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To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we 

aggregated published meta-analyses of genome-wide association studies (GWAS) including 

26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and 

Mexican American ancestry. We observed significant excess in directional consistency of T2D 

risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of 

association. By following up the strongest signals of association from the trans-ethnic meta-

analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified 

seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in 

fine-mapping resolution of common variant association signals at several T2D susceptibility loci. 

These observations highlight the benefits of trans-ethnic GWAS for the discovery and 

characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into 

the genetic architecture and pathogenesis of human diseases across populations of diverse 

ancestry.

The majority of GWAS of T2D susceptibility have been undertaken in populations of 

European ancestry1–5, predominantly because of existing infrastructure, sample availability, 

and relatively poor coverage by many of the earliest genome-wide genotyping arrays of 

common genetic variation in other major ethnic groups6. However, European ancestry 

populations constitute only a subset of human genetic variation, and thus are insufficient to 

fully characterise T2D risk variants in other ethnic groups. Furthermore, the latest genome-

wide genotyping arrays are less biased towards Europeans, and more recent T2D GWAS 

have been performed, with great success, in populations from other ancestry groups, 

including East Asians7–12, South Asians13,14, Mexicans and Mexican Americans15, and 

African Americans16. These studies have provided initial evidence of overlap in T2D 

susceptibility loci between ancestry groups and for coincident risk alleles at lead SNPs 

across diverse populations17,18. These observations are consistent with a model in which the 

underlying causal variants at many of these loci are shared across ancestry groups, and thus 

arose prior to human population migration out of Africa. Under such a model, we would 

expect to improve power to detect novel susceptibility loci for the disease, and enhance fine-

mapping resolution of causal variants, by combining GWAS across ancestry groups through 

trans-ethnic meta-analysis, because of increased sample size and differences in the structure 

of linkage disequilibrium (LD) between such diverse populations6,19–21.

In this study, we aggregated published meta-analyses of GWAS in a total of 26,488 cases 

and 83,964 controls from populations of European, East Asian, South Asian, and Mexican 

and Mexican American ancestry5,11,13,15. T2D GWAS from populations of African 

ancestry, which would be expected to provide the greatest potential for fine-mapping of 

common causal variants due to less extensive LD than other ethnic groups6, were not 

accessible for inclusion in our analyses. With these data, we aimed to: (i) assess the evidence 

for excess concordance in the direction of effect of T2D risk alleles across ancestry groups; 

(ii) identify novel T2D susceptibility loci through trans-ethnic meta-analysis and subsequent 

validation in an additional 21,491 cases and 55,647 controls of European ancestry; and (iii) 

evaluate the improvements in the fine-mapping resolution of common variant association 

signals in established T2D susceptibility loci through trans-ethnic meta-analysis, despite the 

lack of GWAS from populations of African ancestry.
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RESULTS

We considered published meta-analyses of GWAS of T2D susceptibility from four major 

ethnic groups (Supplementary Tables 1 and 2), undertaken by: (i) the DIAbetes Genetics 

Replication and Meta-analysis (DIAGRAM) Consortium5 (European ancestry; 12,171 cases 

and 56,862 controls); (ii) the Asian Genetic Epidemiology Network T2D (AGEN-T2D) 

Consortium11 (East Asian ancestry; 6,952 cases and 11,865 controls); (iii) the South Asian 

T2D (SAT2D) Consortium13 (South Asian ancestry; 5,561 cases and 14,458 controls); and 

(iv) the Mexican American T2D (MAT2D) Consortium15 (Mexican and Mexican American 

ancestry; 1,804 cases and 779 controls). We obtained association summary statistics from 

the four available ethnic-specific meta-analyses, each imputed at up to 2.5 million autosomal 

SNPs from Phase II/III HapMap22,23 to provide a uniform catalogue of common genetic 

variation, defined by minor allele frequency (MAF) of at least 5%, across ancestry groups 

(Online Methods). These association summary statistics were then combined across 

ancestry groups via trans-ethnic fixed-effects meta-analysis (Online Methods).

Directional consistency of T2D risk alleles across ancestry groups

We began by evaluating heterogeneity in allelic effects (i.e. discordance in the direction 

and/or magnitude of odds-ratios) between ancestry groups at 69 established autosomal T2D 

susceptibility loci. We assessed the evidence for heterogeneity at previously reported lead 

SNPs on the basis of Cochran’s Q-statistic from the trans-ethnic meta-analysis (Online 
Methods, Supplementary Table 3). We observed nominal evidence of heterogeneity 

(Bonferroni correction, pQ<0.05/69=0.00072) at the previously reported lead SNP at just 

three loci. At TCF7L2 (rs7903146, pQ=0.00055), the odds-ratio is largest in European 

ancestry populations, although the risk allele has a consistent direction of effect across 

ethnicities. At PEPD (rs3786897, pQ=0.00055) and KLF14 (rs13233731, pQ=0.00064), 

however, the association signals are apparently specific to East Asian and European ancestry 

populations, respectively, despite the fact that the reported lead SNPs are common in all 

ethnic groups. We also observed that, at 52 previously reported lead SNPs passing quality 

control in each of the four ethnic-specific meta-analyses, 34 showed the same direction of 

effect across all ancestry groups (65.4%, compared with 12.5% expected by chance, 

binomial test p<2.2×10−16). The strong evidence of homogeneity in allelic effects across 

ancestry groups at the majority of previously reported lead SNPs argues against the 

“synthetic association” hypothesis24. It is improbable that GWAS signals at most established 

T2D susceptibility loci reflect unobserved lower frequency causal alleles with larger effects 

because: (i) rare variants are unlikely to have arisen before human population migration out 

of Africa and thus are not expected to be widely shared across diverse populations25; and (ii) 

patterns of LD with these variants are anticipated to be highly variable between ethnicities.

To gain insights into the potential for the discovery of novel T2D susceptibility loci through 

fixed-effects trans-ethnic meta-analysis, we next assessed the genome-wide coincidence of 

risk alleles (i.e. direction of effect) across ancestry groups after exclusion of the 69 

established autosomal GWAS signals, defined as mapping within 500kb of the previously 

reported lead SNPs (Online Methods). First, we identified independent SNPs (separated by 

at least 500kb) with nominal evidence of association (p≤0.001) with T2D from the European 
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ancestry meta-analysis. By aligning the effect of the T2D risk allele from the European 

meta-analysis into the other ancestry groups, we observed evidence of significant excess in 

directional concordance between ethnicities: 57.0% with East Asian populations (binomial 

test p=0.0077); 55.4% with South Asian populations (binomial test p=0.032); and 56.6% 

with Mexican and Mexican American populations (binomial test p=0.010). Using the same 

approach, we also observed excess consistency in the direction of effect between ethnicities 

at independent SNPs demonstrating weaker evidence of T2D association (0.001<p≤0.01) 

from the European meta-analysis (Table 1). In contrast, when we considered independent 

SNPs with no evidence of association (p>0.5) with T2D, there was no enrichment in 

coincident risk alleles across ethnic groups. We repeated this analysis by identifying T2D 

risk alleles at SNPs with nominal evidence of association in East Asian, South Asian, and 

Mexican and Mexican American meta-analyses, in turn, and assessing concordance in the 

direction of effect in each of the other ancestry groups (Supplementary Table 4). The 

evidence for an excess in concordance between T2D risk alleles across ethnicities was not as 

strong, particularly for the Mexican and Mexican American meta-analysis. However, this 

presumably reflects reduced power due to smaller sample sizes, and there was still 

significant over representation of alleles with the same direction of effect across ancestry 

groups at SNPs with nominal evidence of association with the disease.

Seven novel T2D susceptibility loci achieving genome-wide significance

The observations from our concordance analyses are consistent with a long tail of common 

T2D susceptibility variants, with effects which are decreasing in magnitude, but which are 

homogeneous across ancestry groups. Under such a model, we would expect these variants 

to be amenable to discovery via trans-ethnic fixed-effects meta-analyses. In this study, by 

aggregating the published ethnic-specific meta-analyses under a fixed-effects model, we 

identified 33 independent SNPs (separated by at least 500kb) with suggestive evidence of 

association (p<10−5) at loci not previously reported for T2D susceptibility in any ancestry 

group (Supplementary Table 5, Supplementary Figure 1). By convention, we have labelled 

loci according to the gene nearest to the lead SNP, unless a compelling biological candidate 

mapped nearby. It is essential to validate partially imputed association signals with direct 

genotyping. Consequently, we carried forward these 33 loci for in silico follow-up in a 

meta-analysis of an additional 21,491 T2D cases and 55,647 controls of European ancestry5, 

genotyped with the Metabochip (Online Methods, Supplementary Tables 1 and 2). This 

custom array was designed to facilitate cost-effective replication of nominal associations for 

T2D and other metabolic and cardiovascular traits26. However, it provides relatively limited 

coverage of common genetic variation, genome-wide, with the result that the lead SNPs, or 

close proxies (CEU r2>0.6 from Phase II HapMap), were present at just 24 of the loci. We 

also identified poorer proxies at two additional loci, rs9505118 (SSR1/RREB1, CEU 

r2=0.26, p=1.9×10−6) and rs4275659 (MPHOSPH9, CEU r2=0.48, p=5.5×10−6), which, 

nonetheless, demonstrated only marginally weaker association signals than the lead SNPs 

(SSR1/RREB1, rs9502570, p=5.7×10−7; MPHOSPH9, rs1727313, p=1.2×10−6). Given that 

these variants met our threshold for follow-up from the trans-ethnic meta-analysis, they were 

also considered for validation.
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By combining association summary statistics from the trans-ethnic “discovery” and 

European ancestry “validation” meta-analyses, SNPs achieved genome-wide significance 

(combined meta-analysis p<5×10−8) at seven loci (Table 2, Figure 1). We observed no 

evidence of heterogeneity in allelic effects between discovery and validation stages of the 

combined meta-analysis (Supplementary Table 5). As expected, the novel loci are 

characterised by lead SNPs that are relatively common in all ethnicities, and have modest 

effects on T2D susceptibility which are homogeneous across ancestry groups 

(Supplementary Table 6). Adjustments for covariates were not harmonised within or 

between consortia because of variation in individual study design and recorded non-genetic 

risk factors. However, we observed no evidence of heterogeneity in allelic effects in the 

European ancestry validation meta-analysis after stratification of studies according to 

covariate adjustment (Online Methods, Supplementary Table 7). These data thus provide no 

evidence of bias in allelic effect estimates at lead SNPs at the novel loci, and suggest our 

results to be robust to variability in correction for potential confounders across studies.

The novel loci include SNPs mapping near POU5F1/TCF19 in the major histocompatibility 

complex (MHC), a region of the genome that is essential to immune response. The MHC 

harbours HLA class II genes, which together account for approximately half the genetic risk 

to type 1 diabetes (T1D)27. We observed no evidence of association of T2D with tags for 

traditional T1D HLA risk alleles in the trans-ethnic meta-analysis: HLA-DR4 (rs660895, 

p=0.32) and HLA-DR3 (rs2187668, p=0.34). Furthermore, when we considered lead SNPs at 

49 T1D susceptibility loci (Supplementary Table 8), we observed nominal evidence of 

association (p<0.05) with T2D, with the same risk allele for both diseases, at just two 

(GLIS3 and 6q22.32), but not at that mapping to the MHC (rs9268645, p=0.33). There is 

very strong evidence that T1D-risk variants, particularly in the MHC, are also associated 

with latent autoimmune diabetes of adulthood (LADA)28,29, a late-age onset, more indolent 

form of the disease, which often results in a clinical misdiagnosis of T2D. Although studies 

contributing to the trans-ethnic meta-analysis differed in the degree to which they were able 

to exclude LADA cases, the lack of association of T1D-risk variants suggests that rates of 

diagnostic misclassification of autoimmune diabetes were too modest to drive the T2D 

GWAS signal at the POU5F1/TCF19 locus.

The novel loci also include SNPs mapping to ARL15 and SSR1/RREB1, which have been 

previously implicated, at genome-wide significance, in regulation of fasting insulin (FI) and 

fasting glucose (FG), respectively30. The lead SNPs for T2D (rs702634) and FI (rs4865796) 

mapping to ARL15 are closely correlated in European and East Asian ancestry populations 

(CEU r2=1.00 and CHB+JPT r2=0.87 from Phase II HapMap). However, the lead T2D SNP 

(rs9505118) is independent of that for FG (rs17762454) at the SSR1/RREB1 locus (CEU and 

CHB+JPT r2<0.05). The ARL15 locus has also been associated with circulating adiponectin 

levels, an adipocyte-secreted protein that has anti-diabetic effects31, but the lead SNP 

(rs4311394) is independent of that for T2D susceptibility from the trans-ethnic meta-

analysis.

To obtain a more comprehensive view of the overlap of novel T2D susceptibility loci with 

metabolic phenotypes, we interrogated published European ancestry meta-analyses from the 

Meta-Analysis of Glycaemic and Insulin-related Consortium (MAGIC) Investigators3,30, the 
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Genetic Investigation of ANthropometric Traits (GIANT) Consortium32,33 and the Global 

Lipids Genetics Consortium34, to evaluate the effect of T2D risk alleles on: glycaemic traits, 

including homeostatic model of assessment indices of beta-cell function (HOMA-B) and 

insulin resistance (HOMA-IR); anthropometric measures; and plasma lipid concentrations 

(Online Methods, Supplementary Tables 9, 10 and 11). T2D risk alleles at SSR1/RREB1 

and LPP have features that indicate a primary role on susceptibility through beta-cell 

dysfunction: increased FG (p=1.0×10−5 and p=8.6×10−7, respectively), and reduced 

HOMA-B (p=0.11 and p=0.011, respectively). Conversely, the T2D risk allele mapping to 

ARL15 is associated with increased FI, most strongly after adjustment for body-mass index 

(BMI) (p=5.0×10−12), and increased HOMA-IR (p=0.021), and is thus more characteristic of 

action through insulin resistance. This risk allele is also associated with reduced high-

density lipoprotein cholesterol (p=0.022) and increased triglycerides (p=0.010), as expected, 

but also with reduced BMI (p=5.6×10−5).

To identify the most promising functional candidate transcripts amongst those mapping to 

the novel susceptibility loci, we interrogated public databases and unpublished resources for 

expression quantitative trait loci (eQTL) from a variety of tissues (Online Methods). The 

lead T2D SNPs at three loci showed nominal association (p<10−5) with expression, and 

were in strong LD (CEU and CHB+JPT r2>0.8) with the reported cis-eQTL variant: SSR1 

(B cells, p=2.2×10−6) at the SSR1/RREB1 locus; ABCB9 (liver, p=7.4×10−12) and SETD8 

(lung, p<2.0×10−16) at the MPHOSPH9 locus; and HCG27 (monocytes, p=1.3×10−69) at the 

POU5F1/TCF19 locus (Supplementary Table 12).

We also evaluated novel loci for potential functional mechanisms underlying T2D 

susceptibility (Online Methods). We identified variants in pilot data from the 1000 

Genomes Project25 that are in strong LD (CEU and CHB+JPT r2>0.8) with the lead SNPs in 

the seven novel susceptibility loci for functional annotation. We identified a missense 

variant at the POU5F1/TCF19 locus in TCF19 (rs113581344, V211M; CEU r2=0.96 and 

CHB+JPT r2=0.80 with lead SNP rs3130501), although it is predicted to be tolerated by 

SIFT35 (Supplementary Table 13). Lead SNPs in the novel susceptibility loci were also in 

strong LD with variants in the untranslated regions of SSR1 (at the SSR1/RREB1 locus) and 

ABCB9, OGFOD2, and PITPNM2 (at the MPHOSPH9 locus). Variants in strong LD with 

the lead SNPs at two of the novel susceptibility loci overlap regions of predicted regulatory 

function generated by the ENCODE Project36 (Supplementary Figure 2). The lead SNP at 

the LPP locus maps to an enhancer region which is active in HepG2 cells. We also identified 

a variant at the FAF1 locus (rs58836765; CEU r2=0.89 and CHB+JPT r2=0.80 with lead 

SNP rs17106184) which overlaps a region of open chromatin activity in pancreatic islets and 

other cell types. This open chromatin site is in a region correlated with expression of 

ELAVL4, which has been demonstrated to regulate insulin translation in pancreatic beta 

cells37, highlighting this transcript as a credible candidate at the FAF1 locus. Regulatory 

annotations in HepG2 cells and pancreatic islets are both broadly enriched at T2D associated 

variants38, and are thus supportive of these functional mechanisms for causal variant activity 

at both loci.
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Improved fine-mapping resolution at T2D susceptibility loci

Given our observation that the causal variants underlying GWAS signals are shared across 

ancestry groups at many T2D susceptibility loci, we evaluated the evidence for improved 

fine-mapping resolution through trans-ethnic meta-analysis. For this purpose, we combined 

association summary statistics from the ethnic-specific meta-analyses using MANTRA39. 

This Bayesian approach has the advantage of allowing for heterogeneity in allelic odds-

ratios between ancestry groups, arising as a result of differential patterns of LD with a 

shared underlying causal variant across diverse populations, which cannot be accommodated 

in fixed-effects meta-analysis (Online Methods). Simulation studies have demonstrated 

improved detection and localisation of causal variants through trans-ethnic meta-analysis 

with MANTRA compared to either a fixed- or random-effects model39,40.

Within each locus, we constructed “credible sets”41 of SNPs that are most likely to be causal 

based on their statistical evidence of association from the MANTRA meta-analysis. Credible 

sets can be interpreted in a similar way to confidence intervals in a frequentist statistical 

framework. For example, assuming that a locus harbours a single causal variant that is 

reported in the meta-analysis, the probability that it will be contained in the 99% credible set 

is 0.99. Smaller credible sets, in terms of the number of SNPs they contain, or the genomic 

interval they cover, thus correspond to fine-mapping at higher resolution. It is essential that 

SNP coverage is as uniform as possible across studies in the construction of credible sets. 

Otherwise, differences in association signals between variants may reflect variability in 

sample sizes in the meta-analysis, and not true differences in magnitude of effects on T2D 

susceptibility. Consequently, we have not considered the European ancestry Metabochip 

validation studies in our fine-mapping analyses because SNP density on the array is too 

sparse, across the majority of T2D susceptibility loci, to allow high-quality imputation up to 

the Phase II/III HapMap reference panels utilised in the trans-ethnic discovery GWAS.

In constructing credible sets, we assume that there is a single causal variant at each locus. 

However, there is increasing evidence that multiple association signals, typically 

characterised by independent common “index” SNPs, are relatively widespread at T2D 

susceptibility loci, for example CDKN2A/B and KCNQ16. Fine-mapping of these 

independent association signals will require formal conditioning, adjusting for genotypes at 

each index SNP in turn, before construction of the credible set for each underlying causal 

variant. Approximate conditioning, without formal computation, as implemented in 

GCTA42, makes use of meta-analysis summary statistics and a reference panel to 

approximate LD between SNPs (and hence correlation between parameter estimates in a 

joint association model). Unfortunately, this approach is not feasible in a trans-ethnic 

context because of differences in LD structure between ancestry groups, and thus could not 

be applied in this study. Consequently, the credible sets defined here correspond to fine-

mapping across association signals at each locus.

To assess the improvements in fine-mapping resolution by combining GWAS from diverse 

populations, we compared the properties of the MANTRA 99% credible set on the basis of 

association summary statistics from: (i) the European ancestry only meta-analysis; and (ii) 

the trans-ethnic meta-analysis of European, East Asian, South Asian, and Mexican and 
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Mexican American ancestry groups. We focussed on ten autosomal loci (of the 69 

previously established) that attained association with T2D susceptibility at genome-wide 

significance in the European ancestry meta-analysis (Table 3). We did not consider loci with 

weaker signals of association since they were typically characterised by large 99% credible 

sets in the European ancestry meta-analysis, and thus might provide an over-estimate of the 

improvement in fine-mapping resolution by combining GWAS across ancestry groups. Of 

the loci considered, only at MTNR1B, did we not see any improvement in fine-mapping 

resolution, in terms of the number of SNPs and the genomic interval covered by the 99% 

credible set after trans-ethnic meta-analysis.

The greatest enhancement in fine-mapping resolution after trans-ethnic meta-analysis was 

observed at the JAZF1 locus, where the genomic interval covered by the 99% credible set 

was reduced from 76kb to just 16kb (Figure 2, Supplementary Figure 3). Of the nine 

variants in the European 99% credible set, five were excluded after trans-ethnic meta-

analysis because of low LD with the lead SNP at this locus in East Asian ancestry 

populations (CHB+JPT r2<0.05 with rs864745). Amongst the variants retained in the 99% 

credible set after trans-ethnic meta-analysis, interrogation of predicted regulatory function 

from the ENCODE Project36 revealed that rs1635852 maps to a region of open chromatin 

with enhancer activity, bound by several transcription factors. This SNP has been previously 

shown to have allelic differences in pancreatic islet enhancer activity43, and is also 

correlated with expression of CREB5, highlighting this transcript as a credible candidate at 

the JAZF1 locus.

We also observed a substantial reduction in the genomic interval covered by the credible set 

at the SLC30A8 locus (Figure 2, Supplementary Figure 3), from 35kb (four SNPs) on the 

basis of only European ancestry GWAS, to less than 1kb (two SNPs) after trans-ethnic meta-

analysis. However, the lead SNP is strongly correlated with all variants in the credible set 

before trans-ethnic meta-analysis in both European and East Asian ancestry groups (CEU 

and CHB+JPT r2≥0.8 with rs13266634), suggesting that the improved fine-mapping 

resolution at this locus is more likely due to increased sample size than differences in LD 

structure between the populations. Encouragingly, the lead SNP after trans-ethnic meta-

analysis is more clearly separated from others in the credible set, and is a non-synonymous 

variant, R325W, which plays an established functional role in T2D susceptibility44.

Finally, we tested variants present in the 99% credible sets at the ten loci, on the basis of 

only the European ancestry GWAS and the trans-ethnic meta-analysis, for enrichment of 

functional annotation compared to randomly shifted element locations (Online Methods). 

Variants in the trans-ethnic 99% credible sets were significantly enriched (empirical p<0.05) 

for overlap with DNaseI hypersensitive sites (DHS p=0.038) and transcription factor binding 

sites (TFBS p=0.0060). However, no such enrichment in either annotation category was 

observed for the European ancestry 99% credible sets (DHS p=0.18; TFBS p=0.087). These 

data suggest that variants retained after trans-ethnic meta-analysis show greater potential for 

functional impact on T2D susceptibility through these regulatory mechanisms.

The fine-mapping intervals defined by credible sets after trans-ethnic meta-analysis are 

limited by the density and allele frequency spectrum of the GWAS genotyping arrays and 
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HapMap reference panels used for imputation. Although these reference panels provide 

comprehensive coverage of common SNPs (MAF>5%) across ancestry groups, imputation 

up to phased haplotypes from the 1000 Genomes Project25,45, for example, would allow 

assessment of the impact of lower frequency variation on T2D susceptibility in diverse 

populations46–48. However, we have demonstrated that, for a fixed reference panel, trans-

ethnic meta-analysis can improve localisation of common causal SNPs within established 

T2D susceptibility loci, and have identified highly annotated variants within fine-mapping 

intervals defined by the 99% credible sets. We have also assessed the sensitivity of the trans-

ethnic fine-mapping analysis to genotype quality at directly typed or imputed SNPs 

(Supplementary Table 14). We repeated MANTRA fine-mapping with subsets of SNPs that 

pass quality control in at least 80% (N=88,361) or 90% (N=99,406) of individuals from the 

trans-ethnic meta-analysis. As the threshold for reported sample size increased, the number 

of SNPs included in the fine-mapping analysis was reduced, but the genomic intervals 

covered by the 99% credible sets remained unchanged, suggesting resolution to be relatively 

robust to genotype quality at common variants.

DISCUSSION

We have identified seven novel loci for T2D susceptibility at genome-wide significance by 

combining GWAS from multiple ancestry groups. Our study has provided evidence of many 

more common variant loci, not yet reaching genome-wide significance, which contribute to 

the “missing heritability” of T2D susceptibility, in agreement with polygenic analyses in 

European ancestry GWAS5,49. The effects of these common variants are modest, but 

homogeneous across ancestry groups, and thus would be amenable to discovery through 

trans-ethnic meta-analysis in larger samples. We have also demonstrated improvements in 

the resolution of fine-mapping of common variant association signals through trans-ethnic 

meta-analysis, even in the absence of GWAS of African ancestry, which would be expected 

to better refine localisation due to reduced LD in these populations. Future releases of 

reference panels from the 1000 Genomes Project are anticipated to include 2,500 samples, 

including haplotypes of South Asian ancestry and wider representation of African descent 

populations. This panel will provide a comprehensive catalogue of genetic variation with 

MAF as low as 0.5%, as well as many rarer variants, across major ancestry groups, thus 

facilitating imputation and coverage of loci for future trans-ethnic fine-mapping efforts.

Our analyses clearly highlight the benefits of combining GWAS from multiple ancestry 

groups for discovery and characterisation of common variant loci contributing to complex 

traits, and emphasise an exciting opportunity to further our understanding of the biological 

mechanisms underlying human diseases across populations from diverse ethnicities.

ONLINE METHODS

Ancestry-specific GWAS meta-analyses

Ancestry-specific meta-analyses have been previously performed by: the DIAGRAM 

Consortium (12,171 cases and 56,862 controls, European ancestry)5; the AGEN-T2D 

Consortium (6,952 cases and 11,865 controls, East Asian ancestry)11; the SAT2D 

Consortium (5,561 cases and 14,458 controls, South Asian ancestry)13; and the MAT2D 

Page 9

Nat Genet. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Consortium (1,804 cases and 779 controls, Mexican and Mexican American ancestry)15. 

Further details of the samples and methods employed within each ancestry group are 

presented in the corresponding consortium papers5,11,13,15. Briefly, individuals were assayed 

with a range of genotyping products, with sample and SNP quality control (QC) undertaken 

within each individual study (Supplementary Tables 1 and 2). Each GWAS scaffold was 

imputed up to 2.5 million autosomal SNPs using reference panels from Phase II/III 

HapMap22,23 (Supplementary Table 2). Each SNP with MAF>1%, (except MAF>5% in the 

Mexican and Mexican American ancestry GWAS due to smaller sample size), and passing 

QC, was tested for association with T2D under an additive model after adjustment for study-

specific covariates (Supplementary Table 2). Covariate adjustments were not harmonised 

within or between consortia because of variation in individual study design and recorded 

non-genetic risk factors. The results of each GWAS were corrected for population structure 

with genomic control50 (unless λGC<1). Association summary statistics from GWAS within 

each ancestry group were then combined via fixed-effects meta-analysis. The results of each 

ancestry meta-analysis were then corrected by a second round of genomic control: European 

ancestry (λGC=1.10); East Asian ancestry (λGC=1.05); South Asian ancestry (λGC=1.02); 

Mexican and Mexican American ancestry (λGC=1.01).

Trans-ethnic “discovery” GWAS meta-analysis

Association summary statistics from each ancestry-specific meta-analysis were combined 

via fixed-effects inverse-variance weighted meta-analysis(in a total of 26,488 cases and 

83,964 controls). The association results of the trans-ethnic meta-analysis were corrected by 

genomic control50 (λGC=1.05).

Heterogeneity analyses

For each previously reported lead SNP at an established T2D susceptibility locus, we 

assessed heterogeneity in allelic effects between the ethnic-specific meta-analyses by means 

of Cochran’s Q-statistic51 (Supplementary Table 3). Amongst the 52 SNPs passing QC in all 

four ethnic-specific meta-analyses, we identified those that showed the same direction of 

effect across all ancestry groups, and evaluated the significance of the excess in concordance 

(12.5% expected) with a one-sided binomial test.

Concordance analyses

We identified SNPs passing QC and with MAF>1% in all four ethnic-specific meta-

analyses. We excluded variants in the 69 established autosomal T2D susceptibility loci, 

defined as 500kb up- and down-stream of the previously reported lead SNPs. We also 

excluded AT/GC SNPs to eliminate bias due to strand misalignment between ethnic-specific 

meta-analyses. Amongst the remaining SNPs, we selected an independent subset with 

nominal evidence of association (p≤0.001) with T2D from the European ancestry meta-

analysis, separated by at least 500kb. For each independent SNP, we identified the T2D risk 

allele from the European ancestry meta-analysis and determined the direction of effect in the 

East Asian, South Asian, and Mexican and Mexican American ancestry meta-analyses. We 

calculated the proportion of these SNPs that had the same direction of effect for the 

European ancestry risk allele and the significance of the excess in concordance (50% 
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expected) with a one-sided binomial test. We repeated this analysis for SNPs with weaker 

evidence of association with T2D from the European ancestry meta-analysis: 0.001<p≤0.01; 

0.01<p≤0.5; and 0.5<p≤1 (Table 1). Finally, we repeated these analyses, using the East 

Asian, South Asian, and Mexican and Mexican American ancestry meta-analyses, in turn, to 

identify subsets of independent T2D risk alleles, and assessed concordance into the other 

ethnic groups (Supplementary Table 4).

European ancestry “validation” meta-analysis

The previously published validation meta-analysis consisted of 21,491 cases and 55,647 

controls of European ancestry from the DIAGRAM Consortium5, all genotyped with the 

Metabochip26 (Supplementary Table 1). We excluded the Pakistan Risk Of Myocardial 

Infarction Study (PROMIS) from the validation meta-analysis to avoid overlap with a subset 

of the same individuals contributing to the SAT2D Consortium meta-analysis13. Full details 

of the samples and methods employed in the validation meta-analysis are presented in the 

DIAGRAM Consortium paper5. Briefly, sample and SNP QC were undertaken within each 

study (Supplementary Table 2). Each high-quality SNP (MAF>1%) was tested for 

association with T2D under an additive model after adjustment for study-specific covariates 

(Supplementary Table 2). Association summary statistics for each study were corrected 

using the genomic control inflation factor obtained from a subset of 3,598 “QT interval” 

replication SNPs5,26 (unless λQT<1). These statistics were then combined via fixed-effects 

inverse-variance weighted meta-analysis, and were corrected by a second round of genomic 

control (λQT=1.19).

Combined meta-analysis

We selected lead SNPs at 33 novel loci with suggestive evidence of association (p<10−5) 

from the trans-ethnic “discovery” GWAS meta-analysis for in silico follow-up in the 

European ancestry “validation” meta-analysis. Of these, 16 SNPs were genotyped directly 

on Metabochip, and 10 more had a proxy (CEU and CHB+JPT HapMap r2≥0.2). For these 

26 SNPs, association summary statistics from the discovery and validation meta-analyses 

were combined via fixed-effects inverse-variance weighted meta-analysis (Supplementary 

Table 5). The combined meta-analysis consisted of 47,979 T2D cases and 139,611 controls. 

Heterogeneity in allelic effects between the two stages of the combined meta-analysis was 

assessed by means of Cochran’s Q-statistic51.

Sensitivity to covariate adjustment

We identified 19 studies (11,327 cases and 31,342 controls) from the European ancestry 

“validation” meta-analysis that adjusted for only age, sex (unless male- or female-specific), 

and population structure, where necessary (Supplementary Table 2): AMC-PAS; BHS; 

DILGOM; EAS; EGCUT; EMIL-ULM; EPIC; FUSION Stage 2; D2D2007; Dr’s Extra; 

HUNT; METSIM (male-specific); HNR, IMPROVE; KORAGen Stage 2; PIVUS; 

THISEAS; ULSAM (male-specific); and WARREN2. Association summary statistics from 

each of these studies were then combined via fixed-effects inverse-variance weighted meta-

analysis, the results of which were subsequently corrected for genomic control (λQT=1.12). 

The remaining six studies (10,164 cases and 24,305 controls) did not adjust for age and/or 

Page 11

Nat Genet. Author manuscript; available in PMC 2014 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sex, or included additional covariates to account for BMI or cardiovascular-related disease 

status (Supplementary Table 2): deCODE Stage 2; DUNDEE; GMetS; PMB; 

SCARFSHEEP; and STR. Association summary statistics from each of these studies were 

then combined via fixed-effects inverse-variance weighted meta-analysis, but did not require 

subsequent correction for genomic control (λQT=1.00). We then tested for heterogeneity in 

allelic effects between these two sets of studies by means of Cochran’s Q-statistic51 

(Supplementary Table 7).

Association of lead T1D SNPs with T2D

We obtained association summary statistics with T2D from the trans-ethnic meta-analysis 

for previously reported lead SNPs in established T1D susceptibility loci27 (Supplementary 

Table 8). For each SNP, we aligned the allelic effect on T2D according to the risk allele for 

T1D (where reported). We also obtained association summary statistics for tags for T1D 

HLA risk alleles: HLA-DR4 (rs660895) and HLA-DR3 (rs2187668).

Association of lead T2D SNPs with metabolic traits

We obtained association summary statistics (p-values, directed Z-scores and/or allelic effects 

and corresponding standard errors) for lead SNPs at novel T2D susceptibility loci in 

published European ancestry GWAS meta-analyses of metabolic phenotypes: glycaemic 

traits3,30, anthropometric measures32,33, and plasma lipid concentrations34. We considered 

glycaemic traits in non-diabetic individuals from the MAGIC Investigators (Supplementary 

Table 9). For FG and FI concentrations (with and without adjustment for BMI), the meta-

analysis consisted of up to 133,010 and 108,557 individuals, respectively. For HOMA-B and 

HOMA-IR, the meta-analysis consisted of up to 37,037 individuals. We considered 

anthropometric measures from the GIANT Consortium (Supplementary Table 10). For BMI 

and waist-hip ratio adjusted for BMI, the meta-analysis consisted of 123,865 and 77,167 

individuals, respectively. Finally, we considered plasma lipid concentrations from the 

Global Lipids Genetics Consortium (Supplementary Table 11). For total cholesterol, high-

density lipoprotein cholesterol, low-density lipoprotein cholesterol and triglycerides, the 

meta-analysis consisted of up to 100,184 individuals.

Expression analyses

We interrogated public databases and unpublished resources for cis-eQTL expression with 

lead SNPs in the novel susceptibility loci in multiple tissues. Details of these resources are 

summarised in the Supplementary Note. The collated results from these resources met study-

specific criteria for statistical significance for association with expression. For each 

transcript associated with the lead T2D SNP (Supplementary Table 12), we identified the 

cis-eQTL SNP with the strongest association with expression in the same tissue, and 

subsequently estimated the LD between them, using pilot data from the 1000 Genomes 

Project25 (CEU and CHB+JPT) to assess coincidence of the signals.

Functional annotation

We identified variants in pilot data from the 1000 Genomes Project25 that are in strong LD 

(CEU and CHB+JPT r2>0.8) with the lead SNPs in the novel susceptibility loci for 
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functional annotation. Identified non-synonymous variants were interrogated for likely 

downstream functional consequences using SIFT35 (Supplementary Table 13). Variants 

were also assessed for overlap with regions of predicted regulatory function generated by the 

ENCODE Project36 including: ChromHMM regulatory state definitions from 9 cell lines 

(GM12878, HepG2, HUVEC, HMEC, HSMM, K562, NHLF, NHEK, and hESC); 

transcription factor binding ChIP sites from 95 cell types; open chromatin (DNaseI 

hypersensitivity) sites from 125 cell types; transcripts correlated with open chromatin site 

activity; and sequence motifs from JASPAR, TRANSFAC and de novo prediction 

(Supplementary Figure 2).

Fine-mapping analyses

We used MANTRA39 to fine-map T2D susceptibility loci on the basis of association 

summary statistics from: (i) the meta-analysis of European ancestry GWAS only5; and (ii) 

the trans-ethnic meta-analysis of European, East Asian, South Asian, and Mexican and 

Mexican American ancestry GWAS5,11,13,15. MANTRA allows for trans-ethnic 

heterogeneity in allelic effects, arising as a result of differences in the structure of LD with 

the causal variant in diverse populations, by assigning ancestry groups to “clusters” 

according to a Bayesian partition model of relatedness between them, defined by pair-wise 

genome-wide mean allele frequency differences (Supplementary Figure 4). Evidence in 

favour of association of each SNP with T2D is measured by a Bayes’ factor (BF). We 

assume a single causal variant for T2D at each locus (defined by the region 500kb up- and 

down-stream of the lead SNP from the trans-ethnic meta-analysis). We then calculated the 

posterior probability that the jth SNP is causal, amongst those reported in the meta-analysis, 

by:

In this expression, BFj denotes the BF in favour of association of the jth SNP, and the 

summation in the denominator is over all variants passing QC across the locus41. A 99% 

credible set of variants was then constructed by: (i) ranking all SNPs according to their BF; 

and (ii) combining ranked SNPs until their cumulative posterior probability exceeds 0.99.

SNPs in the 99% credible sets were assessed for enrichment in ChromHMM regulatory state 

(enhancer, promoter and insulator), DNaseI hypersensitive and transcription factor binding 

sites, using data from the ENCODE Project36. We performed 1,000 permutations by shifting 

the location of the annotation sites a random distance within 100kb, and recalculated the 

overlap to obtain empirical p-values for enrichment in each annotation category.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Signal plots of the trans-ethnic “discovery” GWAS meta-analysis for novel T2D 
susceptibility loci
The trans-ethnic meta-analysis comprises 26,488 T2D cases and 83,964 controls from 

populations of European, East Asian, South Asian, and Mexican and Mexican American 

ancestry, imputed up to 2.5 million Phase II/III HapMap autosomal SNPs. Each point 

represents a SNP passing quality control in the trans-ethnic meta-analysis, plotted with their 

p-value (on a −log10 scale) as a function of genomic position (NCBI Build 36). In each 

panel, the lead SNP is represented by the purple symbol. The colour coding of all other 

SNPs indicates LD with the lead SNP (estimated by CEU r2 from Phase II HapMap): red 

r2≥0.8; gold 0.6≤r2<0.8; green 0.4≤r2<0.6; cyan 0.2≤r2<0.4; blue r2<0.2; grey r2 unknown. 

The shape of the plotting symbol corresponds to the annotation of the SNP: upward triangle 

for framestop or splice; downward triangle for non-synonymous; square for synonymous or 

UTR; and circle for intronic or non-coding. Recombination rates are estimated from Phase II 

HapMap and gene annotations are taken from the University of California Santa Cruz 

genome browser.
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Figure 2. Signal plots presenting 99% credible sets of SNPs at the JAZF1 and SLC30A8 loci
The credible sets were constructed on the basis of: (i) the meta-analysis of European 

ancestry GWAS only (12,171 cases and 56,862 controls); and (ii) the trans-ethnic meta-

analysis of European, East Asian, South Asian, and Mexican and Mexican American 

ancestry GWAS (26,488 cases and 83,964 controls). In each panel, each point represents a 

SNP passing quality control in the MANTRA analysis, plotted with their Bayes’ factor (on a 

log10 scale) as a function of genomic position (NCBI Build 36). The lead SNP is represented 

by the purple symbol. The colour coding of all other SNPs indicates LD with the lead SNP 

(estimated by Phase II HapMap CEU r2 for the European ancestry meta-analysis and CHB

+JPT for the trans-ethnic meta-analysis to highlight differences in structure between 

ancestry groups): red r2≥0.8; gold 0.6≤r2<0.8; green 0.4≤r2<0.6; cyan 0.2≤r2<0.4; blue 

r2<0.2; grey r2 unknown. The shape of the plotting symbol corresponds to the annotation of 

the SNP: upward triangle for framestop or splice; downward triangle for non-synonymous; 

square for synonymous or UTR; and circle for intronic or non-coding. Recombination rates 

are estimated from Phase II HapMap and gene annotations are taken from the University of 

California Santa Cruz genome browser. The genomic region covered by the 99% credible 

set is highlighted in grey.
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