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aDepartment of Bioengineering, University of California San Diego, La Jolla, CA, USA
bDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA

cDepartment of Bioengineering, University of Washington, Seattle, WA, USA

Abstract

We use Brownian-Langevin dynamics principles to derive a novel coarse-grained multiscale myofilament
model that can describe the thin filament activation process during contraction. The model links atomistic
molecular simulations of protein-protein interactions in the thin filament regulatory unit to sarcomere level
activation dynamics. We first calculate the molecular interaction energy between tropomyosin and actin
surface using Brownian dynamics simulations. This energy profile is then generalized to account for the
observed tropomyosin transitions between its regulatory stable states. The generalized energy landscape
then served as a basis for developing a filament-scale model using Langevin dynamics. This integrated
analysis spanning molecular to thin filament scales is capable of tracking the events of the tropomyosin
conformational changes as it moves over the actin surface. The tropomyosin-coil with flexible overlap regions
between adjacent tropomyosins is represented in the model as a system of coupled stochastic ordinary
differential equations. The proposed multiscale approach provides a more detailed molecular connection
between tropomyosin dynamics, the trompomyosin-actin interaction energy landscape, and the generated
force by the sarcomere.

Statement of Significance

Stochastic multiscale myofilament modeling can offer an enhanced mechanistic methodology to describe
cardiac muscle contraction in both healthy and diseased subjects. In this study, we propose a coarse-graining
multiscale (molecular-to-filament) model that can describe the activation process of the thin filament during
sarcomere contraction. The model is based on Brownian dynamics at the molecular scale and Langevin
dynamic stochastic processes at the filament scale. Our results provide for the first time a more detailed
molecular connection between tropomyosin motions on the surface of actin filament and sarcomere force
production.

1. Introduction

Sarcomeric missense mutations affect striated muscle contractility and can lead to various types of inherited
cardiac diseases such as hypertrophic and dilated cardiomyopathies. Many of these mutations have been
found to be distributed on tropomyosin (Tm) and actin residues and many are thought to modify the Tm-
actin interaction energy landscape that regulates the Tm positioning and mobility on the surface of actin
filaments. These mutations and post-translational modifications influence not only Tm dynamics, but affect
myofilament Ca2+ sensitivity and alter cooperative interactions between actin, Tm, troponin-complex and
myosin [1–8].

There are several Monte Carlo type myofilament models that have been used to analyse the functional ef-
fects of point mutations on sarcomere contractility [9, 10]. The exact molecular-to-filament mechanism by
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which these alterations provide the trigger for disease progression and remodeling remains poorly under-
stood. Because mutations can perturb the interaction energy landscape between Tm and actin, their effects
cannot be explained by a filament-scale model that is either based on the mean-field approximation theory
or relies purely on Markov type simulations. Therefore, more detailed modeling of myofilament biophysics
will require a multi-scale approach to modeling thin filament activation that can link atomistic molecular
simulations of protein-protein interactions in the thin filament regulatory unit to sarcomere level activation
dynamics.

Brownian dynamics theory combined with Langevin dynamics can offer a coarse-grained mechanistic ap-
proach to bridging molecular-to-filament scales. This can be achieved by computing the interacting Tm-actin
energy landscape from atomistic Brownian dynamics simulations and coupled with sarcomeric level activa-
tion dynamics. In fact, both theories have been used previously to explain the transition states guided by
energy transformation in many molecular motors including but not limited to the myosin S1 attachment
to the actin thin filament [11–18]. None of these models have directly addressed thin filament activation
based on the dynamic motion of the Tm-coil on the surface of actin filament. Nevertheless, some of these
models are still attractive and flexible enough that the cooperativity of the Tm coil/chain due to the nearest-
neighbour interactions between the thin filament regulatory units (RUs) could be included explicitly in the
system [9, 19–21].

Tm is a coiled-coil regulatory protein that binds head-to-tail to adjacent Tm molecules to form a continuous
chain. When activated, this chain moves in the azimuthal direction (φ) over the actin filament surface. These
dynamic motions of Tm are believed to play an important role in regulating muscle contraction [22–35].
Two different hypothetical mechanisms have been proposed to describe Tm motions on the actin surface.
The sliding mechanism [36, 37] and the rolling mechanism [38, 39]. In either scenario (sliding or rolling),
the Tm chain undergoes distinct movements to uncover the myosin-S1 binding sites located on the surface
of the actin filament. These motions are characterized by three equilibrium positions, namely: the blocked
position (B), closed position (C), and the open position (M) in the well-known three-state model of McKillop
and Geeves [24]. Monte Carlo-based algorithms have been used to solve several mechanistic Markov state
models of the intrinsic mechanisms by which Tm oscillates between the B-C-M states [36, 40–43]. Although
these Markov-type models can be used to predict angular positions of the Tm-chain, their applicability in
describing how Tm alternates between angular locations are limited. In addition, they cannot be used to
track the intrinsic Tm dynamic motions between regulatory positions, which requires a stochastic multiscale
molecular-to-filament approach.

In this study, we propose a coarse-graining (molecular-to-filament) multiscale model that can describe the
activation process of the thin filament during sarcomere contraction. The model is based on Brownian
dynamics at the molecular scale and Langevin dynamic stochastic processes at the filament scale. We begin
by estimating a molecular-level energy landscape that regulates the Tm B-C-M conformational changes from
Brownian dynamics simulations. We then used this energy landscape profile as a link between the atomistic
model of Tm-actin interactions and a stochastic ordinary differential equation (SODE) model of cooperative
thin filament activation dynamics. This approach demonstrates the capability of tracking spatiotemporal
activation events of Tm oscillatory motions on the surface of the actin filament. It also provides for the
first time a more detailed molecular connection between Tm motions on the surface of actin filament and
sarcomere force production.

2. Materials and Methods

2.1. Brownian-Langevin Model Formulations

We begin by deriving a model that can describe the azimuthal φ motions of the Tm molecules over the
surface of the actin filament during activation. The model approximates a one-half sarcomere by N-coupled
Brownian bodies, where each body indicates a Tm molecule that is associated with a single functional
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Figure 1: Langevin dynamics modeling components. Schematic diagrams that show the model activation energy and coupling
strategy used to account for the Tm nearest-neighbor interactions. (A) The structure of myofilament main regulatory proteins
and Tm B-C-M conformational positions and its dynamics as governed by a multi-well activation energy potential. (B)
Representation of Tm chain as a coupled N-body oscillators to account for the nearest-neighbor interactions. An explicit
expression of Tm-coil elastic distortion energy Ue is derived as a function of each Tm Brownian body i.e., for each RU.

RU. We use a total of N = 26 coupled RUs [9, 10, 19, 21]. Each RU is comprised of 7-actin monomers,
troponin complex (Tn), Tm, and S1 subunit of myosin, Fig. 1. In the presence of thermal fluctuations, the
equations that govern the motions of Tm molecules between B-C-M equilibrium states can be derived from
the momentum balance along the reaction direction φ. Specifically, these equations can be derived by using
the canonical form of Brownian dynamics of an overdamped system [44], which gives rise to the Langevin
stochastic dynamics as,

λ
dφi
dt

+
d

dφi

[
Ui
a,BD(φi) + Ue(φ1, φ2, ....φ25, φ26)

]
=
√

2λkBTΓi(t) , i = 1 : 26 (1)

subject to the following boundary and initial conditions:

(i) φ1 = φ26 = φB , ∀ t ∈ (0, tf )

(ii) φi = φB , when t = 0 (2)

where φi is the azimuthal angle of each Tm body, φB refers to the Tm angle at the B state, λ is the
damping coefficient, kB is the Boltzmann constant, T is the surrounding temperature in kelvin. Ui

a,BD(φi)
is an activation potential energy which can be reconstructed using Brownian dynamic simulations [45].
This activation profile is then used to govern the regulatory motion of each Tm between its equilibrium
positions. In addition to the activation energy, an expression for the Tm-coil elastic energy Ue is also
required to account for the Tm coupling associated with each RU, also known as the nearest-neighbour
interactions [19, 21]. In the above formulation, Ue(φi) represents the elastic distortion energy, which is used
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to couple the Tm molecules using torsional springs KTm. An expression to the Ue will be derived in the
next subsection. Γ(t) is the total surrounding thermal noise that drives the Tm dynamics along the reaction
coordinate. The thermal fluctuations are modeled using a Gaussian white noise distribution, which has a
zero mean and satisfies the fluctuation-dissipation theorem,

〈Γ(t)〉 = 0 & 〈Γ(t1) Γ(t2)〉 = δ(t1 − t2) (3)

where δ is the Dirac delta function.

2.2. Nearest-Neighbour Interactions using Tm Elastic Distortion Energy, Ue

In addition to the activation free energy Ui
a,BD, an expression for the Tm-coil elastic energy Ue is also

required to account for the coupling among the Tm molecules associated with each RU, also known as the
nearest-neighbour interactions [19, 21]. The nearest-neighbour interactions among RUs due to the overlap
region between Tm molecules can be represented by deriving an elastic energy expression that accounts for
the Tm distortion in the φ direction. We assume that the structural overlap between two Tm-Brownian
bodies can be represented by a torsional spring [10]. This particular representation gives rise to a problem
with 26-coupled oscillators with elastic energy expression depending on the number of RUs being used. This
energy expression can be derived as follows:

Ue(φi) =
1

2
kTm



0 if i := 1

0 := 2[
(φ2 − φ1)2 + (φ3 − φ2)2

]
:= 3[

(φ3 − φ2)2 + (φ3 − φ2)2 + (φ4 − φ3)2
]

:= 4[
(φ3 − φ2)2 + (φ3 − φ2)2 + (φ4 − φ3)2 + (φ5 − φ4)2

]
:= 5

...
...

...
...[

φ2
2 + (φ3 − φ2)2 + (φ4 − φ3)2 + ......+ (φ24 − φ23)2 + (φ25 − φ24)2 + φ25

2
]

:= 26

(4)

Considering a total number of 26 RUs in one-half sarcomere, an expression of the elastic energy can be given
as

Ue =
1

2
kTm

[
φ2

2 + (φ3 − φ2)2 + (φ4 − φ3)2 + ......+ (φ24 − φ23)2 + (φ25 − φ24)2 + φ25
2
]

(5)

In order to implement the model and track each Tm-body motion between B, C, and M states as a function
of time, the derivative of equation (5) is required. In the following section, we outline this next step and
describe the numerical details of the simulation.

2.3. Model Implementation and Numerical Algorithm

A one-dimensional crystal composed of a total number of 26-RUs (i.e., 26 Tm-Brownian bodies) is considered.
The angle of the first and last Tm molecules are used to specify the system boundary conditions, where both
are set in the blocked state for all the simulation time. In other words, we set φ1 = φ26 = φB = 0◦ for all
simulation times. The energetic barriers (∆UaBC , ∆UaCB , ∆UaCM and ∆UaMC) between the equilibrium
B-C-M states have been found to strongly depend on the location of the critical roots (φBC and φCM ) of
activation free energy profile. This implies that the location of these critical roots implicitly represent the
effects of free Ca2+ concentrations on the energy barriers. Once the critical roots become available at each
Ca2+ concentration, the energy barriers are calculated, allowing for calculation of the transition rates (kBC ,
kCB , kCM , kMC) between the B-C-M states using the generic Eyring equation as follows:

kij =
kBT

h
exp(

−∆Ua,BDij
RT

), i = {B,C,C,M} , j = {C,B,M,C}& i 6= j (6)
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These transition rates are then used to estimate the maximum time step ∆t = 1
max(kij)

required for a stable

integration algorithm. h and R represent the Planck and the universal gas constants, respectively.
Once the activation free energy profile Ua,BD (which be re-constructed using Brownian dynamics simu-

lation) is available and we can establish an expression for the elastic energy Ue of the system under consid-
eration. The coupled SODEs derived in equation (1) were integrated numerically using the Euler-Maruyama
numerical method, which can be written as,

φi(tn+1) = φi(tn)− ∆t

λ

d

dφi

[
Ua,BD(φi(tn)) + Ue(φ1(tn), ....., φ26(tn))

]
+

√
2∆tkBT

λ
Wi(tn) , i = 1 : 26 (7)

where Wi is a random variable which is normally distributed with zero mean. Equation 7 can be rewritten
in a non-compact form as



φ
(n+1)
1 = φ

(n)
1 = 0

φ
(n+1)
2 = φ

(n)
2 −A1

(
φ5

2 − α1φ2
4 + α2φ2

3 − α3φ2
2 + α4φ2 − α5

)(n) −A2 (2φ2 − φ3)
(n)

+A3W
(n)
2

φ
(n+1)
3 = φ

(n)
3 −A1

(
φ3

5 − α1φ3
4 + α2φ3

3 − α3φ3
2 + α4φ3 − α5

)(n) −A2 (2φ3 − φ2 − φ4)
(n)

+A3W
(n)
3

...

...

φ
(n+1)
25 = φ

(n)
2 −A1

(
φ5

25 − α1φ25
4 + α2φ25

3 − α3φ25
2 + α4φ25 − α5

)(n) −A2 (2φ25 − φ24)
(n)

+A3W
(n)
25

φ26(tn+1) = φ26(tn) = 0

(8)

where, A1 = ∆tUref

λ , A2 = ∆tkTm
λ , and A3 =

√
2∆tkBT

λ . In all simulated cases, the system was assumed to

be driven by thermal white noise at a constant damping level λ. However, it should be noted that this damp-
ing coefficient is an important parameter in the model and it could influence thin filament dynamics[46].
The initial conditions were chosen such that all Tm-bodies reside in the B-state. A summary of the kB ,
h universal constants as well as simulation parameters is given in table 1. The value of Uref is derived
based on numerical stability requirement. The value of φCM is set at the midway point between the C and
M states i.e. at φCM = 30◦. We let φBC varies just between the B = 25 ◦ and C = 25◦) states. More
specifically, φBC is set to vary in a range between φminBC = 1◦ and φmaxBC = 24◦. Finally, the initial choice of
KTm value is guided by the work in [47, 48].

For computational performance, the data parallel portions of the numerical simulations were implemented
on NVIDIA-Tesla P4 8GB GPUs with data post-processing performed using MATLAB scripting and serial
CPU code was implemented in C++. A copy of the code along with sample results are made available in
the github repository: https://github.com/YasserAboelkassem/Tropomyosin-Dynamics. A single averaged
force development response for a given Ca2+ concentration like those shown in Fig. 10 required about 0.1
s of wall clock time for typical parameter sets.

Time integration of the above equations (1) was then used to study all possible Tm dynamical responses
when it moves over the actin surface during thin filament activation. The results from both the Brownian
dynamics simulation and the Langevin dynamics simulations were used to show the temporal tracking of
individual Tms and the induced developed contraction force as a function of the Ca2+ concentration are
reported in detail in the following section.
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Figure 2: Brownian dynamics simulation setup to reconstruct the energy landscape profile of Tm azimuthal motions over actin
surface. In panel A, we show our simulation setup with reaction (binding event) or escape of Tm-actin trajectories using the
Browndye package developed by Huber and McCammon [45]. In panel B, we begin with PDB: 4A7F structure [37] positioned
in the Tm open state (green ribbon) of approximately 35 degrees (using the blocked B state as the 0◦ reference). The atomic
structure of Tm was then rotated about the axis of the actin thin filament at -2 ◦ decrements up to the blocked state at 0
degrees (red ribbon). The actin structure is shown in grey, with an intermediate Tm structure shown at 25 degrees of rotation,
corresponding to the closed state (yellow ribbon).

3. Results

3.1. Brownian Dynamics Simulation

Brownian dynamics simulations using the Browndye package [45] were used to calculate the second order
association rate kd (1/M.s) between the Tm molecule and the actin filament as a function of the azimuthal
angle φ. This is accomplished by generating between 1-2 million trajectories of interaction between a 272-
residue Tm segment and a thin filament segment comprised of 5-actin monomers. The atomic structure
used in the simulations was a crystallized actin-Tm-myosin complex in the rigor state (PDB: 4A7F), with
myosins and ligands removed [37]. Using the Visual Molecular Dynamics (VMD) tools [49], the Tm seg-
ment is rotated (sliding only and without rolling) around the actin filament in the azimuthal direction at
2◦ increments up to 36◦ of rotation in order to cover the full range of Tm movements during thin filament
activation. In other words, Tm was allowed only to slide without rolling on the actin surface during the
course of simulations.

The initial configuration of the Tm-actin interactions that we used to run the Brownian dynamics simula-
tions is shown in Figure 2A. Two spheres, namely the b-sphere and the q-sphere are centered around the
actin filament. The radius of each sphere was set large enough so that the electric field was spherically
symmetric. The center of the Tm starts on the b-sphere, and then undergoes Brownian motion steps until it
either associates with the actin by satisfying distance constraints, or it reaches the q-sphere. If it reaches the
q-sphere, an analytic solution to the diffusion equation is used to compute the probability of permanently
escaping, or reaching the b-sphere again. A random number was used to determine its fate, and if it does
not escape, it is placed back on the b-sphere, and the procedure is repeated until there is an association or
an escape. This was repeated many times (labeled 1, 2, ..., N-Iteration) on Figure 2A), and the proportion
of associations to escapes is used to compute the association rate constant.
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The forces included in the model are steric repulsive force between individual atoms, the electrostatic in-
teractions, and polar desolvation term. Before the simulation, the electrical field is computed around each
molecule by treating the molecule and the solvent as continua and solving the Poisson-Boltzmann equation.
During the simulation, the atomic charges on the Tm interact with the electric field on the actin. The
present model does not include explicit hydrophobic interactions. Although they are important for absolute
binding free energies, we assume here that the main determinant of differences in rate constant arises from
the electrostatic interactions. More details about the Brownian dynamics simulations can be found in [45].

We begin our simulation with the rigor state (PDB 4A7F) structure positioned nearby the Tm open M
state at about 35◦. This atomic structure of the Tm was then rotated about the axis of the actin thin
filament at −2◦ decrements up to the blocked B state, which is defined at an angle of about 0◦. The actin
structure is shown in grey, with an intermediate Tm structure given at 25◦ of rotation, corresponding to
the closed C state. In the the Browndye setup, both actin and Tm were treated as rigid bodies. The rib-
bon structures of the B-C-M states are rendered in red, yellow, and green respectively, as shown in Figure 2B.

The Tm and actin structures were converted to PQR format using pdb2pqr and the Amber force field
package [50, 51]. The APBS solver was then used to generate electrostatic potential grids for the structures
at 300K [52]. A permittivity value of 4 was set for the solute, and 78.5 for the solvent, with a solvent ion
concentration of 0.15 M KCl corresponding to a Debye length of 7.86 Å. The electrostatic calculations for
each actin-Tm configurations are then obtained. For instance, the electrostatic maps for both actin and Tm
atomic structure in the open state is given in Figure 3. In particular, the electrostatic surface maps for both
actin and Tm atomic structures are given in panel A and B respectively. The green dotted line represents
the locus of the Tm location over the actin surface with landmark points 1, 2, and 3 given to highlight the
interaction locations of both actin and Tm in the open M-state.

During the Brownian dynamics simulations, for each trajectory, the Tm fragment from PDB:4A7F was
randomly spawned on a sphere a distance b (b-sphere) from the actin filament. The molecules move forward
in time based on a combination of Brownian motion and intermolecular forces such as electrostatics, van
der Waals interactions, and solvent effects. Elesctrostatic potentials are calculated out to the quadrupole
level. The Tm fragment may move further away from the actin filament over time until it reaches an outer
sphere at distance q (q-sphere), at which point the trajectory is considered to be an escape. Alternatively,
the Tm fragment may move closer to within some prescribed reaction distance of the binding site on the
actin filament, which is marked as an association event. The ratio of association to escape events is then
used to derive a second-order association rate for the two molecules.

Figure 4A shows the calculated second-order association rate kd for the Tm-actin complex as a function
of the azimuthal angle φ at 5-different (12, 13.5, 15, 16.5, and 18 Å) reaction distances measured from
the actin surface. An association event was considered to occur when 3-polar contact pairs were within
the reaction distance set. These reaction distances were considered in order to compare the kd-φ profile at
multiple distances, and because there is no experimental data available to provide the exact rates of asso-
ciation between these molecules. Moreover, for each simulation, a set of contact atom pairs was generated
to find likely hydrogen bonding pairs of atoms between the two molecules within 6 Å of each other. 1-2
million trajectories were performed for each Tm location. After completion of the trajectories, the ratio of
association events to escape events was used to calculate a second order association rate. The results are
then averaged and the standard errors of the mean are computed. The kd-φ distribution has been found
to exhibit multi extrema points that mimic the energetic barriers between the Tm transition states on the
actin surface. The minima and maxima of the kd distributions occurred at the same azimuthal location for
all the tested reaction distances. The obtained rates are then used to reconstruct an approximate activation
energy landscape Ui

a,BD of the Tm-actin complex.

In Figure 4B, we show the reconstructed activation energy landscape of the Tm-actin complex as a function
of the azimuthal angle (φ). The association rates computed from the Brownian dynamics simulations was
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Figure 3: The electrostatic calculations that we initially used to run the Brownian dynamics simulations of the Tm motions on
actin surface using the APBS package [52]. In panel A, we show the electrostatic surface map for the actin atomic structure.
The surface coloring for the grey area is omitted for better visualization of the interacting side on the actin surface. In panel
B, we show the electrostatic surface map for the Tm atomic structure. The green dotted line represents the locus of the Tm
location over the actin surface with landmark points 1, 2, and 3 given to highlight the interaction locations of both actin and
Tm in the open M-state corresponding to the original PDB crystal structure.

mapped to energy calculations using the Eyring formulation. This energy profile was accomplished by esti-
mating high and low energy barriers for Tm as it rotates around the actin thin filament during sarcomere
activation. Clearly, the energy-angle distribution demonstrates a multi-well topology. For instance, there
are two clear minima that are located roughly at angles φ = 3 and 26◦ respectively. These two angles
represent the stable Tm locations on the actin surface and correspond to the B and C states. The maxima
points of the energy profile represent the unstable points and mark the transition barriers required for the
Tm to undergo conformational changes. It should be noted that, although the crystal structure complex
around the 35◦ represents the rigor open state of Tm at full activation, this state is achieved through steric
interactions with myosin-S1 heads in the physiological system. The computed energy profile does not show
a clear minimum at this location. This is due to the lack of myosin-S1 head interactions considered in the
Brownian dynamics simulations. However, the energy profile shows downward movement toward another
stable point. The Brownian results of both the kd and the Ui

a,BD are then used to reconstruct activation
energy profiles using piecewise, φ4, and φ6 potential functions to confirm the multi-well profile topology, as
shown in Figure 4(B). These reconstructed potentials can then be used to integrate Langevin equations (1)
and track the dynamical motions of Tm over the actin surface.

In Figure 5, we used the reconstructed piecewise potential to show sample results with a single realization
of how each Tm is moving in time between both B and C states. This particular case is consistent with our
Brownian dynamic simulation protocol where the myosin-S1 subunit is absent and hence the M state is not
defined. The results have shown that as time progresses, Tms oscillate due to thermal noise until they gain
enough energy to overcome the barrier ∆UaBC , and move to the C state or back again to the B state. The
sample results are shown only for two Tms on each side (i.e., φ2, φ3, φ24 and φ25)and for two Tms in the
middle (i.e., φ12 and φ13) of the half-length sarcomere.

In Figure 6, we show sample results with a single realization of how each Tm is moving in time between both
B and C states, but using φ4 potential. The results have shown that unlike the piecewise potential case, Tms
tend to have more residence time in the B state and have difficulty overcoming the barrier ∆UaBC and move
to the C state. Of course, it is hard to generalize this observation because we only show a single realization
for each potential energy. Nevertheless, it should be noted that the Tm trajectory results generated by the
double well potential can’t be used to calculate the force-time development. These results will be used as
a basis of a more generalized multi-well energy profile (e.g., φ6) that accounts for the M state, which will
allow for evaluation of the forces generated by the sarcomere.
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Figure 4: Estimating association rates and the multi-well energy landscape profile of Tm motion on the actin thin filament
using Browndye [45]. In panel A, we show the averaged 2nd order association rates of Tm-actin complex (using results at 12,
13.5, 15, 16.5, and 18 Å reaction distances) as a function of the azimuthal positions of Tm on the actin filament. In panel B,
we show the corresponding activation energy landscape profile calculated using Eyring formulation.The red and yellow circles
refer to B and C states which are located at φB and φC , respectively. These two minimum values are predicated using the
fitting of Brownian dynamics data.

3.2. A Generalized Multi-Well Energy Landscape as Guided by the Brownian Dynamics Sim-
ulation, Ua,BD

We next use the results obtained from the Brownian dynamics simulations to derive a more generalized
multi-well energy profile. This generalized activation free energy profile Ua,BD(φ) will be used in Langevin
dynamics equation (1). The generalization of the energy potential is proposed such that it mimics the
observed three-state (i.e., B-C-M) model [24]. This implies that the Tm azimuthal position φ on the sur-
face of actin filament is governed by a potential function with a three-well (3-minima) topology. Each well
corresponds to one of the B-C-M equilibrium positions as shown schematically in Figure 1. The location of
these distinct equilibrium positions are taken from structural data [53, 54] which can be summarized as: (i)
The blocked B state (φ = φB = 0◦) refers to a situation where cytosolic Ca+2 ions are absent or very low,
troponin T (TnT) is bound to Tm forming an interlocking troponin-tropomyosin complex, and troponin
I(TnI) is bound to actin to hold the complex in place. (ii) The closed C state (φ = φC = 25◦) exists when
Ca+2 becomes available and binds to troponin C (TnC) which leads to a conformational change in TnC,
allowing Tm to partially uncover the myosin binding site on the actin thin filament [55]. (iii) The open
M state (φ = φM = 35◦) is established when myosin binds to the thin filament, forms cross-bridges and
undergoes the power stroke.

An expression of this multi-well activation energy profile can be mathematically formulated using a 6th-order
polynomial that has real and distinct roots as

Uai = Uref
[

1

6
φi

6 − α1

5
φi

5 +
α2

4
φi

4 − α3

3
φi

3 +
α4

2
φi

2 − α5φi

]
, i = 1 : 26 (9)

where,
α1 = (T1 + φC)
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Figure 5: A single realization result showing the temporal tracking of a selection of 6-Tm molecules as they move between B
and C equilibrium states using the a piecewise energy potential. This energy profile is reconstructed using the the Brownian
dynamic results as shown in Figure 4. In this simulation, φBC = 12.5 ◦, and the SODEs are then solved numerically for
3 seconds. The red and yellow dotted lines refer to the B and C equilibrium states predicated by using a piecewise energy
potential, respectively.

α2 = (T2 + φCT1)
α3 = (T3 + φCT2)
α4 = (T4 + φCT3)
α5 = (φCT4)
T1 = (φCM + φBC + φB + φM )
T2 = (φCMφBC) + (φCM + φBC)(φB + φM ) + (φBφM )
T3 = (φCMφBC)(φB + φM ) + (φBφM )(φCM + φBC)
T4 = (φCMφBCφBφM )

The constant value of the reference energy Uref is chosen to fulfill the numerical stability requirement of
the Euler-Maruyama method, see Table 1. Moreover, it should be noted that the superscript “BD” in the
energy term Ua,BD(φ) has been dropped for clarity. The above coefficients represent arbitrary parameters
that depend only on the φBC and φCM critical roots of the free energy. These values control the shape, the
activation barriers, and the critical (stable/unstable) points of the proposed energy landscape profile.

In Figure 7A, we show sample results of the generalized three-well potential (i.e., φ6) derived in equation
9. Moreover, we show the effect of moving the root φBC on the energetic barriers of the activation free
energy profile. In order to do so, we kept the other root φCM pinned midway point between φC and φM ,
setting φCM = 30 ◦. As φBC moves toward the B-state, i.e., φB , the energy barrier between the B-C states
and UaBC decreases. In other words, the probability of Tm transitioning from the B-state to the C-state
becomes higher as φBC moves to the left toward the φB root.
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Figure 6: A single realization result showing the temporal tracking of a selection of 6-Tm molecules as they move between
B and C equilibrium states using the φ4-energy profile. This energy profile is reconstructed using the the Brownian dynamic
results as shown in Figure 4. In this simulation, φBC = 12.5 ◦, and the SODEs are then solved numerically for 3 seconds. The
red and yellow dotted lines refer to the B and C equilibrium states predicated by using a φ4 energy potential, respectively.

This implicitly represents the process by which free Ca2+ ions bind to TnC and lower the energy required
for Tm to transition from the B-state to the C-state. Therefore, we can hypothesize a connection between
the free Ca2+ concentration, transition energetic barriers, and the location of φBC . This connection should
satisfy certain observed criteria such as; (i) it should mimic the binding affinity of Ca2+ to TnC, which
may be represented by Hill-type expression [56], and (ii) it should be consistent with the energy required in
order for Tm to move from the B-state to the C-state. In equations (10-11), we propose the relationships
between φBC , φCM , and Ca2+ as Hill-type sigmoidal functions in order to satisfy the criteria outlined above.
These mathematical formulations are given to relate the critical root locations as a function of the Ca2+

concentrations:

φCM − φmaxCM

φminCM − φmaxCM

=
1

1 +

(
Ca50φCM
Ca2+

)nφCM =
1

1 + 10
nφCM

(
pCa−pCa50φCM

) ∀ φminCM > φC & φmaxCM < φM (10)

φBC − φmaxBC

φminBC − φmaxBC

=
1

1 +

(
Ca50φBC
Ca2+

)nφBC =
1

1 + 10
nφBC

(
pCa−pCa50φBC

) ∀ φminBC > φB & φmaxBC < φC (11)

In Figure 7B, we present the results by specifically implementing equation (11). These results clearly show
a relationship between the free Ca2+ and the φBC root location. At high Ca2+ concentrations, the critical
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Figure 7: The activation free energy Ua profile as a function of Tm azimuthal direction φ and a Hill-type (sigmoid) relationship
between the energy landscape root location φBC and pCa values. (A) The effects of varying φBC on the activation free energy
while keeping φCM = 30 ◦ constant. (B) The effects of varying nφBC on the relationship between the location of the φBC and

Ca2+ concentration, while keeping pCa50φBC = 5.5 constant.

root φBC is located close to the blocked angle φB in order to lower ∆UaBC . As the Ca2+ ions are depleted,
the φBC root moves away from the blocked angle φB towards the closed angle φC , which in turn increases
∆UaBC and reduces the probability of Tm transitioning from the B-state to the C-state. The relationship
is shown for different values of Hill coefficient nφBC = 1, 3, 5, but at the same value of half-activation
pCa50

φBC = 5.5. The two parameters, pCa50
φBC and nφBC , can therefore determine the location of φBC

and alter the energy barrier for the B- to C-state transition.

Since the relationships between the free Ca2+ and the root angles of the activation free energy profile are
now available, we can predict the effects of moving φBC and φCM on the energetic barriers between the
B-C-M equilibrium states. In Figure 8, we show contour plots for all the energetic barriers ( ∆UaBC ,
∆UaCB , ∆UaCM , ∆UaMC) as a function of both φBC and φCM root locations. These results show in par-
ticular the effect of varying both roots simultaneously on the energy profile morphology. For instance, the
energy barrier between the B-C states UaBC is shown in Figure 8 A. The range at which the Tm forward
transition from the B-state to the C-state has the lowest energy barrier is φB < φBC <v 10◦, irrespec-
tive of the location of the φCM root. This renders the backward energy barrier ∆UaCB for the reverse
transition between C and B states to be the highest in the same range as shown in Figure 8 B. Similarly,
the energetic barriers ∆UaCM and ∆UaMC that are associated with the Tm transitions between the C-
and M-states are shown in Figure 7(C-D) respectively. The forward energetic barrier between C-M states
∆UaCM is the lowest in the range φC < φCM <v 29◦ irrespective of the location of the φBC root, Figure 8
C. As expected, the backward energetic barrier ∆UaMC is highest in the same range as shown in Figure 8 D.

The results shown in Figure 8 are consistent with the fact that direct transitions between B and M states
are prohibited. These results also suggest that there are only two independent parameters, namely φBC and
φCM , that control the activation free energy morphology and hence the energetic barriers between the B-,
C-, and M-states. These two parameters are hypothesized to be in direct connection with the free-Ca2+,
TnC, TnI-Tm interactions which shape the Tm activation energy landscape. It should be noted that the
energetic barriers (∆UaBC , ∆UaCB , ∆UaCM and ∆UaMC) between the equilibrium B-C-M states have
been found to strongly depend on the location of the critical roots (φBC and φCM ) of activation free energy
profile. This implies that the location of these critical roots implicitly represent the effects of free Ca2+

concentrations on the energy barriers.
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Figure 8: Contour plots of the activation free energy barriers between B-C-M as a function of both φBC and φCM roots. (A)
Free energy barrier for Tm transition from B to C (∆UaBC) as a function of φBC and φCM root locations. (B) Free energy
barrier for Tm transition from C to B (∆UaCB) as a function of φBC and φCM root locations ,(C) Free energy barrier for
Tm transition from C to M (∆UaCM ) as a function of φBC and φCM root locations,(D) Free energy barrier for Tm transition
from M to C (∆UaMC) as a function of φBC and φCM root locations.

Table 1: Model constants and parameters

Parameter λ kBT h Uref KTm φCM φminBC φmaxBC

Units (pN.nm.ns) (pN.nm) (pN.nm.ns) (pN.nm) (pN.nm/rad) (rad) (rad) (rad)

Value 27π 4.1 6.626x10−4 1000 10 30π/180 1π/180 24π/180

Now, having established a connection between the free Ca2+ and the location of the φBC root that controls
the forward and backward transitions between B and C states, the stochastic system of equations 8 can be
integrated in time at different Ca2+ concentrations.

3.3. Langevin Dynamics Simulations and the Sarcomeric Force-Ca2+ Sensitivity

In order to calculate the force development at different levels of Ca2+ concentrations, a one-dimensional
crystal composed of 26-RUs (i.e., 26 Tm-Brownian bodies) is considered. The angle of the first and last Tm
molecules are used to specify the system boundary conditions, where both are set in the blocked state for
all simulation times. In other words, we set φ1 = φ26 = φB = 0◦ for all simulation times.

In Figure 9, we show sample results with a single realization of how each Tm (associated with a single RU)
moves in time between the B-C-M equilibrium positions using φ6 potential. Unlike the results obtained from
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Figure 9: A single realization results showing the temporal tracking of a selection of 6 Tm molecules as they move between
B-C-M equilibrium states, which are shown by the dotted lines. In this simulation, Ca2+ is held constant at pCa = 4.5,
pCa50φBC = 5.5 and nφBC = 1. The SODEs are then solved numerically for 3 seconds. We consider an RU to be in the
B-state for φ = 0 ◦, C-state for φ = 25 ◦, and M-state for φ = 35 ◦. The red, yellow and green dotted lines refer to the B-C-M
state, respectively.

using the piecewise and φ4 potentials which are shown in Figure 5 and Figure 6, respectively. In this case, as
time progresses, Tms oscillate due to thermal noise until they gain enough energy to overcome the barriers
∆UaBC and ∆UaCM , hence moving not only visiting the C state but also the M states. Once again, the
sample results are shown only for two Tms on each side (i.e., φ2, φ3, φ24 and φ25)and for two Tms in the
middle (i.e., φ12 and φ13) of the half-length sarcomere. However, we have tracked the temporal evolution of
the entire 26-Tms (i.e., 26 RUs) over 1024 repeated simulations in order to statistically evaluate the force
producing events.

The force-producing events are scored when Tm is in the M-state, i.e., its torsional angle is at around 35◦

[53, 54]. That is because cross-bridges are not explicitly represented in the model, there is no consideration
of cross-bridge kinetics. This effectively assumes that strong cross-bridges forms at any regulatory unit that
achieves the M state and contribute a fixed amount of force. We then calculate the total relative force of the
myofilament by adding up the number of RUs in the M-state at any given time and dividing this number
by the total number of simulated RUs. Because of the stochasticity of the simulations, it is necessary to
repeat the total simulation a large number of times and average the results. For our purposes, we repeated
the SODEs solver 1024 times and averaged the results to develop smooth steady-state curves for each Ca2+

concentration.

In Figure 10, we demonstrate steady-state force development of the myofilament at different pCa values and
at different values of nφBC . We vary the parameter nφBC = 1, 3, 5 as shown in panels A, B, and C, which
governs the steepness of the cooperative relationship between Ca2+ and φBC . These time-force traces are
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Figure 10: Time-force development at different levels of Ca2+ concentrations and for different values of nφBC = 1, 3, 5. These
simulations were performed by setting pCa50φBC = 5.5, Tm stiffness KTm = 10 and φCM = 30 ◦. These results represent an
average of 1024 realizations, where RUs in the M-state are considered to contribute equally to force.
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Figure 11: Time-force development at different levels of Ca2+ concentration and for different values of Tm stiffness KTm =
10, 20, 40 (pN.nm/rad). These simulations were performed by setting nφBC = 1, pCa50φBC = 5.5 and φCM = 30 ◦. These
results represent an average of 1024 realizations, where RUs in the M-state are considered to contribute equally to force.

calculated by setting pCa50
φBC

= 5.5 in equation (11) and at Tm stiffness KTm = 10 (pN.nm/rad). More

results at different input value of pCa50
φBC

= 5.0, 5.5, 5.75 are also obtained (not shown here) at nφBC = 1
and at KTm = 10 (pN.nm/rad). Similarly, the results showing the effects of varying the stiffness parameter
KTm = 10, 20, 40 (pN.nm/rad) on the time-force development are also obtained and shown in Figure 11
where we set nφBC = 1 and pCa50

φBC
= 5.5.

These results are further analyzed in order to obtain the steady-state force-pCa sensitivity and Hill parame-
ters (nH and pCa50) in all studied cases, Figure 12. Clearly, adjusting the value of nφBC has a large effect on
the overall cooperativity of the steady-state force-pCa relationship where larger values of nφBC correspond
to higher cooperativity as shown in Figure 12A. This particular result suggests that when φBC is closer to
φB (0◦), the energy barrier governing the transition from B to C is smaller. In cases with higher nφBC , where
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Figure 12: The force-Ca2+ sensitivity calculated by analyzing the time-force traces at different pCa values. These results are
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nφBC = 1. In panel C, results are obtained by setting nφBC = 1 and pCa50φBC = 5.5. All simulated cases are conducted by
keeping φCM = 30 ◦ constant.

Figure 13: In panels A, B and C, we show the results of using Hill-best fitting characterization (i.e., nH and pCa50) for the
force-Ca2+ results that were shown previously in Figure 7. In all panels, the fitted nH and pCa50 values are shown on the left
y-axis and on right y-axis.

φBC more quickly approaches φB as Ca2+ increases, we see a rapid force development. This is probably
because the barrier from B to C becomes easier to overcome, which likely recruits more RUs to visit the M
state downstream. In Figure 12B, we show the effects of pCa50

φBC
on the force-pCa sensitivity. The results

show that increasing pCa50
φBC

can lead to significant changes in the pCa50 values without changing the Hill
index.

One of the important parameters of the present model is Tm torsional stiffness, denoted by KTm. As de-
scribed in the Methods section, the present study accounts for the Tm-Tm nearest-neighbour interactions
and myofilament cooperativity, where the 26-RUs are coupled using an elastic energy expression Ue that de-
pends on KTm. Additionally, previous studies have suggested that differences in the strength of Tm overlap
due to disease or mutations can alter the cooperativity of the force-pCa curve [10, 57, 58]. Therefore, we
have investigated the effects of KTm on the steady-state force-pCa solution. For instance, in Figure 12C, we
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Figure 14: Model output for typical slack-restretch maneuver and rate of force redevelopment (Ktr) simulations. In panel A,
we show the model prediction of the contractile force produced by the myofilaments during sudden exposure to Ca2+ and a
slack/restretch maneuver mimicked by instantaneously removing all attached cross bridges. In panel B, we present the observed
rate of force redevelopment Ktr as a function of pCa and at different values ofKTm.

demonstrate that altering the value of KTm indeed affects the cooperativity of the force-pCa relationship
due to nearest-neighbour Tm interactions. We show that increasing KTm from 10 to 20 or 40 (pN.nm/rad)
exaggerates the steepness of the force-pCa curve. The results show that increasing Tm stiffness decreases
that apparent Ca2+-sensitivity of steady-state isometric force and increases the slope.

The effects of varying nφBC , pCa50
φBC

and KTm on both Hill coefficient (nH) and the half-maximal activation
pCa50 of the force-pCa curves are given in Figure 13. The results suggest that as nφBC increases from 1
to 3, pCa50 increases and then saturates while nH appears to increase linearly, Figure 13A. These results
imply that there is a strong connection between cooperativity of the φBC - Ca2+ relationship of equation(9)
and the overall shape of the steady-state force-pCa curve. In other words, the topological changes in the
activation energetic barriers as Ca2+ changes could have a strong influence on thin filament Ca2+ sensitivity.
On the other hand, adjusting the value of pCa50

φBC
has a minor effect on the force-pCa cooperativity. We can

see this in Figure 13B, where nH appears to remain constant while pCa50 scales linearly with the pCa50
φBC

perturbations. Figure 13C outlines the effects of KTm on both pCa50 and nH as well. There is a linearly
increasing relationship between Tm-Tm overlap spring stiffness and Hill coefficient (nH) of the curve. Con-
versely, there is a nonlinear decay relationship between KTm and pCa50. In other words, increasing the
torsional spring constant between Tm molecules leads to higher cooperativity of myofilament activation, but
lower overall Ca2+ sensitivity.

In addition to the results that show the effects of KTm on F-pCa sensitivity and the associated cooperativity
represented by pCa50 and nH in Figures (12C-13C, we also show simulations to uncover the effects of Ktm
on relaxation, activation, and redevelopment rates. Figure 14 shows the model results for a slack-restretch
maneuver and rate of force redevelopment simulations at KTm = 10, 20, and 40 (pN.nm/rad). In Figure
14A, model predictions of the contractile force produced by the myofilaments during sudden exposure to
Ca2+ are shown. In these records, Ca2+ was set to a higher value (pCa = 4.0) at time zero. After a
period of rapid change (described by the activation rate constant), the force reached a steady-state level.
A slack/restretch maneuver was then mimicked by instantaneously removing all attached cross bridges and
observing the rate of force redevelopment Ktr. After the force reached again to a steady-state level, a sudden
decrease in Ca2+ concentration was applied (pCa = 7.0). The force then declines and the rate of relaxation
is observed. The results suggest that as KTm increases, a faster relaxation of developed force is achieved.
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Figure 15: Model validation using force-pCa data from both experimental cardiac muscle preparation and previous computa-
tional models. In panel A, we show a comparison between our model and experimental data [59]. This result is obtained by
adjusting the model parameters nφBC = 1, pCa50φBC = 5.55, and KTm = 1 (pN.nm/rad). In panel B, we compare our model
output with data generated numerically using other computational models [9, 21].

Table 2: Model type, number of parameters to be optimized, and accuracy represented by calculating the l2-error norm when
validated using experimental data set from [59].

Model Type Number of Number of optimized l2 − norm =

equations/states parameters
√∑N

i=1(Fi
Exp − FiNum)2

Campbell et al 2010 ODEs 3N eqs., N = # RUs 11 0.9004
Aboelkassem et al 2015 MCMC 6-states per 1-RU 12 0.1477
Present Model SODEs 26 eqs. 3 0.1132

In Figure 14B, we present the observed rate of force redevelopment Ktr as a function of pCa and at differ-
ent values of KTm. The results show that as KTm increases, a slower Ktr was observed for a fixed pCa value.

In Figure 15, we show the validation, accuracy, and performance of the current model when compared with
both experimental data [59] and other nearest-neighbour computational myofilament models [9, 21]. For in-
stance, in Figure 15A, a validation comparison between the current model and a force-pCa data from skinned
cardiac muscle preparation is given. This simulation is obtained by adjusting the parameters nφBC = 1 and
pCa50

φBC
= 5.55 as well as the torsional stiffness KTm = 1 (pN.nm/rad) in order to best fit the experimental

data. Moreover, in Figure 15B we show a comparison between the current Langevin-SODE model accuracy
versus other ODE or Markov chain Monte Carlo (MCMC) based modeling approaches [9, 21]. The obtained
results using similar/equivalent model parameters have shown that, unlike the ODE model, both the SODE
and the (MCMC) simulations performed very well. A brief key summary between the three models is listed
in Table 2.

4. Discussion

The main goal of the present coarse-grained myofilament modeling approach is to link the Tm-actin molecu-
lar energy landscape interactions to thin-filament scale activation using Brownian-Langevin dynamics. The
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underlying idea of this study is based on fundamental theories explaining the molecular interactions of my-
ofilament proteins during muscle contraction [60, 61], as well as on the mechanochemical coupling of the
molecular motion to ATP hydrolysis [62, 63]. The use of Brownian-Langevin dynamics as a multiscale ap-
proach to describe myofilament activation can potentially move the field of cardiac mechanics toward more
detailed atomistic models of subcellular function.

Brownian motion is fundamental to current atomistic-level investigations in both coarse-graining and all-
atom molecular dynamics simulations which have been used to provide biophysical detail of many sarcomeric
proteins [28, 64–75]. In particular, Brownian dynamics models of the actual molecules, built up from struc-
tural information at the molecular level, would constitute the next level toward the molecular end of the
hierarchy of models [45, 76]. Such models might be able to provide the shape of the energy landscape along
the reaction coordinate and the degree of coupling among adjacent Tm molecules [77]. Furthermore, recent
work on coupling Brownian dynamics with more detailed molecular dynamics simulations could be used to
explore the activation due to the Ca+2 ions [78, 79].

Previous computational models of thin filament activation have been useful for a variety of specific biological
questions, but are often too computationally intensive or lack sufficient detail for certain applications. An
example of a commonly used model of thin filament activation and cross-bridge cycling is given in [80].
Although this model allows for a quick and efficient solving a set of ODEs that describe the cross-bridge
cycling, it ignores RU-RU interactions of the thin filament. A more spatially resolved ODE-based model was
then developed to explicitly model Tm-Tm overlap and hence the RU-RU nearest-neighbour interactions
[21]. Other models use MCMC processes to refine more thin filament details, but these simulations can
become computationally expensive [9, 81, 82].

In this study, we derived a new SODE myofilament model based on the Brownian and Langevin dynamics.
The Langevin component of the model has the capability to predict the spatiotemporal dynamics of Tm
angular movements between the B-C-M equilibrium positions as a result of thermal fluctuations. The model
is a natural extension of our previous myofilament studies, which use Markov type simulation and nonlinear
dynamics to track Tm conformational changes and motions between the B-C-M states [9, 35]. The model
allows us to accurately simulate steady-state force-pCa relationships using a number of equations exactly
equal to the number of RUs (i.e., N = 26) without sacrificing spatial detail regarding Tm-Tm interactions.
In terms of myofilament cooperativity, the mathematical description of the model includes two sources of
cooperativity [83]. The first arises from Ca2+ binding to TnC which affects the energetic barrier between
the B and C states. The second arises from the nearest-neighbour interactions (RU-RU cooperativity) which
is represented by using an elastic distortion energy.

Brownian dynamics simulations were an essential component of this analysis. They reinforce the theory sur-
rounding the multi-well energy landscape of Tm as it rotates about the actin thin filament. The results offer
insight into the potential locations of high energy barrier points for the Tm-actin complex. The association
rate distribution as a function of the azimuthal angle is used to derive a generic energy landscape in the
absence of troponin and the myosin. The angles associated with the two local maxima in the association rate
profile closely match the documented Tm positions in the B and C states, respectively. In these positions,
strong electrostatic interactions between Tm and actin lead to minima in energy profile. The locations of
the minima in the association rate landscape mark the energy barriers between both states. The open Tm
state has been found to be energetically unfavorable without a bound myosin S1 head to push Tm to this
extreme angle [84]. The 12.5◦ position should correspond to φBC , the angle at which a high energy barrier
exists between the blocked and closed states.

It should be noted that, although the results of the Brownian dynamics show a multi-well energy profile,
they don’t demonstrate an energy minimum at the Tm open state for the following three reasons. Firstly,
the myosin S1 is not included in the Brownian dynamics simulations and hence does not interact with the
complex. We, however, hypothesize that bound myosin in the cross-bridge binding site on the actin thin
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filament would greatly increase the energetic bias of the open state while minimizing association rates for all
other positions. Secondly, we didn’t consider the case of low cytosolic Ca2+, in which the troponin complex
sterically hinders Tm from moving out of the blocked state. In this case, one can assume the lowest energy
well would exist at around zero degrees, with all other states becoming less favorable. Thirdly, our Brownian
dynamics simulations considered only a portion of Tm which excludes the Tm-Tm overlap region, which
makes it impossible to consider the effects of nearest-neighbor interactions on the energy landscape.

Recently, Tm dynamical movements on the surface of the actin filament were explained using an energy land-
scape perspective [84–88]. The results of these studies successfully predicted the azimuthal displacements
of Tm (F-actin only) and its associated energy landscape potential, the latter shown to exhibit only a single
energy minimum with a fairly broad well. Orzechowski and co-workers hypothesized that, when the rest
(i.e., troponin and myosin) of the myofilament structure is considered, this single-well potential landscape
will deform, allowing for multiple wells with various energy barriers to form [84]. These energy landscape
results [84, 85, 87, 88] provide a useful platform that can be used to better understand the mechanistic
role of Tm dynamics during muscle activation. However, the exact spatio-temporal mechanisms governing
how the Tm-chain moves over the actin surface and which energy landscape it follows remain unresolved,
hindering the complete understanding of Tm dynamics.

Herein, as demonstrated in equation (9), a more generic multi-well energy landscape (φ6-potential) is de-
rived based on the results obtained from the Brownian dynamics simulations. The proposed multi-well
energy profile accounted for the fact that Tm must move between B-C-M equilibrium angles and considered
variations in Ca2+ which impact the critical angles φBC and φCM that outline the energy barriers between
the stable states. In the present results, the unstable location between the closed and open states φCM is
kept fixed at the midway point between φC and φM . This led to the formation of a small energetic barrier
∆UCM compared with ∆UBC . However, the varying location of φCM could be used to control the myosin
subunit S1 interactions, and hence the formation of crossbridges.

In summary, our coarse-graining modeling approach has shown the capability of tracking spatiotemporal
activation events of the Tm motions on the surface of the actin filament. The model draws for the first
time a more detailed molecular connection between Tm dynamical motions on the surface of actin filament
and sarcomere force production. In addition, it produces sufficient cooperativity in the force-Ca2+ rela-
tionship and performs better than many of the current phenomenological myofilament models which were
mostly derived based on mean-field approximation theory or Monte Carlo type simulations. The present
Brownian-Langevin method is relatively simple and allows us to envision a unique energy profile that governs
the activation of the thin filament via tracking Tm motions between B-C-M states during muscle contraction.

5. Model Limitations

One limitation of the current study is related to the lack of explicit handling of hydrophobic interactions
during the Brownian dynamics simulations using Browndye software [45]. However, Lennard-Jones forces
are calculated during trajectories which can be considered to approximate hydrophobic forces. Addition-
ally, Browndye models both interacting molecules as rigid bodies rather than flexible chains. Therefore,
the actual values of association rates are not physiologically relevant. For this reason, the exact choice
of reaction distance was not relevant as all reaction distances tested had energy minima and maxima at
the same azithumal locations. Moreover, the present Brownian dynamics simulation does not account for
either twisting or unwinding effects. If these effects are included, we do expect changes in the energy pro-
file topology and in the energetic barriers between the equilibrium states. A flexible chain version of the
software is expected in the future, and further association studies should be performed at that time. If
these effects are included, we do expect changes in the energy profile topology and in the energetic barri-
ers between the equilibrium states. However, the main conclusion from modeling prospective will not altered.
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Although our model accounts for Tm-Tm (i.e., RU-RU) interactions using torsional flexibility, other flexible
missing components in the model might contribute to or impact the simulations. For instance, bending rigid-
ity of Tm-Tm overlap region is not included in the model. It will be helpful to add bending elastic energy
to account for the bending mode and mobility of Tm molecules, which will certainly affect the force-pCa
relationship. Moreover, it has been demonstrated in prior studies that, to fully account for cooperativity at
later stages of activation, one must account for crossbridge-crossbridge (XB-XB) and XB-RU cooperative
effects as well [19, 82, 83]. This might explain the slow activation of the model. Therefore, further develop-
ment of this model related to cooperativity will be required to strengthen prediction accuracy.

Finally, the model output focussed on analyzing the effects of parameters on the force-Ca2+ sensitivity
and was quite limited regarding the validation of the model against experimental data. Further valida-
tion against experimental measurements is indeed required. For instance, comparing the model simulated
twitches triggered by calcium transients against in-vitro measurements can be useful to test the model dy-
namic behavior. Additionally, fluorescence polarization data using bifunctional rhodamine attached specific
residues on muscle proteins could be used to study orientations and/or dynamics of the labeled Tm proteins.

6. Conclusion

In this study, a coarse-graining mathematical model is derived to study Tm motions over the surface of actin
filament during cardiac muscle contraction using hybrid Brownian-Langevin dynamics simulations. The
model links the atomistic energy landscape of the Tm-actin interactions in the thin filament regulatory unit
(RU) to sarcomere level activation dynamics. The proposed multiscale approach provides for the first time
a more detailed molecular connection between Tm dynamic modes of motions, Tm-actin energy landscape,
and force-Ca2+ sensitivity of the sarcomere. Thus, it is expected to be useful in better understanding Tm
dynamics and its role in regulating the thin filament activation process when compared with Monte Carlo
type simulations. Furthermore, this model is flexible enough that it can be developed further to investigate
how, for example, Tm mutations modify the Tm-actin interaction energy landscape that regulates the
Tm positioning and mobility on the surface of actin filaments. Therefore, the present Brownian-Langevin
multiscale approach indeed may offer an enhanced mechanistic methodology to describe cardiac muscle
contraction in both healthy and diseased subjects.
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