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Optimal Monthly Reservoir Operation Rules for
Hydropower Generation Derived with SVR-NSGAII
Mahyar Aboutalebi, M.ASCE1; Omid Bozorg Haddad2; and Hugo A. Loáiciga, F.ASCE3

Abstract:A novel tool is proposed that couples the nondominated sorting genetic algorithm (NSGAII) with support vector regression (SVR)
and nonlinear programming (NLP) to optimize monthly operation rules for hydropower generation. The SVR-NSGAII is applied to calculate
the optimized release for hydropower generation by minimizing (1) the error committed by the SVR in extracting the optimized operation
rule, and (2) the number of input variables used as predictors (the parsimony feature) in a regression model. The SVR calculates the optimized
reservoir release for hydropower generation based on input variables and parameters values that are found by the NSGAII. An evaluation of
results obtained for the Karoon-4 reservoir of Iran indicates that the SVR-NSGAII is well suited to calculate the optimal hydropower reservoir
operation rule in real time with approximately 90% accuracy. DOI: 10.1061/(ASCE)WR.1943-5452.0000553. © 2015 American Society of
Civil Engineers.

Author keywords: Support vector regression; Nondominated sorting genetic algorithm; Hydropower; Optimal operation rule.

Introduction

Hydropower is a clean energy source. Its share of electricity gen-
eration is 20% worldwide. Thus the importance of optimization hy-
dropower production by implementing efficient reservoir operation
rules is of utmost interest.

Various optimization techniques have been developed and
applied in the field of water resources systems such as reservoir
operation (Bozorg Haddad et al. 2011a; Fallah-Mehdipour et al.
2011b, 2012a, 2013a), hydrology (Orouji et al. 2013), project man-
agement (Bozorg Haddad et al. 2010b; Fallah-Mehdipour et al.
2012b), cultivation rules (Bozorg Haddad et al. 2009; Noory
et al. 2012; Fallah-Mehdipour et al. 2013b), pumping scheduling
(Bozorg Haddad et al. 2011b), hydraulic structures (Bozorg
Haddad et al. 2010a), water distribution networks (Bozorg Haddad
et al. 2008a; Fallah-Mehdipour et al. 2011a; Seifollahi-Aghmiuni
et al. 2011, 2013), operation of aquifer systems (Bozorg Haddad
and Mariño 2011), site selection of infrastructures (Karimi-
Hosseini et al. 2011), and algorithmic developments (Shokri et al.
2013). Only a few of these works dealt with the application of hy-
brid methods such as nondominated sorting genetic algorithm with
support vector regression (SVR-NSGAII) for deriving optimal
monthly operation rules for hydropower production.

Algorithms used to derive optimal reservoir operation rules
fall into three categories, namely, mathematical programming

techniques (MPTs) such as linear programming (LP), dynamic
programing (DP), and nonlinear programing (NLP); artificial intel-
ligence (AI), which includes artificial neural network (ANN) and
support vector machine (SVM); and evolutionary algorithms (EAs)
such as genetic algorithm (GA) and particle swarm optimization
(PSO). Hybrids of AI and MPT or EA have recently surfaced and
are becoming popular in water resource management.

Related to MPT, Simonovic (1992), Wurbs (1993), and Yeh
(1985) presented comprehensive overviews on the MPT used for
optimal operation of reservoirs. Yoo (2009) applied LP to maxi-
mize hydropower generation. Moieni et al. (2011) presented a
fuzzy rule-based model derived from stochastic dynamic program-
ming (SDP) model to calculate a steady-state policy for hydro-
power reservoirs operation. The proposed model was applied to
the hydropower operation of the Dez Reservoir in Iran and the re-
sults were compared with those obtained with SDP. Marano et al.
(2012) applied DP to optimize the management of a hybrid power
plant. Results indicated that the integration of compressed energy
storage (CAES) technology increased the economic benefit of
renewable sources and reduced CO2 emissions.

More comprehensive reviews and comments on the extraction
of reservoir operation rules based on MPT are found in Liu et al.
(2014) and Yin et al. (2014).

Related to AI, Saad et al. (1994) illustrated an application of
ANN to obtain optimal operation rule in a five-reservoir system.
Cancelliere et al. (2002) applied ANN to the derivation of the op-
erating rules of the Pozzillo Reservoir on the Salso River located in
Italy. Paulo and Toshiharu (2007) applied stochastic fuzzy neural
network (SFNN) coupled with a GA-based model to derive the res-
ervoir operation strategies considering water quantity and quality
objectives. Mousavi et al. (2007) compared the capability of ordi-
nary least-squares regression (OLSR), fuzzy regression (FR), and
adaptive network-based fuzzy inference system (ANFIS) in deriv-
ing reservoir operation rules for the Dez reservoir in Iran. Ji et al.
(2014) used SVM to derive optimal operation rule for reservoir
operation. The parameters of SVM were calibrated with a grid
search and cross-validation technique. More details about hydro-
power optimization based on based on AI methods are provided
by Madani (2011).
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Concerning EA, Oliveira and Daniel (1997) proposed monthly
operating rules based on the GA for a multireservoir system. Jalali
et al. (2007) introduced a multicolony ant algorithm (MCAA) to
solve for the operation of a 10-reservoir system by maximizing
the total efficiency of producing hydropower energy during 12 peri-
ods of operation. Gradient-based NLP methods can solve problems
with smooth nonlinear objectives and constraints. However, be-
cause of the dependence of NLP on initial estimated solution, these
methods can fail to find feasible solutions in large and highly
nonlinear hydropower multireservoir optimization problems, or
converge to local, nonglobal solutions (Barton et al. 1998; Cai et al.
2001; Bozorg Haddad et al. 2008b). Because of these limitations of
NLP to achieve a solution to maximize the hydropower production
in a multireservoir system, Bozorg Haddad et al. (2008b) proposed
the honeybee mating optimization (HBMO) algorithm to the oper-
ation of multireservoir system. Ostadrahimi et al. (2012) presented
and tested a set of operation rules for a multireservoir system, using
a multiswarm version of particle swarm optimization (MSPSO) ap-
proach and compared the results of the rule-based reservoir oper-
ation with the Hydrologic Engineering Center (HEC) Prescriptive
Reservoir Model (PRM) (Hydrologic Engineering Center 2003).
More discussion about the application of metaheuristic and EA
in water-resources management (WRM) are provided by Reed et al.
(2000), Yuan et al. (2008), Nicklow et al. (2010), Afshar (2012),
and Bolouri-Yazdeli et al. (2014).

In addition to the cited publications, many studies discussed the
capability of the hybrids of AI with MPT or EA in WRM such as
combinations of SVM and GA or PSO (Su et al. 2014; Sudheer
et al. 2014) to derive reservoir operation rules (Hasebe and
Nagayama 2002; Ponnambalam et al. 2003). Liu et al. (2006) com-
bined DP and neural network simplex (DPNS) to obtain refilling
operation rules in the Gorges Reservoir of the Yangtze River.

The review of previous pertinent publications reveals that AI
tools such as ANN and SVM are used as regression models to pre-
dict reservoir operation rules. The accuracy or performance of those
tools is assessed based on error indexes such as the root-mean-
square error (RMSE) calculated with predicted and optimized
reservoir releases, where optimized releases are obtained using DP
or NLP or other optimization methods. In any regression model,
however, one is confronted with two problems. The first is defining
the best values regression parameters, and the second is defining
the input regression variables used as the predictors among the
large number of possible variables, known as the model selection
problem. Several techniques have been used to tackle the first re-
gression problem (parameter selection), such as trial and error,
cross validation, proposed equations, and metaheuristic algorithms.
Metaheuristic algorithms have high precision and are computation-
ally efficient, they are widely used in finding the best regression
parameters. The second regression problem, identifying optimal
regressor or predictor variables, usually is handled by examining
various combinations of input variables or resorting to the use of
statistical criteria such as the Akaike information criterion (AIC).
The latter two techniques become excessively burdensome to apply
effectively when there is a very large number of possible input var-
iables in a regression problem. Moreover, considering all the pos-
sible variables as input variables leads to impractical complexity
and often leads to inadmissible regression solutions. For this rea-
son, the parsimony principle—that of using the smallest possible
number of parameters for designing a regression problem while
preserving acceptable accuracy of the solution—becomes a proper
solution strategy.

This paper proposes a new tool named SVR-NSGAII to calcu-
late optimal reservoir operation rules for hydropower production,
in conjunction with NLP. SVR predicts the optimal release in the

current period based on historical data such as inflow, reservoir
storage, and released volume in previous times. The NSGAII pro-
vides SVR parameters and selects historical (regression) variables
as (regression) predictors among many input data in terms of two
objectives, minimizing the prediction error of SVR and minimizing
the number of input variables (predictors). In other words, the
decision variable in this problem has two parts, selection of the
SVR parameters and of the input variables. The first objective of
NSGAII searches the best values of the SVR parameters and the
second objective searches the best combination of input variables
used as the predictors. The first objective function is used to
achieve accuracy and the second objective achieves parsimony in
parameter selection. The major advantage of SVR-NSGAII relative
to other methods is that it simultaneously achieves the best values
of SVR parameters and the best parsimonious combination of input
(regressor or predictor) variables in optimization reservoir opera-
tion rules for hydropower production.

Problem Definition

The objective function is the minimization of the sum of the
squared hydropower production deficits

Minimize Def ¼
XT
t¼1

�
1 − Pt

PPC

�
2

ð1Þ

where Def = relative deficit of hydropower generation; Pt = power
produced during the tth period (MW); PPC = installed capacity of
the reservoir’s power plant (MW), and T = number of operation
periods. Pt is calculated as follows:

Pt ¼ γ × E ×
Rt

PF ×Mt
×
ðHt − TWÞ

1,000
ð2Þ

where γ = unit weight of water (kg=m3); E = efficiency of the hy-
dropower plant; Rt = release of the reservoir during the tth period
(106 m3); PF = power factor of the generating installation; Mt =
units conversion coefficient during the tth period; Ht = water level
at the turbine inlet during the tth period (m); and TW = tailwater
level (m).

The constraints of the optimization model are as follows:
Continuity equation

Stþ1 ¼ St þQt − Spt − Rt − Evt ×
ðAt þ Atþ1Þ

2
ð3Þ

Constraints on reservoir storage

Smin ≤ St ≤ Smax ð4Þ

Constraints on reservoir releases

Rmin ≤ Rt ≤ Rmax ð5Þ

Constraints on power production

0 ≤ Pt ≤ PPC ð6Þ

Constraints on reservoir spillage

Spt ¼
�
Stþ1 − Smax if Stþ1 > Smax

0 if Stþ1 ≤ Smax
ð7Þ

where St, Stþ1 = reservoir storage at the beginning of tth and tþ 1st
periods, respectively (106 m3); Qt = inflow to the reservoir during
the tth period (106 m3); Spt = spillage volume of the hydropower

© ASCE 04015029-2 J. Water Resour. Plann. Manage.
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reservoir during the tth period (106 m3); Evt = reservoir evapora-
tion during the tth period (m); At, Atþ1 = reservoir’s water area at
the beginning of the tth and tþ 1st periods, respectively (km2);
Smin, Smax = minimum and maximum permitted reservoir storage,
respectively (106 m3); and Rmin, Rmax = minimum and maximum
permitted reservoir releases, respectively (106 m3).

Ht and At are defined as area-storage formulas

Ht ¼ p0 × S4t þ p1 × S3t þ p2 × S2t þ p3 × St þ p4 ð8Þ

At ¼ q0 × S4t þ q1 × S3t þ q2 × S2t þ q3 × St þ q4 ð9Þ
where p0, p1, p2, p3, and p4 = constant coefficients that convert
St to Ht; and q0, q1, q2, q3, and q4 = constant coefficients that
convert St to At.

Methodology

A brief review of SVM, SVR, NSGAII, and SVR-NSGAII is
presented in the following.

Support Vector Machine

SVM theory was first investigated by Vapnik (1995). SVM is
commonly applied to data classification, regression analysis, and
clustering analysis (Maity et al. 2013; Bozorg Haddad et al.
2013, 2014). The regression form of SVM (i.e., SVR) is briefly
outlined.

Support Vector Regression

SVR identifies a linear function that relates dependent (predicted)
variables and independent (regressor or predictor) variables by min-
imizing a generalized error function. SVR provides a suitable re-
gression model for extracting reservoir operation rules from noisy
data that may contain outliers (Ji et al. 2014).

The main equation of SVR used for prediction (the output data)
is a linear function, which is as follows:

fðxÞ ¼ wTr · xþ b ð10Þ
where x = vector of input variables; w = weighting vector of the
input variables; b = bias of wTr · x with respect to fðxÞ; Tr denotes
the transpose sign; and fðxÞ = output variable estimated by SVR.

In order to avoid the overfitting deficit, Vapnik (1998)
considered an error function called epsilon insensitive function
(e-insensitive function). This function is

jy − fðxÞj ¼
�
0 if jy − fðxÞj ≤ κ
jy − fðxÞj − κ ¼ ξ otherwise

ð11Þ

where y = observed output variable; κ = permitted error threshold
so that a prediction error less than κ is ignored; and ξ = considered
penalty for the prediction errors that are outside of the range
(−κ, þκ).

The main goal of SVR optimization is to minimize the
e-insensitive function and the w vector

Minimize
1

2
kwk2 þ C

Xm
i¼1

ðξ−i þ ξþi Þ ð12Þ

subject to ðwi · xi þ bÞ − yi < κþ ξþi ; i ¼ 1; 2; : : : ;m

yi − ðwi · xi þ bÞ ≤ κþ ξ−i ; i ¼ 1; 2; : : : ;m

ξþ; ξ− ≥ 0 ð13Þ

where C = penalty coefficient; m = number of training (calibrating)
data (sample size); ξ−i , ξþi = violation of the ith training point that
are located below and above the range (−κ, þκ), respectively; and
wi, xi, and yi ¼ ith weight, the value of input variable, and the ob-
served value of output variable in the training data set.

The decision variables of Eqs. (12) and (13) are w and b. In
other words, w and b are provided after completing the SVR train-
ing process. The estimated w and b are replaced into Eq. (10) to
obtain predictions ½fðxÞ� based on input variables (x).

Eq. (10) is a linear regression. SVR can be generalized to a non-
linear function by means of several kernel functions. The most
common kernel function is the radio basis functions (RBFs)
(Han and Cluckie 2004; Su et al. 2014). The nonlinear regression
form of SVR and RBF is written as follows:

fðxÞ ¼ wTr · Kðx; xiÞ þ b ð14Þ

Kðx; xiÞ ¼ exp

�
− jx − xij2

2γ2

�
i ¼ 1; 2; : : : ;m ð15Þ

where Kðx; xiÞ = kernel function (RBF in this study); and γ = RBF
parameter. The key task of SVR is to determine the values of the
parameters κ, C, and the kernel function parameter (γ). Huang and
Wang (2006) showed that the parameters values play an important
role in the performance of SVR.

Nondominated Sorting Genetic Algorithm

The NSGAII was developed by Deb (2001). It is a popular method
for multiobjective optimization based on nondominated sorting and
elitist selection. The NSGAII starts with the generation of a random
parent population and the objective functions are calculated for this
population. Next, the children population is created based on two
operators, namely, crossover and mutation, and the objective func-
tions are calculated for the children population. Then, the combined
population that includes parent and children is classified into fronts
(Front 1 is the best front) based on a ranking process called non-
dominated sorting. Afterward, the crowding distance is computed
for the members of each front and these members are sorted based
on the crowding distance. Finally, after the classifying and sorting
process, the combined population is truncated in the same manner
as the parent population, and the new population is ready to gen-
erate a children population for the next iteration.

Combined SVR-NSGAII

The proposed algorithm couples SVR and NSGAII and is described
in pseudocode in Fig. 1.

As shown in Fig. 1, Step 1 is about initializing the variables that
are used in the pseudocode. In Step 2 the initial population is gen-
erated. The initial population includes chromosomes and each
chromosome has two parts including the input variables vector
(IV) and the SVR parameters vector (SPV). In Step 2, for example,
when the generation number (GN) is 1, the first part (the name of
the input variables, which is coded between 1 and 48) and the sec-
ond part (SVR parameters) of Chromosome 1 (that is randomly
generated) are [1, 5, 10, 35, and 48] and [C ¼ 10, k ¼ 5, and
γ ¼ 0.5] (Lines 1 and 2 in Step 2), respectively.

Then, SVR is executed (Line 3) and the RMSE of the SVR as
the first objective function and the number of input variables (five
input variables in this example) as the second objective function are
calculated (Lines 4 and 5). Next, the first and second objective
functions are merged (Line 6) and the algorithm returns to Line 1

© ASCE 04015029-3 J. Water Resour. Plann. Manage.
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in Step 2 and generates the next chromosome as long as the GN
exceeds then initial population size (the initial population equals
100 in this paper). Afterward, the NSGAII prepares the new
population for the main loop (Step 4) by applying nondominated
sorting, crowding distance, and sorting population to the initial
population (Lines 7 to 9).

In Step 4, which is the main loop (outer loop), according to the
crossover and mutation function, the algorithm continues to modify
and update the chromosomes (Line 10). Then, as indicated by Lines
3 to 6 in Step 2, the SVR runs and the accuracy of SVR (RMSE)
and the number of input variables are calculated and merged (Lines
10 to 14) and the algorithm returns to Line 10 to update and modify
the next chromosome until the GN is larger than the initial popu-
lation size. After the end of the inner loop, the parent and offspring
are merged and as indicated by Lines 7 to 9 in Step 3, the nondo-
minated sorting, crowding distance, and sorting population are ap-
plied to the updated population and finally the population is
truncated to size of the GN (Lines 15 to 19). At this time, Iteration
1 of the main loop is finished and the algorithm returns to Line 10
to start the next iteration until the maximum number of iterations
(Max it) reaches the terminal iteration number (= 1,000 in this ap-
plication)

Case Study

The SVR-NSGAII tool is applied to the Karoon-4 reservoir basin in
Iran. The basin area of the Karoon-4 reservoir is approximately

12,831 km2. Its dam is used to generate hydropower. It is located
180 km southwest of the city of Shahrekord, Iran.

A flowchart of the SVR-NSGAII algorithm is shown in Fig. 2,
where it is depicted that first the optimization model for the long-
term operation of the Karoon-4 reservoir is solved by using NLP
(with software Lingo 11.0). After solving this optimization prob-
lem, the optimized release (monthly) is selected as the benchmark
observed data for creating the SVR training (calibration) and test-
ing data set. This data set includes the monthly storage, inflow,
evaporation, and optimized release for hydropower generation dur-
ing the operation period. In order to extract the operation rule with
SVR-NSGAII the monthly storage, inflow, evaporation, and opti-
mized release variables with time delays ranging from 1 to 12 time
periods (that is, variables’ values at times t − 1; t − 2; : : : ; t − 12)
are considered as the input variables (predictors) and the optimized
release at the current time (t) is taken as the output variable. Then,
the data set is divided into two categories, namely, the training (cal-
ibration) data set (75% of the data points, based on random selec-
tion) and the testing data set (25% of the data points based on
random selection). Afterward, according to Fig. 1, SVR-NSGAII
is applied to the data set while the SVR parameters and the names
of input variables are considered as decision variables, and the
RMSE and the number of input variables are considered as the ob-
jective functions (to be minimized). In other words, in each itera-
tion of the SVR-NSGAII, the decision variables that include the
SVR parameters and the name of input variables are created. Next,
the decision variables are corrected according to the described
NSGAII process (mutation and crossover). The SVR-NSGAII is

Step 1. Initialize the input variables vector (IV), the SVR parameters vector (SPV), the parent vector 
(PV), the offspring vector (OV), the collect vector (CV), the generation number (GN), target vector of 
SVR (TVS), observed vector (OBV), cost vector (CTV) and the maximum iteration number (Max it). 
Step 2: while GN< terminal generation number 
(1) Generation random population for IV(GN) and SPV(GN) 
(2) Combine IV(GN) and SPV(GN) via PV(GN)=IV(GN) U SVP(GN) 
(3) Run SVR  
(4) Calculate RMSE between TVS and OBV as g1

(5) Calculate the number of IV as g2

(6) CTV(GN)=[ g1, g2] 
End while 

Step 3 
(7)  Apply non-dominated Sorting   
(8)  Calculate crowding distance   
(9)  Sorting Population 
Step 4: while Max it < terminal iteration 
                    While (GN) < terminal generation number 

(10) Generate OV (GN) based on mutation and crossover from PV (GN) 
      (11) Run SVR  

(12) Calculate RMSE between TVS (GN) and OBV (GN) as g1

(13) Calculate the number of IV (GN) as g2

(14) CTV (GN) = [g1, g2] 
                      End while 

(15) PV=Merge PV and OV 
(16) Apply non-dominated Sorting   
(17) Calculate crowding distance   
(18) Sorting Population 
(19) Truncate PV to GN 

End while 

Fig. 1. Pseudocode of SVR-NSGAII

© ASCE 04015029-4 J. Water Resour. Plann. Manage.
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a tool in which SVR is tasked with calculating the optimized re-
lease based on historical variables and the NSGAII is tasked with
finding the best value of the SVR parameters and selecting the
effective input variables used as the predictors by minimizing the
error function of SVR (RMSE) and the number of input variables
(according to the parsimonious feature of prediction). Finally, the
results are shown as Pareto fronts (or frontiers).

The optimization model for SVR-NSGAII is formulated as
follows:

Min g1 ¼ RMSE½y; fðxÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX 1

n
½y − fðxÞ�2

r
ð16Þ

Min g2 ¼ M ð17Þ

1 < M ≤ 48 ð18Þ
where g1 = accuracy of prediction simulation by SVR based on
the RMSE for testing data; g2 = number of input variables (M);

First Step:  Initialize the database

Run Lingo 11.0 to achieve the optimized monthly release from 
Karoon-4 hydropower reservoir by using the available data

Choose input variables used as possible predictors and 
output variables (release in current time) to implement SVR

Divide the database into training (calibration) data set 
(75%) and testing data set (25%) randomly

Second step: Solve the multiobjective optimal problem

Start SVR-NSGAII

First part

Specify the name of input variables

Second part

Specify the values for SVR parameters

Calculate objective functions

Run SVR

First objective function Second objective function

Calculate RMSE of the optimized 
release (from Lingo) and predicted 

release (from SVR) 

Calculate the number of input variables 
(parameter parsimony feature)

Stopping criteria

Max it =1000

Illustrate Pareto frontiers

End of SVR-NSGA II 

Yes

Modify Population

No

Generate Population (decision variable)

Fig. 2. Flowchart of the implemented SVR-NSGAII to derive optimal operation rule

© ASCE 04015029-5 J. Water Resour. Plann. Manage.
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n = number of testing data points; y = observed variable (optimized
released achieved with Lingo); and fðxÞ = estimated output vari-
able (optimized release estimated with SVR).

In addition to the RMSE, one statistic index is considered to
evaluate the accuracy of SVR-NSGAII

R2 ¼ 1 −
�P ½y − fðxÞ�2P ðy − ȳÞ2

�
ð19Þ

where R2 = determination coefficient.
The parameters of NSGAII and the ranges of the SVR param-

eters are listed in Table 1.

Results and Discussion

The optimization model of the Karoon-4 hydropower reservoir op-
eration was solved with Lingo 11.0 considering 576 months
(48 years from 1957 to 2005) as the period of operation. The value

of the objective function for this period equals 44.8. Next, the data
containing inflow, storage volume, release, and evaporation varia-
bles with 1- to 12-month delay times are considered the possible
predictors, and the release of the current month (the predicted var-
iable) are input to SVR-NSGAII. The following regression model is
used to calculate the operation rule of the Karoon-4 reservoir with
SVR-NSGAII:

R 0
t ¼ fðQt−1; : : : ;Qt−12; St−1; : : : ; St−12;

Evt−1; : : : ;Evt−12;R 0
t−1; : : : ;R 0

t−12Þ ð20Þ

where R 0
t = optimized release during month t; and R 0

t−1 = optimized
release during month t − 1, which is calculated with Lingo 11.0.
There are 48 possible predictors considered in the regression model
[Eq. (20)] to predict R 0

t . Solving the optimization problem with
SVR-NSGAII yields the SVR parameters and the effective predic-
tors in form of Pareto frontiers. The Pareto frontiers with hypervo-
lumes indicator (HI) (Zitzler and Thiele 1998) that measure the size
of the space covered or the size of dominated space are shown
in Fig. 3.

It is seen in Fig. 3 that the range of g1 (RMSE) that is calculated
for the testing data is between 21.5 and 35.4 and the range of g2
(number of input variables) is between 1 and 9. In other words, only
one to nine variables were selected by SVR-NSGAII among the 48
input variables that were considered as possible predictors. Also,
the results in Fig. 3 show that RMSE is reduced by increasing
the number of input variables from 1 to 9.

Table 2 lists the values of the decision variables with the objec-
tive functions for each Pareto point. It is seen in Table 2 that the
Pareto solution suggests nine points or combinations (A through I)
for extracting the operation rule. In other words, this Pareto solution
provides the different combinations that can be used to predict the
optimized release from the reservoir based on the available varia-
bles and the accuracy required. Also, the Pareto provides the best
values of SVR parameters for each suggested combination. For ex-
ample, if the operator decides to use the combination E for predict-
ing R 0

t , the selected regressors are Qt−1, Qt−8, Evt−1, St−2,
and R 0

t−1. The SVR is then run with the optimal parameters
(κ, C, γ) that correspond to the five predictors in combination E.

Fig. 4 depicts the accuracy of regression for the combinations
(or points) A, E, G, and I using training, testing, and the total data
sets. It is seen in Fig. 4 that every combination has acceptable ac-
curacy using training data, but only Models A, E, and G have
acceptable accuracy using testing data. Despite minimizing the
RMSE in the testing process, it seems that Model I suffers from
overfitting in the training process, which leads to an increase in
the error of SVR in the testing process. Considering these findings,

Table 1. Ranges of the SVR-NSGAII Parameters

Parameter Range or value

Range of C in SVR (0,100)
Range of κ in SVR (0,10)
Range of γ in SVR (0,1)
Probability of mutation in NSGAII 0.2
Probability of crossover in NSGAII 0.7
Number of members of the initial population 100
Maximum number of iterations (max it) 1,000

Fig. 3. Pareto frontier calculated with SVR-NSGAII

Table 2. Decision Variables with the Values of the Objective Functions Calculated with SVR-NSGAII

Point Selected predictors

SVR parameters
Objective
function

κ C γ g1 g2

A Qt−1 Qt−3 Evt−1 St−1 St−2 St−3 R 0
t−1 R 0

t−3 R 0
t−8 0.007 62 0.167 21.579 9

B Qt−1 Qt−8 Evt−1 St−1 St−3 St−8 R 0
t−1 R 0

t−3 — 0.010 62 0.232 23.579 8
C Qt−1 Qt−3 Evt−1 St−1 St−2 St−3 R 0

t−1 — — 0.003 63 0.186 23.812 7
D Qt−1 Qt−8 Evt−1 St−1 St−3 R 0

t−1 — — — 0.005 64 0.188 24.018 6
E Qt−1 Qt−8 Evt−1 St−2 R 0

t−1 — — — — 0.004 64 0.610 24.429 5
F Qt−1 St−3 Evt−1 R 0

t−1 — — — — — 0.006 64 0.620 26.552 4
G Qt−1 St−1 R 0

t−1 — — — — — — 0.028 60 1.696 30.142 3
H Qt−1 R 0

t−1 — — — — — — — 0.003 61 8.483 32.473 2
I R 0

t−1 — — — — — — — — 0.046 58 1.976 35.434 1
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combinations A through G are recommended for use in the predic-
tion of R 0

t .

Concluding Remarks

A novel method, the SVR-NSGAII, was used to derive the opti-
mized reservoir operation rule for hydropower generation based
on NLP. The NSGAII chooses the best input variables among
48 input variables that are possible predictors, and calculates the
best values of the SVR parameters. The SVR extracts the optimized
reservoir release for hydropower production based on a database
that is determined by the NLP method and historical data. The
key merit of SVR-NSGAII is its ability to determine the various
combinations of parameters and predictor variables that reservoir
operators can use to optimize the future reservoir release. The SVR-
NSGAII has two other attractive features: parsimonious parameter-
ization and parameter optimization. The SVR-NSGAII determines
the best combinations of calibrated parameters and smallest number
of predictor variables to be used in reservoir operation. This paper’s
application results have shown that the combinations that are de-
termined with SVR-NSGAII to calculate the operation rule of the
Karoon-4 hydropower reservoir have approximately 90% accuracy
in terms of their R2.
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