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7
THE COHESIVENESS OF BLOCKS
IN SOCIAL NETWORKS:
NODE CONNECTIVITY AND
CONDITIONAL DENSITY

Douglas R. White*
Frank Harary†

This study shows several ways that formal graph theoretic state-
ments map patterns of network ties into substantive hypotheses
about social cohesion. If network cohesion is enhanced by multi-
ple connections between members of a group, for example, then
the higher the global minimum of the number of independent paths
that connect every pair of nodes in the network, the higher the
social cohesion. The cohesiveness of a group is also measured by
the extent to which it is not disconnected by removal of 1, 2, 3, . . . , k
actors. Menger’s Theorem proves that these two measures are
equivalent. Within this graph theoretic framework, we evaluate var-
ious concepts of cohesion and establish the validity of a pair of
related measures:
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work Studies and Predictive Cohesion Theory” (White 1999), and revised with Santa
Fe Institute support from John Padgett. It provides the foundational theoretical basis
on which the hypotheses of the large-scale longitudinal network studies of the research
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ogy reviewers of Moody and White (2000) and White et al. (2001) for a great many
useful comments and suggestions made in early revisions of this paper. Two anony-
mous reviewers ofSociological Methodologymade extensive suggestions for inter-
mediate and final revisions, and we are indebted to Phil Bonacich and Santa Fe Institute
participants in the Working Group on Co-Evolution of Markets and the State—John
Padgett, Michael Heaney, Walter Powell, David Stark, Sander van der Leeuw and San-
jay Jain—for useful commentary.
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1. Connectivity—the minimum number k of its actors whose
removal would not allow the group to remain connected or
would reduce the group to but a single member—measures
the social cohesion of a group at a general level.

2. Conditional density measures cohesion on a finer scale as a
proportion of ties beyond that required for connectivity k over
the number of ties that would force it to k1 1.

Calibrated for successive values of k, these two mea-
sures combine into an aggregate measure of social cohesion, suit-
able for both small- and large-scale network studies. Using these
measures to define the core of a new methodology of cohesive
blocking, we offer hypotheses about the consequences of cohe-
sive blocks for social groups and their members, and explore
empirical examples that illustrate the significance, theoretical rel-
evance, and predictiveness of cohesive blocking in a variety of
substantively important applications in sociology.

Solidarity is a generic concept encompassing multiple ways that individ-
uals coalesce into groups. We can distinguish several kinds of bonds that
contribute to solidarity:members to group; members to group norms; mem-
bers to leaders; andmembers to members. We can conceive of these bonds
as havingformssuch as moral rules, norms, incentives, or contexts, and
contentssuch as various types of relationships. Form and content, social
“facts” of relationships versus norms that might govern them, and other
oppositions are not removed from one another. Rather, they are performed,
enacted, and understood in networks of interactions. Hence, it is useful to
partition solidarity into itsideationalandrelational components (Fararo
and Doreian 1998), the former referring to the psychological identifica-
tion of members within a collectivity,1 and the latter to the connections
among the collectivity’s members, which can be visualized as graphs.

Within the relational component of solidarity, we can further dis-
tinguish two aspects of the form of relations of a group that help to hold it
together. What we callcohesionis the contribution made by (adding or
subtracting) individual members of a group, together with their ties, to

1What we callattachmentof members to groups often involves complex inter-
actions among psychological, dispositional, moral, normative, and contextual con-
cerns, and they are often for this reason difficult to measure and to depict as graphs. To
simplify measurement, researchers often try to elicit from individuals indicators of
their attachments to groups. The same is true of what we calladherence to leadership.
Common research questions in this domain are: What are the attractive or charismatic
qualities of leaders (or attractionsto their followers) that create weaker or stronger
many-to-one ties or commitments?
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holding it together. What we calladhesion(edge cohesion) is the contri-
bution made to holding a group together—keeping membership
constant—by (adding or subtracting) ties between its members.2 We ask
one of the fundamental questions of sociology: How and when do groups,
norms, leaders, and commitments emerge out of cohesive clusters? Alter-
natively, we can ask: How and when does the formation of groups and the
emergence of leaders lead to the transformation of cohesive clusters?
Because cohesion often spills over the boundaries of formal groups,
dynamic reconfiguration of groups and alliances can be studied in the inter-
play between these two questions.3 Alternately, as different groups emerge
and overlap, and groups interact at another level of organization, dynamic
reconfigurations of cohesiveness can be studied, oscillating between dif-
ferent levels involving questions about top-down and bottom-up effects.4

Thecontentof ties is also important to how we view the dynamics
of cohesion and group transformations.At the simplest level (Harary 1953),
negative ties tend to repel and positive ties attract. We are principally con-
cerned here with positive dyadic bonds and the concept and measurement
of cohesion as a relational component of social solidarity, where the ties in
question are ones that can bond pairs of people in nonexclusive ways that
could constitute a basis for positive relations that hold a group together. We
do not try to deal here with more subtle refinements of content as they might
affect solidarity, but we try to isolate the contribution of different structural
forms of connection, given the simplifying assumption of relatively homo-
geneous “positive” content of ties. The model of cohesion presented here
would not be appropriate, for example, if the relation under study was that
of conflict or antagonism, where “negative” ties occur (see Harary 1953).

Section I develops a series of assertions of increasing precision
that provide intuitive foundations for sociological models of cohesion

2In the way we will operationalize these two concepts, they will be closely
related, but cohesion will turn out to be the stronger measure since removal of individ-
uals from a group automatically removes their ties, while removal of ties does not
entail removal of individuals.

3In heterarchic systems, such as a government that derives its legitimacy from
“We the people” to guarantee empowerment against intrusions at intermediate levels
(Morowitz 2000:11–12), multiple relations contend for and oscillate in their salience
for regulatory processes. Such oscillations include centralized systems that are hierar-
chically organized from upper to lower levels. Alternatives include decentralized sys-
tems that are emergent, often hierarchically, from lower to upper levels.

4Powell, White, Koput, and Owen-Smith (2001) develop analysis for bottom-up
effects in the emergence of new structural forms in collaborative networks among
biotechnical firms, for example, as distinct from the top-down effects of co-evolving
government policies and agencies affecting the biotech industry.
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and, secondarily, adhesion. Sections I.B and I.C provide some general
expectations and hypotheses about cohesion and adhesion in terms of
their sociological antecedents and consequences. We show the signifi-
cance of defining structural cohesion as resistance-to-taking-a-group-
apart and path cohesion as stick-togetherness (our definitions 1.1.2. and
1.2.2) and discuss the sociological implications of these two facets of
cohesion, and similarly for two parallel aspects of adhesion. We show
how these two aspects meld in each case into a single equivalent con-
cept that defines the boundaries of social groups at different levels of
cohesion or adhesion. Section I.D shows the utility of defining density
and closeness of ties within bounded cohesive blocks, which will lead
to a later section (III) on conditional density. Section II provides the
graph theoretic foundations for concepts and measurements of cohesion
and adhesion, and gives the definitions needed for the proofs of equiv-
alence of the twin aspects of structural and path cohesion or adhesion.
Section III defines conditional density and a scalable measure of cohe-
sion that combines connectivity and conditional density within nested
patterns of subgroup cohesion and subgroup heterogeneity. Section IV
examines a case study of a factional dispute in a karate club to exem-
plify our measures of both cohesion and adhesion, and shows how it is
useful as well to take into account relative density and closeness within
the bounded context of connectivity subsets. Section V describes how
the proposed measures of cohesion have been tested in larger scale soci-
ological studies than the karate example, and Section VI summarizes
and concludes our study.

I. TOWARD SOCIOLOGICAL MODELS OF COHESION
AND ADHESION

A+ Some Basic Intuitions and Concepts

The following series of sociological assertions may help to give the reader
some intuitive underpinnings for the models of cohesion and adhesion
that follow in Section II. Intuitively, cohesion begins with the role of indi-
viduals in holding a group together:

1. A group is cohesive to the extent that its members possess connec-
tions to others within the group, ones that hold it together.

If cohesion begins with individuals who are connected, higher levels of
group cohesiveness should entail that the removal of some one (two,
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three. . .) actor(s) should not disconnect the group. Simmel (1908
[1950:123]) noted the fundamental difference in this respect between a
solitary dyad and a triad:

The social structure [of the dyad] rests immediately on
the one and on the other of the two, and the secession of
either would destroy the whole . . . as soon, however, as
there is a sociation [clique] of three, a group continues to
exist even in case one of the members drops out.

We identify this as the first of two facets of cohesion:

1.1. A group is cohesive to the extent that it is resistant to being pulled
apart by removal of its members.

Generalizing Simmel’s intuition as a structural feature of cohesion, we
introduce the following definition:

1.1.1. A group isstructurally cohesiveto the extent that it is resistant to
being pulled apart by the removal of a subset of members.

The concept of the robustness of connections under removal of members
of a group is closely related to the graph theoretic concept of connectivity
given in Section II. There we review the graph theoretic foundations of
cohesion and adhesion. Harary et al. (1965) anticipated the approach of
utilizing connectivity as a measure of cohesiveness. Wasserman and Faust
(1994:115–17) cite his definition of connectivity (Harary 1969) as one
way to measure the cohesion of a graph, but they do not apply it to finding
cohesive subgroups. White (1998; White et al. 2001) develops the latter
idea, and Moody and White (2000) provide and apply an algorithm for
measuring maximal subsets of nodes in a graph at different levels of con-
nectivity. We implement this approach here, defining the structural aspect
of the cohesion of a group in quantitative terms as follows (the formal
exposition here parallels Moody and White):

1.1.2. A group’sstructural cohesionis equal to the minimum number of
actors who, if removed from the group, would disconnect the group.

This is the minimum numberk of its actors whose removal would not
allow the group to remain connected or would reduce the group to a single
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member. It allows hierarchies of cohesive blocks to be identified. At the
highest level, for a clique withn members, all but one member must be
removed to get an isolate, so the structural cohesion is defined asn 2 1.
Cohesiveness may be viewed as “the resistance of a group to disruptive
forces” (Gross and Martin 1952:553), and structural cohesion provides a
relational basis for a group to resist disruption by defection or removal of
members.

If resistance to being pulled apart is an aspect of cohesiveness, how-
ever, we must pay equal attention to a second, more integrative aspect of
cohesion commonly discussed in the literature.5 This integrative aspect is
emphasized in such definitions of cohesiveness as “the forces holding the
individuals within the groupings in which they are” (Moreno and Jen-
nings 1937:371); “the total field of forces that act on members to remain
in the group” (Festinger et al. 1950:164); and “a dynamic process that is
reflected in the tendency for a group to stick together and remain united in
pursuit of its goals and objectives” (Carron 1982:124).

This second aspect of the cohesive integration of a social group
can be defined and measured—independently of robustness to disruption
by removal or defection of members—by the number of distinct ways that
members of a group are related. Cohesion increases, for example, when
members have multiplex bonds, such as two people who are classmates,
friends, and neighbors. Two people may also be connected by multiple
independent paths that have no intermediate members in common. We
identify such possibilities in the second of two related facets of cohesion:

1.2. A group is cohesive to the extent that pairs of its members have
multiple social connections, direct or indirect, but within the group, that
pull it together.

The integrative aspect of group cohesion that we will examine is the num-
ber of independent paths linking pairs of members. We define this aspect
of cohesion as follows:

1.2.1. A group ispath cohesiveto the extent that its members have a
multiplicity of independent paths between them,within the group, that
pull it together.

5French (1941:370), for example, discussed how a group exists as a balance
between “cohesive” and “disruptive” forces, including responses to disruptive forces.
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This can be defined quantitatively as follows:

1.2.2. A group’spath cohesionis equal to the minimum number of its
independent paths taken over all pairs of members.

When we define structural and path cohesion formally, as we do in Sec-
tion II, one of the purposes of the formal language of graphs is to derive
as a theoretical result or mathematical proof that the two graph theoretic
concepts of path (1.2.2: stick-togetherness) and structural (1.1.2: won’t-
pull-apart) cohesion are equivalent. This is important to sociological theory,
and the mathematics can contribute at the conceptual level to sociological
explanation, because it demonstrates that two measurement constructs—
each of which is central to the study of social cohesion—can be reduced
to one by virtue of their formal equivalence. We do not claim that these
are the only constructs relevant to understanding cohesion, but simply
that when our substantive and intuitive sociological conceptions converge
on these two constructs of structural and path cohesion, they are formally
equivalent. Both measures that are thereby unified are highly relevant to
the relational component of group solidarity. Although the measurement
of connectivities or node-independent paths in social networks is a com-
plex problem computationally, accurate approximation techniques are now
available (e.g., White and Newman 2001) for large networks.

Besides the removal of members, the only other way in which a
group is vulnerable to disconnection is by removal of ties between mem-
bers. This possibility defines what we calladhesionwithin a group (which
is thus a logically weaker concept than cohesion because removal of indi-
viduals is excluded). We arrive at a definition of adhesion by elaborating
a series of sociological assertions that run parallel to those about cohe-
sion, except that here the members of a group are held constant, and we
consider, between group members, only the ties, whose removal can sep-
arate the group:

2. A group is adhesive to the extent that its members’ties hold it together.

Facet 1

2.1. A group is adhesive to the extent that it is resistant to being pulled
apart by removal of ties between members.
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2.1.1. A group isstructurally adhesiveto the extent that it is resistant to
being pulled apart by removal of a subset of its ties between members.

Facet 2

2.2. A group is adhesive to the extent that the ties between its members
or indirect connections within the group pull it together.

To count the number of such ties or indirect connections, we refer in this
context to paths between two members within a group as being disjoint
(technically speaking: edge-disjoint) if none of the dyadic ties that make
up the respective paths are the same:

2.2.1. A group ispath adhesiveto the extent that it is held together by
(edge-) disjoint paths between each pair of members.

Our two facets of adhesion can be precisely defined as follows:

2.1.2. A group’sstructural adhesionis equal to the minimum number
of direct links between group members that, if removed, would discon-
nect the group.
2.2.2. A group’spath adhesionis equal to the minimum number of
(edge-) disjoint paths among different pairs of members.

Thus we define group adhesion to refer to stick-togetherness0don’t-pull-
apart in relation to the edges or paths that connect the group but holding
constant the members of the group itself.

High adhesion may be obtained without a concomitant rise in cohe-
sion by subgroups that link through one or a few central nodes. Figure 1
gives two examples where in each case the cohesion is minimal (each
group is vulnerable to disconnection by removal of a single member) but
adhesion is significantly higher (three ties must be removed to disconnect
any of the members of these two groups). In the first example there is a
structure of many small cliques that have one member in common (e.g., a
common “leader” unifying the cliques). In the second, there is the same
number of small cliques, but the central member who links them is not a
member of the cliques. The examples differ in the structure of cohesion in
the subgroups (overlapping versus nonoverlapping cohesive subgroups).
The converse, high cohesion with low adhesion, is impossible by defini-
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tion, which conveys the sense in which adhesion is a weaker measure of
cohesion, or perhaps a measure of something quite different, necessary
but not sufficient for cohesion.

Our graph theoretic formalization in Section II takes up the two
facets of structural and path cohesion, then those of adhesion, shows the
mathematical equivalence of these two facets for both cohesion and adhe-
sion and how cohesion and adhesion are mathematically related. Before
doing so, under the heading of hypotheses, we examine some of the impli-
cations of these two concepts for group structure and social processes. We
will not consider the concepts of attachment-to-group, adherence to lead-
ership, or adherence to norms, but these themes might be developed by
treating the group, leader, or normative elements and constructs, as distin-
guished nodes, and investigating individual-to-group or follower-to-leader
ties within the broader network, or one- and two-mode networks of indi-
vidual and normative elements.

B+ Hypotheses About Cohesion

Once we develop a graph theoretic methodology that provides formal mea-
sures for the intuitive concepts of cohesion, it will be possible in the long
run and over many studies to evaluate the social consequences at the group
and individual level that are thought to follow from different aspects of
cohesion. Differences in cohesiveness, including finer levels of differ-
ences in density within each group (see Section I.D), should have recur-

FIGURE 1. Two graphs with low cohesion (one node-removal separates each graph)
but high adhesion (a minimum of three edge-removals separates each
graph).
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rent antecedents and0or predictive consequences for social groups and their
members across different social contexts.

Our goal here is to develop methodology and not to test hypoth-
eses, so we will not attempt to define relevant measures for possible
consequences, at the group or individual level, of our measures of cohe-
sion, but some relevant ideas and examples may be briefly sketched. At
the level of formal theory, for example, if the relevant units of time or
cost are normalized for the networks of two groups (such as longevity
of group members, time-decay of ties, etc.), it is a testable hypothesis
that the network with higher structural cohesion (other things being equal)
will, in a set period of time, be less likely to separate into two discon-
nected groups. Formal theory might be developed to predict outcomes
such as relative stability of groups, or the relative duration of a group
as a social configuration.

Similarly, if information transmission in a network is noisy or unreli-
able, then compensatory gains in path cohesion should give an initial rapid
benefit from higher capacity to transmit redundant information. Further
benefits will at some point begin to have diminishing marginal returns,
analogous to the declining marginal benefits to reliable measurement of
averaging more independent measures of the same variable. This, and the
fact that adding links in a network typically has a cost, leads to the hypoth-
eses that, when transmission is unreliable (or quality decays with dis-
tance), measurable benefits to gains in connectivity will be high initially,
but growth of cohesion at higher levels will tend to be self-limiting because
of a rising cost0benefit ratio. As compared to suboptimal levels of cohe-
sion in a network in this context, near-optimal levels are hypothesized to
occur at very low densities for large networks and, given sufficient stabil-
ity, to predict higher congruence in information transmittal, higher levels
of consensus among group members, more rapid emergence of group
norms, and higher levels of effective coordination in mobilizing group
action or exerting group-level influence. Relations for which path cohe-
sion might be especially predictive of relevant outcome variables are those
that serve as conduits for items that are transmitted in social networks,
such as information, gossip, disease, or favors or goods exchanged.

Engineering applications of network concepts of transmission gen-
erally emphasize designing networks so that distance decay in signal trans-
mission is compensated by intermittent amplifiers that dampen noise and
boost coherent signals. It is often assumed by social theorists who utilize
concepts of transmission or flow in social networks that such amplifiers
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are absent in naturally occurring social interactions. The feedback circuits
required for amplification, however, are found in cohesive blocks. Path
cohesive blocks of such networks thus might be hypothesized to serve as
natural amplifiers in social networks, boosting signal by creating internal
patterns of coherence. For the phenomenon of network externalities in
which a product’s value is enhanced by additional users, the early expo-
nential rise in adoption may be accelerated by path cohesion, or intermit-
tently decelerated if the cohesion is concentrated in distinct pockets.6

The Internet is an example of a type of network in which redundan-
cies facilitate transmission and the emergence of cohesive pockets and
hierarchies of users and sites. Cohesion, not adhesion, was the object of
the packet-switching transmission design through multiple pathways.7 The
physical elements of the ARPANET0Internet system, such as links among
servers, also required cohesion and not just adhesion. At a third level,
links between Web pages, cohesion has been an emergent phenomenon of
potential benefit to users.

Path cohesion also operates as resistance to a group’s being pulled
apart through bonding effects that are independent of distance rather than
subject to distance decay. It isk times more difficult to break apart two
nodes if they havek independent chains of connections than it is to break
them apart if they have a single chain of connections. Hence higher path
cohesion is an indicator of a group’s resistance to being pulled apart even
with transmission decay or its absence altogether.

Long-range bonding effects may operate through chains of connec-
tivity even in sparse networks. Grannis (1998), for example, found that
the best predictor of contiguous zones of homogeneity in urban neighbor-
hoods is not closeness of ties or walking or driving distance, but chaining
of neighbor relations along residential streets. These bonding chains do
not imply that members of the homogeneous sets have a high density of
neighbor relations, or high door-to-door transmission rates, but that they
have chains of neighboring by which members of the homogeneous group

6In this case, however, connectivity theory would suggest a critical threshold
where the rise in added value goes from linear (because component sizes grow lin-
early with adoption up to this threshold) to exponential (because after the threshold is
reached, sizes of component and0or cohesive sets begin to grow exponentially), to
dampened marginal returns.

7If the designers of ARPANET, the military forerunner of the multiple-path
Internet packet technology, had only been concerned with adhesion, the system might
have been designed around a single central hub that would have left it vulnerable to
attack.
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are neighbors of neighbors of neighbors, etc., without constraint on path
length. Homogeneity tends to be transitive through these local bonds rather
than decaying with distance. Grannis (personal communication) hypoth-
esized that structural cohesion contributes to neighborhood homogeneity
but did not test the hypothesis directly.

For individuals, membership in one or more groups with differing
levels of structural and path cohesion might also have predictive conse-
quences for levels of attachment and participation in the group or the larger
community in which the individual is embedded.

Are cohesive blocks in social networks equivalent to what Gra-
novetter (1973, 1983) identified as “strong” as opposed to “weak” ties—
namely, ties of high multiplexity where dyadic interaction is frequent? If
strong ties tend to cluster due to greater transitivity than weak ties, struc-
tural cohesion within clique-like structures would follow as a conse-
quence. The two concepts are not equivalent, however, and structural
cohesion does not imply such transitivity. It is an open question as to
whether the relevant circumstances in which weak ties are more effective
than strong ones for network reachability include effects of structural
cohesion.

C+ Hypotheses About Adhesion

Structural and path adhesiveness in social networks is not our primary
concern here, but hypotheses about the effects of adhesion should be con-
sidered alongside those concerning cohesion. Higher levels of adhesion
imply more channels of connections between pairs of members of a group,
even if the channels are not strictly parallel but may run through the same
(e.g., central) nodes. High adhesion networks with low cohesion (e.g., Fig-
ure 1), like graph centralization, may lead to vulnerability of strategic points
of control in social networks.8 Hence, adhesion is a direct measure of the
potential for flow between nodes, without considering the potential for
congestion or vulnerability through central nodes. Centralized polities and

8When adhesion and cohesion in a graph are minimal, but the graph is con-
nected, and the maximum distance in the graph is two, the graph is maximally central-
ized as an egocentric star. In general, high adhesion relative to low cohesion within a
social group implies that the network is relatively centralized, but the pattern of cen-
tralization may be one of a central node connecting a number of cohesive outliers. The
relation between centrality measures and graph theoretic measures of adhesion and
cohesion (edge and node connectivity) is complex and deserves separate treatment.
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bureaucracies, for example, may require high adhesion networks if the
latter entail the potential for establishing control points internal to social
groups.

Social fragmentation is a domain where adhesive groupings have
been used to hypothesize about lines of cleavage, given the presence of
internal conflict within a previously solidary group. Zachary (1975, 1977)
argued that when conflicts between rival leaders within a group are suf-
ficiently intense, the group would segment through dissolution of the
minimum number of links needed to separate into two. Anticipating our
analysis of this case in Section IV, we take issue with this adhesion-
based hypothesis for several reasons. First, the idea that a minimum num-
ber of edges can be removed to disconnect a graph does not imply that
a unique set of edges will be identified by this criterion. The graph in
Figure 2, where nodes 1 and 2 represent two leaders in conflict, helps
to illustrate the critique. The removal of pairs of edgesa,b will discon-
nect 1 from 2, but so will removal of the two edgesc,d, or the edges
e, f, or e,h. Second, we would argue that the persons who are more cohe-
sively linked to leaders, with closeness of ties as a secondary factor, are
more likely to remain as members of their respective factions. Hence in
Figure 2 persons 3 and 5 will be more likely to remain with 1 and per-
sons 4 and 6 with leader 2. This illustrates that minimum edge-removal
is not the only way to effectively divide the group. Further, there is a
single node in Figure 2 whose removal would disconnect the graph.
Hence the social pressure to take sides might be greatest for this per-
son, node 4, who is also the only member of the two most cohesive
sets, 1-3-4-5 versus 2-4-6, each of which is circled in Figure 2. On the
basis of cohesiveness and tie density, we would expect that person 4
would remain in leader 2’s faction, hence expected to decouple from 3
and from 5 rather than from 2 and 6. The end result is the same as edge

FIGURE 2. Cohesive blocks in a factional dispute between leaders 1 and 2.
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removal, in which nodes remain and edges are removed. We would argue,
however, that the underlying social dynamics of segmentation are more
likely to involve the agency of individual decision-makers, hence favor-
ing hypotheses about effects of cohesion, closeness, and the density of
cohesive blocks rather than effects of adhesion, or minimum removal of
edges. Since edges do not autoregulate independently of the agents they
connect, we might hypothesize that while cohesive blocks are likely to
influence the development of norms and sanctions about what kinds of
edges with outsiders are favored or disfavored, adhesive subsets that are
not also cohesive are less likely to do so.

D+ Hypotheses that Integrate Other Aspects of Cohesion:
Conditional Density and Other Variables

Given a first level of structural and path cohesion at which graphs can be
ordered by their invulnerability to disruption (connectivity) and inversely
to the ties that hold them together (equivalent definitions 1.1.2 and 1.2.2),
additional finer levels of cohesion can be ordered by density, closeness of
ties, and other factors.9 We can define a strict measure of conditional den-
sity (Section III) because a certain density and minimum number of ties
within a group are already implied by its level of connectivity.10 Within
the boundaries of cohesive blocks established by structural and path cohe-
sion, our graph theoretic formalization in Section II allows us to describe
a finer level of cohesion reflecting aspects such as density, that make a
secondary contribution to cohesion.11 At this second level of cohesion, a
conditional definitionrelated to cohesion is one based on a feature of cohe-
sion that lends itself to a finer level of measurement, where the feature has
a necessary minimum and maximum value associated with the level of
structural and path cohesion, and is measured within the bounded cohe-
sive set associated with that level.

Conditional density will be a primary focus of our development of
a scalable measure of cohesion that takes an integer valuek for a certain

9We shift here to refer to the equivalent concepts of structural cohesion and
path cohesion simply as “cohesion.” Our assertion in doing so is that these concepts
capture two of the most important facets of many-to-many ties among clusters of indi-
viduals as they form into cohesive blocks. Throughout this section, we are concerned
with how other variables also contribute to cohesion, with density as a case in point.

10This is not the case for multiplexity (multiple types of ties between group
members) or for frequency of interaction between members of a group, which can
vary independently of structural and path cohesion.

11This could also be done for diameter, closeness of connections, or adhesion
as secondary aspects of cohesion.
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level of structural and path cohesion for a uniquely defined subgroup of a
social network, plus a decimal value (between 0 and 1) for an added con-
tribution to the robustness of cohesion within the group made by within-
group density. It provides a useful example of how complementary aspects
of cohesion can be measured. These ideas toward a general methodology
for the cohesive blocking of social networks must remain intuitive until
conditional density is given formal explication in Section III.

One purpose of our graph theoretical formalization of the concepts
of structural and path cohesion and conditional density is to show the
advantages of a scalable aggregate measure of cohesion in social groups
over other approaches that use relative densities of different clusters of
nodes in social networks to try to identify the boundaries of cohesive social
groups. Clique-finding algorithms, for example, give a unique inventory
of cohesive clusters whose relative density is maximal, but the denser
regions of social networks will often exhibit many intersecting cliques.
The intersections among cliques form a lattice that typically defines a wel-
ter of intersecting social boundaries (Freeman 1996). As a density thresh-
old for overlapping subgroups is relaxed, the overlap of subgroups rises
exponentially. Forcing social group detection into a framework of mutual
exclusion, on the other hand, makes little substantive sense when the con-
cept of structural cohesion provides a meaningful framework for detect-
ing and interpreting multiple group memberships. Structural and path
cohesion are also able to detect more distributed patterns of cohesion in
social networks than the unions of intersecting cliques.

In contrast to approaches that use a density criterion alone, differ-
ent levels of structural and path cohesion will typically define hierarchi-
cal nesting of relatively few bounded cohesive subgroups, with severe
limits on the overlap between hierarchical clusters, and the lower the level
of cohesion, the less the overlap, hence high coherence of structure. With-
out offering detailed hypotheses,12 but judging from case studies pre-
sented in Section IV or reviewed in Section V, along with those in Moody

12“Invisible colleges” in intellectual and citation networks, for example, are
likely to be predicted from cohesive blocks and conditional densities, with down-
stream predictions from measures of cohesion to other group and individual level soci-
ological effects. Similar models of effects might be applied to the idea of cohesive
blocks of infectious sites in epidemiology. Identification of cohesive blocks and con-
ditional densities in networks of economic exchange may provide a means of identi-
fying cores and hierarchies in economic systems, or intensive markets for particular
product clusters. In analysis of distributed cohesion in large networks such as these,
the study of overlapping cliques will usually fail to identify cohesive sets that are
anywhere near as large as those identified by structural and path cohesion.
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and White (2000), we have reason to think that structural and path cohe-
sion, along with additional density criteria within cohesive blocks, will be
found to have important consequences for many different types of social
groups, and that the graph theoretic concepts of cohesion and conditional
density will find a useful explanatory niche in sociological theorizing. We
would insert a caveat, however—namely, that consideration of the type of
social relations being studied ought to guide how the concepts of adhe-
sion and cohesion might be used, either separately or in combination with
conditional density or other measures such as distance on shortest paths.

The emergence of trust in social groups, for example, might depend
on both level of structural cohesion and the relative compactness of cohe-
sive blocks—in terms of interpersonal distances on shortest paths—in the
following way. In such groups, each individual A might receive informa-
tion concerning each other group member B through a variety of paths that
flow through distinct sets of intermediaries, and if the distances from A to
B are sufficiently short, then A will be able to interpret these multiple inde-
pendent sources of information about B’s characteristics or identity as a per-
son but as seen or filtered by a variety of others. This ability to compare
independent perspectives on each of the others in the group is conducive to
discriminations concerning trust and distrust. Not everyone in such groups
will necessarily be trusted, but the conditions fostered by comparisons
within such groups would provide a reliable basis for informed judgments
as to trust. Hence more elaborated discriminations about trust (and hence
the emergence of high-trust networks) might be expected to be more fre-
quent within such groups.

As a hypothesized basis for interpersonal trust, the model of con-
nectivity plus conditional density is one in which conditional distance also
needs to be taken into account. As in the case of density, we can determine
the minimum and maximum possible diameter of a group (the largest
shortest-path distance for any two members) and the corresponding min-
imum and maximum average shortest-path distances between members,
if we know the number of its members and the structural cohesion of the
group. Watts (1999a, b) defines a “small world” as a large network with
local clustering of ties but relatively low average distance between mem-
bers.13 We do not develop here a model of conditional distance analogous

13He shows that, for model networks with many nodes, high local clustering,
and very high average distances between nodes, successive random rewiring of edges
produces a small world rather quickly by creating shortcuts that shorten the average
internode distances. Small worlds and conditional distance are well worth further inves-
tigation in relation to structural and path cohesion.
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to that of conditional density, although it would be possible to do so. Rather,
we note that within our model of conditional density, as edges are added
randomly to a graph at a certain level of structural and path cohesion
(thereby adding to conditional density), average internode distances will
also fall quickly, resulting in the closeness of a “small world.” Assuming
that increases to conditional density for groups at a given level of struc-
tural cohesion occur by random addition of edges, conditional density
becomes a proxy for conditional distance. Precise measures of condi-
tional distance could be constructed to develop further the methodology
of cohesive blocking, and our conditional density measure is instructive
as to how one might proceed to do so.

II. THE GRAPH THEORETIC FOUNDATIONS OF
COHESION AND ADHESION

For clarity of presentation in formalizing definitions and theorems about
social cohesion and adhesion, a social relation hypothesized or assumed
to contribute to cohesion or adhesion is considered as a graph. This
allows us to equate the sociological definitions 1.1.2 and 1.2.2 for cohe-
sion and 2.1.2 and 2.2.2 for adhesion with corresponding graph theo-
retic definitions of node and edge connectivity and, using the theorems
of Menger (1927), to establish the equality between the two fundamen-
tal properties of cohesion and adhesion: resistance to being pulled apart
(definitions 1.1.2 and 2.1.2), and stick-togetherness (1.2.2 and 2.2.2).
Our goal in this section is to provide a formal methodology with appro-
priate graph theoretic terminology for the cohesive (or adhesive) block-
ing of social networks.

A graph G5 ~V,E! consists of a setV of n nodesor verticesand a
setE of m edgeseach joining a pair of nodes. We sayG hasorder nand
size m. The two nodes in each unordered pair~u, v! in E are said to be
adjacentand constitute an edge that isincidentwith nodesu andv.14 A
path in G is an alternating sequence of distinct nodes and edges, begin-
ning and ending with nodes, in which each edge is incident with its pre-
ceding and following node. A graph isconnectedif every pair of nodes is
joined by a path. Thedistancebetween two nodes inG is the minimum

14A group with nonsymmetric relations is representable by a digraphD 5
~V,A! consisting of a setV of nodesand a setA of arcs (directed edges) consisting of
ordered pairs of nodes inV. A more complex but also more general derivation of our
results regarding measures of cohesion, applicable to digraphs, was done by Harary,
Norman and Cartwright (1965, ch. 5).
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size of a path ofG that connects them. Asubgraphof a graphG is a graph
having all of its nodes and edges inG.

Since we regard a social group with nondirected interpersonal rela-
tions as part of a social network—as a subgraph of a larger graph—it is
useful to provide some definitions about subgraphs. A setS is maximal
(minimal) with respect to some property if no proper superset (subset) of
S, containing more (fewer) elements thanS, has the property butSdoes. A
componentof G is a maximal connected subgraph. Acomplete graph Kn
of ordern has every pair of nodes adjacent. Aclique of a graphG is a
maximal complete subgraph ofG of order at least 3, hence a maximal
subgraphKn of G of ordern $ 3. Figure 3 shows a disconnected graph
with two components and three cliques, each aK3.

A+ Connectivity and Resistance to Pulling Apart by Removal of Nodes

Two primary references on the node and edge connectivities ofG, denoted
byk (kappa) andk ', respectively, are Harary (1969, ch. 5) and Tutte (1966).
The removal of a node vfrom G leaves the subgraphG 2 v that does not
containv or any of its incident edges. The (node-) connectivityk~G! is
defined as the smallest number of nodes that when removed from a graph
G leave a disconnected subgraph or a trivial subgraph.15 The connectivity
of a disconnected graph is zero as no nodes need to be removed; it is
already not connected. Our definition 1.1.2 (section I.A) corresponds, in
the terminology of graph theory, to that of the (node) connectivity of a
graph. Thetrivial graph K1 of one node and no edges~n 5 1 andm5 0),
or a disconnected graph, has cohesion 0. A solitary dyad has cohesiveness
1, a triad has 2, and a 4-clique has 3.

15This two-part definition is needed because no matter how many nodes are
removed from a complete graph, the remaining subgraph remains complete and hence
connected until the trivial graph with one node is obtained, and we do not remove it
since its removal leaves emptiness. Thus connectivity is defined asn21 for the com-
plete graphKn.

FIGURE 3. A disconnected graph with two components and three cliques, each aK3.
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A cutnodeof a connected graphG is one whose removal results in
a disconnected graph. A setS of nodes, edges or nodes and edgessepa-
rates two nodesu, v in a connected graphG if u and v are in different
components ofG 2 S. A node cut set(cutset) is a set of nodes that sepa-
rates a connected graph into two components. Anendnodeis one with a
single incident edge. Its removal does not separate a graph. Acycle of
ordern nodes, designatedCn, is obtained from a pathPn with n $ 3 by
adding an edge joining its two endnodes. Two paths are (node-)disjointor
node-independentif they have no nodes in common other than their end-
nodes. A cycle containing nodesu, v entails thatu andv are joined by two
(node-) disjoint paths. Atree is a connected graph with no cycles, as in
Figure 4. It is easy to see that each node in a tree is either an endnode or a
cutnode.

A connected graph has connectivity 1 if and only if it has a cut-
node. Thus a tree has connectivity 1 but a cycle does not; it hask 5 2. In
Figure 5, which shows the eleven graphs of order 4, the first five graphs
are disconnected (the first graph istotally disconnected), while the remain-
ing six are connected and thus consist of a single component. The first
two connected graphs are the trees of order four. The last is the complete
graphK4. The second of size 4 is the cycleC4. The graph beforeC4 has a
cutnode and hence connectivity 1.

A maximal connected subgraph ofG with connectivityk . 0 is
called ak-componentof G, with synonymscomponentfor 1-component,
bicomponentfor 2-component (called acyclic componentby Scott
2000:105) andtricomponentfor 3-component (called abrick by Harary
and Kodama 1964). In Figure 5 graphs 5 and 8 have bicomponents of
order 3—namely, triangles; the three graphs fromC4 to K4 have bicom-
ponents of order 4; and the complete graphK4 is itself a tricomponent.

FIGURE 4. A graphG that is a star.

COHESIVENESS OF BLOCKS IN SOCIAL NETWORKS 323



A block of G is a maximal connected subgraph with no cutnodes
(Harary 1969; Even 1979; Gibbons 1985).16 The blocks of a graph give a
partition of its edges. In Figure 5 there are three graphs that are single
blocks:C4 and the last two graphs. Graphs 2 and 5 contain a single block
plus isolated nodes. There are twoK2 blocks in graphs 3 and 4 and two
blocks in the graph beforeC4. Three blocks are contained in each of the
two trees of order 4, since each edge is a block. A block may contain a
solitary dyad (not contained in a cycle) whereas a bicomponent is a block
in which there are 3 or more nodes.

16Scott (2000:108,187 fn. 9), owing to the fact that block has another mean-
ing in network analysis, uses the unnecessary and unfortunate termknot, easily con-
founded with the established term with another meaning in topology. Everett (1982a,
1982b) deals separately with both types of block.

C

FIGURE 5. The eleven graphs of order 4.
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A cohesive blockof a graphG (a term we define here for use in
sociological analyses of cohesion) is ak-component ofG where the asso-
ciated value of connectivity defines the cohesion of the block. We use
cohesivityto refer to cohesive blocks ofk 5 2 or more.17 Some of the
most commonly used network measures of cohesion, as we will show
below, lack a guarantee of cohesivity, or even of connectedness. Within
blocks of connectivity 1 will be nested more cohesive blocks, if any, of
higher connectivity.18 We may use the termcohesive groupsto refer to
substantive contexts where this concept has been applied to identify social
groups on the basis of their network connectivities. We usecohesive sub-
setsto refer to subgraphs of a graphG that may be cohesive in some
respects but do not necessarily correspond to cohesive blocks defined by
connectivities of subgraphs.

B+ Edge Connectivity, and Resistance to Pulling Apart
by Removal of Edges

As distinct from node removal, theremoval of an edge efrom G leaves
the subgraphG2 e that contains all the nodes ofG. Edge removal presents
a lesser vulnerability to a graph being pulled apart than node removal,
which removes all incident edges. An edge of a connected graph whose
removal results in a disconnected graph is called abridge.19 Theremoval
of a set of edgesin G is the successive removal of each edgee in the set.
An edge-cutset(or edge-cut) of a connected graphG is a set of edges
whose removal results in a disconnected graph. Theedge connectivityk '

17The motivation for coining the technical termcohesivityis that blocks with
k 51 are connected but easily disconnected by removal of single nodes, and thus only
weakly structurally cohesive (Moody and White 2000). They are not really cohesive if
we mean by that term “difficult to break apart” and “held together by coordinate bonds”
rather than by adherence to single connecting nodes. Thus a group in which everyone
was connected only to a single leader would lack cohesivity.

18To clarify the subtle difference between the graph theoretic and our socio-
logical vocabulary once again, theblocksof ordern $ 3 are 2-componentcohesive
blocks(which may contain higher orderk-components) whileblocksof ordern 5 2
(single edges that are not contained in cycles) are contained within 1-component blocks
that lack cohesivity. Theblocksof a 1-component consist either of dyads not con-
tained in cycles, or of proper subgraphs of the 1-component that have cohesivity (con-
nectivity 2 or more). A 2-component is both ablockand acohesive block.

19Another characterization of a tree is that it is connected and that each edge
is a bridge. A connected graph hask ' 5 1 if and only if it has a bridge. Connected
graphs 6, 7, and 8 in Figure 5 have bridges.
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~G! of G is the smallest number of edges in an edge-cutset. Thus a discon-
nected graph hask '5 0. Our definition 2.1.2 (Section I.A) corresponds to
that of edge connectivity.

Edge connectivity does not differ from node connectivity for the
graphs in Figure 5, where both types of connectivity are equal: zero for
the first five graphs; one for the next three; two for the ninth and tenth,
and three forK4. Only at order 5 do node and edge connectivity of graphs
begin to diverge, as exemplified in Figure 6, where the edge connectivity
is 2 but the connectivity is 1.20

An adhesive blockof a graphG is ak-edge-component ofG where
the associated value of edge connectivity defines the adhesion of the block.
Figure 6 contains a single adhesive block withk ' 5 2, but two overlap-
ping cohesive blocks withk 5 2. Adhesive blocks may also overlap: An
adhesive block with edge connectivityk ' may have at mostk '2 1 edges
in common with a second block of equal or higher connectivity. Borgatti
et al. (1990) define LS and lambda sets based on edge connectivity but
restrict them to mutually exclusive subsets of adhesive blocks. This does
not assure that such sets are cohesive, however, as they may contain
cutnodes.

Two paths areedge-independentif they have no edges in common.
Nodes 1 and 2 in Figure 6 are joined by just one node-independent path
but two edge-independent paths. GraphG1 in Figure 7 also illustrates the
difference between node and edge connectivity: Nodes 1 and 2 are joined
by two node-independent and three edge-independent paths, and five nodes
(all but nodes 1, 2, and 3) are separable by either two edges or two nodes.
Node and edge connectivity both equal 2 for the total graph (adhesive and
cohesive blocking ofk ' 5 k 5 2), but there is a greater surplus of path
adhesion between nodes 1 and 2 than path cohesion.

20Node and edge connectivity are equal for any graph in which the minimum
degreed~G! is sufficiently large so thatd~G! $ n02 (Harary 1969:44).

FIGURE 6. The bow tie graph. The lowest order of graph~n 5 5) at which edge and
node connectivities~k 5 1, k ' 5 2) differ.
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C+ Egocentric~Degree!, Dyadic~Size!, and Density Criteria
as Partial but Insufficient Indicators of Cohesion, and

Their Relation to Node and Edge Connectivity

Thedegreeof a nodeu, denoted degu, is the number of nodes to whichu
is adjacent. Theminimum degreed~G! is the smallest degree of a node in
G. In an attempt to define cohesive subsets, Seidman (1983) defines a
k-coreof graphG as a maximal subgraph withd $ k. Doreian and Wood-
ward (1994) prove thatk-cores form hierarchical series—i.e., fork' . k,
ak'-core is a subgraph (possibly empty) of ak-core. Thek-core, however,
is no guarantee of cohesivity. The graphs in Figure 1 haved 5 3 and thus
are 3-cores, but are minimally cohesive because each has a cutnode (con-
nectivity k 5 1) and lack cohesivity (k $ 2), (connectivity 0). For larger
k, the same observation holds: There is no necessary concomitant increase
in cohesion. The bow tie graph in Figure 6 is a similar example, withd 5
2—hence a 2-core, lacking cohesivity.

The densityr~G! is the ratio ofm edges of a graphG of ordern
and the numberm1 of edges of the complete graphKn. As m1 5 m~Kn! 5
n~n 2 1)02 we have

r~G! 5 m0m1 5 2m0n(n2 1). (1)

Increases in size (number of edges, implying increased density) for a fixed
n do not necessarily increase connectivity, and connectivity can vary inde-
pendently of them. For example, the graph in Figure 3 hasn 5 7, m5 8,
and connectivity 0. Other graphs with the same order and size have con-
nectivity 1 or 2. There are, however, some dependencies between connec-
tivity, degree, size, and density. We will make use of these dependencies
later, in defining conditional density.

Whitney’s Theorem (1932; cf. Harary 1969:43) states the inclu-
sion relations between connectivityk~G! at the stronger end of a scale

FIGURE 7. Two graphs with the same cohesion but different levels of adhesion.
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of cohesiveness, edge connectivityk '~G! at the middle, and minimum
degreed~G! at the weaker end (more inclusive, but less or at best equally
cohesive):

Whitney’s Theorem: For any graphG, k~G! # k '~G! # d~G!+ (2)

From Whitney’s Theorem it follows that everyk-component is nested in a
k-edge-component that is contained in ak-core, but not conversely. It fol-
lows thatd0~n 2 1!, k '0~n 2 1), andk0~n 2 1) are the minimum densities,
respectively, givend and the connectivitiesk ' andk of a graphG.21

Seidman and Foster (1978) attempted another measure of cohesion
that is inadequate for similar reasons as thek-core. Ak-plexis a maximal
subgraph of ordern where every node has degreen 2 k or greater. Not
everyk-plex is an~n2 k!-component. Figure 4 contains a 3-plex of order
5 (hencen 2 k 5 2) that lacks cohesivity (k $ 2) because it contains a
cutnode. For increases ink $ 2, ak-plex may still have a cutnode or even
be disconnected and thus there is no necessary concomitant increase in
cohesion. In general,k-plexes andk-cores do not entail either respective
n 2 k or k node or edge connectivity. Figure 8 shows a graph of order 8
with a bridge between nodes 1 and 2. This graph is a 3-core and 5-plex
that lacks both connectivity 3 and edge connectivity 3. Because of the
bridge, the graph has edge (and node) connectivity 1. A connected graph

21In 1736, Euler proved the first theorem in graph theory, that the sum of the
degrees of the nodes of any graphG is 2m, twice the size of the graph (see Harary
1969:14). Letting td denote the average degree, this shows thattd 5 2m0n. Since the
smallest degree cannot be bigger than the average degree—i.e.,d # td, we haved #
2m0n so 2m$ nd. Given the ordering of valuesd $ k ' $ k of G, Whitney’s Theorem
implies that 2m $ nd $ nk ' $ nk. Recall that the density of a graphG is r~G! 5
2m0n~n 2 1). It follows that the minimum densityr~G! of a graph with minimum
degreed, substituting the inequalitym$ nd02, and canceling, isd0~n 2 1). Similarly,
it follows thatk '0~n21) andk0~n21) are the minimum densities, respectively, given
connectivitiesk ' andk of a graphG.

FIGURE 8. Graph withd~G! 5 3 (a 3-core and 5-plex) that lacks both 3-connectivity
and 3-edge connectivity. It is not even 2-connected, and thus lacks cohe-
sivity (k $ 2), nor is it 2-edge-connected~k 5 k ' 5 1).
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with no bridges (e.g., graphs 9–11 in Figure 5) hask ' at least 2. We shall
not refer to ak-core or ak-plex further, as neither lend themselves to use-
ful theorems or measures relating to cohesion in groups.22

D+ Connectivity and Multiple Independent Paths as Cohesion,
Menger’s First Equality

Some of the deepest theorems in graph theory concern the equivalence
between structural properties of graphs, such as connectivity (based on
cutnodes), and how graphs are traversed. A graphG is k-connectedif
its connectivity is at leastk. It is k-edge-connectedwhen its edge con-
nectivity is at leastk. Karl Menger (1927) proved the equality of
k-connectedness and the minimum number of node-independent paths
between every pair of nodes,23 which is a property of how a graph can
be traversed. Consider graphG1 in Figure 7: There is no pair of nodes
with fewer than two node-independent paths, such as join nodes 1 and
2. The graph also cannot be disconnected by removal of fewer than 2
nodes. The proof of Menger’s Theorem is found in Harary (1969:47),
but its relevance to connectivity as a measure of cohesion (Wasserman
and Faust 1994:115–17; Scott 2000:100–20) does not seem to be recog-
nized in current sociological literature.24 Menger’s formulation and char-
acterization ofk-connected graphs, given below, is one of the most useful
results in all of graph theory in that it establishes an equivalence between
a structural and a traversal property of graphs, properties that happen to
be the two most salient attributes of cohesion. Hence the structural cohe-
sion in a group (definition 1.2.1) is equivalent to the path cohesion of
the group (1.2.2).25

22The unions of intersecting cliques are another attempt to define cohesive
sets (Freeman 1996), but the unions of cliques that have only one node in common
also lack cohesivity.

23He accomplished this as an abstract result in the study of point-set topology.
Note that by definition a graph of connectivityk is k-connected, but ak-connected
graph may have connectivityk or greater. Likewise for edge connectivityk andk-edge-
connected.

24Scott (2000:13) notes that “Harary developed powerful models of group
cohesion” but does not develop what these ideas were in his chapter on cohesion.

25Alba and Kadushin (1976) define the cohesion of two nodes as the number
of cycles in which they are contained. Since two cycles may differ but have edges in
common,k cycles containing two nodes do not implyk 2 1 (node-) disjoint paths
between them, so this measure of cohesion does not identify clear boundaries of cohe-
sive subsets. As noted, Harary, Norman, and Cartwright (1965) were the first to pro-
pose the connectivity of a graph (for the digraph case) as the primary measure of
cohesiveness.
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The local connectivityof two nonadjacent nodesu, v of a graphG
is writtenk~u, v! and is defined as the minimum number of nodes needed
to disconnectu andv. Whenu andv are adjacent they cannot be separated
by removal of any number of nodes. Therefore local connectivityk~u, v!
is not defined whenu and v are adjacent. A complete graph, in which
every pair of nodes is adjacent, does not have any local connectivities,
and its (global) connectivity is defined asn21, which corresponds to the
number of node-independent paths that join each pair of nodes. But when
G is not complete, the connectivityk~G! is the minimum value of the
local connectivity taken over all nonadjacent pairs of nodes. Local and
global edge connectivities are similarly defined, but with no exception for
adjacent nodes.

Local Menger’s Theorem A: The minimum node cut setk~u, v! separat-
ing a nonadjacentu, v pair of nodes equals the maximum number of node-
independentu-v paths.26

Global Menger’s Theorem A: A graph isk-connected if and only if any
pair of nodesu, v is joined by at leastk node-independentu-v paths.

Hence, for sociology, Menger’s Theorem states the equivalence of our
two parallel series of definitions of cohesion: connectivity (structural cohe-
sion) and number of independent paths (path cohesion), which can be com-
bined into a single concept of cohesion. Algorithms for computing numbers
of node-independent paths between all pairs of nodes are given in White
and Newman (2001). We now begin to expand on these two aspects of
cohesion and reach a fuller appreciation of their sociological interpreta-
tion and implications.

E+ ~Edge-! Flow Connectivity and Node-Flow Connectivity

A multigraph M is obtained from a graphG when some of the edges are
converted to two or more edges. An (integer valued)networkis obtained
from a graphG by assigning natural numbers, calledweights, values, or
capacities, to the edges ofG. Therefore, when each edge with valuet in a
network is replaced byt edges joiningu and v, we have a multigraph.
Multigraphs are especially useful when the number of edges between two
nodes (or corresponding values of the weighted graph or network) repre-

26The local and global theorems of Menger are examples of minimax theo-
rems in mathematics.
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sent flow capacities such as an ordinal limit on how much of some item
can be transmitted from one node to another. The flow along au-v path in
which there are multiple edges in a multigraph is the minimum number of
multiple edges joining adjacent pairs of nodes in the path. More generally,
in a multigraph M, the flow fromu to v is the number of edge-independent
single-edgeu-v paths. In the first graph of Figure 9, for example, there are
two edge-independent single-edgeu-v paths.

Extrapolating from Menger’s Theorem, the local (edge-) flow from
u to v in a multigraphM equalsk '~u, v!, the minimum number of edges in
a cutset that separatesu andv. This result illustrates how the concept of
adhesion can be extended to graphs with weighted edges to capture the
idea of differential strengths or capacities of edges. The (edge-) flow mea-
sure is widely used in the study of capacitated networks and flows (Ford
and Fulkerson 1956), and will be discussed shortly.

We now consider only node-independentu-v paths: The localu-v
node-flow(i.e., node-independent flow) is the maximum sum for a set of
u-v flows for node-independentu-v paths. For graphs, this is simply the
number of node-independent paths and by Local Theorem A is equal to
k~u, v!, the minimum number of nodes that must be deleted to disconnect
u andv. To capture the idea of node-flow for a multigraph (equivalently,
for a network), we expand the concept of connectivity to consider node-
independent flow through multiple edges. The localnode-flow connectiv-
ity, k ''~u, v!, in a multigraphM is the smallest number of edges in a set of
node-independentu-v paths whose removal disconnectsu and v.27 The
(global)node-flow connectivity,k ''~M !, is the smallest number of edges
in a set of node-independent paths connecting any pair of nodes, whose
removal disconnectsM. This is not edge connectivity, because we con-
sider only at the edges on node-independent paths. Figure 9 shows a mul-

27Two or more edges areparallel in a multigraphM if they join the same two
nodesu, v. To disconnect a connected multigraph, one or more sets of parallel edges
must be removed.

FIGURE 9. MultigraphM illustrating node-flow connectivityk ''~u, v! 5 k ''~M ! 5 2,
where the connectivity isk~u, v! 5 k~M ! 51, and a networkN (weighted
graph) where node-flow connectivityk ''~u, v! 5 4 butk '~u, v! 5 6.
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tigraph M wherek~u, v! 5 k~M ! 5 1 but k ''~u, v! 5 k ''~M ! 5 2. The
networksM andN (with weighted edges) in Figure 9 showk ''~u, v! 5 2
andk ''~u, v! 5 4, respectively.

By restatement of Menger’s Local and Global Theorems,28 we
derive new corollaries of the celebrated Ford-Fulkerson Theorem (1956):

Local Ford-Fulkerson (Node-Flow Edge-Cut) Corollary.Theu-v node-
flow in a multigraphM equals the minimum number of edges in a cutset
k ''~u, v!, within a set of node-independent paths, that separatesu andv.
Global Ford-Fulkerson (Node-Flow Edge-Cut) Corollary. The mini-
mum of the (maximum)u-v node-flows for allu, v pairs in a multigraphM
equalsk ''~M !, the minimum number of edges in a cutset, within a set of
node-independent paths, whose removal disconnectsM.

Because removing a nodev of a connectedG removes degv edges and deg
v is 1 or more, we also obtain the equivalent of Whitney’s Theorem:

k ''~u, v! # k '~u, v! # min (deg~u!, deg~v!!+ (3)

NetworkN of Figure 9 (a graph with weighted edges), for example, shows
flow or edge connectivityk '~u, v! 5 6, compared with node-flow connec-
tivity k ''~u, v! 5 4.

The concept of node-flow, as defined for the first time here, is
not a single minimum value over a graph or multigraph but defines
instead a matrix of values between each pair of nodes. Hence it pro-
vides a more detailed account of how cohesion is distributed in a group
or network.29 Flows through multiple node-independent paths are espe-
cially important in considering influences or effects as they spread
through a network, and in compensating for distance decay. Higher
redundancy—i.e., node independence—in flow may compensate for
transmission decay at larger distances, and blocks of actors connected
by node-independent flows may act as amplification systems for boost-
ing the coherent signals transmitted in social interactions.

28Insofar as we know, the definition of node-flow is a new concept, and the
restatements are new, but its proof is obvious from Menger’s Theorem and the defini-
tion of node-flow.

29Scaling techniques applied to node-flow matrices should give a more detailed
analysis of differential cohesion in a group, but node-flow has been more difficult to
compute for large networks than connectivity, hence White and Newman’s (2001)
results will provide a fruitful avenue of research.
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F+ Edge Connectivity and Edge-Independent Paths
as Adhesion, Menger’s Second Equality

Like cohesion, we defined social adhesion both in terms of resistance to
disconnection through edge removal (2.1.2—structural adhesion) and of
multiple paths (2.2.2—path adhesion). These two definitions are also uni-
fied as equivalents by the edge version of Menger’s Global and Local
Theorems:

Local Menger’s Theorem B:The minimum number of edges in a cutset
separatingu andv equals the maximum number of edge-independent paths
that joinu andv.
Global Menger’s Theorem B:A graphG is k-edge-connected if and only
if every pair of nodesu, v in G are joined by at leastk edge-independent
u-v paths.

When the edges of graphs are weighted, or we convert a weighted graph
to an equivalent multigraph, we can make use of Ford and Fulkerson’s
(1956) maximum flow–minimum cut theorem, one of the most widely
used results in all of operations research:30

Local Ford-Fulkerson (Edge-Cut) Theorem.The maximum flowu-v in
a multigraphM equals the minimum edge-cutk '~u, v! that separatesu and
v.
Global Ford and Fulkerson (Edge-Cut) Theorem.The minimum flow
between any pair of nodes in a multigraphM (equivalently, a network or
integer-weighted graph) equals the minimum number of edgesk '~M !
whose removal disconnectsM.

It is this theorem that Zachary (1975, 1977) uses to partition his karate club
network, whose leaders are in conflict, into two halves: those who are most
adhesively connected (by the greatest number of edge-independent paths5
the least-edge cutset) with the club’s administrator and those most adhe-
sively connected to the club’s karate instructor. We discussed this case in
Section I.C, in which our critique of Zachary’s adhesion-based minimum

30Dirac (1960) showed that this result, in which each edgee has a numerical
weight w~e!, is a straightforward corollary of Menger’s Theorem B. Several varia-
tions on Theorems A and B are presented in Harary (1969, ch. 5).
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edge-cut method began with its weakness as a sociological basis for iden-
tifying the relational component of solidarity as compared with a cohesion-
based minimum removal of nodes. Our critique noted that it is easier to
assert mechanisms whereby social pressures operate on individuals—due
to their agency—to take sides in disputes, than to understand why group
segmentation should occur along a minimum edge-cut.31 In Section IV, fol-
lowing Section III where we develop the measure of conditional density, we
exemplify and compare the two methods (adhesive edge connectivity and
cohesive node connectivity) for the Zachary karate club study.

G+ The Hierarchical Properties of Cohesive and Adhesive Blocks

At the first level of analysis of structural and path cohesion and adhesion,
which reduce to the concepts of node and edge connectivities in graphs,
we can complete the series of intuitive assertions of Section I as follows:

1.3. Relationally cohesive groups can be regarded as multiply nested in
terms of connectivity values in the following sense: a connected graph can
contain several 2-components, each of which can contain 3-components,
and so forth. Likewise for a multigraph or graph in which edges are
weighted: cohesive groups are multiply nested in terms of their node-flow-
connectivity values.
2.3. Relationally adhesive groups are multiply nested in terms of edge
connectivity values in the sense that a connected graph can contain sev-
eral 2-edge-components, each of which contain 3-edge-components, etc.
Likewise for a multigraph or weighted graph: adhesive groups are multi-
ply nested in terms of their flow-connectivity values.

Graphs and social groups at the same levels of connectivity can be further
ordered at a second level, according to conditional density, taken up in the
next section.

31Ties have no autonomous agency, so that if a social network has a certain
edge-flow between two conflicting individuals (and there may be many edge-flow
equivalent edge-cuts that will partition the group into disconnected factions), how
would the “network” know to partition along an edge-cut? Alternatively, where a cut-
node or cutset of individuals exists whose removal would disconnect the graph, social
pressure to choose sides is likely to fall on this individual or set of individuals, who
have the agency to alter their ties according to principles of cohesion, density, and
closeness of ties to the leaders and their cohesively closer faction members, agency
which is lacking to the network as a whole.
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III. CONDITIONAL DENSITY

The idea of conditional density is that if some property of a graph is held
constant—such as connectivity—then density may vary only within a lim-
ited range and can be rescaled from zero to some maximum within that
range. Since connectivity is an integer number, a minimum value for a
group, and density above the minimum required for connectivity at that
level makes an additional contribution to cohesion, a rescaling of density
as a fractional number allows us to add the two together to get an aggre-
gate measure of cohesion. By adding conditional density in such a mea-
sure, we can account for additional cohesion that connectivity cannot
capture alone.

To define precisely the conditional density of a graphG with respect
to some structural property, we need some preliminary definitions. LetP
be a generic property of graphs, such as connected, or bipartite, etc. We
always denote the order ofG by n (nodes) and its size bym (edges). Let
m0~G:P! be the minimum size of a graphG of ordern that has propertyP,
and letm1~G:P! be the maximum size. Then theconditional P-density,
r~G:P!, is defined by

r~G:P! 5 ~m2 m0!0~m1 2 m0!+

If m1 is the maximumm in a graph of ordern with a givenk, andm2 is the
smallestm that forces that graph to surpass propertyP of connectivityk,
thenm2 5 m1 1 1 is theupper size limiton the number of edges at which
a less than complete graphG of order n cannot retain propertyP, but
below whichG has propertyP. Theconditional P-density, r2~G:P!, of an
~n,m! graph, which is always less than one, is defined within the lower
and upper size limitsm0 andm2:32

r2 ~G:P! 5 ~m2 m0!0~m2 2 m0! , 1+ (4)

If P is omitted from either of these formulas, so thatm0 5 0 and we let
m1 5 m2 5 m~Kn! 5 n~n21)02, the size of a complete graphKn, thenr2

andr reduce to the usual graph density formula:

r~G! 5 r2~G! 5 m0m1 5 m0~n~n 2 1!02! 5 2m0n~n 2 1).

32The notation form0 andm1 designates that density normally varies between
0 and 1; conditionalP-densityr2 approaches but never reaches 1 unlessm1 5 m~Kn! .
This latter characteristic will be useful when we define cohesion as an aggregate mea-
sure consisting of the sum of connectivityk plus conditionalk-densityr2~G:k!.
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For graph 8 in Figure 5, for example, the ordinary densityr~G! 5 .67,
and where the propertyP is that of connectivity (k 5 1), graph 8 has a
surplus of one edge beyond those needed fork 5 1, while the maximum
such surplus is two edges for a connected graph with 4 nodes, hence the
conditionalP-density of this graph isr2 ~G:k 5 1) 5 0.5. Three surplus
edges beyond those required fork 5 1 are needed to force a graph with 4
nodes to havek 5 2, as in graph 10. In general, conditionalP-densityr2 is
the ratio of surplus edges, beyond those minimally needed for a graph of
ordern to have propertyP, to the upper size limitm2 at which a graph
with ordern cannotstill retain propertyP.33

A+ Connectivity and Conditional Density: A Unified
Approach to Measuring Cohesion

Graph connectivity and density are two aspects of cohesion that are tightly
bound together. We take advantage of their interdependence to combine
and unify them into a single measure of cohesion.

To apply conditional density to the property of connectivity requires
the values ofm0~G:k! andm1~G:k! or m2~G:k! for a graphG of sizem
and ordern with connectivityk.34 These are known from extremal graph
theory.35 Let [x] be the fractionx rounded up to the nearest integer, and
for conciseness, letm*5 m~Kn21!, the size of the complete graph of order
n 2 1. The limiting sizem2~G:k! of a graph of ordern with connectivity
k, where 0# k , n21, is 11 k 1 m*+ Fork 5 n21 we definem2~G:k! 5
n~n 2 1!02, the maximum size of a graph, giving maximum conditional
density of 1 only forKn. The minimum numbers of edgesm0 of G with
connectivityk 5 0, 1, and.1 are 0,n 2 1, and[nk02] , respectively. In
general,m0 5 [nk02] rises linearly withn, while m1 andm2 rise quadrat-

33ConditionalP-densitiesr andr2 differ in that the denominator of the for-
mer limits density to an interval [0,1] relative to the number of edges at which prop-
erty P cannot be retained. ConditionalP-density,r~G:P!, is the number of surplus
edges divided by the maximum number of surplus edges at which a graph with ordern
can still retain propertyP.

34See also Harary (1983) on conditional connectivity, and Harary and Cart-
wright (1961) on the number of arcs in each connectedness category of a digraph.

35See Harary (1969:17–19) for an introduction to extremal graphs. The result
(m:n, k . 1! 5 [nk02] agrees with a minimum density ofk0~n 2 1) for a graph of
connectivityk . 1. A problem opposite to that of conditional density, covered in extre-
mal graph theory, isconditional connectivity: What are the minimum and maximum
connectivities for a graph of ordern and sizem? A 4-node graph with 5 edges, for
example, must be 2-connected.
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ically, so that conditional densities are more tightly limited when there are
fewer nodes and higher values ofk.

Whenr2~G:k! is close to zero, the connectivity structure is fragile,
in that the removal of a randomly chosen edge is likely to reduce the con-
nectivity of G. The minimum size of a graphG of ordern for k 5 2, for
example, isn, realized only by the cycleCn. The removal of any one of these
n edges reduces the connectivity tok 51. If G contains one surplus edge,
the chance that random removal of an edge will reduce the connectivity of
G to 1 isn0~n11).As the surplus densityr2~G:P5k! increases, more nodes
will have extra edges, and the graph becomes less vulnerable to a lowered
connectivity with the removal of a random edge. As conditional density
approaches 1, the connectivity structure is more robust: Many randomly
chosen edges can be removed with less chance of reducing connectivity.

B+ Cohesion: A Scalable Aggregate Measure
~Connectivity k Plusr2 Density)

The sum of the connectivityk and the conditional densityr2~G:k! of a
graphG is not the only possible measure of its cohesion but is a better
measure than any of the other cohesive subset algorithms discussed in
Sections II.C and I.D~k-plex, k-core, and intersecting cliques) because
none of the higher values on these measures is a guarantee of our mini-
mum criterion of cohesivity (k $ 2; for any value ofk, ak-core ork-plex
may even havek 5 0). Connectivity and conditional density each contrib-
ute independently to cohesion, according to the two criteria reviewed ear-
lier: the structural cohesion integer and the conditional density fraction.
We now consider how density plays into the criteria for cohesion.

For the first criterion of cohesion—namely, that a cohesive block
stays together—the valuek of k~G! is the guarantee that a graphG cannot
be disconnected without removal of at leastk nodes. In addition, higher
values of conditional density reduce the likelihood that removal of a ran-
dom edge will diminish the value ofk.

For the second criterion of cohesion, that the nodes of a cohesive
block should be strongly tied, the valuek of k is also the guarantee, by
Menger’s Theorem A, that every pair of nodes in a graph withk~G! 5 k
hask or more independent paths connecting them. In addition, the higher
the value of conditional density,r2~G:k!, the less the likelihood that the
removal of a random edge will diminish the minimum numberk of inde-
pendent paths that join every pair of nodes.
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The probabilistic framework for considering the contributions of
conditional density to cohesion—invoking theexpectedimpact of edge
removal as a supplement to thegreatestimpact as measured by connectiv-
ity (structural cohesion)—provides one of the major advantages of this
approach over alternatives such as conditional distance or conditional
adhesion.36

C+ A Well-Constructed Measure of Cohesion

A well-constructed measure requires a demonstration of theunit of mea-
surement that gives a monotone increase in magnitude of the quantity mea-
sured. The unit for which the aggregate measure of cohesion is monotone
increasing is the addition of an edge within a connected graph of ordern.
Hence an essential criterion for measurement is satisfied. The aggregate
cohesion measure is monotonically increasing in any sequence of graphs
of a given order~n! in which edges are successively added. The sequences
of graphs of order 4 shown in Figure 10, for example, satisfy this crite-
rion. These are the same 11 graphs as in Figure 5, along with directed
arrows showing which graphs are transformed to another by addition of

36Future developments in the theory of random graphs (Palmer 1985; Kolchin
1999) might also help to establish whether the distribution of distances between nodes
in a graph with connectivityk and conditional densityr2~G:k! is less than, equal to,
or greater than expected in a “random” distribution. Approximation methods have not
yet been developed to answer these questions within random graph theory, although a
simulation approach might be useful to bring the emergence of small world cohesivity
into the kind of simulation framework developed by Watts (1999a).

FIGURE 10. The 11 graphs of order 4 showing transitions by graph evolution (addi-
tion of edges).
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an edge; their aggregate cohesion measures are given in the fourth row of
Table 1: For each successive graph under edge addition, there is an increase
in aggregate cohesion.

Only certain sequences of adding edges will give maximum
increases in aggregate cohesion. Cohesion is increased maximally in the
sequences in Figure 10, for example, that lead from the totally discon-
nected graph (1) to the graph with all nodes connected by a single path
(6), to one with all nodes connected by a single cycle (9), to the graph
consisting of a single clique (11). The principle of attaining successive
maximum cohesion by adding edges in a graph of any ordern is always to
build first a single connecting path, then a cycle~Cn of connectivity 2),
then to place in a distributed way the minimum edges needed to build
connectivity 3, similarly for connectivity 4, and so forth.

Adding edges so as to build cliques of maximum order as a sub-
graph, in contrast, does not maximize increase in overall connectivity or
aggregate cohesion, although it does increase subgroup density and het-
erogeneity. Nor does adding an edge to a graph increase cohesion if one
or two new nodes are also added incident to the edge. Unless cohesion
was initially zero, this will decrease the cohesion of the graph.

Table 2 shows in columns 2 and 3, for the various values ofn andk
given in column 1, the valuesm0 andm2 for graphs of ordern . 1 with

TABLE 1
Connectivityk, Conditional Densityr2~G:k!, and Aggregate Cohesionk 1 r2~G:k!,

for the 11 Graphs in Figure 5

GraphG 1 2 3 4 5 6 7 8 9 10 11

Size (edges) 0 1 2 2 3 3 3 4 4 5 6
k 0 0 0 0 0 1 1 1 2 2 3
r2~G:k! 0.0 .25 0.5 0.5 .75 0.0 0.0 .5 0.0 0.5 0.0
k 1 r2~G:k! 0.0 .25 0.5 0.5 .75 1.0 1.0 1.5 2.0 2.5 3.0
ComponentS a,c a,c a,c,d G G G G G G
k 1 1 1 1 1 1
r2~S:k! 0.0 0.0 0.0 0.0 0.0 0.5
k 1 r2~S:k! 1.00 1.00 1.00 1.0 1.0 1.5
BicomponentS a,c,d a,c,d G G G
k 2 2 2 2
r2~S:k! 0.0 0.0 0.0 0.5
k 1 r2~S:k! 2.0 2.0 2.0 2.5
Tricomponent S G
k 3
r2~S:k! 0.0
k 1 r2~S:k! 3.0
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k 5 0 or 1, and for graphs with 4# n # 7 andn 5 40 nodes for various
values ofk . 1. Illustrative graphs from Figures 1–8 are referenced in the
table. The bow tie graph~n 5 5, k 5 1) in Figure 6, for example, has a
conditional density of (6-4)0(8-4)5 0.5 and an ordinary density of 0.6.

As noted above, the denominator of conditional densityr2~G:k!
ensures that it cannot reach 1.0 for a givenk. This allows the aggregate mea-
sure of cohesion—as a connectivity integer plus a conditional density dec-
imal (,1)—to correctly distinguish between the case of maximum density
at connectivityk and minimum density at connectivityk 1 1, where the
aggregate cohesiveness of the former is always less than that of the latter.37

37This is not the case for the sum of connectivity andr~G,k! conditional
density, which does not give a measure of cohesion because the sumk 1 r~G,k! for a
graph with connectivityk and sizem1~G,k! is the same as the sum for a graph with
connectivityk 1 1 and sizem0~G,k! 5 0.

TABLE 2
Ranges ofm0 andm2 for Computing Conditional Densityr2~G:k! at Connectivityk

Graph Sizes Atk Forcingk 1 1
Given: Ordern, Connectivityk min m0 5 @nk02]1 m2 5 1 1 k 1 m* for k , n 2 1

n . 1, k 5 0 Fig. 3 0 11 k 1 m*

n . 1, k 5 1 Figs.1,2,4,6,8 and 5.8 n 2 1 11 k 1 m*

n 5 4, k 5 2 Fig. 5.9 4 6
k 5 3 Fig. 5.11 6 6

n 5 5, k 5 2 5 9
k 5 3 8 10
k 5 4 10 10

n 5 6, k 5 2 6 13
k 5 3 9 14
k 5 4 12 15
k 5 5 15 15

n 5 7, k 5 2 Fig. 7 7 18
k 5 3 11 19
k 5 4 14 20
k 5 5 18 21
k 5 6 21 21

n 5 40, k 5 2 40 744
k 5 3 60 745
k 5 4 80 756
k 5 5 100 757
k 5 6 120 758
k 5 39 780 780

m*5 m~Kn21!, the size of the complete graph of ordern 2 1.
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D+ Subgroup Cohesion

The boundaries and measures of each of thek-components of a graph pro-
vide a convenient way to study the structure of social cohesion. One of
the problems in previous measures of social cohesion such as intersecting
cliques,k-cores, andk-plexes—apart from the fact that they are no guar-
antee of cohesivity (k $ 2; or even thatk . 0)—is that there is so much
overlap in the cohesive subsets they identify. The measure of cohesion
based on the sum of the connectivityk~S! of a subgraphSand its condi-
tional densityr2~S:k! typically yields more interpretable cohesive sub-
groups, with very little overlap, and a hierarchy of nestedk-components,
each with successively higher levels of cohesion.

To illustrate measurement of subgroup cohesion, relationships
among the cohesion measures are shown in Table 1 for eachk-component
of the eleven 4-node graphs in Figure 5. Rows two to four of the table
show the connectivityk, conditional densityr2~G:k!, and aggregate cohe-
sion k 1 r2~G:k! for each of the graphs in their entirety. The second,
third, and fourth sets of four rows each show these values for the larg-
est component, bicomponent, and tricomponent, if any, of each of the
11 graphs.

E+ Subgroup Inhomogeneities

Social groups with networks of high connectivity have high cohesion, but
they may be highly inhomogeneous if they have high conditional densi-
ties as well. Groups with low conditional densities have relatively fewer
surplus edges with which to create local subgroup inhomogeneities. Thus
some of the problems in the study of nested subgroups, their relative homo-
geneities and inhomogeneities, and the relation between cohesion and
social solidarity (Markovsky and Lawler 1994; Markovsky and Chaffee
1995; Markovsky 1998) can be studied by means of connectivity and con-
ditional density.

IV. AN EMPIRICAL EXAMPLE: ZACHARY’S
KARATE CLUB

Zachary’s (1975, 1977) two-year ethnographic network study of 34 mem-
bers of a karate club is a good proving ground to examine concepts, mea-
sures and hypotheses involving relational aspects of social solidarity. This
section provides an illustration of how measures of cohesion are used to
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predict the outcome variable of sides taken in a factional dispute from the
boundaries of nested cohesive sets. The disputants were the karate teacher
(T, #1, Mr. Hi) and the club administrator (A, #34, John) and the dispute
was about whether to improve the solvency of the club by raising fees
(teacher) or by holding costs down (as A insisted). This resulted in each
calling meetings at which they hoped to pass self-serving resolutions by
encouraging attendance of their own supporters. The formation of fac-
tions was visible to the ethnographer and evident in meeting attendance,
which varied in factional proportions according to the convener. Ulti-
mately Mr. Hi (T) was fired, set up a separate club, and the factional split
became the basis for each student’s choice of which of the new clubs they
would join. The prediction tested here is that when two “sociometric cen-
ters” of a group force a division into two, the cohesion measure will pre-
dict how members of the old group will distribute among the new ones.

A+ Global View of the Karate Network

Figure 11 shows the network of friendships among the 34 members.
Zachary weighted the strength of each friendship by the number of con-

FIGURE 11. Nested adhesive sets for edge connectivities of 1, 2, 3, and 4. This and
the following figures are drawn with Batagelj and Mrvar’s (1997, 1998)
Pajek software.
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texts (karate and other classes, hangouts, tournaments, and bars) in which
the pair met, but the weights are not shown in the figure. Instead, concen-
tric rings of adhesive subsets are circled in Figure 11 according to their
1-, 2-, 3-, and 4-edge connectivity. Table 3 lists the members and gives the
number~n! in each set, the concentric nesting of the sets, and the edge
connectivityk ' of each. The set with highest adhesion, which consists of
10 members and includes A and T, is separable by four edges~k ' 5 4) but
A and T are separated by a minimum of 10. There are, however, many
different edge-cuts of size 10 that separate A and T. Hence unweighted
edge-cuts, as well as adhesive sets, fail to predict faction membership.
Each of the nested 1-, 2-, 3-, and 4-edge-connected subsets contains a
cutnode (T) and lacks cohesivity sincek , 2.

Zachary used weighted minimum edge-cuts between A and T (the
Local Ford-Fulkerson max flow–min cut theorem) to predict the separa-
tion of the two factions. Except for three persons who did not take sides,
this gave a near-perfect prediction of the split. The particular distribution
of weights on the edges, however, contributed to a unique-cut solution,
pushed somewhat away from T since weights were highest for those close
to him. Zachary did not utilize criteria for subgroup cohesion, but the
dynamics of the dispute gives us the opportunity to examine cohesive
blocks before the split and the role they played in mobilizing the taking of
sides.

Looked at in terms of cohesion (Figure 12) the network has five
cohesive blocks of connectivity 2 or greater, each enclosed in Figure 12
by one of the concentric circles. Only node T is common to them all.
Two exclude node A (a 3-component within a 2-component) and three
(a 4-component within a 3- within a 2-component) include node A.
Table 4 shows the cohesive blocks 1–5 circled in Figure 12, their mem-
bers, number of nodes, the hierarchical nesting of each block, its con-
nectivity, conditional density, and aggregate cohesion. An additional

TABLE 3
Edge Connectivity Sets for the Karate Club

Sets Members [1,34 leaders] Nested in Set n k '

1 1–34 34 1
2 1–11,13–34 1 33 2
3 1–9,11,14,20,24–26,28–34 2 22 3
4 1–4,8–9,14,31,33–34 3 10 4
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subset with the highest aggregate cohesion of 4.75 is also shown—the
six people within the dotted circle in Figure 12—which is not a maxi-
mal cohesive block but part of block 5 (with cohesion 4.24). This sub-
set forms the core of support for Mr. Hi, while the remnants of block 5

FIGURE 12. Cohesive blocks hierarchically ordered by connectivity into two nests
(the outer dotted circle nests them all in a connected graph with connec-
tivity 1).

TABLE 4
Connectivity Block and Subset Characteristics for Karate Club

Blocks
and Sets Members [1,34 leaders]

Nested
in Set n k r2

Aggregate
Cohesion

1 1,5–7,11,17 6 2 .2 2.20
2 1,5–7,11 2 6 3 .54 3.54
3 1–4,8–10,13–16,18–34 28 2 .12 2.12
4 1–4,8–9,14,20,24–26,28–34 3 18 3 .12 3.12
5 1–4,8–9,14,31,33,34 4 10 4 .24 4.24
6* 1–4,8,14 5 6 4 .75 4.75
7* 9,31,33,34 5 4 3 .00 3.00

*Sets 1–5 are cohesive blocks; set 6 is the densest cohesive subblock within 5 and set 7
is the residual within 5 after taking out set 6.
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after removing this subset, shown as set 7 in Table 4, are supporters
of A.

A first and approximate prediction of factions uses the number of
node-independent paths (node-flow) joining pairs of nodes, and then takes
the maximum spanning tree of the edges in the original network selected
in order of largest number of node-independent paths (White and New-
man 2001: the spanning tree portion of the algorithm, in general, breaks
ties in favor of pairs of nodes separated by least distance). The result is
depicted in Figure 13, in which the vertical line is a good predictor of the
initial factional alignment, with followers of T to the left and those of A to
the right. Person 9, on A’s side of the prediction line, initially aligns with
A but later switches to T. After removal of the cutnode between T and A,
which is also person 9 (which also removes the two dotted lines in the
figure), two trees remain with T and A at their respective centers. Except
for those who do not take sides (three nodes labeled with a question mark),
and two others, 28 and 29, the trees predict the factional alignments. The
spanning tree algorithm, however, introduces some noise to Figure 13 as

FIGURE 13. Maximum spanning tree of the numbers of node-independent paths
between pairs of nodes, where solid lines predict faction members except
for 28 and 29 and those nodes labeled with a question mark.
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a predictor variable because choice is arbitrary among edges that are
equally well qualified for the spanning tree. Persons 28 and 29 are an
example, and could equally well be linked by the algorithm to A, thereby
improving the prediction.

B+ Closeup of Cohesion in the Karate Network

Because cohesive blocking is a deterministic procedure, it makes more
precise predictions than White and Newman’s approximation algorithm.
If we situate the problem of determining factional divisions in the con-
text of the opposition between leaders, as Zachary did, there are four
persons—9, 14, 20, and 32—who had friendships with both leaders and
thus had to make up their minds which leader to follow as the club split.
Their membership in cohesive blocks and subsets provides a determi-
nate prediction as to their decisions about which leader to follow. The
choices they made corresponded not to the number of contexts in which
they had friendships with T (Mr. Hi) or A (John), as Zachary would
suggest, but to the pull of cohesive ties with others in core group of T
(set 6 in Table 4) versus A (set 7). For each of these four people, who
must decide between T and A, Table 5 contains four labeled rows: In
the three columns under Mr. Hi’s faction are the subset size~n!, num-
ber of edges~e!, and aggregate cohesion~k 1 r2! within Mr. Hi’s fac-
tion (set 6); and similarly for A’s faction, set 7. In the center of the table
is a column that shows whether cohesion is greater with T (.) or A
(,). In the rightmost columns are each person’s predicted and actual
choice of faction, showing that each of these people chose to align with
the faction in which they have highest cohesion.

TABLE 5
Aggregate Cohesion (AC) with Leadership Factions for Persons Tied

to Both Leaders and Obliged to Choose Between Them

Member
Mr. Hi’s
Faction A’s Faction

n e
AC1

k 1 r2

AC1

AC2 n e
AC2

k 1 r2

Predicted
Choice

of Faction

Actual
Choice

of Faction

14 6 14 4.75 . 5 7 1.75 Mr. Hi Mr. Hi
20 4 5 2.5 . 5 7 1.75 Mr. Hi Mr. Hi
9 2 1 2.0 , 4 6 4.0 A A
32 2 1 2.0 , 5 8 2.83 A A
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Students 14 and 20, for example, had more cohesion with Mr. Hi’s
group than with A’s, and they aligned with Mr. Hi’s faction in attendance
at meetings. Students 9 and 32, on the other hand, had more cohesion with
A’s group and aligned with his faction. Each of these four people had to
make a choice to drop a tie with the leader whose faction they rejected. If
we remove the line connecting 14 to 34 (A) because 14 chose to join T’s
faction, for example, we observe in Figure 14 that even this one edge-
removal results in a smaller 4-connected cohesive block of six persons
{1, 2, 3, 4, 8, 14}, out of the original 10 in block 5, nested within a larger
3-cohesive block. All six persons in this 4-block align with T, as predicted
from cohesion. If we allocate the remaining nodes in the 3-block accord-
ing to their cohesion with T versus A, person 20 is predicted to go with T
and the remainder with A. Allocating those in the 2- and 1-components by
the same procedure, only person 10’s alignment is indeterminate, and 10
was one of the three not factionally aligned.

The results of this test of the global predictions of faction member-
ship from our connectivity measures are summarized in Table 6~r 5 +969,
p , .000001). The columns indicate whether cohesion is greater, equal, or
less with Mr. Hi (T) than with John (A). This correlation is nearly identi-
cal to Zachary’s prediction using the Ford-Fulkerson maximum flow–

FIGURE 14. Nested cohesive sets byk-connectivity after person 14 affiliates with T.
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minimum cut algorithm on weighted edges, as shown in Table 7~r 5 .955).
Zachary’s prediction, however, contains an unwarranted postulate of some
kind of network “agency” that “finds” an optimal edge-cut without any
explanation as to mechanism.

C+ Evaluation of Results

Alignment of factions in the karate club is predicted by structural and
path cohesion as well as by Zachary’s adhesive weighted edge-cuts. The
results shows the contribution of conditional density, in addition to cohe-
sion measured by connectivity, to identifying localized high-density sub-
groups within cohesive blocks. The high-density subgroup (set 6) that was
the core of T’s support group was a very compact group with minimum
distances among members, which may have contributed to leader T’s reten-
tion of so many followers in the breakup of the club. Zachary had the
right result as well, but possibly for the wrong reasons.38 Although both
models make near-perfect predictions, the cohesion argument has advan-
tages over the capacitated flow and possibly other arguments in the karate
study on the grounds of parsimony (use of unweighted over weighted
edges) and a process model of agency as the mechanism involved in
segmentation.39

38Another reason that Zachary’s capacitated flow argument does so well is
that flow, in the unweighted case, is highly correlated with number of independent
paths.

39The fact that Mr. Hi is the cutnode in a bifurcated network might help to
explain—in sociological terms—why he is the instigator of the dispute in the first
place: He has a set of at least five potential students who were never integrated into
the larger cohesive block containing the administrator (#34), and for Mr. Hi it was
clear from the beginning that they would follow his leadership. He was also a strong
figure for many of his other adherents.

TABLE 6
Predictions of Faction Membership from Structural Cohesion~r 5 .969)

Cohesion Faction
Mr. Hi

(T)
Equal for
T and A

John
(A) Members by ID number

Mr. Hi’s (T) 15 1–8,11–14,18,20,22
None 1 1 1 17, 10, 19
John’s (A) 16 9,15,16,21,23–34
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V. TESTING PREDICTIVENESS OF COHESION MEASURES
ON A LARGER SCALE

The evidence of the karate data is useful in evaluating connectivity as a
measure of ohesion. The aggregate cohesion measure makes correct pre-
dictions about the consequences of cohesion for individual behavior and
the emergence or division of social groups, but it does so on a relatively
small scale in which different measures and approaches to cohesion might
give similar results. Everett (1996) analyzed the overlap of cliques in
Zachary’s data, and got similar results concerning cohesive subsets that
predicted faction membership. Large high-connectivity groups will not in
general, however, be constructed out of intersecting cliques. We do not
presume that connectivity is the only measure of cohesion, only that it is a
fundamental component of interpersonal cohesion in social groups, large
or small.

In our computation of factional groups for the karate club, we used
the measure of node-flow (number of node-independent paths) to com-
pute pairwise cohesion (White and Newman 2001). Pairwise cohesion is
computed separately for each pair of nodes in a group, whereas connec-
tivity is the minimum of these values over all pairs. Pairwise flow, which
measures the number of edge-independent paths, is always the same or
greater than node-flow. Johansen and White (forthcoming) successfully
used the maximum flow measure, equivalent to an unweighted version of
Zachary’s method, in predicting large-scale political factions in a nomadic
society. The use of pairwise measures of cohesive strength (both flow and
node-flow) may be widely useful in studying patterns of social cohesion
and adhesion, but it is still an open research question as to which mea-
sures make better predictions, and why.

TABLE 7
Predictions of Faction Membership from Zachary’s Minimum

Weighted Edge-Cut~r 5 .955)

Edge-Cut Faction
Mr. Hi

(T)
John
(A) Members by ID number

Mr. Hi’s (T) 15 1–8,11–14,18,20,22
None 1 2 17, 10, 19
John’s (A) 16 9,15,16,21,23–34
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Moody and White (2000) characterize the respective graphs of
socially cohesive friendship groups in 12 American high schools, and again
of 57 financially cohesive business groups, by computingk-components.
They find that embeddedness ink-connected groups is a strong predictor
of school attachment and is the only predictor of attachment among diverse
network variables that replicates significantly across all schools. Using
data from a study of business unity by Mizruchi (1992), they also show
that cohesion or level of connectivity applied to the network of corporate
interlocks among 57 firms, controlling for other network measures, pre-
dicts similarity in business behaviors. They illustrate the fundamental
importance of connectivity and its hierarchical embedding,40 and argue
for a wide range of applications in sociology. Moody and White’s (2000)
algorithm successively removes sets of nodes with the lowest connectiv-
ity. By combining several algorithms of low complexity, the algorithm
makes connectivity computations feasible for relatively large graphs. Stud-
ies using connectivity to measure social cohesion, such as surmised but
not actually employed by Grannis (1998), however, are still quite rare.41

Brudner and White (1997) and White et al. (2001), for example,
identified sociologically important cohesive blocks in two large~n 5
2332 and 1458 respectively), sparse networks using the concept of cohe-
sion measured by connectivity. The first of these studies showed that
membership in a cohesive block, defined by marital ties among house-
holds in an Austrian farming village, was correlated with stratified class
membership, defined by single-heir succession to ownership of the pro-
ductive resources of farmsteads and farmlands. In the second study, they
found that the cohesive block defined by marital ties of Mexican villag-
ers was restricted to a bicomponent that included families with several
generations of residence and excluded spatial outliers and recent immi-
grants and families in adjacent villages. The cohesive block defined by
compadrazgo,42 on the other hand, crosscut this village nucleus and inte-
grated spatial outliers and recent immigrants. In contrast to the first study,
the Mexican case established a network basis for the observed cross-
village egalitarian class structure.

40In both their analyses, they define two measures, one the highestk-connected
subgraph to which each node belongs, and the other a measure of cohesive embedded-
ness, discussed above. The two measures will typically be highly correlated.

41NSF grant #BCS-9978282, “Longitudinal Network Studies and Predictive
Cohesion Theory,” Principal Investigator Douglas R. White and consultant Frank
Harary, is focused on comparative studies of this type.

42Ritual kinship established between parents and godparents.
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To illustrate how structural and path cohesion might be combined
with a conditional distance approach, our example of cohesiveness struc-
tures in the Internet might be extended to study whether cohesive blocks
of Web sites that exceed a certain conditional density (or effective diam-
eter) may define the user communities and content or functional clusters
on the Web. Like density and distance, diameter within cohesive sets—
what we would call “conditional diameter”—is one of the other predic-
tive measures that could be developed within a methodology for analysis
of cohesive blocks, although we will not do so here. As a further example,
“invisible colleges” in intellectual and citation networks are likely to be
predicted both from cohesive blocks and conditional densities or diameters.

VI. SUMMARY AND CONCLUSION

In arguing for a distributed and scalable conception and measurement of
cohesion, our purpose is to provide a theoretical foundation for asking
some empirical questions about social cohesion that logically lie at the
heart of sociology and social anthropology. It is clear that cohesion is an
important concept fundamental to defining social groups and their bound-
aries as emergent phenomena. Work carried out by Watts (1999a,1999b)
on the small world problem tied network structure to an important global
characteristic of networks, their “connectedness,” but like Wasserman and
Faust (1994:115–17) he did not utilize the graph theoretic measurement
of connectivity.43 Small-scale “social psychological” cohesion based on
the model of cliques and attachment-to-group makes a difference because
social psychological cohesion affects the strength of group norms, how
much individuals are willing to sacrifice for the groups, and so forth. But
in a large network what difference does subgroup cohesion at a macro-
level make when defined byk-component connectivity?44 This is an empir-
ical problem of considerable significance. Suppose we have two large
groups both equal in the density of choices, both connected and similar in
other specific structural features as well, but one being more cohesive

43Graph theoretic terminology has the advantage of distinguishing simple con-
nectedness from connectivity, with its higher-order properties of structural and path
cohesion. Watts uses the two terms interchangeably, thereby ignoring one of the major
contributions of graph theory to the study of group cohesion. Wasserman and Faust
are aware of the graph theoretic concept of connectivity as an indicator of cohesion
but do not discuss methods or algorithms to apply to social networks to compute lev-
els of connectivity.

44Another common use of the term connectivity is for the distribution of num-
ber of ties for each node, synonymous with the graph theoretical concept of degree.
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than the other in the sense defined here. What would be the concomitant
differences in the behavior of the groups and their members?

This paper goes back to a fundamental problem for network theory
to establish a solid theoretic and measurement basis by which macrolevel
questions of this sort can be examined in large-scale social networks. It is
the foundational paper for a series of empirical studies addressing such
issues. A subsequent paper in this series (Moody and White 2000) con-
tains literature reviews and empirical analyses of case studies that exam-
ine the consequences of cohesion defined ask-component connectivities
in large-scale social groups.

Within a social group, high connectivity plus a modest additional
density of randomly distributed ties that reduce average path length within
the group (Watts 1999b) is capable of generating large-scale group cohe-
sion, as we showed in Section I.D. Our hypotheses (I.B) suggested how
such cohesion might affect coordinated social action, social homogeneity,
the emergence of group norms at the macro level and, in sufficiently com-
pact groups (I.C), the emergence of interpersonal trust. Watts (1999a,
1999b) has alerted sociologists to reconsider the problem of “distributed
social phenomena” in terms of his models and parameters of “small
worlds”—large networks with local clustering of ties but relatively low
average distance between members. Connectivity plus conditional density
is another model of distributed social phenomena that defines a measure of
cohesion not in terms of local clustering but of node-independent paths and
invulnerability to disconnection by node removal.45 The identification of
bounded connectivity subgroups in a network is an ideal means of finding
the boundaries of cohesive worlds (“small” in the sense of low average path
lengths but not necessarily locally clustered) and measuring the degree of
cohesiveness in each of their embedded subgroups.46

45A typical critique of connectivity-based measures of cohesion might run
like this: “a cycle of 1000 people (connectivity 2) running from the United States to
China and back does not constitute a cohesive group.” Surely not, but a group of 1000
people with connectivity 5 (or higher, each a higher embedded level of cohesion),
conditional density of 10 percent, and first and second shortest average path lengths of
3.5 and 4.0 (a “small world” as defined by Watts 1999a, b) is a large-scale group with
considerable cohesiveness.

46Future research can combine the “small world” approach that takes as key
variables the average path length of the first and second shortest independent paths
between pairs of nodes (Watts 1999a, b) with our connectivity approach. When the
average path lengths of the first and second shortest independent paths in a network
are short, the logical implication is that the average cycle length between any two
pairs of nodes is also relatively short (approximated by the sum of the two shortest
independent path-length averages), and thus measuring the average cycle length of
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A potential bias in favor of defining social cohesion as existing
“only” in face-to-face groups may well have accumulated from the past
century of small-group research, reinforced by “common sense” about pri-
mary groups. We have shown step by step, within both an intuitive and a
graph theoretic framework, giving concrete hypotheses and sample results,
the limitations of such a bias. Using the data of social networks we exam-
ined cohesion as the network component of a more inclusive concept of
solidarity, which includes individual psychological attachments to a group,
but does not stop at the boundaries of primary groups. We offered an alter-
native methodological perspective and detailed hypotheses as to how net-
work cohesion may exist in large-scale groups as easily as in small.

Our precise and scalable method for measuring cohesion in net-
works and subgroups of any size has the advantage of detecting bound-
aries of subgroups, finding hierarchies of embedded subgroups, and
measuring cohesiveness at each level of embedding. No other method
of measuring cohesiveness has these advantages (most give an over-
whelming welter of overlapping subgroups that introduce a second inter-
vening level of analysis and interpretation), and our review of graph
theoretic concepts (see also White 1998) shows no other method to pos-
sess equal validity in terms of the construct criteria that cohesive groups
are “resistant to breaking apart” (see our definition 1.1.2) and are weaker
or stronger in proportion to the “multiplicity of bonds” that hold them
together (1.2.2). When combined with conditional density, the connectivity-
based measure of cohesion has measurement validity in that our measure
of cohesion increases with each additional edge added to a graph of fixed
size. In the karate club example we showed how cohesive blocks and their
conditional density contribute to a process of group division.

A fundamental intuition involved in the concept of social cohe-
sion, we argue, is consistent with the idea that the greater the minimum
number of actors whose removal disconnects a group, the greater the cohe-
sion. Equivalently, as demonstrated by Menger’s Theorem (1927), the
greater the number of multiple independent paths, the higher the cohe-
sion. The level of cohesion is higher when members of a group are con-
nected as opposed to disconnected, and further, when the group and its

biconnectivity in the network. Similarly, the sum of the averages for first, second, and
third shortest independent paths give an approximation of the average cycle length of
triconnectivity, and so forth. In the case of triconnectivity, there are two independent
“shortest cycles” between pairs of nodes. The relationship of average path length in
k-connected structures needs to be investigated both in simulations and large-scale
empirical network studies.
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actors are not only connected but also have redundancies in their intercon-
nections. Overlapping circles of friends increase social cohesion, for exam-
ple, although our operationalization of the cohesion is not the same as the
“intersecting social circles” concept of Simmel.47 The higher the redun-
dancies of independent connections between pairs of nodes, the higher
the cohesion, and the more social circles in which any pair of persons is
contained.48

To give a brief synopsis of the arguments behind the methodology
presented here, given that the cohesiveness of a group is greater when
there are higher redundancies of interconnections by multiple indepen-
dent paths, the cohesion of a graph or subgraph is measured by its connec-
tivity and, on a finer scale, by surplus density conditional on connectivity.
Measurements of social cohesion by connectivity and conditional density
are constructed by the following two sets of definitions derived from graph
theory:

1. Theconnectivityk~G! of a graphG is the smallest numberk of nodes
whose removal disconnects any component ofG or reduces the order
of any component to a single node. A graphG is k-connectedif k~G! $

k. A k-componentis a maximalk-connected subgraph ofG. A graph
G is k-cohesive, to coin a new sociological term, ifk~G! 5 k. Hence,
for each value ofk, thek-components of a social network represented
by a graphG define empirical social groups with a corresponding
level k of cohesion. Subgroups with higher levels of cohesion are
embedded in those with lower cohesion since thek-components of a
graph form hierarchies by inclusion. According to Menger’s Theo-
rem, a graph isk-connected if and only if every pair of nodes is con-
nected by at leastk independent paths. The redundancy of multiple
independent paths connecting actors is fundamental to measuring
group cohesion as distinct from the proximities of actors in a net-
work. Thestructural cohesionof a group is thus the minimum num-

47In Simmel’s (1908) conception, zones around each ego or ego-memberships
in groups simply overlap or intersect to form extensive connected networks (cf. Blau
1964; Kadushin 1966), but without necessarily forming higher-order cycles or connec-
tivity sets (see footnote 25 regarding Alba and Kadushin’s unsuccessful attempt to
operationalize the higher-order cycles concept of cohesion).

48The widely used “social circles” approach to large-scale cohesion as webs
of overlapping cliques (Alba 1972, 1973, 1982; Alba and Moore 1978) has the same
defect as Freeman’s (1996) intersecting cliques: pairs of nodes connected at some dis-
tance by multiple independent paths are not necessarily detected as part of the same
cohesive subset.
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berk of its actors whose removal would not allow the group to remain
connected or would reduce the group to but a single member. Hence
ak-cohesive block is not onlyk-connected but every pair of actors is
connected by at leastk node-independent paths.

2. Conditional densitymeasures cohesion on a finer scale, that of sur-
plus density beyond that implied by connectivity. For each of the
k-components of a graph, these two measures may be combined into
an aggregate measure of social cohesion, suitable for both small- and
large-scale network studies.

As a distributive phenomenon with emergent properties—such as might
define the boundaries of social groups—connectivity is of crucial impor-
tance to the study of social networks. Many types of large-scale cohesive
sets not detectable by other measures are identifiable fromk-component
connectivities. Correlations between hierarchical embeddedness in cohe-
sive blocks and potential effects of cohesion—such as school attachment,
or similarities in business behaviors, as in the studies of Moody and White
(2000)—underscore the conceptual and substantive importance of con-
nectivity as the primary measure of cohesiveness. In the study of social
networks, both large and small, node connectivities and conditional den-
sities are fundamental measurement concepts for social cohesion. Yet, one
of the preconceptions about cohesion that is most resistant to change is
the idea that in social networks, social interaction has only proximal effects,
and that indirect effects quickly decay as we move from direct effects to
effects along paths of distance 2 or 3, beyond which indirect effects are
regarded as minimal.

It is worth stressing once more that what this bias in preconcep-
tions of social cohesion omits are the two fundamental properties of the
redundancies created by multiple independent pathways and multiple-
node cut sets. First, independent pathways are convergent in their indirect
effects, even at a distance. Independent paths between every pair of nodes
in a cohesive block defined by connectivity at levelk (which necessarily
equals the minimum number of such paths) may more than compensate
for the decay of effects of cohesive interaction along long paths. Studies
of large-scale social diffusion, for example, typically rest upon and dem-
onstrate the fact that long paths matter. What connectivity provides in terms
of transmission effects within the internal networks of cohesive groups is
the possibility for repetition along multiple independent pathways of rumor,
information, material item, and influence transmission. Second, multiple
independent pathways (equinumerous to minimum cuts) necessarily imply
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stronger bonding between pairs of nodes, regardless of distance decay. It
is k times as hard to break apart a network tying nodes together byk node-
independent pathways than it is to break apart a single chain that connects
them.

The effects of multiple bonding and redundancy or repetition along
convergent independent pathways are crucial in the formation of social
coherence, social norms, sanctions and solidarities, and the emergence of
socially or culturally homogeneous groups, and thus should be of focal
interest to the study of social cohesion, including cohesion on a very large
scale.
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