
Lawrence Berkeley National Laboratory
LBL Publications

Title
Exploiting communication concurrency on high performance computing systems

Permalink
https://escholarship.org/uc/item/85b7g7wd

Authors
Chaimov, Nicholas
Ibrahim, Khaled Z
Williams, Samuel
et al.

Publication Date
2015-02-07

DOI
10.1145/2712386.2712394

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/85b7g7wd
https://escholarship.org/uc/item/85b7g7wd#author
https://escholarship.org
http://www.cdlib.org/

Exploiting Communication Concurrency on High
Performance Computing Systems

Nicholas Chaimov
University of Oregon
nchaimov@uoregon.edu

Khaled Z. Ibrahim, Samuel Williams,
Costin Iancu

Lawrence Berkeley National Laboratory
{kzibrahim, swwilliams, cciancu}@lbl.gov

ABSTRACT
Although logically available, applications may not exploit enough
instantaneous communication concurrency to maximize hard-
ware utilization on HPC systems. This is exacerbated in
hybrid programming models such as SPMD+OpenMP. We
present the design of a “multi-threaded” runtime able to trans-
parently increase the instantaneous network concurrency and
to provide near saturation bandwidth, independent of the ap-
plication configuration and dynamic behavior. The runtime
forwards communication requests from application level tasks
to multiple communication servers. Our techniques alleviate
the need for spatial and temporal application level message
concurrency optimizations. Experimental results show im-
proved message throughput and bandwidth by as much as
150% for 4KB bytes messages on InfiniBand and by as much
as 120% for 4KB byte messages on Cray Aries. For more
complex operations such as all-to-all collectives, we observe
as much as 30% speedup. This translates into 23% speedup
on 12,288 cores for a NAS FT implemented using FFTW.
We also observe as much as 76% speedup on 1,500 cores
for an already optimized UPC+OpenMP geometric multigrid
application using hybrid parallelism.

1. INTRODUCTION
Attaining good throughput on contemporary high perfor-

mance networks requires maximizing message concurrency.
As long as flat Single Program Multiple Data (SPMD) paral-
lelism with one task per core has been dominant, this has not
been a problem in application settings. Developers first em-
ploy non-blocking communication primitives and have mul-
tiple outstanding messages overlapped with other commu-
nication or computation inside one task. By using as many
SPMD tasks as available cores, traffic is further parallelized
over multiple injecting tasks within the node.

The advent of heterogeneous systems or wide homoge-
neous multicore nodes has introduced the additional chal-
lenge of tuning applications for intra-node concurrency, as
well as communication concurrency. Manually tuning or

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the United States Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA
Copyright 2015 ACM 978-1-4503-3404-4/15/02
http://dx.doi.org/10.1145/2712386.2712394 ...$15.00.

transforming applications to provide the optimal message
parallelism is difficult: 1) the right strategy is system depen-
dent; 2) the right strategy is programming model dependent;
and 3) parallelizing message streams may be complicated in
large code bases. Furthermore, due to the implementation
limitations described throughout this paper, to our knowl-
edge optimizations to parallelize communication within a
task have not been thoroughly explored.

We present the design of a runtime that is able to increase
the instantaneous network concurrency and provide satura-
tion independent of the application configuration and dy-
namic behavior. Our runtime alleviates the need for spatial
and temporal application level message concurrency tuning.
This is achieved by providing a“multi-threaded”runtime im-
plementation, where dedicated communication server tasks
are instantiated at program start-up along the application
level tasks. We increase concurrency by forwarding commu-
nication requests from the application level to the multiple
communication servers. This work makes the following con-
tributions:

• We provide a detailed analysis of the optimization prin-
ciples required for multi-threaded message injection.
Our experiments on InfiniBand and Cray Aries net-
works indicate that saturation occurs differently based
on the network type, the message distribution and the
number of cores active simultaneously.

• We describe a runtime capable of maximizing commu-
nication concurrency transparently, without involving
the application developer. The main insight is that
after deciding the cores allowed to perform communi-
cation, one can attain saturation by solely using the
message size to control the allocation of messages to
cores.

• We quantify the performance benefits of parallelizing
communication in hybrid codes and identify the short-
comings of existing runtime implementation practices.

Our implementation extends the Berkeley UPC [28, 5]
runtime and therefore we demonstrate results for Partitioned
Global Address Space (PGAS) applications and one-sided
communication primitives. Experimental results indicate
that our approach can improve message throughput and
bandwidth by as much as 150% for 4KB messages on Infini-
Band and by as much as 120% for 4KB messages on Cray
Aries. Our runtime is able to transparently improve end-to-
end performance for all-to-all collectives where we observe
as much as 30% speedup. In application settings we observe

23% speedup on 12,288 cores for a NAS FT benchmark im-
plemented in UPC+pthreads using FFTW [11]. We also ob-
serve as much as 76% speedup on 1,500 cores for an already
heavily optimized UPC+OpenMP geometric multigrid [30]
application using point-to-point communication.

We demonstrate performance benefits for hybrid program-
ming using a PGAS programming language by exploiting
shared memory within the node and one-sided communica-
tion. These characteristics are present in other models such
as MPI 3 one-sided, as well as implementations of dynamic
tasking languages such as X10 [7] or Habanero-C [13, 8].
Besides implicit parallelization, the principles presented ap-
ply to cases where communication is explicitly parallelized
by the developer using OpenMP or other shared memory
programming models.

The rest of this paper is structured as follows. In Sec-
tions 2 and 3 we discuss the design principles of multi-
threaded message injection. In Section 4 we discuss network
performance emphasizing the relationship between messge
concurrency and bandwidth saturation. In Section 5 we dis-
cuss the integration of message parallelization into existing
application settings. In particular we quantify the need for
dynamic message parallelization and the impact of current
core allocation mechanisms on performance. In Section 6 we
summarize our results, while in Section 7 we present related
work. We conclude the paper in Section 8.

2. COMMUNICATION AND CONCURRENCY
In order to actively manipulate message concurrency, pro-

gram transformations must address both spatial and tempo-
ral aspects.

Spatial concurrency is controlled by choosing the num-
ber of active tasks (or cores) that perform communication
operations, e.g. MPI ranks. By selecting a particular pro-
gramming model, developers effectively choose the amount
of spatial concurrency exploited within the application.

Temporal concurrency captures the insight that not all
the tasks may want to communicate at the same time and
the network may be perennialy under-utilized even when
a large number of messages are logically available inside a
task. Messages within a task are “serialized”, even for non-
blocking communication: 1) message injection is serialized
inside the issuing task; and 2) parts of the message trans-
mission may be serialized by the network hardware for any
task. For load imbalanced or irregular applications, only few
tasks may communicate at any given time and the message
stream within any task could be further parallelized.

SPMD programs provide spatial concurrency by running
one task per core. For well balanced applications, there
usually exists communication concurrency, even enough to
cause congestion [17]. In this case throttling the spatial
concurrency of communication improves performance. To
our knowldege temporal concerns have not been explored
for load imbalanced SPMD codes.

Hybrid parallelism [6, 20] combines SPMD with another
intra-node programming model such as OpenMP. Currently,
communication is issued only from the SPMD regions of
the code. When compared to pure SPMD, these new hy-
brid codes run with fewer “communication” tasks per node
and consequently exhibit lower spatial concurrency. For
example, hybrid MPI+CUDA codes [20, 19, 18] tend to
use one MPI rank per GPU for programability and perfor-
mance reasons. Hybrid MPI+OpenMP codes tend to use

one MPI rank per NUMA domain for locality reasons. Pre-
vious work [31] showed that tuning the balance between
the number of MPI ranks and OpenMP threads was es-
sential in attaining best performance. Although that work
suggested thread-heavy configurations were ideal for those
machines (minimize data movement when a single thread
can attain high MPI bandwidth), current machines (low
MPI bandwidth per thread) can make a more nuanced trade
between total inter-process data movement and total MPI
bandwidth.

To our knowledge, techniques to further parallelize com-
munication have not yet been shown beneficial in applica-
tions. As parallelizing the communication at the application
level using OpenMP should be tractable, the main reason is
the inability of current runtime implementations to provide
good performance when mixing processes with pthreads.
Communicating from OpenMP within one MPI rank re-
quires running in MPI_THREAD_MULTIPLE mode, which has
been reported [25] to negatively affect performance.

Applications written in programming models that support
asynchronous task parallelism [8, 7] should offer the pro-
grammer high message concurrency, as every message can
be performed inside an independent activity. However, this
is mostly an illusion as communication is usually serialized
inside the runtimes due to implementation constraints. For
example, HCMPI [8] combines the Habanero-C [13] dynamic
tasking parallel programming model with the widely used
MPI message-passing interface. Inside the runtime there
are computation and communication workers implemented
as pthreads. To work around multi-threaded MPI’s limi-
tations, computation workers are associated with only one
communication worker that uses MPI THREAD SINGLE.
Thus, communication is de facto serialized inside a HCMPI
program. X10 [7] implementations running PAMI on IBM
BlueGene/Q can provide high message concurrency, but most
likely serialize communication on non-IBM hardware.

In this work we argue for transparent parallelization of
one-sided communication using a “multi-threaded” runtime
implementation. We provide a decoupled parallel communi-
cation subsystem that handles message injection and schedul-
ing on behalf of the application level “tasks”. As this is
designed to maximize network utilization, application level
programmers need only to use non-blocking communication
primitives without worrying about scheduling optimizations.
While we show results for hybrid UPC+OpenMP and UPC+
pthreads programming, these principles are applicable to
other one-sided communication runtimes such as MPI-3 and
map naturally into programming models using dynamic task
parallelism such as Habanero-C. Accelerator based program-
ming such as MPI+CUDA is another clear beneficiary of our
approach.

From the above discussion, it is apparent that maximiz-
ing communication parallelism in programming models be-
yond SPMD faces several challenges. There is an engineer-
ing hurdle introduced by the requirement to mix processes
with pthreads inside the runtime implementation. As per-
formance is poor in most pthreads implementations1, we
explore a dual parallelization strategy using either processes
or pthreads as communication servers. This approach is
likely to be required for portability in the medium term fu-
ture, as fixing pthreads on a per runtime basis is non-trivial.

1Exceptions are PAMI on IBM BG/Q and GASNet on Cray
Aries.

 Node

Runtime

Domain 0

Thread to Queue Mapping

...

...
T0 T1 Tn

CA

{
CA

{...

Domain 1

T0 T1 Tn

CA CA

...

Interconnect driver

Figure 1: Runtime architecture

Transparent optimizations are good for programmer pro-
ductivity, but one may argue that explicitly parallelizing
communication using OpenMP is enough, were pthreads be-
having well. Explicit manual communication parallelization
faces performance portability challenges. First, performance
is system dependent and it also depends on the instanta-
neous behavior of the application, i.e. how many tasks are
actively communicating. Second, it is challenging to paral-
lelize communication in an application already modified to
overlap communication with other parallel computation.

3. RUNTIME DESIGN
Contemporary networks offer hardware support for one-

sided Remote Direct Memory Access (RDMA) Put and Get
primitives. Runtime implementations are heavily optimized
to use RDMA and applications are optimized to overlap
communication with other work by using non-blocking com-
munication primitives of the form {init_put(); ... sync();}.

We target directy the UPC language [27], which provides
a Partitioned Global Address Space abstraction for SPMD
programming, where parts of the program heap are directly
addressable using one-sided communication by any task. Our
implementation is designed to improve performance of codes
using the new UPC 1.3 non-blocking communication primi-
tives, e.g. upc_memput_nb(), upc_waitsync(). We modify
the Berkeley UPC implementation [5], which runs on top
of GASNet [4]. GASNet provides a performance portable
implementation of one-sided communication primitives.

Our idea is very simple: we achieve transparent network
saturation by using a dedicated communication subsystem
that spawns dedicated communication tasks, herein referred
to as servers. Any communication operation within an appli-
cation level task is forwarded to a server. Thus, we increase
the parallelism of message injection by controlling the num-
ber of servers and we can control serialization deeper inside
the network hardware by tuning the policy of message dis-
patch to servers.

The basic runtime abstraction is a communication do-
main. As shown in Figure 1, each communication domain
has associated with it a number of clients (Ti) and a num-
ber of servers (CA). Any client can interact with any server
within the same communication domain. In practice, com-
munication domains are abstractions that can be instanti-
ated to reflect the hardware hierarchy, such as NUMA do-
mains or sockets. Clients are the application level tasks
(threads in UPC parlance).

Servers are tasks that are spawned and initialized at pro-
gram startup time. They provide message queues where
clients can deposit communication requests. A communica-
tion request is a Put or Get operation and its arguments

(src, dest, size). While active, the server tasks scan
the message queues, initiate and retire any requests en-
countered. In order to avoid network contention, servers
can choose to initiate messages subject to flow control con-
straints, e.g. limit the number of messages in flight. To
minimize interference with other tasks, servers are blocked
on semaphores while message queues are empty.

To implement the client-server interaction we transpar-
ently redirect the UPC language-level communication APIs,
e.g. upc_memput_nb() or upc_waitsync(), to our runtime
and redefine the upc_handle_t datatype used for message
completion checks. For any communication operation at the
application level, our runtime chooses either to issue the
message directly or to deposit a descriptor in one of the
server queues. Both the order of choosing the next message
queue and the number of messages deposited consecutively
in the same queue are tunable parameters.

Any non-blocking communication operation returns a han-

dle object, used later to check for completion. The client-
server interaction occurs through messages queues, which
are lock free data structures synchronized using atomic op-
erations. In our implementation, application level commu-
nication calls return a value (handle) which represents an
index into the message queues. Currently, we do not dynam-
ically manage the message queue entries and clients have to
explicitly check for message completion before an entry is
reclaimed. This translates into a constraint at the applica-
tion level that there is a static threshold for the number of
calls made before having to check for message completion.

The UPC language allows for relaxed memory consistency
and full reordering of communication operations. This is
the mode used in practice by applications and our servers
do not yet attempt to maintain message ordering. Strict
memory consistency imposes order on the messages issues
within a UPC thread. In our implementation this is achieved
by having the initiator task perform the strict operations
directly.

3.1 Implementation Details
Achieving performance requires avoiding memory copies

and maximizing the use of RDMA transfers, which at the
implementation level translates into: 1) having shared mem-
ory between tasks; 2) having memory registered and pinned
in all tasks; and 3) having tasks able to initiate communi-
cation on behalf of other tasks. We provide a dual imple-
mentation where servers are instantiated as either processes
or pthreads. The underlying UPC runtime implementation
provides shared memory between tasks in either instantia-
tion.

Previous work [3] indicates that best RDMA communica-
tion performance in UPC is attained by process-based run-
time implementations, i.e. the applications run with one
process per core. As this is still valid2 for most other run-
times on most existing hardware, our first prototype spawned
servers as standalone processes inside the runtime. This re-
quired non-trivial changes to the BUPC runtime. However,
as discussed later, idiosyncrasies of existing system software
determined us to provide a pthreads-based implementation
for scalability reasons. The use of shared memory within
multicore node, for instance using OpenMP, allows less repli-
cated state [2] and reduces the memory usage of runtime,
which is critical at scale. While our process-based implemen-

2Except PAMI on IBM BG/Q, GASNet on Aries.

tation requires modified UPC runtime, the pthreads is writ-
ten using unmodified UPC runtime and can be distributed
as a stand-alone portable library. Furthermore, the latter
implementation can take advantage off the good pthreads

performance of GASNet [14] on Cray GNI messaging library
(supported on Gemini and Aries interconnects).

Startup: RDMA requires memory to be pinned and regis-
tered with the network by any task involved in the operation.
pthreads inherit registration information from their parent
processes, thus servers as pthreads can be spawned at any
time during execution, including user level libraires.

Getting both shared memory and registration working to-
gether with servers as processes required complex modifica-
tions to the Berkeley UPC runtime code. The BUPC startup
code initializes first the GASNet communication layer and
then proceeds to initialize the shared heap and the UPC lan-
guage specific data structures. As RDMA requires memory
registration with the NIC, having the communication servers
as full fledged processes requires them to be spawned at job
startup in order to participate in any registration sequence.

Tasks spawned by the job spawner are captured directly
by GASNet. Inside the UPC runtime there exists an implicit
assumption that any task managed by GASNet will become
a full-fledged UPC language thread. Furthermore, there is
little control over task placement and naming as enforced by
the system job spawner. We had to modify the UPC startup
sequence to intercept and rename all server tasks before the
UPC specific initialization begins. This cascaded into many
other unexpected changes imposed by the BUPC software
architecture. Internally, we split the UPC and server tasks
into separate GASNet teams (aka MPI communicators) and
reimplement most of the UPC runtime APIs to operate using
the new task naming schema. In particular, all UPC pointer
arithmetic operations, communication primitives, collective
operations and memory allocation required modifications.

RDMA and Memory: The new UPC 1.3 language specifi-
cation provides the upc_castable primitive to allow passing
of addresses between tasks within a node. pthreads-based
implementation can perform RDMA on these addresses, al-
beit with performance loss. Shared addresses are not guar-
anteed to be legal RDMA targets when passed between pro-
cesses. GASNet registers at startup memory segments for
each known process. Only the process that has explicitly
registered the segment can use RDMA on that region. Thus,
one solution is to use statically duplicate registration of all
application memory segments inside all servers. Another so-
lution is to use dynamic registration inside servers. For un-
registered addresses, GASNet uses internally an algorithm
that selects between memory copies into bounce buffers for
small messages or dynamic registration for large messages.
A similar approach [24] is used internally inside MPI imple-
mentations.

Duplicate registration required breaking software encap-
sulation and extending the modifications from the UPC lan-
guage runtime all the way to GASNet, which aims to be
a language independent communication library. Instead,
we chose to exploit the dynamic registration mechanism in
GASNet. This turned out to be a fortuitous design decision
as some underlying communication libraries (Cray uGNI)

did not allow unconstrained registration of the same mem-
ory region in multiple processes.

Synchronization: The base GASNet implementation re-
quires that communication operations are completed by the
same task that has initiated them with the network. This
constraint necessitates special handling of non-blocking com-
munication primitives in our runtime. We introduced an
extra synchronization step for message completion between
clients and servers. Removing this constraint will require
a significant redesign of GASNet communication infrastruc-
ture, which is not warranted by the observed performance.
Furthermore, note that achieving good performance in prac-
tice required a careful tuning of atomic operations usage and
runtime data structures padding to avoid false sharing.

Although it appears that these restrictions and design de-
cisions are particular to the Berkeley UPC and GASNet im-
plementations, most existing runtimes use similar software
engineering techniques. As recently shown [14], combining
MPI with pthreads still leads to performance degradation.
We expect that trying to parallelize communication over
processes while preserving shared memory similar in a differ-
ent code base will encounter the same magnitude problems.
Retrofitting spawning separate processes to act as commu-
nication servers into an existing runtime is likely to require
coordinated changes across all abstraction layers.

4. NETWORK PERFORMANCE AND SAT-
URATION

Performance when using non-blocking communication is
determined by the number of cores active within the node,
as well as the number of outstanding messages per core. Our
microbenchmark takes measurements for different numbers
of cores active and reports the percentage of the peak bi-
directional bandwidth attained at a particular message size
and messages per core. The peak attainable bandwidth for
a message size is determined as the maximum bandwidth
observed across all possible combinations (cores, messages
per core) at that size.

In Figures 2 and 3 (top) we present the performance of
the Berkeley UPC [5] compiler running on the GASNet [4]
communication layer. We report results for InfiniBand and
the Cray Aries networks when each task is instantiated as a
OS level process. pthreads are omitted for brevity, they
match [14] process performance on Aries and are signifi-
cantly slower in InfiniBand.

Edison: is a Cray XC30 MPP installed at NERSC3. Each
of its 5200 nodes contains two 12-core Ivy Bridge processors
running at 2.4 GHz. Each processor includes a 20 MB L3
cache and four DDR3-1866 memory controllers which can
sustain a stream bandwidth in excess of 50 GB/s. Every
four nodes are connected to one Aries network interface chip.
The Aries chips form a 3-rank dragonfly network. Note that
depending on the placement within the system, traffic can
traverse either electrical or optical links. While the attain-
able bandwidth is different, all other performance trends of
interest to this study are similar for both link types.

Figure 2 (top) presents the results on Edison for a four
node experiment (two NICs). Put operations are usually
faster than Get operations, by as much as 25% for medium
to large messages. For small to medium messages, Put op-

3National Energy Research Scientific Computing Center.

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	

Pe
rc
en

ta
ge
	 of

	 Pe
ak
	

Cores	 per	 Node	

Aries	 Put	 SaturaAon	 -‐	 4	 Nodes	

8	 16	 32	 64	 128	
256	 512	 1024	 2048	 4096	
8192	 16384	 32768	 0%	

10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

1	 3	 5	 7	 9	 11	 13	 15	 17	 19	 21	 23	

Pe
rc
en

ta
ge
	 o
f	 P

ea
k	

Cores	 per	 Node	

Aries	 	 Get	 SaturaBon	 -‐	 4	 Nodes	

8	 16	 32	 64	 128	 256	 512	

1024	 2048	 4096	 8192	 16384	 32768	

-‐40%	

-‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

2	 8	 16	 64	 256	

Sp
ee
du

p	

Messages	

Cray	 Aries	 Put	
8	 16	 32	 64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	 65536	 131072	 262144	

-‐50%	

0%	

50%	

100%	

150%	

2	 8	 16	 64	 256	

Sp
ee
du

p	

Messages	

Cray	 Aries	 Get	

8	 16	 32	 64	 128	 256	 512	 1024	

2048	 4096	 8192	 16384	 32768	 65536	 131072	 262144	

Figure 2: Top: Cray Aries saturation, four nodes, 24 cores per node. Bottom: Performance improvements on Cray Aries
with message size, number of messages. Experiment uses all sockets within node, one rank per socket, two servers per socket.
Policy is round-robin of four messages to a server. Only small to medium messages benefit from parallelization, as indicated
by the saturation graph.

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	

Pe
rc
en

ta
ge
	 of

	 Pe
ak
	

Cores	 per	 Node	

IB	 Put	 SaturaAon	 -‐	 2	 Nodes	

8	 16	 32	 64	 128	 256	 512	

1024	 2048	 4096	 8192	 16384	 32768	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	

Pe
rce

nt
ag
e	 o

f	 P
ea
k	

Cores	 per	 Node	

IB	 Get	 SaturaBon	 -‐	 2	 Nodes	

8	 16	 32	 64	 128	 256	 512	

1024	 2048	 4096	 8192	 16384	 32768	

-‐30%	

-‐20%	

-‐10%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

2	 8	 16	 64	 256	

Spe
edu

p	

Messages	 	

InfiniBand	 Put	 	

8	

16	

32	

64	

128	

256	

512	

1024	

2048	

4096	

8192	

16384	

32768	

65536	

131072	

262144	

-‐50%	

0%	

50%	

100%	

150%	

2	 8	 16	 64	 256	

Spe
edu

p	

Messages	

InfiniBand	 Get	 	

8	

16	

32	

64	

128	

256	

512	

1024	

2048	

4096	

8192	

16384	

32768	

65536	

131072	

262144	

Figure 3: Top: InfiniBand saturation, two nodes, eight cores per node, two sockets. Bottom: Performance improvements of
InfiniBand with message size, number of messages. All sockets active, two servers per socket. Only small to medium messages
benefit from parallelization, as indicated by the saturation graph.

erations need more cores than Get operations to reach sat-
uration. For example, for 1024 byte messages, Puts require
more than eight cores, while Gets require only four cores.
For large messages, saturation is reached with only one core
active. Increasing the number of active cores determines a
bandwidth decrease for large messages.

Carver: is an IBM Infiniband cluster installed at NERSC.
Each of its nodes contains two 4-core Xeon X5550 (Nehalem)
processors running at 2.67 GHz. Each processor includes a
8 MB L3 cache and three DDR3-1333 memory controllers
which can sustain a stream bandwidth of up to 17.6 GB/s.

Nodes are connected via QDR InfiniBand using a hybrid
(local fat-tree/global 2D mesh) topology.

Figure 3 (top) presents the experimental results for two
nodes. For small to medium messages, Put operations are
up to 8X faster than Get operations, For“medium”messages
we observe a 3X bandwidth difference for 512 byte messages.
For Put operations, it takes four or more cores to saturate
the bandwidth for messages shorter than 512 bytes. For
larger messages, one or two cores can saturate the network,
as illustrated for 32KB messages. Get operations saturate
the network slower than Put operations, and it takes four

or more cores to saturate for messages smaller that 8KB.
For both operations, increasing the number of active cores
for large messages decreasees performance by up to 20% for
32KB messages.

Both networks exhibit common trends that illustrate the
challenges of tuning message concurrency:

• Put and Get operations exhibit different behavior on
the same system and across systems. Optimizations
need to be specialized per operation, per system.

• For small to medium messages, bandwith saturation
occurs only when multiple cores are active with mul-
tiple outstanding messages. Parallelization is likely to
improve performance in this case.

• For medium to large messages, bandwidth saturation
occurs with few cores per node, may degrade when in-
creasing the number of cores per node. Parallelization
may degrade performance in this case.

4.1 Evaluation of Parallelization
We evaluate the performance of our approach on the same

microbenchmark in settings with one UPC thread per node
and with one UPC thread per NUMA domain. The for-
mer is the typical setup in distributed applications that use
GPUs. The latter is the setup used in manycore systems
when mixing distributed and shared memory programming
models.

We vary the number of server tasks from one to the num-
ber of cores available in the NUMA domain. We consider
two strategies for message forwarding. In the first approach,
clients forward communication in a round-robin manner to
servers and also actively initiate some of their communica-
tion operations, similar to a hybrid SPMD+X configuration.
In the second approach clients are inactive and forward all
operations to servers in a round robin manner, similar to
a dynamic tasking configuration such as HCMPI. Another
tuning parameter is the number of operations consecutively
forwarded to one server, which we vary from one to ten.

In our experiments the communication domains are con-
fined within the same NUMA domain as their clients. We
are interested in determing the optimal software configura-
tion for our runtime which includes: 1) the number of servers
per communication domain and NUMA domain; 2) order of
choosing a server; 3) the message mix assigned to a server
at any given time.

4.1.1 Cray Aries
The Cray Aries network provides two mechanisms for RDMA:

Fast Memory Access (FMA) and Block Transfer Engine (BTE).
FMA is used for small to medium transfers and works by
having the processors writing directly into a FMA window
within the NIC. The granularity of the hardware request is
64 bytes. BTE is employed for large messages. The pro-
cessor writes a transfer descriptor to a hardware queue and
the Aries NIC performs the transfer asynchronously. BTE
supports up to four transfers. Communication APIs writ-
ten on top of the Cray GNI or DMAPP system APIs switch
between FMA and BTE for transfers in the few KB range.
For GASNet the protocol switch occurs at 4KB.

GASNet [14] has been thoroughly re-engineered recently
to provide good performance with pthreads on Cray sys-
tems. Figure 2 (bottom) shows the performance improve-
ments for this instantiation of our server code. Most of the

improvements of parallelization are directly correlated with
the saturation graph in the same Figure 2. We observe simi-
lar behavior when one or both sockets within the Cray nodes
are active.

Parallelization does not seem to help much when there are
fewer than four or eight messages available at the application
level. For longer message trains parallelization does help and
we observe speedups as high as 130%.

Medium size messages benefit most at a low degree of par-
allelization, smaller messages require more servers. This is
correlated with the saturation slope in Figure 2. For exam-
ple parallelizing with two servers 64 Gets each of size 4096
bytes yields a 120% speedup, while parallelizing 64 eight
byte operations yields only a 30% speedup. Paralellization
does not yield great benefits for transfers larger than 4KB.
This indicates that for this traffic pattern BTE transfers do
not benefit from it.

We omit detailed results for the process based implemen-
tation. Transfers smaller than 8KB can be parallelized,
while in our implementation larger messages are issued di-
rectly by the clients. When pointers to messages larger than
8KB are passed to a server process, GASNet switches to dy-
namic registration and the Cray uGNI library disallows reg-
istration of the same GASNet memory region into multiple
processes. We have also experimented with using bounce
buffers inside servers for large transfers without any worth-
while performance improvements.

Overall, pthreads based parallelization works very well
on Cray Aries, while process based parallelization does not.

4.1.2 InfiniBand
On InfiniBand, parallelization using pthreads severely de-

grades performance, while parallelization over processes im-
proves it.

Figure 3 (bottom) shows performance results on the In-
finiBand system when using processes for parallelization.
Overall, best performance results are obained for small to
medium messages, up to 4KB, which require multiple cores
to saturate the network. Larger messages saturate with
only a few cores and should not benefit from paralleliza-
tion. Furthermore, when passing an address between pro-
cesses, the underlying GASNet implementation chooses be-
tween RDMA using bounce buffers for messages smaller than
a page and in-place RDMA with dynamic memory registra-
tion for larger transfers. Dynamic memory registration re-
quires system calls which serialize the large transfers. Note
that this combination of bounce buffers and dynamic regis-
tration also reduces the performance benefits of paralleliza-
tion.

Parallelization provides best results for Get operations
which saturate the network slower than Puts. In the best
configuration we observe as much as 150% speedup from
parallelization for 4KB messages. The technique is effec-
tive for Gets even when very few operations (as low as two)
are available. For Gets, increasing the degree of paralleliza-
tion improves performance and best performance is obtained
when using most cores within the NUMA domain.

In the case of Puts the best speedup observed is around
80% for 128 bytes messages and the technique requires at
least 32 messages per thread before showing performance
improvements when using one socket. For Puts, increasing
the degree of parallelization does not improve performance,
as illustrated in Figure 3 bottom left.

Again, understanding the saturation behavior is a good
indicator for the benefits of parallelization of communica-
tion.

5. PARALLELIZING INJECTION IN APPLI-
CATIONS

Although the perfomance improvements are certainly en-
couraging for regular communication behavior, applications
may exhibit instantaneous behavior which is adversary to
our approach.

In some settings the message mix may be unpredictable
and there may exist resource contention between servers and
computation tasks. To handle message mixes we have imple-
mented a dynamic parallelization of injection using a perfor-
mance model that takes into account the expected number of
messages, message size and type. To handle core contention
we experiment with both “cooperative” scheduling and re-
source partitioning. All these mechanisms are exposed at
the application level through a control API.

We experiment with a UPC+OpenMP multigrid bench-
mark we developed specifically for this study, as well as
a 3D fast Fourier Transformation using the multithreaded
FFTW [11] library and all-to-all collective communication.

Selective Parallelization: In order to provide optimal
performance we need to know the number of messages, their
size and type (put or get). We can then decide if paralleliza-
tion improves performance and if so, we need to decide the
optimal number of servers and message injection policy.

Based on the microbenchmark results, for any message
size we determine a threshold on the number of messages to
enable parallelization. For example, on Aries parallelization
should be enabled any time there are more than four Get
messages of size smaller than 8KB. For large messages we
provide a direct injection policy by client tasks, bypassing
the servers entirely. Any message larger than 8KB is di-
rectly injected by the client in our Aries implementation. As
the actual number of messages does not matter, we provide
application level APIs to simply enable and disable paral-
lelization.

Once parallelization is enabled we need to choose the num-
ber of servers. Based on the experimental data, the optimal
point is different for small and medium messages: small mes-
sages require more parallelism, medium messages less. On
the other hand, for a fixed number of servers, the instan-
taneous message concurrency is actually determined by the
injection policy. By simply varying the number of consecu-
tive messages assigned to a server, we can directly control
their concurrency: the larger this number, the lower the
concurrency.

In our implementation, we allow developers to specify a
static concurrency for the communication subsystem, based
on core availability or application knowledge. For a spe-
cific concurrency, we build a control model that decides how
many consecutive messages of a certain size are assigned to
a server queue, e.g. we assign every other small message to
a new server and increase this threshold with message size.

Note that the required server concurrency depends whether
the clients can be active or need to be inactive, as determined

Process 0 Process 1

Subdomain 0

Subdomain 1

Subdomain 0

Subdomain 1 1

3 2

4

Figure 4: A 2D visualization of the exchange boundary
communication phase among two neighboring processes each
with two subdomains. Note, only one direction (of 6) is
shown. Only sends from process 0 are shown.

by the programming model. Same heuristics apply in both
cases.

Core Management: The dedicated communication sub-
system may run concurrently with computation tasks. In
this case the cores may be oversubscribed with computa-
tion and communication tasks and performance is also de-
termined by the core allocation. We explore both coop-
erative scheduling approaches as well as partitioning ap-
proaches. For cooperative scheduling, communication tasks
in idle states are sleeping and we provide interfaces to ex-
plicitly wind-up and wind-down these tasks. We experi-
ment with different strategies: 1) best-effort, no task pin-
ning; 2) pinning the communication tasks to core domains;
3) partitioning cores between communication and computa-
tion tasks and parallelizing all transfers; and 4) partitioning
cores between computation and communication tasks and
doing selective parallelization.

5.1 miniGMG
Multigrid is a linear-time approach for solving elliptic PDEs

expressed as a system of linear equations (Luh = fh). That
is, MG requires O(N) operations to solve N equations with
N unknowns. Nominally, MG proceeds by iterating on V-
Cycles until some convergence criterion is reached. Within
each V-Cycle, the solution is recursively expressed as a cor-
rection arising from the solution to a smaller (simpler) prob-
lem. This recursion proceeds until one reaches a base case
(coarse grid) at which point, one uses a conventional itera-
tive or direct solver. Multigrid’s recursive nature states that
at each successively coarser level, the computational require-
ments drop by factors of 8×, but the communication volume
falls only by factors of 4×. As a result, multigrid will see
a wide range of message sizes whose performance is critical
to guaranteeing multigrid’s O(N) computational complexity
translates into an O(N) time to solution.

miniGMG is a small (3 thousand lines of C), publicly-
available benchmark developed to proxy the geometric multi-
grid solves within the AMR MG applications [21, 30]. Ge-
ometric multigrid (GMG) is a specialization of multigrid in
which the PDE is discretized on a structured grid. When
coupled with a rectahedral decomposition into subdomains
(boxes), communication becomes simple ghost zone (halo)
exchanges with a fixed number of neighbors. In miniGMG,
communication is performed by the MPI ranks, while all
computation is aggressively threaded using OpenMP.

For this paper, using the publicly-available MPI+OpenMP
implementation, we developed several UPC+OpenMP vari-

ants using either Put or Get communication paradigms with
either barrier or point-to-point synchronization strategies.
We only report results using the Get based implementation
with point-to-point synchronization as it provides the best
performance in practice. When compared to the original
MPI+OpenMP version, our variant always provides match-
ing or better performance.

In order to minimize the number of messages sent between
any two processes, miniGMG’s ghost zone exchange was op-
timized to aggregate the ghost zones exchanges of adjacent
subdomains into a single message. Thus, as shown in Fig-
ure 4, two subdomains collocated on the same node will:
1) pack their data into an MPI send buffer; 2) initiate an
MPI send/recv combination; 3) attempt to perform a local
exchange while waiting for MPI; and 4) extract data from
the MPI receive buffer into each subdomains private ghost
zone. In each communication round a MPI rank exchanges
only six messages with its neighbors. While this approach
to communication is common place as it amortizes any com-
munication overheads, it runs contrary to the need for paral-
lelism. The UPC+OpenMP implementation we report uses
the same algorithm.

As real applications use a variety of box sizes to balance
AMR and computational efficiency with finite memory ca-
pacity and the desire to run physically realistic simulations,
we evaluate performance using box sizes of 323, 643 and
1283 distributed as one, eight or 64 boxes per UPC thread
for both communication strategies. Some of the larger con-
figurations will be limited by on-node computation, while
smaller problems will be heavily communication-limited. Over-
all, due to varying degrees of required parallelism, aggres-
sive message aggregation optimizations and different mes-
sage sizes miniGMG provides a realistic and challenging
benchmark to message parallelization.

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

Pe
rce

nt
#of

#To
tal

#Ti
me

#Sp
en

t#in
#Co

mm
un

ica
>o

n#

Edison#B#Time#Spent#in#Communica>on#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 5: Fraction of time spent doing communication in
miniGMG on Edison is heavily dependent on the number of
boxes per process (independent messages) rather than total
data volume.

miniGMG Performance: Figure 5 presents the fraction
of our UPC miniGMG solve time spent in communication
for a variety of problem and box sizes. As illustrated, the
code can transition from computation-dominated to com-
munication dominated with a sufficient number of boxes per
process.

Both OpenMP threads and our communication server tasks
require cores to run on. Figure 6 (left) presents the impact of
using three communication threads compared to the base-
line UPC+OpenMP implementation. In both cases, there
are 12 OpenMP threads, but in the latter, the operating
system must schedule the resultant 15 threads on 12 cores.

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

200%#

MGSolve# comm#

Pe
rfo

rm
an

ce
#Re

la8
ve
#to

#N
o#C

om
m.

#Se
rve

rs#

Carver#>#InfiniBand#Get#>#1#Process#Per#Socket#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 8: Performance of UPC miniGMG with communi-
cation servers relative to UPC miniGMG without, on Infini-
Band, with 2 client processes per node (1 per socket).

MGSolve records the overall speedup on the multigrid solver
while comm records the speedup in the communication op-
erations. Inside the benchmark we explicitly use cooperative
scheduling for the communication subsystem, i.e. commu-
nication tasks are sleeping when not needed. No thread is
explicitly pinned and we have experimented with different
OpenMP static and dynamic schedules. As illustrated, for
all problem settings we observe performance degradation up
to 25%.

Rather than oversubscribing the hardware and giving the
scheduler full control to destroy any cache locality or to delay
message injection, we experimented with eliminating over-
subscription and pinning just the communication tasks. In
this case we use 8 OpenMP threads and 3 pinned commu-
nication tasks. Although superior to oversubscription, per-
formance is still less than the baseline. Detailed results are
omitted.

Figure 6 (right) presents the speedup when hardware re-
sources are partitioned among 8 OpenMP threads and 3
communication threads. Both OpenMP and communication
threads are explicitly pinned to distinct cores and all com-
munication is parallelized. Some problems observe substan-
tial speedups (by as much as 70%), while some slow down
by as much as 47%. On average we observe 2% slowdown
and any performance degradation is explained by slowdown
in communication.

Figure 7 (left) presents the best performance attained us-
ing selective parallelization at its optimal setting in a par-
titioned node. We now observe performance improvements
for all problem settings, with a maximum of 76% and an av-
erage improvement of 40%. Figure 7 (center) shows results
for selective parallelization using the adaptive strategy with
two servers. Figure 7 (right) shows results of the adaptive
strategy with three servers, giving a maximum improvement
of 64% and an average improvement of 36%. As illustrated,
allocating more cores to the communication subsystem im-
proves performance and the adaptive strategy provides most
of the possible performance gains.

For brevity we did not present detailed results on Infini-
Band, they are similar to the results presented on the Cray
system. Figure 8 shows an experiment with partitioned re-
sources and parallelization enabled over three servers. Again
we observe application speedup up to 80%.

These results indicate that under the current OS schedul-
ing techniques, parallelizing communication successfuly re-
quires partitioning and pinning.

0%#

20%#

40%#

60%#

80%#

100%#

120%#

MGSolve# comm#

Pe
rfo

rm
an

ce
#Re

la8
ve
#to

#N
o#C

om
m.

#Se
rve

rs#

Edison#A#Oversubscribed#A#No#Pinning#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

200%#

MGSolve# comm#

Pe
rfo

rm
an

ce
#Re

la8
ve
#to

#N
o#C

om
m.

#Se
rve

rs#

Edison#A#Par88oned#A#All#Pinned#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 6: Performance of UPC miniGMG with parallelization relative to UPC miniGMG without on Cray Aries. Left:
Oversubscribed, best effort 12 OpenMP tasks, 3 servers on 12 cores. Right: parititioned, pinned, 8 OpenMP tasks, 3 servers
on 12 cores. Best performance requires partitioning and explicit pinning of all tasks. Parallelization results in performance
improvements for some problem sizes.

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

200%#

MGSolve# comm#

Pe
rf
or
m
an

ce
#R
el
a8

ve
#t
o#
N
o#
Co

m
m
.#S
er
ve
rs
#

Edison#A#All#Pinned#A#Sta8c#Parameters#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

(3,4)
(2,1)(2,2)

(3,2)

(3,1)

(2,4)

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

MGSolve# comm#

Pe
rf
or
m
an

ce
#R
el
a8

ve
#t
o#
N
o#
Co

m
m
.#S
er
ve
rs
#

Edison#A#Adap8ve#A#2#Servers#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

MGSolve# comm#

Pe
rf
or
m
an

ce
#R
el
a8

ve
#t
o#
N
o#
Co

m
m
.#S
er
ve
rs
#

Edison#A#Adap8ve#A#3#Servers#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 7: Performance of UPC miniGMG with selective parallelization relative to UPC miniGMG without on Cray Aries.
Left: optimal settings (server, batch size) are annotated on the figure. Center and right: adaptive parallelism with two and
three servers. Allocating more cores to communication improves performance.

5.2 Collective Operations
Optimizing the performance of collective operations [26,

15, 33] has seen its fair share of attention and implementa-
tions are well tuned by system vendors. Due to their seman-
tics, collectives are an obvious beneficiary of our techniques
in application settings as they mostly require tasks to con-
tribute equal amount of data to a communication pattern
with a large fan-out.

In Figure 9 we show the aggregate bandwidth of an all-

to-all operation implemented using UPC one-sided Get op-
erations4 with and without parallel injection on 1,024 nodes
of Edison, accounting for 12,288 total cores in a hybrid set-
ting. Our implementation initiates non-blocking communi-
cation in a loop and throttles the number of outstanding
messages to 128 for scalability with nodes. Parallelizing in-
jection improves performance up to 30% over the baseline
UPC case for messages smaller than 4KB.

For reference we include the performance of the Cray
tuned MPI_alltoall. This implementation selects different
algorithms for small (Bruck’s algorithm) and large (pairwise
exchange) messages, while our microbenchmark uses a sin-
gle algorithm for all message sizes. Parallel injection allows
our implementation to provide greater bandwidth in the re-
gion of messages sizes where MPI and our implementation
use similar algorithms. Performance is better than the MPI
version for messages between 8B and 2KB. On a smaller (64-
node) run, performance was better than MPI for messages
between 16B and 32KB.

We observe similar performance improvements up to 30%
on InfiniBand, detailed results omitted for brevity. We ex-

4Note that this implementation provides better performance
than a Put based implentation.

100#

1000#

10000#

100000#

8# 16
#

32
#

64
#

12
8#

25
6#

51
2#

10
24
#

20
48
#

40
96
#

81
92
#

16
38
4#

32
76
8#

Ag
gr
eg
at
e#
Ba

nd
w
id
th
#

Message#Size#

Edison#All?to?All#?#1024#Nodes#

UPC#Parallel#InjecGon#

UPC#Baseline#

MPI_Alltoall#

Figure 9: Aggregate bandwidth achieved with one-sided
put and get operations using UPC without parallel injection,
UPC with parallel injection, and MPI.

pect to see similar trends while parallelizing other operations
such as reductions and broadcasts.

5.3 NPB UPC-FT
This benchmark implements the NAS Parallel Benchmarks [1]

discrete 3D Fast Fourier Transform, using UPC for inter-
node transpose communication and multi-threaded FFTW [11]
for intra-node parallelization [29]. UPC-FT goes through
two rounds of communication. For a problem of size NX ×
NY ×NZ run on a PX × PZ process grid, messages are 16 ·
NX/PX ·NY/PX bytes in the first round and 16 ·NY/PZ ·NX/PX

bytes in the second round.
Figure 10 shows the relative performance of UPC-FT on

a class A size (256 × 256 × 128) problem on 1,536 cores of
Edison, with the partitioning of the problem across nodes
varied to produce first-round message sizes from 256B to
256KB while holding second-round message size constant at
8KB. FFTW is build with threading support using OpenMP

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

AA#64x2#
(256)#

AA#32x4#
(1024)#

AA#16x8#
(4096)#

AA#8x16#
(16384)#

AA#2x64#
(262144)#

DDE#128x8##
(512)#

Pe
rfo

rm
an

ce
#Re

la=
ve
#to

#N
o#C

om
m.

#Se
rve

rs#

Edison#G#UPCGFT#

2#Servers#

3#Servers#

Adap=ve#

1,536&Cores 12,288&Cores

Figure 10: Performance of the UPC-FT benchmark with
Class A problem sizes on 1,536 cores of Edison for differ-
ent first-round message sizes with two or three communica-
tion servers, relative to performance without communication
servers, and for a class D-1/8 problem size on 12,288 cores
of Edison.

and configured to use 8 threads per process. OpenMP and
communication servers threads are pinned to cores. The
“2 Servers” and “3 Servers” columns show the performance
effect of using that number of communication servers and
parallelizing everything, while “Adaptive” shows the perfor-
mance with selective parallelization.

Speedups of up to 49% are seen for the smallest messages,
they decrease with increasing message sizes, with speedups
of 11% for 4KB messages. Incidentally, the best original
performance is obtained for the AA 32 × 4 setting. The
rightmost section of the figure shows results on a class D-1/8
size (1024 × 512 × 512) problem distributed across a 128 ×
8 process grid on 12,288 cores of Edison, with first-round
message sizes of 512B. A speedup of 23% is achieved on this
problem used by NERSC for system procurements.

6. DISCUSSION
Figure 11 summarizes the overall performance trends un-

covered by this work. On the left hand side we compare
the performance of a setting with one task per NUMA do-
main (hybrid parallelism in application) with our parallel
injection. Parallelization occurs over two servers and for
reference we include the peak bandwidth attainable on the
system in any combination.

For both systems parallelization is effective for small to
medium messages, up to 8KB on Aries and 32KB on Infini-
Band. Parallelization does not improve the performance for
large messages. For any message size, there is a gap between
the parallelized injection and the peak attainable bandwidth.
Most of this gap is accounted by injection concurrency and
not by our implementation overhead.

For small to medium messages increasing the number of
servers in ’PAR’ closes the gap between attained and peak
performance. For large messages, parallelization does not
improve performance when compared to the original setting,
yet there is a noticeable difference from peak bandwidth.
In this case orthogonal concurrency throttling techniques
as described by Luo [17] are required. Note that due to
decoupling the communication into a standalone subsystem,
these techniques are easy to implement in our architecture.

The right hand side graph in Figure 11 illustrates an in-
triguing opportunity. Medium messages at high concurrency
achieve similar bandwidth to the best bandwidth achieved

by large messages at any concurrency. This means that con-
currency throttling or flow control techniques for large mes-
sages may be replaceable by message decomposition and par-
allel injection. We are currently investigating this tradeoff
in our current infrastructure.

Overall our work makes the case for decoupling communi-
cation management from the application itself and transpar-
ently applying injection parallelization in conjunction with
throttling in order to maximize throughput. Having a sep-
arate communication subsystem enables dynamic manage-
ment on a node wide basis. This architecture fits natu-
rally in both SPMD and dynamic tasking runtimes such as
Habanero-C or HCMPI.

In our experiments, dedicating cores to communication af-
fected only marginally, if at all, the end-to-end benchmark
performance. Furthermore, for any problem where commu-
nication was present, its parallelization provided by far the
best performance. We believe that dedicating a small num-
ber of cores to communication is feasible for many appli-
cations on existing systems. Of course, there may be com-
putationally intensive applications that perform very little
communication or synchronization.

Hardware evolutionary trends are also favorable to a de-
coupled parallel communication subsystem in application
settings. There is likely to be enough core concurrency that
a runtime system can instantiate a partition dedicated to
communication management. This avoids scheduling prob-
lems when cores are oversubscribed. There also exists an
expectation that in future systems the memory per core
will decrease while the number of nodes will significantly
increase. This implies that hybrid parallelism algorithms
will have to use a small number of “traditional” communi-
cation tasks per node due to memory scalability problems
inside runtimes (connection information), as well as the ap-
plication levels (boundary conditions buffer space).

For hybrid programming such as UPC+OpenMP, it may
seem that one can just fix pthreads and retrofit the prin-
ciples we describe inside the applications themselves. The
caveat is that the requirement to have both process and
pthreads-based implementations for portability is unlikely
to disappear in the foreseeable future. The first hybrid
MPI+OpenMP studies [6] were published circa 2000. Fix-
ing pthreads is not easy as illustrated by the performance
in 2014. Furthermore, the low-level networking APIs and
system software make this distinction necessary for perfor-
mance portability, and unlikely to change.

7. OTHER RELATED WORK
As already explained in Section 2, explicit communication

parallelization for hybrid SPMD+{OpenMP,CUDA} codes
has not been thoroughly explored due to implementation
constraints. Rabenseifner et al [23] discuss its potential and
implications on algorithm design, without detailed perfor-
mance results. Similarly, communication parallelization has
not been yet explored in dynamic tasking runtimes. There
has been work inside the MPI implementation [10, 12] to im-
prove performance for MPI THREAD MULTIPLE. These
studies demonstrate improved performance only for microbench-
marks, mostly on IBM BG/P hardware. Recent work by
Luo et al [16] describes an MPI implementation able to pro-
vide improved performance for hybrid MPI+OpenMP paral-
lelism on InfiniBand networks. They use multiple endpoints
for parallelism and show results for microbenchmarks and

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

8" 128" 2048" 32768" 524288"

Ag
gre

ga
te"

Ba
nd

wi
dt
h"

Message"Size"

InfiniBand"Get">"2"Nodes">"4"Processes"

Original" Parallel"InjecFon" Peak"

8" 16"
32"

64"

128"

256"

512"

1024"

2048"
4096"

8192" 16384" 32768" 65536"131072"262144"

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

8" 128" 2048" 32768" 524288"

Ag
gre

ga
te"

Ba
nd

wi
dt
h"

Message"Size"

Cray"Aries"Get">"4"Nodes">"8"Processes"

Original" Parallel"InjecGon" Peak"

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	

Pe
rce

nt
ag
e	 o

f	 P
ea
k	

Cores	 per	 Node	

IB	 Get	 SaturaBon	 -‐	 2	 Nodes	

SMALL(4KB)	 LARGE((32KB)	

Figure 11: Overall trends comparing hybrid setup with 1 task per NUMA domain(’Original’), with parallelization (’PAR’)
and peak attainable bandwidth on the system. ’PAR’ uses only 2 servers. Right - InfiniBand saturation with active cores for
small and large messages.

all-to-all operations. Dinan et al [9] discuss extensions to im-
prove MPI interoperability with other programming models
and pthreads. No performance results are presented in the
study. Until performance portability is provided, developers
are unlikely to adopt explicit parallelization in their codes.

Multi-threading the runtime implementation has been ex-
plored for both one-sided and two-sided communication paradigms.
Recent efforts by Si et al [24] examine multi-threading the
MPI runtime implementation. This implementation uses
OpenMP multi-threading to accelerate internal runtime rou-
tines such as buffer copying and derived datatypes, while
maintaining the conventional serialized message injection.
They report a tight integration of MPICH with the Intel
OpenMP runtime and demonstrate results only for shared
memory programming on a single Intel Xeon Phi. ARMCI [22]
implements a portable one-sided communication layer that
runs on most existing HPC platforms and uses pthreads for
network attentiveness. While Put/Get operations are per-
formed by their callers, ARMCI uses one separate thread
per process for progress of accumulate operations.

The implementation of collective operations has received
its fair share of attention. Yang and Wang [32, 33] dis-
cussed algorithms for near optimal all-to-all broadcast on
meshes and tori. Kumar and Kale [15] discussed algorithms
to optimize all-to-all multicast on fat-tree networks. Thakur
et al [26] discussed the scalability of MPI collectives and de-
scribed implementations that use multiple algorithms in or-
der to alleviate congestion in data intensive operations such
as all-to-all. All these algorithms initiate non-blocking com-
munication with a large number of peers, thus our approach
can be transparently retrofitted on their implementations.

8. CONCLUSION
In this paper we have explored the design aspects of a ded-

icated parallel communication runtime that handles message
injection and scheduling on behalf of application level tasks.
Our runtime is able to increase the instantaneous communi-
cation concurrency and provide near saturation bandwidth,
independent of the application configuration and its dynamic
behavior.

We strive to provide performance and portability by: 1)
using a dual “parallelization” strategy where tasks dedicated
to communication are instantiated as either processes or
pthreads; 2) using a selective parallelization strategy guided
by network saturation performance models; and 3) imple-
menting either cooperative scheduling or core partitioning
schemes.

This architecture is well suited for hybrid parallelism im-
plementations that combine intra- and inter-node program-
ming models, as well as dynamic tasking programming mod-

els. We show very good performance improvements for col-
lective operations, as well as hybrid parallelism codes. As
HPC systems with many cores per chip are deployed, such
as the 72-core Intel Knight’s Landing, core partitions ded-
icated to communication become feasible. This alleviates
the need for improving the load balancing and cooperative
kernel level task scheduling mechanisms.

Unfortunately, if performance portability is a goal, a dual
parallelization strategy seems to be required for the near to
medium future. Furthermore, during this work we uncov-
ered limitations in existing system software in the area of
memory registration and job spawning. These unnecessarily
complicate the implementation of multithreaded runtimes
such as ours.

9. REFERENCES
[1] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.

Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,
H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks –
summary and preliminary results. In Supercomputing,
pages 158–165, New York, NY, USA, 1991. ACM.

[2] P. Balaji, D. Buntinas, D. Goodell, W. Gropp,
T. Hoefler, S. Kumar, E. Lusk, R. Thakur, and J. L.
Traeff. MPI on Millions of Cores. Parallel Processing
Letters (PPL), 21(1):45–60, Mar. 2011.

[3] F. Blagojević, P. Hargrove, C. Iancu, and K. Yelick.
Hybrid PGAS runtime support for multicore nodes. In
Conference on Partitioned Global Address Space
Programming Model, PGAS ’10, 2010.

[4] D. Bonachea. GASNet Specification, v1.1. Technical
Report CSD-02-1207, University of California at
Berkeley, October 2002.

[5] Berkeley UPC. http://upc.lbl.gov.

[6] F. Cappello and D. Etiemble. MPI versus
MPI+OpenMP on the IBM SP for the NAS
Benchmarks. In Supercomputing, pages 12–12, Nov
2000.

[7] P. Charles, C. Donawa, K. Ebcioglu, et al. X10: An
object-oriented approach to non-unifrom cluster
computing. In ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’05), October 2005.

[8] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave,
M. Chabbi, M. Grossman, V. Sarkar, and Y. Yan.
Integrating Asynchronous Task Parallelism with MPI.
Parallel and Distributed Processing Symposium,
International (IPDPS), 2013.

http://upc.lbl.gov

[9] J. Dinan, P. Balaji, D. Goodell, D. Miller, M. Snir,
and R. Thakur. Enabling MPI interoperability
through flexible communication endpoints. In
Proceedings of the 20th European MPI Users’ Group
Meeting, EuroMPI ’13, pages 13–18, 2013.

[10] G. Dózsa, S. Kumar, P. Balaji, D. Buntinas,
D. Goodell, W. Gropp, J. Ratterman, and R. Thakur.
Enabling concurrent multithreaded MPI
communication on multicore petascale systems. In
European MPI Users’ Group Meeting Conference on
Recent Advances in the Message Passing Interface,
EuroMPI’10, 2010.

[11] M. Frigo and S. G. Johnson. The Design and
Implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. Special issue on “Program
Generation, Optimization, and Platform Adaptation”.

[12] D. Goodell, P. Balaji, D. Buntinas, G. Dozsa,
W. Gropp, S. Kumar, B. R. d. Supinski, and
R. Thakur. Minimizing MPI resource contention in
multithreaded multicore environments. In IEEE
International Conference on Cluster Computing,
CLUSTER ’10, 2010.

[13] Habanero-C. wiki.rice.edu/confluence/display/
HABANERO/Habanero-C.

[14] K. Z. Ibrahim and K. A. Yelick. On the conditions for
efficient interoperability with threads: an experience
with PGAS languages using Cray communication
domains. In ICS, 2014.

[15] S. Kumar and L. V. Kale. Scaling All-to-All Multicast
on Fat-tree Networks. In ICPADS’04, page 205, 2004.

[16] M. Luo, X. Lu, K. Hamidouche, K. Kandalla, and
D. K. Panda. Initial study of multi-endpoint runtime
for mpi+openmp hybrid programming model on
multi-core systems. SIGPLAN Not., 49(8), Feb. 2014.

[17] M. Luo, D. K. Panda, K. Z. Ibrahim, and C. Iancu.
Congestion Avoidance on Manycore High Performance
Computing Systems. In ICS, 2012.

[18] K. Madduri, K. Z. Ibrahim, S. Williams, E.-J. Im,
S. Ethier, J. Shalf, and L. Oliker. Gyrokinetic toroidal
simulations on leading multi- and manycore HPC
systems. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 23:1–23:12, 2011.

[19] K. Madduri, E.-J. Im, K. Z. Ibrahim, S. Williams,
S. Ethier, and L. Oliker. Gyrokinetic particle-in-cell
optimization on emerging multi- and manycore
platforms. Parallel Comput., 37(9):501–520, 2011.

[20] MPI Solutions for GPUs. https:
//developer.nvidia.com/mpi-solutions-gpus.

[21] miniGMG website.
http://crd.lbl.gov/groups-depts/ftg/projects/

current-projects/xtune/miniGMG.

[22] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy libray for ditributed array
libraries and compiler run-time systems. In
IPPS/SPDP’99 Workshops, 1999.

[23] R. Rabenseifner, G. Hager, and G. Jost. Hybrid
mpi/openmp parallel programming on clusters of
multi-core smp nodes. In Parallel, Distributed and
Network-based Processing, 2009 17th Euromicro
International Conference on, pages 427–436, Feb 2009.

[24] M. Si, A. J. Peña, P. Balaji, M. Takagi, and
Y. Ishikawa. MT-MPI: Multithreaded mpi for
many-core environments. In ICS, pages 125–134, 2014.

[25] R. Thakur and W. Gropp. Test suite for evaluating
performance of multithreaded MPI communication.
Parallel Comput., 35(12), 2009.

[26] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of Collective Communication Operations
in MPICH. IJHPCA, pages 49–66, 2005.

[27] UPC Consortium.
upc.lbl.gov/docs/user/upc_spec_1.2.pdf.

[28] UPC Consortium. UPC Optional Library
Specifications- version 1.3.
upc-specification.googlecode.com/files/upc-lib-
optional-spec-1.3-draft-3.pdf, Nov.
2012.

[29] UPC-FT benchmark. https://www.nersc.gov/users/
computational-systems/nersc-8-system-cori/

nersc-8-procurement/trinity-nersc-8-rfp/

nersc-8-trinity-benchmarks/npb-upc-ft/.

[30] S. Williams, D. D. Kalamkar, A. Singh, A. M.
Deshpande, B. Van Straalen, M. Smelyanskiy,
A. Almgren, P. Dubey, J. Shalf, and L. Oliker.
Optimization of geometric multigrid for emerging
multi- and manycore processors. In Proc. of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, SC ’12.
IEEE Computer Society Press, 2012.

[31] S. Williams, L. Oliker, J. Carter, and J. Shalf.
Extracting ultra-scale lattice boltzmann performance
via hierarchical and distributed auto-tuning. In
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11.
ACM, 2011.

[32] Y. Yang and J. Wang. Efficient All-to-All Broadcast in
All-Port Mesh and Torus Networks. In International
Symposium on High Performance Computer
Architecture, HPCA ’99, pages 290–, Washington, DC,
USA, 1999. IEEE Computer Society.

[33] Y. Yang and J. Wang. Near-Optimal All-to-All
Broadcast in Multidimensional All-Port Meshes and
Tori. IEEE Trans. Parallel Distrib. Syst., 13:128–141,
February 2002.

wiki.rice.edu/confluence/display/HABANERO/Habanero-C
wiki.rice.edu/confluence/display/HABANERO/Habanero-C
https://developer.nvidia.com/mpi-solutions-gpus
https://developer.nvidia.com/mpi-solutions-gpus
http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/xtune/miniGMG
http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/xtune/miniGMG
upc.lbl.gov/docs/user/upc_spec_1.2.pdf
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/

	1 Introduction
	2 Communication and Concurrency
	3 Runtime Design
	3.1 Implementation Details

	4 Network Performance and Saturation
	4.1 Evaluation of Parallelization
	4.1.1 Cray Aries
	4.1.2 InfiniBand

	5 Parallelizing Injection in Applications
	5.1 miniGMG
	5.2 Collective Operations
	5.3 NPB UPC-FT

	6 Discussion
	7 Other Related Work
	8 Conclusion
	9 References

