer period of time, throughout the remainder of the deglacial period. We suggest that this 

gradual decrease in lake levels could be due to lake basin geometry: Lake Surprise was deep 

(~180 m, versus ~90 m for Lake Chewaucan; Egger et al., 2018) and had a high hydrologic index 

compared to more southerly lakes Franklin, Lahontan, and Bonneville (Santi et al., 2019). 

Furthermore, Surprise Valley has a relative lack of western-boundary orographic barriers 

compared to other lake basins, thus decreasing the potential for a rain shadow effect on 

precipitation (e.g. the southern Cascades to the west of Lake Chewaucan) (Egger et al., 2018). 
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Clumped Isotope Constraints on Past Hydroclimates 

Across all lake basins, water temperatures for LGM and deglacial samples fall within the 

range of 7-20℃ (Fig. 3.2a). Water temperatures are the highest at Mud Lake, which is the lowest 

latitude lake and also the lowest in elevation. Water temperatures are the lowest at the more 

northerly and higher elevation lakes Chewaucan, Franklin, and Surprise. We translate our water 

temperatures to MAATs using a transfer function from Hren & Sheldon (2012), which assumes 

most carbonate growth occurs during the warm season, April to October (e.g., Purton & Brasier, 

1997; Dettman et al., 1999; Goodwin et al., 2003; Versteegh et al., 2010) (Fig. 3.2b). We 

calculate water 𝛿18O using our measured carbonate 𝛿18O and the mineral specific fractionation 

from Kim & O’Neil (1997) (Fig. 3.3a). We calculate past precipitation rates using an isotope 

mass balance equation from Ibarra et al. (2014) and Jones et al. (2007) and lake-based 

evaporation using an equation based on a simplification of the Penman equation (Figs. 3.3b-

3.3c). We derive the equation for precipitation rate and report the equations used for lake 

evaporation and weighted evaporation in the Chapter 2 Supplement. Finally, we estimate and 

discuss the thermodynamic versus dynamic contribution to changing lake levels in each location 

(See Supplement). 

 

Lake Chewaucan 

This is the northernmost site, and water temperatures during the LGM (19-23 ka) were 

5.5± 2.5℃, corresponding to MAATs of -1.0± 2.5°C (Hren & Sheldon, 2012; Hudson et al., 

2017). This indicates an average air temperature depression of 8.6±2.7℃ during the LGM, as 

implied by clumped isotope data and modern weather station temperature. Similarly, Hudson et 

al. (2017) report water temperatures derived from modern and LGM tufas, that correspond to a 
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10.0± 2.8℃ decrease in LGM MAAT, using the same published transfer function. Our estimates 

compare favorably with other Great Basin temperature depressions implied by pollen (10-11℃; 

Galloway, 1970), hydrologic mass balance modeling (10℃; Smith & Street-Perrot, 1983), and 

packrat midden plant assemblages (8℃; Thompson et al., 1999). 

Water δ18O shows a significant degree of variability, but ultimately increases to a 

maximum of 0.1‰ by ~13 ka. This increase in water δ18O could be consistent both with changes 

in the dominant lake moisture source (e.g. decreasing contribution from the isotopically depleted 

North Pacific storm track versus the comparatively enriched atmospheric rivers) or with changes 

in the seasonality of precipitation, whereby summer precipitation is isotopically enriched relative 

to winter precipitation in the southwestern US (Welker et al., 2012). Alternatively, these changes 

in water δ18O could be explained by changing temperature, with a change of 0.24‰ to 0.48‰ 

per ℃ expected for water warming from a starting temperature of 20℃ (Dansgaard, 1964). As 

this increase in water δ18O coincides with increasing air temperatures, this hypothesis is 

consistent with the data. Furthermore, we calculate a large thermodynamic control on effective 

moisture during both the LGM (63%) and the deglacial period (68%; Table 3.3) at Lake 

Chewaucan (See Table 3.3 and Supplement). 

Reconstructed precipitation rates show a sharp increase during the late deglacial period, 

coincident with the timing of lake highstand, to ~250% of modern. Similarly, weighted 

evaporation rates show constant values throughout the early deglacial, with a sharp increase 

around the time of the lake highstand. Overall, our results indicate that Lake Chewaucan was 

sustained by increased precipitation rates, despite increasing evaporation rates due elevated late-

deglacial water temperatures. 
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 Lake Surprise 

From the ∆N¡ of a modern carbonate analyzed at Lake Surprise, we calculate a water 

temperature of 17.6±2℃, corresponding to a MAAT of 10.3 ±2℃. This estimate agrees well 

with modern MAAT recorded at nearby Cedarville, CA (9.2±1℃). For our LGM samples, we 

calculate an average water temperature of 10.2±1℃, corresponding to a MAAT of 0.3±1℃. 

Overall, modern weather station data and LGM-averaged temperatures indicate that the LGM 

was 8.9±1.4℃ colder than modern MAAT at Cedarville, NV, also in line with estimates of 

Great Basin LGM temperature depression based on pollen (10-11℃; Galloway, 1970), 

hydrologic mass balance modeling (10℃; Smith & Street-Perrot, 1983), and packrat midden 

plant assemblages (8℃; Thompson et al., 1999). 

Water 𝛿18O demonstrates quasi-periodic behavior, with a maximum range of ~4‰ over 

the course of the LGM and deglacial periods. Lake Surprise water 𝛿18O demonstrates the least 

intra-basin variability of the four basins studied here. As Lake Surprise demonstrates the 

strongest closed-basin behavior of all basins (Fig. 3.S2), this is not an unexpected result.  

LGM precipitation rates at Lake Surprise were lower than their modern average of 566 

mm/yr, declining during the deglacial, and plateauing at ~80% of modern. Weighted evaporation 

rates show a similar trend, decreasing during the LGM and reaching a plateau during the 

deglacial period, at a value below the modern pan evaporation rate of 905 mm/yr (Ibarra et al., 

2014). While weighted evaporation rates are not directly comparable to pan evaporation rates; 

this decreasing trend in evaporation, coupled with decreasing precipitation rates in the same 

period of time, indicate that evaporation depression likely played a much more important role 

than increased precipitation flux at Lake Surprise. This finding is consistent with the work of 

Oster et al. (2015) and Lora et al. (2017), who posit that Great Basin precipitation exhibited a 
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pronounced dipole during the LGM, and that northern Great Basin pluvial lakes (e.g. Lake 

Surprise) were driven more by temperature depression and subsequent reductions in evaporation 

rate, rather than by increased precipitation rates, as in the southern Great Basin. 

We estimate a balance of thermodynamic (52%) and dynamic (48%) control on water 

balance during both the LGM and deglacial period (Table 3.3), suggesting that a complex 

interplay of factors was important in driving water balance at Lake Surprise. 

 

Lake Franklin 

 During the mid-deglacial period, average water temperature at lake Franklin was 

13.8±1.5℃, corresponding to a MAAT of -5.3±1.5℃. Modern MAAT at Lake Franklin is 

7.8±1℃, indicating 13.1±1.8℃ of air warming between the LGM and the present day. Our 

results indicate a greater degree of LGM cooling than is implied by packrat middens during the 

mid-deglacial period (5.5℃; Thompson et al., 1999); however, our results indicate similar 

cooling as indicated by trees lines and pollen (10-11℃; Galloway, 1970), and hydrologic mass 

balance models (10℃; Smith & Street-Perrott, 1983) during the LGM. Similar to Lake 

Chewaucan, water 𝛿18O also increases by ~4‰ at Lake Franklin between ~14-16 ka, but in this 

case, it is not coincident with a notable increase in air temperature. In this case, we infer that 

changing water δ18O is likely due to variations in precipitation source rather than temperature. 

Thus, as expected, we estimate a lower deglacial thermodynamic contribution to water balance at 

Lake Franklin (35.5%, Table 3.3). 

Precipitation rates at Lake Franklin reached their peak at 16 ka, coincident with the lake 

highstand, and decreased throughout the remainder of the deglacial period. This trend is 

coincident with a gradual regression of lake levels following a ~16 ka highstand (Fig. 3.1c). 
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Overall, precipitation rates are elevated ~500% relative to their modern value of 191 mm/yr, 

throughout both the LGM and deglacial periods. Lake evaporation rates at Lake Franklin show a 

fair degree of variability, but also decrease following the lake highstand. Similarly, weighted 

evaporation rates decrease, starting ~16 ka. These data suggest that increased precipitation, rather 

than reduced evaporation rates, were important in the growth of post-LGM Lake Franklin, as 

both precipitation and evaporation rates were at local maxima during the lake highstand. 

 

Mud Lake 

Average LGM lake temperature at Mud Lake was 17.4±2.5℃, corresponding to a 

MAAT of 10.0±2.5℃. Modern MAAT at Mud Lake is 11.8±1℃, implying 1.8±2.7℃ of air 

cooling since the LGM. Our data suggest that the coolest period occurred during the late 

deglacial (12 ka), with water temperatures of 8.3±1.7℃, corresponding to a MAAT of  

-2.5±1.7℃, and indicating a maximum temperature depression of 14.3±2℃.   

Water δ18O at Mud Lake is consistent throughout the deglacial period, although this may 

be due to the low sampling resolution of our data. We note that water δ18O from Mud Lake is in 

line with, albeit slightly enriched, compared to values from other lake basins. As Mud Lake is 

significantly farther south than Lake Chewaucan, Lake Franklin, and Lake Surprise, this likely 

reflects differences in the dominant moisture source or seasonality of precipitation. 

Proportionally, southeast Nevada receives a larger amount of its precipitation in the summer 

compared to the more northern lake basins (Higgins et al., 1996; Xie & Arkin, 1996), and 

summer precipitation is known to be isotopically enriched relative to winter precipitation in the 

southwest United States (e.g. Yapp, 1985).  
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Mud Lake is representative of the southern side of the precipitation dipole of Oster et al. 

(2015) and Lora et al. (2017). As expected in the southern Great Basin, we find a significant 

increase in precipitation rates at Mud Lake between the early LGM and mid deglacial period 

(~15x modern values), coupled with a relatively small temperature depression during the LGM. 

With regard to lake evaporation rate, we find a small increase between the early and mid-

deglacial periods and a significant decrease between the mid to late deglacial periods. Finally, we 

calculate a much smaller thermodynamic control on both LGM (40%) and deglacial period 

(39%) water balance, implying that dynamic transport of water vapor likely played a much 

greater role in driving lake growth (Table 3.3). Taken together, we conclude that Mud Lake, 

similar to Lake Chewaucan and Lake Franklin, was sustained by enhanced precipitation rather 

than decreasing levels of lake evaporation driven by temperature depression, and unlike Lake 

Chewaucan, was driven largely by dynamic transport of water vapor. 

 

Evaluation of Climate Model Simulations of Hydroclimate Change  

PMIP3 - LGM data comparison 

 We compare each climatic variable (temperature, precipitation, evaporation) derived 

from clumped isotope analysis to PMIP3 simulations. For each lake basin, we calculate an 

anomaly by subtracting the modern climatological value from the average value derived from 

LGM samples. We also calculate an estimate of the analytical error carried through from mass 

spectrometry, with additional sources of uncertainty described in Table 3.S1. In this PMIP3 

analysis, we include samples only from Lake Chewaucan, Mud Lake, and Lake Surprise, as these 

three lake basins have samples that formed during the LGM. 
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In Fig. 3.4, we overlay MAAT anomalies derived from clumped isotope analysis over 

output from PMIP3 simulations. In the northwest Great Basin, Lake Surprise and Lake 

Chewaucan have intermediate temperature anomalies (8.9±1.4℃	&	8.6±2.7℃,	respectively), 

Mud Lake has a smaller (1.8±1.8℃) LGM temperature anomaly. Our anomalies for Lakes 

Chewaucan and Surprise are consistent with all PMIP3 anomalies, within our analytical error of 

~2-3℃. However, our anomaly for Mud Lake is much smaller than most PMIP3 simulations at 

that location, with the closest PMIP3 anomaly, -4℃, produced by CNRM-CM5.  

In Fig. 3.5, we compare our clumped isotope derived precipitation anomalies from 

Equation S7 to PMIP3 anomalies. At Lake Surprise, we calculate a negative precipitation 

anomaly (-76 ± 185 mm/yr), implying drier than modern conditions during the LGM. This result 

is consistent with most models, save NCAR CCSM4 and IPSL-CM5A-LR. At Lake Chewaucan, 

we calculate a positive anomaly (60±90 mm/yr), implying wetter than modern conditions. This 

result is consistent with NCAR CCSM4, FGOALS, and IPSL-CM5A-LR. At Mud Lake we 

calculate a large positive precipitation anomaly (1545±230 mm/yr), indicating LGM conditions 

that were much wetter than modern. While this amount of rainfall is much greater than modern 

precipitation rates at Mud Lake (171 mm/yr), it is similar to modern precipitation rates at similar 

latitudes, just east of the Sierra Nevada (Smith & Reimann, 2008). Hence, while this amount of 

LGM precipitation is far greater than what is recorded today, it is within the realm of possibility, 

given a significantly altered climatic state. This large positive anomaly at Mud Lake is most 

consistent with FGOALS, GISS-E2-R, IPSL-CM5A-LR, and MPI-ESM-P.  

In Fig. 3.6, we overlay our basin-scale weighted evaporation rates from clumped isotope 

analysis on PMIP3 evapotranspiration anomalies. For Lake Surprise, we calculate an LGM 

evaporation anomaly of -368 ± 100 mm/yr, implying decreased evaporation rates during the 
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LGM. This result is consistent with MIROC-ESM and MRI-CGCM3. For Lake Chewaucan, we 

calculate a larger LGM evaporation anomaly of -708±100 mm/yr. While this anomaly is most 

consistent with MIROC-ESM and MRI-CGCM3, we note that the magnitude of our inferred 

anomaly is larger than all climate model simulations. Finally, for Mud Lake, we calculate an 

evaporation anomaly of -1064 ± 130 mm/yr. This anomaly is of greater magnitude than any 

PMIP3 simulation, and implies an LGM evaporation rate on par with modern-day Florida and 

the tropics (Smith & Reimann, 2008). Our elevated LGM evaporation rates at Mud Lake are an 

average of MAAT calculated from just two LGM carbonates; additional analysis from future 

LGM-aged samples at Mud Lake will indicate if this implied anomaly is accurate. While MRI-

CGCM3 does simulate a large negative anomaly at the location of Mud Lake, the magnitude of 

this anomaly is smaller than our simulated proxy anomaly. 

 

PMIP3 - LGM and deglacial data comparison 

 We perform similar calculations of data anomalies, using only deglacial age (19,000-

10,000 ka BP) samples. Unlike above, we do not directly compare our results to PMIP3 output, 

as PMIP3 does not produce deglacial simulations. 

Compared to the LGM, Lake Surprise and Lake Chewaucan have intermediate negative 

deglacial temperature anomalies (8.1±1.1 & 6.2±1.8℃, respectively). In contrast, Lake Franklin 

has a larger negative deglacial temperature anomaly (13.1±1.8℃), while Mud Lake has a 

positive anomaly (5.6±1.8℃).  

With regard to precipitation, we calculate a negative anomaly for Lake Surprise (-127 ± 

210 mm/yr), implying drier than modern conditions during the deglacial period. For all other 

lake basins, we calculate positive anomalies. Lake Chewaucan has a small positive anomaly (251 
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±	90 mm/yr), while Lake Franklin and Mud Lake have much higher precipitation anomalies 

(2100 ±260 mm/yr & 2370 ±420 mm/yr, respectively). 

With respect to weighted evaporation rates, we calculate negative deglacial anomalies for 

all lake basins: -438 ±110 mm/yr (Lake Chewaucan), -55 ±140 mm/yr (Lake Franklin), -1075 

±130	mm/yr (Mud Lake), and -159 ±110 mm/yr (Lake Surprise). All results indicate 

evaporation depression from deglacial cooling; however, the magnitude of this depression is the 

greatest at Mud Lake. 

  

TraCE 

Based on our qualitative model evaluation, there is no steady state model that is able to 

adequately recreate both the magnitude and trends of precipitation, evaporation, and temperature 

anomalies implied by clumped isotope data. We next compare our proxy-derived temperature 

and precipitation rates to model output from a transient climate model ‘TraCE’, averaged over 

four discrete time periods during the LGM and deglacial period (Figs. 3.7-3.8). For more direct 

comparison to PMIP3 plots, we use the same scale as in Figs. 3.4-3.6. 

 On Fig. 3.7, we overlay temperature anomalies from proxy data over TraCE surface 

temperature anomalies. We note an overall mismatch between Δ47 derived temperatures and 

TraCE model output, compared to PMIP3 simulations. We observe the best spatial model-data 

agreement during the LGM period, but worse agreement during the subsequent deglacial time 

slices. We also note that Δ47 for Mud Lake predicts climates that are both warmer than TraCE 

and colder than TraCE, depending on the time period.  

On Fig. 3.8, we overlay proxy estimates of precipitation anomalies during each time 

period on TraCE precipitation anomalies. We note that the pattern of LGM drying versus 
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moisture increase is reversed compared to PMIP3 simulations, with TraCE predicting dryer than 

modern conditions in the south, rather than the northern Great Basin. We note that TraCE is most 

in line with our predictions for Lake Surprise, indicating a moderate LGM and deglacial 

precipitation decrease for most time periods. 

 

Model Skill Evaluation 

In addition to the previous qualitative approach towards model evaluation, we 

perform a formal evaluation of climate model output of surface air temperature, 

precipitation rate, and evapotranspiration (Fig. 3.9). In this analysis, model skill is taken 

to represent the ability of climate models to reproduce the magnitude of temperature, 

precipitation, and weighted evaporation estimates from clumped isotopes (See Chapter 2 

Supplement and Hargreaves et al., 2013). 

 For most models, precipitation skill scores are close to zero or slightly negative. 

Our poorest performing models, showing zero or large negative skill scores for all lake 

basins, are FGOALS, GISS-E2-R (p 150), and MIROC-ESM. Our 10-member ensemble 

average demonstrates a slight negative model skill for all three ancient lakes. We note 

that our lowest performing models overlap significantly with those found in an existing 

model-proxy comparison in the Great Basin (Lora, 2018). This work similarly found 

MIROC-ESM and GISS-E2-R (p 150) were amongst the worst performers.  

With regard to temperature, we find much more consistent skill scores, with most 

in the 0.2-0.5 range for Lake Surprise and Lake Chewaucan, and all skill scores greater 

than zero. In contrast, for Lake Franklin, three models (NCAR CCSM4, FGOALS, and 

MIROC-ESM) demonstrate negative model skill. These low-scoring models simulate 
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significantly colder LGM temperatures than the ensemble average. We note that our Lake 

Franklin samples are deglacial (rather than LGM) age, and thus are not as well-suited to 

this evaluation of PMIP3 model skill for the LGM.  

Finally, we calculate model skill scores for each basin using clumped isotope 

derived weighted evaporation rates. Similar to climate model skill scores for temperature, 

our values indicate fair model skill, with most between 0.3-0.6. The exceptions are GISS-

E2-R (p150), MIROC-ESM, and MRI-CGCM3, which have large negative skill scores 

for Lake Franklin, and predict smaller evapotranspiration anomalies than the PMIP3 

ensemble average. 

 

CONCLUSIONS 

In this work, we compare the hydrological histories of four post-LGM pluvial lakes in the 

Great Basin: Lake Chewaucan, Lake Surprise, Mud Lake, and Lake Franklin. These lake basins 

comprise a wide range in modern hydroclimates and elevations, and also constitute a wide spread 

in latitude and longitude. Lake level histories for each basin indicate rapid effective precipitation 

forcings juxtaposed with slower lake regressions for both Lake Franklin and Lake Surprise, 

while the hydrograph for Lake Chewaucan suggests a slower effective moisture forcing. The 

hydrograph for Mud Lake needs further constraints on lake level to discern effective moisture 

trends in southern NV. Correlations between carbonate δ18O and δ13C suggest that all lakes 

demonstrate closed-basin behavior, with the exception of a few Lake Chewaucan samples. In the 

four basins analyzed here, we see evidence for a wide range in causal mechanisms driving lake 

growth.  
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Deglacial cooling and below-modern precipitation rates led up to the lake highstand at 

Lake Surprise, suggesting that temperature depressions drove reductions in lake evaporation that 

were an important driver of hydrologic budgets. This period was also associated with a slight 

decrease in water δ18O, leading up to the highstand at ~16 ka. Our findings are consistent with a 

previously proposed north/south precipitation dipole, with temperature depression and decreased 

lake evaporation rates as primary drivers of lake growth, rather than increased precipitation, in 

the northwest Great Basin.  

When Lake Franklin achieved its highstand at 16 ka, water temperature, lake evaporation, 

and precipitation rates were all at maximums, before beginning their declines during the mid to 

late deglacial periods. This decrease in deglacial water temperature coincides with an increase in 

water δ18O, indicating that changes in water δ18O are not due to temperature effects, but perhaps 

due to a change in moisture source. As such, we calculate a significant dynamic contribution to 

increased effective moisture at Lake Franklin. 

MAAT at Mud Lake decreased significantly between the mid deglacial period and the 

late deglacial period, with a late deglacial temperature anomaly of -14.3±1.8℃. This significant 

deglacial temperature anomaly is coupled with greatly enhanced precipitation rates throughout 

the LGM and early deglacial period, providing support for the proposed north/south dipole in 

precipitation and temperature anomalies. Despite a considerable decrease in water temperature 

during the late deglacial period, water δ18O shows negligible change. To be consistent with the 

large observed temperature decrease, this constancy in water δ18O likely reflects some variation 

in moisture source. We estimate a significant dynamic contribution to increased effective 

moisture at Mud Lake, as implied by temperature and water δ18O changes.  
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Finally, Lake Chewaucan shows an increase in water and air temperatures in the period 

leading up to its highstand. Increasing deglacial temperatures are coupled with increasing 

precipitation and weighted evaporation rates, as well as increasing water δ18O. This increase in 

water δ18O is consistent with increasing water temperature. We conclude that lake growth at 

Chewaucan was achieved due to increasing precipitation rates, in spite of increasing lake 

evaporation rates.  

We qualitatively compare our results to both steady-state (PMIP3) and transient climate 

model simulations (TraCE). We take this analysis further by providing quantitative estimates of 

model skill with respect to simulated precipitation rate, surface air temperature, and 

evapotranspiration. Overall, the best skill scores are achieved for temperature and weighted 

evaporation, with most climate models achieving fair or moderate skill. Skill score for 

precipitation rate is more variable, with models showing the highest skill scores for Lake 

Surprise, and the lowest for Lake Franklin. Similar to Lora (2018), we find that GISS-E2-R (p 

150) and MIROC-ESM were amongst the worst performers in the region.  

Based on our reconstructions, we suggest that more than one environmental factor is 

required to explain the observed changes in hydrologic budgets. We find evidence for both 

evaporation depression and increased precipitation rates driving lake growth, with variation in 

causal mechanisms happening on a relatively small spatial scale. Results at Mud Lake and Lake 

Surprise are compatible with the north/south precipitation dipole proposed to explain variations 

in causal mechanisms for lake growth; however, lakes Franklin and Chewaucan have much 

higher weighted evaporation rates than this hypothesis would suggest. Ultimately, we suggest 

that our work could be extended to a larger number of lake basins, to provide a more 

comprehensive look at post-LGM hydroclimate in the Great Basin. 
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FIGURES 

 
Figure 3.1: Radiocarbon and U-series based lake hydrographs for Great Basin lakes. From top to bottom, basins are 
plotted from geographic north(west) to south(east). Errors in ages represent 2𝜎 uncertainties and elevation errors are 
the same as originally reported for previous data. 
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Figure 3.2: Reconstructed water temperature (A) Mean Annual Air Temperature (B) for LGM and deglacial samples. Mean 
Annual Air Temperature is derived using the April-October transfer function from Hren & Sheldon (2012). Moderns MAATS are 
7.6±1℃ (Lake Chewaucan), 7.8±1℃ (Lake Franklin), 11.8±0.5℃ (Mud Lake), and 9.2±1℃ (Lake Surprise). 
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Figure 3.3: Reconstructed water δ18O (A), precipitation rates (B), and evaporation rates (C) for LGM and deglacial samples. 
Modern precipitation rates are 242 mm/yr (Lake Chewaucan), 191 mm/yr (Lake Franklin), 171 mm/yr (Mud Lake), and 566 
mm/yr (Lake Surprise). Modern pan evaporation rates are 2672 mm/yr (Lake Chewaucan), 1177 mm/yr (Lake Franklin), 2672 
mm/yr (Mud Lake), and 905 mm/yr (Lake Surprise). 
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Figure 3.4: Mean annual surface air temperature anomalies (LGM minus preindustrial simulation), reported in ℃. For each lake 
basin, we apply average LGM temperatures (from Δ47) and modern air temperatures from nearby weather stations. We include 
the average analytical error associated with calculations of temperature anomalies beside each basin. 
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Figure 3.5: Mean annual precipitation anomalies (LGM minus preindustrial simulation), reported in mm/yr. For each lake basin, 
we apply average LGM (or early deglacial) precipitation rates (from Δ47) and modern precipitation rates from nearby weather 
stations. We include the average analytical error associated with calculations of precipitation anomalies at each lake basin, as 
carried through from Δ47 error from mass spectrometry. 
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Figure 3.6: Mean annual evaporation anomalies (LGM minus preindustrial simulation), reported in mm/yr. For each lake basin, 
we apply average LGM (or early deglacial) weighted evaporation rates (derived from Δ47) and modern pan evaporation rates 
from nearby weather stations. We include the average analytical error associated with calculations of evaporation anomalies, as 
carried through from Δ47 error from mass spectrometry. 
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Figure 3.7:  Comparison of proxy-derived and TraCE temperature anomalies (℃). Modern temperature for TraCE is an average 
of model output between 1960-1980. Black markers indicate an absence of data from the given time period. We include the 
average analytical error associated with calculations of the temperature anomaly at each basin, as carried through from Δ47 error 
from mass spectrometry. 
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Figure 3.8: Comparison of proxy-derived and TraCE precipitation anomalies (mm/yr). Modern precipitation rate for TraCE is an 
average of model output between 1960-1980. Black markers indicate an absence of data from the given time period. We include 
the average analytical error associated with calculations of precipitation anomalies at each basin, as carried through from Δ47 
error from mass spectrometry. 
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Figure 3.9: Model skill evaluation for temperature, precipitation, and (weighted) evaporation anomalies, as determined for 
PMIP3 and TraCE climate models.  
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TABLES 
 
Table 3.1: New Great Basin Carbonate Samples 

Lake 
Basin 

Sample Name Sample 
Type 

14C 
Age 

14C  
Age SD 

IntCal13 
Age (ka) 

2𝜎 min 2𝜎 
max 

Elevation 
(m) 

HI 

Chewaucan SL15AE02 Tufa 21.92 0.09 26.12 25.92 26.38 1383 0.62 
Chewaucan SL15AE06 Tufa 11.57 0.04 13.40 13.30 13.48 1343 0.51 
Chewaucan SL15JH05 Tufa 11.87 0.04 13.68 13.57 13.77 1328 0.46 
Chewaucan SL15JH06 Tufa 22.15 0.08 26.35 26.11 26.62 1325 0.44 
Chewaucan SL15JH07 Tufa 12.07 0.05 13.92 13.77 14.07 1405 0.69 
Chewaucan SL15AE08 Tufa 10.98 0.04 12.83 12.73 12.97 1344 0.51 
Chewaucan SL15AE05 Tufa 12.49 0.05 14.70 14.30 15.03 1345 0.51 
Chewaucan SLT3-1B Tufa 12.53 0.04 14.84 14.77 15.11 1316 0.39 

Franklin FranklinRW1_60_1A Gastropod  12.26 0.11 14.23 13.82 14.77 1826 0.21 
Franklin FranklinRW1_60_2A Gastropod 12.37 0.12 14.47 14.04 15.02 1826 0.21 
Franklin FranklinRW1_60_2B Gastropod 12.20 0.13 14.13 13.75 14.72 1826 0.21 
Franklin FranklinRW2_90_1A Gastropod 12.52 0.19 14.71 14.04 15.34 1838 0.36 
Franklin FranklinRW2_90_1B Gastropod 12.40 0.16 14.53 14.00 15.14 1838 0.36 
Franklin FranklinRW3_78_1A Gastropod 12.48 0.12 14.65 14.16 15.12 1841 0.39 
Franklin FranklinRW3_78_1B Gastropod 12.91 0.12 15.44 15.09 15.82 1841 0.39 
Franklin FranklinRW3_78_1C Gastropod 12.67 0.12 15.03 14.38 15.45 1841 0.39 
Franklin FranklinFRB_170_1 Tufa 14.73 0.18 17.93 17.49 18.36 1848 0.48 
Franklin FranklinHS1_86_1A Gastropod 13.23 0.14 15.89 15.41 16.28 1843 0.49 
Franklin FranklinHS186_1B Gastropod 12.98 0.16 15.53 15.09 16.03 1843 0.49 
Franklin FranklinHS1_86_1C Gastropod  13.28 0.14 15.96 15.49 16.36 1843 0.49 

Mud  ML07-04 Tufa 23.71 0.23 27.82 27.45 28.29 1593 1.48 
Mud  ML08-03 Tufa 16.02 0.08 19.34 19.08 19.57 1590 1.46 
Mud ML08-04 Tufa 16.62 0.08 20.05 19.80 20.31 1590 1.45 
Mud RD05-95 Tufa 24.75 0.20 28.79 28.35 29.29 1582 1.40 
Mud RD05-10 Stromatolite 23.56 0.17 27.69 27.43 27.96 1595 1.49 
Mud CMud17_2 Tufa 10.03 0.19 11.62 11.12 12.25 1588 1.40 

Surprise SVDI12-T4A Tufa 18.78 0.27 22.70 22.04 23.35 1439 0.33 
Surprise SVDI12-T4B Tufa 18.35 0.27 22.18 21.53 22.81 1439 0.33 
Surprise SVDI12-T7 Tufa 14.46 0.17 17.61 17.14 18.01 1473 0.42 
Surprise SVDI12-T3A Tufa 18.03 0.28 21.82 21.08 22.44 1428 0.31 
Surprise SVDI12-T3B Tufa 16.59 0.29 20.02 19.28 20.71 1428 0.31 
Surprise SVCW17-PT1 Tufa 13.52 0.34 16.30 15.29 17.29 1475 0.44 
Surprise SVCW17-PT2 Tufa 13.39 0.16 16.11 15.64 16.61 1475 0.44 
Surprise SVCW17-PT3 Tufa 13.79 0.19 16.68 16.13 17.26 1477 0.45 
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Table 3.2: New Clumped and Stable Isotope Results for Northern Great Basin Pluvial Lakes 

Lake 
Basin 

Sample Name Δ47 Δ47 
SE 

δ18O 
(VPDB,‰) 

δ18O 
  SE 

δ13C 
(VPDB,‰) 

δ13C SE 

Chewaucan SL15AE02¹ 0.706 0.006 -1.6 0.09 3.7 0.10 
Chewaucan SL15AE06¹ 0.692 0.004 -1.7 0.03 3.7 0.01 
Chewaucan SL15JH05¹ 0.691 0.006 -1.4 0.06 3.3 0.04 
Chewaucan SL15JH06¹ 0.707 0.004 -9.2 0.05 -3.9 0.06 
Chewaucan SL15JH07¹ 0.726 0.006 -9.8 0.19 -2.8 0.31 
Chewaucan SL15AE08¹ 0.673 0.015 -1.5 0.06 2.1 0.05 
Chewaucan SL15AE05¹ 0.710 0.009 -2.6 0.31 3.1 0.19 
Chewaucan SLT3-1B¹ 0.728 0.012 -2.9 0.11 1.7 0.14 
Chewaucan CHL13-5² 0.745 0.011 -3.0 0.05 3.3 0.02 
Chewaucan CHL14-29-1² 0.779 0.014 -3.4 0.02 3.6 0.01 
Chewaucan CHL13-2² 0.804 0.011 -3.1 0.06 3.4 0.01 
Chewaucan CHL13-22² 0.765 0.012 -3.6 0.04 3.7 0.08 
Chewaucan CHL14-30² 0.781 0.014 -5.1 0.03 1.9 0.02 
Chewaucan CHL14-32-1² 0.777 0.014 -3.5 0.01 3.8 0.03 
Franklin FranklinRW1_60_1A 0.718 0.007 -4.3 0.09 1.5 0.17 
Franklin FranklinRW1_60_2A 0.714 0.005 -4.3 0.15 2.0 0.32 
Franklin FranklinRW1_60_2B 0.711 0.009 -4.9 0.22 2.1 0.09 
Franklin FranklinRW2_90_1A 0.724 0.005 -4.4 0.12 3.3 0.45 
Franklin FranklinRW2_90_1B 0.717 0.008 -5.8 0.11 2.5 0.10 
Franklin FranklinRW3_78_1A 0.692 0.008 -8.8 0.24 -6.3 0.06 
Franklin FranklinRW3_78_1B 0.718 0.005 -8.5 0.13 -3.0 0.20 
Franklin FranklinRW3_78_1C 0.720 0.004 -5.2 0.08 3.1 0.35 
Franklin FranklinFRB_170_1 0.742 0.006 -11.5 0.06 -2.1 0.05 
Franklin FranklinHS1_86_1A 0.725 0.008 -8.5 0.11 -5.0 0.13 
Franklin FranklinHS186_1B 0.703 0.008 -7.1 0.17 -6.6 0.25 
Franklin FranklinHS1_86_1C 0.710 0.006 -5.8 0.04 -6.8 0.02 
Mud ML07-04³ 0.726 0.013 -1.2 0.16 4.2 0.12 
Mud ML08-03³ 0.615 0.028 -4.4 0.36 -0.5 0.19 
Mud ML08-04³ 0.685 0.004 -2.3 0.17 2.6 0.39 
Mud RD05-95³ 0.748 0.012 -3.1 0.39 1.0 0.23 
Mud RD05-10³ 0.689 0.014 -3.3 0.14 1.3 0.06 
Mud CMud17_2 0.752 0.007 -1.1 0.14 2.0 0.07 
Surprise SVCW17-PT1 0.741 0.009 -3.8 0.03 3.7 0.02 
Surprise SVCW17-PT2 0.730 0.003 -3.8 0.07 3.7 0.04 
Surprise SVCW17-PT3 0.726 0.004 -3.9 0.22 3.7 0.09 
Surprise SVCW 17-PT4 0.726 0.004 -3.8 0.06 3.8 0.10 
Surprise SVDI 11-T14-1A 0.727 0.005 -2.6 0.10 3.8 0.17 
Surprise SVDI 11-T14-1B 0.739 0.001 -2.9 0.01 3.8 0.01 
Surprise SVDI 11-T14-1C 0.720 0.006 -2.8 0.09 3.7 0.06 
Surprise SVDI 11-T14-E4 0.708 — -2.8  — 3.6  — 
Surprise SVDI 11-T2-1 0.736 0.004 -3.1 0.29 3.9 0.10 
Surprise SVDI 11-T3-2 0.731 0.005 -3.4 0.17 3.0 0.04 
Surprise SVDI 11-T4-1b 0.742 0.004 -2.9 0.01 3.6 0.04 
Surprise SVDI 12-T1 0.704 0.006 -3.5 0.06 3.7 0.18 
Surprise SVDI 12-T10-A 0.715 0.006 -3.6 0.14 3.6 0.08 
Surprise SVDI 12-T10-B 0.726 0.003 -3.3 0.05 3.5 0.13 
Surprise SVDI 12-T13 0.732 0.011 -3.2 0.08 3.7 0.02 
Surprise SVDI 12-T14 0.747 0.009 -3.6 0.10 3.7 0.06 
Surprise SVDI 12-T14-1C 0.717 0.002 -2.5 0.12 3.6 0.01 
Surprise SVDI 12-T15-B 0.712 0.015 -2.9 0.00 3.8 0.01 
Surprise SVDI 12-T3-A 0.714 0.007 -3.3 0.10 3.6 0.06 
Surprise SVDI 12-T3-B 0.724 0.005 -3.4 0.17 3.6 0.09 
Surprise SVDI 12-T4-A 0.735 0.004 -3.3 0.12 3.6 0.02 
Surprise SVDI 12-T4-B 0.741 0.005 -3.3 0.05 3.6 0.04 
Surprise SVDI 12-T5b 0.721 0.001 -3.7 0.02 3.4 0.01 
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¹Sample provided by Anne Egger  
²Clumped and stable isotope results from Hudson et al. (2017) 
³Sample provided by Robert Dickerson and Victoria Petryshyn 
4Indicates samples with too few runs to constrain standard error of the mean 

 
 
 

 
  

Surprise SVDI 12-T7 0.738 0.003 -3.9 0.29 3.7 0.09 
Surprise SVDI 12-T9 0.731 0.004 -3.4 0.11 3.6 0.11 
Surprise SVDI 15-AE01 0.705 0.006 -3.3 0.10 3.8 0.04 
Surprise SVDI 15-AE02 0.699 0.009 -3.5 0.20 3.6 0.07 
Surprise SVDI 15-AE03 0.720 0.008 -3.0 0.18 3.5 0.09 
Surprise SVDI 15-AE05 0.713 0.009 -3.8 0.10 3.2 0.05 
Surprise SVDI 15-AE06 0.689 0.006 -3.4 0.10 3.5 0.04 
Surprise SVDI 15-BM03 0.720 0.008 -3.6 0.04 4.9 0.02 
Surprise SVDI 15-BM04 0.735 0.006 -4.0 0.16 3.6 0.11 
Surprise SVDI 15-BM08 0.692 0.006 -3.6 0.17 3.4 0.11 
Surprise SVDI 15-BM09 0.688 0.009 -3.4 0.18 3.1 0.10 
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Table 3.3:  Thermodynamic and Dynamic Controls on Lake Level 
 

Basin Thermodynamic  
(%, LGM) 

Dynamic  
(%, LGM) 

Thermodynamic  
(%, deglacial period) 

Dynamic  
(%, deglacial period) 

Lake Chewaucan 63.0 37.0 68.0 32.0 
Lake Franklin NA NA 35.5 64.5 
Mud Lake 39.5 60.5 39.0 61.0 
Lake Surprise 52.0 48.0 49.0 51.0 
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SUPPLEMENT 
 
Supplementary Figures 

 

 

Figure 3.S1: Map of the western United States, with the estimated extent of pluvial lakes from the LGM and deglacial period 
shown in blue (digitized from Mifflin & Wheat, 1979 estimates). The location of Lake Chewaucan (LC), Lake Franklin (LF), 
Mud Lake (ML), and Lake Surprise (LS) are indicated by black boxes.  
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Figure 3.S2: δ13C vs δ18O plots. Positive correlation of carbon and oxygen isotopes provides evidence of closed lake basin 
behavior. Note that for some samples, error bars are smaller than the marker. Lake Chewaucan after Hudson et al. (2017) (closed 
circles) and Egger et al., 2018 (open circles).  
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Supplementary Tables 

Table 3.S1: List of assumptions involved in reconstructions of past hydroclimate 

Water and Air 
Temperature 

Precipitation Rate Evaporation Rate 

No species-specific vital 
effects on ∆N¡ 

Lake was not frozen over for significant 
amounts of time 

Lake was not frozen over for 
significant amounts of time 

Carbonate formation 
occurs preferentially from 
April-October 

Relative humidity was near its modern 
value 

Relative humidity was near its 
modern value 

 
Average wind speed was near its 
modern value 

Average wind speed was near 
its modern value  

Water 𝛿18O was near its modern value 
(implies little change in water source) 

Water 𝛿18O was near its modern 
value (implies little change in 
water source) 

 ⍵ was near its modern values (implies 
similar vegetation and basin 
characteristics) 

⍵ was near its modern values 
(implies similar vegetation and 
basin characteristics) 

 Little or no differential isostatic 
rebound 

Little or no differential isostatic 
rebound 

 Lakes were inward-draining  
 System was in isotopic steady state   
 Atmospheric vapor above basin is in 

equilibrium with incoming rainwater 
 

 Kinetic fractionation factor is a function 
of relative humidity, which itself is 
similar to the modern annual average 
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Methods Supplement 

 
Clumped Isotope Measurements 

Mass spectrometry was completed at UCLA on a trio of mass spectrometers. On the first 

of the three machines, a Thermo 253 Dual Inlet Gas Source isotope ratio mass spectrometer 

(IRMS), carbonate samples are introduced after using a McCrea-style common acid bath for 

sample digestion. Acid temperature is held constant between 89.0℃ to 90.5℃. After dissolution 

of carbonate samples in the common acid bath, the resultant mixture of gas (primarily CO2, but 

also N2, O2, and other trace gases) is purified in an automated vacuum line, which removes 

contaminant gases based on their differential freezing points. The liberated gas passes through 

two separate gas traps to ensure removal of water and other compounds: the first containing 

ethanol, is kept at -76°C by dry ice, and the second is kept at -126°C by liquid nitrogen. The 

sample gas is then passed through a silver wool “getter”, which removes sulfur compounds. 

Remaining trace contaminants (e.g. halocarbons and hydrocarbons) are separated by moving the 

resultant gas through a Thermo Trace GC Ultra gas chromatograph column, which is filled with 

a divinyl benzene polymer trap, Porapak Q, at -20℃. After reaction in the GC, the sample is 

moved to a dual inlet IRMS. The ion source is maintained at 16,000 mV, and the amount of 

reference gas is automatically adjusted to produce a gas pressure that matches that of the 

standard. Each sample is measured for a total of nine acquisitions, with each acquisition 

consisting of a peak centering, background adjustment, and alternate cycling between sample and 

reference gas ionization (e.g. Spencer & Kim, 2015). Total measurement time is 2.3 hours per 

sample.  

The other two mass spectrometers contain nuCarb sample preparation systems interfaced 

to a Nu Perpsective IRMS. These machines both utilize the acid drip method, whereby a small 
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amount (200 µL) of phosphoric acid is released into individual vials of carbonate powder, and 

the resultant CO2 gas from each vial is sequentially analyzed on the mass spectrometer. After 

conversion to CO2 gas, an initial sample beam is recorded for each sample. Depending on the 

magnitude of this beam, samples are either stored in the sample bellows or the sample coldfinger 

(a small volume chamber in front of the capillary), before transfer to the mass spectrometer. 

Each gas sample is measured in the Perspective IRMS for a total of three acquisitions. 

Throughout each measurement, the sample and reference beams are monitored and adjusted, 

such that a beam current of 50 nA (user-specified) is maintained. The total measurement time for 

the NuCarb coupled to the Perspective IRMS is ~1.5 hours per sample, and the internal precision 

is 0.01‰. 

 
Quantifying Thermodynamic and Dynamical Controls on Lake Level 

We estimate the thermodynamic contribution to changing lake levels using the following 

procedure: 

1. We calculate the precipitation anomaly for each sample, using LGM and deglacial 
precipitation rates from Equation S7 (See Chapter 2 Supplement) and subtract modern 
precipitation rate from each sample. 

2. We calculate a weighted evaporation anomaly, using LGM and deglacial weighted 
evaporation rates, as calculated using Equation S2 (See Chapter 2 Supplement). For 
modern weighted evaporation rates, we assume a steady state condition, whereby modern 
weighted evaporation is equal to modern precipitation.  

3. We then calculate the thermodynamic contribution as the weighted evaporation anomaly 
divided by the total anomaly (Equation S1). 
 

 
𝑇ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐	𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡	(%) = 100 × (.r±�²³o±´6	jµ¶´±ln)

{.r±�²³o±´6	jµ¶´±ln�W	(j6	jµ¶´±ln)
  Equation S1 

 

Note that this calculation assumes that all changes in evapotranspiration and lake evaporation are 

due to reduced temperatures and remaining moisture balance to build the lake is driven by 
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increased precipitation delivered by dynamic mechanisms. Thus, for samples with higher 

formation temperatures and thus higher lake evaporation rates Equation S1 is negative. For these 

samples we do not report an assessment of thermodynamic vs. dynamic contribution to the mass 

balance solutions. This framework used here is a first order attempt to link the thermodynamic 

and dynamic mechanisms for moisture convergence on a region used in studies of the terrestrial 

moisture budget (Seager et al., 2014; Lora, 2018), where the thermodynamic mechanism is 

changes in specific humidity independent of circulation and the dynamic mechanism represents 

changes in circulation (i.e. moisture delivery) independent of humidity changes. 
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