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Abstract of the Dissertation

Exploring the Universality of
Sonoluminescence

by

Alexander William Bataller
Doctor of Philosophy in Physics

University of California, Los Angeles, 2014
Professor Seth Putterman, Committee Chair

Sonoluminescence is the phenomenon whereby acoustic energy is converted into light
through the violent collapse of gas bubbles in a liquid. A salient feature of sonolumines-
cence is the emission of a blackbody spectrum. Recent experiments have shown that the
flashes of light from sonoluminescence are generated from a dense plasma characterized
by an unusually high electron density. Furthermore, this plasma is a new state of matter
whose properties are derived from a thermodynamic equation of state and is indepen-
dent of how it was generated. In this dissertation, the universality of sonoluminescence is
tested and its plasma properties are explored. Highly-ionized dense plasmas are confirmed
in two different sonoluminescence systems using new experimental techniques. Plasmas
are generated in high-pressure gases for two different systems whose properties are re-
markably similar to sonoluminescence in temperature and ionization. Taken together,
these experiments show that the plasma of sonoluminescence is not unique to itself and
is consistent with a newly-discovered phase of matter.
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Introduction
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1The phenomenon known as sonoluminescence (SL) has marveled the observer since
its discovery with both its eerie liquid confinement and otherworldly radiance. Indeed,
this author has found himself on many occasions pausing the business of science to admire
this beautiful effect. The SL effect is observed when a gas bubble surrounded by a fluid
undergoes a catastrophic acoustic collapse due to the surrounding pressure gradients.
Upon collapse, a brilliant flash of light is emitted from which SL owes its name. Since the
early 1990s, a great deal of scientific effort has been dedicated to describing the generating
mechanisms of SL and exploring its vast parameter space. As a result, the dynamics of
SL has been measured with great accuracy and is well described by the equations of
non-linear fluid dynamics. However, due to its micron size and picosecond lifetime, the
specific mechanism which generates the light emission in SL has not been fully understood.
Many theories have been proposed to explain SL’s light emission, ranging from electric
discharges to the exotic Casimir effect. In 2010, an experimental breakthrough was made
by Dr. Brian Kappus where an SL bubble was generated with a 100 µm collapse size and a
1 µs lifetime [57]. These parameters made temporally and spatially resolved measurements
possible and provided strong insight into SL’s light-emitting mechanism. The conclusion
of this work and experiments that followed [61][56] is that the light is bremsstrahlung
radiation emitted from a highly-ionized and dense plasma. Furthermore, this plasma is
unique in the world of plasma physics as it is a new phase of matter, characterized by its
unusually high free-electron density. This paradigm shift has had a profound influence
on not only the field of SL, but also the plasma physics community as it opens up a new
parameter space. However, with every great discovery comes the need for experimental
confirmation and new theoretical predictions. This dissertation is dedicated to both of
these requirements by 1) further confirmation of SL as a highly-ionized dense plasma and
2) testing the universality of this new phase of matter by generating SL outside its liquid
confines. What follows is this author’s journey into the experimental worlds of both SL
and dense plasma physics and my humble attempt at linking the two.

This dissertation is organized by first reviewing the history of SL in Chapter 2.
1Chapter Image: Long exposure of xenon sonoluminescence in concentrated sulfuric acid. An objective

(left) focuses a high-intensity laser pulse for initial bubble seeding. The long camera exposure results in
a swirling mass of light that traces the bubble’s path within the fluid.
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Strongly-coupled plasma is defined and a link is made to SL plasma. Chapter 3 re-
views the thermodynamic theory of plasma and presents methods for describing dense
plasma. Similarly, Chapter 4 reviews kinetic theory. The purpose of Chapters 3&4 is to
provide both a physical understanding of plasma phenomenon and testable predictions,
which are compared to the experimental findings. Chapters 5-8 present the experiments
performed. The first two experiments (Chapters 5&6) are the SL experiments and the
last two experiments (Chapters 7&8) are aimed at generating SL outside of a liquid. The
experiment presented in Chapter 5 is a detailed measurement of a xenon bubble in sulfuric
acid. The results of this experiment provide further evidence of SL being a dense plasma
whose properties indicate a significant ionization-potential lowering. This experiment is
best compared to the thermodynamic theory of Chapter 3. The experiment presented
in Chapter 6 is a laser-plasma study where a high-intensity laser pulse is focused onto a
xenon bubble in water. The resulting interaction strength for different laser wavelengths
provides insight into the charge density and collisionality of the dense SL plasma. This
experiment is best compared to the kinetic theory of Chapter 4. The experiment pre-
sented in Chapter 7 represents the lion’s share of the thesis work. This experiment’s
goal is to reproduce the conditions of a SL plasma without the generating mechanism of
non-linear fluid dynamics, thereby testing its universality. This was accomplished using
laser-breakdown of high-pressure noble gases. The emission from this dense plasma is
diagnosed and compared to both elements of kinetic and thermodynamic theory. The
results of this experiment show a very strong similarity to the plasma of SL and helps
confirm a new plasma state. Another experiment aimed at reproducing SL outside of
a liquid is presented in Chapter 8. This experiment generates a dense plasma through
the use of a spark-breakdown in high-pressure noble gases. Although this experiment is
not as fully developed as that of the laser-breakdown experiment, it does provide a com-
pletely different plasma generation and a new measurement of an SL-like plasma. Finally,
Chapter 9 summarizes the key findings of the experiments and their comparison to dense
plasma theory. Potential experiments are discussed and future measurements considered
for what is truly a very rich topic in physics.
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Chapter 2

Background: Sonoluminescence and
Strongly Coupled Plasma

4



2.1 Sonoluminescence1

The history of sonoluminescence (SL) begins with its discovery in 1934 by H. Frenzel
and H. Schultes [31]. Motivated by recent advances in sonar technology, Frenzel and
Schultes sought a quicker development of photographic film by subjecting development
fluid to ultrasonic excitation. In the process, they observed tiny flashes of light emanating
from within the fluid, which they described as bubbles undergoing electric discharge. And
thus, the field of SL was born along with the first of many interpretations of a poorly
understood phenomenon.

For the first 50 years after its discovery, SL was primarily generated by the non-
resonant acoustic excitation of a fluid. This arrangement creates a cloud of cavitating
bubbles and is now known as multi-bubble sonoluminescence (MBSL). After its initial
discovery, the study of SL progressed slowly, with dark-adapted eyes as the primary
diagnostic as the photomultiplier tube and oscilloscope were in their infancy. Even with
this limitation, in 1939 E. Harvey published a study of the effects of various parameters on
SL emission [42]. In fact, many of the parameters under investigation would be revisited
50 years later using modern instrumentation. It would take until the late 1950s before
the publication of SL spectrum and bubble dynamics. A summary of these findings were
published by P. Jarman in 1960, which noted a thermal-like spectrum and light emission
coinciding with the final stage of collapse [54]. Jarman noted a model for adiabatic
compression and heating of the bubble to temperatures of thousands of degrees, whereby
thermal radiation is the source of light emission. It is mentioned even in this early work
that the bubble emission “resemble that of a blackbody”. However, due to the spectrum
being uncalibrated, the flashwidth and size of emission being unknown, and the ensemble
nature of MBSL, blackbody confirmation was not possible. Jarman also proposed a model
of “microshocks” to describe the thermal-like spectrum. In this model, converging shock

1Chapter Image: Backlit strobe photograph of “Conical Sonoluminescence” at the moment of light
emission (unpublished work). An accelerating column of ethylene glycol collapses a large volume of low
pressure xenon gas into a conically-shaped hollowed-out polycarbonate housing. The rising fluid blocks
a He:Ne laser which is used to time the strobe relative to the plasma emission, and high-lights the fluid
in red. Plasma is formed at the apex of the cone during maximum compression and produces a bright
flash of light, whose flashwidth can range from 100 ns to 10 ms! “Conical Sonoluminescence” represents
one of the many historical paths for studying sonoluminescence.
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Figure 2.1: Spectrum of MBSL in Ar and O2-saturated water by Holroyd et al. [83]

waves form during the bubble’s final collapse stage and create shock heating similar to
shock-tube experiments. This description would persist through the years and it is still
considered a plausible model for SL in water. Jarman confidently ends the article with a
bold prediction that “another decade of experiments should settle these issues.” Sadly, it
would take over 40 years before blackbody emission could be confirmed.

Similar to the decades preceding it, little research was conducted in the 60s and 70s.
However, uncalibrated spectrum taken by Holroyd et al. [83] showed excellent blackbody
fits with temperatures between 8,800 and 11,000 K (Fig. 2.1). Without missing a beat,
Holroyd published work showing that the light emission occurs in the collapse phase of the
bubble, in the very next article of the same journal[67]. Still, characterization of the bubble
dynamics was hindered by the convolution of many bubble collapses. In this time period,
notable experiments were conducted that generated SL from a single bubble in various
ways. An experiment by West and Howlett [95] created SL by bombarding degassed
tetrachloroethylene with pulses of fast neutrons and thus seeding cavitation. The liquid
was resonantly driven at 20 kHz with an amplitude of up to 20 atm, which brought about
strong collapses after initial bubble growth. This method would be revisited in 2002 by
Taleyarkhan [89] of “sonofusion” infamy. An experiment was conducted by Buzukov and
Teslenko [14] where a large laser pulse was focused in water, causing dielectric breakdown
and an expanding bubble. This bubble would collapse after its initial expansion and create
a single SL flash. This work would also be revisited 3 decades later [1] and be known as
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laser-induced cavitation. An effort to stabilize a single SL bubble was made by Saksena
and Nyborg in 1970 [80] where an injected bubble rising in a column of viscous fluid were
subjected to ultrasonic excitation. This work confirmed SL’s periodicity with the sound
field and showed a single pulse of light at the time of collapse for an isolated bubble.
The concepts of bubble generation in this work would be crucial to later experiments
involving water hammers ([85, 17, 57]) and drop tubes ([60, 58]). Ultimately, the effort
to stabilize a single SL bubble was realized in 1970 by Temple [90]. In this experiment,
SL was trapped at a velocity node in a resonant field and emitted light at the driving
frequency. This work would pave the way for the explosion of SL research later in the
1990s. Although these experiments showed great promise, detailed bubble dynamics and
spectral measurements in a resonant system would not occur for another two decades.

The 1980s belonged to the chemists as a whole new field arose known as Sonochemistry.
Exploration of MBSL in various liquids and gases produced spectra with atomic and
molecular excitation lines. These lines provided insight into the state of the heated gas
bubble, and showed that the light is being radiated from a plasma at temperatures of
thousands of degrees. As a consequence, high temperature chemistry occurs within the
contents of the cavitating bubbles, which are otherwise difficult to achieve. For further
insight into the topic, an excellent review of the subject has been published by Suslick
[86]. The model of a rapidly collapsing gas bubble undergoing adiabatic heating and
compression became the general consensus. However, the specific dynamics of the bubble’s
collapse and subsequent light emission was still unknown. This would all change with the
advent of single-bubble sonoluminescence (SBSL).

In 1989, F. Gaitan and L. Crum [33] successfully trapped a single bubble in a resonant
sound field, which produced SL with every acoustic period. This newly discovered method
opened the door for measuring the bubble dynamics of SL and the properties of its light
emission. Interest in SL exploded in the following decades, due mostly to the arrival of
stable SBSL. To put this in perspective, the number of SL publications from 1990 to 1995
roughly equaled all publications from its discovery in 1934 to 1989! This was truly an
exciting time for the experimentalist as access to SBSL was now available to any lab for
little cost. Below are some of the key findings made during this time, which provided
insight into the properties of SL.
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1. Bubble Dynamics: For the first time, time-resolved collapse dynamics were observed
for a single bubble using a technique called Mie scattering [33, 3]. This measurement
showed that an air bubble in water undergoes a slow expansion phase and grows to
ten times its static radius. The bubble then collapses at supersonic speeds and is
compressed to near liquid densities! At the time of minimum collapse radius, a flash
of light is emitted. This process repeats itself for every acoustic cycle with a clock-
like synchronicity [6]. In some cases, the flash-to-flash jitter was below 50 ps [4]!
An excellent overview of this “roller-coaster” phenomenon was published by Seth
Putterman in 1995 [77]. Although many questions remained, it was determined that
a highly-compressed gas bubble with a submicron size was the source of SL’s light
emission.

2. Flashwidth: Before the arrival of SBSL, the flashwidth of SL was known to be
very short. Even the fastest photomultipliers and oscilloscopes of the time could
not resolve its flashwidth, making it a subnanosecond phenomenon. However, SBSL
gave new life to this measurement through a technique called time-correlated single-
photon counting. Using this technique, the flashwidth of SL was shown to be in the
100 ps timescale [38, 47].

3. Spectrum: The spectrum from SBSL in water was measured and found to be contin-
uous in nature and void of line emission [46, 45, 69, 34, 47]. In all cases, the spectrum
compared well to thermal emission and particularly to blackbody radiation. These
fits showed a gas emitting at temperatures & 10, 000 K.

During this decade, a number of theories were suggested to describe the observations
of SBSL. A new electric discharge theory was proposed by Margulis in 1994 [68], which
continued the idea of charge separation with subsequent discharge illumination originally
proposed by Frenzel and Schultes. However, this theory has since been dismissed as an
incorrect application of bubble fragmentation as described by Lepoint et al. [65]. An
exotic theory of SL emission based on the Casimir effect was proposed by Eberlein [26] in
1996, but was quickly rejected [71, 12]. The most widely accepted theory for SL emission
is the adiabatic compression model proposed as early as 1950 by Neppiras and Noltingk
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[73]. In this model, the gas bubble undergoes a rapid collapse and is adiabatically heated
to thousands of degrees. At thousands of degrees, the gas becomes ionized and emits
bremsstrahlung radiation which is a continuous spectrum. In addition to the adiabatic
compression theory, the shock-wave model suggested by Jarman in 1960 [54] was also
revisited [97] due to the supersonic collapse speeds found in SBSL experiments. This
model continues to be a plausible mechanism for the very high temperatures obtained in
water SBSL[7].

Although great experimental gains and theoretical insights were made during this
decade, a new paradox in SL would arise. This paradox was address by K. Yasui in
1999 [101], Vazquez et al. in 2001 [92], and Camara et al. in 2004 [15]. The spectral
measurements of SBSL had now been calibrated due to the direct measurements of the
SL flashwidth. The spectrum not only showed excellent fits to a blackbody in shape, but
also in intensity as compared to the newly measured collapse radius. The emission from
SBSL appeared to be radiating from an opaque plasma by these conclusions. However,
to be a surface emitter (opaque), two conditions must be met. The first is that light and
matter must be in thermal equilibrium. The second is that a photon must undergo many
absorptions and re-emissions before leaving the body. This second condition appeared to
be unsatisfied by SL as estimates for the photon mean-free-path (lν) were much larger
than a micron. The big question in SL now became: How can SL be a blackbody with
such a small size? An answer to this question would come with the arrival of SBSL in
acids.

The study of SBSL has a vast parameter space such as temperature, gas mixture,
driving amplitude and frequency, etc. It was predicted that lowering the vapor pressure
of the driving liquid would increase the brightness of the SBSL emission by reducing the
amount of vapor inside the bubble, and thereby maintaining a pure noble gas. Inorganic
acids such as sulfuric and phosphoric acid proved to be excellent candidates with both
very low vapor pressures and high optical transparency. In 2005, Flannigan and Suslick
generated xenon and argon SBSL in concentrated sulfuric acid, which had an increased
brightness of 1500 and 2700 times that of water, respectively [28]. Shortly thereafter,
Hopkins et al characterized the bubble dynamics, flashwidth, and spectrum of a xenon
bubble in sulfuric acid [48]. The results from this experiment show that bubbles generated
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in sulfuric acid have much larger collapse radii (4µm) and longer flashwidths (10 ns)
which result in the increased brightness compared to water. Once more, the spectrum is
very well fit to a blackbody whose radius of emission also matches the collapse radius.
Although the collapse radius is much larger than water SBSL, the plasma temperature is
similar and therefore the blackbody paradox is again confronted. This shows that under
vastly different experimental conditions, blackbody emission is a robust feature of SBSL.
However, a firm explanation to the blackbody paradox still eluded the field.

To gain further insight into the temporally and spatially-resolved properties of the
SBSL emission process, a larger and longer lasting bubble is required due to the experi-
mental and technological limitations. Advancements in the stabilizing methods of rotating
water hammers [85] and the larger and longer SL emission from inorganic acids led to
incredibly bright and long lived bubbles [60]. These conditions led to the groundbreak-
ing experiment conducted by Kappus et al. and the discovery of SL as a new phase of
matter and a potential solution to the blackbody paradox [57]. In this experiment, a
trapped xenon bubble is made to oscillate at 40 Hz in a cylindrical quartz tube filled with
concentrated phosphoric acid. This configuration produced a very large bubble with a
collapse radius of 50µm and a flashwidth of 1µs. At the time, it was believed SBSL was
opaque due to its supersonic collapse speeds, which produced a very hot inner plasma
core through shock-waves. However, the bubble created by Kappus had a collapse speed
that was slower than the speed of sound and therefore was not expected to create shock-
waves, and therefore a transparent plasma. This was not the case as again, the spectrum
was an excellent blackbody fit, whose radius of emission matched the measured collapse
radius! Once again, the blackbody paradox was present as lν ∼ 104Rc. Owing to the
much longer flashwidth, time-resolved spectroscopy was performed and showed a strong
Xe* line before and after the minimum collapse radius. Using this line emission and the
blackbody fit, a new theory was presented where SL originates as a new form of matter,
characterized by an unusually high electron density. Previously in the field of SL, electron
density had been calculated using Saha’s equation, which is applicable to a dilute plasma.
However, as we will see in the following section, SL cannot be considered a dilute plasma.
Recognizing this, Kappus et al. applied density corrections to Saha’s equation and found
that two solutions existed for a given temperature and atomic density. One solution is
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weakly ionized and optically transparent (dilute limit). The other solution is completely
ionized and optically opaque (dense limit). This dense limit is believed to be a new state
of matter and provides a potential solution to the blackbody paradox.

In summary, SL is produced by the emission of a hot compressed gas. The phenomenon
of SL exists in a large parameter space resulting in a wide range of emission properties.
The flashwidth can range from 50 ps to as long as 1 µs. Similarly, the size of the emitting
region can range from 100 nm to as large as 100 µm. SL is very robust over this enormous
parameter space which suggests its intrinsic properties are fundamental. Indeed, over this
parameter space, the blackbody temperature remains between 6,000 to 20,000 K and the
atomic density is between 1− 10× 1021 cm−3. It is these two properties which make SL
unique in nature and, as will be shown the next section, a part of a larger class of matter
known as strongly coupled plasma (SCP).

2.2 Strongly Coupled Plasma

A plasma is loosely defined as an ionized substance (often net neutral charge) and is
considered a fundamental state of matter. Unlike solids, liquids, and gases, plasmas are
not defined by a 1st order phase transition. Instead, the ionization changes smoothly as
a function of temperature and density2. This definition creates an enormous phase space
in which plasmas can exist as shown in Fig. 2.2. Numerous laboratory and astrophysical
plasmas occupying the phase space of Fig. 2.2 and can be further grouped based on their
similar temperatures and densities. One key distinction is made between what are known
as ideal and non-ideal plasmas. This distinction is defined by the unitless parameter
known as the plasma coupling parameter

Γ ≡ Epotential
Ekinetic

= e2

kBT

(4πn
3

)1/3

, (2.2.1)

where T is the temperature and n is the density. This quantity compares the electrostatic
potential energy to the kinetic energy of the charged particles. Plasmas whose Ekinetic �

2According to the discovery made in [57], the plasma of SL represents a 1st order phase transition.
In this theory, SL plasma is defined by its high level of ionization and an abrupt transition in plasma
properties. Ironically, SL plasma is categorized as a “non-ideal” plasma.
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Figure 2.2: Plasma phase space in temperature and density. The graph above is a mod-
ification from [49] which now includes sonoluminescence (SL). Regions top-left of the
(4πn/3)λ3

D < 1 line represents non-ideal plasmas.
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Epotential are known as “ideal” or “weakly interacting” plasmas. In Fig. 2.2, ideal plasmas
are located in regions where Γ . 1 ((4π/3)λ3

D > 1). Plasmas whose Γ & 1 are known
as “non-ideal” or “strongly coupled plasmas” (SCP). For ideal plasmas, the equation of
state for each species is described as an ideal gas (see Chapter 2). For SCPs, interparticle
correlations and screening effects significantly alter the equation of state from that of
an ideal gas. The equation of state in this regime is theoretically difficult to obtain
due to the many-body nature of SCPs, and remains unresolved. Although not shown
in Fig. 2.2, many SCPs have been generated in laboratory settings, notably through
laser-solid interactions including inertial confinement fusion. A great deal of work has
been done in this field and a full background is beyond the scope of this dissertation.
Interested persons are encouraged to read the works of Ichimarau [50] and Fortov [?, 30].

As stated earlier, SL temperatures and densities range from 6,000-20,000 K and 1 −
10 × 1021 cm−3, respectively. These values result in 1.3 < Γ < 9.7 and by definition,
SL is considered an SCP. Therefore, SL belongs to a much larger class of plasmas whose
intrinsic properties are thermodynamic in nature, and not dependent upon its generating
mechanism. To test this claim, the author of this thesis has endeavored to bring SL
outside of its liquid confines.
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Chapter 3

Thermodynamic Theory

When discussing the experimental observations of SL and SCP, it is important to
consider whether the system has established local thermodynamic equilibrium (LTE).
Assuming a system of constant temperature and volume, this occurs when the system’s
Helmholtz free energy F is minimized. For our system under consideration, LTE occurs
when the constituent particles assume a Maxwell-Boltzmann distribution. Once LTE is
established, all other thermodynamic properties can be derived from F . These include,
and are not limited to, the equation of state, entropy, chemical potential, energy, and heat
capacity of the system.

p = −
(
∂F

∂V

)
T,N

(3.0.1)

S = −
(
∂F

∂T

)
V,N

(3.0.2)

µ =
(
∂F

∂N

)
T,S

(3.0.3)

U = −T 2 ∂

∂T

(
F

T

)
V,N

(3.0.4)

CV,P =
(
∂U

∂T

)
V,P

(3.0.5)

These thermodynamic properties give us a way of describing states of matter and provide
predictions to experimental measurements. In honor of my adviser, the question shall
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now be asked: What’s the free energy of the system?

3.1 Saha’s Equation - Dilute Theory

As a preface, the following derivation can be found in most statistical mechanics
textbooks such as Reif [79], although the formalism presented is from Zel’dovich [106].
The free energy for an ideal (dilute) plasma is

Fideal = −
∑
m

NmkBT
(

ln Zm
Nm

+ 1
)
−NekBT ln

(
ln Ze
Ne

+ 1
)
, (3.1.1)

where Nm are the number of m ions, Ne is the number of electrons, kB is the Boltzmann
constant, T is the temperature, and Zm and Ze are the partition functions for the m ions
and electrons respectively. In this notation, m = 0 represents the neutral atoms, m = 1
represents the singly-ionized atom, etc. Conservation of the number of atoms and charge
requires

∑
m

Nm = N (3.1.2)

∑
m

mNm = Ne. (3.1.3)

As a first application of the free energy, the ionization level can be derived, which is a
statement of chemical potential equilibrium. At equilibrium, the free energy is minimized
with respect to the particle number and results in the law of mass action given by

Nm+1Ne

Nm

= Zm+1Ze
Zm

. (3.1.4)

It is important to note that the law of mass action (Eq. (3.1.4)) is always applicable at
equilibrium. In the ideal limit, the constituent particles are assumed to be non-interacting
and the partition function becomes a product of its individual partition functions. The
translational partition function for any particle is

Ztrans = V

λ3 λ = h√
2πMkBT

. (3.1.5)
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Here, V is the volume, λ is the thermal de Broglie wavelength, M is the particle’s mass,
and h is Planck’s constant. The electron’s partition function is given by its translational
partition function times a factor of 2 to account for its spin. For bound systems, such as
atoms and ions, an electronic partition function is included along with the translational
partition function. The electronic partition function is

Zel =
∑
k

gk exp
(
− εk
kBT

)
, (3.1.6)

where εn is the energy of the kth electronic quantum state. The electronic partition
function can be rewritten to normalize to the ground state energy

Zel =
∑
k

gk exp
(
− εk
kBT

)
= exp

(
− ε0
kBT

)∑
k

gk exp
(
−εk − ε0

kBT

)
= uk exp

(
− ε0
kBT

)

uk =
∑
k

gk exp
(
−εk − ε0

kBT

)
= g0 + g1 exp

(
−ε1 − ε0

kBT

)
+ ..., (3.1.7)

where ε0 is the ground state energy and gk are the statistical weights of the kth energy
level. Putting these partition functions into Eq. (3.1.4) results in

nm+1ne
nm

= 2um+1

um

(
2πmekBT

h2

)3/2

exp
(
−χm+1

kBT

)
, (3.1.8)

where n are the number densities, me is the electron’s mass, and χm+1 is the ionization
potential to liberate the m+1 bounded electron. Eq. (3.1.8) is known as Saha’s equation.
To readily calculate the amount of ionization, Saha’s equation can be rewritten to give

xm+1xe
xm

= 2
n

um+1

um

(
2πmekBT

h2

)3/2

exp
(
−χm+1

kBT

)
, (3.1.9)

where xm = nm
n

is the ionization fraction of the mth ion. Using Eqs. (3.1.2), (3.1.3),
and (3.1.9), the ionization level can be calculated knowing only the temperature, total
atomic density, and atom-specific energy states. This equation has been the workhorse
for estimating the electron density in plasma physics. However, as mentioned earlier,
Saha’s equation may only be applied to dilute systems whose constituent particles are
weakly-interacting. It is this inappropriate use of Saha’s equation that has generated
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the blackbody paradox and, as will be shown in the next section, has led to the phase
transition theory.

3.2 Saha’s Equation - Dense Theory

As the density increases and/or the temperature lowers, a plasma becomes less and
less ideal, until it eventually becomes an SCP. In this regime, a plasma’s Coulomb en-
ergy is comparable or larger to its kinetic energy and Saha’s equation loses its validity.
This is strictly due to the weakly-interacting assumption of the partition function, and
therefore the free energy needs revision. A first principles derivation would begin with
the Hamiltonian of the individual particles. The partition function of this system would
involve many correlated interactions amongst all the particles, which has no known ana-
lytic solution. This system is also a daunting task numerically due to the factorial nature
of the partition function and the long-range interaction of the Coulomb force. However,
a key property of plasma is its tendency to shield out long range interactions through
electrostatic screening. This was first treated by Debye and Hückel [21] for the case of
electrolytes, which found an extension to plasma physics. In this analysis, a system of
oppositely charged particles is considered where a cloud of similarly charged particles
form around each ion/electron. This has the effect of screening the fields of ions/electrons
at a characteristic distance known as the Debye length δD. This screening effect, which
is produced from particle correlations, provides a simplification to the system’s partition
function and gives a formulation for the free energy.

The general expression for the Coulomb energy of a plasma per unit volume is given
by

Ucoul = 1
2
∑
m

eZmnmφm, (3.2.1)

where eZm and nm is the charge and density of the mth ion, respectively. Electrons are
included as an “ion” by setting m = −1. φm is the potential of all other charges on the
mth ion. Using the Debye-Hückel model, the potential approximates to
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φm = −Zme
δD

, (3.2.2)

where δD is the Debye screening length given by

δD =
(

4πe2

kBT

∑
m

nmZ
2
m

)−1/2

. (3.2.3)

It is in this approximation that a characteristic length-scale is introduced which has the
effect of lowering the free energy of the system. The free energy per unit volume for the
Coulomb potential is found by substituting Eqs. (3.2.3) and (3.2.2) into Eq. (3.2.1), and
applying the thermodynamic relationship Eq. (3.0.4) to give

Fcoul = −(∑m nmZ
2
m) e2

3δD
= − kBT

12πδ3
D

. (3.2.4)

The total free energy is additive and is given by

F = Fideal + Fcoul. (3.2.5)

Minimization of Eq. (3.2.5) with respect to the particle number gives

xm+1xe
xm

= 2
n

um+1

um

(
2πmekBT

h2

)3/2

exp
(
−χeff
kBT

)
, (3.2.6)

where
χeff = χm+1 −∆χD (3.2.7)

∆χD = Zm+1e
2

δd
. (3.2.8)

As can be seen from Eq. (3.2.6), the density correction to the free energy produces a
lowering of the ionization potential, which is the dominant term of Saha’s equation. This
can have an enormous effect on the level of ionization in a dense plasma, and therefore
its thermodynamic properties.

Another density effect to consider is the quantum hybridization of excited energy
levels. This is the lowering of the ionization potential to the binding energy of an excited
atom, whose radius is equal to the interatomic spacing. The derivation of the free energy
due to hybridization can be found in Zel’dovich (pg. 199, [106]). This free energy is similar
in form to the Coulomb free energy and also results in a potential lowering given by
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Figure 3.1: The ionization potential lowering from Debye screening and hybridization as
a function of atomic density. Neutral xenon (m = 0) is chosen, whose ionization potential
is 12.1 eV and γ is 1.78 [57]. The temperature is taken at 15,000 K and a single level of
ionization is assumed (ne = n).

∆χhyb = 2γa0n
1/3χm+1, (3.2.9)

where a0 is the Bohr radius and γ is an atom-specific coefficient on the order unity
[57]. Like the potential lowering from Debye screening, Eq. (3.2.9) is subtracted from
Eq. (3.2.7). The contributions and total amount of potential lowering as a function of
density is shown in Fig. 3.1. In the density range of experimental interest, Debye screen-
ing has the largest contribution to the total potential lowering. However, the effects of
hybridization is still important when calculating the total ionization level, as the effective
ionization potential is inside an exponential. Fig. 3.1 also shows the limitations to the
Debye-Hückel model, as the ionization potential and pressure will become negative at a
critical density. Therefore, this model should be considered incomplete beyond a certain
density. For purposes of calculation, the system should be considered fully ionized (for a
given m) when χeff ≤ 0.

A crucial assumption made in the Debye-Hückel model is that there are many electrons
in the Debye sphere, where ND = 4π

3 nδ
3
D � 1. This statement is comparable to Γ � 1,
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which is the dilute plasma limit and opposite to SL and SCP. It is not known how far
the Debye-Hückel model extends into non-ideality. However, numerical results by Brush,
Sahlin, and Teller [13] indicates a deviation from the effects of Debye screening by only
25% for the case of Γ ≈ 1. Therefore, the experimental results presented in this thesis
warrants comparison to the model of Debye screening.

Although Debye screening is not a first principles derivation, the Debye length is a
natural plasma lengthscale from unit analysis. It is in this spirit that another lengthscale
is chosen for the purposes of experimental comparison. The natural plasma lengthscale
of interionic distance can replace δD in Eq. (3.2.8) giving

∆χion = Zm+1e
2

am
, (3.2.10)

where
am =

(4πnm
3

)−1/3

. (3.2.11)

The application of this lengthscale to the potential lowering is more commonly known
as the ion-sphere model [84]. Comparing Eq. (3.2.10) to Eq. (3.2.9) shows these two
quantities to be equivalent in the singly-ionized limit (Fig. 3.1). Therefore, the atom-
specific coefficient γ will be calculated using the following relationship

γ = e2

2a0χm+1

(4π
3

)1/3

. (3.2.12)

The ionization level of an SCP can now be calculated using Eq. (3.2.6) for the following
cases of χeff :

1. Dilute model: χeff = χm+1

2. Ion-sphere model: χeff = χm+1 −∆χion

3. Debye model: χeff = χm+1 −∆χD

The dilute limit is unaffected by density effects and represents the lower limit of ionization,
and is presented for purposes of comparison. The ion-sphere limit represents screening
outside the interionic distance, and is considered an intermediate screening model. The
Debye limit is strongly affected by screening well within the interionic distance, and is
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considered the extreme screening model. It is important to note that most, if not all,
work in the field of SCP acknowledges the effects of screening upon the lowering of the
ionization potential. Furthermore, a phase transition to a highly-ionized plasma is also
acknowledged by many authors [13, 84, 25, 57, 105], although the exact location of the
transition in density-temperature space is not in consensus.

A surprising consequence of the application of Debye screening and the ion-sphere
model is realized when attempting to solve Eq. (3.2.6). The density-corrected Saha’s
equation is now density dependent in the exponential term, which makes it a transcen-
dental equation with the possibility of two real and positive solutions. The existence of
two ionization solutions for a given density and temperature is a 1st-order phase transition.
Fig. 3.2 plots the free energy per particle as a function of the ionization potential for the
dilute, Debye, and ion-sphere models. For the dilute limit, only a single solution exists
at any given temperature and density. Both the Debye and ion-sphere models exhibit 2
local minimum beyond a critical density for a given temperature. The critical density for
the ion-sphere model is at solid densities for temperature near 1 eV. Theoretical work by
Ebeling and Richert [25] found the critical density to be ∼ 1022 cm−3 using the ion-sphere
model. The Debye model predicts a much lower critical density at ∼ 1021 cm−3 and is
supported by recent experiments in SL [88, 57, 61, 56].

Recreating and confirming the SL phase transition outside its liquid confines requires a
control and knowledge of the plasma temperature, atomic density, and a thermodynamic
property (level of ionization, pressure, etc.). These plasma properties can be compared
to the phase space for the models outlined in this chapter. Fig. 3.3 shows the ionization
phase diagrams as a function of temperature and atomic density of xenon gas for the
different screening models. In the “Dilute” model, changes in the ionization fraction are
continuous and a 1st-order phase transition is absent. Both screening models (“ion-sphere”
and “Debye”) exhibit a 1st-order phase transition as the atomic density reaches a critical
value. This region is labeled “High Ionization” and is the region in phase space where
two solutions exists according to Saha’s equation.

The phase diagram shown in Fig. 3.3 is a map to exploring the plasma phase transition
as it provides a location in temperature and density for measuring high levels of ionization.
This helps guide the experiments outlined in Chapters 7 and 8 by providing a range of
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Figure 3.2: Total free energy per atom as a function of the ionization fraction in the singly-
ionized regime. The gas is xenon with a plasma temperature of 10,000 K. The dilute limit
has only one local minimum for all temperatures and densities. At 10,000 K, the plasma
experiences two local minima at ∼ 1021 cm−3 for the Debye limit and ∼ 1023 cm−3 for
the ion-sphere limit.
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Figure 3.3: Phase diagram for xenon gas showing ionization fraction as a function of
temperature and atomic density. The ionization fraction was calculated using the density-
correct Saha’s equation (Eq. 3.2.6) in the singly-ionized limit for the a) dilute model, the
b) ion-sphere model, and the c) Debye model. Both the ion-sphere and Debye models
contain an abrupt transition in ionization fraction as the atomic density is increased and
is representative of a 1st-order phase transition. This transition occurs at ∼ 1022 − 1023

for the ion-sphere model and ∼ 1021 for the Debye model.
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atomic densities needed to reach the phase transition. According to the “Debye” model,
atomic densities on the order of ∼ 1021 cm−3 are required. This density equates to 40 bar
of static pressure for a monatomic gas at room temperature and is the motivation for
recreating the SL plasma outside a liquid. Furthermore, exploration of the parameter
space in Fig. 3.3 will help identify the correct screening model in SCP.

In Chapter 7, laser breakdown in high-pressure gases can generate multiple levels of
ionization, which is not described by the phase diagram in Fig. 3.3. For this reason,
Eq. 3.2.6 must be solved for multiple ionization levels and is described in the following
section.

3.3 Saha’s Equation - Multiple Ionization

Calculating the level of ionization requires solving the charge and ion conservation
equations along with Saha (Eqs. 3.1.3, 3.1.2, and 3.2.6). For singly ionized systems,
this represents a single transcendental equation and can be solved numerically with ease.
However, for increasing levels of ionization, the system of equations becomes increasingly
difficult to solve.

Saha’s equation with charge/ion conservation equations fully defines a plasma’s ioniza-
tion level at equilibrium. For high levels of ionization, this becomes increasingly difficult
to solve due to the increasing number of nonlinear transcendental equations. To overcome
this complexity, Zaghloul et. al reformulated the Saha system of equations to produce a
set of equations [105]. These equations are related through a recurrence formula and are
easily solved for high levels of ionization. Saha’s equations reformulated by [105] are

1− Zav


Z∑
i=1

i
i∏

j=1
fj

(ZavnH)i


−1 1 +

Z∑
i=1

i∏
j=1
fj

(ZavnH)i

 = 0, (3.3.1)

x0 = Zav


Z∑
i=1

i
i∏

j=1
fj

(ZavnH)i


−1

, (3.3.2)

xm+1 = xm
(ZavnH)fm+1, (3.3.3)
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where nH is the nuclei density, Zav =
Z∑

m=1
mxm is the average ion charge, and fm+1 is the

right-hand side of Saha’s equation given by

fm+1 = 2um+1

um

(
2πmekBT

h2

)3/2

exp
(
−χeff,m
kBT

)
. (3.3.4)

Eqs. 3.3.1-3.3.4 represent a complete set of equations which can be solved using an input
plasma temperature, nuclei density, and atomic information (partition functions and ion-
ization potential) to produce the level of ionization for each charge state. For the case of
an ideal plasma (“Dilute” model), Saha’s equation produces a singular solution. For the
screened models, fm+1 becomes a function of the ionization level and an iterative solution
is required. A procedure to find the ionization level using the “Debye” model is provided
below:

1. Provide an initial guess for δD and calculate χeff,m using Eqs. 3.2.7 and 3.2.8.

2. Solve for Zav in Eq. 3.3.1 using the results of step #1.

3. Solve for xm in Eqs. 3.3.2 and 3.3.3 using Zav in step #2.

4. Calculate δD using the values of xm in step #3 and Eq. 3.2.3.

5. Compare δD from step #1 and step #4. Repeat steps #1-5 by adjust the input
value of δD in step #1 until convergence is reached.

Like the singly-ionized solutions in the preceding section, the possibility of two stable
solutions is present in these calculations. Fig. 3.4 plots the solutions to Saha’s equation
in the multiply-ionized regime as a function of nH for xenon at 12,350 K. Up to 8 levels
of ionization are considered in Fig. 3.4. Both solutions converge at a critical density.
Beyond this density, the solution to Saha’s equation is highly-ionized as seen by [105].
Although two solutions exist at a given value of nH , the low ionization solution is stable to
perturbations indicated by the red arrows. However, once the high ionization solution is
reached, perturbations to higher levels of ionization lead to a runaway electron density, as
indicated by the blue arrows. This suggests that the total free energy in the “Debye” model
is incomplete and is awaiting new physics! The gap between the two solutions represents
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Figure 3.4: Solution to Saha’s equation as a function of nuclei density for the case of xenon
at 12,350 K. At each density there exists two solutions to Saha’s equation defined by a
low (dashed curve) and high (solid curve) level of ionization. The direction of stability is
shown in red and blue curves.
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Figure 3.5: Solution to Saha’s equation as a function of nuclei density for the case of xenon
at 12,350 and 17,000 K. At each density there exists two solutions to Saha’s equation
defined by a low (dashed curve) and high (solid curve) level of ionization. Adiabatic
compression (from density/temperature (1) to (2)) causes the distance between the two
curves to shrink, and may be a possible method for reaching the phase transition in
sonoluminescence.

an energy barrier for ionization. It has been suggested in [57, 59] that this gap can be
overcome through density fluctuation. In SL, the adiabatic heating and compression of
plasma decreases the gap distance and increases the probability of high ionization through
fluctuations. An example of this gap decreasing with increasing temperature and density
can be seen in Fig. 3.5.

The atomic and electronic densities of xenon SL in Chapters 5 and 6 (∼ 1021 cm−3)
suggest the “Debye” model of screening for calculating Saha’s equation. For the case
of xenon SL in sulfuric acid, a collapse density of 1.1 × 1021 atoms/cm3 and a plasma
temperature of 8400 K was measured. Using these plasma parameters and the “Debye”
theory of screening, Saha’s equation results in an electron density of > 5.0 × 1020 cm−3

(>45%) and a potential reduction of 81%. This result is consistent with the experiment
performed in Chapter 5 as the inferred electron density is > 4.0 × 1020 cm−3 (>36%)
and a potential reduction of 75%. For the case of xenon SL in water, a higher collapse
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Measured Values
nH (cm−3) T (K) ne (cm−3) Z̄

Xe Laser Breakdown 1.25× 1020 12,350 > 4.0× 1020 > 3.2
Xe Spark Discharge 2.50× 1020 24,000 > 8.0× 1020 > 3.2
Ar Laser Breakdown 6.25× 1020 14,550 > 6.25× 1020 > 1.0
Xe Sulfuric Acid SL 1.1× 1021 8,400 > 4.0× 1020 > 0.36

Xe Water SL 4.9× 1021 9,250 2− 3× 1021 0.41− 0.61

Saha’s, Low Solution Saha’s, High Solution
ne (cm−3) Z̄ ne (cm−3) Z̄

Xe Laser Breakdown 2.1× 1018 0.017 > 5.3× 1020 > 4.3
Xe Spark Discharge 9.4× 1019 0.37 > 9.2× 1020 > 3.7
Ar Laser Breakdown 2.8× 1018 4.4× 10−3 > 2.8× 1020 > 0.44
Xe Sulfuric Acid SL 3.0× 1017 2.7× 10−4 > 5.0× 1020 > 0.45

Xe Water SL 1.7× 1018 3.4× 10−4 > 7.2× 1020 > 0.15

Table 3.1: Plasma parameters and calculated values of the ionization fraction for the
plasmas explored in this thesis.

density of 4.9 × 1021 atoms/cm3 and a plasma temperature of 9250 K was measured.
Saha’s equation results in an electron density of > 7.4 × 1020 cm−3 (>15%). This result
is consistent with the experiment performed in Chapter 6 as the inferred electron density
is ∼ 2− 3× 1021 cm−3 (∼ 50%).

The experiment performed in Chapter 7 represents a unique situation when compared
to SL. In this experiment, a laser generates both heating and ionization in a short timescale
of 100 fs. This condition leads to the possibility of multiple levels of ionization at very low
atomic densities, yet consistent with the high ionization solution through Saha’s equation.
Using T = 12, 350 K for laser breakdown in 5 bar xenon (1.25 × 1020 atoms/cm3), the
solution to Saha’s equation is ne > 5.34×1020 cm−3 (Z̄ > 4.27). This result compares very
well to the measured electron density of ne > 4.0×1020 cm−3 (Z̄ > 3.2)! The same analysis
performed on 25 bar argon laser breakdown (T = 14, 550 K, nH = 6.25× 1020 cm−3, and
ne > 6.25 × 1020 cm−3 (Z̄ > 1.0)) also compares well with a Saha solution of ne >
2.76 × 1020 cm−3 (Z̄ > 0.44). Finally, the plasma generated by the spark discharge
experiment in Chapter 8 also displays a high level of ionization at relatively low atomic
densities and is consistent with the solution to Saha’s equation. The plasma values for all
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plasmas explored in this thesis are compared to the results of Saha’s equation and shown
in Table 3.1. Remarkable agreement is found using the “Debye” theory of screening for a
range of temperatures and densities and is strong evidence that the plasma generated in
sonoluminescence is a universal phase of matter.

29



Chapter 4

Kinetic Theory

The plasma properties in Chapter 3 were derived under the condition of complete LTE.
However, many situations arise where a plasma is generated or driven far off-equilibrium.
In these situations, the relationships found on the basis of LTE no longer apply and
kinetic theory is needed. Due to their high temperatures (∼ 10, 000 − 20, 000 K) and
densities, SCPs cannot exist for very long without destroying the surrounding chamber
material. Therefore, laboratory SCPs are generated in pulsed operation and are inherently
transient. The transient generation of SCPs means the possibility of off-equilibrium states
and necessitates models using transport equations. In kinetic theory, transport equations
describe materials that have been displaced from its equilibrium state and given enough
time, will go back to equilibrium. These timescales/rates for equilibrium are important
for many processes and are needed to describe the dynamic measurements of SCPs.

Kinetic theory is process-dependent and requires specific knowledge of the funda-
mental particle interactions. However, many plasma transport properties stem from
the collisionality of electrons and ions. This is known as the electron-ion collision time
τe−i and is defined as the amount of time required for an electron to collide with an
ion. τe−i is ubiquitous in plasma physics and is at the core of many plasma processes
which includes electron-ion bremsstrahlung, electron-ion thermalization, 3-body recombi-
nation/ionization, and thermal/electrical conductivity. Furthermore, τe−i is an essential
factor in the commonly used two-fluid plasma model as it describes the energy exchange
between the different fluids (electrons and ions). This quantity has been determined for
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the case of a fully-ionized plasma and is given as

τe−i =
[

2√
6π
ωpΓ3/2 ln Λ

]−1

, (4.0.1)

where ωp and Γ is the electron plasma frequency and plasma parameter respectively.
These quantities are defined as

ωp ≡

√√√√4πZ̄n0e2

me

, (4.0.2)

Γ ≡ Z̄e2

kBT

(4πn0

3

)1/3

, (4.0.3)

where Z̄ = ne
n0

is the effective ionization level, and ne (n0) is the electron(nuclei) density.

For the case of Z̄ < 1, Γ ≡ e2

kBT

(
4πZ̄n0

3

)1/3
. Eq. 4.0.1 was first found by Spitzer [82] and

subsequent derivations deviated by no more than a numerical factor of the order unity.
A simplified derivation of Eq. 4.0.1 taken from [106] is provided in Appendix A.

In Eq. 4.0.1, a new term was introduced into plasma physics known as the Coulomb
logarithm, ln Λ. This term arises due to two fundamental characteristics of plasma: (i)
the long-range potential between charged particles and (ii) the effects of electrostatic
screening. In deriving Eq. 4.0.1, an integration in radius over all possible “collisions”
results in a logarithmically divergent integral and an infinitely fast collision time. This
divergence is due to the character of the long-range Coulomb potential as distant collisions,
although small in effect, become infinite in number. However, the effects of electrostatic
screening (discussed in Chapter 3) shields-out these long-range interactions and thereby
making Eq. 4.0.1 convergent. In this derivation, Spitzer chose the Debye length as the
characteristic screening distance, thereby defining the Coulomb logarithm as

ln Λ ≡ ln δD
Rc

, (4.0.4)

where δD is the Debye length (Eq. 3.2.3) and Rc ≡ Z̄e2

kBT
is the distance of closest approach,

the distance at which the electrostatic and kinetic energies are equal and energy transfer
is largest. Eq. 4.0.4 can be written using the plasma parameter such that

ln Λ = ln

 Γ−3/2√
3
(
1 + Z̄

)
 . (4.0.5)
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Because the collision time depends logarithmically on the screening effects, a common
practice in plasma physics is to set the Coulomb logarithm as a numerical constant. This
will be refereed to as the “Dilute Theory” of plasma where screening effects are ignored.

Application of Eq. 4.0.1 with Eq. 4.0.4 has been very successful in describing dilute
plasma physics, as the Coulomb logarithm is a weak function of the plasma parameters
(T and n0). However, trouble arises as Γ increases and the plasma becomes non-ideal.
Indeed, Eq. 4.0.4 becomes ill-defined in dense plasma when δD < Rc. To account for the
increased screening effects in SCPs, various authors have put forth modified forms of the
Coulomb logarithm which can vary significantly. For the purpose of comparison, three
forms of the Coulomb logarithm are chosen for the experiments presented. They are:

”Dilute” : ln Λ = 1, (4.0.6a)

”Daligault” : ln Λ = ln (0.7Λ + 1) , (4.0.6b)

”Debye” : ln Λ = ln
√

Λ2 + 1. (4.0.6c)

The “Dilute” theory represents one extreme where screening is not considered. Conversely,
the “Debye” theory represents the extreme in screening where collisions only occur within
the Debye length. The “Daligault” theory [22] represents an intermediate screening theory
and is similar to that of the “ion-sphere” model presented in Chapter 3 (see Appendix B).

The transport properties observed in the thesis experiments presented relate directly
to τe−i. Specifically, the plasma opacity through the rate of (inverse) bremsstrahlung, the
thermalization timescale needed for thermal equilibrium, and the electron-ion recombina-
tion timescale needed for ionization equilibrium are considered and their derivations are
shown in the following sections.

4.1 Inverse Bremsstrahlung

A defining characteristic of sonoluminescence is its opaque nature in the visible fre-
quencies. Blackbody spectra emerging from a micron-sized plasma is a strong indication
of the phase transition discovered by Kappus et al. [57]. To be opaque, a body must
satisfy the following conditions: (i) light and matter are in thermodynamic equilibrium
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and (ii) the photon mean-free-path is much smaller than the radiating body. The second
condition can be rewritten as κlBB � 1, where lBB is the size of the blackbody and
κ is a process-dependent absorption coefficient for light. The processes that result in
the absorption of continuous spectra is the scattering of an electron with an ion(atom)
known as free-free(free-neutral) inverse bremsstrahlung, and the ionizing absorption of
a bound electron by a photon known as free-bound absorption (photoionization). For
the plasma temperatures and densities under consideration in this thesis, free-free inverse
bremsstrahlung is the dominant mechanism for absorption [59]. With the knowledge of
this absorption coefficient κe−i and the plasma size, one can determine the electron den-
sity needed for opacity. Considering the mechanism for free-free inverse bremsstrahlung,
it should come as no surprise that κe−i is fundamentally dependent upon τe−i.

A full derivation of κe−i based on the Drude model can be found in Appendix C and
the results are given below using the “Daligault” theory:

κe−i = 2= (kp) , (4.1.1)

k2
p = ω2

c2

[
(1− γβ) + γβ

ωτω
i

]
, (4.1.2)

ωτω =
[

2√
6π
γ

1/2Γ1/2Γω ln
(

0.7√
3

Γ−3/2
ω + 1

)]−1

, (4.1.3)

γ =
(
ωp
ω

)2
= 4πn0Z̄e

2

meω2 , β = ω2τ2
ω

1+ω2τ2
ω
, Γ =

(
Z̄e2

kBT

)(4πn0

3

)1/3

,

Γω = Γ
[
kBT

~ω

(
1− exp

(
− ~ω
kBT

))]
,

where τω is the electron-ion collision time in the presence of an electromagnetic field
oscillating at ω. In the limit of ~ω → 0, τω → τe−i. Although lengthy in appearance,
the above equations greatly simplify as many of the experimental plasmas presented fall
within a certain regime. In the limit of ωτω, kBT~ω , ω

ωp
� 1 and Γ & 1, ωτω ' 5.37γ−1/2

and κ ' 1.17γ
3/2

λ
, where λ is the wavelength of light. This is a result that is unique in

plasmas as τe−i and κe−i become independent of temperature and scale only with the
plasma frequency.
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Figure 4.1: The photon mean free path (κ−1
e−i) in a plasma vs. electron density for various

screening theories. The frequency of light and plasma temperature is 400 nm and 10,000 K
respectively. Opacity at 400 nm can only occur in micron-sized plasma with electron
densities > 1020 cm−3, assuming free-free as the dominant mechanism.

The formulas presented above allow not only the absorption of light in a plasma, but
also the reflection of light by a plasma. As a simple example (and used in Chapter 6),
the reflection of a plane wave incident a semi-infinite plasma slab is given by

R =
∣∣∣∣∣np − n0

np + n0

∣∣∣∣∣
2

, (4.1.4)

where np = kpc
ω

is the plasma index of refraction and n0 is the index of refraction of the
adjacent medium. Using the equations above, the plasma opacity (κe−i), the collision
time (ωτω), and the reflection (R) can be compared with the different screening theories
and are shown in Figs. 4.1-4.3 as a function of the electron density. The opacity calcula-
tions presented here are applied to the blackbody plasmas seen in Chapters 5-8. Knowing
the size of the plasma and its blackbody temperature, the electron density can be inferred
from the opacity condition set by κe−i and use of the appropriate Coulomb logarithm. It
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Figure 4.2: ωτω in a plasma vs. electron density for various screening theories. The fre-
quency of light and plasma temperature is 400 nm and 10,000 K respectively. The collision
frequency increases with the electron density and can reach levels near the frequency of
light for the “Dilute” and “Daligault” screening theories. The “Daligault” theory pre-
dicts a the collision frequency scaling proportionally to the plasma frequency at large
electron densities. The most extreme screening model (“Debye”) predicts a saturation in
the collision frequency for electron densities > 1021 cm−3.
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Figure 4.3: The reflection of a plane wave incident a semi-infinite plasma slab vs. electron
density for various screening theories. The frequency of light and plasma temperature is
400 nm and 10,000 K respectively. The reflection of the incident wave increases slowly
with the electron density. A sharp increase in reflection occurs for densities greater than
the critical density (ω = ωp) for the screened theories (“Daligault” and “Debye”). In the
“Dilute” theory, strong reflection is hindered as the wave is dampened by the ωτω . 1
effect.
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will be shown in Chapter 6 (through plasma reflection (R)) that the “Daligault” theory
of screening is the correct form in the density range under consideration.

4.2 Thermalization Time

As a plasma consists of ions and electrons, there exists the possibility of a two-
temperature system defined by the electron temperature Te and the ion temperature
Ti. Therefore, there are several collision timescales for reaching thermal equilibrium in a
plasma: (i) the electron-electron τe−e, (ii) ion-ion τi−i, and (iii) electron-ion τe−i collision
timescales given by

τe−e =
[

2√
6π
ωp,eΓ3/2

ee ln Λee

]−1

, ωp,e =
√

4πnee2

me

, Γee = e2

kBT

(4πne
3

)1/3

, (4.2.1)

τi−i =
[

2√
6π
ωp,iΓ

3/2
ii ln Λii

]−1

, ωp,i =
√

4πnie2

M
, Γii = Z̄2e2

kBT

(4πni
3

)1/3

, (4.2.2)

τe−i =
[

2√
6π
ωp,eΓ

3/2
ei ln Λei

]−1

, ωp,e =
√

4πnee2

me

, Γei = Z̄e2

kBT

(4πni
3

)1/3

. (4.2.3)

The timescale for thermal equilibrium is mass dependent given by

τth,a−b ≈
mb

ma

τa−b, (4.2.4)

where ma(b) is the mass for particle a (b). For particles of the same mass, thermal equi-
librium is established in only a few collisions (electron-electron and ion-ion) while many
collisions are needed for particles of different mass (electron-ion). Comparing the ther-
malization timescales (Eqs. 4.2.1-4.2.4) normalized to τe−e gives

Singly-Ionized: τth,e−e : τth,i−i : τth,e−i = 1 :
√

M
me

: M
me
, (4.2.5)

Multiply-Ionized: τth,e−e : τth,i−i : τth,e−i = 1 :
(

ln Λii
Z̄2 ln Λee

)√
M
me

:
(

ln Λei
Z̄ ln Λee

)
M
me
,(4.2.6)

where M is the mass of the ions. Tables 4.1 and 4.2 show the calculated timescales in
Eqs. 4.2.5 and 4.2.6 for the various screening theories. The plasma properties of xenon and
argon laser breakdown in Chapter 7 are used for comparing the singly vs. multiply-ionized
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τth,e−e (fs) τth,i−i (ps) τth,e−i (ns)
“Dilute” 0.773 0.209 0.0563

“Daligault” 4.18 1.13 0.305
“Debye” 19.2 5.17 1.39

Table 4.1: Calculated values of the thermalization times between electrons, ions, and
electrons with ions. Plasma values (T=14,550 K and Z̄ = 1.0) for laser breakdown in
25 bar argon from Chapter 7 were used to calculate the thermalization times for various
screening theories. The measured value for τth,e−i is 380 ps, which most closely follows
the “Daligault” theory.

τth,e−e (fs) τth,i−i (ps) τth,e−i (ns)
“Dilute” 0.944 0.045 0.0706

“Daligault” 5.22 4.19 1.17
“Debye” 24.5 377 18.1

Table 4.2: Calculated values of the thermalization times between electrons, ions, and
electrons with ions. Plasma values (T=12,350 K and Z̄ = 3.2) for laser breakdown in
5 bar xenon from Chapter 7 were used to calculate the thermalization times for various
screening theories. The measured value for τth,e−i is 1.47 ns, which most closely follows
the “Daligault” theory.

regimes. The measured values of τth,e−i from Chapter 7 leans in favor of the screening
theory of “Daligault” as highlighted in red. Furthermore, both Te and Ti are established in
timescales on the order of femtoseconds and picoseconds, respectively. Therefore, from an
experimental standpoint, the plasma generated in Chapter 7 is a two-temperature plasma
whose physics obeys the two-fluid model.

4.3 Recombination Time

As discussed in Chapter 3, the ionization level of a plasma in equilibrium is governed
by Saha’s equation. In certain situations, a plasma’s ionization level can be driven or
generated off its equilibrium value (ionizing shock waves, ultra-fast laser ionization, etc.).
A plasma whose ionization is off its equilibrium value will seek the Saha determined value
with a characteristic recombination timescale τrec. Once a plasma has reached its Saha
determined value, the plasma is in a state of ionization equilibrium.
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The dominant process for electron recombination in high density plasmas is the 3-body
recombination, which occurs from the capture of an electron by an ion in the presence
of an additional electron. The reverse process to 3-body recombination is called electron
impact ionization, which occurs from the impact of an electron and an ion resulting in
two free electrons. Both of these processes are useful in determining if a plasma is in
ionization equilibrium, and are related to each other through Saha’s equation by the
principle of detailed balance. For the experiment presented in Chapter 7, τrec is a crucial
timescale in determining the plasma’s equation of state. The elementary theory of 3-body
recombination is provided by [106] and is given as

τrec =
(
v̄eπ

2r5
0Z̄

4n2
0

)−1
, (4.3.1)

where v̄e =
√

8kBT/meπ is the mean thermal electron speed and r0 = 2e2

3kBT is the impact
parameter for recombination in a Coulomb collision. Eq. 4.3.1 is derived by multiplying
the frequency of electron-ion collisions (τ−1

e−i) with the probability (P ) of finding an addi-
tional electron within the collision region, as needed to conserve energy and momentum.
Separating Eq. 4.3.1 into these two factors gives

τrec =
(
v̄eπ

(
Z̄r0

)2
n0

)−1
×
(
π
(
Z̄r0

)2
r0n0

)−1
= τe−i

P
. (4.3.2)

This formulation of τrec does not take into consideration the screening effects of dense
plasma and can be considered the “Dilute” theory. To account for screening effects, r0 is
replaced with the screened impact parameter ρ given by σ = πρ2 =

(
Z̄n0v̄eτe−i

)−1
, where

τe−i is the electron-ion collision time for various screening theories. In the high-density
limit:

”Dilute” : ρ ≈
(2

3

)1/2

Rc, (4.3.3a)

”Daligault” : ρ ≈
(1.4

9

)1/2 ( a

δD

)1/2

a, (4.3.3b)

”Debye” : ρ ≈
(1

3

)1/2

δD, (4.3.3c)

where a and δD are given by Eqs. 3.2.11 and 3.2.3 respectively. Formulation for the
screened impact parameters can be found in Appendix B. τe−i, P, and τrec are calculated
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τe−i (fs) P τrec

“Dilute” 0.773 162% 0.477 fs
“Daligault” 3.81 14.8% 25.7 fs
“Debye” 18.4 1.39% 1.32 ps

Table 4.3: Calculated values for the 3-body recombination timescale. Plasma values
(T=14,550 K and Z̄ = 1.0) for laser breakdown in 25 bar argon from Chapter 7 were used
to calculate ρ for various screening theories.

τe−i (fs) P τrec

“Dilute” 0.295 542% 0.0544 fs
“Daligault” 4.76 8.37% 56.9 fs
“Debye” 75.3 1.36% 5.52 ps

Table 4.4: Calculated values for the 3-body recombination timescale. Plasma values
(T=12,350 K and Z̄ = 3.2) for laser breakdown in 5 bar xenon from Chapter 7 were used
to calculate ρ for various screening theories.

τe−i (fs) P τrec

“Dilute” 0.099 2500% 0.004 fs
“Daligault” 1.91 29.3% 6.52 fs
“Debye” 36.3 0.355% 10.2 ps

Table 4.5: Calculated values for the 3-body recombination timescale. Plasma values
(T=9,250 K and Z̄ ≈ 0.45) for the xenon SL (n0 = 5.5× 1021 cm−3) from Chapter 6 were
used to calculate ρ for various screening theories.
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in Tables 4.3 and 4.4 for the various screening theories. The plasma properties of xenon
and argon laser breakdown in Chapter 7 are used in Tables 4.3 and 4.4. For comparison
to a high density system, the plasma properties of xenon SL in Chapter 6 are used in
Table 4.5. For all plasmas considered, the “Dilute” theory predicts an impossibly fast
timescale due to an overestimation of P . The “Daligault” theory of recombination predicts
τrec on the order of τe−i. It is important to recognize that ALL screening models predict
τrec < 10 ps. Therefore, all plasmas measured in this thesis are in ionization equilibrium
and must obey Saha’s equation.
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Chapter 5

Sulfuric Acid Sonoluminescence
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5.1 Introduction1

A big challenge in the field of SL has been the experimental limitations in measuring
the submicron and subnanosecond bubble dynamics. The discovery of the plasma phase
transition was made possible by the existence of a ∼ 100µm and ∼ 1µs SL plasma
[57]. However, there does exist an SL bubble whose dynamics lie between these two
extremes (∼ 10µm and ∼ 10 ns) known as “Sulfuric Acid Sonoluminescence”. The size
and timescale of this SL allows one to measure its bubble dynamics with a high degree of
accuracy. This provided the key motivation for verifying the plasma phase transition in the
following experiment. Furthermore, this experiment provides a new approach to verifying
the plasma phase transition through energy conservation. The result of this experiment is
a verification of the plasma phase transition in a new SL system, whose degree of ionization
and potential reduction is consistent with Debye screening of a strongly-coupled plasma
(see Chapter 3).

1Chapter Image: A false-color microscope photograph of xenon SL dancing in sulfuric acid. The
photograph was backlit with a single 100 fs laser pulse at the moment of maximum bubble radius, as
seen by the large red circle. The blue corkscrew appearing across the image is created from thousands of
bubble collapses, each producing SL emission. The relatively long exposure time (100s ms) and change
in every collapse position provides the appearance of a continuous stream of light.
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5.2 Energy Balance for a Sonoluminescence Bubble

Yields a Measure of Ionization Potential Lower-

ing

Application of energy conservation between input sound and the microplasma which
forms at the moment of sonoluminescence places bounds on the process, whereby the gas
is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a
xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics
and minimum radius. For a range of emission intensities, the blackbody spectrum emitted
during collapse matches the minimum bubble radius, implying opaque conditions are at-
tained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6 eV/atom
of energy available during light emission. In order to unbind enough charge, collective
processes must therefore reduce the ionization potential by at least 75%. We interpret
this as evidence that a phase transition to a highly-ionized plasma is occurring during
sonoluminescence.

Sonoluminescence (SL) is the emission of light from a bubble whose pulsations are
so strong that the energy density of a surrounding sound field is concentrated by many
orders of magnitude. This can be achieved in cavitation clouds [31, 69, 100] or in a single
driven cavity[100, 90, 99, 6, 85, 15, 32, 18, 88]. Fig. 5.1 shows how a single spherical
bubble of xenon in sulfuric acid expands to a maximum radius Rm during the rarefaction
part of a 28.5 kHz standing wave and then rapidly collapses to a minimum radius Rc

during the ensuing compression. For this example of sonoluminescence the flash of light
emitted at Rc has a 13 nanosecond duration and its spectroscopy (Fig. 5.2) reveals an
accurate match to an ideal Planck blackbody [48]. A blackbody must be opaque and so
the mean free path l of light inside the light-emitting-region must be smaller than its size,
or to the accuracy of our measurements, l < Rc. As SL originates in a plasma, the charge
density required for opacity for this 6.5 ± 0.9µm radius bubble is ne > 4.0 × 1020 /cm3

fundamental unbound charges/cc, or Ne > 4πR3
cne/3 unbound charges in the blackbody

[106, 39]. In order to independently produce Ne free ions, the plasma requires an energy
Neχ0 where χ0 ( 12.1 eV) is the ionization potential of a single xenon atom. Via a detailed

44



Figure 5.1: Radius versus time from Mie scattering data, backlighting image data, and
RP simulation fit in sulfuric acid from flashes between 6 and 6.5 V ns integrated intensity.
(a) illustrates bubble motion for just over one cycle of the sound field. (b) shows the same
data scaled to reveal details of near the minimum radius and includes points of reference
to delineate energy availability at various points on the curve. Uncertainty is calculated
as the standard deviation of the Mie scattering points from a given time-grouping added
in quadrature with the predicted velocity multiplied by the width of the grouping.
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Figure 5.2: Integrated spectrum from sonoluminescence in sulfuric acid from flashes be-
tween -6 and -6.5 V ns integrated intensity. The dotted line is a fit (from 250 to 800 nm)
to a Planck black body which gives T = 8400 K and Re = 6.9µm. The dashed line is a
theoretical transparent spectrum following Hammer et al [41]. This model uses a fixed
size of 6.5µm radius, a temperature of 15900 K, and 5.4% ionization (The upper limit
of our uncertainty in both temperature and density of the SL plasma). The associated
823 nm line emission for this hot, dilute model is represented by the dashed grey bar.
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analysis of measurements of bubble radius “R” as a function of time “t”, we will show that
the total acoustic potential energy available to the bubble on each cycle is much less than
Neχ0. There are three possible conclusions: (i) opacity is due to a mechanism other than
the scattering of light by free charges, (ii) SL originates in a strongly interacting Coulomb
plasma which lowers the ionization potential to such an extent that the microplasma
becomes opaque, and (iii) SL has its origins in a higher temperature emitter which is a
transparent blackbody imposter. The discovery [29] that spectral line shifts imply free
charge densities 1021 /cc, the analysis of spectral intensity [104], the observation that
sonoluminescence can be a bubble filling blackbody [93, 92, 57], and the use of laser pulses
to measure the opacity of a sonoluminescing bubble [61], select in favor of (ii); however,
an evaluation of case (iii) is included in our discussion.

In order to quantify the energy contained in the dynamically evolving bubble, we
acquired extremely detailed measurements of the radius as a function of time with pulsed
Mie scattering. Experiments presented here are carried out in an aqueous solution that is
85% sulfuric acid (SA) by weight with 50 Torr of xenon mixed in before pressurizing with
1 atm of xenon. SL in SA is characterized by extremely bright flashes of light [28] but also
by extreme jitter in space (∼ 2 mm) and time (1 µs). This is accompanied by SL intensity
jitter due to the variety of collapse conditions brought upon by the chaotic bubble motion
and resulting range of driving amplitudes [91]. A histogram of measured SL integrated
intensities is shown in Fig. 3. To overcome these difficulties, we used a 100 fs, 1 mJ
pulsed Ti:Sa laser at 830 nm to illuminate the bubble and collect the scattered light in
a Mie scattering arrangement with a large area (1 cm2) photodiode. This allowed us to
simultaneously take a ‘‘snapshot’’ of the bubble radius while saving details of the light
emission (Hamamatsu PMT) with every pulse of the laser. By recording every event
independently, we could discriminate based on SL integrated intensity after the fact to
build a set of radius versus time curves for selected SL conditions. Further details can be
found in Appendix D.

To calibrate the Mie scattering signal, the laser could be steered into a backlighting
configuration and collected with a microscope (5× Mitutoyo Plan Apo Long WD Objec-
tive). At 16 different phases of the acoustic cycle, images of the bubble were taken to
obtain an independent determination of the bubble radius throughout its motion. In a
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Figure 5.3: PMT histogram shows the relative frequency of integrated PMT intensities
during one data acquisition. Re is the radius of emission from black body fits of calibrated
spectrum data. Rmin is the minimum radius measured from Mie scattering data like that
of Fig. 5.1. Both Re and Rmin data are discriminated by 0.5 V ns ranges of PMT integrated
intensity.
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similar manner to the Mie scattering data, SL integrated intensity and timing information
was captured with each backlit image and this could be used to select appropriate images
for each Mie scattering set. In addition, the ambient radius of the bubble (R0) could
also be measured in this configuration by briefly interrupting the drive. For purposes
of illustration, what follows is the analysis of a selection with SL integrated intensities
ranging from 6 to 6.5 V ns. The postprocessed radius versus time curve resulting from
this discrimination is shown in Fig. 5.1.

This Mie scattering data is fit to a solution of the Rayleigh-Plesset (RP) equation and
includes thermal transport between the ideal gas in the bubble and the surrounding fluid
[76, 58, 75]. The maximum Mach number M of the bubble wall relative to the speed of
sound in the gas is ∼ 0.2, so it is expected that the RP equation describes R(t) to a good
approximation. For the purpose of theoretical analysis, this is an important advantage
over other single bubbles in water which exhibit greater stability but which implode with
M > 1 [98, 70]. For the vast majority of the cycle, the xenon in sulfuric acid bubble
behaves as an ideal gas and the simulation contains all necessary terms to accurately
describe its motion. We find that the applied acoustic pressure is 1.4 ± 0.05 atm with
its phase shown in Fig. 5.1. Near the minimum, the necessary equations to describe its
equation of state, while simultaneously satisfying all past experimental observations, do
not exist. The fit we present near the minimum should be viewed in this context then as
merely an accurate parametrization of the data and not a description of the internal state
of the compressed matter. Nonetheless, an accurate description of the maximum collapse
speed and its resulting acoustic radiation can be obtained using our methods.

During a given cycle of sound, the maximum potential energy available to heat and
ionize the contents of a bubble isEp = 4π (R3

m −R3
c) p0/3, where p0 is the ambient pressure

which for Fig. 5.1 is 1 atm [66]. The number of atoms in the steady state bubble is N0 =
4πR3

0p0/3kT0, where R0 is the ambient radius which occurs when the total pressure acting
on the bubble equals p0, and kT0 is the product of Boltzmann’s constant with the ambient
temperature. We measured the R0 via backlighting with sound off to be 22± 2µm which
equates to N0 = 1.1±0.3×1012 atoms and a collapse density of nc = 1.1±0.5×1021 /cm3

using Rc = 6.5µm. The energy available to ionize atoms when the minimum radius is
reached is equal to the potential energy plus the work done by the acoustic field, minus
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the energy lost to acoustic radiation, viscosity, and heating the gas, or:

Ec = Ep + ∆Wa −∆Erad −∆Eη −∆UT , (5.2.1)

where ∆Erad and ∆Eη are the energy lost to acoustic radiation and viscosity, respectively,
and ∆UT is the energy required to heat the bubble to temperature T so that:

∆Wa = −
ˆ
padV ;

∆Erad = 4π
c

´
R3Ṙd(pg−p)a

dt
dt, (5.2.2)

∆Eη = 16π
ˆ
RṘ2dt;

∆UT = 3
2N0 (1 + x) k (Tc − T0) , (5.2.3)

where ‘‘x’’ is the degree of ionization and pa is the applied acoustic pressure. For the
Xe bubble in sulfuric acid pulsating as in Fig. 5.1, Ep/N0 = 2.8 eV/atom, ∆Wa/N0 =
1.7 eV/atom, ∆Erad/N0 = 1.8 eV/atom, and ∆Eη/N0 = 0.7 eV/atom. This leaves 2.1 ±
0.6 eV/atom at Rc. This energy must provide for heating of electrons and ions, as well as
for ionization.

We characterized the thermodynamic state of the plasma by measuring the emitted
spectrum with a fiber-coupled Acton spectrometer attached to a Princeton Instruments
ICCD. Individual spectrums were captured by the gated ICCD and averaged using PMT
data. The spectrum associated with the dynamics of Fig. 5.1 is shown in Fig. 5.2. The
calibrated spectrum when fit to a Planck blackbody yields a definite emitting radius.
In this case, the size of the emitting region is 6.4µm at 8400 K. This agrees with the
measurement of the bubble radius on collapse (Fig. 5.1b). Given the low Mach-number
motion of the bubble wall, this allows us to infer that the system is opaque across the
visible spectrum and nearly homogenous in both temperature and density.

Heating to 8400 K requires 1.1 eV/free particle. At an example wavelength of 400 nm,
an ionization of more than 36% of the atoms, orNe > 4×1011, is required for opacity. With
these additional electrons, the minimum energy needed for heating is ∆UT/N0 = 1.5 eV.
The remaining energy [∼ N0(0.6 eV)] is used to form the free electrons. Per electron-ion
pair, this gives 1.7 ± 1.7 eV/particle to form the free charges. Even at the limits of our
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uncertainty, the available energy by this reckoning is a factor of 3 lower than the ionization
potential.

According to statistical mechanics, the degree of ionization for a dilute gas follows
from Saha’s equation:

x2

1− x = 2g1

n0λ3 exp {−χ/kT} , (5.2.4)

where g1 is the effective degeneracy of the electronic states of the ion, at 8400 K g1 is
2.7, λ = h/

√
2πmekT is the electron thermal de Broglie wavelength (8.1Å at 8400 K),

and n0 = N0/Vc ∼ 1.1 ± 0.5 × 1021 /cm3 is the atomic density when the radius of the
bubble has reached Rc. Using the value of the ionization potential for an isolated atom
χ0 = 12.1 eV yields x = 7 × 10−4 which is orders of magnitude below the level required
for opacity. In order to reach 36% ionization, this system would require the presence of a
collective process that reduces χ from 12.1 to 2.7 eV. In the event of such a process, the
energy available inside of the collapsed bubble would be sufficient to produce the number
of ions needed for opacity.

While the interpretation of the spectrum infers opacity and the required high level of
ionization, the bubble dynamics and resulting available energy makes no such assumption.
For the purposes of discussion, we can distribute the available energy to the plasma
formed inside the bubble in the ideal limit where Saha’s equation is applied using the
bare ionization potential χ = χ0 = 12.1 eV. The available energy of 2.1± 0.5 eV/atom at
a density of 1.1±0.5×1021 /cm3 distributes itself according to ideal statistical mechanics
to a temperature of 13400 ± 2500 K and a degree of ionization of 3 ± 2.4%. As has
been emphasized [43], the spectrum of light emission at this temperature and degree of
ionization should include bound-free transitions in addition to free-neutral and free-free
Bremsstrahlung processes. In this manner, the best-fit transparent spectrum is calculated
within the bounds of uncertainty and leads to the dashed plot in Fig. 5.2. In this case, both
maximum temperature (15900 K) and atomic density (1.6 × 1021 /cm3) were needed to
best match the intensity of the data. As mentioned [44, 41], the peak in the transparent
15900 K spectrum is close to the peak in the 8400 K blackbody. Given the various
uncertainties and the fact that the measured spectrum is an average over the entire
implosion event, these spectra are in reasonable qualitative agreement.
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Various theoretical and experimental insights can be used to distinguish between the
opaque and transparent ‘‘blackbody-imposter’’ solutions for the light emitting state. First,
consider the strong spectral line at 823 nm from a transition that has the metastable Xe*

as its ground state. This is an opaque line and its peak will lie on a blackbody curve with
the plasma’s temperature [106] (p. 247). The predicted line intensity is shown in Fig. 5.2,
supposing this was a transparent system at 15900 K. Yasui [102] has presented a detailed
analysis of quenching of molecular lines in sonoluminescence from single bubbles in water
and has argued that they are quenched by collisions. What makes SL from sulfuric acid so
interesting is that the gas density at the moment of collapse is so low— being an order of
magnitude less than SL in water. This system is therefore more amenable to modeling and
it will be interesting to see if theory exhibits quenching of the atomic lines by collisions.
Time resolved spectra of a single xenon bubble in phosphoric acid [57] were acquired
at collapse gas densities and temperatures comparable to this Letter. These data show
that the opaque atomic line does not disappear until it is swallowed by the broadband
blackbody spectrum. For these reasons, we propose that the absence of the Xe* 823 nm
line in Fig. 5.2 supports our assertion that the light emitting region is not transparent.
Finally, there is an argument based upon well-known, first order corrections to Saha’s
equation [106, 64]. At 15900 K with n0 = 1.6 × 1021 /cm3, Eq. 5.2.4 yields a degree of
ionization of x = 5.4% which we now argue is unstable at the first order of perturbation.
Following Landau and Zel’dovich [106, 64], the ionization potential is corrected at first
order to

χ ≈ χ0
(
1− 2γaBn1/3

0

)
− Ae2/δD, (5.2.5)

where A = 1 is the coefficient of the Debye screening term which reduces the distance
an electron must move from an atom to be liberated to δD =

√
kT/8πnee2 , aB is the

Bohr radius, and γ = 1.78 is a coefficient determined by photon induced conductivity
in cold xenon at high pressure [37]. The first term reduces the ionization potential via
the hybridization of nearest neighbor xenon atoms. This term has been applied to SL
previously by Yasui [103]. For 15900 K and n0 = 1.6× 1021, Eq. 5.2.5 yields a reduction
in ionization potential of 4.8 eV. Plugging this back into Eq. 5.2.1 dramatically increases
the degree of ionization and the transparent fit in Fig. 5.2.2 is no longer valid. We have
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proposed that for such large T and atomic density, the effects of screening cannot be
treated as a simple perturbation. Instead one must seek a self-consistent solution to
Eqs. 5.2.4 and 5.2.5 subject to the available total energy (this possibility was realized in
[36]). For the parameter space discussed in this Letter and with A ≈ 1, no self-consistent
solution exists indicating a degree of ionization approaching x = 1.

The high degree of ionization inside of an SL plasma is due to the fact that SL occurs at
a relatively high atomic density. Ebeling et al. has calculated x (n0) for given temperatures
for xenon and found that at densities above ∼ 1022 /cm3 there is a rapid increase in “x”
which looks like a first order phase transition [24]. For the 28 kHz xenon bubble in sulfuric
acid discussed above and for the 40 Hz xenon bubble in phosphoric acid [57], blackbody
behavior and therefore, a large value of “x” is found at n0 ∼ 1.1 × 1021 /cc. In these
cases, the phase transition to opacity occurs at an unexpectedly low value of the density.
A simple picture of how this can happen is provided by Eq. 5.2.5. If A is chosen to
be a weakly varying function of the thermodynamic parameters then a reduction of the
ionization potential to 2.7 eV as required for opacity can be achieved. At 8400 K and
n0 = 1.1× 1021 /cc, the electrostatic potential at the Debye radius is e2/δD = 10.7

√
x eV,

so that lowering of due to hybridization of 2.4 eV when added to a lowering of 7.0 eV
due to electrostatic screening provides the requisite ionization potential. This occurs with
A & 1.1 and a self-consistent solution to Eq. 5.2.5, for the best fit parameters used in this
analysis.

The above analysis was carried out for data where the PMT integrated intensity was
6–6.5 V ns. A summary of the spectrum blackbody radius fits (Re) and Mie scattering
collapse radius (Rc) for other selections can be found in Fig. 5.3. For a range of PMT
areas, Rc and Re agree and it is clear that blackbody behavior is attained. The analysis
of potential lowering for all values is in Appendix D. In all of these cases, the ionization
potential needs significant reduction to attain the required ionization.

Sonoluminescence in a weakly collapsing bubble is well described by hydrodynamics.
We have detailed a new technique whereby input sound and bubble dynamics can be
measured with sufficient accuracy so that via application of energy conservation, one can
elucidate thermodynamic properties of the plasma which form inside the bubble at the
moment of light emission. In the case of a bubble in sulfuric acid driven at 28 kHz, we
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can apply energy conservation and find only 2.1 ± 0.6 eV/atom available to the interior
gas for ionization and light emission. A transparent theory for this dense plasma can
be discounted as it is unstable to well-known first order perturbation theory and fails to
describe line intensity. Likewise, sufficient ionization for opacity cannot be achieved with
this amount of energy using the Saha model of a dilute gas. As a result, we argue that the
ionization potential must be lowered dramatically by screening and hybridization. How
this theory is put on a first principles statistical mechanics basis along the lines of Teller
et al. [13] remains to be seen.

We gratefully acknowledge support from the Air Force Office of Scientific Research.
We thank Brian Naranjo, Keith Weninger, and Carlos Camara for valuable discussions.
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Chapter 6

Sonoluminescence-Laser Interaction
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6.1 Introduction1

The path which led to the experiment presented in this chapter was by no means
straight. Initially, this experiment was motivated by the idea that SL plasma not only
emits likes like a blackbody, it also absorbs like a blackbody. Calculations indicated that if
SL absorbed most of the energy from a high-intensity pulsed laser, incredible temperatures
could be obtained, and even the possibility of fusion in deuterated systems. Although high
temperatures were not achieved, strong laser-SL coupling was demonstrated and provided
a new path for studying SL plasma.

According to plasma theory, an electron density ne & 1021 cm−3 is required for a
micron-sized plasma to be opaque to visible light (T ∼ 1 eV). However, in the 25 years
after its discovery, a measurement of ne in water SL remained elusive. This experiment
makes the first-ever measurement of ne and confirms SL as a strongly-coupled plasma.
This result relies on the response of laser-SL coupling to different laser wavelengths and
is a direct consequence of the kinetic theory presented in Chapter 4. Once more, the
existence of a plasma phase transition to a highly-ionized state is consistent with the
experimental findings and the density-corrected Saha’s equation in Chapter 3.

1Chapter Image: Photograph of the experimental setup of the “Sonoluminescence-Laser Interaction”
experiment. The photograph shows the water-filled SL resonator (center), Mie collecting optic (bottom),
microscope objective for laser-focusing (left of resonator), and laser-bubble beam path (green illumina-
tion). A laser is focused onto a collapsing xenon bubble (center) and results in laser-plasma interactions
only during SL emission.
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6.2 Collision Time Measurements in a Sonoluminesc-

ing Plasma with a Large Plasma Parameter

The plasma which forms inside of a micron-sized sonoluminescing bubble in water
for under a nanosecond has been probed with 3 ns long laser pulses. A comparison
of the response to 532 and 1064 nm light indicates that the plasma density is about
2 × 1021 cm−3 and that transport properties are dominated by strong effects due to
screening. The spherical shape, uniform pressure, and well-defined atomic density make
the sonoluminescing plasma a test bed for theories of strongly coupled plasmas. Plasmas
in these experiments distinguish between competing theories of strong, intermediate, and
zero screening.

The passage of a planar sound wave through a fluid leads to pulsations of a trapped
bubble that are so large that the energy density of sound is concentrated by 12 orders
of magnitude to generate flashes of ultraviolet light that can be as short as 35 ps [46,
38, 47]. The mechanism of energy concentration and the state of the bubble contents at
the moment of light emission constitute the study of sonoluminescence (SL). During the
rarefaction part of the sound field, the radius “R” of the bubble expands to a maximum
value, where the internal pressure of the gas it contains is low compared to the ambient
value of 1 atm. In a 30 kHz sound field, the subsequent implosion is supersonic as it
passes through the ambient radius “R0” on the way to a collapse radius “Rc” [94]. The
ideal gas law gives an ambient density of n0 = 2.4×1019 cm−3 and for xenon gas R0

a
∼ 7.6,

where “a” is the radius of the bubble when the gas is compressed all the way to its van
der Waals hard core. Light scattering measurements indicate that for a trapped single
bubble in a 30 kHz sound field, Rc ∼ a so that the atomic density in the collapsed xenon
bubble is nc ∼ 1022 cm−3 [5].

At the moment of maximum compression: R ∼ Rc ∼ 1/2µm, a flash of light is emitted.
Its spectral density closely matches an ideal Planck blackbody [92, 15, 28, 48]. As a
blackbody is opaque the free charge density must be very high. According to the simplest
formulas for opacity where it is due to scattering of light by free charges [106], a photon
mean free path of 1/2µm at 532 nm and the measured temperature of 9250 K requires a
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charge density ne > 1021 cm−3. Analysis of line spectra in other sonoluminescing systems
have been interpreted in terms of similar charge densities and temperatures [88, 29, 57].

The repetitive attainment of such dense plasmas in spherical geometries with a con-
trolled atomic density at temperatures T ∼ 1 eV enables the use of SL for studying trans-
port properties of dense plasmas. For this case, the plasma parameter is 2.9 < Γ < 6.3,
where

Γ = e2

kT

(4πne
3

)1/3

. (6.2.1)

In this paper we explore this new direction in SL research by comparing the response of the
SL plasma to input laser light at two different wavelengths, 1064 and 532 nm. This test
is motivated by the fact that the free charge densities are so high that the corresponding
plasma frequency ωp =

√
4πnee2

me
(where me is the electron mass) is comparable to the

angular frequency ω of the light in the laser pulses, which can be used to probe the SL
micro-plasma. According to whether ω > ωp or ω < ωp the incident light is transmitted
or reflected by an ideal plasma. We note that ne ∼ 1021 cm−3 corresponds to a plasma
wavelength λp ∼ 1000 nm, which lies between the 1064 and 532 nm probe pulses. The
goal of studying the interaction of a laser with SL was first introduced by Diebold [16]
with the purpose of generating high plasma temperatures. A recent experiment by Khalid
et al. [61] demonstrated successful SL-laser coupling and provided further evidence that
SL is a highly-ionized plasma [57, 56]. Our experiment entails both spatial and temporal
challenges. The laser must hit the bubble at a properly synchronized moment during the
acoustic cycle.

Fig. 6.1 shows the main experimental observation that: a) a weak pulse of 532 nm
light can interact with the SL plasma and lead to an increase in light emission; whereas
b) the 1064 nm light interacts with the SL plasma only above an intensity threshold. The
upper data set on each panel shows the Mie scattering signal from the bubble, which is a
measure of its radius. The lower curve shows the intensity of SL during that same acoustic
cycle as recorded by a photomultiplier tube (PMT). The diagonal data set in the middle
shows the increase in light output of the bubble when the laser hits the bubble during the
lifetime of the SL micro-plasma. Theoretical analysis of this data permits one to select
between the transport theory of dilute plasmas and various screening modifications put
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Figure 6.1: Scatter plots showing the Mie scatter intensity (red dots) and the SL intensity
(black dots) for a) 532 and b) 1064 nm. The SL intensity is normalized by the intensity
distribution of SL flashes without an incident laser pulse and can be seen as a band
of points centered on unity. For each SL intensity point, there is a corresponding Mie
scatter point which is a measure of the bubble’s radius and confirms successful spatial
synchronization. SL-laser interactions only occur when the laser and SL flash overlap in
time. The spread in Mie scatter points is due to the drift in bubble location relative to
the laser focus during the laser’s repetition rate (10 Hz).
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forward by different authors [63, 22, 62].
Into degassed water we dissolve 150 Torr of a gas mixture that is 99% nitrogen and 1%

xenon. The water is in a 30 kHz quartz resonator driven by piezoelectric transducers. A
bubble is seeded into the resonator near the velocity node of the standing wave resonance
and is driven to large pulsations and sonoluminescence. A YAG laser is synchronized
with the bubble by timing from the previous SL emissions, as the flashes have a sub-
nanosecond clocklike repetition [6]. Three light detectors are used; a photodiode which
records the scattered laser light, a photodiode that measures the intensity and timing of
the laser pulse, and a PMT with a laser-blocking filter (Notch) that records the broadband
SL as well as the additional broadband emission which results from a laser pulse that is
successfully synchronized with an SL flash. The acquisition of many scattering events and
many flashes of SL is displayed in Fig. 6.1. The intensities of each event are plotted as a
function of the time elapsed between the leading edge (10% peak intensity) of the laser
pulse and the SL flash (which occurs at t = 0). For instance, the SL events plotted at
-4 ns (on the lowest trace) correspond to acoustic cycles where the leading edge of the
laser hit the bubble 4 ns before the SL flash. Such an early hit corresponds to a bubble
with a radius larger than Rc, and so the laser light scattered from the bubble as shown
on the upper trace is much larger than occurs at the minimum radius, which happens
at t = 0. If the bubble is not at its minimum radius: i.e. if it is not in the process of
emitting SL, then the PMT records the intensity of the SL flash for that cycle and it is
plotted below the time of the laser hit. This is shown by the PMT events close to the
abscissa. As the laser pulse is ∼3 ns in duration, a laser-plasma interaction can occur
even when the leading edge of the laser reaches a bubble 3 ns before SL. These laser on
plasma events can be weak (532 nm) or zero (1064 nm) because the laser is turning off
as the SL is turning on. A laser hit can also result in a weak interaction if the bubble is
not centered on the laser’s focus, which results in a spread in Mie intensities for a given
time. The largest events are seen when the laser arrives at the bubble as SL is turning on.
In this case we find broadband emission with an energy that can be much higher than a
typical flash of SL.

The SL-laser interaction gap (see Fig. 6.1) for 532 vs. 1064 nm is apparent in the
histogram of events shown in Fig. 6.2. Fig. 6.2 displays the frequency of events during
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Figure 6.2: Normalized histogram of the SL intensity for a range of laser intensities
(0.5 − 25 × 109 W/cm2) at 1064 (solid curve) and 532 nm (dotted curve). Only points
within the interaction region of -4 to +1 ns (532 nm) and -8 to +1 ns (1064 nm) were
used for the histogram. Although concurrent to the SL, a large number of laser shots did
not result in an interaction due to the lack of spatial overlap caused by the bubble’s drift
in location.
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the SL-laser temporal overlap as a function of the intensity of total light emission from
the bubble. This includes the usual SL plus the energy grabbed from the laser by the
SL plasma. The peak at unity is the strength of a typical free running flash of SL and
the gap from 4-20 reflects the difference in interaction of the 532 vs. 1064 nm laser
wavelengths with the SL plasma. What we measure is clearly below the breakdown
threshold which occurs at an intensity 50000 times that of SL and 200 times larger than
the minimum observable laser bubble interaction. This confirms that we are seeing an
interaction between the laser and the SL plasma.

The interaction of a laser pulse with a plasma is affected by the plasma frequency and
the collisionality (or absorptivity) of the plasma. The reflection of light by a sufficiently
dense plasma when ω < ωp, assumes an ideal plasma with ωτ � 1, where τ is the collision
time. In this limit the motion is reversible and no energy is absorbed by the plasma. A
theory which explains the conversion of incoming light into plasma energy must include
a finite τ .

Reflectivity in the limit τ →∞ is graphed in Fig. 6.3. The solid curves give the plasma
reflectance as a function of the free charge density for 532 and 1064 nm. On Fig. 6.3 this
is labeled as the Debye theory of transport. The transition to complete reflectance at high
charge density is the well-known plasma frequency effect which motivated this experiment.
When interactions are included according to the transport theory of a dilute plasma (see
below), one obtains the dotted line in Fig. 6.3. Application of the theory of dilute plasmas
to high charge densities leads to short collision time, ωτ < 1. In this limit absorption
shorts out plasma reflection. An explanation of the SL-laser interaction requires a theory
of the collision time for dense plasmas which follows.

Electrons of mass m and velocity “~v” are accelerated by an electric field ~E according
to the Drude model,

me
d~v

dt
+ me

τ
~v = −e ~E. (6.2.2)

When coupled to Maxwell’s equations in the presence of a disturbance driven at frequency
ω, one obtains the dispersion law for the plasma wavenumber kp given by [27]

k2
p =

ω2
p

c2
iωτ

1− iωτ + ω2

c2 . (6.2.3)
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Figure 6.3: Plasma reflection of 532 and 1064 nm light as a function of electron density for
various collision theories. The Debye theory (solid curves) represents a highly-screened
plasma, where ωτ � 1 and high levels of reflection are observed for ω < ωp. The dilute
theory (dotted curves) diverges from the high reflectivity behavior due to strong damping
(ωτ . 1) in the high density regime. The Daligault theory (dashed curves) experiences
an intermediate level of reflection in the dense regime and is capable of describing both
reflection at 1064 nm and spectral opacity at 532 nm.
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For the frequency dependent collision time in the gaseous plasma, we take

τ = 3~ω
4πnee4 [1− e−β~ω]

√
3mekT

2π
1

ln Λ . (6.2.4)

This term includes the limit of ~ω → 0, where τ is determined by small energy collisions
in a Coulomb plasma, as well as free-free scattering in which an electron absorbs a photon
of frequency ω. In the limit where ω > ωp, ωτ � 1, and ln Λ = 1, Eqs. (6.2.3) and (6.2.4)
yield a 2Im (kp) consistent with inverse Bremsstrahlung attenuation of light (Eq. 5.21 of
[106] corrected for induced emission).

For a dense plasma with Γ > 1, screening must be included to determine the effective
collision frequency. For this analysis, we consider two screening models which assign a
formulation for the Coulomb logarithm in Eq. (6.2.4). The first is the extreme screen-
ing model that utilizes the logarithmic formulation presented by Valuev [63] and sets
the Debye length as the maximum impact parameter (Eq. (6.2.5a)). The second model
proposed by Daligault [22] represents an intermediate scaling of the impact parameter
(Eq. (6.2.5b)). The dilute theory is also considered for comparison (Eq. (6.2.5c)) where
screening is not applied. These models are given by:

”Debye” : ln Λ =
√

3
π

ln
√

1
6Γ−3

ω + 1, (6.2.5a)

”Daligault” : ln Λ =
√

3
π

ln
(

0.7√
6

Γ−3/2
ω + 1

)
, (6.2.5b)

”Dilute” : ln Λ =
√

3
π
, (6.2.5c)

where
Γω = Γ

(
kT

~ω
(
1− e−β~ω

))
. (6.2.6)

As we apply transport theory over a range of frequencies we include the possibility of the
plasma parameter becoming a function of frequency (Eq. (6.2.6)) as has been included by
Dawson [55]. Furthermore, we have also included an overall factor of ∼ 2 in Eq. (6.2.4)
that distinguishes Dawson and Daligault from Zel’dovich.

Inclusion of screening (Eqs. 6.2.5a and 6.2.5b) lengthens the collision time for Γ > 1
and according to Eq. 6.2.6 this effect varies with wavelength. Fig. 6.4 shows the distance
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Figure 6.4: Decay length of light in a dense plasma for 532 and 1064 nm using the collision
theory of Daligault. Two absorption regimes are present for the electron density under
consideration and are separated at the critical density (ωp = ω). Based on the suggested
electron density of ∼ 2×1021 cm−3 for the SL measured in this experiment, the absorption
is τ -dominated for 532 nm and ωp-dominated for 1064 nm.
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light travels before decaying to 1/e as a function of electron density for the Daligaut theory
(Eq. 6.2.5b). The region labeled τ -dominated occurs when the laser frequency is greater
than the plasma frequency. For the Daligault theory at a charge density of∼ 2×1021 cm−3,
the 532 nm light is τ -dominated while the 1064 nm light is ωp-dominated and is strongly
reflected. In this range of charge density, the 532 nm penetrates most of the bubble while
the 1064 nm penetrates just a fraction of the bubble radius.

We appeal to the Daligaut theory and the region of parameter space with a charge
density of ∼ 2 × 1021 cm−3 to explain the interaction of a laser with the micro-plasma
in a sonoluminescing bubble. First, at this density the decay length of 532 nm light is
approximately equal to the bubble radius which is consistent with the observed Planckian
spectrum. Next, the 532 nm light penetrates the bubble whereas the 1064 nm light is
restricted to a depth less than 20% of the bubble radius. Furthermore, the intensity of
light at 1064 nm to penetrate into the ‘surface’ region is down by a factor of 2.5 from the
532 nm light. It is important to note that for all of the theories discussed, densities lower
than 1021 cm−3 would result in weak laser-plasma coupling due to the long decay length
(Fig. 6.4).

A full explanation of the absorption gap shown in Figs. 6.1 and 6.2 still requires
some nonlinear threshold phenomenon that allows for weak interactions at 532 nm but
precludes the absorption of weak laser light at 1064 nm. This phenomenon goes beyond
processes that we have included in the theory of τ (Fig. 6.5) . To this end we note that the
average laser intensity at 1064 nm is 3.8 × 109 W/cm2, which corresponds to an electric
field E ∼ 106 V/cm. From Fig. 6.5 the collision time is about 5 fs so that between
collisions, an electron with thermal velocity ∼ 7 × 107 cm/s moves about 3.5 nm. The
change in electron velocity during a period of light is about 106 cm/s. The number of
velocity increments of this size required to double the energy is 50, if the collisions were
all additive. Due to the randomness of collisions and due to ωτ ∼ 4, the total number of
collisions required to double the energy is 50× 50× 4× 4 = 40, 000. During this time the
electron walks a distance ∼ 1µm. This distance is much greater than the electric field’s
penetration depth which we interpret as implying that at 1064 nm, externally driven
diffusion precludes finite energy transfer. At 532 nm the response is τ -dominated and
the field penetrates most of the bubble and finite transfer is possible. The time required
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Figure 6.5: Collision time of 532 and 1064 nm light as a function of electron density for
various collision theories. The collision time for the Debye theory (solid curves) is large
for all electron densities and becomes density-independent for large plasma parameters.
The dilute theory (dotted curves) represents the shortest collision time. The intermediate
theory of Daligault (dashed curves) lies between these limiting theories and scales with
ωp for large densities.
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for the energy of an electron to double in the externally applied field is about 0.5 ns.
Possible threshold phenomena include breakdown at the water interface and higher levels
of ionization.

The plasma which forms in a collapsing noble gas bubble reaches a density with a
plasma parameter in excess of unity. The bubble has a well-defined number of atoms, is
spherical in shape, and has a uniform pressure. It therefore becomes a test bed for the
study of transport phenomena in dense plasmas. We have probed the sonoluminescing
micro-plasma by targeting it with synchronized laser pulses at 532 and 1064 nm. Light
emission from the resulting interactions enable one to decide between various transport
theories of dense plasmas and to determine that the plasma density is about 2 − 3 ×
1021 cm−3. This technique has provided an electron density measurement for single-
bubble SL in water, which has remained elusive for almost 25 years after its discovery.
The measured plasma density of ∼ 3× 1021 cm−3 corresponds to a Fermi temperature of
8700 K, which is slightly less than the spectral temperature. The possibility remains that
some regions of the SL parameter space can exhibit Fermi degeneracy as well as dense
plasma kinetics [51, 50].

We gratefully acknowledge support from DARPA MTO for research on micro-plasmas
and AFOSR for research on transport in dense plasmas. We thank Guillaume Plateau
and Keith Weninger for valuable discussions.
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Chapter 7

Laser Breakdown in High-Pressure
Gases

69



7.1 Introduction1

The plasma phase transition observed in sonoluminescence occupies a region of phase
space defined by temperatures and densities in the strongly-coupled regime (T ∼ 1 eV
and n0 ∼ 1 − 10 × 1020 atoms/cm−3). These densities can easily be obtained by using
compressed gases. For example, noble gases at 40 bar contain 1 × 1021 atoms/cm−3,
which is well within the operating pressures of laboratory gas cylinders (∼ 150 bar).
Thermal energy must now be provided to the system. The amount of energy needed to
heat up 1021 particles/cm−3 to 20000 K in a spherical volume with a 25µm radius is
∼ 25µJ. Furthermore, the energy must be absorbed in a fast timescale to avoid a rapid
decrease in atomic density due to hydrodynamic expansion. This makes femtosecond laser
breakdown in noble gases an ideal system for a first attempt at reproducing the conditions
of sonoluminescence.

Determination of the plasma phase transition requires knowledge of the temperature
and atomic/electronic densities. The opacity of sonoluminescence has been a key in-
dication of the plasma phase transition as a micron-sized blackbody requires ∼ 1020 −
1021 electrons/cm−3. Therefore, a blackbody spectrum not only provides a plasma tem-
perature, it also infers a high level of free electrons. This motivates calibrated streak
spectroscopy for the following experiment.

By measuring a blackbody from laser breakdown in high-pressure gases, the phase
transition of sonoluminescence is reproduced in a completely different system. This is a
strong indication of a universal equation of state in strongly-coupled plasma, which is not
unique to the sonoluminescence phenomenon. It belongs to a much larger class of plasma
whose properties we are just beginning to explore. As a bonus, this experiment also pro-
vides an unexpected transport measurement that’s both consistent with the “Daligault”
theory of screening (Chapter 4) and the electron density required for opacity.

1Chapter Image: Photograph of the high-pressure chamber in the laser-breakdown experiment. The
chamber (center) is filled with high-pressure gas through a pressure inlet (right) and is sealed on 5 sides
by UV-grade pressure windows. 100 fs laser pulses are focused through a lens (top) and into the center of
the gas chamber. At the location of strongest laser intensity, blackbody plasma is generated and analyzed
by a streak system (not shown).
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7.2 Blackbody Emission from Laser Breakdown in

High-Pressure Gases

Laser induced breakdown of pressurized gases is used to generate plasmas under con-
ditions where the atomic density and temperature are similar to those found in sonolu-
minescing bubbles. Calibrated streak spectroscopy reveals that a blackbody persists well
after the exciting femtosecond laser pulse has turned off. Deviation from Saha’s equation
of state and an accompanying large reduction in ionization potential are observed at un-
expectedly low atomic densities – in parallel with sonoluminescence. In laser breakdown,
energy input proceeds via excitation of electrons whereas in sonoluminescence it is initi-
ated via the atoms. The similar responses indicate that these systems are revealing the
thermodynamics and transport of a strongly-coupled plasma.

The passage of a sound wave through a fluid can lead to pulsations of a gas bubble
that are so strong that a dense plasma forms at its minimum radius. The degree of ion-
ization ne∼1021 cm−3 is much larger than follows from Saha’s equation at the measured
temperature T∼10000 K. Experiments on sonoluminescence (SL) have been interpreted
in terms of screening correlations which modify the equation of state at atomic densities
that are over an order of magnitude lower than expected from theories of strongly-coupled
plasma (SCP) [88, 57, 58, 87, 61, 56, 9]. The plasma inside a sonoluminescing bubble is
created via direct heating of the atoms. Mechanical energy from the sound field sets
up an implosion which compresses and heats the atoms to the point where they ionize.
The liberated electrons are brought up to the ion/atom temperature via collisions. The
emitted thermal spectrum is mainly due to collisions of hot electrons with ions. In low
frequency (∼40 Hz) experiments the flash width is hundreds of nanoseconds and the elec-
tron temperature is in local thermodynamic equilibrium (LTE) with the ions and light.
If the unexpected high degree of ionization and resulting opacity of a sonoluminescing
bubble is due to fundamental changes in the equation of state of cold dense plasmas then
these effects should be independent of the path by which the temperature and density
are reached. To test whether the sonoluminescing micro-plasma is indeed a manifestation
of a new thermodynamic equation of state we have generated similar plasmas using laser
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breakdown in high-pressure gases with atomic densities in the range 1019− 1021 cm−3. In
this case the path for energy flow is the reverse of SL as flashes from a femtosecond laser
instantly ionize and energize the electrons while the ions remain cold. We report obser-
vation of opaque plasma that persists, well after the laser has turned off, and for times
much longer than the recombination timescale. The spatial, temporal, and spectral prop-
erties of these plasmas are consistent with the equations of state of the SL microplasmas
and temporal evolution of the blackbody temperature provides insights into transport in
SCP’s.

The focusing of high-intensity laser pulses into gaseous media begins with a rapid
ionization and heating of electrons. This is followed by a plasma expansion into the
surrounding gas, whose luminous front vs. time is shown in Fig. 7.1. The micron-scale
plasma in Fig. 7.1 was generated using a 120 fs amplified Ti:Sapphire laser (Spectra-
Physics, Tsunami/Spitfire) operating at 1 kHz with an adjustable energy of 0−1 mJ/pulse
using a variable attenuator. The laser was focused with a 6 cm lens into the center of a
stainless steel pressure chamber. Optical access through the chamber was provided by UV-
grade fused silica viewports (Rayotek Inc.) and tested to 10000 psi. The plasma’s light
emission was collected and imaged by a 90 mm UV-to-NIR triplet lens (Edmund Optics).
The plasma image was magnified by 5.34 and imaged onto the entrance slits of a 150 mm
Czerny-Turner spectrometer (Princeton Instruments, sp-2150i). The spectrally-resolved
plasma image was temporally-resolved by aligning the spectrometer’s output image onto
the entrance slits of a streak camera (Hamamatsu, C5680-A1976-01). The streak image in
Fig. 7.1a is produced by keeping the spectrometer’s entrance slits fully-open (3 mm) and
moving the grating to 0th-order. Similarly, the spectral images in Fig. 7.2 were acquired
by closing down the spectrometer’s entrance slits (30µm) and moving the grating to 1st-
order. The total amount of incident light entering the system in either mode is defined
by the overlapping slit areas. The plasma image could be moved relative to the imaging
system allowing spectral analysis at any plasma location. The spectral measurements
presented in this Letter contain light from a plasma area of 32µm2 and was located at
the center of the plasma column.

Due to the limited amount of light entering the imaging system, each spectral image
(Fig. 7.1) consisted of an average of 105 breakdown events. However, shot-to-shot plasma
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Figure 7.1: Spectrally integrated plasma emission (>495 nm) vs. radius and time. The
streaked image a) was acquired for 5 bar xenon breakdown using a laser energy of 235±
4µJ/pulse, where t = 0 indicates the moment of laser breakdown. The plasma’s waist
(FWHM) is plotted vs. time b) for various pressures. Plasma expansion becomes hindered
with increasing pressure until ∼5 bar is reached, at which point the plasma waist dwells
before expanding.
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Figure 7.2: Calibrated spectrum vs. time for xenon breakdown at a) 0.5 and b) 5 bar using
a laser energy of 235± 4 µJ/pulse. Spectrum was acquired from a region of 5.6× 5.6µm
located at the center of the plasma waist. At lower pressures, the plasma spectrum is
dominated by atomic line emission. With increasing pressure, the spectrum is broadened
until it becomes completely continuous (∼5 bar). The absolute spectral intensity error is
∼15%.
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intensity fluctuated by only ∼10% and optical triggering resulted in a minimal temporal
jitter of 20 ps. Both streak and spectral images show the plasma emission as a function
of time, where t0 = 0 ns marks the moment of laser breakdown. Indeed, laser-plasma
scattering can enter the imaging system at the moment of breakdown and provide both
a breakdown timestamp and a measurement for the system’s temporal resolution. An
example of this is present in Fig. 7.2a for t0 and at the laser wavelength of 825 nm.

A plasma’s absolute spectral intensity provides important information regarding its
opacity and mechanism of light emission. For this purpose, the imaging system was
calibrated against known sources (Deuterium and QTH lamps) and corrected for solid
angle. A temporal correction (< 30 ps) was made to account for chromatic dispersion
within the imaging optics. Finally, an intensity correction was applied due to chromatic
aberration and tested against the known sources.

Spectral images were measured as a function of static pressure p0 for xenon, argon, and
helium while maintaining a fixed laser power. For low p0 (Fig. 7.2a) the plasma spectrum
is dominated by atomic lines for all times recorded. As p0 is increased, the continuum
radiation rises while the atomic lines become heavily broadened. This trend continues
until a critical pressure pc is reached where the spectrum becomes completely continuous
for early times (Fig. 7.2b), which has been observed in a similar system [35]. The gas-
dependent value of pc is ∼ 5, 20, and 60 bar for xenon, argon, and helium, respectively.
The continuous nature at pc is visualized in Fig. 7.3, where individual spectra are extracted
from Fig. 7.2b and plotted vs. wavelength. For p0 = pc, continuous emission persists for
a characteristic timescale tline. This timescale is also gas-dependent and is approximately
5, 1.5, and 0.15 ns for xenon, argon, and helium, respectively. For t > tline, line emission
emerges from the continuum and grows in strength relative to the continuum. This effect
is observed in Fig. 7.3 for the Xe I transition line at 823 nm.

In the field of SL and SCP, testing spectra for opacity has proven to be a powerful
technique for uncovering plasma properties [2, 57, 61, 56, 9, 88, 87]. The spectral intensity
radiated by an ideal blackbody at temperature T is

Iλ = 2πhc2

λ5
(
exp

{
hc

λkBT

}
− 1

) . (7.2.1)

Deviations from blackbody behavior is quantified by multiplying Iλ by an effective emis-
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Figure 7.3: Spectral intensity for 5 bar xenon breakdown at different times relative to
the plasma formation. Blackbody fits (dashed curves) are plotted for each spectrum with
values of T = 16350, 12350, and 11050 K for t = 0,+5, and +15 ns, respectively.

sivity ε, where ε = 1 represents an ideal blackbody. Blackbody curves are presented in
Fig. 7.3 and are well fit to the spectra. T and ε from the blackbody fits are plotted vs.
time in Fig. 7.4a. Blackbody behavior is observed as ε > 0.8 for t < 14 ns and approaches
ε ≈ 1 at t ≈ 5 ns. Consistent with the definition of a blackbody as the ideal radiator at
a given temperature, the emissivity in Fig. 7.4a never grows above unity even though the
plasma temperature is decreasing exponentially! Further blackbody behavior is observed
by measuring the emissivity value of the opaque 823 nm Xe I transition line ε823. Using
the blackbody temperature, the intensity at 823 nm, and Eq. (7.2.1), ε823 is plotted vs.
time in Fig. 7.4a. For t > tline, the plasma becomes increasingly transparent as indicated
by the reduced emissivity and increased atomic line contribution to the spectrum. How-
ever, the emissivity for the strong 823 nm line remains opaque (ε823 ≈ 1) for t > tline. Like
ε, ε823 is never greater than unity which has been observed in other blackbody plasmas
[57]. Blackbody behavior, along with an infrared opacity is also observed for 25 bar argon
and 74 bar helium in Figs. 7.4b&c, respectively.

When the observed opacity is interpreted in terms of transport theory in SCP an
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Figure 7.4: Plot of blackbody temperature (red curve) and effective emissivity (black
curve) as a function of time for a) 5 bar xenon, b) 25 bar argon, and c) 74 bar helium.
Laser energies of 235± 4, 325± 3, and 570± 6 µJ/pulse were used for xenon, argon, and
helium, respectively. For all gases, the temperature initially decays exponentially and is
followed by a long linear decay. A fit to an exponential+linear function is plotted (dashed
curve) for each gas with characteristic timescales indicated. For xenon, the emissivity for
the opaque Xe I transition is plotted (green curve) using the spectral intensity at 823 nm
and the blackbody temperature.
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estimate of the charge density can be obtained. A key condition for opacity is that the
photon mean free path at a given wavelength must be smaller than the radiating body,
written as κR < 1 where R is the plasma thickness and κ is the absorption coefficient of
light. For dense plasma, the dominant form of absorption is the process of free-free inverse
Bremsstrahlung where an electron absorbs light during a “collision” with an ion [106]. The
collisionality in SCP is greatly affected by collective screening effects. In the presence of
an oscillating electromagnetic field of frequency ω, the collisionality is characterized by
the unitless parameter ωτω, where τω is the collision time of an electron with an ion. For
an SCP in the multi-ionization regime [9]

ωτω =
[

2√
6π
γ

1/2Γ1/2Γω ln
(

0.7√
3

Γ−3/2
ω + 1

)]−1

, (7.2.2)

where γ is a unitless parameter representing the plasma frequency, Γ is the plasma coupling
parameter, and Γω is the plasma coupling parameter in the presence of an electromagnetic
field. These quantities are given by

γ =
(
ωp
ω

)2
= 4πn0Z̄e

2

meω2 , Γ =
(
Z̄e2

kBT

)(4πn0

3

)1/3

,

Γω = Γ
[
kBT

~ω

(
1− exp

(
− ~ω
kBT

))]
,

where Z̄ = ne/n0 is the effective ionization level, n0 (ne) is the nuclei(electron) density, and
me is the electron mass. For Z̄<1, Γ=(e2/kBT )

(
4πZ̄n0/3

)1/3
. The Coulomb logarithm

in Eq. (7.2.2) represents screening effects and was found using a molecular dynamics
simulation [22] and later supported in a laser-SL coupling experiment [9]. In the plasma
regime where γ� 1� ωτω, the absorption coefficient reduces to κ= ω

c
γ
ωτω

. For 5 bar
xenon breakdown at t=5 ns, T =12350 K, n0 =1.25×1020 cm−3, R=50µm (Fig. 7.1b),
and selecting a spectral region relatively void of strong line emission (400 nm), an electron
density of ne > 4.0×1020 cm−3 is needed to satisfy the observed opacity (κR ≈ π). This
electron density requires over 3 levels of ionization and results in an SCP with Γ>3.5.
The initial attainment of such high levels of ionization is well known [96, 74]. We find
that this level persists for an extended time and is a property of the equation of state of
SCP.
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The temporal evolution of the opaque spectrum yields the temperature as a function
of time when ε ≈ 1 (Fig. 7.4). This behavior can be connected to the transport in SCP,
in particular the electron-ion collision time

τe−i = lim
~ω→0

τω =
[

2√
6π
ωpΓ3/2 ln

(
0.7√

3
Γ−3/2 + 1

)]−1

. (7.2.3)

This is the timescale for electron-ion energy transfer and follows from Eq. 7.2.2 in the
limit of no electric field. We argue that τe−i accounts for the initial exponential drop in
temperature soon after the laser-gas interaction. The intense laser pulse forms a plasma
in the pressurized gas via the process of multiphoton ionization [72]. Recombination
rapidly brings the electron density and light emission into LTE at the measured spectral
temperature while leaving the ions cold. Due to their large mass, the ions take a longer
time to heat up via collisions with the energetic electrons in a timescale τth ≈ M

me
τe−i,

where M is the ion mass [106]. As the ions heat up the electron temperature drops
exponentially (Fig. 7.4). For the range of Γ given above, Eq. 7.2.3 can be approximated
as ωpτe−i ≈ 5.37 matching [22]. For 5/25/74 bar Xe/Ar/He breakdown (Fig. 7.4a/b/c),
the exponential coefficient for the initial temperature decay is 1470/380/63 ps. Using
T=12350/14550/12550 K, ne=4.0/6.3/7.0×1020 cm−3 (required for opacity at 400 nm),
and Eq. 7.2.3, the predicted thermalization time is consistent with τth=1170/305/37 ps.
Comparison of all gases results in a τth that is roughly linear to the ion mass. Normalizing
to argon, the ratio of atomic masses is 3.3:1:0.10 (Xe:Ar:He). Similarly, the ratio of the
measured decay time divided by τe−i is 3.3:1:0.18, which is consistent with the screened
theory of collisions in SCP as applied via Eq. 7.2.3 [22]. Had we used the collision time
appropriate to dilute plasma theory we would have found τth=160/71/5.2 ps.

Although rapid ionization from high-intensity laser pulses has been achieved in a vari-
ety of systems [11, 23, 78], we further observe that a high level of ionization is maintained
for a surprisingly long period of time. Is the persistent electron density due to local
electronic thermodynamic equilibrium or far off-equilibrium behavior due to a long re-
combination time? In other words, is the plasma in ionization equilibrium at each time
step in Fig. 7.4? To address this question, we consider the 3-body recombination timescale
τrec from plasma theory (photorecombination plays a minor role [106]) which occurs from
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the capture of an electron by an ion in the presence of an additional electron, given by

τrec =
(
v̄eπ

2r5
0Z̄

4n2
0

)−1
, (7.2.4)

where v̄e =
√

8kBT/meπ is the mean thermal electron speed and r0 = 2e2

3kBT is the impact
parameter for recombination in a Coulomb collision. Eq. 7.2.4 and the plasma properties
for xenon at t = 5 ns results in an impossibly fast recombination time of 0.15 fs. This is a
result of dilute plasma theory applied to the dense plasma which we study. In formulating
Eq. 7.2.4, screening processes are not accounted for and will result in an overestimation of
the probability of finding a second electron in the vicinity of the electron-ion collision. To
this end, we account for screening by replacing r0 with the screened impact parameter ρ
given by σ = πρ2 =

(
Z̄n0v̄eτe−i

)−1
. The result of this substitution is that every electron-

ion collision can result in a recapturing of the electron, and therefore τrec ≈ τe−i. This
timescale is still much faster than any experimental timescale and is necessarily smaller
than τth. We conclude the ionization is in a state of LTE with the electron temperature
and light emission.

Ionization for an electron plasma in LTE is governed by Saha’s equation given as

xm+1xe
xm

= 2
n0

um+1

um

(
mekBT

2π~2

)3/2

exp
(
− χm
kBT

)
, (7.2.5)

where xm (xe), um, and χm is the ion(electron) concentration, electronic partition function,
and ionization potential for themth ion, respectively [40, 106]. Although the electrons and
ions are at different temperatures for t < τth, Eq. 7.2.5 still applies by using the electron
temperature [19]. For 5 bar xenon at t≈ 5 ns, the charge density is > 4×1020 cm−3

while the temperature is only ∼12000 K. According to Saha’s equation, the degree of
ionization for the first ionization level (m=0 and χ1 =12.1 eV) should be less than 3%.
Yet the opacity suggested by our data requires over 3 levels of ionization. Therefore, the
collective processes at work in SCP must reduce the overall ionization potential by an
amount comparable to χ3. In particular, the lowering of χm through Debye screening
results in a change of the average ionization potential by [40, 106]

∆̄χ = 2(Z̄ + 1)e3

√√√√πZ̄
(
Z̄ + 1

)
n0

kBT
. (7.2.6)
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Using the measured plasma properties of xenon breakdown (Z̄=3.2), the ionization po-
tential is dramatically reduced by ∆̄χ=32 eV. This value of potential reduction, albeit
remarkably high, is consistent with the observed level of ionization as it lies between
χ3=31.1 eV and χ4=41.0 eV.

Application of calibrated streaked spectral imaging to femtosecond laser breakdown
in high-pressure gases reveals both transport and thermodynamic properties of strongly-
coupled plasmas. We have used calibrated streaked spectral imaging to study laser-
induced breakdown of high-pressure gases. We observe micron-scale blackbody spectra
that persist long after the exciting laser has been turned off. Spectral analysis indicates
the presence of a plasma with a degree of ionization much higher than follows from Saha’s
equation. We conclude a strongly-coupled LTE plasma is formed in an unexpected region
of parameter space (defined by atomic density and temperature). The timescale for ther-
mal relaxation depends strongly on plasma screening and its measurement discriminates
between various theories, selecting in favor of [22]. Future work will study the dwell time
and expansion of the strongly-coupled plasma. These systems may possibly reach regions
of parameter space occupied by matter obeying quantum statistics. The discovery of an
opaque microplasma as a thermodynamic state suggests electric discharges in pressurized
gases as a new route toward optical switches.

We gratefully acknowledge support from DARPA MTO for research on micro-plasmas.
We thank Brian Naranjo, Keith Weninger, Carlos Camara, Gary Williams, and John
Koulakis for valuable discussions.
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Chapter 8

Spark Discharge in High-Pressure
Gases
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8.1 Introduction1

The results from Chapter 7 show that the plasma phase transition can be recreated
outside the phenomenon of sonoluminescence. This was accomplished by rapidly deposit-
ing energy into a high pressure gas using intense electromagnetic fields. However, the
high expense and size of ultra-fast lasers limits many practical applications for this new
phase of matter. So it is natural to ask, what other ways can energy be deposited into
a high pressure gas? In this chapter a phenomenon known since classical antiquity is
investigated as a new way of generating the plasma phase transition, the spark discharge.

As with the laser-breakdown experiment in Chapter 7, the spark discharge experiment
relies on high pressure gas to achieve n0 ∼ 1 − 10 × 1020 atoms/cm−3. Likewise, the
timescale for energy transfer to the breakdown is crucial as hydrodynamic expansion
lowers the plasma density. In this system, energy is delivered via electrons accelerating
across a high voltage gap. Electrical resistivity (collisionality) randomizes the input energy
and brings the system to T=24,000 K for a 10 bar xenon discharge. Using this temperature
and Z̄ > 3 as needed for opacity, Γ = 2 which makes the spark discharge a source for
strongly coupled plasmas.

In the experiment that follows, a new diagnostic technique is introduced into this
thesis. Along with similar spectral analysis of the previous chapters, the absorption of
light due to plasmas is measured. In this way, Kirchhoff’s law is tackled from both sides
and produces a truly convincing blackbody argument. This experiments shows that a
spark discharge provides a means to creating on-demand dense plasma and functions as
a fast optical switch.

1Chapter Image: A false-color microscope image of 10 bar xenon spark discharge. The photograph
was backlit with a 3 ns laser pulse (532 nm) at the moment of peak plasma emission. The laser pulse is
unimpeded by the surrounding gas (green background) and enters the imaging system, passing through
a 532 nm line filter before exposing the camera. Laser light incident the blackbody spark plasma is
completely absorbed (shadow in center) and does not make it to the camera. The shadows produced by
the sharpened electrodes (center top and bottom) have been removed for clarity, although their outline
can still be resolved. Broadband plasma emission is blocked by the line filter, thus giving the visual
appearance of a “blackbody”.
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8.2 A Nanosecond, High-Power, Dense, Microplasma

Switch for Visible Light

In the field of sonoluminescence (SL), intense cavitation of gas bubbles within a fluid
generates extreme conditions and the emission of light. Recent discoveries in SL have
shown the emission originates from highly-ionized dense plasmas of micron scale [29, 57,
61, 56, 9]. Furthermore, this plasma is a new phase of matter that is characterized by its
high ionization at unexpectedly low temperatures (∼ 1 eV) [57]. A salient property of this
microplasma is its opacity to visible light due to its high electron density (∼ 1021 cm−3).
This feature motivates its application as an active optical limiter. The direct use of SL as
an optical switch has limited applications as it cannot be triggered on-demand. However,
SL plasma originates from a thermodynamic state and can be reproduced in any system,
regardless of how it’s created. Indeed, a recent experiment has shown that the highly-
ionized plasma phase can be generated using laser breakdown in high-pressure gases[8]. In
this Letter we report on an optical switch generated by a spark discharge in high-pressure
gases. The switch reported can block visible light in nanosecond timescales and is capable
of high-power handling when subjected to intense laser pulses.

The application of high-voltage (HV) between two gas-separated electrodes can gen-
erate plasma through dielectric breakdown. This rapid breakdown is known as the spark
discharge. Sparks can be developed in nanosecond timescales and heated to thousands
of degrees through non-linear resistive heating [52]. At these temperatures, gases become
ionized and radiate light. This rapid increase of light emission is shown in Fig. 8.1 for
sparks generated in high-pressure xenon gas. Parallel to its light emission is a plasma’s
ability to absorb incoming light. The insets of Fig. 8.1 show images (10 ns gate) of spark
plasmas absorbing light from a 532 nm pulsed laser. By delaying the moment of spark
discharge relative to the laser pulse, the plasma’s optical transmission was recorded as
a function of time (left axis of Fig. 8.1). An intimate relationship exists between the
emission and absorption of light by a body. This relationship is known as Kirchhoff’s law
of thermal radiation and can be written as

Jν
Aν

= Sν = 2πhν3

c2
1

ehν/kT − 1 , (8.2.1)
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Figure 8.1: Laser transmission and plasma emission of spark discharges formed in a) 2
and b) 10 bar xenon gas as a function of time. Laser transmission (black curves) was
recorded for 532 nm laser pulses focused through the center of the spark plasma. Plasma
emission (red curves) was recorded with a fast photodiode. Insets show images taken with
a framing camera during the moment of laser-plasma interaction. Laser absorption occurs
within the spark volume and surface for 2 and 10 bar discharges, respectively.
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where Jν is the amount of radiation emitted per unit time per unit surface area, Aν is
the absorptivity, and Sν is the radiant energy flux of a blackbody at temperature T and
frequency ν. This law states that the ratio of a body’s emission to its absorption is equal
to blackbody emission, which only depends on T and ν. Kirchhoff’s law is beautifully
represented in Fig. 8.1 as a strong correlation is observed between light emission and laser
transmission (absorption) as a function of time. In general, plasma emission becomes more
intense with increasing density [39]. This trend is observed in Fig. 8.1 for 2 versus 10 bar
discharges. Similarly, the amount of transmitted laser energy decreases with increasing
pressure. Eventually, a critical pressure is reached where the plasma becomes opaque
and laser transmission falls to zero. For pressures & 10 bar, laser pulses are completely
blocked and absorption occurs only on the plasma’s surface (inset of Fig. 8.1b).

Spark discharges were generated using two tungsten needles (45µm tip radius) cen-
tered in a stainless-steel pressure chamber (PC), as shown in Fig. 8.2a. Optical access
was granted with four UV fused-silica windows mounted on the PC. Distance between
the electrode tips was adjusted with micron precision using a custom high-pressure ac-
tuator. Variable HV pulses were generated by an external circuit shown in Fig. 8.2c. A
variable-length fast pulser (Behlke FSWP71-02, 1- ns rise time) was charged with a +5 kV
power supply through a 10 MΩ resistor. Upon triggering, +5 kV pulses are sent through
a transmission line ending with an SHV connection. Pulse lengths were set to 1µs for
the discharges presented in this Letter. The HV electrode was connected to the external
circuit through an NPT-to-SHV feed-through and the ground electrode was connected
to the chamber body. Due to the voltage being near the breakdown threshold, 10 bar
discharges jittered in time by 100s of nanoseconds relative to the input trigger. To im-
prove the temporal jitter, seed electrons were created through the photoelectric effect by
projecting a UV light source (D2 lamp) onto the electrodes [53].

The plasma images in Fig. 8.1 were acquired using a framing camera (Specialised-
Imaging, Custom SIMD-052) capable of capturing four 3 ns images in a 12 ns interval.
Plasma emission was collected and imaged onto the framing camera. Following Fig. 8.2b,
plasma emission was collected by an infinity-corrected microscope objective (MO) and
imaged onto the framing camera with a tube lens (Mitutoya 10× total magnification). A
filter stack (FS) was placed between the objective and tube lens. In FS3 were neutral
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Figure 8.2: Experimental setup: a) Photograph of pressure chamber with tungsten needle
electrodes. b) Optical block diagram for laser transmission, plasma emission, and fast
spark imaging (framing). Included are laser (green arrows) and plasma emission (red
arrows) ray traces. c) High-voltage circuit diagram.
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density filters and a 532 nm notch filter to protect the framing camera from incidental
laser scattering and pass broadband plasma emission.

Laser transmission curves from Fig. 8.1 were measured by focusing laser pulses through
the spark discharge. TEM00 pulses from a seeded YAG were focused into the PC (green
arrows in Fig. 8.2b) with a laser objective (LO). The measured flashwidth, energy, beam
waist, and intensity at focus was 2.18 ± 0.15 ns, 8.02 ± 0.88µJ/pulse, 4.24 ± 0.02µm,
and 2.63± 0.29× 1010 W/cm2, respectively. After passing through the spark discharge at
minimum focus, the laser is collected, filtered, and imaged onto a triggerable CCD camera
(Mightex CCE-B013-U). In FS1 were neutral density filters and a 532 nm line filter to
protect the camera from strong laser intensities and block broadband plasma emission.
Transmission is normalized using the integrated laser intensity on the CCD for pulses
arriving before the spark discharge.

A signal representing plasma emission (“Plasma Photodiode” in Fig. 8.1) was needed
to sort the CCD and framing camera images as a function of time. In Fig. 8.2b, a beam
splitter sends a portion of the plasma emission to a fast photodiode (1 ns rise time). The
broadband light sent to the photodiode was filtered by FS2 (532 nm notch) and magnified
0.6× by a simple lens (SL). Timing signals from the plasma photodiode and cameras were
recorded on an oscilloscope for every laser pulse. A timestamp was assigned for each event
based on the time difference between the plasma photodiode and the cameras. Timing to
each instrument was controlled through a delay generator (SRS DG645).

From Eq. 8.2.1, the condition for opacity is given by Aν = 1 and therefore Jν = Sν .
This states that an opaque body must emit blackbody radiation for a given frequency.
The transmission curve for 10 bar discharges in Fig. 8.1b indicates complete absorption
at 532 nm, and must therefore radiate as a blackbody at 532 nm. To confirm this re-
quirement, calibrated spectrum was measured as a function of time as shown in Fig. 8.3.
Temporally-resolved spectrum was acquired using a calibrated fiber-coupled spectrome-
ter (Acton) and gated to 10 ns exposures with an ICCD (Princeton Instruments). Once
more, a timestamp from the plasma photodiode is recorded for every discharge. In this
way, spectra are sorted in time and averaged (2 ns time-bins) to make the spectral image
in Fig. 8.3a. For early moments, the discharge radiates continuous broadband spectrum
followed by xenon line emission. Temporal line-outs from the spectral images are shown
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Figure 8.3: Calibrated spectrum for 10 bar xenon discharges. a) Temporally-resolved
spectral image shows continuous broadband emission for early times. As the plasma
expands, xenon line emission emerges from the continuum for later times. b) Spectral
line-outs reveal opaque behavior during the early moments of discharge and is well fit to
blackbody emission (black dashed curve). Blackbody spectrum is observed concurrently
with complete absorption from Fig. 8.1b.
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in Fig. 8.3b. Indeed, this spectrum is well fit to blackbody emission (Sν) during the same
moments as complete laser absorption (Fig. 8.1b). Because the spectrum is calibrated
in intensity, the fit in Fig. 8.3b provides both the blackbody’s temperature (24000 K)
and area of emission (4.9 × 104 µm2). This is in excellent agreement with the plasma’s
luminous area (2πRh = 2π (43µm) (173µm) = 4.7 × 104 µm2) taken with the framing
camera images. For times & 50 ns, xenon lines emerge from the continuum and increase
in strength. These lines represent a transparent plasma and is consistent with the ab-
sorption measurement in Fig. 8.1b. This increase in line emission is due primarily to the
plasma’s hydrodynamic expansion into the surrounding gas, resulting in a lowered atomic
density. For comparison, spectrum at 2 bar xenon discharge is provided in Fig. 8.3b and
shows reasonable agreement.

Transmission curves were constructed for laser intensities spanning 7 orders of mag-
nitude (2.6 × 107 − 1013 W/cm2. These curves were independent of laser intensity until
the laser breakdown threshold was reached. Laser breakdown occurred at 1.0 ± 0.1 ×
1012 W/cm2 and 2.6± 0.3× 1011 W/cm2 for 2 and 10 bar, respectively. This further indi-
cates that the loss of laser light is due to linear absorption by the spark plasma. Beyond
the laser breakdown threshold, the transmission curves deviated toward lower transmis-
sion due to energy loss from laser breakdown [10]. This trend suggests that there is no
limit to the plasma’s power handling capability and can be utilized at very high laser
intensities. Fig. 8.4 shows framing images of 10 bar spark-laser interactions for a laser
intensity ten times larger than laser breakdown (2.6× 1012 W/cm2). Each image was ex-
posed for 10 ns with 0 ns interframe time. In Fig. 8.4a, the incident laser pulse (from left
to right) is focused between the tungsten electrodes with the spark switched off (no HV).
In this configuration, laser breakdown is formed both before and after the electrodes and
∼ 10% of the laser energy is transmitted to the CCD camera. With the spark activated,
the laser pulse slams into the plasma column and is completely absorbed (Fig. 8.4b). Once
more, no laser energy passes through to the CCD camera for early times (∼ 0 − 50 ns
after spark initiation). Laser energy is absorbed only on the surface of the spark plasma
and is a further indication of an opaque body. The laser energy deposited to the spark
plasma is so large that a luminous wave propagates within the plasma (from left to right
in Fig. 8.4b). Conversely, laser energy is deposited to the plasma volume at later times as
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Figure 8.4: 10 ns framing images of a) laser breakdown without a spark and b) laser
absorption at +20 ns and c) +90 ns after spark discharge initiation in 10 bar xenon gas.
In all cases, the laser was set to 2.6×1012 W/cm2 and centered between the electrode gap.
A dark region exists between the laser breakdown and spark plasma for t & 50 ns and
grows larger with later laser pulses. Shadowgraph measurements have shown this effect
is due to laser breakdown induced by a shock front generated by the spark discharge.
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shown in Fig. 8.4c. Here too a luminous wave propagates within the plasma (from mid-
dle to top/bottom in Fig. 8.4c). This observation is consistent with both the measured
spectrum and absorptivity, as a volume emitter is also a volume absorber.

The discovery of a highly-ionized microplasma as a thermodynamic state has motivated
its reproduction outside of sonoluminescence. We have successfully generated an opaque
plasma using spark discharges in high-pressure xenon and is activated within 10 ns of
triggering. As an active optical limiter, this plasma has seemingly limitless power handling
as laser energy is converted into generating ever more plasma. In other words, the switch
reported in this Letter cannot be damaged because it is already broken. This novel optical
switch can now be optimized in parameter space for faster discharge speeds, lower energy
consumption, and longer periods of opacity.

We gratefully acknowledge support from DARPA MTO for research on micro-plasmas.
We thank Brian Kappus, Brian Naranjo, and Guillaume Plateau for valuable discussions.
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Chapter 9

Conclusion

The plasma phase transition has been successfully generated using three vastly dif-
ferent mechanisms. A commonality in all plasmas are their inherent non-linear nature,
and it’s no surprise that we can generate them using non-linear effects. In this thesis, the
plasma phase transition is generated through the following non-linear mechanisms:

1. Through the adiabatic heating and compressing of bubbles using non-linear fluid
dynamics.

2. Through optical breakdown in high pressure gases using non-linear electromagnetic
absorption.

3. Through electrostatic breakdown in high pressure gases using non-linear resistive
heating.

In each case, energy is deposited into a high density gas of micron size. The end result is a
new thermodynamic state characterized by its high ionization and opacity. By generating
the plasma phase transition in various systems, we can use many different diagnostics
and probing techniques. These techniques have already provided information on the
temperature, electron density, and transport properties for this new state of matter. The
theory of ionization is now extended to multiple levels of ionization and is shown to be
consistent with the measured plasma properties.
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The question of sonoluminescence’s universality has been addressed and much knowl-
edge has been gained by exploring this new phase of matter. However, questions still
remain and new ones are formed:

• The screening model (“Daligault”) used to describe transport properties conflicts
with the model (“Debye”) used to describe the thermodynamic ionization level. This
high level of ionization requires a Debye screening length that is smaller than the
interatomic spacing. And yet, the transport measurements show that Daligault’s
formulation to be the correct form. This suggests the interatomic spacing as the
screening length. How can these two observations co-exist?

• Although much has been discovered, the plasma phase transition theory is incom-
plete as nothing is included to prevent runaway ionization. What prevents this
runaway from occurring?

These questions warrant future investigation and can extend our understanding of strongly
coupled plasmas. Sonoluminescence has escaped its liquid confines and is ready to give
up its secrets.
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Appendix A

Derivation of the Electron-Ion
Collision Time

The following derivation of the electron-ion collision time is taken from Zel’dovich and
Raizer [106] and differs from 4.0.1 by a numerical constant on the order of unity.

Consider a collision with an electron (mass m and charge −e) and an ion (massM and
charge Ze) which pass each other at a distance r and a relative velocity of v (Fig. A.1).
The force acting on the particles is of the order

F ∼ (−e) (Ze)
r2 = −Ze

2

r2 .

The amount of time in which this force is acting on the particles is of the order t ∼ r
v
.

The relative velocity change due to this force in this amount of time is of the order

∆v ∼ Ft
m+M

mM
≈ −Ze

2

mvr

where the approximation M � m is applied. The square of the velocity change is the
desired quantity as the electron-ion collision timescale is a timescale for energy transfer.
This is given by

(∆v)2 ∼ Z2e4

m2v2r2 .

For an ion density ni, the probability of a collision is proportional to 2πrdr. The rate of
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Figure A.1: Collision trajectory for an electron incident an ion.

change is given by

d (∆v)2

dt
∼ niv

rmaxˆ
rmin

(∆v)2 2πrdr ∼ 2πniZ2e4

m2v
ln Λ,

where ln Λ is the Coulomb logarithm given by the limits of integration rmax and rmin

(Λ ≡ rmax
rmin

). The limits of integration prevent a divergence in the radial integral and is
determined by various models of screening (see Appendix B). Finally, the collision time
can be defined as the timescale needed for (∆v)2 to change by v2 such that

τe−i = v2 dt

d (∆v)2 = 1
v

(mv2)2

2πniZ2e4 ln Λ . (A.0.1)

For the ion and electron temperatures studied in this thesis (ve � vi), the mean thermal
electron speed v̄ =

√
8kBT
mπ

is used in place of v and mv2 is given by 3kBT . Introducing the

plasma parameter Γ = eZ
kBT

(
4πni

3

)1/3
and the plasma frequency ωp =

√
4πZnie2

m
, Eq. A.0.1

can be re-written as

τe−i = 3
[

2√
6π
ωpΓ3/2 ln Λ

]−1

, (A.0.2)

which differs from 4.0.1 by a factor of 3.
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Appendix B

Derivation of Coulomb Logarithm

The Coulomb logarithm stems from the integration of the impact parameter for
electron-ion collisions in plasmas. At its core, this term represents the effects of elec-
trostatic screening which acts to shield-out long-distance collisions. The three screening
models addressed in this thesis represent no, intermediate, and strong screening. Below is
an alternative derivation of the Coulomb logarithm using the screened impact parameter
ρ for the three cases with

τe−i =
(
v̄eπρ

2ni
)−1

=
[

2√
6π
ωpΓ3/2 ln Λ

]−1

. (B.0.1)

B.1 “Dilute” Model:

For plasmas whose constituent particles are weakly-interacting, screening is a weak
and has only a logarithmic effect of the collision time. This is known as the “Dilute”
model of screening and is given by

ln Λ = ln
(
δD
Rc

)
= ln

(
Γ−3/2

√
6

)
, (B.1.1)

where δD =
√

kBT
8πnee2 is the Debye length, Γ = e2

kBT

(
4πne

3

)1/3
is the plasma parameter, and

Rc ≡ e2

kBT
is the distance of closest approach, the distance at which the electrostatic and

kinetic energies are equal and energy transfer is largest. In the temperatures explored in
this thesis, the ionization level in the “Dilute” model is less than unity and ne = ni. This
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form of the Coulomb logarithm is commonly used in plasma physics and is often set to a
constant. Setting ln Λ = 1 results in

τe−i =
[

2√
6π
ωpΓ3/2

]−1

∝ n−1
e T

3/2.

Comparing this to the relationship of Eq. B.1.1 gives

ρ =
(2

3

)1/2

RC .

In terms of a hard-sphere model, the collision parameter is proportional to the radius of
closest approach in the “Dilute” model.

B.2 “Daligault” Model:

An intermediate level of screening is realized in the “Daligault” model [22] and is given
by

ln Λ = ln (0.7Λ + 1) = ln
(

0.7Γ−3/2

√
3

+ 1
)
, (B.2.1)

where
√

6 is replaced by
√

3 according to [22]. In the dense limit where 0.7Γ−3/2
√

3 � 1,

τe−i ≈
[

2 (0.7)
6
√
π
ωp

]−1

∝ n−
1/2

e .

Comparing this to the relationship of Eq. B.2.1 gives

ρ =
(1.4

9

)1/2 ( a

δD

)1/2

a,

where a =
(

4πni
3

)1/3
is the interionic spacing. In terms of a hard-sphere model, the

collision parameter is proportional to the interionic spacing in the “Daligault” model,
which is similar to the “ion-sphere” model.

B.3 “Debye” Model:

A strong level of screening is realized in the “Debye” model and is given by

ln Λ = ln
√

Λ2 + 1 = 1
2 ln

(
Γ−3

6 + 1
)
. (B.3.1)
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In the dense limit where Γ−3

6 � 1,

τe−i ≈
[

2
12
√

6π
ωpΓ−3/2

]−1

∝ T−
3/2.

Comparing this to the relationship of Eq. B.3.1 gives

ρ =
(1

3

)1/2

δD,

In terms of a hard-sphere model, the collision parameter is proportional to the Debye
length in the “Debye” model.
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Appendix C

Derivation of Inverse
Bremsstrahlung

C.1 Drude model

The Drude model is an application of kinetic theory which describes electronic motion
in a sea of fixed (heavy) ions. This model does not include long range interactions and
has an assumed collision time, τ . Below are the key assumptions made for this derivation:

1. The plasma is infinite and homogenous.

2. The ions have infinite mass.

3. There are no external static electric or magnetic fields.

4. The electromagnetic phase velocity is much faster than the electron thermal velocity.

C.1.1 Electronic equation of motion

v̇= −eE
me

− v
τ

(C.1.1)

Here, v̇, −e, and me is the electron’s velocity, charge, and mass respectively. E is the
electric field and τ is the effective time between electron-ion collisions. τ must be provided
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for the Drude model. Maxwell’s equations are now coupled to the equation of motion and
are given by

~∇ · Ẽ = −4πene, (C.1.2)

~∇ · B̃ = 0, (C.1.3)

~∇× Ẽ = −Ḃ
c
, (C.1.4)

~∇× B̃ = Ė
c
− 4πenev

c
, (C.1.5)

Now, we assume a propagating wave solution for E, B, and v,


E(r, t)
B(r, t)
v(r, t)

 =


E
B
v

 exp [(k · r− ωt) i] . (C.1.6)

Putting these solutions into equations 1-5 leads to

v = eE
me

τ

iωτ − 1 , (C.1.7)

ik · E = −4πene, (C.1.8)

ik ·B = 0, (C.1.9)

ik× E = iωB
c
, (C.1.10)

ik×B = −iωE
c
− 4πenev

c
. (C.1.11)

If we take Eq. C.1.11 and apply×k and utilize the vector identity A×(B×C)=B (A ·C)−C (A ·B)
on the RHS we obtain

iω

c

(
ω

c
E + 4πenev

ic

)
= iE ‖ k ‖2 −i (k · E) k. (C.1.12)

Finally, substitute Eqs. C.1.7 and C.1.8 into Eq. C.1.12 to obtain
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(k · E) k−
[
k2 − ω2

c2 +
ω2
p

c2

(
ω2τ 2

1 + ω2τ 2 −
ωτ

1 + ω2τ 2 i

)]
E = 0.

Therefore, the dispersion relation (for transverse waves) is

k2 = ω2

c2

[
(1− γβ) + γβ

ωτ
i

]
, (C.1.13)

γ =
ω2
p

ω2 , β = ω2τ 2

1 + ω2τ 2 , ωp =
√

4πe2ne
me

C.1.2 Limits: ωτ � 1

In the limit of high driving frequency compared to the collision frequency, β ' 1 and
the dispersion relation becomes

k = ±ω
c

[
(1− γ) + γ

ωτ
i
]1/2

. (C.1.14)

In the limit of ωτ � 1 and |1 − γ| � γ
ωτ

which is equivalent to ωτ � (γ−1 − 1)−1, the
dispersion relation can be expanded in the square root to give

k ' ω

c
(1− γ)1/2

[
1 + (1− γ)−1 γ

2ωτ i
]

k ' ω

c

[
(1− γ)1/2 + (1− γ)−1/2 γ

2ωτ i
]

NOTE: The above approximation fails when ω ≈ ωp !!!
Finally, to find the absorption by inverse Bremsstrahlung, we simply take twice the

imaginary part of k,

κ = ω

c

γ

ωτ

1
|1− γ|1/2

. (C.1.15)

C.1.3 Limits: ωτ � 1 and γ � 1 (ω � ωp)

In the limit of high driving frequency compared to both the collision and plasma
frequencies, the dispersion relation is simply
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κ = ω

c

γ

ωτ
. (C.1.16)

This is the absorption coefficient most commonly seen in plasma textbooks (Zel’dovich,
etc.). As the collision time is ∝ γ−1/2, the absorption coefficient is ∝ γ3/2 =

(
ωp
ω

)3
.

C.1.4 Limits: ωτ � 1 and γ � 1 (ω � ωp)

In the limit of high driving frequency compared to the collision frequency, but smaller
than the plasma frequency, the dispersion relation is simply

κ = ω

c

γ1/2

ωτ
. (C.1.17)

Interestingly enough, the absorption coefficient is now ∝ γ =
(
ωp
ω

)2
.

C.2 Dawson derivation

In 1962, John Dawson and Carl Oberman published their seminal work in The Physics
of Fluids [20]. This work derives the absorption coefficient (inverse Bremsstrahlung) of
a fully-ionized plasma. The plasma model they adopt to describe the electron dynamics
is through the Vlasov-Poisson equations. Unlike the Drude model, this derivation makes
no assumptions for the quantity τ and in fact solves for the close and far “collisions” of
electrons impacting ions. This derivation not only solves the dispersion relation, it also
solves for τ . The solution to the Vlasov-Poisson equations is used to calculate the plasma’s
complex impedance, Z(ω). Once Z(ω) is known, the dispersion relation can be calculated
using the following relationship given by Maxwell’s equations together with Ohm’s Law

k2 =
(
ω2

c2

)[
1− 4πi

ωZ(ω)

]
.

The absorption coefficient (κ) is then simply twice the imaginary part of k . The quantity
Z(ω) is a complicated integral function which can be solved analytically for the limits of
γ � 1 and γ � 1 . In 1973, Johnston and Dawson published in The Physics of Fluids
[55] a correction to the values of κ.
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κ = 16πZ2nenie
6 ln Λ(ν)

3cν2(2πmekbT )3/2

1
|1− ν2

p

ν2 |1/2
= ω

c

γ

ωτ

1
|1− γ|1/2

, (C.2.1)

τ =
(

2√
6π
ωpΓ3/2 ln Λ(ω)

)−1

, (C.2.2)

Γ ≡
(
e2

kBT

)(4πn
3

)1/3

,

where Λ(ω) = minimum of vT
ωppmin

, vT
ωpmin

. Here, pmin is the minimum impact parameter
for electron-ion collisions and is at the heart of the screening process in dense plasma.
Dawson gives pmin = maximum of Ze2

kBT
, ~

(mekBT )1/2 which is Ze2

kBT
for T < 27eV . This leaves

the following conditions,


Λ(ω) = 1√
6Γ−3/2 for ωp � ω,

Λ(ω) = ωp
ω

1√
6Γ−3/2 for ωp � ω.

The first limit results in the dilute Coulomb logarithm term as given by most authors.
The second limit (high frequency limit) has an added factor of γ1/2. This extra factor
will not have a strong effect in dilute plasma (Γ� 1 ) as the logarithm becomes a weak
function. However, this term will become significant in strongly-coupled plasma (Γ ≥ 1)
as will be discussed in the Conclusions section.

The results of the Dawson derivation are identical to that of the Drude model (Eq. C.2.1
= Eq. C.1.15 ) and a formula for τ is generated. As will be shown in the next sec-
tion, this formulation for τ differs to that of Zel’dovich and Landau by a factor of
~ω
kBT

(
1− exp

(
− ~ω
kBT

))
which is due to the effects of stimulated emission.

C.3 Zel’dovich and Landau derivation

In Chapter V.2-3 of Zel’dovich and Raizer [106], the absorption coefficient for in-
verse bremsstrahlung is derived. Zel’dovich provides a simplified derivation of free-free
Bremsstrahlung emission and applies the principle of detailed balance to find the absorp-
tion coefficient. This derivation is based on a calculation of the energy change experienced
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by an electron in close-proximity to an ion using an approximated acceleration. This does
not take into account long range “collisions” and therefore lacks a logarithmic term. The
exact calculation of the acceleration vector for a hyperbolic orbit was done by Landau
and Lifshitz and results in a ln Λ term. Fortunately, this exact calculation differs from
the simplified Zel’dovich calculation by only 2.3. Landau derives the effective radiation
term in two limits, ~ω

kBT
� λe

Rc
and ~ω

kBT
� λe

Rc
. For our plasma temperature (9,250K)

this results in λ = 9.2µm which is a very long wavelength compared to the laser-plasma
interaction of our experiments. Therefore, the limit of ~ω

kBT
� λe

Rc
is applied which results

in an absorption coefficient given by

κ = 4
3

( 2π
3mekBT

)1/2 Z2e6

hcmν3nine

(
1− exp

(
− ~ω
kBT

))
= ω

c

γ

ωτ
, (C.3.1)

τ = 3
4πe4ne

(
3mekBT

2π

)1/2 ~ω(
1− exp

(
− ~ω
kBT

)) ,

τ =
(√

2π
3 ωpΓ3/2

)−1  ~ω
kBT

(
1− exp(− ~ω

kBT

)
 . (C.3.2)

The second equality in Eq. C.3.1 is identical to Eq. C.1.16 as this derivation was also taken
in the ωτ � 1 and ω � ωp limits. Eq. C.3.2 has a new term added to the collision time
which is not present in Eq. C.2.2 from Dawson. This new term accounts for stimulated
emission. If ~ω � kBT , this term vanishes and becomes Eq. C.2.2, lower by a factor of
∼ 1

2 ln Λ.

C.4 Conclusions

The preeminent works of Zel’dovich/Landau and Dawson/Oberman were derived very
differently, but resulted in essentially the same expression for the absorption of inverse
Bremsstrahlung radiation. Furthermore, each resulted in a slightly different factor (Dawson→
|1− γ|−1/2 ln Λ, Zel’dovich → stimulated emission) which added to the overall picture.
With this spirit in mind, below is our formulation for describing an oscillating electro-
magnetic field interacting with a fully ionized model.
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k2 = ω2

c2

[
(1− γβ) + γβ

ωτω
i

]
, (C.4.1)

ωτω =
[

2√
6π
γ

1/2Γ1/2Γω ln
(

0.7√
3

Γ−3/2
ω + 1

)]−1

, (C.4.2)

Γω = Γ
[
kBT

~ω

(
1− exp

(
− ~ω
kBT

))]
, (C.4.3)

Here, the results of Dimonte and Daligault [22] for the logarithmic term is applied and
a frequency-dependent plasma parameter Γω is included. Γω was chosen such that it
behaves continuously as a function and in its first derivative. It was also formulated to
obey both limiting cases. In the high frequency limit

(
~ω
kBT
� 1

)
, Γω ≈

(
e2

~ω

) (
4πn

3

)1/3
and

is independent of temperature and only weakly dependent on the density. This is true
for high frequency photons as their energies are high enough that the average plasma
parameter is unaffected. In the low frequency limit

(
~ω
kBT
� 1

)
, Γω ≈ Γ and reduces

to the well-known τe−i, which corresponds to electron-ion collisions in the absence of an
electromagnetic field.

Below are two interesting limiting cases for a strongly-coupled plasma (Γ ≥ 1) when
ωτ � 1 and ~ω � kBT .


ωτω ' 5.37γ−1/2 and κ ' 1.17γ

λ
for ωp � ω ( γ � 1 )

ωτω ' 5.37γ−1/2 and κ ' 1.17γ
3/2

λ
for ωp � ω ( γ � 1 )

This result shows the collision frequency is always smaller and scales only with the plasma
frequency in the dense plasma regime. With the formulation above, only ω, Tplasma, and
ne are needed to describe this model for a very large parameter space.

Finally, this result for τ can be shown to reproduce the electron-ion collision time
which also governs the transfer of energy between electrons with ions and is a crucial
finding in the “Laser Breakdown of High-Pressure Noble Gases” experiments. All that is
needed to show this equivalence is to let ~ω → 0 resulting in

τ '
(

2√
6π
ωpΓ3/2 ln Λ

)−1

≈ 2.17×
(
ωpΓ3/2 ln Λ

)−1

106



where the expression inside the log has been set to Λ for simplified notation. Com-
parisons to formulations by Spitzer, Swanson, and Zel’dovich are given below.

τSpitzer ≈ 2.35×
(
ωpΓ3/2 ln Λ

)−1

τSwanson ≈ 2.35×
(
ωpΓ3/2 ln Λ

)−1

τZel′dovich ≈ 1.32×
(
ωpΓ3/2 ln Λ

)−1
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Appendix D

Supplemental Material - Sulfuric
Acid Sonoluminescence

Figure D.1: Photograph of the experimental setup showing the SL resonator (center),
Mie collecting optic (bottom left), microscope objective for bubble calibration (left of
resonator), and the laser-bubble beam path (green illumination).

The experimental arrangement for the sulfuric acid sonoluminescence experiment is
shown in Fig. D.1 A pair of lenses were used to collect 47 degrees of solid angle centered
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Figure D.2: Available energy as a function of PMT integrated intensity. The red area
represents the measured energy per xenon atom available to create the sonoluminescing
plasma. The blue area represents the energy available for ionization per free electron for
opaque regions after heating. This represents an upper bound on the ionization potential
to ionize a free electron. The minimum number of free electrons and therefore the energy
needed to create them could only be determined in cases where Re ' Rc.

at 48 degrees relative to the exit of the beam. The beam entered the cylindrically-shaped
acoustic cell through a flat side in order to preserve the Gaussian shape of the beam as
much as possible. The laser was triggered at ∼ 150 Hz to fire at a given phase of the
bubble motion and the intensity of the Mie scattering signal as well as the intensity and
timing of the SL was recorded. The large size of the laser beam (3.8 mm 1/e diameter)
and the extreme brightness (TW) allowed us to overcome the spatial jitter (several mm)
and intensity (10s of W) of the SL. At any point in phase the Mie scattering data contains
a variety of intensities corresponding to the changing collection angles into the diode from
bubble movement. This distribution is roughly Gaussian and corresponds to the bubble’s
distribution of positions within its sphere of movement. As the bubble cannot move
more than a few microns within any given collapse, position distribution is not a function
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Figure D.3: PMT histogram with associated spectrum Planck black body temperature
fits. The spectrum data is discriminated by 0.5 V ns ranges of PMT integrated intensity.

of phase and therefore we can directly compare different points in phase through their
average. In order to resolve the minimum radius, a proportionally large number of events
were captured at this point in phase.
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Appendix E

Supplemental Material -
Sonoluminescence-Laser Interaction

E.1 Experimental Setup

Figure E.1: Block diagram of the experimental setup showing laser, timing, SL, and data
acquisition components.
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The experimental arrangement for the SL-laser interaction experiment is shown in
Fig. E.1. The quartz cell is driven on resonance by a piezoelectric ring transducer. The
transducer is powered by an electrically resonant circuit. A frequency generator seeds the
resonant frequency into an acoustic amplifier which is then fed into series with a variable
inductor. This is done to match the electrical to acoustic resonance and obtain large
acoustic amplification at minimum electric output.

A piezoelectric microphone is epoxied onto the SL resonator and serves two purposes
for this experiment. The first is to help locate the frequency at which bubbles are trapped
and emit SL. The second is to ensure the same bubble dynamics and collapse location
over the course of an experimental run. Over the course of experimenting, the author
of this thesis found that the high-frequency components (from shock waves) within the
microphone’s carrier signal was correlated with the intensity and collapse location of SL. In
other words, each SL amplitude and location within the resonator has its own unique high-
frequency signature. By recording this signature, a unique SL can be recalled on a day-to-
day basis. The microphone signal is sent through a high-pass filter and preamplifier, and
the signature is recorded onto an oscilloscope. There are three parameters which can be
adjusted to recall the desired signature: the driving frequency, the driving amplitude, and
the temperature of the SL cell with a cooling fan (within 0.5 C). The author of this thesis
used the latter for simplicity and reproducibility. Over the course of an experiment, the
temperature was adjusted and the position of the SL bubble remained fixed, as verified
with laser scattering.

The timing signals of this experiment went as follows:

1. SL emission is collected by an infinity corrected microscope objective and fed into
PMT#1 (Hamamatsu H5783-03).

2. The signal from PMT#1 is split into two oscilloscopes. The first oscilloscope (middle
Fig. E.1) is used as a trigger for the microphone signals. The second oscilloscope
digitizes the PMT signal for analysis.

3. The first oscilloscope outputs a trigger to a delay generator (SRS DG535).

4. The delay generator is limited to 10 Hz and outputs an accurately delayed trigger
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to the YAG laser. The YAG requires ~254 µs from trigger input to light output,
which corresponds to the 8th SL collapse after the initial trigger.

For each laser pulse, the oscilloscope records the signals from two PMTs (measuring the
SL-laser interaction), a diode measuring the laser intensity, and a diode measuring the
Mie scattered light. Two PMTs are used to increase the overall dynamic range of the
SL-laser interaction measurement. PMT#1 is kept in a fixed position while the distance
of PMT#2 to the bubble is adjusted. Both PMTs are calibrated against each other in
time and intensity for every PMT#2 location.

E.2 Continuous Mie Scattering
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Figure E.2: Continuous Mie scattering of water SL (1% Xe in 150 Torr N2) and the
best RP fit. The RP fit values are pa = 1.40 bar and R0 = 3.20µm, which results in
Rmax = 49.4µm and Rc = 0.547µm.

The bubble dynamics were measured with continuous Mie scattering and fit to the
Rayleigh-Plesset (RP) equation. The ambient bubble radius R0 = 3.20µm and the min-
imum collapse radius Rc = 0.547µm results in a final collapse density nc = 4.93 ×
1021 atoms/cm−3.
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E.3 Spectrum

Figure E.3: Calibrated spectrum of SL with (blue curve) and without (black curves)
1064 nm laser interaction. Spectrum of laser breakdown in water without an acoustic
field (no SL) was measured (red curve). All spectra are well fit to blackbody emission
(green dashed curves).

Calibrated spectrum in Fig. E.3 was measured for SL-laser interactions. In addi-
tion, the spectrum was measured for SL without a laser field (SL Only) and laser-water
breakdown without an acoustic field (no SL). In all cases, the spectrum is well fit to
blackbody emission. For SL only, the blackbody temperature T = 9250 K and radius
of emission Re = 0.47µm. Re is consistent with Rc from the RP fit and suggests a
bubble-filling blackbody. SL-laser interaction spectra are shown for various interaction
strengths. Increasing interaction strengths results in an increase in both T and Re. In
Fig. E.3, T = 10590, 11420, and 13950 K and Re = 4.08, 10.9, and 20.4µm for SL-
laser interactions. Even larger Re is found for laser-water breakdown (T = 12390 K and
Re = 51.7µm). Increased Re for SL-laser plasma is consistent with laser-water breakdown
initiated by SL plasma.
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Appendix F

Supplemental Material - Laser
Breakdown in High-Pressure Gases

F.1 Experimental Setup

Figure F.1: Photograph of the laser breakdown experimental setup.
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The experimental arrangement for the laser breakdown experiment is shown in Fig. F.1.
Laser pulses are produced from an amplified Ti:Sapphire laser system and output at the
amplifier (1). A 1 kHz pulse train of 120 fs laser pulses is aligned through a polarized
variable attenuator (2).

Figure F.2: Photograph of the polarizing variable attenuator.

The attenuator varies the incoming pulse energy continuously from 0−1 mJ/pulse. In
Fig. F.2, the attenuator first rotates the laser polarization with a 1/2-wave plate (left). The
laser is reflected from the surfaces of two dielectric polarizers, whose reflection coefficient
is polarization specific. In this way, the laser energy can be varied smoothly and without
significantly increasing the pulse width. The laser energy can be measured just before
and after each experimental run with a power meter that is inserted in the beam path (3).
The laser is first aligned straight through the center of the pressure chamber using two
mirrors and IR targets. Once aligned, a 6 cm lens (4) is inserted in the beam path and
focuses the laser pulses into the center of the pressure chamber (5). The lens is mounted
on a translation stage and moves the focal position relative to the chamber in the “Z”
axis (laser propagation direction). Small changes in the focal position in the other two
directions (“X” and “Y”) are controlled with the final steering mirror. Gas is inserted
into the chamber with high-pressure flexible tubing (6).

The plasma emission is collected and imaged by a UV triplet lens (7, covered with
blackout) onto the entrance slits of a 150 mm spectrometer (8) in the “X-Z” plane. The
slits are oriented along the length of the plasma (“Z” axis) and close in the plasma’s
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radial direction (“X” axis). The image from the spectrometer output is focused onto the
entrance slits of a 1:1 UV-NIR relay achromat (9) that are oriented in the “X” axis. This
image is relayed onto the photocathode of the streak camera (10). In this setup, the
plasma radius/spectrum is measured as a function of time. The streak imaging system
can be seen in Fig. F.3 (left)

Figure F.3: Block diagram of the experimental setup showing the spectral diagnostic (left)
and the laser timing components (right).

.
Streaking the plasma emission requires precise and repeatable timing. Although the

amplification stage provides an electrical timing signal preceding the laser output with
sufficient time, the temporal jitter is & 100 ps and limits the overall streak resolution.
A system-limited resolution (20 ps in multishot mode) was achieved through an optical
trigger generated from the output train of the Ti:Sapphire oscillator. The timing scheme
is shown in Fig. F.3 (right). Before entering the laser amplifier, a small amount of laser
energy from the Ti:Sapphire oscillator is reflected off a glass slide and measured by a fast
photodiode. This signal is sent to a constant-fraction discriminator (CFD) and creates
a 90 MHz electric trigger. However, a veto signal stops these 90 MHz triggers until the
laser amplifier signal (1 kHz) is received. The 1 kHz < 20 ps jitter output from the CFD
is sent to a delay generator (DG645). This signal is then delayed to match the plasma
emission to the streak camera.
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F.2 Opacity

Spectral opacity has been established after a critical pressure for xenon, argon, and
helium. Complimenting the opacity arguments in Chapter 7 are the following observa-
tions.

F.2.1 Spectral Saturation

Continuous emission from high density plasma originates mostly from bremsstrahlung
emission (see Chapter 4), whose intensity is proportional to n2

e. If the laser break-
down plasmas were transparent emitters at a higher temperature than the blackbody
fit, then adding more gas will continue to increase the continuous spectrum through
bremsstrahlung. However, this is not observed as seen in Fig. F.4, which graphs the
spectrum of xenon, argon, and helium breakdown as a function of pressure for a fixed
laser energy. As the static pressure is increased, the overall spectral intensity increases.
Once the critical pressure is reached where blackbody behavior is observed, the spec-
trum “saturates” in intensity with increasing pressure. This indicates that the blackbody
plasma produced by laser breakdown maintains similar temperatures for a wide range of
initial pressures. This is not too surprising as the laser energy is fixed and the breakdown
mechanism is mostly independent of atomic atomic density (multiphoton ionization).
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Figure F.4: Early spectrum for xenon/argon/helium (top/middle/bottom) vs. static gas
pressure. Spectral intensity saturates at a gas-dependent density for all gases.

F.2.2 Absorption Lines

A key sign of a highly opaque plasma is the observation of absorption lines. A famous
example is the sun’s absorption lines known as Fraunhofer lines. These lines are frequently
observed in astronomical bodies and are used to determine elemental compositions. Ab-
sorption lines from the laser breakdown produced in this experiment originate from a
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temperature gradient within the plasma. In this description, photons are emitted from
hotter regions within the plasma. These photons are absorbed as they propagate outward
by plasma of decreasing temperature. A point is reached where most photons will escape
the plasma and produce a blackbody spectrum. However, photons near opaque atomic
lines are strongly absorbed and re-emitted at a lower temperature, and therefore lower
intensity. This results in a dip near atomic lines and is seen for xenon and argon in Fig.
F.5.

Figure F.5: Spectrum of 10 bar xenon (top) and 25 bar argon (bottom) breakdown.
Absorption lines appear during early times for 823 nm Xe and 811.5 nm Ar lines
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F.3 Greybody

Figure F.6: Spectrum of argon laser breakdown as a function of pressure at early times.
Spectrum is taken at t = +100 ps for 10 and 25 bar and t = +10 ps for 50 and 75 bar.
Laser scattering (∼ 650−850 nm) grows as a function of pressure and is shown at t ∼ 0 ps
(green and blue curves).

A curious thing occurs to the breakdown spectrum beyond the critical pressure. As
pressure increases, the plasma spectrum starts to diverge from blackbody behavior. In
Fig. F.6, the spectral intensity of argon breakdown begins to decrease for red wavelengths.
This is completely opposite the absorption coefficient of bremsstrahlung with increasing
density. This effect continues deeper into the blue wavelengths with increasing pressure,
reaching < 400 nm at 75 bar.

To describe this observation, we look to the work of Skowronek et. al [81] and the
concept of a greybody. In this work, temporally and spatially-resolved calibrated spec-
trum was measured for high electron density plasmas generated from powerful electric
discharges. The plasma was found to be highly opaque in the visible spectrum and not
in the infrared. They proposed that the drop in infrared was due to plasma frequency
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Figure F.7: Spectrum of 50 bar argon breakdown for various times with blackbody (green
dashed) and greybody (black dashed) fits.

reflections (ωp-reflection). This effect is also seen in Chapter 6 for SL in water, as a laser of
1064 nm is reflected from a high density plasma. This effect, as well as a drop in intensity
due to κlBB < 1 can be described as a greybody model, whose spectral emissivity is a
function of wavelength.

The formulation of a greybody is defined by a wavelength-dependent emissivity [81]

ε = I

I0
= (1−R) 1− exp (−κlBB)

1−R exp (−κlBB) , (F.3.1)

where R is the reflection coefficient (Eq. 4.1.4), κ is the absorption coefficient (Eq. 4.1.3),
lBB is the plasma depth, and I (I0) is the intensity of the greybody(blackbody) at tempera-
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Figure F.8: Spectrum of 50 bar argon breakdown with various greybody screening models
(top). Spectrum of 50 bar argon breakdown with and without

(
Z̄ + 1

)−1/2
in Coulomb

logarithm (bottom).

ture T (Eq. 7.1). Greybody fits for 50 bar argon breakdown are shown as a function of time
in Fig. F.7, where lBB is set to the plasma waist using the streak images. The spectrum is
well fit to a greybody using only two adjustable parameters (T and Z̄)! Only the “Dali-
gault” screening model produces reasonable spectral fits as shown in Fig. F.8(top). The
“Dilute” model of screening is almost identical to a blackbody, as ωp-reflection is shorted-
out by the high level of dampening (ωτω . 1). For the extreme “Debye” screening model,
ωp-reflection is near 100% for frequencies below ωp due to ωτω � 1. Furthermore, this
analysis has the ability to fine-tune the exact expression for the Coulomb logarithm. For
example, the greybody fits from Figs. F.7 and F.8(bottom) include the factor

(
Z̄ + 1

)−1/2
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Figure F.9: Temperature, electron density, plasma parameter, and electron-ion collision
time for 50 bar argon breakdown using greybody fits.

within the Coulomb logarithm (Λ = Γ−3/2
(
3
(
Z̄ + 1

))−1/2
), which is not included in [22].

Unlike the bounds placed in the blackbody analysis of Chapter 7, greybody fits produce
exact values for the electron density. From the greybody fits, we now know the T , ne,
n0, and τe−i (ln Λ) for a strongly-coupled plasma, whose properties are measured as a
function of time in Fig. F.9. Like the analysis of Chapter 7, the calculated thermalization
time from the greybody fits are self-consistent with the exponential drop in temperature
(Fig. F.9, top-left).
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Figure F.10: Spectrum of 25 and 75 bar argon breakdown with greybody fits.

Finally, greybody analysis is extended to 25 and 75 bar argon breakdown in Fig. F.10.
These pressures show excellent agreement with the greybody formula used for 50 bar
argon and indicate an ever-growing ionization level with increasing atomic density. This
is consistent with the phase transition theory explored in this thesis. Greybody values for
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Pressure (bar) t (ps) T (K) Z̄ ne (cm−3) Γ τe−i (fs) τth (ps) TF (K)
25 +250 16,110 3.06 1.9× 1021 4.4 4.4 320 6,500
50 +20 15,150 4.45 5.6× 1021 8.5 3.0 220 13,300
75 +20 16,170 6.56 1.2× 1022 13.5 2.4 170 22,000

Table F.1: Plasma parameters for argon breakdown using greybody values.

argon breakdown are shown in Table F.1. These results indicate a new regime of physics
is being opened to experiment. Quantum statistics are needed for such high electron
densities as the Fermi temperature TF becomes larger than the plasma temperature.
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Appendix G

Supplemental Material - Spark
Discharge in High-Pressure Gases

G.1 Experimental Setup

Figure G.1: Photograph of the pressure chamber for the spark discharge experiment (left)
and a CAD cross section (right).
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Figure G.2: Microscope image of tungsten needles before (left) and after (right) ~32,000
discharges in 10 bar xenon. Spatial scales are in microns. ∼ 45µm of tungsten is ablated
from the high-voltage electrode.

The high pressure chamber used in the spark discharge experiment is shown in Fig. G.1.
The chamber body is constructed from a 1.5” × 1.5” × 1.5” stainless steel body with 1”
bore holes from four sides. Sharpened tungsten electrodes are located at the center of the
chamber. Light emission from the spark discharge is observed through UV quartz windows
on four sides of the chamber. High voltage (HV) is connected to the top electrode through
a high pressure NPT/SHV feedthrough. The bottom electrode is grounded to the chamber
(connected to SHV ground) through a grounding strip inside the chamber. Pressure seals
were made with o-rings and tested to 100 bar.
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Figure G.3: Experimental photograph of the spark discharge with CW laser absorption.

During operation, tungsten is ablated from the HV electrode after each spark, which
suggests electron bombardment as the primary source of damage. This is quantified in
Fig. G.2 which shows the needles before and after ~32,000 sparks (10 bar xenon operated
at 5 kV). ∼ 45µm of tungsten is removed resulting in ∼ 1.4 nm of tungsten/spark. To
keep the gap distance fixed between each experimental run, the needles were moved closer
to each other by a custom actuator (see bottom of Fig. G.1).

A photograph of the spark discharge with CW laser absorption experiment is shown in
Fig. E.1. In this experiment, spark discharges are generated in the pressure chamber, lo-
cated in the center of Fig. E.1. Sparks were facilitated by the production of photoelectrons
using a UV light source (D2 lamp) and improved overall timing. The spark plasma was
imaged by a UV-NIR triplet lens (Edmund Optics) onto the entrance slits of a 150 mm
Acton spectrometer (right). Within the spectrometer, the image was either reflected or
spread in wavelength. The spectrometer output was relayed 1:1 by a Nikon 105 mm F4.5
UV Lens into a framing camera (Specialised-Imaging, Custom SIMD-052). The framing
camera consists of 4× ICCDs capable of gating at 3 ns for a single event. Each ICCD
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Figure G.4: Framing images of CW laser blocking with 20 bar xenon discharge using the
spectrometer in reflection mode (top) and spectrum mode (bottom).

acquires 2 images separated by user-supplied delay, although limited to ∼ 500 ns between
the first and last 4 images. This framing camera was customized for spectral sensitivity
down to 200 nm, allowing full spectroscopic measurements. Both the framing camera and
spectrometer were aligned on a custom rail system for micron precision.

A 100 mW CW triggerable laser (Coherent CUBE-640 nm) was focused through the
center region of the spark discharge using a 40 mm microscope objective. To achieve
smallest focus, the laser beam waist was expanded by 3× before focusing. Accurate
temporal synchronization of the spark discharge, framing camera acquisition, and laser
triggering was achieved through a delay generator (SRS DG645). Fig. G.4 shows framing
images of a single spark event taken in reflection mode (top) and spectrum mode (bottom).
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Figure G.5: Experimental photograph of the spark discharge with YAG laser absorption.

In reflection mode, the x-y dimensions are spatial and is illustrated by the tungsten
electrode shadows. At t = −10 ns, the focused laser passes through the electrode gap
unimpeded (bright spot in center of image). At t = 0 ns, the discharge is initiated and a
bright plasma forms. The laser disappears for subsequent times (t = +10,+20 ns) as the
plasma becomes opaque. For long times after the discharge, the laser again passes through
the electrode gap (bottom four images). Using this technique, the laser transmission
can be measured as a function of the spark discharge (time, intensity, etc.). Improved
signal:noise is achieved by spreading the spectrum in spectrometer mode (bottom graph).
Once more, the laser is completely blocked by the spark discharge (t = 0,+10,+20 ns)
and achieves an instrument-limited attenuation ratio & 4000 : 1.

A photograph for the spark discharge with high-intensity pulsed laser (YAG) absorp-
tion experiment is shown in Fig. E.1. A detailed description of the optical arrangement
can be found in Chapter 8.
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Figure G.6: Temporally-resolved spectral image for helium 10 bar spark discharge. Strong
line emission is present for all times, indicating a transparent plasma.

G.2 Spectrum

Time-resolved spectrum of the spark discharge was taken using a fiber-coupled spec-
trometer gated at 10 ns. In order to piece together single spectra in the temporal domain,
the moment of discharge must be recorded relative to the spectrometer gate. This was ac-
complished with a fast photodiode shown in Fig. (8.2). Sorting each spectrum in time and
averaging over 2 ns bins results in the spectral image in Fig. G.6. For the case of helium
10 bar breakdown, line emission dominates for all times. This is primarily due to the high
ionization potential which limits the number of free electrons, and subsequent opacity.
Spectra for xenon and helium 10 bar at early times are shown in Fig. G.7. Blackbody
emission is well fit to the continuous portion of the helium spectrum with T = 13, 000 K
and A = 4.8× 103 µm2. This area indicates an emissivity ε ≈ 0.1 when compared to the
plasma area measured from the framing camera images.

After 10s of nanoseconds, the spectrum of xenon 10 bar discharge breaks from black-
body behavior and becomes line dominated (see Fig. 8.3). This drop in emissivity is due to
hydrodynamic expansion as evidenced by the growing plasma radius from framing images,
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Figure G.7: Spectral intensity of 10 bar helium and xenon discharge at early times.

Figure G.8: Spectral intensity of xenon 10 and 2 bar taken at +100 and +20 ns,
respectively.
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Figure G.9: Spectral intensity comparison of xenon 10 bar spark discharge and 0.5 bar
laser breakdown.

growing spectral lines, and emitted shock waves. Fig. G.8 shows the spectral similarity
in lower pressure discharges at early times and higher pressure discharges at later times.
This spectra suggests the drop in opacity is due to the rapid decrease in density.

Although Saha’s equation allows for any number of atomic species, the claim of a
plasma phase transition due to density effects becomes unclear with the introduction of
metallic contaminants. In this system, it is known that tungsten is removed from the elec-
trode surfaces (see Fig. G.2) after every discharge. However, there are no indications that
contamination affects the plasma discharge or is even within the plasma itself. For exam-
ple, no spectral lines of tungsten are observed for xenon discharges. Although there are
many lines that are difficult to distinguish, a comparison to laser-breakdown (Chapter 7)
shows only the presence of xenon atomic lines (Fig. G.9). If contaminates are the primary
source of free electrons, one would expect much weaker emission as the contaminants will
have settled over long timescales. However, the intensity of plasma emission fluctuated by
only ∼ 10% and is independent of the time between discharges. Furthermore, tungsten
migrating to the center of the plasma from the electrodes during a discharge is limited by
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Figure G.10: Shadowgraph of shock front from 10 bar xenon discharge. The image is
taken with a 3 ns YAG pulse timed 100s of nanoseconds after the discharge is initiated.

its high mass. For T = 24, 000 K, a tungsten atom can travel 33µm in 20 ns. Therefore,
one would expect a very large intensity gradient down the plasma column. This is not
observed and suggests the plasma phase transition is at work. (Note: 33µm should be
considered an extreme upper bound as it assumes no collisions!)

G.3 Shock waves

Although in its infancy, measurements have been made on the shock waves produced
by spark discharges. A shadowgraph of 10 bar xenon discharge is shown in Fig. G.10.
This image was taken by backlighting the electrodes with a 3 ns 532 nm YAG pulse.
The sharp intensity discontinuity in the shape of a circle indicates the shock front. Once
more, a timestamp for each spark-laser event is recorded using fast photodiodes and pieced
together in time. For each shadowgraph, an averaged line-out of 5µm in height (relative
to plasma length) is used to measure the plasma radius as a function of time. Fig. G.11
shows the shadowgraph intensity as a function of radius and time. The sharp increase
in intensity indicates the shock front radius and is plotted in Fig. G.12 as a function of
time. It is known that shock waves from instantaneous sources propagate with self-similar
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Figure G.11: Image of shock wave as a function of radius and time for 10 bar xenon
discharge.
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Figure G.12: Shock wave radius (top) and velocity (bottom) as a function of time for
10 bar xenon discharge. A power law is well fit (black curve) to the radius as a function
of time.

profiles ([106]). For an instantaneous line source, the shock radius propagates as a power
law given by

R (t) ∝ t
1/2.

The experimental shock radius is well fit to a power law with a time dependence of t0.4

as shown in Fig. G.12. The speed of the shock front from the power law curve is shown
and approaches speeds greater than Mach 10! Although these early results are promising,
much more research is needed to extract the initial boundary conditions that describe the
emission of these shock waves.
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