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Improved tomographic imaging of wavelength 
scanning digital holographic microscopy by use 

of digital spectral shaping 
Lingfeng Yu and Zhongping Chen 

Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, Irvine, CA 92612 
lingfeng@uci.edu, z2chen@uci.edu 

Abstract:  The technique of wavelength scanning digital holographic 
microscopy (WSDHM) is improved by use of a digital spectral shaping 
method which is used to suppress the sidelobes of the amplitude modulation 
function in WSDHM for non-Gaussian-shaped source spectra. Spurious 
structures caused by sidelobes can be eliminated in tomographic imaging 
and the performance of the tomographic system greatly improved. Detailed 
theoretical analysis is given. Both simulation and experimental results are 
presented to verify the idea. 

©2007 Optical Society of America 

OCIS codes: (090.1760) Computer holography; (110.0180) Microscopy; (110.6880) Three-
dimensional image acquisition  
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1. Introduction 

Digital holography has become a subject of increasing interest for many researchers as it 
covers a great number of application areas, such as holographic interferometry for 
deformation or contour measurement, particle analysis, 3-D optical remote sensing, to name a 
few [1]. In digital holography, a CCD target is used for directly recording of a hologram 
which consists of an interference pattern produced by the reference and a three-dimensional 
(3D) object, and the wave field distribution and its propagation can be calculated by numerical 
algorithms in a computer. With digital holography, both the phase and intensity information of 
the reconstructed 3D field are readily available in numerical form and real-time processing of 
the image is possible, greatly simplifying metrological applications [2]. These advantages 
have stimulated the development of novel 3D microscopic techniques by using digital 
holography techniques. However, the reconstructed images from digital holography contain 
not only the information of the focused layer but also blurred information from the entire 
specimen. This out-of-focus blur has disastrous consequences when attempting to capture the 
three-dimensional structure of thick specimens or thick tissues [3]. 

In order to solve the above-mentioned problem in digital holographic 3D microscopic 
systems, the specimen needs to be scanned by changing the k vector of the illumination 
waves, according to the well-known optical diffraction tomography (ODT) theory [4-7]. One 
way to perform ODT with digital holography is to record holograms from different 
orientations of a rotating sample; then the three-dimensional refractive index spatial 
distribution of the sample can be reconstructed [8]. However, the forward detection 
requirement of the above scheme will normally limit its application in transparent or semi-
transparent specimens. An alternative way to fulfill ODT is that the k vector is changed by 
scanning the wavelength of the illumination wave. This has been verified by the recently 
reported wavelength-scanning digital holographic microscopy (WSDHM) method [9-13]. The 
images are reconstructed from a number of holograms digitally recorded while the 
wavelengths are varied at regular intervals, and the numerical interference of the multiple 
three-dimensional hologram fields results in a synthesized short coherence length and 
corresponding narrow axial resolution which are inversely proportional to the span of the 
scanning wavelength. Variable tomographic scanning [12] made possible by reconstructing 
and superposing wavefields on tilted planes in space, and sub-micrometer axial resolution was 
reported [13] by increasing the wavelength scanning span to several hundred nanometers.  

However, in all the previously reported WSDHM systems [9-13], the laser powers of all 
the scanning illumination wavelengths were adjusted to have the same weight, or the 
reconstructed wavefields from each wavelength were numerically normalized, so that the 
superposition of all the holographic fields resulted in a coherence depth-response envelope (or 
an amplitude modulation function as will be shown later). However, the above process has 
virtually resulted in a synthetic rectangular spectrum of the light source, which will cause big 
sidelobes in the amplitude modulation function. These sidelobes will actually generate severe 
spurious structures in tomographic imaging and will greatly increase the noise level of 
tomographic reconstruction. In this paper, we focus on the reduction of sidelobes in the 
coherence envelope and will propose a novel spectral shaping method to smooth out the 
sidelobes so that the performance of the digital holographic tomography system can be greatly 
improved.  
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2. Principle 

We will first briefly review the principle of wavelength scanning digital holographic 
microscopy [9-13]. A theoretical analysis of the method of digital spectral shaping will then 
be discussed.  Suppose an object is illuminated by a laser beam of wavelength λ , any point P 
on the object at Pr  scatters the incident beam into a Huygens wavelet ( )A Pr , so that the 

resultant field ( )E r  at r is 

( ) ( ) ( ) 3~ expE A ik d−∫ P P Pr r r r r ,       (1) 

where k is the wave number and the integral is over the whole object volume. Now let us 
repeat the above holographic process using different wave numbers, and all the other 
conditions of the object or illumination are kept the same. If the reconstructed fields are all 
superposed together with infinite wave numbers, then the resultant field is 

( ) ( ) ( )
( ) ( )
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where ( ) ( )exp
k

M ik− = −∑P Pr r r r  is defined as an amplitude modulation function (AMF) 

in this paper. As the number of wavelengths goes to infinite, the AMF actually become a delta 
function; thus, the resultant field is proportional to the field at the object and is nonzero only 
at the object points.  

However, any physically existing light sources have a limited spectrum range of 

[ ]min max,k k , with a bandwidth of max mink k kΔ = − . Practically, if one uses a finite number N of 

wave numbers at regular intervals of max min
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can be written as 
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where max min

2

k k
k

+= . Thus, except for an exponential term, the amplitude modulation 

function becomes 

( ) ( )
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sin 2
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Ndk
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−
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−
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.     (4) 

Clearly, the above process to obtain the amplitude modulation function is equivalent to the 
interference of a large number of monochromatic waves with equal intensities and equally 
spaced frequencies, which results in the generation of a narrow pulse of light. The amplitude 
modulation function has a periodic sequence of pulse-like peaks with a period (or beat 

wavelength) of [ ] 1
2 dkπ −Λ =  and the axial resolution 2N kδ π= Λ = Δ . Fig. 1 shows an 

example of an absolute AMF. Obviously, since the wavelength bandwidth of the light source 
is fixed, δ  is always the same for different N. But the more wave numbers used, the bigger 
interval Λ  between the two peaks of the modulation function. Thus for tomographic imaging, 
other than the diffraction or defocusing effect of propagation, the reconstructed object image 
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( )A r  will also repeat itself at a beat wavelength Λ  with axial resolution of δ . By using 

appropriate values of dk  and N, the beat wavelength Λ  can be matched to the axial extent of 
the object and δ to the desired level of axial resolution.  

At the extreme, if all the wave numbers within the bandwidth [ ]min max,k k are continuously 

scanned for illumination and reconstruction, it can be easily shown that the normalized 
amplitude modulation function finally become a sinc function as  

( ) ( )sin 2

2

k
M

k

Δ −
− =

Δ −
P

P
P

r r
r r

r r
.   (5) 

Thus, the beat wavelength Λ  will become infinitely large, and the axial resolution remains 
the same as in Eq. (4). 

From the above equations, it is noticed that the amplitude modulation function actually 
forms a Fourier transform pair with the spectral shape of the light source as in optical 
coherence tomography [14]. Because r and k space form a Fourier transform pair, equally k-
spaced wavelengths are always preferred for scanning. A tunable laser is normally used as a 
light source which is sequentially scanned to obtain the equally k-spaced wavelengths. Each 
wavelength corresponds to a quasi-Dirac spectrum (very narrow compared to the tuning 
range) of the source. However, all previously reported WSDHM systems gave these different 
wavelengths the same weight, or the reconstructed wavefields from each wavelength were 
numerically normalized. This resulted in a synthetic rectangular or limited-sampled-
rectangular shape spectra of the light source; thus either the AMF from Eq.(4) or Eq.(5) will 
cause big sidelobes which are not well suppressed. These sidelobes will generate severe 
spurious structures in tomographic imaging and increase the average noise level of the 
reconstruction. 

In order to solve these problems, the concept of spectral shaping is introduced to the 
WSDHM system in this paper. Spectral filtering [15,16] and shaping [17] were previously 
reported to obtain Gaussian spectra from non-Gaussian sources in order to improve the point-
spread function in optical coherence tomography. Similarly, in WSDHM, because of the 
Fourier transform relationship between the AMF and light source spectra, it follows the 
Fourier uncertainty relation that Fourier transform of a Gaussian function is another Gaussian, 
and the product of variances of Fourier transform pairs reach minimum for Gaussian functions 
[19]. Thus, digitally correcting the non-Gaussian spectra could result in the reduction of 
sidelobes in the amplitude modulation function and eliminate spurious structures in 
tomographic imaging. This paper proposes and demonstrates a weighing method of each 
wavelength wavefront in order to “simulate” a wide Gaussian spectrum source. 

Assume that the light source power spectrum is finally shaped to a Gaussian spectral 
form: 
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2

1
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22 kk

k k
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which has been normalized to unit power, 

( ) 1S k k dk
∞

−∞
− =∫ ,     (7) 

where k  is the center wave number and 2 kσ  is the standard deviation power spectral 
bandwidth.  

The resultant wavefield in Eq.(2) can then be written as 
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Obviously, the amplitude modulation function ( )M − Pr r  now becomes the Fourier 

transform of the Gaussian spectra ( )S k k− . Thus, the amplitude modulation function contains 

a Gaussian envelope as well with a characteristic standard deviation spatial width 2 xσ  that is 

inversely proportional to the power spectral bandwidth, which means that 1x kσ σ = . This is 
the limiting case of a general inequality on the product of variances of Fourier transform pairs. 
In general, if S is an arbitrary distribution and M is its Fourier transform, then the product of 
the variations is greater than one. This confirms the Fourier uncertainty relation that the 
product of variances of a Fourier transform pair reaches its minimum for Gaussian functions. 
If the above product is not minimized, then the AMF must not be a Gaussian. In this paper, a 
final Gaussian shape is always aimed by spectral shaping. In numerical implementation, an N-
point Gaussian spectra covering the spectrum range of [ ]1, Nk k  is obtained by digitizing Eq. 

(6) as 

( )
2

1

1

1
1 exp ,

2 ( ) 2N

k ndk k
S n

k k
α

⎡ ⎤⎛ ⎞+ −
⎢ ⎥+ = − ⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

    (9) 

where 0 1n N≤ ≤ − , and α  is a parameter introduced to adjust the width of the Gaussian 
spectra. We have ignored the constant before the exponential term in Eq.(6). The influence of 
the parameter α on spectral shaping will be studied below. 

3. Simulations and Experiments 

Both numerical simulations and experiments were carried out to verify the effectiveness of the 
proposed idea. Since amplitude is of more concern in tomographic imaging, we only plotted 
the absolute amplitude modulation functions. Fig. 1. shows several absolute AMFs when 
different numbers of equally k-spaced wavelengths between 1260nm and 1340nm were used 
for WSDHM. The light powers for each wavelength were assumed to be the same. In this 
case, the AMF was expressed as Eq. (4) and had a periodic sequence of pulse-like peaks with 

period [ ] 1
2 dkπ −Λ =  and axial resolution Nδ = Λ . The more wavelengths used, the bigger 

beat wavelength Λ , but the axial resolution δ did not change. For example, Fig. 1(a) shows 
the amplitude modulation function when 25 wave numbers were used for tomographic 
imaging which resulted in the beat wavelength 506.5 mμΛ =  and axial resolution 

21.1 mδ μ= . A total axial range from -600 mμ  to 600 mμ  was covered in Fig. 1., and three 
peaks appear in Fig. 1(a). As 50 wave numbers were used, the beat wavelength changed to 

1034.1 mμΛ =  but the axial resolution δ  was unchanged, as indicated in Fig. 1(b) where the 
mainlobe width at -3dB was about 24.96 mμ . At the extreme, as the number N went to 
infinity so that a continuous spectra range was considered, the AMF finally became a sinc 
function as Eq.(5) and is shown in Fig. 1(c), The mainlobe width at -3dB in this case was 
about 25.44 mμ , which is almost the same as in Fig.1(b). Note that the sidelobes of all the 
above AMF are not well suppressed. For example, the first order sidelobe in either Fig. 1(b) or 
1(c) reaches about 21.8% of the main peak amplitude, which corresponds to a -13.2 dB 
sidelobe attenuation in decibels. Clearly, the non-suppressed sidelobes introduce severe 
artifacts (or spurious structures) in reconstruction. Although it might be possible to use 
deconvolution methods to partially correct these sidelobe effects, it is hard to completely 
remove these effects because of the existence of phase and amplitude noise in real images. 
These artifacts are not true noise, but they act as “background noise” on the reconstructed 
image planes, if we consider any information excepting the “real signal” as a “noise.” In this 
sense, the authors are using the term “noise” in the paper. We can find that the average 
background noise becomes larger because of the existence of these non-suppressed sidelobes.  
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Fig. 1. Normalized amplitude modulation function when different wave numbers sampled from 
1260nm to 1340nm are used for tomographic imaging with (a) N=25; (b) N=50; and (c) 
continuously sampled wave numbers. 

The sidelobes of AMF in WSDHM could be greatly suppressed by Gaussian spectral 
shaping. Fig. 2(a) shows the amplitude modulation function with Gaussian spectral shaping 
( 2.5α = ) when 50 wave numbers are used for reconstruction. For comparison, the amplitude 
modulation function without Gaussian spectral shaping is also plotted in the Fig.. Fig. 2(b) 
shows the same AMFs in decibel scale. One can see that the relative sidelobe attenuation now 
becomes -43.2dB, which is greatly improved compared to Fig. 1. And there is about 20dB 
attenuation of the average noise level by use of Gaussian spectral shaping. The mainlobe 
width at -3dB is about 39.7 mμ  which can now be considered as the axis resolution of the 
WSDHM system.  
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Fig. 2. Amplitude modulation function with and without Gaussian spectral shaping when 50 
wave numbers are scanned from 1260nm to 1340nm; plotted in (a) linear and (b) decibel scale. 

 The effect of the parameter α on spectral shaping is also studied. Fig. 3 shows the 
amplitude modulation function in linear and decibel scales when different values of α are used 
in Eq.(9) for Gaussian spectral shaping. According to the property of Gaussian function, the 
width of the Gaussian envelope is inversely proportional to the value of α : a bigger value of 
α  ( 2α ≥ ) induces a more narrow spectra but a broader AMF. A smaller α  ( 2α < ), 
however, will cut a portion of a broader Gaussian envelope; thus, sidelobes will appear in 
AMF, as shown in Fig. 3. Therefore, 2α ≥  is preferred in our application.  
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Note that the mainlobe width after Gaussian spectral shaping is bigger before shaping in 
Fig. 2. This is because the spectral shaping operation actually narrows down the effective 
width of the synthetic rectangular spectra and results in a bigger axial resolution. So there is a 
trade-off between the side-lobe suppression and the axial resolution of the system, which can 
be adjusted by the parameter α. As one can see from Fig. 3, a value of 2.5α =  will normally 
guarantee both a good axial resolution and well-suppressed sidelobes in AMF. We will use 
this value for spectral shaping in the following section. 
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Fig. 3. Different α for Gaussian spectral shaping when 50 wave numbers are scanned from 
1260nm to 1340nm; plotted in (a) linear and (b) decibel scale. 

Experiments were also performed to verify the proposed idea using the apparatus 
depicted in Fig. 4. A Santec TSL-210V laser was scanned continuously from 1260 nm to 1340 
nm to obtain a sequence of equally k-spaced wavelengths, with a constant 10mw optical 
output for each wavelength. The laser output was collimated and split into reference and 
object beams in an interferometer based on the Michelson configuration. The object specimen 
was placed at a distance z from the hologram plane S, whose magnified image was projected 
on an InGaAs camera (Sensors Unlimited SU640) as well as the reference beam. A slight 
angle was introduced between the object and the reference beams by tilting the reference 
mirror REF for off-axis holography. An aperture was placed in the focal plane of L2 (a low 
NA achromatic doublet from Thorlabs, AC254-075-C) to control the size of the object 
spectrum captured in the camera which had an array of 640 × 512 pixels with a 25 mμ  pitch 
size and 12-bit gray scale output. A camera link cable connected the camera to the desktop 
computer which processed the acquired images and calculated the holographic diffraction 
using a number of programs based on LabVIEW® and MatLab®.  

 
Fig. 4. Optical apparatus used in the digital holographic microscopy experiments. The Ls are 
various lenses; BS is a beamsplitter; AP is an aperture and REF is a mirror. F1 or F2 are focal 
points of lens L1, and Point F2 is also the back focus of L2. The CCD camera captures the 
image of the interference pattern at the plane S. 

(c) (d) 
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In order to demonstrate the idea, a selected area on a USAF 1951 resolution target, with 
2.4×2.4 mm2, 256×256 pixels, was observed by the WSDHM system. There are two ways to 
perform reconstruction. If we consider the reconstruction in the “image domain,” then the 
CCD camera records the hologram, and we use the distance between the image plane (image 
of the object through L2) and the CCD plane for reconstruction. Alternatively, we could also 
consider the reconstruction in the “object domain.” In this case, the image of the CCD plane 
(S plane) records a hologram of the object, then the distance between the S plane and the 
object plane is directly used for reconstruction. We are using the latter way for reconstruction. 
The reconstruction distance z, representing the distance from the object to S plane in Fig. 4 
was about 3mm. A series of holograms were recorded using 50 equally separated wave 
numbers. As has been discussed above, this gave a beat wavelength of 1034.1 µm. The image 
volume was calculated from each of the holograms by use of numerical algorithms in the 
computer and all such image volumes were numerically superposed to create the 3D 
tomographic image [11,12].  

 

 
Fig. 5. A sequence of contour images at different layers: (a) without; and (b) with Gaussian 
spectral shaping. 
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Fig. 6. Comparison of the experimentally obtained AMF with its theoretical value: (a) without 
and (b) with Gaussian spectral shaping.  

Figure 5(a) shows a sequence of tomographic images reconstructed without Gaussian 
spectral shaping. Since the target was slightly tilted relative to the hologram plane, the contour 
images sequentially appear from left to right in Fig. 4 as the distance z is increased. The AMF 
of the system was experimentally measured by sampling a labeled cross line of a tomographic 
image in Fig. 5(a) and is plotted in Fig. 6(a), which also shows the theoretical AMF for 
comparison. One can clearly see the unsuppressed sidelobes in these Fig.s, and the 
experimental AMF agrees well with its theoretical value. Obviously, Fig. 5(a) provides 

(a) (b) 
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spurious structure information for the resolution target since it is known that the resolution 
target has a clear pattern on a flat chrome background. The results with Gaussian spectral 
shaping in WSDHM are shown in Fig.5(b) where we have used 2.5α =  in Eq. (9) to 
guarantee both a good axial resolution and well suppressed sidelobes in AMF. The 
experimental AMF from a cross line is also shown in Fig. 6(b), and it fits well with its 
theoretical prediction. Clearly, the sidelobes have now been greatly suppressed in AMF. If we 
consider the spurious ripples as background noise and analyze the experimental AMFs of both 
the above cases in decibel scale, it shows that there is about 15 dB improvement in the 
average noise level, which results in a signal-to-noise ratio gain by using Gaussian spectral 
shaping.  

To further demonstrate the concept, we consider a 3D example previously reported in Ref. 

11. A penny with an area of 2.62 mm×2.62 mm was illuminated by a dye laser scanning from 
575.0 nm to 605.0 nm with 20 equally k-spaced steps. The contour images reconstructed 
without Gaussian spectral shaping are shown in Fig. 7(a) [11]. The sidelobe effects are clearly 
seen in these images. For comparison, Fig. 7(b) shows the result when the proposed method of 
Gaussian spectral shaping is used for reconstruction from the same data set. The suppression 
of sidelobes by using Gaussian spectral shaping is evident. 

 

 
Fig. 7.  Several contour images of the coin reconstructed (a) without [11] and (b) with Gaussian 
spectral shaping. 

4. Conclusion 

In conclusion, Gaussian spectral shaping can be successfully applied to suppress the sidelobes 
in the amplitude modulation function of WSDHM, so that not only the average noise level in 
reconstruction is decreased, the signal-to-noise ratio of the system improved, but spurious 
structures in tomographic imaging eliminated. The proposed method could be used to greatly 
improve the performance of a WSDHM system. Although the examples presented only show 
the surface profiles of simple objects, the capability of WSDHM to generate cross-sectional 
views of sub-surface biological structures has been experimentally demonstrated elsewhere 
[9-10].  
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