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The computational properties of the human brain arise from an intricate interplay

between billions of neurons connected in complex networks. However, our ability

to study these networks in healthy human brain is limited by the necessity to use

non-invasive technologies. This is in contrast to animal models where a rich,

detailed view of cellular-level brain function with cell-type-specific molecular iden-

tity has become available due to recent advances in microscopic optical imaging

and genetics. Thus, a central challenge facing neuroscience today is leveraging

these mechanistic insights from animal studies to accurately draw physiological

inferences from non-invasive signals in humans. On the essential path towards

this goal is the development of a detailed ‘bottom-up’ forward model bridging

neuronal activity at the level of cell-type-specific populations to non-invasive ima-

ging signals. The general idea is that specific neuronal cell types have identifiable

signatures in the way they drive changes in cerebral blood flow, cerebral metabolic

rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging),

and electrical currents/potentials (measurable with magneto/electroencephalo-

graphy). This forward model would then provide the ‘ground truth’ for the

development of new tools for tackling the inverse problem—estimation of

neuronal activity from multimodal non-invasive imaging data.

This article is part of the themed issue ‘Interpreting BOLD: a dialogue

between cognitive and cellular neuroscience’.
1. Introduction
Today, most major programmes in Neuroscience and Psychology have their own

functional imaging systems and laboratories. We can assess haemodynamic
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Figure 1. Conceptual relationship between physiological parameters and measurements in mice and humans across scales. Advancing our ability to infer microscopic
details of underlying physiology in the human brain from non-invasive methods requires parallel data acquisition in animals (e.g. mice) and humans, and a comp-
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microscopic ‘ground truth’ needed for the development of theoretical models. In parallel, multimodal non-invasive human data are needed to evaluate translation.
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changes with functional Magnetic Resonance Imaging (fMRI)

and functional Near-Infrared Spectroscopy, broad regional elec-

trical activity with magneto/electroencephalography (MEG/

EEG) and metabolism/neurochemistry with Positron Emission

Tomography. And yet, despite this widespread adoption, the

power of available human neuroimaging methods remains lim-

ited, leaving a gap between the macroscopic activity patterns

available in humans and the rich, detailed view achievable in

model organisms. Thus, a central challenge facing neuroscience

today is leveraging these mechanistic insights from animal

studies to accurately draw physiological inferences from non-

invasive signals in humans, essentially asking the fundamental

question: what information about neuronal circuit activity can

we reliably determine from non-invasive functional imaging

in humans? This question has been approached by many inves-

tigators in different ways [1–6], and our goal is not to provide a

detailed review of this work. Instead, in this opinion article our

goal is to outline a particular approach—a roadmap—based on

our recent work that has the potential to provide the basis for a

deeper interpretation of functional imaging in humans.

Our specific focus is on the physiological underpinning

of Blood Oxygenation Level Dependent (BOLD) fMRI [7,8]

combined with MEG/EEG [9,10] in the healthy cerebral

cortex. The central physiological phenomenon underlying the

BOLD effect is that, in areas that experience an increase in neur-

onal activity, cerebral blood flow (CBF) usually increases much

more than cerebral metabolic rate of oxygen (CMRO2), leading

to an increase in blood and tissue oxygenation that drives the

BOLD fMRI signal up. The biological function of this imbal-

ance of CBF and CMRO2 is still not fully understood, but is

likely to be a mechanism to prevent the tissue O2 concentration

from falling when CMRO2 increases [2,11–13]. Thus, the

BOLD signal reflects neuronal activity only indirectly through

its relationship with CBF and CMRO2. Furthermore, increasing

CBF and CMRO2 pushes the BOLD signal in opposite direc-

tions adding to the difficulty in interpretation (figure 1). If

the ratio of CBF and CMRO2 changes remained constant, the

BOLD signal could still be a reliable metric for the magnitude

of neuronal activity change, but there is now substantial evi-

dence that CBF/CMRO2 coupling varies in the same brain

region with stimulus intensity, attention, adaptation and after

ingestion of caffeine [14,15].
As a result of these limitations, in current practice we do not

know how to interpret BOLD fMRI studies in terms of the under-

lying brain physiology even at the vascular/haemodynamic

level in the healthy human brain, let alone in ageing and

disease. The intrinsic ambiguities of the BOLD signal under-

score the importance of a multimodal imaging approach [16].

The motivation for the current paper is the idea that, while

the BOLD signal alone is fundamentally ambiguous, the

combination of BOLD imaging with arterial spin labelling

(ASL) methods and the ‘calibrated BOLD’ approach (a.k.a.

‘quantitative fMRI’) makes it possible to isolate the effects of

CBF and CMRO2—the macroscopic physiological parameters

directly related to neurovascular and neurometabolic coupl-

ing [17–19]. This means that neuronal activity patterns that

differentially affect CBF and CMRO2 (e.g. net excitation

versus net inhibition) may be distinguishable with calibrated

BOLD. Furthermore, more detailed, time-resolved informa-

tion about activity of cell-type-specific neuronal populations

may become available from a combination of calibrated

BOLD with MEG/EEG, as long as these populations differen-

tially contribute to macroscopic electrical signals detectable

from the brain surface.

We emphasize cell-type-specific populations rather than

single neurons because brains of mammals, including mice

and humans, appear to be built from large populations of neur-

ons collectively performing similar function in a probabilistic

way. This is in contrast to invertebrates such as the nematode

Caenorhabditis elegans where a few individually identified neur-

ons can govern specific behaviours [20]. Thus, for human

neuroimaging, interpreting the data in terms of the respective

activity levels of cell-type-specific neuronal populations may

be sufficient for understanding circuit dynamics.

The ongoing large initiatives such as The BRAIN Initiat-

ive in the US and the Human Brain Project in Europe,

which aim to develop new experimental and computational

technologies and platforms, will undoubtedly advance our

ability to probe functional organization of the human brain

[21–23]. However, already today we can start tackling the

challenge of extracting cell-type-specific neuronal activity

from non-invasive imaging by designing parallel experiments

in animals and humans, integrating existing measurement

modalities and building computational bridges across scales.
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To illustrate this approach, we focus on the primary somato-

sensory cortex (SI) where ‘bottom-up’ models can be built

and calibrated taking advantage of well-studied neuronal

network phenomena such as the surround and transcallo-

sal inhibition [24–29]. In animals (e.g. mice), we can use

microscopic measurement technologies to precisely and quanti-

tatively probe concrete microscopic neuronal, vascular and

metabolic parameters while manipulating cell-type-specific

neuronal activity (figure 1, blue boxes). These microscopic

data can then be used to simulate the corresponding macro-

scopic physiological parameters (CBF, CMRO2 and current

dipole moment) and their reflection in non-invasive observables

(figure 1, red boxes) [30–32]. Thus, in mice, we can develop a

detailed forward model bridging neuronal activity at the level

of cell-type-specific populations to non-invasive imaging sig-

nals. Furthermore, we can validate this model at each step

against real data. For human translation, first we would have

to calibrate the model parameters to account for systematic

differences due to known physical scaling laws such as

differences in vessel size or latency of the cortical neuronal

response. Then, the remaining uncertainty in the translation of

model parameters from mouse to human (as well as the

measurement noise and subject-to-subject variability) would

be factored into a single Bayesian estimation framework [33]

to obtain estimates of the parameters of interest (i.e. activity

of cell-type-specific neuronal populations) and quantify the

uncertainty of estimation.

In this context, the key question is: What is the evidence for

the differential vasoactive role, energetic costs and electrical

currents/potentials associated with activity of different neuro-

nal cell types? That is, are there cell-type-specific signatures in

terms of how activity of a particular type of neurons affects

CBF, CMRO2 and current dipole? If so, multimodal non-

invasive imaging could potentially provide a much more

specific window on neuronal circuit activity in humans. The

remainder of the paper is a roadmap for reaching that end.
2. Microscopic regulation of dilation and
constriction

A growing body of data increasingly suggests that differential

vascular control originates from activation of specific neuronal

sub-populations through release of vasoactive signalling mol-

ecules [34–45]. In vitro (brain slice) studies in cerebral and

cerebellar cortices have demonstrated that spiking of specific

types of neurons can cause dilation or constriction of nearby

arterioles [41,45]. In vivo studies revealed a correlation between

arteriolar constriction and neuronal inhibition (figure 2a–e)

[38,46,47]. The vasoconstriction was abolished by blocking of

neuronal activity [38] and was found on the arterial side

while venous diameters stayed unchanged [48,49] suggesting

an active process rather than a passive ‘blood steal’. This con-

clusion was further supported by a modelling study [30].

These observations are consistent with reports of negative

BOLD signals in cortical regions that are expected to experience

inhibition such as those surrounding the centre of the neuronal

response (a.k.a. ‘surround inhibition’) and in the ipsilateral

hemisphere [29,46,50–54]. Some of these studies used simul-

taneous extracellular recording of multiunit spiking activity

to provide evidence of a decrease in neuronal firing (i.e. inhi-

bition) spatially coincident with the negative BOLD signal [46].
Dilation (and constriction) propagates along vascular walls

[55–58]. Therefore, identifying the location of the earliest

dilation is important for isolation of the local rather than

conducted neurovascular mechanisms. A body of work has

documented the temporal properties of stimulus-induced

diameter changes in surface (pial) arterioles, diving arteriolar

trunks, and their initial lateral branches (the first three to four

branching orders off the diving trunk) [38,47,59–62]. Two-

photon measurements at different depths revealed that the

earliest dilation onset occurs in deep cortical layers, below

layer IV (in the mouse, dilation in layer V starts approx.

500 ms prior to that in layer I) [63]. The dilation latency gradu-

ally increases with decreasing cortical depth (figure 2f,g)

[59–61,63] and, in the upper layers, also with increasing

branching order such that diving trunks precede their side

branches (figure 2h) [59]. The overall picture is consistent

with propagation of dilation from the deep layers towards

the cortical surface along diving arterioles, invading lateral

arteriolar branches on the way. These findings do not imply

that propagation within the vascular wall is the only mechan-

ism behind the observed timing gradients and do not rule

out local neurovascular communication in the upper layers.

In the presence of both local and conducted signalling, the

onset of dilation would be determined by the faster of

the two processes. However, substantial delays in the super-

ficial arteriolar branches suggest that local neurovascular

communication in the upper layers, if it exists, has slower kin-

etics. Gaining insight into the mechanisms generating these

temporal differences would lead to better understanding of

neurovascular coupling.

These temporal gradients are robust in our hands, but

remain controversial in the field. As such, the gradual decrease

in the latency of dilation with depth is in agreement with a

depth-resolved fMRI study in humans [64] but at odds with a

recent high-resolution fMRI study in rats [65]. This discrepancy,

however, may reflect the complex nature of the BOLD signal

that depends on the balance between O2 delivery and con-

sumption as well as on the measurement theory specific to the

chosen data-acquisition paradigm. Two-photon diameter

measurements, on the other hand, are direct and assumption-

free. A controversy exists also regarding the dependence on

the branching order. Specifically, one study reported that

stimulus-induced dilation of low-order branches, traditionally

known as the ‘precapillary arterioles’, can precede their parent

diving arteriolar trunks [62]; the same study unconventionally

labelled these low-order branches as capillaries. The reason for

the discrepancy between this result and data from our studies

is unclear. While the low-order branches (that may include

true capillaries) can dilate and constrict, high-order branches,

i.e. capillaries in the bulk capillary bed, do not possess contractile

elements and therefore lack active dilation or constriction [66–

68]. The same applies to veins although a slow and passive

increase in the venous volume in response to a steady-state

increase in neuronal activity has been reported [69].

Two-photon single-vessel measurements can be combined

with optogenetic (OG) stimulation, opening the door to study

neurovascular regulation with an unprecedented level of speci-

ficity (figure 3a,b). Because different types of neurons are wired

together in intact cerebral circuits, they are co-activated during

neuronal events, e.g. during the responses to an external stimu-

lus. For this reason, isolation of cell-type-specific neuronal

activity in vivo was virtually impossible prior to the arrival of

optogenetics [70]. The currently available OG tools offer both
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activation and inactivation of many neuronal cell types [71]. To

ensure specificity in such an experiment, care should be taken

to prevent the spread of activation to other neuronal cell types.

For example, unless synaptic communication is inhibited, OG

activation of excitatory pyramidal cells (PCs) may not provide

an advantage for the study of neurovascular coupling over sen-

sory stimulation: in both cases firing of many neuronal cell

types results in the release of a mixture of neurotransmitters

and peptides. Using OG stimulation and two-photon imaging,

we recently demonstrated that excitatory and inhibitory neur-

ons drive parallel dilatory pathways while virtually the entire

constriction response was explained by Neuropeptide Y

(NPY) presumably released from a specific class of inhibitory

neurons expressing NPY (figure 3c–h) [63]. OG stimulation

can be employed in haemodynamic studies also through
combination with fMRI and single-photon haemodynamic

measurements [72–76].

Release of neurotransmitters, neuropeptides and Kþ from

spiking neurons can activate cortical glial cells called astro-

cytes that have their own repertoire of vasoactive molecular

messengers synthesized and released in Caþþ-dependent

way [37,77–82]. Therefore, astrocytes have been hypothesized

to mediate neurovascular coupling. However, recent in vivo
imaging studies from us and others produced experimental

evidence inconsistent with this idea showing that, under

minimally invasive measurement conditions, the astrocytic

Caþþ excitability (i.e. the presence of either spontaneous or

evoked astrocytic Caþþ surges) is generally low and occurs

on the timescale that is too slow to drive dilation (figure 4)

[60,83,84]. One recent study arrived at a different conclusion
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showing fast astrocytic kinetics [85]. This fast signal, however,

could have resulted from a cross-talk with neuronal Caþþ

activity. Thus, the role of Caþþ-dependent release of astrocytic

vasoactive compounds in CBF regulation remains controver-

sial. In addition, we cannot rule out (currently unknown)

Caþþ-independent pathways as well as a potential astrocytic

role in sustaining dilation in response to a long-duration

increase in neuronal activity. Furthermore, the phenomenon

of glial Caþþ excitability differs between brain regions

[86,87], such that the role of glia in neurovascular communi-

cation may not directly translate from one region to the other.
Release of vasoactive messengers is not the only possible

neurovascular communication mechanism. In fact, attempts at

blocking the dilation response using a cocktail of pharmacologi-

cal blockers for all known neuronal and astrocytic vasoactive

messengers have not been successful [88]. In addition to trivial

explanations such as incomplete drug coverage or unknown mes-

senger molecules, the residual dilation may be due to vasoactive

metabolites or Kþ. Vasoactive properties of certain energy metab-

olites (e.g. lactate and CO2) are well documented [89–92].

However, cases of dissociation between the dilation response

and energy consumption on the microscopic scale in vivo suggest
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and a1 contours are overlaid. Each image was computed as an average of 10 consecutive ratio frames. The corresponding time windows (in seconds relative to the stimulus
onset) are indicated above the images. Scale bar, 10 mm. (e) Time-courses of astrocytic Caþþ change (top) and arteriolar diameter change in control (middle) and in
inositol 1,4,5-triphosphate IP3 type-2 receptor knock-out (IP3R2-KO) mice, in which the primary mechanism of astrocytic Caþþ increase—the release of Caþþ

from intracellular stores following activation of an IP3-dependent pathway—is lacking (bottom). An average is superimposed on each panel (thick lines). The stimulus
onset is indicated by the grey vertical line. Peak-normalized averaged control arteriolar diameter change (black) and astrocytic Caþþ response (red) are superimposed in
the inset.
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that, under normal physiological conditions, accumulation of

these vasoactive bi-products may not be sufficient to dominate

CBF regulation [38]. While vasoactive metabolites may reach

concentrations relevant for CBF regulation only in disease

(e.g. cortical spreading depression, epileptic seizures, hypoxia)

extracellular Kþmay act as a dilator within its normal physiologi-

cal range [93–95]. Kþ is released by all spiking neurons and can

activate Kir channels in the arteriolar smooth muscle causing

hyperpolarization and relaxation (i.e. vasodilation) [95]. Kir chan-

nels are also present in the endothelial cells [96] and can underlie

EC-mediated propagation of signalling along the vascular wall

[97]. Glial role in Kþ transport from the extracellular to perivascu-

lar space (known as ‘Kþ siphoning’) has also been proposed but

remains controversial [98–100]. Although further studies are

required to document the role of Kir channels in local and con-

ducted vasodilation in vivo, one or more of these Kþ-mediated

mechanisms may account for the residual dilation response

insensitive to the blockers of molecular signalling.
Thus, although multiple vasoactive mechanisms have

been identified, not all of them act at once. Rather, specific

pathways are likely to be selectively involved depending

on: (i) timescales, e.g. initiation and sustaining of dilation;

(ii) physiological or pathological conditions, e.g. normal

stimulus-induced hyperemia or CBF increase in response to

a seizure; (iii) local or global/regional nature of CBF regu-

lation; and (iv) proximity to the site of the initial dilation

(locally induced or conducted responses). Under normal

physiological conditions, neuronal signalling seems to play

the dominant role in driving arteriolar dilation and constric-

tion. In addition, rises in the extracellular Kþ associated with

neuronal firing may contribute to both local and conducted

response. In disease, aberrant neuronal activity and upregula-

tion of astrocytic Caþþ excitability can lead to the release of

vasoactive astrocytic messengers and accumulation of vaso-

active metabolites (e.g. lactate) ‘taking over’ the CBF control

[101–103].
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Figure 5. Two-photon imaging of pO2 and estimation of CMRO2. (a) A reference vascular image with an arteriole (labelled by a magenta cross). The fluorescent
contrast is due to intravascular FITC. Measured pO2 values are superimposed. The red contour indicates the segmented arteriolar territory. (b) The pO2 values from (a)
plotted as a function of the radial distance from the arteriole. (c,d) Stimulus-evoked time courses of pO2 change (d ) extracted from each of the measurement points
in (c). The thick line shows the average. (e) Intravascular pO2 measurements overlaid over a reconstructed microvascular network connecting a diving arteriole and a
neighbouring surfacing venule. ( f ) pO2 distribution measured inside diving arterioles. (i) MIP of a two-photon image stack. Scale bar, 50 mm. (ii) PO2 map inside
the arteriole (labelled by the red arrow in the image on top) 100 mm below the cortical surface. Scale bar, 20 mm. (iii) Radial intra-arteriolar pO2 profiles (radial
distance calculated from the vessel axis to the vessel wall) from four diving arterioles similar to the example vessel presented on the left. (g) Schematic of the Krogh
model parameters.
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3. Microscopic O2 transport and consumption
A large body of experimental studies has established the basic

properties of intra- and extravascular oxygen changes during

changes in neuronal activity [104–114] powering biophysical

modelling of O2 transport and consumption [115–118].

Recently, our ability to measure O2 with microscopic resolution

has been revolutionized by the arrival of specific optical probes

excitable in the two-photon regime [119–121] and the develop-

ment of two-photon phosphorescence lifetime microscopy

(2PLM) [122]. 2PLM allows measurement of both intravascular

and tissue-partial pressure of O2 ( pO2) with unprecedented

spatial resolution, and is well suited to imaging of pO2 changes

at the baseline as well as during functional activation

(figure 5a–e) [13,123–126]. 2PLM can also be used to estimate

blood flow in individual capillaries simultaneously with the

intracapillary pO2 [125].

2PLM offers a novel method for quantitation of CMRO2

based on pO2 gradients immediately surrounding diving

arterioles (figure 5a) [13]. This method is based on the assump-

tion that peri-arterial tissue—the area within an approximate

100mm radius around a diving arteriole—receives all of its

O2 from the arteriole. Several properties of the cortical vascula-

ture justify this assumption. First, two-photon imaging of the

vascular architecture in the rat and mouse SI indicates the

absence of capillaries around diving arterioles [127]. Second,

two-photon measurements of tissue pO2 around diving arter-

ioles show large gradients—a decrease in tissue pO2 moving

away from the diving arteriole—implying significant O2 deliv-

ery from the arteriole (figure 5a,b) [13]. Third, two-photon

measurements of intravascular pO2 within diving arterioles

demonstrate a pO2 decrease moving from the vessel centre

to the arteriolar wall indicating that O2 leaves through the

arteriolar wall (figure 5f ) [123]. Fourth, the intravascular
pO2 of diving arterioles decreases with increasing cortical

depth, again implying O2 delivery from the arteriole [123].

This last finding, originally reported under anaesthesia, was

not reproduced by a recent study in awake mice [128]. This dis-

crepancy, however, may be explained by the higher blood-flow

velocity resulting in lower O2 extraction fraction. In other

words, diving arterioles are likely to supply O2 also in awake

mice, but produce a negligible effect on the intravascular pO2

due to high flux of red blood cells. Measurements of tissue

pO2 in awake mice will be required to confirm this prediction.

Overall, this organization agrees with Krogh’s model of O2

diffusion from a cylinder (figure 5g) [129] where the required

condition is a single O2 source in the middle of the tissue

cylinder—the diving arteriole. This model is described by the

following equation:

pO2,tðrÞ ¼ pO2,A þ
CMRO2

4Da
ðr2 � R2

AÞ �
CMRO2

2Da
R2

t ln
r

RA

� �
,

where r is the radial distance from the arteriolar wall, pO2,A is

tissue pO2 measured at the outer vessel wall boundary, RA

is vessel radius, D is tissue O2 diffusivity anda is tissue O2 solu-

bility. The Krogh model also includes an external tissue radius

Rt which is estimated as the radius where pO2 gradient is zero

(a fitted parameter in the calculation along with CMRO2).

Assuming that CMRO2 is uniform for a particular cortical

layer, the estimate obtained from the peri-arteriolar tissue can

be treated as representative CMRO2 within a cortical column

(200–300 mm in diameter in the mouse SI). The assumption

of uniform CMRO2 is based on the locally uniform distribution

of neuronal and glial cells in the cortex—the absence of

anatomical differences between peri-arterial spaces and other

cortical regions [130]. Therefore, while at the cellular scale

CMRO2 may be heterogeneous, CMRO2 based on the area
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within an approximate 100mm radius around a diving

arteriole should represent an accurate local estimate. The

Krogh model can be extended to the dynamic regime (i.e.

changes in CMRO2 induced by neuronal response to a stimu-

lus) by considering two parallel processes: diffusion of O2

from the arteriole and consumption of O2 by tissue [131]. In

the future, a combination of 2PLM with OG stimulation will

allow profiling of O2 consumption associated with activity of

specific neuronal cell types and across different respective

levels of excitatory and inhibitory activity.

Since under normal physiological conditions neurovascu-

lar and neurometabolic coupling occur in parallel (figure 1),

we must think of CBF and CMRO2 as being driven in parallel

by neuronal activity, and potentially by different aspects of

neuronal activity: the CBF response is determined by the dila-

tory and constrictive agents released from active neurons

while CMRO2 response directly reflects the energetic costs

(associated mainly with neuronal repolarization [39,132]).
4. Bridging across spatial scales: from single-
vessel dilation to macroscopic cerebral blood
flow and cerebral metabolic rate of oxygen

Understanding neurovascular mechanisms requires access

to concrete microscopic parameters with high-resolution,

sensitivity and specificity. While such measurements are

achievable in animal experiments, non-invasive imaging in

humans is limited (at least, in its current practice) in resol-

ution and, often, by the indirect nature of the measured

signals. This is due to a complex relationship between

the measured non-invasive signals and the underlying

physiological variables (a.k.a. the ‘measurement theory’ pro-

blem). Therefore, individual microscopic measurements have
to be integrated within a computational model in order to

reconstruct the phenomenon on the macroscopic scale.

One example of such a model is the vascular anatomical

network (VAN) that allows a detailed, ‘bottom-up’ simulation

of macroscopic CBF and CMRO2 [30–32]. This model is

based on a realistic three-dimensional cortical microvascu-

lar network (e.g. 600 � 600 � 600 mm in Gagnon et al. [32])

populated with experimentally obtained microscopic measure-

ments of pO2 (from 2PLM) and CBF (using optical coherence

tomography). A three-dimensional microvascular angiogram

can be obtained in vivo using two-photon microscopy followed

by graphing and segmentation of the vascular network: from

the pial arterioles, through the capillary network to the

pial veins (figure 6a–c). pO2 distributions are then obtained

by modelling O2 transport and consumption using the advec-

tion–diffusion equation [133] with the experimental data

serving as boundary conditions. For simulation of activation

dynamics, experimentally obtained time courses of dilation

(e.g. as a function of the cortical depth and branching order)

are used as the input to the VAN model for calculation of

stimulus-induced changes in CBF and oxygen distribution

(figure 6d).

Furthermore, the VAN model permits simulation of

magnetic field perturbations as a function of specific pulse-

sequence parameters to predict the fMRI signal from first

principles. This is done by calculation of the microscopic distor-

tions in the magnetic field arising from the spatio-temporal

distribution of deoxygenated haemoglobin. Keeping track of

changes in the intravascular deoxygenated haemoglobin,

resulting from the dynamics of vasodilation and O2 consump-

tion, one can simulate the dephasing of protons, excited by

different pulse sequences, as they diffuse through the hetero-

geneous magnetic field (figure 6e,f). These predictions can

then be contrasted against real fMRI data to ensure validity

of the model [32].
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5. Bridging across spatial scales: from activity of
specific neuronal cell types to macroscopic
current dipole

The need to bridge between the micro- and macroscopic scale

also applies to non-invasive measurements of neuronal electrical

activity obtained with MEG or EEG that reflect the same physical

process but differ in their relative sensitivity to current dipoles

depending on their orientation and depth [134]. The MEG/

EEG signals are dominated by intracellular currents flowing

up and down the cortical column along cortical PCs [135]. This

is because in cerebral cortex PCs are aligned along the depth

axis forming a preferred orientation for the current flow that

can be captured from distance as the current dipole moment.

Other cell types lack a preferred orientation (e.g. excitatory stel-

late cells or parvalbumin-positive inhibitory basket cells) and/

or are present in small numbers (e.g. bipolar inhibitory neurons)

compared with PCs [136] such that their contribution to the

MEG/EEG signal is expected to be negligible.

Localization of current dipole from MEG/EEG data is a

difficult problem that has been addressed by many groups

using experimental and computational methods [9,135,137].

In the absence of additional priors, this problem is ill-

posed. In the SI, however, the location of neuronal activity

is known due to somatotopic maps. These maps can be vali-

dated/refined for each subject using fMRI. Thus, we can

obtain locations of cortical signal generators from fMRI and

get accurate estimation of the time course of neuronal activity

from EEG/MEG [10,138].

The dipole moment can be forward-calculated using

depth-resolved (laminar) extracellular recordings of Local

Field Potential (LFP) [139]. The laminar LFP profiles can be

used to obtain laminar Current Source Density (CSD) [140].

Then, the dipole moment is computed as the moment of

the current sources and sinks along the cortical depth

[141,142] (figure 7a,b). To generate a measurable dipole,

synaptic inputs have to arrive either at the top of PC dendritic

tree (apical dendrites) or at the bottom (the soma and basal den-

drites) [150,151]. Inputs covering the entire length of a PC or

those arriving exactly at the middle would not generate

a dipole. Fortunately, synaptic projections (i.e. projection

‘domains’) from at least some types of inhibitory neurons

onto PCs segregate along the depth axis (figure 7c) [143,152].

For example, somatostatin-positive Martinotti cells synapse on

the apical dendrites [153] while double bouquet cells positive

for neuronal nitric oxide synthase synapse at the basal dendrites

[143]. These different patterns of synaptic projections onto PCs

are expected to produce distinguishable laminar LFP profiles,

and some of these differences will survive in the corresponding

current dipole. For this reason, MEG/EEG signals can offer

additional constraints for the interpretation of fMRI data in

terms of activity of neuronal cell-type-specific populations. As

such, different types of inhibitory neurons may produce con-

striction (such as NPY), dilation, or have no vasoactive effect.

However, even when multiple types of inhibitory neurons
have the same vasodilatory effect, they may differ in the laminar

profile of their synaptic projection domains onto PCs resulting

in distinct contributions to the current dipole.

Thus, the idea would be to build a library of the laminar LFP

profiles due to OG stimulation of specific neuronal cell types

(e.g. Martinotti cells). The reason for using OG stimulation

would not be to reproduce natural or balanced neuronal activity

patterns. Rather, the goal is to produce artificially selective acti-

vation of specific neuronal populations for isolation of their

electrical (as well as vasoactive and metabolic) effects. A natural

laminar LFP profile (or the current dipole)—such as that

induced by a sensory stimulus in an intact cortical neuronal

circuit—can then be viewed as a weighted linear superposition

of these population-specific ‘primitives’ (due to the linear

superposition nature of electromagnetic signals [10,138,139]).

Experimental estimation of these primitives requires selec-

tive activation of a specific population of presynaptic neurons,

which can be achieved using optogenetics. A combination of

OG activation of a presynaptic population j with the laminar

LFP recordings would provide a CSD profile resulting from

currents in all PCs postsynaptic to j. To obtain CSD profiles

specific to a particular population of PCs (those with the cell

body located in layer II/III, layer V or layer VI), one can

employ computational decomposition methods [142,154]. Fur-

thermore, detailed ‘realistic’ models of cortical columns have

recently become available due to a decade-long effort by The

Blue Brain Project currently continuing under the umbrella of

The Human Brain Project. These models of synaptically con-

nected spiking neurons with realistic morphologies can be

combined with the physical principles governing generation
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of LFP [155,156] for prediction of LFP/CSD/dipole signals

resulting from complex circuit phenomena. These models

also allow testing for potential non-additive effects resulting

from active conductances (e.g. the Caþþ spike in PCs [157]).

Given experimentally derived knowledge on the vaso-

active role and energetic costs of activity for the individual

cell-type-specific neuronal populations, we may be able to

use neuronal network models to predict CBF and CMRO2

changes associated with specific circuit activity patterns. Trans-

lation to macroscopic fMRI signals, however, would still

require models like VAN that take into account vascular struc-

ture and the MRI measurement theory, such as sensitivity of

the fMRI signal to specific vascular compartments or

orientation of the main magnetic field relative to blood vessels.
.R.Soc.B
371:20150356
6. Estimation of cell-type-specific neuronal
activity from macroscopic cerebral blood
flow, cerebral metabolic rate of oxygen
and current dipole

Let us assume we had experimentally established cell-type-

specific time courses of vascular diameter changes, microscopic

pO2/CMRO2 and the laminar LFP/CSD profile. Let us further

assume that we used these data to simulate corresponding

macroscopic physiological parameters. Assuming a linear

superposition of the effects, natural stimulus-induced responses

can then be expressed as follows:

DFðtÞ ¼ SjW fjðtÞ � DSjðtÞ, ð6:1Þ
DCðtÞ ¼ SjWcjðtÞ � DSjðtÞ ð6:2Þ
and DDðtÞ ¼ SjWdjðtÞ � DSjðtÞ, ð6:3Þ

where DF(t), DC(t) and DD(t) are the observed macroscopic

CBF, CMRO2 and the current dipole moment, respectively;

Wfj(t), Wcj(t) and Wdj(t) are weighting factors per unit activity

for neuronal population of cell type j; DSj(t) is the amplitude

of neuronal activity for the population j and � represents a

temporal convolution.

As the release of vasoactive signalling molecules (and Kþ) in

neurons normally requires spike-induced depolarization, we

think of DSj(t) as the cell-type-specific spiking response. This

should not be interpreted as settling the classical question of

whether spiking or synaptic activity correlates better with

BOLD in favour of spiking. Historically, this question was motiv-

ated by the idea of a metabolic feedback. This idea postulated

that CBF increase was mechanistically driven by the accumu-

lation of vasoactive energy metabolites [92]. In our view, on

the other hand, neurovascular coupling under normal con-

ditions is governed by a feed forward mechanism, where

specific vasoactive signalling agents released by active neurons

drive dilation and constriction, depending on the cell type.

For CBF and CMRO2, DSj(t) in equations (6.1) and (6.2) can

be approximated as a delta function locked to an individual

neuronal event (as long as neuronal events are brief on the

haemodynamic timescale) and Wj(t)�DSj(t)—as a scaled

cell-type-specific impulse response function. Electrophysio-

logical signals, by contrast, are measured on the actual

temporal scale of neuronal activity. Therefore, for DD(t)
(equation (6.3)), DSj(t) represents a time course of spiking

activity for the cell type j. As DSj(t) in equation (6.3) stands

for spiking and DD(t) reflects currents (flowing up and down
PC dendrites), the cell-type-specific weighting factor Wdj(t)
can be thought of as the transfer function from the presynaptic

spikes in cell type j to postsynaptic currents in PCs. As some of

us described previously [142], cell-type-specific laminar CSD

can be expressed as the presynaptic spiking activity convol-

ved with an exponential function representing the resulting

postsynaptic currents in PCs. Therefore, Wdj(t) represent

the dipole moment of these postsynaptic currents. Finally,

the formalism described in equations (6.1)–(6.3) is based

on the assumption of linearity. The validity of this assumption

can be evaluated experimentally by performing direct

measurements of DSj(t) in response to the sensory stimulus

(e.g. using cell-type-specific expression of genetically encoded

Caþþ probes) and comparing the measured and estimated

DSj(t) across stimulus conditions.

In the simplest case of two considered cell types—

excitatory and inhibitory—we would have only two unknowns:

DSj for excitation and inhibition. Based on our recent study

attributing vasoconstriction in vivo to activation of NPY-posi-

tive inhibitory neurons (figure 3) [63], we predict that Wf(t)
for excitatory and inhibitory neurons will integrate to a positive

and negative number, respectively. Therefore, at steady state

(‘blocked’ experimental design), we would obtain positive DF
(an increase in CBF) for excitation and negative DF (a decrease

in CBF) for inhibition. This would be consistent with vasocon-

striction and negative BOLD previously observed by us and

others in the ipsilateral hemisphere experiencing transcallosal

inhibition [29,38,50,53]. For DC, we expect a smaller increase

in DCMRO2 due to activity of inhibitory neurons compared

with excitatory neurons [39,132]. However, inhibition can

suppress excitatory activity below the baseline resulting in net

negative DCMRO2, and experimental studies combining

2PLM with controlled manipulation of neuronal circuits will

be required to evaluate the net DCMRO2 across different

respective levels of excitation and inhibition.
7. Human translation
In the previous section, we were discussing the problem of

estimation of neuronal activity given macroscopic CBF,

CMRO2 and current dipole. For human translation, a separate

and equally important problem is how to reliably estimate

these macroscopic physiological parameters from non-invasive

measurements. This problem is particularly severe for CMRO2

requiring two different types of measurements—BOLD and

ASL—plus a calibration step [17–19] (CBF can be extracted

from ASL using well-tested methods [158–160]; estimation of

current dipole moment with MEG/EEG is also straightforward

as long as the location of neuronal activity and cortical orien-

tation is known [161]). In current practice, CMRO2 in human

imaging studies is estimated using simplified, macroscopic

models that fit the fMRI response by assuming a specific

functional form for the relationship between the spatially aver-

aged, or ‘lumped’, physiological parameters of interest and

the macroscopic imaging signals [17,162,163]. One specific

example is the Davis model that was originally derived from

simplified physiological assumptions to estimate relative

changes in CMRO2 from calibrated BOLD measurements [17]

(ASL provides a direct measurement of CBF; no modelling is

required). However, such CMRO2 estimates have never been

validated against direct measurements of the physiological

parameters in question.
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Bottom-up simulators of the fMRI signals can provide the

ground truth for validation of these simplified macroscopic

models. The first study of this kind is that by Gagnon et al.
[164]. Gagnon et al. used the VAN model, based on the fun-

damental physiological processes with a microscopic level

of detail, to simulate BOLD and ASL signals bottom-up.

The simulated BOLD and ASL signals provided the input

into the Davis model for estimation of the CMRO2 change.

This estimate was then compared to the true CMRO2

known from VAN. The results revealed that to get a valid

CMRO2 estimate, the free parameters of the Davis model

(known as a and b) had to assume values inconsistent with

the physiological effects they were originally introduced to

represent. The obvious limitation here is that if any of these

parameters require adjustment to fit the data under certain

conditions (e.g. in disease or ageing) this adjustment cannot

be interpreted in terms of the underlying physiology.

In the future, calibration against large-scale realistic simu-

lations where both the micro- and macroscopic reality is

known will be essential for arriving at macroscopic models

that would provide accurate estimation of CMRO2 with model

parameters derived from valid physiological assumptions.

Ultimately, we would need to come up with a Davis-like form-

alism with a few model parameters. However, more detailed

analytical models (still simplified compared to VAN), such as

the one recently developed by Griffeth & Buxton [165], may

be very useful as an intermediate step. In contrast to VAN,

which gives only the empirical relationship, the Griffeth et al.
[15] model analytically captures the results of the bottom-up,

microscopic simulation and thus can be used to study a

mathematical relationship between interpretable parameters.

Eventually, models like that in Griffeth et al. [15] would need

to be reduced to obtain a simpler top-down, Davis-like formal-

ism applicable to human fMRI experiments.

8. Neuronal circuits in mice and humans
The principle of leveraging mechanistic neurovascular/

neurometabolic insights obtained in animals for physiological

underpinning of human data relies on the assumption of
similar/comparable neuronal network activity. What are the

reasons to believe that this assumption is valid? Figure 8

shows an example Somatosensory Evoked Field (SEF)

response to the median nerve stimulation in a normal human

subject obtained with MEG (figure 8a,b) and the equivalent

current dipole moment calculated from laminar LFP in

response to forepaw stimulation in an anaesthetized rat

(figure 8c,d). These dipole time courses are remarkably similar,

indicating similar patterns of evoked neuronal circuit activity

in the rodent and human SI. For example, in both cases the

response to the contralateral stimulus is composed of the initial

negative peak followed by a positive one. These peaks occur

earlier in the rat (12/21 ms) compared to the human (20/

35 ms) due to differences in the distance that neuronal

impulses have to travel. The human SEF has a secondary posi-

tive peak that is less pronounced in the rat; this difference may

be attributed to anaesthesia. Thus, at least in the SI, the basic

circuit function is preserved from rodents to humans, although

physical scaling laws would need to be applied to account for

systematic differences (e.g. longer electrical conduction times

in humans). That being said, specific differences between these

two species have been documented, including neuronal and

astrocytic morphology and function and long-range connec-

tivity [166–168], and should be considered while translating

model parameters from mouse to human.

Translation from the micro- to macroscopic scale inevitably

results in loss of information, and activation of some cell-type-

specific neuronal populations would have similar signatures

in the macroscopic observables. The multimodal imaging

approach aims to overcome this fundamental degeneracy of

macroscopic measurements, as much as possible, by a combi-

nation of measurements. For example, inhibitory inputs to

the top (apical) dendrites of PCs produce the same polarity

of the macroscopic current dipole (and of the surface potential)

as excitatory inputs to the basal dendrites (figure 8e). Likewise,

excitatory inputs to the top cannot be distinguished from

inhibitory inputs to the bottom. However, only inhibitory

activity produces vasoconstriction [63] (figure 3). Therefore, a

combination of the current dipole and CBF response can

disambiguate between these possibilities.
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9. Conclusion
How can we explicitly estimate the cellular level of neuronal

functional organization in humans where we do not have

access to microscopic measurements of any kind? All that we

have is non-invasive measurements that can be thought of as

‘observations from a distance’ of signals with indirect relation-

ship to the parameters of interest—neuronal activity at the level

of specific cell types. In this essay, we argued that the activation

of different neuronal cell types has different signatures in the

evoked CBF, CMRO2 and the macroscopic current dipole

responses, and that by measuring these responses non-inva-

sively in the human brain we will be able to probe more

deeply the underlying neuronal circuit activity. We sketched

a path for estimation of cell-type-specific neuronal activity

from non-invasive measurements that begins with identifi-

cation of the vasoactive role, energetic costs and extracellular

electrical potentials/currents associated with activity of

specific neuronal cell types. These types of experiments require

experimental tools for microscopic measurement and manipu-

lation that are only available in model organisms. These data

are needed to simulate non-invasive measurements bottom-

up and build a comprehensive multiscale forward model

connecting the dots between neuronal activity at the level of
specific cell types to fMRI and MEG/EEG observables. For

inference of neuronal activity in humans, this forward model

would need to be combined with a set of non-invasive

experimental measurements in a Bayesian approach [33].

Following this path may lead to a paradigm shift in human

fMRI studies: from a simple mapping of fMRI signal change

to the explicit estimation of the respective activity levels of

specific neuronal cell types, providing a bridge between a

large body of cellular and circuit-level neuroscience knowledge

achieved in animals and the human ‘measurables’ and opening

the door for human hypothesis-driven experiments that are

currently unfeasible.
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