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Abstract: The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-
related diseases sharply increased in the 21st century. Major underlying causes for these diseases are
inflammation and oxidative stress. Accordingly, natural products and their bioactive components
are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory
properties. Research in this area has been significantly expanded to include chemical identification
of these compounds using advanced analytical techniques, determining their mechanism of action,
food fortification and supplement development, and enhancing their bioavailability and bioactivity
using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop
sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at
Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research
under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This
review summarizes presentations at the workshop to provide current knowledge of the role of natural
products in the prevention and treatment of metabolic diseases.

Keywords: obesity; inflammation-related diseases; cancer; aging; natural products; bioactive food
components; nanoparticles; antioxidants; anti-inflammation
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1. Introduction

Bioactive food components, particularly phytochemicals, provide various health
benefits in experimental animals and humans. As our knowledge grows regarding the
pathogenesis of obesity-associated diseases, neurological diseases, and aging, identifying
bioactive compounds that exert antioxidant and anti-inflammatory properties from natural
products has been a crucial avenue to advance biomedical, nutrition, and food research.

Oxidative stress from the excessive production of reactive oxygen species (ROS) or
free radicals in cells leads to an imbalance in cellular homeostasis and damage in DNA,
proteins and lipids, further contributing to chronic inflammation [1–3]. Growing evidence
indicates that oxidative stress and inflammation are closely linked as key drivers in the
pathogenesis of many chronic diseases, including cancers, obesity, diabetes, cardiovascular
and neurological diseases [3–6]. Notably, many experimental and epidemiological studies
suggest that consuming fruits, vegetables, nuts, spices, whole grains, and plant-based oils
may reduce inflammation and oxidative stress [7]. Dietary components, such as flavonoids,
catechins, curcumin, resveratrol, sulforaphane, silymarin, and xantho-humol, are known to
exert anti-inflammatory and antioxidant properties [7]. Short-term or acute consumption
of these bioactive components is not effective in reducing persisting oxidative stress or
chronic inflammatory conditions. Healthy lifestyle changes, such as exercise and healthy
dietary habits, are more effective approaches to prevent chronic inflammatory conditions,
cancers, and neurological diseases [8,9].

This review provides a current understanding of key bioactive food compounds and
their mode of action, and innovative tools developed to identify putative health-promoting
compounds. The ultimate goal is to incorporate these bioactives into the food system for
optimal health. These timely topics were discussed at the 20th Frontier Scientists Workshop
sponsored by the Korean Academy of Science and Technology.

2. Inflammation, Oxidative Stress, and Natural Products
2.1. Antioxidant Effect of Triterpenoids and Tocopherols

Many dietary factors and phytochemicals have been shown to exhibit inhibitory ef-
fects on oxidative stress and inflammatory responses [10]. Key examples of bioactive
compounds targeting oxidative stress and inflammation are triterpenoids [11] and toco-
pherols [12]. Several hundred oleanane triterpenoids have been synthesized based on
anti-inflammatory assays [13–15]. Many of these triterpenoids suppress inflammation and
oxidative stress and exert cytoprotective effects via activation of nuclear factor erythroid 2-
related factor 2 (NRF2), a master transcription factor in the antioxidant defense systems [16].
We have shown that tocopherols and tocotrienols are potential natural antioxidant and anti-
inflammatory agents that may be used as dietary cancer preventive agents. Tocopherols
(Ts) and tocotrienols (T3s) are members of the vitamin E family, each form consisting of a
chromanol ring and a side chain containing 16-carbons [17,18]. Depending on the number
and position of the methyl group on the ring, they exist as α, β, δ, γTs or T3s [19,20]. Ts or
T3s are phenolic antioxidants present in many vegetable oils, such as soybean, corn, canola
and cottonseeds [17,21]. Vitamin Es are essential lipid-soluble antioxidants, scavenging
reactive oxygen/nitrogen radicals in lipid milieu, and therefore they protect membrane
integrity. They also inhibit inflammatory responses and other disorders [17,22,23]. T3s,
having similar structures except for three double bonds on the side chains, also possess
vitamin E activity [12].

Epidemiological studies have shown an inverse association between dietary intake of
tocopherols or blood levels of tocopherols and cancer risk [18,24]. Most previous cancer
prevention studies on vitamin E have focused on αT, the commonly recognized vitamin E
form [18,23,25–27]. The most recent large clinical trial, the Selenium and Vitamin E Cancer
Prevention Trial (SELECT) with αT, did not demonstrate a prostate cancer preventive
effect [28,29]. The reasons for this result are not known, reflecting a lack of understanding
of the biological activities of individual tocopherols. However, recent laboratory studies,
including our studies with animal models for breast and other cancers [30–37], have
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demonstrated that γT and δT are more active than αT in inhibiting carcinogenesis. αT
has methyl groups in both positions, and γT has only one methyl group adjacent to the
phenolic group. γT is a more effective scavenger of reactive nitrogen species and a more
effective inhibitor of oxidation of phospholipids than αT [38–41]. Due to the the fact γT
has stronger anti-nitrosative and anti-inflammatory activities, its preventive actions against
cancer, cardiovascular and neurodegenerative diseases have been suggested [38,40,42–45].

2.2. Role of Tart Cherry (TC) in the Prevention of Obesity-Related Inflammation and Life
Span Extension

Obesity is a complex disease and a major health problem worldwide. A primary
underlying etiology of obesity is chronic low-grade inflammation, triggered in part by
adipose tissue expansion. This expansion leads to endocrine dysfunctions of adipose
tissue, including local inflammation, resulting in low-grade systemic inflammation [46].
Obesity and aging share several metabolic, cell, and molecular dysfunctions. Commonly
altered processes include inflammation, oxidative stress, and cellular damage, which
accelerate aging [47]. Several cell culture, preclinical and clinical studies demonstrated
that foods containing bioactive compounds exert protective effects in both obesity and
aging-related inflammation and oxidative stress [48]. A few studies have focused on the
benefits of consuming anthocyanin-rich food, such as reducing chronic metabolic diseases
and improving age-related disorders [49,50]. Increased adipose tissue mass during obesity
is linked closely with adipose tissue inflammation, a major contributor to other metabolic
disorders, including cardiovascular disease and type 2 diabetes [46], as documented in
several diet-induced and genetic models of obesity [46,51,52].

Tart cherry (TC) (Prunus cerasus) contains higher levels of anthocyanin flavonoids
than other cherries [53]. TC supplementation reduced adipose tissue inflammation, as
demonstrated by the downregulation of several pro-inflammatory cytokines, such as
IL-6, TNFα, IL-1β, MCP-1, iNOS, and CD-11b, and increased gene expression of anti-
inflammatory M2 macrophage markers in adipose tissue of genetically obese Zucker
rats [52]. In cultured adipocytes, TC extracts reduced LPS-induced expression of pro-
inflammatory markers. The anti-inflammatory effects of TC are, in part, mediated by the
inhibition nuclear factor κB (NFκB) p65 phosphorylation, both in vivo and in vitro [52]. TC
also decreased expression of lipogenic markers and increased expression of lipid oxidizing
and antioxidant genes both in vivo and in vitro, resulting in reduced lipid accumulation
in adipocytes. These findings are consistent with other reports that regular intake of TC
and other anthocyanin-rich fruits reduced systemic and local inflammation, including
adipose tissue inflammation in obesity [54–56]. Several clinical studies also showed that
increased intake of fruits and vegetables reduced markers of inflammation and oxidative
stress in adults [57]. This is presumably linked to a high content of antioxidant and anti-
inflammatory compounds in fruits and vegetables. Thus, TC rich in anthocyanins may be
a potent anti-obesity and dietary anti-inflammatory component. However, further research
on how TC affects adipose tissue and energy metabolism is needed. Especially, clinical
studies are lacking to determine an optimal beneficial dosage for human consumption to
prevent or reduce obesity and inflammation.

Obesity affects normal cellular and molecular processes, which can reduce lifespan
expectancy [47]. Dietary antioxidants have potential roles in lowering oxidative stress
associated with aging and chronic conditions [58]. We have recently reported that TC
extract rich in anthocyanins with antioxidant activity increased lifespan in C. elegans mainly
via insulin/insulin-like growth factor-1 signaling (IIS) by regulating DAF-2 and DAF-16
expression, major components of the IIS pathway [59]. Changes during aging are often
linked to mitochondrial dysfunction. For the first time, we demonstrated that worms
fed TC extracts exhibited increased mitochondrial spare respiration, and expression of
uncoupling protein 4 and antioxidant markers such as superoxide dismutase (SOD)-3 [59].
Additional research is warranted both in mouse models and clinical studies to better
understand the detailed molecular mechanisms of TC in aging and determine the most
effective dose for human consumption.
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2.3. Food-Derived Antioxidants and Lifespan

Oxidative stress contributes to the development of a range of adverse health condi-
tions, including aging and age-related diseases [60]. Caenorhabditis elegans is a multi-organ,
microscopic, and transparent roundworm used in many scientific research fields [61]. Par-
ticularly, aging research has taken advantage of its short lifespan and simple physiology
in the recent decades [62]. Along with genetic manipulation, more environmental ma-
nipulative approaches have recently been used in aging studies with C. elegans, such as
screening for antioxidant and anti-aging food bioactives, due to the well-conserved aging
and stress-related pathways in this organism [61,62].

Using C. elegans as a model, we determined the effect of piceatannol, chicoric acid
and p-coumaric acid, phenolic compounds widely found in plant food [63–65], on lifespan
extension. All three compounds displayed strong antioxidant properties with a 15%–38%
reduction in internal ROS levels in C. elegans [66–68]. In addition, they improved the worms’
survival under the paraquat-induced oxidative stress condition [66–68]. As a hydroxylated
resveratrol derivative, piceatannol regulated oxidative stress responses via sir-2.1 (encodes
a homolog of NAD-dependent deacetylase sirtuin-1, SIRT1) and daf-16 (encodes a homolog
of Forkhead box O transcription factor, FoxO) [66], which have previously been suggested
as resveratrol’s targets [69,70]. Chicoric acid and p-coumaric acid, hydroxyl derivatives of
cinnamic acid, shared the same target, skn-1 (encoding a homolog of NRF2). Chicoric acid
also activated aak-2 (encoding a homolog of AMP-activated protein kinase α) [67], which
further contributed to its antioxidative activities.

Although piceatannol, chicoric acid, and p-coumaric acid exhibited potent antioxidant
properties in C. elegans, their lifespan extension capacities were not the same. Piceatan-
nol [66] and chicoric acid [67] significantly increased the mean lifespan by ~18% and ~24%,
respectively, compared to the control, while p-coumaric acid extended the lifespan only
under oxidative stress conditions [68]. These observations suggest that the antioxidative
property of the compounds is not a sole contributor to an extended lifespan. Similar
observations of enhanced oxidative stress responses without lifespan extension were also
reported for other food bioactive/ingredients [71–73].

Despite its several advantages, C. elegans also has limitations, such as a lack of partic-
ular organs and circulatory system [74]. Therefore, further investigations are needed to
evaluate the effects of food bioactives on aging and age-related diseases in C. elegans using
vertebrate animals and, eventually, humans [75].

2.4. Role of Phytochemicals in the Regulation of Mitochondrial Functions under Oxidative Stress

The therapeutic effects of stem cells are well-known in a clinical setting. Mesenchy-
mal stem cells (MSCs) and their secretory factors have been extensively used to develop
therapeutic drugs targeting tissue regeneration, anti-inflammation, and immune modula-
tion [76]. However, there are some limitations. MSCs cannot be produced indefinitely due
to their limited proliferation and replication capacity [77,78]. Furthermore, transplanted
stem cells exposed to a low-oxygen environment in target organs or bloodstream do not
function effectively due to reduced survival rate, differentiation potential, and prolifera-
tion [79,80]. MSCs exposed to oxidative stress trigger a cell protection mechanism known
as hypoxic adaptation. Recent studies have suggested that hypoxic adaptation is closely
related to mitochondria function vital to maintaining stem cell self-renewal ability [81].
Thus, using antioxidant bioactive molecules is a promising approach to help stem cells
adapt to oxidative stress, ultimately improving their therapeutic efficacy.

Phytochemicals, such as ascorbic acid, carotenoids, phenolic compounds, flavonoids,
and terpenoids, have potent antioxidant and anti-inflammatory effects [82]. Studies of
the regulatory effects of phytochemicals on mitochondria function have been limited to
their ROS-scavenging properties. However, it has emerged that phytochemicals may play
crucial roles in the regulation of MSC proliferation and differentiation by maintaining
mitochondrial functions in oxidative stress conditions [83]. Preconditioning of MSCs under
hypoxic conditions enhances their therapeutic effects via metabolic alterations in mito-
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chondrial functions [84]. Primary targeting functions related to mitochondrial physiology
during metabolic alteration include excessive mitochondrial respiration, accumulation of
mitochondrial ROS, altered mitochondrial dynamics, and mitophagy inhibition [85,86].
We found that BCL2/adenovirus E1B 19 KDa protein-interacting protein 3 (BNIP3) is a
major mitophagy regulatory protein induced by hypoxia in MSCs, contributing to sustain-
ing the therapeutic function of MSCs by maintaining mitochondrial ROS and membrane
potential homeostasis [87]. Interestingly, hypoxia-induced factor 1 α (HIF1α)-dependent
downregulation of BNIP3 under high-glucose was rescued by tetra-methylpyrazine, an
alkyl-pyrazine found in fermented cocoa beans [88].

Recent studies have also suggested that dietary phytochemicals, such as resveratrol, cur-
cumin, and sulforaphane, have protective effects against mitochondrial dysfunction [89,90].
The SIRT family is the primary target protein of resveratrol, a phytoalexin present in fruits,
in response to injury or infection. Resveratrol-activated SIRT1 induced SOD expression and
rescued apoptosis, lowering ROS levels in ischemic diseases [91]. Our previous studies
consistently showed that activation of SIRT3 reduces mitochondrial ROS and maintains
mitochondrial functions under oxidative stress, ameliorating apoptosis and replicative
senescence of MSCs [92,93]. Fucoidan, a sulfated polysaccharide found in the fibrillar cell
walls and intercellular spaces of brown seaweed, also enhanced the therapeutic effects of
MSCs in ischemic disease [94,95]. Importantly, fucoidan rescued ischemia-induced MSC
apoptosis by the induction of SOD-2 to scavenge mitochondrial ROS, suggesting that
fucoidan may be used for clinical application of stem cell therapy [96]. We also showed that
O-cyclic phytosphingosine-1-phosphate (cP1P), a phytochemical-derived novel molecule,
induced glycolytic metabolic alterations and suppressed mitochondrial ROS accumulation
via HIF1α nuclear translocation in an oxidative stress condition [84]. Therefore, cP1P has
great potential as a scalable bioactive molecule that can enhance the therapeutic efficacy of
MSCs for the treatment of various diseases.

2.5. Role of Cyclooxygenases in T Cell Differentiation and Function

Cyclooxygenase-1 and cyclooxygenase-2 (COX-1 and COX-2, encoded by the PTGS1
and PTGS2 genes, respectively) metabolize arachidonic acid to prostaglandin (PG) H2,
which is the substrate for synthases that generate specific PGs with varied and potent
biological effects [97]. COX-1 is constitutively expressed in most cell types and considered
the “housekeeping” isoform that produces PGs involved in maintaining normal cell/organ
function. In contrast, COX-2 is induced by pro-inflammatory cytokines, mitogens and
other environmental stimuli, e.g., LPS, allergens, and produces PGs involved in regulating
inflammatory processes [97]. The COX enzymes are major targets of the widely prescribed
non-steroidal anti-inflammatory drugs (NSAIDs), e.g., ibuprofen, aspirin, and selective
COX-2 inhibitors, e.g., celecoxib, which reduce prostanoid biosynthesis [98]. PG biosyn-
thesis is altered in individuals with SNPs in the PTGS1/2 isoforms [99–101]. While the
contributions of COX-derived eicosanoids to the pathogenesis of cancer and cardiovascular
disease are well documented, their role in the immune system in general and T cell function,
in particular, has been under-investigated.

COX-derived prostaglandins can regulate the differentiation of CD4+ T helper (Th)
cells to Th1, Th2, Th9 and Th17 subsets, which are key components of the adaptive im-
mune response. Dendritic cells (DCs) present allergens to naïve CD4+ T cells and produce
immunomodulatory cytokines that induce differentiation to specific Th cell subsets. Throm-
boxane A2 (TXA2) reduces the strength of DC/T cell interactions and suppresses T cell
differentiation [102]. PGE2 and PGI2 reduce DC-derived IL-12 formation and subsequent
Th1 differentiation [103,104]. We previously demonstrated that COX-1−/− mice have an
accentuated Th2 airway response after allergen challenge [105]. More recently, we found
impaired Th17 cell differentiation of COX-2−/− naïve CD4+ T cells with decreased Stat3
phosphorylation and RORγ expression [106]. Synthetic PGF2α and PGI2 enhanced Th17
cell differentiation in vitro. In contrast, selective COX-2 inhibition or siRNA knockdown of
the PGF2α (FP) or PGI2 (IP) receptors decreased Th17 cell differentiation in vitro. Impor-
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tantly, the administration of synthetic PGs restored the accumulation of Th17 cells in the
lungs of allergic COX-2−/− mice in vivo. Thus, COX-2 is a critical regulator of Th17 cell
differentiation and function during allergic lung inflammation via autocrine signaling of
PGI2 and PGF2α through their respective cell surface receptors [106]. Th9 cells promote
inflammation by stimulating cytokine release and leukocyte proliferation and are involved
in the pathogenesis of allergic asthma [107]. We found that COX-2 is a key negative regula-
tor of Th9 cell differentiation and function in the allergic mouse lung [108]. In vitro studies
revealed that both PGD2 and PGE2 suppress Th9 cell differentiation through activation of
their cognate DP and EP receptors, enhanced PKA signaling, and suppression of IL-17RB
and PU.1 expression. Pharmacologic treatment with PGD2 and PGE2 restored Th9 cell
differentiation and function in COX-2−/− mice in vivo. Importantly, we found that human
Th9 cell differentiation is also regulated by COX-2-derived eicosanoids.

Long before the discovery of COXs, members of ancient civilizations used natural COX
inhibitors for medicinal purposes. The Babylonian, Chinese and Greek civilizations recognized
the ability of poplar or willow bark extracts to reduce fever, inflammation, and pain [109].
These extracts were crude precursors to aspirin, which is widely used today. Aspirin acety-
lates and inactivates both COX-1 and COX-2 [110]. Other traditional herbal medicines are
now known to include compounds that also act as COX inhibitors; these include alkaloids,
terpenoids, stilbenes, flavonoids and saponins [111]. In addition, dietary regulation may
impact inflammatory diseases. Omega-3 fatty acid rich diets contain eicosapentaenoic acid
(EPA), which is metabolized to 3-series prostaglandins (e.g., PGE3, PGI3, TXA3) that are gen-
erally less inflammatory or have increased anti-inflammatory properties. For example, while
PGE2 displays potent pro-inflammatory induction of both COX-2 and IL-6 in macrophages,
PGE3-induced COX-2 and IL-6 induction is significantly lower [112].

In summary, COX enzymes and their eicosanoid products play a critical role in regulat-
ing immune cell function (Figure 1). Targeting cyclooxygenases and their eicosanoid prod-
ucts may represent a new approach to treating inflammatory diseases such as asthma [113].
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Dendritic cells (DCs) present antigens to naïve CD4+ T cells and produce cytokines which induce
T helper cell differentiation to Th1, Th2, Th9 and Th17 cell subsets. COX-derived eicosanoids can
affect Th differentiation and function in multiple ways. Thromboxane A2 (TXA2) inhibits the DC/T
cell interactions and reduces T cell differentiation. PGE2 and PGI2 inhibit production of IL-12 which
results in reduced Th1 differentiation and indirectly promotes Th2 differentiation. PGD2 and PGE2

promote Th9 differentiation while PGF2α and PGI2 suppress Th17 differentiation. Together, these
eicosanoids regulate the immune response.
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3. Neuroinflammation and Natural Products
3.1. Protective Effects of Phytochemicals on Blood–Brain Barrier Integrity after Ischemic Damage
to the Brain

Brain ischemia is one of the most critical neurological diseases. The majority of cases
are associated with occlusion of blood vessels in the brain, leading to damage, disability,
and reduction in patients’ quality of life [114,115]. The disruption of blood flow and
reperfusion causes an imbalance in potassium and calcium ion levels in the extracellular
fluid [116,117]. Calcium overload and subsequent high glutamate concentrations contribute
to neuronal damage by inducing neuronal swelling [116]. Ischemia/reperfusion generates
enormous amounts of ROS in the mitochondria, which increases the number of superoxide
anions and hydroxyl radicals that induce DNA adducts and peroxidation of unsaturated
fatty acids in the neuronal membranes [118]. Oxidative damage by ischemia/reperfusion
causes the release of pro-inflammatory cytokines, and disruption in the integrity of the
blood–brain barrier (BBB) facilitates the infiltration of leukocytes in the brain tissue after
ischemia [119,120]. Restriction of brain inflammation by immune intervention reduces
brain damage-induced ischemia [121]. Various studies have attempted to reduce the
neuronal damage induced by ischemia because alteplase is the only acceptable drug by
the FDA. However, the majority of the possible candidates showed some positive effects
against ischemic damage.

The BBB consists of endothelial cells and basal lamina in blood vessels wrapped by
foot processes of astrocytes and pericytes [122]. The endothelial cells are connected by tight
junctions, which seal the BBB to control the transport of water and molecules across the
barrier [122]. Ischemia causes impairment to the integrity of the BBB in a biphasic man-
ner [123]. ROS produced by ischemia/reperfusion significantly increase the permeability
transiently, which leads to partial recovery of the integrity of the BBB. Ischemia-induced
inflammation causes a late breakdown of the BBB and results in infiltration of leukocytes in
the brain tissue [124–126]. Transient forebrain ischemia activates matrix metalloproteinase
(MMP)-2 and MMP-9, which cause chemokine-induced migration of leukocytes [127] in
the ischemic penumbra and degrade the basal lamina in the blood vessels and endothe-
lial tight junction proteins, leading to the breakdown of the BBB [128,129]. Activation of
MMPs is tightly regulated by endogenous inhibitors of metalloproteinases (TIMPs), which
bind to the active and alternative sites of MMPs [130,131]. TIMP-1 overexpression and
synthetic MMP inhibitors reduce the disruption of the BBB and neuronal damage induced
by ischemia in mice and rats [131,132]. Aquaporin-4 (AQP4) plays an important role in the
transport of water in the brain, and its depletion in astrocytes significantly reduces water
permeability [133,134], resulting in the amelioration of neuronal damage and brain edema
after ischemia in AQP4-knockout mice [135]. Knockdown of FoxO3 significantly reduces
hypoxia-induced hyperpermeability of the BBB and increases MMP-3 mRNA in bEnd.3
endothelial cells [136]. Vascular endothelial growth factor (VEGF) is one of the angiogenic
factors in vascular endothelial cells, enhancing vascular permeability in the brain after
ischemia [137,138].

Studies have investigated the therapeutic effects of phytochemicals against ischemic
damage based on inhibition of disruption of the BBB (Table 1). Several phytochemicals
show neuroprotective effects against ischemic damage by reducing MMP-9 and/or TIMP-1
levels in the BBB. In a human study, sodium tanshinone IIA sulfonate reduced the MMP-9,
TIMP-1, and TIMP-2 levels in the serum of stroke patients who received recombinant tissue
plasminogen activator (rt-PA) [139]. Treatment with ascorbic acid, chlorogenic acid, crocin,
gastrodin, pinocembrin, and salvianolic acid A reduced BBB disruption by inhibiting
MMP-2 activation in rats after ischemia [140–146]. Also, administration of astragaloside IV
and ellagic acid reduced brain edema by AQP4 inhibition after ischemia in rats [147,148].
Dl-3-n-butylphthalide reduced the expression of caveolin-1, which contributes to tight
junction disassembly and BBB leakage [149] after ischemia. Hesperidin demonstrated neu-
roprotective effects against hypoxic damage by decreasing FoxO3 and increasing MMP-3
mRNA levels in bEnd.3 endothelial cells [150]. Juglanin was shown to inhibit VEGF and
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its receptor (VEGFR2) signaling to improve the integrity of the BBB after ischemia [151].
Therefore, phytochemicals that reduce the permeability of the BBB can be used in vari-
ous neurological disorders because many brain diseases are linked to the disruption of
this barrier.

Table 1. Phytochemicals that modulate the integrity of the blood–brain barrier after ischemia.

Phytochemical Animal Mechanism of Action Reference

Ascorbic acid Rat Downregulation of MMP-2 and MMP-9 [145]
Astragaloside IV Rat Downregulation of MMP-9 and AQP4 [147]

Baicalin Rat Downregulation of MMP-9 [152]
Chlorogenic acid Rat Downregulation of MMP-2 and MMP-9 [140]

Crocin Rat Downregulation of MMP-2 and MMP-9 [141]
Curcumin Rat Downregulation of MMP-9 [153]

Dl-3-n-butylphthalide Mouse Downregulation of Caveolin-1 [154]
Ellagic acid Rat Downregulation of AQP4 and MMP-9 [148]
Gastrodin Rat Downregulation of MMP-2 and MMP-9 [144]

Ginsenoside Rb1 Mouse Downregulation of MMP-9 [155]
Ginsenoside Rd Rat Downregulation of NF-κB and MMP-9 [156]

Hesperidin Mouse Inhibition of FoxO3a nuclear translocation
Downregulation of MMP-3/9 [150]

Icariside II Rat Downregulation of MMP-9
Upregulation of TIMP-1 [157]

Juglanin Mouse Downregulation of VEGF and VEGFR2 [151]
Melatonin Rat Downregulation of MMP-9 [158]

Pinocembrin Rat Downregulation of MMP-2 and MMP-9 [142]
Quercetin Rat Downregulation of MMP-9 [159]

Resveratrol Rat Downregulation of MMP-9
Upregulation of TIMP-1 [160]

Rutin Rat Downregulation of MMP-9 [161]

Salvianolic acid A Rat
Downregulation ofMMP-9

Upregulation of TIMP-1
Src phosphorylation at Tyr416

[143,146]

Sodium tanshinone IIA sulfonate
(with rt-PA) Human Downregulation of MMP-9 and TIMP-1 [139]

Tetrahydrocurcumin Mouse Downregulation of MMP-9
Upregulation of TIMP-2 [162]

Tetramethylpyrazine Rat Downregulation of JAK/STAT phosphorylation [163]

3.2. Fatty Acid Metabolites for the Treatment of Inflammation and Neuropathic Pain

The arachidonate cascade is where over 70% by mass of the world’s pharmaceuticals
act by blocking two of its three branches, which are predominantly pro-inflammatory, lead-
ing to pain, hypertension, and other pathologies. Drugs acting on the arachidonate cascade
include aspirin, indomethacin, ibuprofen, montelukast and others. We studied a third
branch of the cascade termed the P450 branch, which produces natural fatty acid metabo-
lites crucial for the resolution of inflammation and pain [164]. These natural metabolites
called epoxy fatty acids (EpFA) are made by the P450 enzymes acting on polyunsaturated
lipids from our diet. Our work has shown that these natural chemicals reduce the endo-
plasmic reticulum (ER) stress pathway, which is the underlying mechanism of diseases
such as diabetes, lung fibrosis, heart failure, and even senescence and aging [165]. The ER
stress pathway also can be activated by a variety of environmental contaminants.

After the EpFA are made by P450 or released from cellular membranes, they decrease
the ER stress response and inflammation, thus reducing the severity of many diseases and
symptoms such as pain. Although these natural product 1,2-disubstituted epoxides of fatty
acids are chemically stable, EpFA are rapidly hydrolyzed to products that lack analgesic
and pain-resolving properties and are somewhat pro-inflammatory. The hydrolysis is
carried out by a second enzyme called the soluble epoxide hydrolase (sEH). The sEH
enzyme is a homodimer of two α/β-fold monomers which converts the EpFA into their
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corresponding 1,2-diols. These diols have pro-inflammatory properties, are highly polar,
and are rapidly conjugated and excreted. Thus, by inhibiting the sEH or by its genetic
deletion, we can stabilize EpFA, increase their concentration, and stimulate resolution of
pain and inflammation.

We have found that the sEH enzyme increases disease states and inflammation in the
affected tissue, resulting in a decrease in EpFA. This, in turn, increases ER stress, triggering
pain, inflammation, hypertension, and other disorders. We have prepared nanobodies to
the sEH as a biomarker of inflammation and ER stress [166]. We have found that down-
regulating or inhibiting the sEH can block the harmful actions of ER stress and also the
toxicity of many environmental chemicals. Since EpFA are among the endothelium-derived
hyperpolarizing factors, much of the work in the field has been on on vascular and renal
inflammation, fibrosis, and heart diseases [167,168]. Recently we have looked increasingly
at chronic neurological diseases [169]. With animal models or human stem cell models,
we have shown that EpFA can prevent or even reverse such disorders as depression,
autism, Parkinson’s disease, and Alzheimer’s disease (AD) [170–174]. Recent studies have
indicated that sEH inhibitor (sEHI) can reduce colon tumorigenesis [175]. More broadly,
the sEHI blocks the metastasis and tumor growth that often follows chemotherapy and
resection [176]. These data suggest that NSAIDs could now be used to address this
double-edged sword of cancer treatment enhancing tumor metastasis, followed by the
more effective and safer sEHI. This fundamental knowledge allows us to understand
disease states better as well as indicate what environmental compounds or combinations
of compounds result in human risk.

From a translational perspective, we are introducing an injectable drug into the clinic
to treat equine laminitis, which is a usually fatal disease characterized by intractable pain
and inflammation, often in otherwise healthy horses. In parallel, we are providing the
same compound in an oral formulation to treat inflammation in horses, dogs and cats with
arthritis as an early indication [177,178]. We are taking forward a similar compound in a
different patent class, the human market, with chronic or neuropathic pain as our major
indication. We have investigational new drug approval from the US FDA through human
efficacy testing and have completed human phase 1A safety trials with no adverse effects.
Our specific clinical path is to address chronic pain with an oral compound, which is not
an NSAID, has no addictive potential, and can spare or replace opioid analgesics [179].
Our recent research has demonstrated that the significant increase in plasma levels of
regio-isomeric diols of linoleic acid formed by the sEH from the corresponding epoxides
are by far the most significant predictors of severe outcomes of COVID-19 compared to
over 120 other plasma biomarkers. These diols are termed leukotoxin diols and are both
associated with and are potential causes of respiratory failure in humans, dogs, and mice.
These pulmonary toxins may arise as an artifact of exceptionally high dietary linoleate in
the western diet [180].

3.3. Role of Passiflora incarnata L. (PI) in Neuroinflammation

People, particularly in developed countries, have high rates of insomnia [181–183],
disrupting the circadian rhythm. Exposure to light and darkness for an appropriate period
significantly affects memory and learning by affecting hippocampal neurogenesis [184]
and eating habits [185]. Lasting insomnia can cause severe neuroinflammation in the
brain [186,187], causing clinical symptoms, such as abnormal eating behavior, depression,
hormone secretion abnormalities, cerebrovascular diseases, cardiovascular diseases, and
AD [188,189].

Natural products with minimal adverse side effects, including Passiflora incarnata L.
(PI), one of the passion flowers, have recently received attention as an acute treatment
for mild insomnia. PI has been widely known as a medicinal plant for anti-anxiety and
sleep disorders in North America, Europe, Asia, Africa, and Australia for centuries. We
found that the chronic administration of PI induces sleep quickly without any alterations
in eating behaviors, body weight, and body composition while it significantly increases
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sleep duration compared to the vehicle-treated group. However, the identification of func-
tional pharmacologic ingredients of PI has been limited. It is suggested that vitexin, one
compound in PI, helps sleep and exerts anti-diabetic, anti-inflammatory and anti-AD ac-
tions [190–197]. We also confirmed that an ethanol extract of PI leaves and fruits has a high
level of vitexin. A small dose of this PI extract led to high levels of hippocampal neurogen-
esis in rodent models without any behavioral and metabolic changes [190]. Although sleep
was not induced, corticotropin-releasing factor (CRF) and glucocorticoid receptor (GR),
pivotal regulatory factors for the hypothalamo–pituitary–adrenal (HPA) axis, were reduced,
indicating its anti-stress effect. The vitexin and iso-vitexin present in PI have powerful
anti-inflammatory and neuroprotective effects, which are expected to have potential phar-
macologic effects for treating AD and other related diseases [192,198]. Our series of studies
also strongly suggest that PI has potent anti-inflammatory and sleep-inducing effects.

4. Antioxidant and Anti-Inflammatory Compounds in Cancer Prevention
4.1. Roles of NAG-1 Activated by Phytochemicals in the Prevention of
Inflammation-Mediated Tumorigenesis

Nonsteroidal anti-inflammatory drug (NSAID) activated gene-1 (NAG-1), also known
as Growth Differentiation Factor 15 (GDF15), has been shown to have anti-inflammatory
effects in NSAID-treated cells. In the last two decades, studies have demonstrated that
NAG-1 plays a crucial role in various diseases, including inflammation, cancer, anorexia,
cachexia, cardiovascular disease, neurodegenerative disease, diabetes, and obesity. Many
anti-inflammatory phytochemicals are known to increase NAG-1 expression, preventing
tumorigenesis.

Chronic inflammation can cause DNA damage in colon epithelial cells, which even-
tually turn into neoplastic lesions [199]. Several natural compounds have been reported
to prevent colorectal cancer in vitro. 2′-Hydroxyflavanone, a compound rich in citrus
fruits and vegetables, induced cell cycle arrest and apoptosis in HCT-116 cells, a human
colorectal cancer cell line [200]. Apigenin, another naturally abundant molecule in fruits
and vegetables, such as parsley, citrus fruits, and teas, exerted similar effects concomitantly
with NAG-1 up-regulation promoted by PKCδ activation in HCT-116, LoVo, SW480, and
HT-29 cells [201]. There was also an increase in NAG-1 expression with apoptosis when
HCT-116 cells were treated with (−)-epigallocatechin gallate (EGCG) and (−)-epicatechin
gallate (ECG), polyphenols in green tea [202], caffeic acid phenethyl ester (CAPE) [203],
capsaicin [204], and isoliquiritin-genin, a chemical compound found in licorice [205]. Sim-
ilarly, formononetin, commonly found in red clover and beans, exhibited apoptotic cell
death, as evidenced by poly (ADP-ribose) polymerase cleavage, apoptotic body, and in-
creased Annexin V-positive cells with NAG-1 upregulation in HCT-116 [205]. Pino-sylvin,
a fungi-toxicant that protects wood from fungal infections, also increased NAG-1 mRNA
and protein levels, along with induction of p53 in HCT-116 cells [206]. Similarly, silibinin, a
flavonolignan extracted from milk thistle, exhibited antioxidant and antineoplastic activi-
ties, and increased NAG-1 mRNA and protein levels via the modulation of EGR-1 and p38
MAPK pathways, but not p53 or ATF3 in HT-29, a human colon carcinoma cell line [207].

In addition to colorectal cancer, several phytochemicals have been shown to inhibit
prostate, lung and gastric cancer. 18α-Glycyrrhetinic acid, a bioactive triterpenoid in
licorice, decreased the expression of pro-inflammatory cytokines, including HMGB1, IL-6,
and IL-8, while increasing NAG-1 mRNA in a human prostate cancer cell line DU-145 [208].
Isochaihu-lactone also increased NAG-1 expression in LNCaP, a human prostate cancer
cell line, with the induction of EGR-1, possibly by modulating JNK1/2 [209]. Treatment
of A549 cells with isochaihu-lactone induced NAG-1 by activating EGR-1 on the NAG-
1 promoter [210]. Human lung carcinoma cell lines A549 and NCI-H460 treated with
Taiwanin A showed decreased cell viability with increased NAG-1 protein, and JNK
inhibitors decreased NAG-1 mRNA levels [211]. Treatment of AGS, a human gastric
adenocarcinoma cell line, with hispidulin, a naturally occurring flavone, also induced
cell cycle arrest, apoptosis and NAG-1 expression, while COX-2 expression was down-
regulated by the activation of ERK1/2 [212].
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Overall, many phytochemicals with an anti-inflammatory activity increase NAG-1
expression in cancer cell lines by mechanisms involving EGR-1, p53, ATF3, C/EBPβ or
kinase alterations. Two forms of NAG-1, i.e., pro- and mature form, exist in cells and both
forms are likely to be up-regulated when cells are treated with phytochemicals. In addition
to cancer, NAG-1 induction may help prevent obesity, which is a chronic inflammatory
condition. NAG-1 induction results in the activation of the GFRAL receptor in the brain,
causing a reduced appetite. Therefore, several NAG-1-inducing phytochemicals listed in
Table 2 may prevent obesity and its associated diseases.

4.2. ROS-Inducing Natural Products as Anticancer Agents

Plant extracts have long been used to treat diverse ailments and diseases, and they
are still popular remedies. Beginning in the 19th century, individual phytochemicals and
microbial-derived compounds have rapidly developed into major sources of new drugs
for chemotherapeutic applications [213–215]. Moreover, these natural products have also
served as templates for—more potent derivatives/analogs such as the taxanes (paclitaxel)
and the second-generation synthetic analogs. Several anticancer drugs, including natural
product-derived anticancer agents such as curcumin, phenethyl-isothiocyanate (PEITC),
benzyl-isothiocyanate (BITC), betulinic acid, and piper-longumine celastrol, and synthetic
triterpenoids derived from glycherretinic acid and oleanolic acid are cell-specific ROS-
inducing anticancer agents, and we have identified possible mechanisms of action for these
ROS-inducing agents [216].

Table 2. Anti-inflammatory phytochemicals that increase NAG-1 expression.

Phytochemical Cell Line Dose (µM) Mechanism of Action Reference

2′-Hydroxyflavanone HCT-116 5–40 EGR-1 [200]
6-Gingerol HCT-116 25–200 PKCε, GSK-3β [217]

18α-Glycyrrhetinic acid DU-145 100 - [208]
Apigenin HCT-116, LoVo, SW480, HT-29 0.1–10 PKCδ [201]
Berberine HCT-116, Caco-2, HepG2 1–100 PKCε, GSK-3β, ERK1/2, EGR-1 [218,219]

CAPE HCT-116 1–25 ATF3 [203]
Capsaicin HCT-116 1–100 GSK3β, C/EBPβ, ATF3, PKCδ [204]

Damnacanthal HCT-116, LoVo 1–100 ERK, C/EBPβ [220]
Diallyl disulfide HCT-116 4.6–23 p53 [221]

DIM HCT-116 12.5–50 ATF3 [222]
Green tea (EGCG/ECG) HCT-116 1–100 ATF3, EGR-1 [202,223,224]

Genistein HCT-116, A549 25–100 p53 [225,226]
Formononetin HCT-116 6.25–400 EGR-1 [205]

Hispidulin AGS 6.25–100 ERK1/2 [212]
Indole-3-carbinol HCT-116 25–100 - [222]
Isochaihulactone A549, LNCaP, GBM8401 1.25–80 EGR-1, ERK1/2, JNK, DDIT3 [209,210,227,228]
Isoliquiritigenin HCT-116 2.5–160 EGR-1 [205]

Platycodon D U937 7.5–15 EGR-1 [229]
Pinosylvin HCT-116 60 p53 [206]

Pseudolaric acid B HT-29 1–25 EGR-1 [230]
Quercetin HCT-116, Huh7 5–40 EGR-1, p53 [231]

Resveratrol HCT-116, A549, U2OS, S2-013, CD18 10–100 p53, RNA stability [232,233]
Silibinin HT-29 50–100 EGR-1, p38 MAPK [207]

Taiwanin A A549, H460 1.25–80 JNK [211]
Xanthorrhizol HCT-116 25–100 - [234]

The anticancer activities of curcumin, betulinic acid and methyl 2-cyano-3,12-dioxooleana-
1,9-dien-28-oate (CDDO-Me, Bardoxolone methyl), a synthetic triterpenoid derived from
oleanolic acid, exhibited several common features [235–238]. These compounds induced
ROS, which is a critical response, and as co-treatment with antioxidants or catalase (to
breakdown hydrogen peroxide) ameliorated most of the drug-induced inhibition of growth
and migration/invasion and induction of apoptosis. In addition, these ROS inducers also
downregulated expression of specificity protein (Sp) transcription factor (TFs) Sp1, Sp3
and Sp4, and several pro-oncogenic Sp-regulated genes, including survivin, bcl-2, receptor
tyrosine kinases and VEGF. Thus, drug-dependent induction of ROS resulted in targeting
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Sp TFs, which was complemented by the studies showing that hydrogen peroxide, t-butyl
hydroperoxide and other ROS/H2O2 inducers (e.g., arsenic trioxide and ascorbic acid) also
decreased Sp TFs [235,239,240]. The functional and clinical significance of ROS-dependent
downregulation of Sp TFs is supported by separate studies showing that knockdown of
Sp1 or Sp3 and Sp4 (alone and in combination) decreased cancer cell growth, survival and
migration/invasion, and tumor growth, mimicking the effects of ROS-inducing anticancer
agents, in a mouse xenograft model [241,242].

Scott et al. [243] showed that microRNA-27a (miR-27a) suppressed the transcriptional
repressor ZBTB10, which was previously reported to inhibit Sp1-dependent activation of
gastric gene expression, possibly by competition with Sp1 for GC-rich Sp binding sites on
the gastrin gene promoter [244]. Our results showed that miR-27a suppressed ZBTB10 in
cancer cells and antisense miR-27a induced ZBTB10 expression with downregulation of
Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes [245]. Subsequent studies showed that
miR-27a also repressed ZBTB34 expression and miR-17-92 complex miRs block expression
of ZBTB4 and both ZBTB34 and ZBTB4 overexpression downregulated Sp TFs [246]. The
connection between ROS and the miR-ZBTB-Sp pathway was substantiated by several
studies showing that ROS/ROS-inducing anticancer agents decreased miR expression
and induced ZBTB4/10/34 which in turn downregulated Sp TFs and pro-oncogenic Sp-
regulated genes [235,247–250].

O’Hagan et al. [251] treated colon cancer cells with hydrogen peroxide and observed
genome-wide shifts of repressor complexes from non-GC-rich gene promoters, and this
was accompanied by decreased expression of several genes, including cMyc. There is
evidence that cMyc regulates the expression of multiple miRs, including miR-27a and
miR-17-92, and we showed that ROS-inducing anticancer agents also decreased cMyc
expression [248–250]. Subsequent studies showed that the effects of cMyc knockdown
resemble those observed for ROS, resulting in decreased expression of miR-27a/miR-17-92,
induction of ZBTB4/10/34 and downregulation of Sp TFs and pro-oncogenic Sp-regulated
genes (Figure 2). Deviations from this pathway may be observed if one or more genes
(miR/ZBTBs) are not expressed in a particular cancer cell. The identification of this ROS-
mediated pathway will be important for the design of drug combination therapies where
Sp TFs are a direct target, since multiple drugs induce this response, and some may be used
interchangeably. ROS inducers also downregulate many Sp-regulated genes associated
with drug resistance, and their use in combination drug therapies could counteract the
development of drug resistance, which is commonly observed for many chemotherapies.
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5. Identification of Biochemical Targets of Bioactive Compounds

Natural products have been used as medicines and remedies throughout human
history. Diverse structures, high potency, and selectivity of natural products have led to
the successful discovery of many drugs. Identifying molecular targets of natural products
is pivotal in pharmacological research and drug discovery. This involves elucidation and
characterization of the interactions between a bioactive molecule and its specific molecular
target, which is commonly an enzyme or receptor. Four cases of our recent work are
described here to illustrate how putative molecular targets have been initially identified.
The intent is to share our lessons and experiences for biochemical target identification
of bioactive compounds with serendipity and tools of mass spectrometry (MS) based
proteomics, patch clamp, surface plasmon resonance, and bioassays.

The first is a serendipity case—identification of the C-glycosyl-flavone iso-orientin,
isolated from corn silk, inhibiting glycogen synthase kinase-3β (GSK-3β) [252]. The result
was a surprise because GSK-3β was the first kinase arbitrarily selected in our experiments
to screen chemical isolates from corn silk after the isolates showed little activity against
an acetyl cholinesterase. Overactive GSK-3β is responsible for hyperphosphorylation
of tau protein. Isoorientin specifically inhibits GSK-3β via substrate competition. It ef-
fectively attenuates GSK-3β-catalyzed tau hyperphosphorylation and is neuroprotective
against amyloid-induced neurotoxicity in human SH-SY5Y cells. It is known that hyper-
phosphorylation of tau proteins in neurons plays a pivotal role in the pathogenesis of
Alzheimer’s disease (AD). Molecular, cellular and in vivo studies showed that isoorientin
and its semi-synthetic analogs engage with GSK-3β, and they are relevant to neuroinflam-
mation [253,254].

The second is use of MS-based quantitative proteomics to identify putative molecular
targets [255]. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer.
The low efficacy in current chemotherapies calls for new alternatives to prevent or treat
NSCLC [255]. 24-Methylenecyloartanyl ferulate (24-mCAF) isolated from rice bran oil is
cytotoxic to NSCLC cells. The idea stemmed from the anti-inflammatory and anti-cancer
activities of γ-oryzanol, a major component of rice bran oil [256]. An isobaric tag for relative
and absolute quantitation-based quantitative proteomics analysis suggested that 24-mCAF
inhibits cell proliferation and activates cell death and apoptosis in A549 cells. 24-mCAF
up-regulates Myb binding protein 1A (MYBBP1A), a tumor suppressor. In vitro enzymatic
assays confirmed that 24-mCAF inhibits the activity of AKT and Aurora B kinase, two
Ser/Thr kinases involved in MYBBP1A regulation, and they may be important therapeutic
targets in NSCLC.

In the third case, a potential neuron target was first noted by swift toxic action of
putative compounds to fruit flies and extremely steep dose-mortality curves [257]. The
monoterpenoids linalool, estragole, and methyl eugenol are the bioactive chemicals in
many essential oils, such as basil oils. Basil oil and the monoterpenoids have been widely
used for health benefits and pest insect control. However, the molecular target of those
chemical constituents is not well understood. The γ-aminobutyric acid type A recep-
tors (GABAAR) and nicotinic acetylcholine receptor (nAChR) are well-known primary
molecular targets of synthetic insecticides. We, therefore, studied the electrophysiological
effects of linalool, estragole, methyl eugenol, and citronellal on GABAAR and nAChR to
further understand their versatility as traditional medicines and insecticides [258]. The
results revealed that linalool inhibits both GABAAR and nAChR, which may explain its
insecticidal activity. Linalool is a non-competitive inhibitor of GABAAR as evidenced
by the negligible influences of linalool on the half-maximal effective values of GABA for
the rat α1β3γ2L GABAAR. The half-maximal inhibitory concentration of linalool on the
GABAAR was approximately 3.2 mM. As multiple monoterpenoids are present in the same
essential oil, it is likely that linalool synergistically interacts with terpenoids, thus offering
a possible explanation for its sedative and anticonvulsant effects as well as insecticidal
activities [257,258].
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The fourth case demonstrates how drug affinity responsive target stability (DARTS)
and surface plasmon resonance (SPR) methods were used to identify biochemical targets of
dihydromyricetin in 3T3-L1 adipocytes [259]. Dihydromyricetin, a flavanonol, is isolated
from Ampelopsis grossedentata, an herb plant known for its weight-losing ability. Cell studies
show that dihydromyricetin and epigallocatechin gallate effectively reduce intracellular
oil droplet formation in 3T3-L1 cells. Although dihydromyricetin inhibits adipogenesis,
the molecular target was not identified. DARTS and SPR experiments demonstrate the
direct interactions of dihydromyricetin and EGCG with the 78-kDa glucose-regulated
protein (GRP78), having a dissociation constant of 22 µM and 16 µM, respectively. GRP78
is essential for adipocyte differentiation and adipogenesis. Therefore, the results suggest a
new understanding of dihydromyricetin in the modulation of obesity and its anti-obesity
implications.

6. Nano-Delivery of Bioactive Compounds in Foods for Disease Prevention

Many food-derived bioactive compounds vary in their physical, chemical, and biolog-
ical properties. They are present in a limited quantity in foods, and the complex structures
of food matrices may limit their bioavailability. Extracting bioactive compounds with
known bioactivities and incorporating them in processed food products may maximize
their health benefits. However, there are several challenges. Many bioactive compounds
are water-insoluble and are not distributed evenly in food matrices; many compounds are
present as crystalline structures, leading to low bioavailability; and they can be degraded
over time. The degradation is triggered or accelerated by factors, such as oxygen, UV,
catalysts (e.g., multivalent cations), and heat [260]. As food products usually require a long
shelf-life, the stability of bioactive compounds should be maintained during processing
and storage. Lastly, some bioactive compounds are unstable in gastrointestinal conditions
and are absorbed poorly, and some may present toxicity if their dose and safety are not
adequately assessed [261].

Nanoparticles have unique properties in incorporating lipophilic bioactive compounds
in foods. The ability to maintain the transparency of beverages is a unique feature of
nanoparticles. However, the large surface area of nanoparticles may accelerate the degra-
dation of encapsulated compounds during storage. Lipophilic compounds can be in-
corporated in biopolymers using various mechanisms such as molecular binding and
manipulation of solubility. For example, anti-solvent precipitation is an encapsulation
mechanism in which lipophilic bioactive compounds and a hydrophobic biopolymer are
first dissolved in alcohol, followed by mixing in water to induce precipitation and encap-
sulation of the compound in biopolymer nanoparticles; alternatively, lipophilic bioactive
compounds pre-dissolved in alcohol can be blended in a biopolymer solution to achieve
encapsulation during mixing [261]. Lipophilic bioactive compounds can also be dissolved
in lipid to prepare nanostructures in the forms of nano-emulsions, microemulsions, solid
lipid nanoparticles, and nanostructured lipid carriers [261]. To improve the convenience of
application and enable the use in solid foods, nanoparticles fabricated in liquid systems
can be prepared in powdered form. Freeze drying is commonly used but may be expensive
and less scalable than spray drying. The high temperature during spray drying may cause
the degradation of bioactive compounds and the de-structuration of nanoparticles. Cer-
tain protectants may be used to minimize the impact of drying on chemical and physical
properties of nanoparticles.

There are several factors to consider when developing nanotechnologies to incorporate
bioactive compounds in foods. Both bioactive compounds such as curcumin, carotenoids,
resveratrol, and polyunsaturated fatty acids and carrier materials such as proteins, polysac-
charides, and lipids are ideally derived from natural products permitted for use in food
products, although synthetic compounds with a structure identical to the natural ones, e.g.,
β-carotene, may be used as food additives [262]. Food-derived bioactive compounds are
likely the starting point to develop food-based intervention strategies as these compounds
may have fewer barriers in regulation, labeling, and consumer acceptance. The next step is
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to identify the dose needed for in vivo efficacy of each compound for disease prevention
and the cost of the compounds. The availability and sustainability of bioactive compounds
are critical for incorporation in foods. In food applications, purified bioactive compounds
may be too costly and may not be needed, and extracts rich in these compounds may
be more cost-effective. The next stage is to develop ingredients targeting specific food
applications based on physicochemical characteristics, processing and storage conditions,
and sensory properties. For liquid and semi-liquid products, encapsulation is likely to be
needed to ensure even distribution and prevent phase separation during storage. For solid
products, powdered ingredients, ideally encapsulation systems, are needed, which then
require scalable and cost-effective encapsulation technologies and food-grade, sustainable
encapsulation materials. The stability of bioactive compounds in foods during processing
and storage is evaluated to ensure the quantity consumed and no harmful reaction products
due to degradation. The encapsulated bioactive compounds, after incorporation in foods,
are to be re-evaluated for toxicity and their effectiveness in preventing diseases, as these
properties may be different from the encapsulation system alone [263]. Lastly, to determine
the commercial feasibility, consumer acceptance in terms of sensory properties (appearance,
texture, taste, and aroma) and labeling, regulatory compliance, and profitability of food
products incorporated with bioactive compounds needs to be established.

7. Conclusions

Significant advances have been made in developing therapies to treat metabolic and
chronic diseases triggered by inflammation and oxidative stress. However, several chal-
lenges and limitations remain, including drug resistance and side effects, which underscore
the urgency of developing new and safe preventive approaches. Thus, natural bioactive
compounds, including phytochemicals and various botanicals, emerged as promising
alternatives to traditional pharmacological approaches. Researchers at the 20th Frontier Sci-
entists Workshop discussed various natural products with antioxidant, anti-inflammatory,
immune-modulatory, and anti-cancer activities. A major emphasis was on disease preven-
tion via lifestyle intervention, including consumption of healthy foods that provide added
benefits through the natural antioxidant and anti-inflammatory bioactive compounds they
contain. Researchers at the Workshop concluded that continued efforts to identify and
characterize new antioxidant and anti-inflammatory phytochemicals, their mechanisms
of action, development of innovative technologies for incorporating them into our food
system and increasing their bio-availability are warranted to effectively combat metabolic
and chronic diseases that afflict modern society.
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