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GRADIENT NLW ON CURVED BACKGROUND IN 4 + 1

DIMENSIONS

DAN-ANDREI GEBA AND DANIEL TATARU

Abstract. We obtain a sharp local well-posedness result for the Gradient
Nonlinear Wave Equation on a nonsmooth curved background. In the process
we introduce variable coefficient versions of Bourgain’s Xs,b spaces, and use a
trilinear multiscale wave packet decomposition in order to prove a key trilinear
estimate.

1. Introduction

In this article we are investigating the issue of local well-posedness for a variable
coefficient semilinear wave equation in 4 + 1 dimensions. To describe the context
and motivate the interest in our problem we introduce three related equations. We
begin with a generic gradient NLW equation in R

n+1,

(1) �u = Γ(u)(∇u)2

with the nonlinearity
Γ(u)(∇u)2 = qij(u)∂iu ∂ju

where qij are smooth functions and the standard summation convention is used.
Then we move on to a similar equation but on a curved background,

(2) �gu = Γ(u)(∇u)2

with �g = gij ∂i∂j , where the summation occurs from 0 to n and the index 0
stands for the time variable. To insure hyperbolicity we assume that the matrix gij

has signature (1, n) and the time level sets x0 = const are space-like, i.e. g00 > 0.
In effect to simplify some of the computations we make the harmless assumption
g00 = 1.

Finally, we consider a corresponding quasilinear equation

(3) �g(u)u = Γ(u)(∇u)2

with similar assumptions on the matrix g.
In all three cases we are interested in the local well-posedness of the Cauchy

problem in Sobolev spaces Hs(Rn) ×Hs−1(Rn) with initial data

(4) u(0, x) = u0(x), ∂tu(0, x) = u1(x)

The first equation (1) is the best understood so far, and is known to be locally
well-posed for s in the range

s > max{n
2
,
n+ 5

4
}

This range is sharp. The n
2 obstruction comes from scaling, while the n+5

4 is related
to concentration along light rays, see Lindblad [9]. The proof of the positive result
is fairly straightforward in dimension 2+1 and 3+1, where it suffices to rely on the
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2 DAN-ANDREI GEBA AND DANIEL TATARU

Strichartz estimates. In 4+1 dimensions this no longer works and one needs to use
instead the Xs,θ spaces, see Foschi-Klainerman [3]. These are multiplier weighted
L2 spaces associated to the wave operator as the Sobolev spaces Hs are connected
to the Laplace operator ∆, see Klainerman-Machedon [5]:

(5) ‖u‖Xs,θ = ‖(1 + |ξ|2) s
2 · (1 + ||τ | − |ξ||2) θ

2 · |û(τ, ξ)|‖L2

where û = û(τ, ξ) is the space-time Fourier transform of function u = u(t, x).
Finally, in the most difficult case, n ≥ 5, this was proved by Tataru [14], using a
suitable modification of the Xs,θ spaces, needed in order to control the interaction
of high and low frequencies in the multiplicative estimates.

For the quasilinear problem (3) the sharp result is only known to hold in di-
mensions n = 2, 3. This was proved by Smith-Tataru [12] (see also Lindblad’s
counterexample [10]). The argument there still requires the use of Strichartz esti-
mates. These are derived from a wave packet parametrix construction for a wave
equation with very rough coefficients, which in turn is obtained via a very deli-
cate analysis of the Hamilton flow. A different proof of this result in the special
case of the Einstein vacuum equation was independently obtained by Klainerman-
Rodnianski [6], [8], [7]. In dimensions n ≥ 4 it is still unclear which is the optimal
threshold, the best results so far being contained in the above mentioned paper of
Smith-Tataru [12] and in an earlier one, Tataru [15]:

n = 4, 5 s >
n

2
+

1

2

n ≥ 6 s >
n

2
+

2

3

In the same direction but somewhat closer in spirit to the present paper is Bahouri
and Chemin’s work [2, 1]. The equation considered there is still quasilinear, but
the main estimates are frequency localized versions of the Strichartz estimates for
the wave equation on a rough background.

As an intermediate step toward understanding the higher dimensional quasilinear
problem, we consider here the semilinear problem on a curved background and we
prove the sharp result:

Theorem 1.1. Let n = 4 and assume that the coefficients gij satisfy ∂2g ∈ L2L∞.
Then the Cauchy problem (2), (4) is locally well-posed in Hs ×Hs−1 for s > 9

4 .

Here well-posedness is understood in the strongest sense, i.e. the solutions have
Lipschitz dependence on the initial data and they exist on a time interval which
only depends on the size of the initial data.

One contribution of the present paper is to introduce variable coefficient versions
of the Xs,b spaces, study their properties and obtain the corresponding Strichartz
type embeddings. However, the main novelty, contained in the last two sections,
is a new method, based on a trilinear wave packet decomposition, to prove a key
trilinear bound which cannot be obtained directly from the Strichartz estimates.

The first step in the proof is to reduce the problem to the case when the initial
data is small, using scaling and the finite speed of propagation. This is a routine
argument for which we refer the reader to [12]. Once we know that the initial data
is small, we can fix the time interval and set it to [−1, 1]. This will be the case
throughout the rest of the paper.
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To solve the problem for small data we use a fixed point argument. Let S(u0, u1)
and �−1

g be respectively the homogeneous and inhomogeneous solution operators

�gS(u0, u1) = 0, S(u0, u1)(0) = u0, ∂tS(u0, u1)(0) = u1(6)

�g(�
−1
g H) = H, (�−1

g H)(0) = 0, ∂t(�
−1
g H)(0) = 0(7)

Then a solution u for (2) in [−1, 1] is also a fixed point for the functional

(8) F (u) = S(u0, u1) + �−1
g (Γ(u)(∇u)2)

In order to apply a fixed point argument for F we need to find two Banach spaces
X and Y for which the following mapping properties hold:

‖S(u0, u1)‖X . ‖(u0, u1)‖Hs×Hs−1(9)

‖�−1
g H‖X . ‖H‖Y(10)

‖u · w‖X . ‖u‖X‖w‖X(11)

‖Γ(u)‖X . C(‖u‖L∞)(1 + ‖u‖5
X)(12)

‖u · w‖Y . ‖u‖X‖w‖Y(13)

‖∇v · ∇w‖Y . ‖v‖X · ‖w‖X(14)

where C = C(‖u‖L∞) is a constant that depends solely on ‖u‖L∞. In the flat case
(1), for dimension n = 4, one can make this argument work by choosing

X = Xs,θ Y = Xs−1,θ−1

with

(15) s = θ +
3

2
θ >

3

4

For our problem the challenge is twofold: first we need to find suitable variable
coefficient versions for the Xs,θ spaces and then, in this new context, prove the
corresponding estimates (9)-(14).

Such spaces were previously introduced by Tataru [13], where they are used in
the context of a unique continuation problem. There, for a hyperbolic operator P
one defines

Xs,0 = Hs, Xs,1 = {u ∈ Hs|Pu ∈ Hs−1}
Then all the other spaces are defined through interpolation and duality.

In this article we choose to follow a different path based on dyadic decompositions
with respect to the spatial frequency and the distance to the characteristic cone.
Likely one should be able to prove that the two approaches are equivalent, but we
choose not to pursue this here.

Our article is structured as follows. In the next section we define the Xs,θ

spaces and prove that they satisfy the linear estimates (9), (10). Our definition of
the Xs,θ is slightly different from the standard one (5) in the constant coefficient
case. Precisely, in the constant coefficient case our definition gives

(16) ‖u‖Xs,θ ≈ ‖(1+|ξ|2) s
2 (1+||τ |−|ξ||2) θ

2 ·û(τ, ξ)‖L2+‖�u‖L2
tHs+θ−2

x
, 0 < θ < 1

and one can see that the second term above alters the behavior at high modulations
|τ | ≫ |ξ|. Correspondingly, for negative θ we have

(17) ‖u‖Xs,θ ≈ ‖(1+ |ξ|2) s
2 (1+ ||τ |−|ξ||2) θ

2 · û(τ, ξ)‖L2 +‖u‖L2
tHs+θ

x
, −1 < θ < 0
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This change is consistent with scaling and simplifies somewhat the study of high
modulation interactions.

In Section 3 we discuss the Strichartz estimates for �g, which translate into
embeddings for the Xs,θ spaces. These turn out to suffice for the proof of the
algebra properties (11)-(13) and for the high-high frequency interactions in (14).

The difficult part is to study the high-low frequency interactions in (14). For
this we first take advantage of the duality relation

(18) (Xs,θ + L2Hs+θ)′ = X−s,−θ s ∈ R, 0 < θ <
1

2

This is consistent with (16) and (17). Using this duality, after factoring out high
modulation interactions, the bound (14) is transformed into the trilinear estimate:

(19)

∣

∣

∣

∣

∫

u · v · w dxdt

∣

∣

∣

∣

. ‖u‖X1−s,1−θ‖v‖Xs−1,θ‖w‖Xs−1,θ

with (s, θ) verifying (15). The last section of the paper is devoted to proving this
bound. The argument is based on a multiscale trilinear wave packet decomposition
for linear waves.

2. The Xs,θ spaces

We first introduce Littlewood-Paley decompositions. As a general rule, all fre-
quency localizations in the sequel are only with respect to the spatial variables.
There is a single exception to this. Precisely, the coefficients gij are truncated
using space-time multipliers. In order for these truncations to work, we need for
these coefficients to be defined globally in time. Hence we assume they have been
extended to functions with similar properties in all of R

n+1.
Let φ be a smooth function supported in { 1

2 ≤ |ξ| ≤ 2} with the property that

1 =
∞
∑

j=−∞
φ(2−jξ)

We consider a spatial Littlewood-Paley decomposition,

1 =

∞
∑

λ=1

Sλ(Dx)

where for dyadic λ > 1 we have

Sλ(ξ) = φ

(

ξ

λ

)

while S1 incorporates the low frequency contribution in {|ξ| ≤ 1}. Set

S<λ =

λ
2

∑

µ=1

Sµ

We will also use spatial multipliers S̃λ with slightly larger support, with SλS̃λ = Sλ.
We say that a function u is localized at frequency λ if its Fourier transform is
supported in the annulus {λ

8 ≤ |ξ| ≤ 8λ}.
For the paradifferential type calculus we also need to truncate the coefficients of

�g in frequency. Given �g in (2) we define the modified operators

�g<λ
= (S<λ(Dx, Dt)g

αβ)∂α∂β
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In the sequel we omit the space and time variables in our function space notations,
i.e. Lp := Lp

x,t, L
2Hs := L2

tH
s
x, LpLq := Lp

tL
q
x, etc. We are ready now to define

our spaces:

Definition 2.1. Let θ ∈ (0, 1) and s ∈ R. Then Xs,θ is the space of functions
u ∈ L2(−1, 1;Hs(Rn)) for which the following norm is finite:

(20) ‖u‖2
Xs,θ = inf

{ ∞
∑

λ=1

λ
∑

d=1

‖uλ,d‖2
Xs,θ

λ,d

; u =

∞
∑

λ=1

λ
∑

d=1

Sλuλ,d

}

where λ, d take dyadic values and

(21) ‖uλ,d‖2
Xs,θ

λ,d

= λ2sd2θ‖uλ,d‖2
L2 + λ2s−2d2θ−2‖�g

<
√

λ
uλ,d‖2

L2

We also define the space Xs−1,θ−1 of functions for which the following norm is
finite:

‖f‖2
Xs−1,θ−1 = inf

{

‖f0‖2
L2Hs−1 +

∞
∑

λ=1

λ
∑

d=1

‖fλ,d‖2
Xs,θ

λ,d

;

f = f0 +

∞
∑

λ=1

λ
∑

d=1

�g
<

√
λ
Sλfλ,d

}
(22)

Remark 2.2. Intuitively d stands for the modulation of the uλ,d piece. Indeed, in
the constant coefficient case one can easily see that uλ,d mainly contributes to u
in the region where ||τ | − |ξ|| ≈ d. The condition 1 ≤ d is related to the spatial
localization on the unit scale in our problem. The condition d ≤ λ reflects the fact
that at high modulation we use a simpler structure, see e.g. (16), (17).

Remark 2.3. The cutoff at frequency less than
√
λ for the coefficients �g is related

to the regularity of the coefficients, ∂2g ∈ L2L∞. This implies that �g≥
√

λ
uλ,d is

an allowable error term.

We begin our analysis of the Xs,θ spaces with a simple observation, namely that
without any restriction in generality one can assume that the functions uλ,d and
fλ,d in Definition 2.1 are localized at frequency λ. Precisely, we have the stronger
result:

Lemma 2.4. The following estimate holds:

(23) λs−1dθ‖∇Sλv‖L2 + λs−1dθ−1‖�g
<

√
λ
Sλv‖L2 . ‖v‖Xs,θ

λ,d

Proof. We first bound the time derivatives of v in negative Sobolev spaces,

(24) λsdθ(‖∂2
t v‖L2(H−2+λ2L2) + ‖∂tv‖L2(H−1+λL2)) . ‖v‖Xs,θ

λ,d

This follows by Cauchy-Schwartz from the interpolation inequality

‖∂tv‖2
L2(H−1+λL2) . (‖∂2

t v‖L2(H−2+λ2L2) + ‖v‖L2)‖v‖L2

combined with the bound

‖∂2
t v‖L2(H−2+λ2L2) . λ−2‖�g

<
√

λ
v‖L2 + ‖∂tv‖L2(H−1+λL2) + ‖v‖L2
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To prove this last estimate we only use the L∞ regularity of g together with the
condition g00 = 1. Then we need the fixed time bounds

‖g<
√

λ∂x∂tv‖H−2+λ2L2 . ‖∂tv‖H−1+λL2

‖g<
√

λ∂
2
xv‖H−2+λ2L2 . ‖v‖L2

They are similar, so we only discuss the second one. We write

g<
√

λ∂
2
xv = ∂2

x(g<
√

λv) − 2∂x(∂xg<
√

λv) + ∂2
xg<

√
λv

and use the uniform bounds

|g<
√

λ| . 1, |∂xg<
√

λ| . λ, |∂2
xg<

√
λ| . λ2

This concludes the proof of (24).
The first term in (23) is directly bounded using (24). For the second it suffices

to prove the commutator estimate

(25) ‖[�g
<

√
λ
, Sλ]v‖L2 . λ‖v‖L2 + ‖∂tv‖L2

We have

[�g
<

√
λ
, Sλ] = [g<

√
λ, Sλ]∂t∂x + [g<

√
λ, Sλ]∂2

x

and the commutators are localized at frequency λ so the spatial derivatives only
contribute factors of λ. Hence (25) follows from the standard commutator estimate

‖[g<
√

λ, Sλ]‖L2→L2 . λ−1‖∇g‖L∞

�

Applying the above Lemma with Sλ replaced by S̃λ we obtain

Corollary 2.5. One can replace the Xs,θ
λ,d norm in the definition of Xs,θ and

Xs−1,θ−1 by the norm

‖v‖X̃s,θ

λ,d

= λs−1dθ‖∇v‖L2 + λs−1dθ−1‖�g
<

√
λ
v‖L2

For the proof of the duality relation (18) it is convenient to work with a selfadjoint

operator. Thus we consider the selfadjoint counterpart �̃g of �g

�̃g = ∂ig
ij∂j

Then for v localized at frequency λ we commute and estimate the frequency local-
ized difference

‖�̃g
<

√
λ
v − �g

<
√

λ
v‖L2 . ‖∇v‖L2

This leads directly to

Corollary 2.6. One can replace the �g
<

√
λ

operator in the definition of Xs,θ and

Xs−1,θ−1 by the similar operator in divergence form �̃g
<

√
λ
.

As a consequence of the second part of (23) we have

Corollary 2.7. The following embedding holds for −1 < θ < 0:

Xs,θ ⊂ L2Hs+θ
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Another use of this is to establish energy estimates. A direct application of
energy estimates for the wave equation yields the bound

‖∇v‖2
L∞L2 . ‖∇v‖2

L2 + ‖∇v‖L2‖�gv‖L2

This leads to

(26) λs−1dθ− 1
2 ‖∇Sλv‖L∞L2 . ‖v‖X̃s,θ

λ,d

Going back to Definition 2.1, this implies

Corollary 2.8. Assume that θ > 1
2 . Then

(27) ‖u‖L∞Hs + ‖ut‖L∞Hs−1 . ‖u‖Xs,θ

To prove the estimates (9) and (10) in the context of the Xs,θ spaces we need
to switch from the frequency truncated coefficients to the full coefficients gij . The
tool needed to do that is contained in the following:

Lemma 2.9. Assume that 0 ≤ s ≤ 3. Then the following fixed time estimate holds:

(28)

∞
∑

λ=1

λ2(s−1)‖S̃λ(g>
√

λu)‖2
L2 . (M(‖∂2g‖L∞))2‖u‖2

Hs−2

where M stands for the maximal function with respect to time. We also have the
dual estimate

(29) ‖
∞
∑

λ=1

g>
√

λS̃λfλ‖2
H2−s .

∞
∑

λ=1

λ2(1−s)‖fλ‖2
L2

Proof. We take a Littlewood-Paley decomposition of both factors,

S̃λ(g>
√

λu) =

∞
∑

µ=1

∞
∑

ν=
√

λ

S̃λ(gνuµ)

The (µ, ν) term is nonzero only in the following situations:
(i) ν ≪ λ, µ ≈ λ. Then we estimate

‖S̃λ(gνuµ)‖L2 . ‖gν‖L∞‖uµ‖L2 . ν−2M(‖∂2g‖L∞)‖uµ‖L2

and use the square summability with respect to λ together with the relation ν−2 .
λ−1.

(ii) ν ≈ λ, µ≪ λ. Then

‖S̃λ(gνuµ)‖L2 . ‖gν‖L∞‖uµ‖L2 . λ−2M(‖∂2g‖L∞)‖uµ‖L2

This is tight only when s = 3 and µ = 1, otherwise there is a gain which insures
the summability in λ, µ.

(iii) ν ≈ µ & λ. Then

‖S̃λ(gνuµ)‖L2 . ‖gν‖L∞‖uµ‖L2 . µ−2M(‖∂2g‖L∞)‖uµ‖L2

This is always stronger than we need. The proof of the lemma is concluded. �

We now establish some simple properties of the linear equation

(30) �gu = f, u(0) = u0, ut(0) = u1.

Then
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Lemma 2.10. The linear equation (30) is well-posed in Hs ×Hs−1 for 0 ≤ s ≤ 3.

The proof follows easily from energy estimates, see [16].
We use this to prove (9), namely

Lemma 2.11. Assume that 0 ≤ s ≤ 3 and θ > 0. Then the solution u to (30)
verifies

‖u‖Xs,θ . ‖u0‖Hs + ‖u1‖Hs−1 + ‖f‖L2Hs−1

Proof. We decompose the solution u as

u =

∞
∑

λ=1

SλS̃λu

and think of this as a part of the sum in (20) which corresponds to d = 1. Then

‖u‖2
Xs,θ .

∞
∑

λ=1

‖S̃λu‖2
Xs,θ

λ,1

≈
∞
∑

λ=1

λ2s‖S̃λu‖2
L2 + λ2(s−1)‖�g

<
√

λ
S̃λu‖2

L2

. ‖u‖2
L2Hs +

∞
∑

λ=1

λ2(s−1)‖�g
<

√
λ
S̃λu− S̃λ�gu‖2

L2 + ‖f‖2
L2Hs−1

The first term is easily controlled by energy estimates. The second is decomposed
as follows:

�g
<

√
λ
S̃λu− S̃λ�gu = [�g

<
√

λ
, S̃λ]u− S̃λ�g

>
√

λ
u

For the commutator we use the fixed time bound (25) along with square summa-
bility in λ. The second part is controlled by (28).

�

The result in the next Lemma implies the estimate (10) for the spaces X,Y :

Lemma 2.12. Assume that 0 ≤ s ≤ 3 and 1
2 < θ < 1. Then the operator �−1

g has
the mapping property

�−1
g : Xs−1,θ−1 → Xs,θ

Proof. Let f ∈ Xs−1,θ−1. We use the representation in (22),

f = f0 +

∞
∑

λ=1

λ
∑

d=1

�g
<

√
λ
Sλfλ,d

By Definition (2.1) the function

u =

∞
∑

λ=1

λ
∑

d=1

Sλfλ,d

belongs to Xs,θ. The difference v = u− �−1
g f solves

�gv = �gu− f, v(0) = u(0), vt(0) = ut(0)
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To estimate it we use Lemma 2.11. The initial data is controlled due to Corol-
lary 2.8, so it remains to bound the inhomogeneous term in L2Hs−1. Thus we need
to show that

(31) ‖
∞
∑

λ=1

λ
∑

d=1

�g
>

√
λ
Sλfλ,d‖2

L2Hs−1 .
∑

λ,d

‖fλ,d‖2
Xs,θ

λ,d

Considering the trace regularity result in Corollary 2.8 this would follow from

‖
∞
∑

λ=1

�g
>

√
λ
Sλfλ‖2

L2Hs−1 .
∑

λ

‖∇fλ‖2
L∞Hs−1 , fλ =

λ
∑

d=1

fλ,d

which in turn is a consequence of the fixed time bound (29).
�

We finish this section by proving a key duality relation between Xs,θ spaces with
positive, respectively negative θ.

Lemma 2.13. For 0 < θ < 1
2 we have the duality relation

(32) X−s,−θ = (Xs,θ + L2Hs+θ)′

Proof. a) We first show that

X−s,−θ ⊂ (Xs,θ + L2Hs+θ)′

From Corollary 2.7 we obtain X−s,−θ ⊂ (L2Hs+θ)′. It remains to prove the bound
∣

∣

∣

∣

∫

u · f dx dt
∣

∣

∣

∣

. ‖u‖Xs,θ ‖f‖X−s,−θ

We consider Littlewood-Paley decompositions of u and v as in Definition 2.1,

u =

∞
∑

λ=1

λ
∑

d=1

Sλuλ,d, f = f0 +

∞
∑

λ=1

λ
∑

d=1

�̃g
<

√
λ
Sλfλ,d

with �̃g
<

√
λ

in divergence form, see Corollary 2.6. The summation with respect
to λ is essentially diagonal therefore it follows by orthogonality. To handle the d
summation it suffices to obtain the off-diagonal decay

∣

∣

∣

∣

∫

Sλuλ,d1
· �̃g

<
√

λ
Sλfλ,d2

dxdt

∣

∣

∣

∣

. min

{

(

d2

d1

)θ

,

(

d1

d2

)
1
2
−θ

}

‖uλ,d1
‖Xs,θ

λ,d1

‖fλ,d2
‖X1−s,1−θ

λ,d2

If d2 < d1 then this follows directly from (21) and (23). Otherwise we integrate by
parts

∫

Sλuλ,d1
· �̃g

<
√

λ
Sλfλ,d2

dxdt =

∫

�̃g
<

√
λ
Sλuλ,d1

· Sλfλ,d2
dxdt

+

∫

(Sλuλ,d1
· g0α

<
√

λ
∂αSλfλ,d2

− g0α
<
√

λ
∂αSλuλ,d1

· Sλfλ,d2
)dx

∣

∣

∣

∣

1

−1

For the first term we use (23) and (21). For the second we use the trace regularity
result in (26).

b) We now show that

(Xs,θ + L2Hs+θ)′ ⊂ X−s,−θ
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Let T be a bounded linear functional on Xs,θ + L2Hs+θ. Due to the second term
we can identify T with a function u ∈ L2H−s−θ.

On the other hand, we can apply it to functions v ∈ Xs,θ of the form

v =
∞
∑

λ=1

λ
∑

d=1

Sλvλ,d

Then we must have the bound

|Tv|2 . ‖v‖2
Xs,θ .

∑

λ,d

‖vλ,d‖2
Xs,θ

λ,d

.
∑

λ,d

(

λ2sd2θ‖vλ,d‖2
L2 + λ2s−2d2θ−2‖�̃g

<
√

λ
vλ,d‖2

L2

)

Given the definition of the Xs,θ
λ,d norms, using succesively the Hahn-Banach theorem

and Riesz’s theorem it follows that we can find functions fλ,d and hλ,d with

(33)

∞
∑

λ=1

λ
∑

d=1

λ−2sd−2θ‖fλ,d‖2
L2 + λ2(1−s)d2(1−θ)‖hλ,d‖2

L2 = M <∞

so that

Tv =
∞
∑

λ=1

λ
∑

d=1

∫

fλ,d vλ,d + hλ,d · �̃g
<

√
λ
vλ,d dxdt

In particular this must hold for v of the form v = Sλvλ,d,
∫

uSλvλ,ddxdt =

∫

fλ,d vλ,d + hλ,d · �̃g
<

√
λ
vλ,d dxdt

For each λ, d this yields

Sλu = fλ,d + �̃g
<

√
λ
hλ,d

Then we can represent Sλu in the form

(34) Sλu = fλ,1 +

λ
2

∑

d=1

�̃g
<

√
λ
uλ,d + �̃g

<
√

λ
hλ,λ uλ,d = hλ,d − hλ,2d

This yields for u the representation

(35) u =

∞
∑

λ=1

S̃λ



fλ,1 +

λ
2

∑

d=1

�̃g
<

√
λ
uλ,d + �̃g

<
√

λ
hλ,λ





This is very close to but not exactly the form in (22). However the multipliers

S̃λ can be easily replaced by Sλ by reapplying the Paley-Littlewood decomposition
on the right, and then Sλ can be commuted to the right of �̃g

<
√

λ
due to the

Corollary 2.5 and the commutator bound (25). Hence we have

‖u‖2
X−s,−θ .

∞
∑

λ=1



λ−2s‖fλ,1‖2
L2 +

λ/2
∑

d=1

‖uλ,d‖2
X1−s,1−θ

λ,d

+ ‖hλ,λ‖2
X1−s,1−θ

λ,λ





and due to (33) it remains to bound the right hand side by

M + ‖u‖2
L2H−s−θ
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There is nothing to do for the fλ,1 term. On the other hand we can bound

‖uλ,d‖2
X1−s,1−θ

λ,d

. λ2(1−s)d2(1−θ)‖uλ,d‖2
L2 + λ−2sd−2θ‖�̃g

<
√

λ
uλ,d‖2

L2

= λ2(1−s)d2(1−θ)‖hλ,d − hλ,2d‖2
L2 + λ−2sd−2θ‖fλ,d − fλ,2d‖2

L2

. λ−2sd−2θ(‖fλ,d‖2
L2 + ‖fλ,2d‖2

L2)

+ λ2(1−s)d2(1−θ)(‖hλ,2d‖2
L2 + ‖hλ,d‖2

L2)

Finally, for the last term we have

‖hλ,λ‖2
X1−s,1−θ

λ,λ

. λ2(1−s)λ2(1−θ)‖hλ,λ‖2
L2 + λ−2sλ−2θ‖�̃g

<
√

λ
hλ,λ‖2

L2

= λ2(1−s)λ2(1−θ)‖hλ,λ‖2
L2 + λ−2sλ−2θ‖Sλu− fλ,λ‖2

L2

. λ2(1−s)λ2(1−θ)‖hλ,λ‖2
L2 + λ−2sλ−2θ‖fλ,λ‖2

L2 + ‖Sλu‖2
L2H−s−θ

The proof is concluded. �

3. Strichartz estimates and applications.

The Strichartz estimates for the variable coefficient wave equation, as proved in
[15], have the form:

Theorem 3.1. (Tataru [15]) Assume that the coefficients gij of �g satisfy ∂2gij ∈
L1L∞. Then the solutions to the wave equation in n + 1 dimensions satisfy the
bounds

(36) ‖Dσ∇u‖LpLq . ‖u(0)‖H1 + ‖ut(0)‖L2 + ‖�gu‖L1L2

where

(37) σ = −n
2

+
1

p
+
n

q
,

2

p
+
n− 1

q
≤ n− 1

2
, 2 ≤ p ≤ ∞, 2 ≤ q <∞

Applying this bound on an interval I of size ǫ2 we obtain by Cauchy-Schwartz

‖Dσ∇u‖Lp(I;Lq) .
1

ǫ
‖u‖H1(I×Rn) + ǫ‖�gu‖L2(I×Rn), ǫ ≤ 1

Summing up over small intervals this extends to intervals of arbitrary lengths.
Optimizing over ǫ yields

(38) ‖Dσ∇u‖2
LpLq . ‖u‖2

H1 + ‖u‖H1‖�gu‖L2

We want to apply this result to the functions Sλuλ,d in Definition 2.1. By (23) we
obtain

Corollary 3.2. a) Let (σ, p, q) verifying

σ = −n
2

+
1

p
+
n

q
, 2 ≤ p ≤ ∞, 2 ≤ q <∞

Then for (σ, p, q) as in (37) we have

‖Sλ∇u‖LpLq . λ1−s−σd
1
2
−θ‖u‖Xs,θ

λ,d

If additionally θ > 1
2 then

‖Sλ∇u‖LpLq . λ1−s−σ‖u‖Xs,θ
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b) If instead
2

p
+
n− 1

q
≥ n− 1

2

then

‖Sλ∇u‖LpLq . λ1−s−σ+ 1
2
( 2

p
+ n−1

q
−n−1

2
)d

1
2
−θ− 1

2
( 2

p
+ n−1

q
−n−1

2
)‖u‖Xs,θ

λ,d

The interesting triplets of indices for (σ, p, q) in 4 + 1 dimensions are

(0,∞, 2)(energy) (−1

2
,
10

3
,
10

3
)(Strichartz) (−5

6
, 2, 6)(Pecher)

In addition, we can also use the index q = ∞. Thus we obtain the triplets

(−2,∞,∞), (−3

2
, 2,∞)

For the case when θ < 1
2 , we rely on the additional triplets

(−1

6
, 2, 3), (

1

4
, 4, 2)

For convenience we summarize the bounds we need for X̃s,θ
λ,d:

Corollary 3.3. For 0 < θ < 1 we have

λs−1‖Sλ∇u‖L∞L2 + λs− 5
2 ‖Sλ∇u‖L2L∞ + λs−3‖Sλ∇u‖L∞ . d

1
2
−θ‖u‖X̃s,θ

λ,d

λs− 17
12 ‖Sλ∇u‖L2L3 + λs−1‖Sλ∇u‖L4L2 . d

1
4
−θ‖u‖X̃s,θ

λ,d

The reason we include the gradient is to have also bounds for ut. Because of the
frequency localization, if we drop the gradient the same bounds hold with one less
power of λ.

In our estimates later on we also need to work with Xs,b functions which are
concentrated into a smaller modulation range. For this we introduce the additional
norm

‖u‖2
X̃s,θ

λ,<d

= inf

{

d
∑

h=1

‖uh‖2
X̃s,θ

λ,h

; u =

d
∑

h=1

uh

}

If d = λ we simply write X̃s,θ
λ . A simple argument leads to

‖u‖2
Xs,θ = inf

{ ∞
∑

λ=1

‖Sλuλ‖2
X̃s,θ

λ

; u =

∞
∑

λ=1

Sλuλ

}

We also have

Corollary 3.4. a) Assume that θ > 1
2 . Then

λs−1‖Sλ∇u‖L∞L2 + λs− 5
2 ‖Sλ∇u‖L2L∞ + λs−3‖Sλ∇u‖L∞ . ‖u‖X̃s,θ

λ,<d

b) Assume that θ < 1
2 . Then

λs−1‖Sλ∇u‖L∞L2 + λs− 5
2 ‖Sλ∇u‖L2L∞ + λs−3‖Sλ∇u‖L∞ . d

1
2
−θ‖u‖X̃s,θ

λ,<d
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In preparation for proving bilinear estimates for the Xs,θ spaces we first investi-

gate which multiplications leave the X̃s,θ
λ,d space unchanged. For this we define the

algebras Md, M<d with the norms

‖f‖Md
= ‖f‖L∞ + d−1‖ft‖L∞ + d−

1
2 ‖ft‖L2L∞ + d−

3
2 ‖ftt‖L2L∞

‖f‖M<d
= ‖f‖Md

+ d
1
2 ‖f‖L2L∞

Then we have the multiplicative properties

Lemma 3.5. Assume that f is localized at frequency d ≤ λ. Then we have

(39) ‖fSλu‖X̃s,θ

λ,d

. ‖f‖Md
‖u‖X̃s,θ

λ,d

respectively

‖fSλu‖X̃s,θ

λ,d

. ‖f‖M<d
‖u‖X̃s,θ

λ,<d

, θ <
1

2

‖fSλu‖X̃s,θ

λ,d

. dθ− 1
2 ‖f‖M<d

‖u‖X̃s,θ

λ,<d

, θ >
1

2

(40)

The proof is straightforward, using Leibnitz’s rule and the energy estimate (26).
To bound functions in the Md, respectively M<d norms we use Corollary 3.4 with
d = λ to obtain:

Lemma 3.6. a) Assume that θ > 1
2 . Then

‖Sλu‖M<λ
≤ λ2−s‖u‖X̃s,θ

λ

‖S<λu‖Mλ
≤ max{1, λ2−s}‖u‖Xs,θ

‖S<λu‖M<λ
≤ max{λ 1

2 , λ2−s}‖u‖Xs,θ

b) Assume that θ < 1
2 . Then

‖Sλu‖M<λ
≤ λ

5
2
−θ−s‖u‖X̃s,θ

λ

‖S<λu‖Mλ
≤ max{1, λ 5

2
−θ−s}‖u‖Xs,θ

‖S<λu‖M<λ
≤ max{λ 1

2 , λ
5
2
−θ−s}‖u‖Xs,θ

Using the above property we prove the algebra property (11) for the space X .

Proposition 3.7. Assume that s > 2 and 1
2 < θ < s− 3

2 . Then Xs,θ is an algebra.

Proof. Let u, v ∈ Xs,θ. For both we consider the decomposition in Definition 2.1,

u =

∞
∑

λ=1

λ
∑

d=1

Sλuλ,d, v =

∞
∑

λ=1

λ
∑

d=1

Sλvλ,d,

For the terms in the decomposition we use the X̃s,θ
λ,d norms, as allowed by Corol-

lary 2.5. We denote

uλ =

λ
∑

d=1

uλ,d, uλ,<d =

d
∑

h=1

uλ,h

Then we write

uv =

∞
∑

µ=1

Sµ(uv) =

∞
∑

µ=1

∞
∑

λ1=1

∞
∑

λ2=1

Sµ(Sλ1
uλ1

Sλ2
vλ2

)
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There are two cases when the above summand is nonzero, namely if λ1 ≈ λ2 & µ
and if max{λ1, λ2} ≈ µ. We consider them separately.

Case 1, λ1, λ2 ≈ λ & µ. In this case the summability with respect to λ is
trivial, so it suffices to look at the product SλuλSλvλ for fixed λ. This is localized
at frequency ≤ λ. Combining the L∞L2 and the L2L∞ bounds in Corollary 3.4 we
obtain

(41) ‖SλuλSλvλ‖L2 + λ−1‖∂t(SλuλSλvλ)‖L2 . λ−2s+ 3
2 ‖uλ‖X̃s,θ

λ

‖vλ‖X̃s,θ

λ

Using the equation we can also bound the second time derivative,

(42) λ−2‖∂2
t (SλuλSλvλ)‖L2 . λ−2s+ 3

2 ‖uλ‖X̃s,θ

λ

‖vλ‖X̃s,θ

λ

The three bounds above allow us to estimate for µ ≤ λ

‖SλuλSλvλ‖Xs,θ
µ,µ

. µs+θ−2λ−2s+ 7
2 ‖uλ‖X̃s,θ

λ

‖vλ‖X̃s,θ

λ

This suffices provided that θ < s− 3
2 , which is insured by our hypothesis.

Case 2. Here we consider products of the form SµvµSλuλ where µ ≪ λ. Then
the product is localized at frequency λ. The summation with respect to λ is trivial,
but not the one with respect to µ. We write

SµvµSλuλ = SµvµSλuλ,<µ +

λ
∑

d=µ

SµvµSλuλ,d

Using Lemma 3.5 and Lemma 3.6 we obtain

‖SλuλSµvµ‖2
X̃s,θ

λ

. ‖SµvµSλuλ,<µ‖2
X̃s,θ

λ,µ

+
λ

∑

d=µ

‖SµvµSλuλ,d‖2
X̃s,θ

λ,d

. µ2θ−1‖Sµvµ‖2
M<µ

‖uλ,<µ‖2
X̃s,θ

λ,<µ

+ ‖Sµvµ‖2
Mµ

λ
∑

d=µ

‖uλ,d‖2
X̃s,θ

λ,d

. µ2θ−1‖Sµvµ‖2
M<µ

λ
∑

d=1

‖uλ,d‖2
X̃s,θ

λ,d

. µ3+2θ−2s‖vµ‖2
X̃s,θ

µ

λ
∑

d=1

‖uλ,d‖2
X̃s,θ

λ,d

The summation with respect to µ is trivial since θ < s− 3
2 .

�

We next prove (13).

Proposition 3.8. Assume that s > 2 and 1
2 < θ < s − 3

2 . Then we have the
multiplicative estimate

Xs,θ ·Xs−1,θ−1 ⊂ Xs−1,θ−1

Proof. By duality this reduces to the multiplicative estimate

Xs,θ · (X1−s,1−θ + L2H2−s−θ) ⊂ X1−s,1−θ + L2H2−s−θ

Since s > 2 we have the fixed time multiplication

Hs ·H2−s−θ ⊂ H2−s−θ
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which implies the space-time bound

L∞Hs · L2H2−s−θ ⊂ L2H2−s−θ

Due to the energy estimate for Xs,θ it remains to show that

Xs,θ ·X1−s,1−θ ⊂ X1−s,1−θ + L2H2−s−θ

We consider a product SλuλSµvµ which we decompose as in the previous proof.
Because of the lack of symmetry we now need to consider three cases.

Case 1. Here we estimate Sµ(SλuλSλvλ) where µ . λ. By Corollary 3.4 we
obtain

‖SλuλSλvλ‖
L2L

3
2

. ‖Sλuλ‖L4L3‖Sλvλ‖L4L3 . λθ− 2
3 ‖uλ‖X̃s,θ

λ

‖vλ‖X̃1−s,1−θ

λ

Using then Sobolev embeddings we obtain

‖Sµ(SλuλSλvλ)‖L2H2−s−θ . µ
8
3
−s−θλθ− 2

3 ‖uλ‖X̃s,θ

λ

‖vλ‖X̃1−s,1−θ

λ

Case 2. Here we bound SµuµSλvλ, µ ≪ λ. The product is localized at frequency
λ, and the analysis is almost identical to Case 2 in Proposition 3.7.

Case 3. Here we bound SλuλSµvµ, µ ≪ λ. The same argument applies, the
only difference is that we gain some extra µ/λ factors.

�

We continue with the Moser estimates in (12), which follow from

Proposition 3.9. Assume that s > 2 and 1
2 < θ < s − 3

2 . Let Γ be a smooth
function. Then

‖Γ(u)‖Xs,θ . C(‖u‖L∞)(1 + ‖u‖5
Xs,θ)

Proof. We write

Γ(u) − Γ(v) = (u− v)f(u, v)

and

f(u, v) − f(x, y) = (u − x)g1(u, v, x, y) + (v − y)g2(u, v, x, y)

where f , g1 and g2 are smooth functions. Then we have

Γ(u) =Γ(u1) +

∞
∑

λ=1

Γ(u≤2λ) − Γ(u≤λ)

=Γ(u1) +

∞
∑

λ=1

u2λf(u≤2λ, u≤λ)

=Γ(u1) +

∞
∑

λ=1

u2λ[f(u≤2, u1) +

λ
∑

µ=2

(f(u≤2µ, u≤µ) − f(u≤µ, u≤µ/2))]

=Γ(u1) +

∞
∑

λ=1

u2λ[f(u≤2, u1) +

λ
∑

µ=2

(u2µ g1(u≤2µ, u≤µ, u≤µ/2)

+ uµ g2(u≤2µ, u≤µ, u≤µ/2))]

Hence we need to bound expressions of the form

Sλuλ Sµvµ h(S<µw), µ ≤ λ

There are two different cases to consider:
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Case 1. µ ≈ λ. Then the product has the form

Sλuλ Sλvλ h(S<λw)

The first product is localized at frequency λ and can be estimated as in (41), (42).
For the nonlinear expression we use Lemma 3.6 to obtain

‖S<λw‖Mλ
. ‖w‖Xs,θ

On one hand by the chain rule we obtain

(43) ‖h(S<λw)‖Mλ
. C(‖w‖L∞)(1 + ‖w‖3

Xs,θ)

On the other hand because of the frequency localization we also have the improved
high frequency bound

(44) ‖S̃µh(S<λw)‖Mµ
. C(‖w‖L∞)

(

λ

µ

)N

(1 + ‖w‖3
Xs,θ), µ≫ λ

Taking this into account and repeatedly using Leibnitz’s rule we get

‖Sλuλ Sλvλ h(S<λw)‖2
Xs,θ

.

∞
∑

µ=1

‖Sµ(Sλuλ Sλvλ h(S<λw))‖2
X̃s,θ

µ

.
∑

µ.λ

‖Sλuλ Sλvλ h(S<λw)‖2
X̃s,θ

µ
+

∑

µ≫λ

‖Sλuλ Sλvλ S̃µh(S<λw))‖2
X̃s,θ

µ

. C(‖w‖L∞)





∑

µ.λ

µ2s+2θ−4λ−4s+7 +
∑

µ≫λ

λ2θ+3−2s

(

λ

µ

)N


 ‖uλ‖2
X̃s,θ

λ

‖vλ‖2
X̃s,θ

λ

(1 + ‖w‖6
Xs,θ)

. C(‖w‖L∞)λ2θ+3−2s ‖uλ‖2
X̃s,θ

λ

‖vλ‖2
X̃s,θ

λ

(1 + ‖w‖6
Xs,θ)

This is trivially summable with respect to λ.
Case 2. µ≪ λ. Then the product has the form

Sλuλ Sµvµ h(S<µw) =

Sλuλ,<µ Sµvµ S<µh(S<µw) +
∑

µ≤d≪λ

Sλuλ,<d Sµvµ Sdh(S<µw)

+
∑

µ≤d≪λ

Sλuλ,d Sµvµ S<dh(S<µw) + Sλuλ Sµvµ Sλh(S<µw)

+
∑

ν≫λ

Sλuλ Sµvµ Sνh(S<µw) = f1 + f2 + f3 + f4 + f5

For f1 we use Lemma 3.5, Lemma 3.6 and (43) to obtain

‖f1‖X̃s,θ

λ,µ

. ‖Sλuλ,<µ Sµvµ‖X̃s,θ

λ,µ

‖h(S<µw)‖Mµ

. µθ− 1
2 ‖uλ,<µ‖X̃s,θ

λ,<µ

‖Sµvµ‖M<µ
‖h(S<µw)‖Mµ

. C(‖w‖L∞)µθ+ 3
2
−s‖uλ,<µ‖X̃s,θ

λ,<µ

‖vµ‖X̃s,θ
µ

(1 + ‖w‖3
Xs,θ)

The summation with respect to µ is trivial and the square summability with respect
to λ is inherited from the first factor.

For f2 we apply the same argument. There is a loss of a small power of (d/µ)θ

from the first product, but this is compensated by the gain of arbitrary powers of
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µ/d due to (44). The same works for f3 but there is no (d/µ)θ loss. In the case of
f4 we need to worry about the λ summability, but the (µ/λ)N gain in (44) settles
this. Finally, for f5 there is a (µ/ν)N gain which cancels again all the losses.

Summing up the pieces we obtain

‖Sν(Sλuλ Sµvµ h(S<µw))‖Xs,θ

. C(‖w‖L∞)νs+θ−2λ−2s+ 7
2 (
µ

λ
)N‖uλ‖X̃s,θ

λ

‖vµ‖X̃s,θ
µ

(1 + ‖w‖3
Xs,θ)

for ν ≪ λ,

‖Sν(Sλuλ Sµvµ h(S<µw))‖Xs,θ . C(‖w‖L∞)µθ+ 3
2
−s‖uλ‖X̃s,θ

λ

‖vµ‖X̃s,θ
µ

(1 + ‖w‖3
Xs,θ)

for ν ≈ λ, respectively

‖Sν(Sλuλ Sµvµ h(S<µw))‖Xs,θ . C(‖w‖L∞)µθ+ 3
2
−s(

µ

ν
)N‖uλ‖X̃s,θ

λ

‖vµ‖X̃s,θ
µ

(1+‖w‖3
Xs,θ)

for ν ≫ λ.
This concludes the proof of the proposition.

�

Finally, we consider the bilinear estimate in (14), which follows from the next
Proposition. Its proof cannot be completed using the type of arguments we have
employed so far. Instead, we contend ourselves with reducing it to the trilinear
estimate in (50), to the proof of which we devote the rest of the paper.

Proposition 3.10. Assume that s > 9
4 and 3

4 < θ < s − 3
2 . Then we have the

multiplicative estimate

(45) ‖∇u∇v‖Xs−1,θ−1 . ‖u‖Xs,θ‖v‖Xs,θ

We begin our analysis with a simple observation, namely that

Lemma 3.11. If u ∈ Xs,θ then ∇u ∈ X̃s−1,θ where

X̃s−1,θ = Xs−1,θ + (L2Hs+θ−1 ∩H1Hs+θ−2).

Proof. We first consider spatial derivatives, for which we prove the better bound

‖∇xu‖Xs−1,θ . ‖u‖Xs,θ

By Definition 2.1 and Corollary 2.5 it suffices to show that for functions v localized
at frequency λ we have

‖∇xv‖Xs−1,θ

λ,d

. ‖v‖X̃s,θ

λ,d

But this follows from the straightforward commutator bound

(46) ‖[�g
<

√
λ
,∇]v‖L2 . λ‖∇v‖L2

Here we recall that g00 = 1, therefore every term in the commutator has at least
one spatial derivative.

Next we consider time derivatives, where it suffices to show that for functions
v localized at frequency λ we can write v = v1 + v2 where v1, v2 have the same
frequency localization and

(47) ‖∂tv1‖Xs−1,θ

λ,d

+

(

λ

d

)1−θ

‖∂tv2‖(L2Hs+θ−1∩H1Hs+θ−2) . ‖v‖X̃s,θ

λ,d
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Roughly speaking v1 accounts for the low modulation (. λ) part of v while v2
accounts for the high modulation part. We define v2 as

v2 = (∆x,t)
−1�g

<
√

λ
v

This satisfies the bound
‖∇2v2‖L2 . ‖�g

<
√

λ
v‖L2

which implies both the v2 bound in (47) and an H2 bound for v1 which gives the
correct L2 bound for ∂tv1,

λs−1dθ‖∂tv1‖L2 +

(

λ

d

)1−θ

‖∂tv2‖(L2Hs+θ−1∩H1Hs+θ−2) . ‖v‖X̃s,θ

λ,d

It remains to estimate �g
<

√
λ
∂tv1. We have

‖�g
<

√
λ
∂tv1‖L2 ≤ ‖[�g

<
√

λ
, ∂t]v1‖L2 + ‖∂t�g

<
√

λ
v1‖L2

For the first term we use again (46). For the second we compute

�g
<

√
λ
v1 = (−�g

<
√

λ
+ ∆x,t)(∆x,t)

−1�g
<

√
λ
v

Since the difference �g
<

√
λ
− ∆x,t contains no second order time derivatives this

yields the bound
‖∂t�g

<
√

λ
v1‖L2 . λ‖�g

<
√

λ
v‖L2

This allows us to conclude the proof of (47) and therefore the proof of the lemma.
�

We now return to the estimate (45). Using the duality in (32), (45) reduces to
∣

∣

∣

∣

∫

uvwdxdt

∣

∣

∣

∣

.‖u‖X̃s−1,θ‖v‖X̃s−1,θ‖w‖X1−s,1−θ+L2H2−s−θ(48)

We do a trilinear Littlewood-Paley decomposition. Due to symmetry, we need to
consider two cases.

Case 1. Here we consider high-high-low interactions and bound

I =

∫

SλuSλv Sµw dxdt, µ . λ

We have
|I| . ‖Sλu‖L∞L2‖Sλv‖L2L6‖Sµw‖L2L3

which by the embeddings in Corollary 3.2 give

|I| . λ
5
6
−2s+2µs+θ− 4

3 ‖u‖X̃s−1,θ‖v‖X̃s−1,θ‖w‖X1−s,1−θ+L2H2−s−θ

This suffices since both the exponent of λ and the sum of the two exponents are
negative.

Case 2. Here we consider high-low-high interactions and seek to bound

I =

∫

SλuSµv Sλw dxdt, µ≪ λ

As a first simplification we dispense with the auxiliary L2 norms. Begin with

|I| . ‖Sλu‖L2‖Sµv‖L∞‖Sλw‖L2

. λs−1µ
3
4 ‖Sλu‖L2 µ

9
4
−s‖v‖X̃s−1,θ λ

1−s‖Sλw‖L2

This allows us to dispense not only with the L2Hs+θ−1 part of u, but also with its

Xs−1,θ
λ,>µ component.
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If v ∈ L2Hs+θ−1 ∩H1Hs+θ−2 then we bound

|I| . ‖Sλu‖L∞L2‖Sµv‖L2L∞‖Sλw‖L2

. µ3−s−θ‖u‖X̃s−1,θ ‖v‖L2Hs+θ−1 λ1−s‖Sλw‖L2

Finally, if w ∈ L2H2−s−θ then we can also estimate

|I| ≤ ‖Sλu‖L∞L2‖Sµv‖L2L∞‖Sλw‖L2

. µ
3
2
−s+θ‖u‖X̃s−1,θ ‖v‖X̃s−1,θ λ

1−sµ1−θ‖Sλw‖L2

which suffices for both the L2H2−s−θ and the X1−s,1−θ
λ,>µ components of w. Hence

we have reduced (48) to the bound

(49) |I| . ‖Sλu‖Xs−1,θ

λ,<µ

‖Sµv‖Xs−1,θ‖Sλw‖X1−s,1−θ

λ,<µ

µ≪ λ

Unfortunately we cannot fully prove this using Strichartz type estimates. How-
ever, we can use scaling to simplify this further and reduce it to

(50)

∣

∣

∣

∣

∫

SλuSµv Sλwdxdt

∣

∣

∣

∣

. lnµ ‖u‖X0,1

λ,1
‖v‖

X
5
4

,1

µ,1

‖w‖
X

0, 1
4

λ,d

µ≪ λ

For now we show that (50) implies (49). The remaining sections of the paper are
devoted to the proof of (50).

After cancelling the powers of the high frequency the estimate (49) follows after
summation with respect to 1 ≤ d1, d2, d3 ≤ µ from the bounds

(51)

∣

∣

∣

∣

∫

SλuSµv Sλwdxdt

∣

∣

∣

∣

. lnµ d
1
2

mind
1
2

midd
1
4
max‖u‖X0,0

λ,d1

‖v‖
X

5
4

,0

µ,d2

‖w‖X0,0

λ,d3

if d2 < dmax, respectively

(52)

∣

∣

∣

∣

∫

SλuSµv Sλwdxdt

∣

∣

∣

∣

. lnµ d
1
2

mind
3
4
max‖u‖X0,0

λ,d1

‖v‖
X

5
4

,0

µ,d2

‖w‖X0,0

λ,d3

if d2 = dmax.
To reduce all these cases to (50) we use scaling combined with a time decompo-

sition argument. Precisely, for 1 < d < λ we consider a smooth partition of unity
in time with respect to time intervals of length d−1,

1 =
∑

χj
d(t)

Then a simple commutation argument shows that we can localize the X̃s,θ
λ,d norm

to the d−1 time intervals while retaining square summability,

(53) ‖u‖2
X̃s,θ

λ,d

≈
∑

j

‖χj
du‖2

X̃s,θ

λ,d

We use such time decompositions in order to carry out the following three re-
duction steps:

(i) Reduction to dmin = 1. By (53) all three norms are square summable with
respect to time intervals of length d−1

min. Hence it suffices to prove the bounds on

d−1
min time intervals. Rescaling such time intervals back to time 1 we arrive at the

case dmin = 1. The regularity of the coefficients improves after the rescaling, here
and below. Also we note that by Duhamel’s formula we can replace the factor
corresponding to dmin by a solution to the homogeneous equation.

(ii) Reduction to dmid = 1. By (53) the norms corresponding to dmax and dmid

are square summable with respect to time intervals of length d−1
mid. Hence it suffices
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to prove the bounds on d−1
mid time intervals. Rescaling such time intervals back to

time 1 we arrive at the case dmid = 1. Again by Duhamel’s formula we also replace
the factor corresponding to dmid by a solution to the homogeneous equation.

(iii) Here we are in the case where two of the factors are solutions for the homo-
geneous equation. In the case of (51) the remaining factor is at high frequency λ;
then we use directly (50).

In the case of (52) the remaining factor is at low frequency µ, so we need to
prove that

∣

∣

∣

∣

∫

SλuSµv Sλwdxdt

∣

∣

∣

∣

. lnµ d
3
4 ‖u‖X0,0

λ,1
‖v‖

X
5
4

,0

µ,d

‖w‖X0,0

λ,1

Partitioning the unit time into about d time intervals of length d−1 this would
follow from

∣

∣

∣

∣

∫

χi
dSλuSµv Sλwdxdt

∣

∣

∣

∣

. lnµ d
1
4 ‖u‖X0,0

λ,1
‖v‖

X
5
4

,0

µ,d

‖w‖X0,0

λ,1

Rescaling the small time intervals to unit size this becomes exactly (50).

4. Half-waves and angular localization operators

We write the symbol for �g,

p(t, x, τ, ξ) = τ2 − 2g0jτξj − gijξiξj

in the form

p(t, x, τ, ξ) = (τ + a+(t, x, ξ))(τ + a−(t, x, ξ))

This leads to a decomposition of solutions to the wave equation into two half-waves:

Proposition 4.1. (Geba-Tataru [16]) Let u be a solution to the inhomogeneous
equation (30) for �g. Then there is a representation

∇u = u+ + u−

where

‖u+‖L2 + ‖(Dt +A+(t, x,D))u+‖L2 + ‖u−‖L2 + ‖(Dt +A−(t, x,D))u−‖L2

. ‖u‖H1 + ‖�gu‖L2

As a consequence, in (50) we are allowed to replace solutions to the �g equation
by solutions to the Dt +A+, respectively Dt +A− equation. We also denote

‖u‖X± = ‖u‖L2 + ‖(Dt +A±(t, x,D))u‖L2

‖u‖X±,d
= d

1
4 ‖u‖L2 + d−

3
4 ‖(Dt +A±(t, x,D))u‖L2

In order to facilitate the use of microlocal analysis tools it is convenient to replace
the symbols a± with mollified versions a±<µ defined by

a±<µ(t, x, ξ) = S<µ(Dx)a(t, x, ξ)

Given an angular scale α we consider the ± Hamilton flows for Dt +A±
<α−1 .

(54)







d
dtx

±
t = ∂ξa

±
<α−1(t, x

±
t , ξ

±
t )

d
dtξ

±
t = −∂xa

±
<α−1(t, x

±
t , ξ

±
t )







x±0 = x

ξ±0 = ξ
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These are bilipschitz flows, homogeneous with respect to the ξ variable. The an-
gular scale is relevant in that the Hamilton flow for Dt + A±

<α−1 serves as a good

approximation to the Hamilton flow for Dt +A± up to an O(α) angular difference.
To characterize the higher regularity properties of these flows is convenient to

introduce (see [4]) a metric gα in the phase space, defined by

ds2 = |ξ|−4(ξdξ)2 + |ξ|−4α−2(ξ ∧ dξ)2 + α−4|ξ|−2(ξdx)2 + |ξ|−2α−2(ξ ∧ dx)2

Then as in [4] we obtain

Lemma 4.2. The Hamilton flow maps (x±t , ξ
±
t ) are gα-smooth canonical transfor-

mations.

Given a direction θ ∈ Sn−1 at time t = 0 we introduce the size α sectors

Sα(θ) = {ξ; ∠(ξ, θ) < α}

S̃α(θ) = {ξ; Cα < ∠(ξ, θ) < 2Cα}
where C is a fixed large constant. The images of R

n×Sα(θ), respectively R
n×S̃α(θ)

along the Hamilton flow for Dt + A±
<α−1 are denoted by H±

α Sα(θ), respectively

H±
α S̃α(θ).
Let ξα

θ = ξα
θ (x, t) be the Fourier variable which is defined by the Dt + A+

<α−1

Hamilton flow with initial data ξα
θ (x, 0) = θ (i.e. ξα

θ (x, t) = ξ+t (t) is the solution of

the flow (54) with initial data ξ+0 = ξ, for which x+
t (t) = x). This is well defined

at least for a short time, precisely for as long as caustics do not occur. From
Lemma 4.2 one also sees that ξα

θ is a gα-smooth function of x.
We consider a maximal set Oα of α-separated directions and a partition of unity

at time 0

1 =
∑

θ∈Oα

χ±,α
θ (0, x, ξ)

consisting of 0-homogeneous symbols supported in Sα(θ) which are smooth on the
corresponding scale. Transporting these symbols along the ± Hamilton flows by

χ±,α
θ (0, x, ξ) = χ±,α

θ (t, x±t , ξ
±
t )

produces a time dependent partition of unity

(55) 1 =
∑

θ∈Oα

χ±,α
θ (t, x, ξ)

so that the support of χ±,α
θ (t, x, ξ) is contained in H±

α Sα(θ).
The regularity of these symbols is easily obtained from the transport equations

(see again [4]):

Lemma 4.3. The symbols χ±,α
θ (t, x, ξ) belong to the class S(1, gα)1.

We use the above partition of unity in the phase space to produce a corresponding
pseudodifferential partition of unity. Given a frequency λ > α−2 we define the
symbols

χ±,α
θ,λ (t, x, ξ) = S<λ/8(Dx)χ±,α

θ (t, x, ξ)s̃λ(ξ)

1Throughout this paper we will use the standard notation S(m, g), while in [4] we used for
S(1, g) the shorter one: S(g).
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These are used in order to split general frequency localized waves into square sum-
mable superpositions of directionally localized waves,

Sλu =
∑

θ∈Oα

χ±,α
θ,λ (t, x,D)Sλu

This decomposition is closely related to a wave packet decomposition, see [11], [12],
[16], and [4]. The difference is that here we skip the spatial localization part since
it brings no additional benefit. The above localization at spatial frequencies less
than λ/8 insures that the output of the operators χ±,α

θ,λ (t, x,D)Sλ is still localized
at frequency λ. This localization is otherwise harmless:

Lemma 4.4. The symbols χ±,α
θ,λ (t, x, ξ) belong to the class S(1, gα). In addition,

we have similar bounds for the Poisson bracket

(56) {τ + a±<α−1(t, x, ξ), χ
±,α
θ,λ (t, x, ξ)} ∈ S(1, gα)

Proof. The fact that χ±,α
θ,λ (t, x, ξ) ∈ S(1, gα) is straightforward since the multiplier

S<λ/8 is a mollifier on the λ−1 spatial scale, which is less that the spatial scale of
the gα balls.

Since χ±,α
θ is transported along the a±<α−1(t, x, ξ) flow, the Poisson bracket is

expressed in the form

{a±<α−1(t, x, ξ), s̃λ(ξ)}χ±,α
θ,λ (t, x, ξ) + s̃λ(ξ)[Ha±

<α−1

, S<λ/8(Dx)]χ±,α
θ (t, x, ξ)

Here Ha±
<α−1

is the Hamiltonian operator associated to the a±<α−1(t, x, ξ) flow. It is

easy to see that the first term belongs to S(1, gα), therefore it remains to consider
the commutator term. We have

[Ha±
<α−1

, S<λ/8(Dx)] = [∂ξa
±
<α−1 , S<λ/8(Dx)]∂x − [∂xa

±
<α−1 , S<λ/8(Dx)]∂ξ

The commutator of a scalar function g with S<λ/8 can be expressed as a rapidly
convergent series of the form

[g, S<λ/8] = λ−1
∑

j

S1,j
<λ/8∇gS

2,j
<λ/8

where the multipliers S1,j
<λ/8 and S2,j

<λ/8 have the same properties as S<λ/8 and decay

rapidly with respect to j. Then the above commutator term is expressed as

[Ha±
<α−1

, S<λ/8(Dx)] = λ−1
∑

j

S1,j
<λ/8

(

∂x∂ξa
±
<α−1∂x − ∂2

xa
±
<α−1∂ξ

)

Sj,2
<λ/8

At this stage the effect of the mollifiers is negligible and we can use the regularity
properties of a± and χ±,α

θ to directly compute

s̃λ(ξ)[Ha±
<α−1

, S<λ/8(Dx)]χ±,α
θ (t, x, ξ) ∈ S(

1

α2λ
, gα)

�

To better understand the phase space localization provided by χ±,α
θ,λ consider

some point (x0, t0) and the corresponding center direction ξα
θ (x0, t0). A spatial

unit gα ball Bα
θ (x0, t0) centered at (x0, t0) has dimensions2 α2×αn−1 with the long

2Here n stands for the space dimension
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sides normal to ξα
θ (x0, t0). Within the ball Bα

θ (x0, t0), χ
±,α
θ,λ S̃λ localizes frequencies

to a sector of angle α centered at ξα
θ (x0, t0). Thus the frequencies are localized to

a radial rectangle centered at λξα
θ (x0, t0) of size λ× (αλ)n−1. In this picture, angle

α wave packets correspond to a spatial localization on the scale of the above ball
Bα

θ (x0, t0), constructed along a fixed ray of the Hamilton flow.
The gα metric restricted to frequency λ is slowly varying and temperate at fre-

quencies 3 λ ≥ α−2, and in our analysis we will always be above this threshold.
Hence there is a good pseudodifferential calculus for operators with S(1, gα) sym-
bols. The semiclassical parameter h = h(α, λ) in the S(1, gα) calculus at frequency
λ is given by

h(α, λ) = (α2λ)−1

The S(1, gα) symbols at frequency λ satisfy the bounds

(57)
∣

∣(ξα
θ ∂x)σ(ξα

θ ∧ ∂x)β∂ν
ξ (ξ∂ξ)

γq(t, x, ξ)
∣

∣ . α−2σ−|β|(αλ)−ν

Due to the L2 in time regularity of the second order derivatives of the coefficients
we also introduce the space of symbols L2S(1, gα) which at frequency λ satisfy

(58)
∣

∣(ξα
θ ∂x)σ(ξα

θ ∧ ∂x)β∂ν
ξ (ξ∂ξ)

γq(t, x, ξ)
∣

∣ . α−2σ−|β|(αλ)−νf(t)

for some f ∈ L2. In all the operators we consider here, the function f is the same:

(59) f(t) = M(‖∇2g(t)‖L∞)

In some of our estimates we need to deal with two distinct scales at a given fre-
quency λ, namely the angular scale α and the λ

1
2 scale at which the coefficients

are truncated. Correspondingly we introduce additional symbol classes Ck
λS(1, gα)

of symbols q localized at frequency λ which satisfy the S(1, gα) bounds (57) for
σ + |β| ≤ k, respectively the weaker estimate

(60)
∣

∣(ξα
θ ∂x)σ(ξα

θ ∧ ∂x)β∂ν
ξ (ξ∂ξ)

γq(t, x, ξ)
∣

∣ . (α−2σ−|β| + α−kλ
σ+|β|

2 )(αλ)−ν

for σ+|β| > k. There is still a calculus for such symbols, since the above bounds are
stronger than the S(1, g

λ
1
2
) bounds. The related classes of symbols L2Ck

λS(1, gα)

are defined in a manner which is similar to (58).
Using the calculus for the above symbol classes one can prove that the partition

of unity in (55) yields an almost orthogonal decomposition of functions, namely

Proposition 4.5. Fix a frequency λ and let α > λ−
1
2 . Then for each function u

which is localized at frequency λ we have

(61)
∑

θ∈Oα

‖χ±,α
θ,λ (t, x,D)u‖2

X± ≈ ‖u‖2
X±

Proof. We only outline the proof, since this result is essentially contained in [16].
There are two bounds to prove. The first

(62)
∑

θ∈Oα

‖χ±,α
θ,λ (t, x,D)u‖2

L2 ≈ ‖u‖2
L2

3This corresponds to the classical wave packets which are localized on the scale of the uncer-
tainty principle. Above this threshold we are dealing with generalized wave packets, which may
have a more complex structure, see [16] and [4]
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follows from the almost orthogonality of the operators χ±,α
θ,λ (t, x,D). This in turn

is due to the almost disjoint supports4 of χ±,α
θ,λ and to the S(1, gα) calculus.

Consider now the second bound

(63)
∑

θ∈Oα

‖(Dt +A±)χ±,α
θ,λ (t, x,D)u‖2

L2 ≈ ‖(Dt +A±)u‖2
L2 +O(‖u‖2

L2)

We first establish it with A± replaced by A±
<λ

1
2

,

(64)
∑

θ∈Oα

‖(Dt +A±
<λ

1
2

)χ±,α
θ,λ (t, x,D)u‖2

L2 ≈ ‖(Dt +A±
<λ

1
2

)u‖2
L2 +O(‖u‖2

L2)

Due to (62) and the energy bound

‖u‖2
L∞L2 . ‖u‖2

L2 + ‖u‖L2‖(Dt +A±
<λ

1
2

)u‖L2

it suffices to prove the commutator estimate

(65)
∑

θ∈Oα

‖[Dt +A±
<λ

1
2

, χ±,α
θ,λ (t, x,D)]u‖2

L2 . ‖u‖2
L∞L2

which we split into two components.
For the low frequency part of the coefficients we use a second order commutator

(66)
∑

θ∈Oα

‖[Dt +A±
<α−1 , χ

±,α
θ,λ (t, x,D)]u‖2

L2 . ‖u‖2
L∞L2

For this it suffices to prove that

(67) [Dt +A±
<α−1 , χ

±,α
θ,λ (t, x,D)] ∈ OPL2S(1, gα)

The summation with respect to θ ∈ Oα follows by orthogonality since the symbols
for the above commutators will retain the rapid decay away from the support of
χ±,α

θ,λ . Here it is important that (59) applies uniformly.

Due to the Poisson bracket bound in (56) it suffices to show that

[A±
<α−1 , χ

±,α
θ,λ (t, x,D)] + i{a±<α−1, χ

±,α
θ,λ }(t, x,D) ∈ OPL2S(1, gα)

Due to the frequency localization of χ±,α
θ,λ , only the values of a±(t, x, ξ) in the region

|ξ| ≈ λ can affect the above operator. At this point it is no longer important that

a±<α−1 and χ±,α
θ,λ are related. We consider a rapidly convergent spherical harmonics

expansion of a±,

a±(t, x, ξ) =
∑

j

bj(t, x)φj(ξ)

where bj have the same regularity as the coefficients gij while φj(ξ) are homogeneous
of order 1. It suffices to consider a single term b(t, x)φ(ξ) in this expansion and
show that

(68) [b<α−1φ(D), χ±,α
θ,λ (t, x,D)] + i{b<α−1φ, χ±,α

θ,λ }(t, x,D) ∈ OPL2S(1, gα)

To see this we consider the commutators with b and with φ. The commutator term
with b has the form

Cb = ([b<α−1 , χ±,α
θ,λ (t, x,D)] + i{b<α−1, χ±,α

θ,λ }(t, x,D))φ(D)

4modulo tails which are rapidly decreasing on the gα scale
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Since ∂2
xb<α−1 ∈ L2S(1, gα), ∂2

ξχ
±,α
θ,λ ∈ S(α−2λ−2, gα) and φ ∈ S(λ, gα), the S(gα)

calculus at frequency λ yields the better result Cb ∈ OPL2S(α−2λ−1, gα), which is

tight only when α = λ−
1
2 .

The commutator term with φ has the form

Cφ = b<α−1([φ(D), χ±,α
θ,λ (t, x,D)] + i{φ, χ±,α

θ,λ }(t, x,D))

The b<α−1 factor belongs to S(1, gα) and can be neglected. The argument for the
remaining part is somewhat more delicate since it hinges on the homogeneity of φ.
With b = 1 denote by ξ the input frequency for Cφ and by η the output frequency.
Due to the homogeneity of φ we have the representation

(69) φ(η) − φ(ξ) = (η − ξ)∇φ(ξ) + ψ(ξ, η)(ξ ∧ (ξ − η))2

where ψ is a smooth and homogeneous of order −3 matrix valued function. For
|ξ|, |η| ≈ λ we can separate variables in ψ and express it as a rapidly convergent
series

ψ(ξ, η) = λ−3
∑

j

ψ1
j (η)ψ2

j (ξ)

This gives a representation for Cφ of the form

Cφ = λ−3
∑

j

ψ1
j (D)((ξ ∧ ∂x)2χ±,α

θ,λ )(t, x,D)ψ2
j (D)

Since χ±,α
θ,λ (x,D) ∈ S(1, gα) we obtain (ξ ∧ ∂x)2χ±,α

θ,λ ∈ S(λ2α−2, gα) which shows

that Cφ ∈ OPS(α−2λ−1, gα). This concludes the proof of (68) and thus the proof
of (67).

For the intermediate frequency part of the coefficients we have a first order
commutator estimate

(70)
∑

θ∈Oα

‖[A±
α−1<·<λ

1
2

, χ±,α
θ,λ (t, x,D)]u‖2

L2 . ‖u‖2
L∞L2

Together with (66) this implies (65).
This follows from first order commutator estimate

(71) [A±
α−1<·<λ

1
2

, χ±,α
θ,λ (t, x,D)] ∈ OPL2C1

λS(1, gα)

Indeed, for a scalar function b we can estimate

α−2‖b
α−1<·<λ

1
2
‖L2L∞ + α−1‖∂xb

α−1<·<λ
1
2
‖L2L∞ . ‖∂2b‖L2L∞

Applied to the the symbol a± as a function of x this shows that

a±
α−1<·<λ

1
2

∈ L2C2
λS(α2λ, gα)

Since χ±,α
θ,λ ∈ S(1, gα), the estimate (71) follows by pdo calculus. The square

summability with respect to θ is again due to the almost disjoint supports of the
symbols χ±,α

θ .
It remains to pass from (64) to (63). Due to the energy bound

‖u‖2
L∞L2 . ‖u‖2

L2 + ‖u‖L2‖(Dt +A±
<λ

1
2

)u‖L2

this is a consequence of the estimate

‖A±
>λ

1
2

u‖L2 . ‖u‖L∞L2
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applied to both u and χ±,α
θ,λ (t, x,D)u. Using the spherical harmonics decomposition

of the symbols a± as above this reduces to the straightforward bound

‖b
>λ

1
2
u‖L2 . λ−1‖∂2b‖L2L∞‖u‖L∞L2

�

The frequency localization in χ±,α
θ,λ contributes to improved Strichartz type esti-

mates above the critical range of exponents. Begin for instance with the endpoint
L2L6 Strichartz estimate

(72) ‖χ±,α
θ,λ (t, x,D)u‖L2L6 . λ

5
6 ‖u‖X±

Here the angular frequency localization plays no role. However, suppose we want
to use Bernstein’s inequality to replace this by an L2L∞ estimate. Modulo rapidly
decaying tails, within each spatial gα ball Bα

θ (x0, t0) the function χ±,α
θ,λ (t, x,D)u is

frequency localized in a dyadic sector section of size λ× (αλ)3. Then the constant
in Bernstein’s inequality is

[λ× (αλ)3]
1
6 = λ

2
3α

1
2

Hence we obtain the better L2L∞ bound

(73) ‖χ±,α
θ,λ (t, x,D)u‖L2L∞ . α

1
2λ

3
2 ‖u‖X± , α > λ−

1
2

A simpler related uniform bound is derived directly from the energy estimates,

(74) ‖χ±,α
θ,λ (t, x,D)u‖L∞ . α

3
2 λ2‖u‖X± , α > λ−

1
2

A similar bound holds for the right hand side of the χ±,α
θ,λ (t, x,D)u equation. Indeed,

for u ∈ X± we can write

(Dt +A±)χ±,α
θ,λ (t, x,D)u = (Dt +A±

<λ
1
2

)χ±,α
θ,λ (t, x,D)u +A±

>λ
1
2

χ±,α
θ,λ (t, x,D)u

The first term belongs to L2 and has a similar frequency localization as χ±,α
θ,λ (t, x,D)u.

The second is estimated directly using (73). This yields

(75) ‖(Dt +A±)χ±,α
θ,λ (t, x,D)u‖L2L∞ . α

3
2 λ2‖u‖X± , α > λ−

1
2

Another way of taking advantage of the angular localization is in corresponding
bounds for derivatives. Consider the differentiation operators ξα

θ ∧D whose symbol

vanishes in the ξα
θ direction. Then in the support of χ±,α

θ,λ these symbols have size

αλ. Hence from (72) we also obtain

(76) ‖(ξα
θ ∧D)χ±,α

θ,λ (t, x,D)u‖L2L6 . (αλ)λ
5
6 ‖u‖X±

We can argue in the same way for the energy estimates or for the L2L∞ bound in
(73). For convenience we collect several such bounds in a single norm,

‖v‖Xλ,α,θ
±

= ‖v‖X± + ‖v‖L∞L2 + λ−
5
6 ‖v‖L2L6 + α− 1

2λ−
3
2 ‖v‖L2L∞ + α− 3

2 λ−2‖v‖L∞

+ α− 3
2λ−2‖(Dt +A±)v‖L2L∞ + (αλ)−1‖(ξα

θ ∧D)v‖L∞L2

+ (αλ)−1(λ−
5
6 ‖(ξα

θ ∧D)v‖L2L6 + α− 1
2λ−

3
2 ‖(ξα

θ ∧D)v‖L2L∞)

and use it to state a corresponding version of (61),

(77)
∑

θ∈Oα

‖χ±,α
θ,λ (t, x,D)u‖2

Xλ,α,θ
±

≈ ‖S̃λu‖2
X±
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We want to replace the partition of unity in (55) first with a bilinear one and

next with a trilinear one. Given two frequencies µ < λ, we denote αµ = µ− 1
2

and introduce a corresponding bilinear partition of unity which is useful when
estimating the frequency µ output of the product of two frequency λ waves. The
main contribution corresponds to opposite frequencies ξ and η, therefore we organize
the following decomposition based on the dyadic angle αµ ≤ α ≤ 1 between ξ and
−η. Precisely, by superimposing the α angular decompositions for α in the above
range we obtain

s̃λ(ξ)s̃λ(η) =

|θ1+θ2|≤2Cαµ
∑

θ1,θ2∈Oαµ

|θ3+θ4|≤4Cαµ
∑

θ3,θ4∈O2αµ

χ
±,αµ

θ1,λ (t, x, ξ)χ
∓,αµ

θ2,λ (t, x, η)χ
±,2αµ

θ3,λ (t, x, ξ)χ
∓,2αµ

θ4,λ (t, x, η)

+

1
∑

α=αµ

Cα≤|θ1+θ2|≤2Cα
∑

θ1,θ2∈Oα

|θ3+θ4|≤4Cα
∑

θ3,θ4∈O2α

χ±,α
θ1,λ(t, x, ξ)χ∓,α

θ2,λ(t, x, η)χ±,2α
θ3,λ (t, x, ξ)χ∓,2α

θ4,λ (t, x, η)

To shorten this expression we redenote factors and harmlessly simplify the summa-
tion notations to

(78) 1 =
∑

θ∈Oαµ

φ
±,αµ

θ,λ (t, x, ξ)φ
∓,αµ

−θ,λ (t, x, η) +

1
∑

α=αµ

∑

θ∈Oα

φ±,α
θ,λ (t, x, ξ)φ̃∓,α

−θ,λ(t, x, η)

where the tilde in φ̃±,α
θ,λ indicates an O(Cα) angular separation from θ. The symbols

φ±,α
θ,λ , respectively φ̃±,α

θ,λ retain the same properties as χ±,α
θ,λ , namely

(79) φ±,α
θ,λ ∈ S(1, gα), {τ + a±<α−1(t, x, ξ), φ

±,α
θ,λ (t, x, ξ)} ∈ S(1, gα)

and the same for φ̃±,α
θ,λ . In particular the counterpart of (77) is still valid,

(80)
∑

θ∈Oα

‖φ±,α
θ,λ (t, x,D)u‖2

Xλ,α,θ
±

+ ‖φ̃±,α
θ,λ (t, x,D)u‖2

Xλ,α,θ
±

≈ ‖S̃λu‖2
X±

Finally, we arrive at the main trilinear symbol decomposition. Its aim is to
achieve a simultaneous angular decomposition in trilinear expressions of the form

∫

uvwdxdt

We denote the three corresponding frequencies by ξ, η and ζ. We assume that each
of the factors has a dyadic frequency localization,

|ξ| ≈ |η| ≈ λ, |ζ| ≈ µ, 1 ≪ µ ≤ λ

If the trilinear decomposition were translation invariant then only its structure on
the diagonal ξ + η + ζ = 0 is relevant. However, in our case we are working with
variable coefficient operators therefore a neighborhood of the diagonal is relevant.
The size of this neighborhood is determined by the spatial regularity of the symbols
via the uncertainty principle.

Corresponding to the first term in (78) we consider a decomposition in ζ with
respect to the dyadic angle between ζ and θ,

s̃µ(ζ) = φ
±,αµ

θ,µ (t, x, ζ) +
∑

α>αµ

φ̃±,α
θ,µ (t, x, ζ)
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To understand the ζ decomposition corresponding to the second term in (78) we
first identify the location of the diagonal ξ + η + ζ = 0. Given the above dyadic
localization of ξ, η and ζ, if the angle between ξ and −η is of order α, then the
angle between ξ and ±ζ must be of order αλµ−1 which is larger than α. Thus
the interesting angular separation threshold for ζ is αλµ−1. It would appear that
there are two cases to consider, namely when the angle between ξ and ζ is small,
and when the angle between −ξ and ζ is small. However, due to our choice of
the ± signs corresponding to ξ, η and ζ, the latter case leads to nonresonant wave
interactions and loses its relevance. Hence, the significant dyadic parameter here is
the angle between ξ and ζ, and the ζ decomposition has the form

s̃µ(ζ) = φ±,αµ−1λ
θ,µ (t, x, ζ) + φ̃±,αµ−1λ

θ,µ (t, x, ζ) +
∑

β>αµ−1λ

φ̃±,β
θ,µ (t, x, ζ)

Then the full trilinear decomposition has the form

s̃λ(ξ)s̃λ(η)s̃µ(ζ) =
∑

θ∈Oαµ

φ
±,αµ

θ,λ (t, x, ξ)φ
∓,αµ

−θ,λ (t, x, η)φ
±,αµ

θ,µ (t, x, ζ)

+
∑

θ∈Oαµ

φ
±,αµ

θ,λ (t, x, ξ)φ
∓,αµ

−θ,λ (t, x, η)
∑

α>αµ

φ̃±,α
θ,µ (t, x, ζ)

+
∑

α>αµ

∑

θ∈Oα

φ±,α
θ,λ (t, x, ξ)φ̃∓,α

−θ,λ(t, x, η)φ̃±,αµ−1λ
θ,µ (t, x, ζ)

+
∑

α>αµ

∑

θ∈Oα

φ±,α
θ,λ (t, x, ξ)φ̃∓,α

−θ,λ(t, x, η)φ±,αµ−1λ
θ,µ (t, x, ζ)

+
∑

α>αµ

∑

θ∈Oα

φ±,α
θ,λ (t, x, ξ)φ̃∓,α

−θ,λ(t, x, η)
∑

β>αµ−1λ

φ̃±,β
θ,µ (t, x, ζ)

(81)

In the above sum the first three terms are the main ones, as they account for the
behavior near the diagonal. The remaining terms have off diagonal support, and
their contribution to trilinear forms as above is negligible.

5. Proof of the trilinear estimate (50)

As noted in the previous section, we can replace the spaces Xs,θ
λ,d in (50) with the

X± spaces. Hence we restate (50) in the form

Proposition 5.1. For any choice of the ± signs and 1 < d < µ≪ λ we have

(82)

∣

∣

∣

∣

∫

SλuSλv Sµwdxdt

∣

∣

∣

∣

. lnµ · µ 5
4 ‖Sλu‖X±‖Sλv‖X±,d

‖Sµw‖X±

Proof. We begin with several simple observations. First, by localizing to a fixed
smaller space-time scale and rescaling back to unit scale we can insure that the
coefficients gij vary slowly inside a unit cube,

|∇x,tg
ij | ≪ 1

This in turn insures that the Fourier variable does not vary much along the Hamilton
flow,

|ξα
θ − θ| ≪ 1

We can also localize all factors in frequency to angular regions of small size, say
< 1

20 . The corresponding localization multipliers are easily seen to be bounded in
X± and X±,d.
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If the first two ± signs are identical then the product SλuSλv is concentrated at
a time frequency of the order of λ which makes it almost orthogonal to Sµw, hence
the estimate above is much easier. Therefore without any restriction in generality
we fix the first sign to + and the second one to −. Even though the problem is not
symmetric with respect to the first two factors, the sign in the third factor plays
no role whatsoever, so we fix it to +. We denote

a(t, x, ξ) = a+(t, x, ξ)

Then
a−(t, x, ξ) = −a(t, x,−ξ)

We note that, for the purpose of the above estimates, in the definition of X± at
frequency λ we can replace the symbols a(x, ξ) with their regularized versions,
namely a

<λ
1
2
(x, ξ).

To keep the number of parameters small we first present the argument in the
case when d = 1. Once this is done, we show what changes are necessary for d > 1.

Case 1: d = 1. Corresponding to the trilinear symbol decomposition (81) of
the identity we consider the corresponding pseudodifferential decomposition of the
trilinear expression in (82). The we estimate each of the five terms. We remark
that, since Sλu, Sλv and Sµw are frequency localized in a small angle, so are all
the factors in (82).

Case 1, term I:

I =
∑

θ∈Oαµ

∫

φ
+,αµ

θ,λ (t, x,D)Sλu φ
−,αµ

−θ,λ (t, x,D)Sλv φ
+,αµ

θ,µ (t, x,D)Sµw dxdt

We use the energy estimate for the first two factors and the L2L∞ bound for the
third to obtain

|I| . µ
5
4 ‖φ+,αµ

θ,λ (x,D)Sλu‖X
λ,αµ,θ

+

‖φ−,αµ

−θ,λ (x,D)Sλv‖X
λ,αµ,θ

−
‖φ+,αµ

θ,µ (t, x,D)Sµw‖X
µ,αµ,θ

+

The summation with respect to θ is straightforward due to (80).
Case 1, term II: This is the most difficult term,

II =
∑

θ∈Oαµ

∫

φ
+,αµ

θ,λ (t, x,D)Sλu φ
−,αµ

−θ,λ (t, x,D)Sλv
∑

α>αµ

φ̃+,α
θ,µ (t, x,D)Sµw dxdt

The summation with respect to θ is easily done using (80). Hence, in what
follows, we fix θ and redenote

uθ = φ
+,αµ

θ,λ (t, x,D)Sλu, vθ = φ
−,αµ

−θ,λ (t, x,D)Sλv, wα
θ = φ̃+,α

θ,µ (t, x,D)Sµw

The factors uθ and vθ are frequency localized in small angles around θ, respectively
−θ; wα

θ has a similar localization around ±θ provided that α≪ 1.
We denote by ã

<µ
1
2
(t, x, ξ) the linearization of a

<µ
1
2
(t, x, ξ) with respect to ξ

around ξ = ξ
αµ

θ (t, x). Since a
<µ

1
2
(t, x, ξ) is a homogeneous symbol of order 1, we

have
ã

<µ
1
2
(t, x, ξ) = ξ∂ξa

<µ
1
2
(t, x, ξ

αµ

θ )

Consider now the difference
e = a

<µ
1
2
− ã

<µ
1
2

It vanishes of second order on the half line R
+ξθ. Due to the uniform (nonradial)

convexity of the characteristic cone {τ + a
<µ

1
2
(t, x, ξ) = 0}, it follows that e is
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nonzero when ξ is not collinear with ξ
αµ

θ . Precisely, we can estimate it in terms of
the angle ∠(ξ, ξ

αµ

θ ) as

e(t, x, ξ) ≈ |ξ||∠(ξ, ξ
αµ

θ )|2

In particular in the support of the symbol φ̃+,α
θ,µ the above angle has size α and the

frequency has size µ. Hence5

e(t, x, ζ) ≈ α2µ, (t, x, ζ) ∈ supp φ̃+,α
θ,µ

Here it may help to think of the constant coefficient case where ξ
αµ

θ = θ, while

a− ã = |ξ| − ξθ. We introduce a local inverse for e(t, x, ζ) in the support of φ̃+,α
θ,µ ,

namely

l(t, x, ζ) =
˜̃
φ+,α

θ,µ (t, x, ζ)e−1(t, x, ζ)

The cutoff symbol
˜̃
φ+,α

θ,µ is similar to φ̃+,α
θ,µ but has a slightly larger support and

equals 1 in a neighbourhood of the support of φ̃+,α
θ,µ .

As defined, the operator L(t, x,D) is not localized at frequency µ. To remedy
this we truncate its output in frequency and set

L̃ = S̃µ(D)L(t, x,D)

The properties of the operator L̃ are summarized in the following

Lemma 5.2. The operator L̃ satisfies the following estimates:
a) fixed time Lp mapping properties:

‖L̃‖Lp→Lp . α−2µ−1, 1 ≤ p ≤ ∞
b) fixed time approximate inverse of A(t, x,D) − Ã(t, x,D):

‖(A(t, x,D) − Ã(t, x,D))L̃ − ˜̃
φ(t, x,D)‖Lp→Lp . µ− 1

2 + α−2µ−1, 1 ≤ p ≤ ∞
c) space-time X+ mapping properties:

‖L̃‖X+→X+
. α−2µ−1

Proof. We first compute the regularity of the symbol e(t, x, ζ) within the support
of l. With respect to ξ this is smooth and homogeneous, therefore we only have to
keep track of the order of vanishing when ξ is in the ξ

αµ

θ direction. With respect
to x there is the dependence coming from the symbol a, as well as the dependence
due to the ξ

αµ

θ direction occuring in the linearization. Since a is Lipschitz in x and
ξθ is Lipschitz in x and smooth on the αµ scale, within the support of l we obtain

(83) e ∈ C1
µS(α2µ, gα)

Combining this with the regularity of the symbol
˜̃
φ+,α

θ,µ ∈ S(1, gα) we obtain the
symbol regularity for l,

(84) l ∈ C1
µS((α2µ)−1, gα)

To prove part (a) of the Lemma we observe that for fixed (t, x) the symbol
l(t, x, ξ) is a smooth bump function of size (α2µ)−1 in a rectangle of size µ×(αµ)n−1

5here we switch to the letter ζ for the frequency, as the following analysis refers to the region
at low frequency µ corresponding to the last factor w in the trilinear form.
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oriented in the ξ
αµ

θ direction. This implies that its kernel K(t, x, y) is bounded by
(α2µ)−1 times an integrable bump function on the dual scale,

|K(t, x, y)| . (α2µ)−1µ(αµ)n−1(1 +µ|ξαµ

θ (t, x)(x− y)|+αµ|ξαµ

θ (t, x)∧ (x− y)|)−N

This bound is symmetric; indeed, since ξ
αµ

θ (t, x) is Lipschitz in x we can replace it

by ξ
αµ

θ (t, y) in the above bound. Thus integrating we have

sup
x

∫

|K(t, x, y)|dy . (α2µ)−1, sup
y

∫

|K(t, x, y)|dx . (α2µ)−1

The Lp bounds for L(t, x,D) and also for L̃ immediately follow.
For later use in the proof we observe that within the support of l we have

|ξαµ

θ (t, x) ∧ ξ| . αµ

Then the same argument as above yields the additional bounds

(85) ‖(ξαµ

θ (t, x) ∧D)βL̃u‖Lp . (αµ)|β|(α2µ)−1‖u‖Lp

For part (b) we write

(A(t, x,D) − Ã(t, x,D))L̃ − ˜̃
φ(t, x,D) = R1(t, x,D) +R2(t, x,D)

where

R1(t, x,D) = E(t, x,D)S̃µ(D)L(t, x,D) − ˜̃
φ(t, x,D),

respectively

R2(t, x,D) = (A
>µ

1
2
(t, x,D) − Ã

>µ
1
2
(t, x,D))S̃µ(D)L(t, x,D),

The operatorR1 is localized at frequency µ. The principal part cancels, and since
e ∈ C1

µS(α2µ, gα) and l ∈ C1
µS((α2µ)−1, gα) by the pseudodifferential calculus it

follows that

R1(t, x,D) ∈ C0
µS((α2µ)−1, gα)

In addition, the symbol of R1 decays rapidly away from the support of
˜̃
φ+,α

θ,µ . Hence

we obtain the same kernel and Lp bounds as in the case of L(t, x,D).
Consider now the operator R2. Since a(t, x, ζ) is Lipschitz in x it follows that

|a
>µ

1
2
(t, x, ζ)| . µ− 1

2 |ζ|. Expanding a
>µ

1
2
(t, x, ζ) in a rapidly decreasing series

of spherical harmonics with respect to ζ, we can separate variables and reduce the

problem to the simpler case when a
>µ

1
2
(t, x, ζ) = b(t, x)c(ζ) with |b| < µ− 1

2 and c is

smooth and homogeneous of order 1. For the symbol c− c̃ we use the representation

c(ζ) − c̃(t, x, ζ) = ψ(ξ
αµ

θ , ζ)(ξ
αµ

θ (t, x) ∧ ζ)2

where ψ is smooth in both arguments and homogeneous of order −1 in ζ. Separating
variables in ψ we can assume without any restriction in generality that ψ depends
only on ζ. Then after some simple commutations we obtain

c(D) − c̃(t, x,D) = (ξ
αµ

θ (t, x) ∧D)2ψ(D) +O(1)Lp→Lp

To estimate this we use (85). The factor ψ(D)S̃µ(D) yields an extra µ−1 factor in
the Lp bounds, therefore we obtain

‖R2(t, x,D)‖Lp→Lp . µ− 1
2



32 DAN-ANDREI GEBA AND DANIEL TATARU

Finally we prove part (c). By (a), L̃ is L2 bounded with norm O(α−2µ−1),
therefore it remains to prove the commutator estimate

(86) ‖[Dt +A
<µ

1
2
(t, x,D), S̃µL(t, x,D)]‖L∞L2→L2 . α−2µ−1

This is a consequence of the operator bound

[Dt +A
<µ

1
2
(t, x,D), S̃µL(t, x,D)] ∈ L2C0

µS(α−2µ−1, gα)

To prove it we use the pdo calculus to represent the commutator as a principal
term plus a second order error,

[Dt +A
<µ

1
2
(t, x,D), S̃µL(t, x,D)] = S̃µQ(t, x,D) +R(t, x,D)

where the principal part q has symbol

q(t, x, ξ) = −i{τ + a
<µ

1
2
(t, x, ξ), l(t, x, ξ)}

The remainder R is localized at frequency µ. A direct computation, using (84),
shows that its symbol satisfies

r ∈ L2C0
µS(α−2µ−1, gα)

It remains to consider the above Poisson bracket and prove that

(87) q ∈ L2C0
µS(α−2µ−1, gα)

For this we write q in the form

iq = − ˜̃
φ+,α

θ,µ q1e
−2 + q2e

−1 + q3e
−1

where

q1(t, x, ξ) =
{

τ + a
<µ

1
2
, e

}

, q2(t, x, ξ) =
{

τ + a<α−1 ,
˜̃
φ+,α

θ,µ

}

respectively

q3(t, x, ξ) =
{

a
α−1<·<µ

1
2
, ˜̃φ+,α

θ,µ

}

Within the support of
˜̃
φ+,α

θ,µ we know that e ∈ C1
µS(α2µ, gα) is an elliptic symbol.

Hence for the first term it suffices to show that q1 ∈ C0
µS(α2µ, gα). Indeed, by

definition q1 is a homogeneous symbol of order 1 which is continuous in x and
homogeneous in ζ. In addition, we know that e(t, x, ζ) vanishes of second order in
ζ at (t, x, ξ

αµ

θ (x, t)) which is also invariant with respect to the τ + a
<µ

1
2

Hamilton

flow. Then q must vanish of second order in ζ at (t, x, ξ
αµ

θ (x, t)). Arguing as in the

case of e, this implies that within the support of
˜̃
φ+,α

θ,µ we have q1 ∈ C0
µS(α2µ, gα).

As in (67) we know that q2 ∈ S(1, gα). Also we have a
α−1<·<µ

1
2
∈ L2C2

µS(α2µ, gα)

and ˜̃φ+,α
θ,µ ∈ S(1, gα) therefore q3 ∈ L2C1

µS(1, gα).

This concludes the proof of (87) and therefore the proof of the lemma.
�

To continue the estimate of term II in Case 1 we define the auxiliary trilinear
form

E(u, v, w̃) =

∫

(Dt +A(t, x,D))u vw̃dxdt+

∫

u(Dt −A(t, x,−D))v w̃dxdt

+

∫

uv (Dt + Ã(t, x,D))w̃dxdt
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With w̃ = L̃wα
θ we write

∫

uθvθw
α
θ dxdt = −

∫

uθvθ ((A(t, x,D) − Ã(t, x,D))L̃ − 1)wα
θ dxdt

+

∫

(Dt +A(t, x,D))uθ vθw̃dxdt

+

∫

uθ(Dt − A(t, x,−D))vθ w̃dxdt

+

∫

uθvθ(Dt +A(t, x,D))w̃dxdt

−E(uθ, vθ, w̃)

(88)

We bound each term separately. For the first one we write

(A(t, x,D) − Ã(t, x,D))L̃ − 1 =(A(t, x,D) − Ã(t, x,D))L̃ − ˜̃
φ+,α

θ,µ (t, x,D)

+ (
˜̃
φ+,α

θ,µ (t, x,D) − 1)

The contribution of the first line is estimated using Lemma 5.2 (b) and (73) for wα
θ ,

∣

∣

∣

∣

∫

uθvθ[(A(t, x,D) − Ã(t, x,D))L̃ − ˜̃φ+,α
θ,µ (t, x,D)]wα

θ dxdt

∣

∣

∣

∣

. (α−2µ−1 + µ− 1
2 )‖uθ‖L∞L2‖vθ‖L∞L2‖wα

θ ‖L2L∞

. (α−2µ−1 + µ− 1
2 )‖uθ‖X+

‖vθ‖X−‖wα
θ ‖L2L∞

. (α−2µ−1 + µ− 1
2 )α

1
2µ

3
2 ‖uθ‖X+

‖vθ‖X−‖wα
θ ‖Xµ,α,θ

+

For the contribution of the second line we observe that

( ˜̃φ+,α
θ,µ (t, x,D) − 1)wα

θ = ( ˜̃φ+,α
θ,µ (t, x,D) − 1)φ̃+,α

θ Sµw

where the symbols
˜̃
φ+,α

θ,µ − 1 and φ̃+,α
θ,µ sµ have disjoint supports. Since they both

belong to S(1, gα), this yields a gain of a factor (α2µ)−N in (73), with N arbitrarily
large:

∑

θ

‖( ˜̃φ+,α
θ,µ (t, x,D) − 1)wα

θ ‖2
L2L∞ . µ

5
2 (α2µ)−N‖wα

θ ‖2
Xµ,α,θ

+

This is more than we need.
For the second term in (88) we use the L2 bound for (Dt + A)uθ, the energy

bound for vθ and (73) for w̃. This yields
∣

∣

∣

∣

∫

(Dt +A(t, x,D))uθ vθw̃dxdt

∣

∣

∣

∣

. α− 3
2µ

1
2 ‖uθ‖X+

‖vθ‖X−‖wα
θ ‖Xµ,α,θ

+

The third term is similar.
For the fourth term in (88) we use the energy for the first two factors combined

with Bernstein derived L2L∞ bound for the third,
∣

∣

∣

∣

∫

uθvθ (Dt +A(t, x,D))w̃dxdt

∣

∣

∣

∣

. ‖u‖X+
‖v‖X−‖(Dt +A(t, x,D))w̃‖L2L∞

. (α2µ)−1(µ(αµ)3)
1
2 ‖uθ‖X+

‖vθ‖X−‖wα
θ ‖Xµ,α,θ

+
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It remains to prove the estimate for E. Observe that the time derivatives in E
can be integrated out, producing contributions of the form

(89)

∫

uθ vθ w̃dx

at the initial and the final time. These are estimated using energy bounds for the
first two factors and the pointwise bound arising from Bernstein’s inequality for the
last factor,

‖w̃‖L∞ . (α2µ)−1‖wα
θ ‖L∞ . (α2µ)−1(µ(αµ)3)

1
2 ‖wα

θ ‖Xµ,α,θ
+

= (α2µ)−
1
4µ

5
4 ‖wα

θ ‖Xµ,α,θ
+

This leaves us with a purely spatial trilinear form,
∫

E0(uθ, vθ, w̃)dt

where

E0(u, v, w̃) =

∫

A(t, x,D)u vw̃ − uA(t, x,−D)v w̃ + uv Ã(t, x,D)w̃ dx

The main bound for E0 is provided in the next lemma.

Lemma 5.3. Let 1 ≤ µ . λ. Assume that ξθ is a Lipschitz function of x with
|ξθ − θ| ≪ 1 and that a ∈ C1S1

hom. Then the trilinear form E0 satisfies the fixed
time estimate:

|E0(u, v, w̃)| . ‖u‖Lp1‖v‖Lq1‖w̃‖Lr1

+ λ−1‖(ξθ ∧D)u‖Lp2‖v‖Lq2‖(ξθ ∧D)w̃‖Lr2

+ λ−1‖u‖Lp2‖(ξθ ∧D)v‖Lq2‖(ξθ ∧D)w̃‖Lr2

+ µλ−2‖(ξθ ∧D)u‖Lp3‖(ξθ ∧D)v‖Lq3 ‖w̃‖Lr3

(90)

for all indices
1

pi
+

1

qi
+

1

ri
= 1, 1 ≤ pi, qi, ri ≤ ∞

and for all functions u, v localized at frequency λ in a small angular neighbourhood
of θ, respectively −θ and all w localized at frequency µ.

While any choice of Lp norms is allowed in the lemma, in order to conclude the
proof of the estimate for E it suffices to use the set of indices (2, 2,∞). We apply

the lemma with u = uθ, v = vθ and w̃ = L̃wα
θ as above. This yields

∣

∣

∣

∣

∫

E0(uθ, vθ, w̃)dt

∣

∣

∣

∣

. ‖uθ‖L∞L2‖vθ‖L∞L2‖w̃‖L2L∞

+ λ−1‖(ξθ ∧D)uθ‖L∞L2‖vθ‖L∞L2‖(ξθ ∧D)w̃‖L2L∞

+ λ−1‖uθ‖L∞L2‖(ξθ ∧D)vθ‖L∞L2‖(ξθ ∧D)w̃‖L2L∞

+ µλ−2‖(ξθ ∧D)uθ‖L∞L2‖(ξθ ∧D)vθ‖L∞L2‖w̃‖L2L∞

(91)

Due to the angular localization, the operator (ξθ ∧D) yields a factor of µ− 1
2λ when

applied to uθ or vθ, respectively a factor of αµ when applied to w̃. Hence we obtain
∣

∣

∣

∣

∫

E0(uθ, vθ, w̃)dt

∣

∣

∣

∣

.
µ

3
2α

1
2

α2µ
(1 + αµ

1
2 + αµ

1
2 + 1)‖uθ‖Xλ,α,θ

+

‖vθ‖Xλ,α,θ
−

‖wα
θ ‖Xµ,α,θ

+

which is acceptable since α2µ ≥ 1.
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Proof of Lemma 5.3: Since the symbol a is smooth and homogeneous of order 1
with respect to ξ, we can use its representation in terms of the spherical harmonics
and reduce the problem to the case when a has the form

a(x, ξ) = b(x)c(ξ)

where b is Lipschitz continuous.
We denote by ξ, respectively η the frequencies for the uθ, respectively vθ factors

in E0. Then ξ and η have size λ and are in a small angular neighbourhood of θ.
We expand c around the line generated by ξθ into a linear term and a quadratic
error,

c(ξ) = ξ(∇c)(ξθ) + ξB(ξ, ξθ)ξ

where B is homogeneous of order −1 with respect to ξ and can be chosen so that

ξθB(ξ, ξθ) = 0, B(ξ, ξθ)ξθ = 0

To see that this is possible we observe that after a rigid rotation we can assume that
ξθ = e1. For ξ = (1, ξ′) with |ξ′| ≪ 1 we write the first order Taylor polynomial
with integral remainder

c(1, ξ′) = c(1, 0) + ξ′cξ′(1, 0) + ξ′B(1, ξ′)ξ′

= cξ1
(1, 0) + ξ′cξ′(1, 0) + ξ′B(1, ξ′)ξ′

where B is given by

B(1, ξ′) =

∫ 1

0

(1 − h)∇2
ξ′a(1, hξ′)dh

This extends by homogeneity to all ξ in a small angle around θ.
We represent B as a rapidly convergent sum of terms of the form

λ−1F (ξθ)g(ξ)

where g is a scalar function which is bounded and smooth on the λ scale and F is
a matrix inheriting the above property of B,

(92) ξθF (ξθ) = 0, F (ξθ)ξθ = 0

So we have

c(ξ) = ξ(∇c)(ξθ) + λ−1
∑

ξF (ξθ)ξg(ξ)

Then we obtain the rapidly convergent series representation

c(ξ) − c(η) = (ξ − η)(∇c)(ξθ) + λ−1
∑

(ξ − η)F (ξθ)ξg(ξ)

+ λ−1
∑

ηF (ξθ)(ξ − η)g(η)

+ λ−2
∑

ηF (ξθ)ξ(ξ − η)h(ξ)k(η)

where h and k are smooth and bounded on the λ dyadic scale.
We use this representation for the first two components in E0. The contribution

of the first term above cancels the principal part of the third component in E0.
We retain the other three terms though, therefore this yields the following rapidly
convergent series representation for E0:

E0(u, v, w̃) =

∫

uvw̃D(b(∇c)(ξθ))dx+
∑

E1
0 +

∑

E2
0 +

∑

E3
0
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The first term is easily estimated since b(∇c)(ξθ) is Lipschitz continuous. The first
summand has the form

E1
0 = λ−1

∫

F (ξθ)D(Dg(D)uv) w̃dx

= −λ−1

∫

DF (ξθ)Dg(D)uvw̃ + F (ξθ)Dg(D)uvDw̃ dx

In the first term F (ξθ) is Lipschitz in x and the u derivative yields a factor of λ.
For the second term on the other hand we use (92) to estimate

|Dg(D)uF (ξθ)Dw̃| . |(ξθ ∧D)g(D)u||(ξθ ∧D)w̃|
Commuting g(D) with (ξθ ∧D) we get

|(ξθ ∧D)g(D)u| ≤ |g(D)(ξθ ∧D)u| + |[g(D), ξθ ∧D]u|
with the commutator [g(D), ξθ ∧D] bounded in all Lp spaces. Hence

|E1
0 | . ‖u‖Lp1‖v‖Lq1‖w̃‖Lr1 + λ−1‖(ξθ ∧D)u‖Lp2‖v‖Lq2‖(ξθ ∧D)w̃‖Lr2

The second summand of E0 is similar but with the roles of u and v reversed.
Finally,

E3
0 = λ−2

∫

F (ξθ)D(Dh(D)uDk(D)v) w̃dx

= −λ−2

∫

DF (ξθ)Dh(D)uDk(D)v w̃ + F (ξθ)Dh(D)uDk(D)v Dw̃ dx

where the matrix F (ξθ) is paired with the u and v derivatives. In the first term the
two derivatives on u and v yield a λ2 factor. In the second term we use as before
(92) and commute out the h(D) and k(D) multipliers. We obtain

|E3
0 | . ‖u‖Lp1‖v‖Lq1‖w̃‖Lr1 + µλ−2‖(ξθ ∧D)u‖Lp3‖(ξθ ∧D)v‖Lq3 ‖w̃‖Lr3

Summing up the results we get the conclusion of the Lemma.
�

Case 1, term III: This has the form

III =

∫

∑

α>µ− 1
2

∑

θ∈Oα

φ+,α
θ,λ (t, x,D)Sλu φ̃

−,α
−θ,λ(t, x,D)Sλv φ̃

+,αµ−1λ
θ,µ (t, x,D)Sµw dxdt

In this case the summation with respect to θ is accomplished by (77), while for the
α summation we simply accept a lnµ loss. Fixing α and θ we set

uα
θ = φ+,α

θ,λ (t, x,D)Sλu, vα
θ = φ−,α

−θ,λ(t, x,D)Sλv, wα
θ = φ̃+,αµ−1λ

θ,µ (t, x,D)Sµw.

and repeat the analysis for Case 1, term II. The angular localization of uα
θ and vα

θ

is not used in the bounds for the first four terms in (88), therefore that part of
the argument rests unchanged. The same applies to the bound for the fixed time
integral in (89).

It remains to consider the bound for E(uα
θ , v

α
θ , w̃). The α localization angle for

wα
θ is now αµ−1λ, therefore part (b) of Lemma 5.2 gives

‖w̃‖X+
.

µ

α2λ2
‖wα

θ ‖X+
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This is stronger than in the previous case because it gives a high frequency gain.
Now we are able to use Lemma 5.3 with exponents (3, 2, 6) to obtain

|
∫

E0(u
α
θ , v

α
θ , w̃)dt| . ‖uα

θ ‖L2L3‖vα
θ ‖L∞L2‖w̃‖L2L6

+ λ−1‖(ξθ ∧D)uα
θ ‖L2L3‖vα

θ ‖L∞L2‖(ξθ ∧D)w̃‖L2L6

+ λ−1‖uα
θ ‖L2L3‖(ξθ ∧D)vα

θ ‖L∞L2‖(ξθ ∧D)w̃‖L2L6

+ µλ−2‖(ξθ ∧D)uα
θ ‖L2L3‖(ξθ ∧D)vα

θ ‖L∞L2‖w̃‖L2L6

Due to the angular localization on the α scale for uα
θ and vα

θ , respectively on the
αµ−1λ scale for wα

θ , all (ξθ ∧ D) operators above yield αλ factors. Hence, taking
advantage of the Strichartz estimates, we obtain

|
∫

E0(u
α
θ , v

α
θ , w̃)dt| .

µ

α2λ2
α2λ λ

5
12µ

5
6 ‖uα

θ ‖Xλ,α,θ
+

‖vα
θ ‖Xλ,α,θ

−
‖wα

θ ‖
X

µ, αλ
µ

,θ

+

= λ−
7
12µ

11
6 ‖uα

θ ‖Xλ,α,θ
+

‖vα
θ ‖Xλ,α,θ

−
‖wα

θ ‖
X

µ, αλ
µ

,θ

+

which is satisfactory since λ & µ.
We conclude this case with two remarks. First, in this context the proof of

Lemma 5.3 is somewhat of an overkill. In fact, it would suffice to linearize separately
a(t, x, ξ) and a(t, x, η) around ξθ and use the fact that the symbol a(t, x, ξ)−ã(t, x, ξ)
has size α2λ at frequency λ in HαSα(θ). Secondly, the endpoint Strichartz estimate
is only used here for convenience; there is some flexibility in choosing the indices.

Case 1, term IV. This has the form

IV =

∫

∑

α>µ− 1
2

∑

θ∈Oα

φ+,α
θ,λ (t, x,D)Sλu φ̃

−,α
−θ,λ(t, x,D)Sλv φ

+,αµ−1λ
θ,µ (t, x,D)Sµw dxdt

Again the summation with respect to θ is accomplished by (77), while for the α
summation we simply accept a lnµ loss. This term is better behaved because the
symbol

φ+,α
θ,λ (x, ξ) φ̃−,α

−θ,λ(x, η)φ+,αµ−1λ
θ,µ (x, ζ)

vanishes on H = {ξ+ η+ ζ = 0}. Precisely, in the support of the above symbol we
have

|ξ| ≈ λ, |ξ ∧ ξα
θ | . αλ, |η| ≈ λ, |η ∧ ξα

θ | ≈ Cαλ, |ζ| ≈ λ, |ζ ∧ ξα
θ | . αλ.

This leads to

(93) |(ξ + η + ζ) ∧ ξα
θ | ≈ Cαλ

This can be taken advantage of in a direct computation in the above formula.
Including the dyadic frequency localizations into the φ’s, each term in IV has the
integral representation
∫

φ+,α
θ,λ (t, x, ξ)û(ξ) φ̃−,α

−θ,λ(t, x, η)v̂(η) φ+,αµ−1λ
θ,µ (t, x, ζ)ŵ(ζ) eix(ξ+η+ζ) dξdηdζdxdt

Defining the spatial elliptic operator F with symbol

f(t, x, ξ) = (ξ ∧ ξα
θ )2N

we have

F (t, x,Dx)eix(ξ+η+ζ) = |(ξ + η + ζ) ∧ ξα
θ |2Neix(ξ+η+ζ)
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Hence integration by parts in the above formula leads to
∫

ψ(t, x, ξ, η, ζ)û(ξ) v̂(η)w(ζ)eix(ξ+η+ζ) dξdηdζdxdt

where the new symbol ψ is

ψ(t, x, ξ, η, ζ) = F ∗(t, x,Dx)





φ+,α
θ,λ (t, x, ξ)φ̃−,α

−θ,λ(t, x, η)φ+,αµ−1λ
θ,µ (t, x, ζ)

|(ξ + η + ζ) ∧ ξα
θ |2N





In the support of the numerator the bound (93) holds. Hence separating the vari-
ables we can represent the denominator as a rapidly convergent series with terms

(αλ)−2Nχ<αλ(ξ ∧ ξα
θ )χCαλ(η ∧ ξα

θ )χ<αλ(ζ ∧ ξα
θ )

where each of the χ’s above is a unit bump function on the αλ scale. Thus they
can be included in the corresponding φ factors. Due to the S(gα) regularity of the
φ factors, each derivative ξα

θ ∧D applied to them yields an α−1 factor. Thus ψ is
represented as a rapidly convergent series of products of the form

(α2λ)−2Nψ+,α
θ,λ (t, x, ξ)ψ̃−,α

−θ,λ(t, x, η)ψ+,αµ−1λ
θ,µ (t, x, ζ)

where the ψ factors have the same support and regularity as the corresponding φ’s.
The integral above is similarly represented as a rapidly convergent series with terms
of the form

(α2λ)−2N

∫

ψ+,α
θ,λ (t, x,D)Sλu ψ̃

−,α
−θ,λ(t, x,D)Sλv ψ

+,αµ−1λ
θ,µ (t, x,D)Sµw dxdt

Since α > µ− 1
2 , the factor in front of the above integral allows us to exchange low

frequencies for high frequencies. This suffices in order to bound the last integral
using Strichartz estimates.

Case 1, term V

This is similar to Case 1, term IV . This time in the support of the symbol

φ+,α
θ,λ (t, x, ξ) φ̃−,α

−θ,λ(t, x, η) φ̃+,β
θ,µ (t, x, ζ)

we have

|ξ| ≈ λ, |ξ ∧ ξα
θ | . αλ, |η| ≈ λ, |η ∧ ξα

θ | ≈ Cαλ, |ζ| ≈ λ, |ζ ∧ ξα
θ | ≈ Cβλ.

Hence

|(ξ + η + ζ) ∧ ξα
θ | ≈ Cαλ

therefore the symbol above is supported at distance βλ from the diagonalH . Hence
integrating by parts as in the previous case we gain arbitrary powers of (αβλ)−1.
Then we can close the argument using Strichartz type estimates.

Case 2, 1 < d < µ. This requires only minor changes, which we describe in
what follows. We still consider the five terms in the trilinear decomposition (81),

but we replace the smallest localization angle µ− 1
2 by d

1
2µ− 1

2 .
Case 2, term I. Here we need (77) to sum expressions of the form

I =

∫

φ+,d
1
2 µ− 1

2

θ,λ (t, x,D)Sλu φ
−,d

1
2 µ− 1

2

−θ,λ (t, x,D)Sλv φ
+,d

1
2 µ− 1

2

θ,µ (t, x,D)Sµw dx

over θ ∈ O
d

1
2 µ− 1

2
. Each term is bounded by combining the energy estimate for the

first factor, the L4L2 bound for the second and (73) for the third.
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Case 2, term II. Here we use (77) for the summation of expressions of the form

II =

∫

φ+,d
1
2 µ− 1

2

θ,λ (t, x,D)Sλu φ
−,d

1
2 µ− 1

2

−θ,λ (t, x,D)Sλv
∑

α>d
1
2 µ− 1

2

φ̃+,α
θ,λ (t, x,D)Sµwdx

over θ ∈ O
d

1
2 µ− 1

2
. We use the same operator L, the same function w̃ and the same

trilinear form E. In (88) the first, second and fourth terms are estimated in the
same way, but using the L4L2 bound for the second factor. In the third term we
lose a power of d,
∣

∣

∣

∣

∫

uθ(Dt −A(t, x,−D))vθw̃dx

∣

∣

∣

∣

. ‖uθ‖L∞L2‖(Dt − A(t, x,−D))vθ‖L2‖w̃‖L2L∞

. ‖uθ‖X+
d

3
4 ‖vθ‖X−,d

1

α2µ
α

1
2µ

3
2 ‖wα

θ ‖Xµ,α,θ

+

.

(

d

α2µ

)
3
4

µ
5
4 ‖uθ‖X+

‖vθ‖X−,d
‖wθ‖Xµ,α,θ

+

But this is still acceptable due to the reduced range for α, namely α2µ ≥ d.
In the expression (89) there is a d

1
4 loss in the L2 bound for vθ, but this is

compensated for by the previously unused (α2µ)−
1
4 factor in the pointwise bound

for w̃.
Finally, for the E0 bounds we reuse (91) but with all the vθ factors estimated in

L2. This produces an extra d−
1
4 gain. On the other hand, the angular localization

for uθ and vθ is worse. Precisely, the operator (ξθ ∧D) yields a factor of d
1
2µ− 1

2λ
when applied to uθ or vθ, respectively a factor of αµ when applied to w̃. Hence we
obtain
∣

∣

∣

∣

∫

E0(uθ, vθ, w̃)dt

∣

∣

∣

∣

.
µ

3
2α

1
2

d
1
4α2µ

(1+d
1
2αµ

1
2 +d

1
2αµ

1
2 +d)‖uα

θ ‖Xλ,θ,α
+

‖vα
θ ‖Xλ,θ,α

−
‖wα

θ ‖Xµ,θ,α
+

This is still acceptable since α2µ ≥ d.
Case 2, term III. Compared to the similar argument in Case 1, the following

modifications are required:
(i) The third term in (88) is treated as in Case 2, term II.
(ii) In the bound for E0, the L∞L2 norms are replaced by L4L2 in all the vθ

factors.
Case 2, terms IV,V. These are identical to Case 1.
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