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Abstract 

There are many complex factors that will affect whether children with a unilateral congenital 

below-elbow deficiency (UCBED) will use a prosthetic limb to interact within their environment. 

Children face higher rates of prosthesis abandonment at 35-45%, compared to adults at 23-26%. 

Ultimately, for a child to wear and use their prosthesis, it must facilitate the effective performance 

of daily tasks and promote healthy social interactions. Although beginning to emerge, 

multiarticulate upper limb prostheses for children remain sparse despite the continued 

advancement of mechatronic technologies that have benefited adults with upper limb amputations. 

In contrast, pediatric devices typically provide a single open-close grasp (if a grasping function is 

available at all) and often offer non-anthropomorphic appearances, falling short of meeting the 

criteria essential to prosthesis adoption. Moreover, this population presents unique challenges, as 

they were born never having actuated a hand, and with forearm musculature that never fully 

developed–a stark departure from those with acquired limb absence. Due to the lack of 

investigation into how children with UCBED actuate their muscles coupled with the limited 

advancement in pediatric upper limb devices, the effective translation of dexterous prostheses 

remains a prominent issue.  

This dissertation builds the fundamental groundwork necessary for the effective translation of 

dexterous prosthetic hands for children with UCBED. It begins with an examination of how 

typically developing children use their hands to interact within their environment to inform 

dexterous device development (Chapter 3). Here we found that children, like adults, use a small 

subset of hand movements to perform object manipulation in home settings. Subsequently, a child-

sized dexterous prosthetic hand was developed to serve as a dedicated research platform (Chapter 

4). A thorough benchmark of this research platform was performed to validate its functional 
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grasping ability and it was shown to be a robust device within a research environment. Prior to 

using this device, a cohort of children with UCBED were recruited, and an in-depth analysis of 

state-of-the-art prosthetic control, namely surface electromyography (sEMG) as a measure of 

affected muscle electrical activity, was conducted (Chapter 5). Upon investigation, participants 

exhibited a measurable degree of consistency and repeatability of their affected musculature as 

obtained through sEMG when they attempted missing hand and wrist movements. Furthermore, 

through tuning features, i.e., sEMG characteristics, and classification algorithms, we found a novel 

generalized feature set that provided increased classification to decode hand motor intent (Chapter 

6). Moreover, we benchmarked the real-time performance of these children to execute hand 

movements, adding a translational dimension to our findings (Chapter 7). This forms a crucial 

foundation for understanding muscle actuation and use of advanced prostheses among children 

with UCBED.  

Through this work, we have laid the foundation to understand the capacity of children with 

UCBED to control their affected musculature. This begins to address the translational aspect of 

child-size dexterous upper limb devices and has the potential to remove barriers to device 

acceptance.  
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Preface 

The research presented within this dissertation is an original work by Marcus A. Battraw, 
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Chapter 1. Introduction 

1.1. Problem definition 

There are roughly 1 in 500 live births in which an upper limb absence will occur1. Moreover, 

approximately 1 in 10,000 children will have a transverse limb deficiency2. Of these children, 

those with unilateral congenital below-elbow deficiency (UCBED), absence of the upper limb 

between the distal and proximal region of the forearm3, will typically exhibit limb characteristics 

amenable to prosthesis prescription. However, when children are prescribed a prosthesis, they 

often abandon the device at a rate of 35-45%, in contrast to adults at 23-26%4. This increased rate 

of device abandonment can be attributed to various factors which are broadly categorized into 

physical and psychosocial functioning5.  

The current state-of-the-art for child-sized upper limb prostheses fails to provide sufficient 

functional benefit when compared to not wearing the device at all5. Even those who regularly use 

their device may be living with a prosthesis that provides insufficient functional benefit and may 

be motivated by other considerations, such as aesthetics and social factors. Interestingly, the 

primary focus of the field of upper limb prosthesis has been to restore the functional capacity of 

adults to control their device, this is a stark departure from the challenges faced by children, many 

of whom were born with limb absence, thus never having had an intact hand to actuate.  

Current commercial and research-based techniques for decoding motor intent for the purposed of 

prosthetic control were developed with adult populations. These techniques use measures of 

muscle electrical activity captured at the skin’s surface, electromyography (sEMG), and identify 

patterns in sEMG as participants perform various hand movements. These patterns serve as 

templates to predict the intended hand movement of the prosthesis user. Subsequently, this 
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prediction is used as a control signal to operate a prosthesis. Despite the success of these 

technologies with adults, the translation to children has yet to be investigated, specifically those 

individuals born with limb absence. These children present unique challenges in the prosthetics 

arena that should be addressed for the effective translation of dexterous upper limb prostheses.  

1.2. Objectives 

This dissertation primarily focuses on understanding how children born with limb deficiency 

actuate their affected muscles and how systematically tuning classification methods to decode 

missing hand motor intent may provide improved predictions for the control of multi-grasp 

prostheses.  

To begin, a data annotation methodology was employed to investigate how typically developed 

children use their hands within daily activities, thus informing prosthesis development to enhance 

the functional capabilities a device may offer. Mechatronic technologies were leveraged for the 

design and development of a research-based prosthetic hand intended for real-time applications. 

Furthermore, measures of physiological activity through sEMG were used to explore the capacity 

of children with UCBED to consistently and reliably actuate their affected musculature. Following 

this, we applied and tuned sEMG classification techniques to investigate the ability to decode hand 

motor intent for this unique child population. This exploration culminates in investigating how 

children with UCBED control a multi-grasp prosthesis in real time, thereby initiating the 

translation of these techniques to children with UCBED. 

1.3. Dissertation outline 

Within this dissertation, we provide the foundational elements necessary to initiate the translation 

of dexterous upper limb devices to the pediatric UCBED population. First, we present an overview 
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of the current state of the art for pediatric upper limb prostheses. This overview serves as a starting 

point for investigation, highlighting the current gaps in knowledge concerning child-specific 

prostheses.  

Next, we explore how children use their hands to manipulate objects within their environments. 

This aims to understand what types of hand movements may be beneficial for children with 

UCBED. It also informs the development of a child-sized multi-grasp prosthesis designed for use 

in research and clinical settings, marking the initial steps to begin the translation of these 

technologies to real-world use.  

Prior to children effectively utilizing a dexterous device in real-time, we investigated their ability 

to actuate their affected musculature. Given the unique circumstances children with UCBED 

present, as they were born with their limb absence, techniques to decode hand motor intent become 

a focal point for investigation. Therefore, we explore how sEMG classification techniques may be 

used to enhance movement prediction for these children.  

Finally, we explore real-time settings to begin the translation of these techniques. This work 

establishes a foundation for the effective translation of dexterous prostheses to children with 

UCBED. Future work includes investigating how children manipulate objects with a multi-grasp 

prosthesis and exploring the effects of training and long-term use. The research discussed above 

is presented in the following list of chapters.  

Chapter 2. Current state-of-the-art conventional pediatric upper limb prostheses. 

This chapter provides a review of the current state of the art for pediatric prostheses. It discusses 

various types of prostheses, along with the current standard of care for prostheses prescription. 

The physical and psychosocial challenges faced by children with UCBED are highlighted. The 
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gap between emerging technology for children, especially those with UCBED, is presented as a 

significant barrier to the effective translation of dexterous devices. Avenues for future directions 

to begin removing barriers to device acceptance are then outlined. 

Chapter 3. Taxonomy of pediatric hand grasps during activities of daily living. 

In this chapter, an investigation into how typically developed children grasp and manipulate 

objects within their home environments is conducted. A detailed analysis of hand grasps from 

video footage was performed to characterize grasp taxonomy by frequency and duration of use. 

The implication of this work begins to provide an understanding of how to develop functional 

dexterous prostheses and other rehabilitative devices.  

Chapter 4. Development of a research-based multiarticulate pediatric prosthetic hand. 

This chapter covers the development and comprehensive benchtop testing of a multiarticulate 

child-sized prosthetic hand. Criteria for the development, along with a detailed investigation of the 

mechanical and electrical performance, are provided. Additionally, a validated functional test to 

explore the robotic hand’s ability to grasp a variety of objects was conducted and discussed in 

relation to alternatively available adult-based research devices.  

Chapter 5. The capacity of children with UCBED to actuate their affected muscles.  

This chapter investigates the capacity of children with UCBED to actuate their affected muscles. 

Standard amplitude and frequency measures of sEMG are used to explore their ability to 

consistently and reliably actuate their affected musculature during distinct attempted hand 

movements. This work provides a foundational understanding that children born with upper limb 

deficiency still retain the capacity to actuate their affected muscles—an essential first step prior to 

employing classification techniques to predict motor intent.  
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Chapter 6. Decoding hand motor intent in children with UCBED. 

Within this chapter, a systematic methodology was employed to determine which classification 

techniques and features, characteristics of sEMG signals, provided enhanced movement 

classification for children with UCBED. The training and testing times for classification were 

determined to address the potential for the real-time implementation for prosthetic control. As, 

individuals who use multi-grasp prostheses typically employ a subset of grasp movements to 

perform daily tasks, we investigated a reduced set from the total number of participant-attempted 

movements to understand the effects on prediction accuracy. This establishes a foundation for 

implementing real-time control of dexterous prostheses among children with UCBED.  

Chapter 7. Real-time control of multiple grasp patterns for children with UCBED. 

A case series is presented to investigate how children with UCBED control multiple grasp patterns 

in real-time. Utilizing the classification techniques developed in Chapter 6, the real-time Motion 

Test to assess classification performance was conducted6, along with an assessment of the 

differences in feature space quality metrics7–9 for real-time control. This work marks a significant 

step in the effective translation of real-time control techniques for multiarticulate prostheses to 

children with UCBED. 

Chapter 8. Conclusions and future directions. 

This chapter synthesizes the presented work, exploring its implication for children with UCBED, 

and outlines future directions to enhance our understanding and development of prostheses, aiming 

to offer functional benefits.  

1.4. References 

1. Giele, H., Giele, C., Bower, C. & Allison, M. The incidence and epidemiology of 
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Chapter 2. Current state-of-the-art conventional pediatric upper limb 

prostheses 

The majority of this chapter has been published as:  

Battraw MA, Fitzgerald J, Joiner WM, James MA, Bagley AM, Schofield JS. (2022). A review 

of upper limb pediatric prostheses and perspectives on future advancements. Prosthetics and 

Orthotics International. 46(3): 267-273 

2.1. Chapter preface 

This chapter highlights the current gap in knowledge that ultimately affects the use of child-

specific upper limb prostheses and serves to provide a fundamental foundation for the remaining 

chapters of this dissertation. It discusses an overview of the types of prostheses that may be 

prescribed to children with upper limb deficiency and their limitations. The numerous physical 

and psychosocial factors affecting whether a child will choose to use their device are outlined. 

Additionally, it describes emerging technologies that have yet to be applied to children and the 

potential benefits they may provide to this population. Future directions to begin removing barriers 

to device acceptance and effectively translating dexterous devices to children with unilateral 

congenital below-elbow deficiency are then discussed. 

2.2. Introduction 

Approximately 1 in every 2,800 children in the United States will be born with an upper limb 

difference1 and nearly 1 in 10,000 live births will present with a transverse upper limb deficiency 

(ULD)2. Of these children, those with a below-elbow deficiency may be prescribed an upper limb 

(UL) prosthesis as young as 6-18 months of age with the intention of helping the child learn to 

adapt early in life;3 although early prescription has not been shown to be associated with the 

frequency of use or wear4.  Parents influence how often their child wears their prosthesis while 

they are too young to make these decisions for themselves, and it is not uncommon for parents to 
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view their child’s limb difference as a deficiency that must be addressed with an artificial limb5. 

However, when children become old enough to make decisions for themselves, prosthesis 

abandonment becomes a pervasive issue6.  

Like adult UL prosthesis wearers, device abandonment is common in pediatric populations; 

however, it is far more prevalent. In a review of 25 years of UL prostheses literature, Biddiss and 

Chau determined that adult abandonment rates varied from 26% for body-powered devices to 23% 

for electric devices; yet, for children, these rates were 45% and 35%, respectively7. This suggests 

that development, acceptance, and use of pediatric UL prostheses are complex issues and multiple 

factors determine whether a child will use or abandon their prosthetic limb7. In this chapter, we 

will critically assess the state of current prosthetic UL options for children with congenital below-

elbow deficiencies and the outcomes reported in literature. While experimental prostheses 

including those developed with 3D printing technologies have rapidly accelerated in recent years 

this narrative review empathizes clinically prescribed devices. Further, we summarize the 

prevailing technical and social challenges contributing to the high rates of prosthesis abandonment. 

Finally, we highlight emerging technologies on the clinical horizon that may begin to remove 

barriers to prosthesis acceptance for pediatric populations. 

2.3. Types of pediatric prostheses 

Numerous prosthesis options may be prescribed for children with transverse below-elbow 

deficiencies. These transradial prostheses have several common components that may include a 

prosthetic socket, liner, terminal device, and harness (Figure 2-1). The socket surrounds the 

wearer’s residual limb and serves as the point of attachment between the prosthesis and the user’s 

body. It is custom fabricated and contoured to accommodate the individual’s morphology while 

strategically compressing pressure-tolerant regions on the residual limb to securely suspend the 
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prosthesis. An optional socket liner may be used to improve comfort and suspension in certain 

cases. The terminal device (TD) is the most distal component that may provide grasping 

functionality, or in some devices, be included solely for cosmetic appearance. Finally, harnessing 

is often used to further assist in prosthetic suspension and/or leverage body motion to actuate 

grasping functions in a TD. 

Transradial pediatric prostheses can be categorized as passive (cosmetic) devices, that do not 

provide any grasping functionality and active devices that can be operated to perform grasping 

functions. Active devices are further subcategorized as body-powered and myoelectric devices 

(further described below). Figure 2-1 depicts commonly prescribed upper limb pediatric 

prostheses. Each category of device provides desirable qualities to the user; however, there are 

also inherent trade-offs and challenges associated with each. A final category of prostheses are 

activity-specific devices which are designed to enable children to participate in specific sports and 

recreational activities. Although there are a diverse variety of useful activity-specific prostheses, 

in this chapter we will focus on the active and passive devices prescribed for general use in daily 

living.  

 
Figure 2-1. Pediatric prosthetic hand options. Arrows depict the socket, harnessing, and terminal 

device. (a) The cosmetic device provides a realistic appearance. (b) A body-powered device 

utilizes compensatory body motion to control the terminal device. Note: the prosthesis depicted 

accommodates a higher-level deficiency and includes a mechanical elbow. (c) An electric terminal 

device that, when coupled with sensors measuring muscle activity, allows for prehension control. 

(a) and (b) - Photos courtesy of Shriners Children’s – Northern California. (c) - Photo courtesy of 

Michael Dawson at the BLINC Lab at the University of Alberta https://blinclab.ca. 

https://blinclab.ca/
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2.3.1. Passive devices 

A key benefit of passive devices is that they can provide life-like, anthropomorphic appearances. 

These devices do not actively move to accommodate grasping functions and are typically encased 

in a silicone or skin-like material that can be made to match the wearer’s skin tone and closely 

resemble an intact hand and/or limb. For children, these prostheses may help in social situations 

when the child or parent is fearful or anxious about the reactions of others to their ULD; although 

there is evidence that hiding a limb difference is an ineffective coping strategy8. Further, they may 

help in supporting bimanual tasks, or when lifting or playing with large objects.  

2.3.2. Body-powered devices 

Body-powered prostheses offer wearers the ability to actively control grasp and release movements 

through a system of cables, elastic bands, and harnessing worn on the upper body. Typically, 

scapular motion pulls a cable attached to the terminal device, which can be set to either open the 

TD (normally closed device) or close the TD (normally open device). These relatively simple 

mechanical devices are lightweight, quick to actuate, robust, and simple to use, maintain, and 

repair.  However, their function is limited to a single grasp and release motion, often necessitating 

compensatory strategies to achieve tasks9. Further, many body-powered devices are a split-hook 

design, bearing little aesthetic resemblance to an intact hand which may have social implications 

for the user5.   

2.3.3. Myoelectric devices 

Myoelectric TDs use electro-mechanical actuators to drive grasping motions. These devices use 

electromyography (EMG) to control the device’s grasping function. This control technique 

employs sensors that measure the electrical activity of muscles on the palmar and dorsal aspects 

of the residual forearm skin. This measured activity is processed by a control system and the 
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resulting signals command the TD to actuate. Myoelectric devices provide the benefit of control 

using the muscles of the affected limb, often eliminating the need for harnessing and cables as well 

as body/shoulder movements to control the TD. Like cosmetic devices, these TDs may also be 

covered with a silicone cosmetic glove for cosmesis. Myoelectric devices have several practical 

challenges including increased weight, reduced robustness10, slower actuation speeds, challenges 

achieving intuitive control11, and remembering to recharge the battery12 when compared to 

alternate devices. Additionally, consistent control is limited by electronic and physiologic 

characteristics e.g. noisy sensor signals13 that are sensitive to small displacements on the residual 

limb14, changes in arm posture, and fatigue due to extended muscle use15. Commonly, myoelectric 

TDs are shaped like an intact hand and actuate the first three digits achieving a chuck pinch (3-

finger tripod) grasp configuration, which is not suitable for many daily activities; less-

anthropomorphic devices are also available. Nearly all current pediatric myoelectric devices offer 

only a single-degree-of-freedom open/closing action.  

2.4. Quality of life and prosthesis use 

Independent from prosthesis research, studies have investigated multiple dimensions related to the 

quality of life for children with ULDs. In this review, we divide the challenges that these children 

may face into two categories: psychosocial and physical functioning. Table 2-1 presents an 

analysis of literature reporting the health-related quality of life for children with ULDs using a 

validated clinical inventory. The pediatric quality of life (PedsQL) inventory was employed by16–

18 to compare pediatric individuals with ULDs to the general population19–21. This self-reported 

survey can be completed either by the patient or their parent, is valid for patients aged 2-18 years, 

and contains 23 items that capture physical, emotional, social, and school functioning19,22. It is 

important to note that PedsQL has been validated in multiple populations and scoring using  patient 
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or parent self-reports has been shown to achieve comparable results and the appropriate statistical 

significance needed to analyze patient data19. Participants respond by providing a score from 0-4 

to questions that reflect the frequency of events in daily living, (0 indicating never, and 4 indicating 

almost always). Scores are translated to a percentage between 0-100% in 25% increments19,22. 

Interestingly, of the limited work making these comparisons, PedsQL inventory scores often 

suggest few statistically and/or clinically significant differences between affected and unaffected 

patient-matched groups16–18. 

Table 2-1. Pediatric Quality of Life Comparison. Comparison of multiple health-related quality of 

life studies conducted for the pediatric ULD population. Categories span to assess both physical 

and psychosocial factors inherent to children with ULDs. Scores for the Shriners, Norway, and 

Dutch studies16–18 were obtained through the implementation of PedsQL inventory22 and compared 

to their respective general populations19–21. Here participants were asked a set of questions related 

to the frequency of events during daily activities in which they responded on a scale from 0 

indicating never to 4 indicating almost always. These values were then converted to percentages 

between 0-100% in increments of 25%19,22. Note: *Child reported results. †Clinically significant 

difference. ‡Statistically significant difference. 

Populations 

Age 

Group 

(years) 

Number of 

Samples 

 (n) 

Physical 

Functioning 

(%) 

Emotional 

Functioning 

(%) 

Social 

Functioning 

(%) 

School 

Functioning 

(%) 

Shriners16       

General Population 19 2-16 8713 84.08 81.20 83.05 78.27 

Wearers 2-20 317 88.5 77.9 82.2 55.1† 

Non-wearers 2-20 132 88.6 74.3 80.1 46.7† 

Norway 17       

General Population 20 13-15 424 91.12 77.15 88.12 78.02 

ULD* 6-16 46 87 82 87 82 

Dutch 18       

General Population 21 10-12 219 84.9 77.1 86.1 78.7 

ULD* 10-12 77 87.1 76.0 85.6 78.6 

General Population 21 13-14 106 87.3 77.3 90.0 77.0 

ULD* 13-14 39 89.5 74.9 81.8‡ 74.4 

Additionally, Ylimäinen et al. 2010, employed a cross-cultural health-related quality of life 

inventory to assess children with limb deficiencies compared to children with common chronic 

conditions23. This inventory was for patients aged 8-16 years and contains five categories to 

capture physical limitations, emotional function, independence, social inclusion, and social 

exclusion24. Participants respond to the inventory questions through a five-point Likert scale, with 
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response extremes at always (5 points) and never (1 point)24. This study showed that children with 

ULDs demonstrated little difference in social exclusion measures compared to children with 

common chronic conditions while showing improved quality of life measures in the remaining 

domains23. 

2.4.1. Psychosocial functioning 

ULDs may impact a child on multiple complex levels. Although Table 2-1 suggests no significant 

difference in the larger psychosocial domain, James et al. 2006 showed that social functioning in 

the school environment can be significantly lower in children with ULDs than in the general 

population, suggesting there may be a social stigma when children with ULDs interact in a peer 

environment16. Ylimäinen et al. 2010 additionally found that measures of quality of life in children 

aged 8-16 with ULDs (n = 140) are generally higher than children with common chronic conditions 

n = 1152) across multiple subdomains (physical limitations, emotional function, independence, 

among others), with the exception of social exclusion23. This further suggests that having a ULD 

may come with social and/or exclusionary implications. 

It is common for children with upper limb differences to experience internal stressors related to 

self-perception and external stressors associated with peer or social interactions, and these can 

result in anxiety and/or depression8. Here, stress may arise not only from the physical differences 

associated with one’s upper limb but may also be heavily influenced by the aesthetic differences. 

Internal stress related to aesthetics is more common in teenaged patients, whereas external 

aesthetic stress is more frequent in younger children8. When pediatric patients with upper limb 

differences reach adolescence, they undergo the same intellectual and emotional changes that other 

adolescents face, and a limb difference makes this adjustment much more difficult25. During the 

transition from childhood to adolescence, children experience significant development of their 
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self-identity, and “positive” development can often be correlated to self-esteem during 

childhood26. Coupling this with evidence that peer-related stress spikes around the time a child 

with an upper limb difference enters high school, it is evident that finding methods to mitigate 

external stresses becomes critical during this transitionary period8,26.  

Teasing and bullying are obvious external stressors that may reinforce the stigma of an upper limb 

difference as “non-normal” and create an “us” and “them” mentality8,26. However, less obvious, 

innocent interactions may also have lasting repercussions on a child’s mental state. When a child 

is repeatedly asked about their limb difference, stared at by peers, or even given unique social 

treatment (i.e. in school or sport), this may impact the child’s self-image8. Further, these 

interactions can leave the child feeling singled out and, even meeting new people, when coupled 

with feelings of self-consciousness or embarrassment, can create further stress. In fact, Franzblau 

et al. 2015 found 58% of their 33 pediatric patients with upper differences (ages 6 to 17 years) 

associated stress with social interactions8. Children are strongly influenced not only by their peers, 

but by how they interact with parents and other adult role models (e.g. teachers and health care 

providers). It is not uncommon for a parent to experience emotional strain due to the fact that their 

child has a congenital limb difference8,27,28. Adverse emotional reactions by parents can reinforce 

a child’s feeling of being “non-normal” or that they have inherent limitations that cannot be 

overcome8,29,30. This can have serious repercussions on self-image, magnify feelings of shame or 

anxiety, and result in declining social participation.  

Although the above findings focus on a broader population of children with upper limb differences 

(independent of prosthesis use), they are highly relevant to complex challenges faced by pediatric 

prosthesis wearers. There are clear psychosocial implications of having a visibly different limb 

which may have an increased effect on adolescents. Like the limb deficiency itself, a prosthesis 
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may also create unwanted attention or feelings of being different, which can heavily influence 

whether it is worn or abandoned. However, these challenges are further complicated as simply 

wearing a prosthesis to cover or hide one’s UL deficiency is not necessarily a desirable outcome 

since this may be an indication of problematic coping mechanisms8.  

2.4.2. Physical functioning 

Children with ULDs often present little to no significant differences in measures of physical 

functioning when compared to the general population as shown in Table 2-116–18. Further, these 

individuals have shown increased function when compared to children with common chronic 

conditions23. Specifically evaluating the impact of prosthesis use in this population, James et al. 

2006 performed a study that employed both survey-based and functional measures of 489 children 

with a unilateral congenital below-the-elbow deficiency (321 prosthesis wearers and 168 non-

wearers)16. No clinically relevant differences were found between prosthesis wearers and non-

wearers in functional outcomes and quality of life16. Furthermore, non-wearers scored higher on 

the performance of age-appropriate daily tasks than prosthesis wearers, and wearers performed 

better when not wearing their prosthesis. This drove their conclusion that pediatric prostheses may 

provide a cosmetic benefit for social acceptance or may be useful tools for specialized activities, 

but they do not appear to improve performance of daily activities or self-reported quality of life16.  

The potential physical-functioning benefits and drawbacks a prosthesis offers the wearer may be 

linked to the type of device prescribed. In a retrospective study, it was found that pediatric wearers 

often prefer body-powered prostheses to myoelectric devices when performing functional tasks31. 

Crandall et al. 2002 surveyed the satisfaction of pediatric patients and their parents in relation to 

prosthesis use during daily activities. In their cohort of 34 wearers (ages 1 to 12 ½ years), those 

who wore body-powered devices were able to achieve more functional tasks to the wearers’ 
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satisfaction than those who wore passive and myoelectric devices. However, in a long-term follow-

up more than a decade later, most of these same subjects were wearing a passive device31 

suggesting that the grasping function provided by active prostheses offered limited benefit relative 

to no-grasping function at all. Here again, a trade-off can be made when using passive devices; 

although they do not provide grasping function, they may provide improved aesthetics to help 

facilitate social integration. Furthermore, Huizing et al. 2010 addressed the outcomes of pediatric 

prosthetic fittings, with 11 of their 20 participants rejecting their device because it provided no 

functional gain to offset the inconveniences associated with its use32. Somewhat intuitively, it has 

been suggested that the limited function offered by current devices impact their usefulness6,32,33. 

In the absence of sufficient functional gains, pediatric prosthesis wearers may be content with no 

grasping function and opt for a passive device or choose not to wear a device at all.  

When taken together, the decision to wear a prosthesis is dependent on it facilitating improved 

physical and/or psychosocial functioning. That is, it must provide utility (prosthetic function) and 

aesthetics that allow the child to feel comfortable participating in social activities with their 

peers5,28,30. The degree to which this is achieved must be sufficient to offset any drawbacks 

associated with wearing the device, such as increased weight6,10,34,35, wearing harnesses, cables, 

and straps34, warmth and perspiration34, and the potential for discomfort or tissue irritation6,33,34. 

Further, the financial costs, frequency, and time associated with regular prosthetic maintenance, 

adjustments to prosthetic fit, and other service-related device requirements can vary across devices 

and dramatically impact a child’s disposition to wearing their device. It is a challenging task to 

provide a child with a prosthesis that meets these many demands. Unlike the smaller population 

of children with acquired limb amputations, children born with congenital ULDs learn effective 

one-handed compensatory strategies for most daily tasks early in life. This in itself may influence 
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a child’s willingness to wear a prosthesis as often there is no real sense of limb loss36, although 

they may feel a sense of being different. Here, a prosthesis is simply an aid rather than a limb 

replacement, and if it does not actually assist in the often near-normal abilities of the wearer, it 

will be rejected25. Therefore, these children have close to normal function, and evidence suggests 

current prostheses do not further normalize their physical functioning16. Therefore, providing a 

prosthesis capable of truly augmenting a child’s physical functioning, providing satisfactory 

aesthetics, and overall facilitating social integration, remains an important challenge.  

2.5. Discussion 

2.5.1. Dexterous multi-grasp terminal devices 

Challenges impacting the pediatric population living with congenital ULDs are often complex and 

multi-faceted. In this population, current prosthetic UL devices are frequently abandoned, which 

strongly suggests that many fall short of meeting user needs and/or providing sufficient benefit to 

warrant their wear. It has been suggested that device function and aesthetics (cosmesis) are two 

key areas contributing to the high rates of rejection25. Functionally, unlike the simple open-close 

grasping offered by active pediatric prostheses, intact hands move with 27 degrees of freedom37. 

Although it is possible to achieve a multitude of complex postures, most daily activities are 

performed using a limited number of common grasp configurations38,39. Nearly 80% of common 

daily tasks may be accomplished with as few as 6-9 standard grasp configurations39. Therefore, 

we suggest that a significant functional benefit may be provided to pediatric prosthesis wearers if 

their devices offer a strategic repertoire of grasping configurations. This is not unique to children 

and closely parallels very active work being performed with adult amputee populations. Like 

pediatric prostheses, adult devices may be cosmetic, body powered, or myoelectric; however, there 

has also been an acceleration in prosthetic mechatronic technologies resulting in devices that more 

closely resemble the form and function of intact hands, including offering multiple grasp 
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configurations40. As mechatronic technologies continue to evolve, similar smaller-proportioned 

prostheses are beginning to emerge for pediatric patients. For example, the Vincent Young 3 

(Vincent Systems, Karlsruhe, Germany) is sized for children age 8 and up and is capable of 13 

individual grasp patterns. Similar devices have begun to emerge and will persist as multi-grasp 

prostheses continue to mature and become increasingly available. Further, as these devices 

typically include individually articulating digits, they may also offer more anthropomorphic, hand-

like appearances to soften social integration challenges.   

2.5.2. Advanced control interfaces 

Although multi-grasp prostheses are becoming a promising new option for pediatric wearers, 

several limitations remain to be addressed. Here, prosthesis control interfaces become a crucial 

factor in device use as in adults, even the most advanced prostheses rapidly promote frustration 

and disuse if the control is unintuitive, or overly difficult to learn12. In conventional myoelectric 

prostheses, device control presents numerous limitations, namely noisy control signals13 and 

sensitivity to small electrode displacements14, changes in arm posture, and muscle fatigue15 among 

others. In adult multi-grasp hands, standard myoelectric control schemes measure activity in the 

wearer’s residual wrist-flexion and wrist-extension muscle groups as signals to open and close the 

prosthetic hand, respectively. By co-contracting both muscle-sets together, wearers may toggle 

and select from a list of pre-programmed hand grasp configurations. Here, we suggest it is doubtful 

that this toggle-and-select strategy will translate effectively to pediatric devices, as it does not 

replicate typical muscle contraction patterns used for grasping. We argue that toggling creates an 

increased cognitive load and may negatively reinforce wearers to default to a single primary grasp 

configuration in an effort to limit the amount of toggling they perform.  
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Recently, advanced adult prosthesis control strategies have become available that may address 

limitations in conventional EMG control for pediatric wearers. In the past 10 years, myoelectric 

pattern recognition techniques transitioned from a promising experimental control strategy to 

commercially available prosthesis control systems41–44, that are largely unavailable for the 

pediatric population. EMG pattern recognition uses multiple electrodes that are applied on the 

skin’s surface over the wearer’s affected musculature. Machine learning algorithms are then 

trained to recognize patterns in the electrical-muscle activity and infer the wearer’s intended 

movements45. Following a short algorithm training session, the real-time classifications of muscle 

patterns are used to command the appropriate hand movements in a prosthesis45. Both in the 

laboratory and in real-world prostheses, this technique has largely been shown to improve adult-

user control over multiple prosthesis movements and/or grasp patterns46–48. These techniques 

continue to evolve to the benefit of more robust control over multiple prosthesis movements with 

methods now capable of accommodating traditional challenges such as movement and positioning 

of the prosthesis affecting control consistency49–51. However, myoelectric prosthesis control is still 

beset with limitations, and although more promising than traditional EMG control, it has yet to be 

translated to pediatric populations. 

Other experimental control techniques exclusive to adult populations have begun to emerge as 

options for intuitive control of multiple prosthesis movements12. For example, sonomyography 

employs a small ultrasound sensor to capture muscle deformations in the affected limb and infer 

the wearer’s intention52. Here, image processing and supervised learning algorithms are employed 

to predict intended grasp configurations that generate the pattern of muscle deformation captured 

in the ultrasound data. This happens in near real-time and the output predictions are encoded to 

drive the prosthesis53. Sonomyography may provide a more accurate control signal as, unlike 
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myoelectrics, it measures activity deep beyond the skin’s surface12,52. However, sonomyography, 

like many other experimental control techniques, is still maturing, needs to be further tested as a 

prosthesis control system, and has yet to be translated to pediatric populations.  

A final category of advanced control interfaces that have begun to emerge for adults are neural-

machine-interfaces (NMIs). NMI techniques interface or manipulate the affected neural anatomy 

of adult prosthetic users to restore physiologically relevant control and sensation. For example, 

targeted muscles and sensory reinnervation54,55 redirect affected nerves to new target muscle and 

skin sites in the residual limb. After, attempting to move the missing limb creates unique patterns 

of muscle activity which are measured and used to intuitively control EMG prostheses54. Further 

simulation of the reinnervated skin sites can create sensations of touch experienced as occurring 

in the missing limb56 and strategic vibration of reinnervated muscles produces sensations of 

missing hand movements57. Further, multiple peripheral nerve interfaces have been described in 

literature that measure and decode affected nerve activity for prosthetic control and even stimulate 

nerves to provide prosthetic sensory feedback58,59. Although many NMIs have shown significant 

promise in achieving intuitive prosthesis control and the restoration of sensation, the invasiveness, 

requisite surgeries, and experimental nature of these techniques will likely limit their immediate 

relevancy for pediatric patients. 

2.5.3. Current barriers to advanced pediatric devices 

As advanced multi-grasp prosthetic hands and intuitive control strategies continue to develop, a 

new subset of challenges unique to pediatric wearers will arise. Device cost is a significant and 

prohibitive barrier for pediatric populations since children’s limbs and bodies are ever-growing. 

Therefore, unlike adults, where purchasing a single device may be a long-term investment, the cost 

of children’s prostheses must reflect the fact that children outgrow prostheses in a few short years 
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and multiple devices will be purchased over their childhood. Further, with advancements in 

additive manufacturing numerous 3D printable UL devices are available; yet, it is important to 

distinguish these as separate from clinically prescribed devices that receive rigorous engineering 

development and regulatory approvals prior to being made commercially available. Child growth 

presents a further set of challenges in achieving consistent device control. As affected limb 

proportions change, so will the fit of a prosthetic socket. This may compromise the contact and 

placement of any sensing technologies and result in diminished, inconsistent, or intermittent device 

control. Further training and learning will likely play an important role in the success of future 

prostheses. Individuals with congenital ULDs likely have never had a need to activate their 

affected muscles as their limb did not finish developing. Although advanced biosensors and 

intelligent control algorithms may offset some of these difficulties, structured training and learning 

of these systems will be a necessity for effective use. Finally, device robustness and bulk will 

foreseeably be important factors. Children will inevitably require robust devices to facilitate the 

physical nature of childhood play, which include but are not limited to physical durability, 

waterproof/weather-resistance, extended playtimes, and susceptibility to external contaminants. 

However, robustness typically comes at the cost of more rugged designs with often increased 

weight and size. Children are more affected by the weight of a device 6,10,35 since they are smaller 

and do not possess the same strength as a grown adult. Here, creative lightweight low-bulk design 

principles must be employed.  

2.6. Conclusions 

Pediatric UL prosthesis wearers face a number of complex challenges. Presently, device 

abandonment is pervasive because many prostheses fail to offer wearers sufficient benefit to 

warrant their use. Ultimately, for a child to adopt their device, it must facilitate the effective 
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performance of daily activities and help alleviate stigmas associated with having a limb deficiency. 

Therefore, both the psychosocial and physical functioning of a child plays a key role. As upper 

limb prostheses continue to evolve, there are many technological advancements in the adult arena 

that have yet to be leveraged for pediatric patients. However, these solutions may not be directly 

applied to children with ULDs as their challenges are often unique. These may include practical 

issues related to growth, prosthesis control systems measuring activity in muscles that never 

actuated an intact limb, and the cost of purchasing multiple devices as a child grows. Further, 

although technological approaches have the potential to positively impact physical function, 

psychosocial factors also have a heavy influence on device adoption. Here, children may face both 

internal and external stressors as they navigate social situations, potential peer exclusion, and both 

direct and indirect attention drawn to their limb deficiency. Factors such as aesthetics may drive a 

child to opt for a less functional but more visually appealing prosthesis or choose not to wear a 

device at all. When taken together, the field of pediatric prostheses may see a technological boom 

much like adult prostheses have recently experienced. However, several technical, practical, and 

social challenges must first be addressed to unlock the potential of this next generation of devices.   
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Chapter 3. Taxonomy of pediatric hand grasps during activities of daily 

living 

The majority of this chapter has been published as:  

Battraw MA, Young PR, Welner ME, Joiner WM, Schofield JS. (2022) Characterizing Pediatric 

Hand Grasps During Activities of Daily Living to Inform Robotic Rehabilitation and Assistive 

Technologies. in IEEE International Conference on Rehabilitation Robotics. 

3.1. Chapter preface 

This chapter presents an initial investigation into how typically developed children use their hands 

within home environments. This work begins to build an understanding of how children use their 

hands to interact and manipulate objects, enabling us to better develop devices that provide and 

promote meaningful functional benefits. The frequency and duration of performed hand grasps 

were tabulated from video footage and discussed. The characterization described in this chapter 

marks a meaningful step toward the development of both dexterous prostheses and 

assistive/rehabilitative devices. 

3.2. Introduction 

Our hands play an important role in how we engage with the world around us. Our abilities to 

perform daily tasks, work-related functions, and many social interactions are largely influenced by 

our hand function. The importance is perhaps most strongly emphasized when hand function is 

chronically impaired, often compromising physical independence and reducing the quality of life 

for affected individuals1. In recent years advances in robotics and mechatronics have facilitated 

the development of numerous technological approaches to address challenges associated with 

impaired hand motor function. These include rehabilitation systems to improve hand mobility, 

strength, and dexterity2, assistive technologies such as powered exoskeletons to drive impaired 
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digits3,4, and even highly dexterous prostheses to provide a variety of grasping options when an 

upper limb is lost5,6. 

For children, healthy hand and upper limb function are crucial not only to their independence7, but 

to their physical development8, and participation in social environments9. Much like the recent 

emergence of robotic rehabilitative and assistive devices for adults many similar technologies are 

on the clinical and research horizons for pediatric patients with hand motor impairments. However, 

the nature of childhood play and daily activities means that children use their hands in 

fundamentally different ways than adults. Further, as children develop so do their motor systems. 

Here, age-appropriate and activity-specific tasks are important considerations when developing 

treatment protocols for this unique population10–12. It is imperative that rehabilitative and assistive 

devices can facilitate these needs; yet there remains a knowledge gap in which hand grasps or 

movements may be of the highest priority during rehabilitation or daily tasks to provide the most 

effective outcomes and functional independence.  

Hands have immense dexterity as they have the ability to move with up to 27 degrees of freedom 

and are actuated by more than 30 muscles13. Hand motor control relies on multiple inputs including 

proprioceptive and tactile sensory feedback14 and may even be coordinated with the activity of the 

other hand during bimanual tasks. Even as robotic technologies advance and continue to be 

miniaturized, the most sophisticated robotic manipulators and rehab devices are still challenged to 

achieve the same levels of dexterity and control. Yet interestingly, in adults, it has been shown that 

we use a reduced repertoire of hand movements to achieve most daily tasks. This taxonomy of 

common movements can be simplified to 17 generalized configurations15. It has been further shown 

that in home and industrial settings 6-9 common grasps can account for nearly 80% of all hand 
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activity with Wrap, Lateral Tripod, Lateral Pinch, and Tripod grasps being the top 4 most frequently 

used grasps among adults15,16. 

Although currently, it may be impractical for rehabilitative and assistive devices to offer dexterity 

that rivals an intact healthy hand, it is feasible that significant functional gains may be provided. 

This can be done by targeting specific aspects of the motor impairment related to strategic grasping 

patterns and hand movements. Yet, unlike adults, a common pediatric hand grasp taxonomy has yet 

to be developed. This gap in knowledge presents barriers to making informed device design 

decisions that promote the overall effectiveness and function of newly emerging robotic devices 

offered to pediatric patients. The effectiveness of a device and resulting function are among the 

most important factors when considering user-based needs14 and are driving factors influencing the 

adoption or abandonment of clinical technologies. 

The objective of this work was to explore how healthy able-bodied children use their hands in 

daily tasks and how this may differ from adult literature. We investigated two pediatric participants 

and characterized their hand grasping movements in a home environment. We evaluated the 

duration and frequency of hand grasps across their dominant and non-dominant sides. Further, we 

hypothesized that children would exhibit a unique set of grasps that may be different from those 

reported in adult literature as their motor systems are still developing and their daily activities 

differ from an adult. 

3.3. Methods 

3.3.1. Participants 

Two female children participated in this study. Research protocols were approved by the 

Institutional Review Board at the University of California, Davis. Participants provided written 

informed assent and their parents/legal guardians provided written informed consent. Participants 
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PARC1 and PARC2 were 7 and 10 years old at the time of the study, respectively. Both 

participants had a dominant right hand with the same results of L.Q.= +100, Decile R.10 as 

determined by the Edinburgh Inventory17. Additionally, enrolment in this study required 

participants to be healthy with no neuromuscular or motor impairments that may impact hand or 

upper limb use. 

3.3.2. Experimental equipment 

To record the participants’ hand activities, a video camera was mounted to the child’s head using 

an elastic strap harness (Figure 3-1). Guardians and participants were instructed on how to properly 

don the camera prior to data collection. A GoPro Hero5 video camera with a 1080 resolution at 60 

frames per second (fps) was used with the field of view set to wide mode. This camera configuration 

was chosen due to its lightweight nature, large field of view, reduced invasiveness, and ease of data 

analysis.  To ensure the video camera was recording at the correct angle to capture the child’s action 

space, guardians observed the GoPro’s video stream and adjusted the camera mount as necessary. 

Participants and guardians were instructed to record footage in the home environment during 

regular daily activities. They were encouraged to avoid recording daily events that would result in 

long periods of hand inactivity such as watching television, resting, or sleeping.  Approximately 2 

hours of video data were obtained for each participant over the course of 2-3 days. It was confirmed 

by the guardians that wearing the camera resulted in no noticeable changes in daily activity 

performed by the children.   
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Figure 3-1. Video camera harnessing equipment and setup. (a) The elastic strap allows for 

comfortable and adjustable mounting. GoPro Hero5 is attached to the camera mount which allows 

for angled tilt adjustment. (b) Depicts a front and side view of the camera setup worn by a 

participant.  

3.3.3. Analysis and procedures 

To categorize hand activity from the video footage, we adopted previously defined grasp 

taxonomies from Feix et al. Consistent with their work, we simplified the total number of hand 

grasps to 17 generalized configurations15. We then broke down grasps into three main categories 

power, intermediate, and precision15. We further separated grasps based on digit opposition and 

defined a ‘virtual finger’ when multiple digits actuated together15. The final inventory upon which 

hand movements were classified is depicted in Figure 3-2. Our adopted grasp taxonomy includes 

the frequency and duration in which hand grasps were used irrespective of object shape and size15. 

This definition is relevant within the context of rehabilitative and assistive devices, as they are often 

programmed to achieve digit actuation from a fully extended to a flexed position rather than 

intermediate degrees of digit movement for individual objects that may be manipulated.  

Using the grasping movements depicted in Figure 3-2, video footage was manually reviewed to 

classify the hand grasping movements of participants. Two raters were trained to recognize and 

classify hand grasp data from the footage. Further, in conjunction with the generalized grasp 

taxonomy we adopted and for clarity, raters used a reference of supplemental material depicting 
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grasps in everyday scenarios18. Prior to video analysis, a grasp inclusion/exclusion methodology 

was determined as follows:  

• Grasps that were in the video frame and clearly distinguishable were readily classified. 

• Open hand configurations were not considered grasps.  

• Any hand movements that were not clearly identifiable were reviewed by 2 raters who 

came to a consensus on the grasp. In the unlikely event, the grasp was unidentifiable, it 

was flagged and not tabulated.  

• Grasps that were covered by obstacles and/or poor video resolution were not tabulated.  

 

Figure 3-2. Adult generalized hand grasps reported in and adapted from [15]. Grasps presented are 

irrespective of object shape and size. Grasps are defined by three categories, power, intermediate, 

and precision. They are further broken down by opposition (Opp) type and a virtual finger (VF). 

The generalized percent grasp frequency and duration for adults are tabulated. 
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Video data were analyzed using the VSDC Video Editor (Flash-Integro LLC) software allowing 

for frame-by-frame playback. A similar study using two raters has shown such rating methods to 

achieve high inter-rater agreement with minor inconsistencies19. Raters tabulated video data in a 

shared spreadsheet that included grasp identification, side-of-hand use, the beginning and ending 

frames, and any additional notes. Finally, to analyze the tabulated data, a MATLAB (The 

MathWorks, Inc.) script was written to extract the duration and frequency along with their 

corresponding percentages for participants' dominant and non-dominant hands. 

We analyzed the data by assigning a grasp identification number from 1 to 17 corresponding to the 

generalized grasps in Figure 3-2. The duration of a grasp was calculated using the difference 

between the corresponding beginning and ending frame number and converting this value to 

seconds by dividing by the frame rate (60 fps). Duration was defined as the time a grasp was held, 

which began once the hand was securely holding an object and ended at the onset of release. The 

total duration of a specific grasp was calculated by summing the duration times, and its percent 

duration was defined by the ratio of a specific grasp’s total duration to the total duration of all 

grasps16. The duration and percent duration were calculated for both the dominant and non-

dominant hands. Furthermore, data included grasp frequency, the number of times a grasp was 

performed by the participant, which was further separated by hand dominance. The percent 

frequency was obtained for each grasp by the ratio of a single grasp’s frequency to that of the total 

instances all grasps were used16.   

3.4. Results 

3.4.1. Participant 1 

PARC1 used their hands to manipulate objects related to drawing/coloring, turning book pages, and 

retrieving food from a refrigerator, among many other activities. Of the more than 120 minutes of 
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footage obtained, an aggregate of 107 minutes captured the participant using either their dominant 

or non-dominant hand performing grasps. Out of the 107 active minutes, the child used their 

dominant and non-dominant hand for approximately 91 and 16 minutes, respectively. The total 

number of performed grasps was 1115 with 696 from the dominant hand and 419 from the non-

dominant hand. The duration and frequency of individual grasps according to hand dominance 

along with their percentage are given in Table 3-1.  

When combining the dominant and non-dominant hands it was found that 90% of the time the 

child frequently used a set of seven generalized grasp configurations. Additionally, over 90% of 

the duration could be accounted for by these same seven grasps. Interestingly, it was found that 

74% of the duration was attributed to a single generalized grasp, Tripod. However, this same grasp 

only accounted for 30% of the total grasp frequency. Figure 3-3a displays the total combined grasp 

frequency and Figure 3-3b displays the total combined grasp duration. 
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Table 3-1. Participant grasp duration and frequency. The table illustrates the grasp duration (Dur) 

and frequency (Freq) for both child participants. The grasp identification (ID) number followed by 

the grasp picture are displayed. Data presented were separated by participant, hand dominance, and 

broken into duration and frequency. The duration and frequency are defined as the time in seconds 

and total number of instances each grasp was performed, respectively. Additionally, the percentage 

of duration and frequency out of all the grasps performed are provided in the parenthesis. 

ID Grasp 

PARC1 Hand PARC2 Hand 

Dominant Nondominant Dominant Nondominant 

Dur  

(%) 

Freq 

(%) 

Dur 

(%) 

Freq 

(%) 

Dur  

(%) 

Freq 

(%) 

Dur  

(%) 

Freq  

(%) 

1 

 

106 

(1.9) 

54 

(7.8) 

295 

(30.4) 

26 

(6.2) 

205 

(5.8) 

51 

(6.9) 

224 

(6.6) 

66 

(10.6) 

2 

 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

10 

(0.3) 

3 

(0.4) 

0 

(0.0) 

0 

(0.0) 

3 

 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

49 

(1.4) 

3 

(0.4) 

8 

(0.2) 

4 

(0.6) 

4 

 

111 

(2.0) 

42 

(6.0) 

222 

(22.8) 

70 

(16.7) 

79 

(2.2) 

23 

(3.1) 

59 

(1.8) 

23 

(3.7) 

5 

 

0 

(0.0) 

0 

(0.0) 

6 

(0.6) 

5 

(1.2) 

110 

(3.1) 

9 

(1.2) 

0 

(0.0) 

0 

(0.0) 

6 

 

10 

(0.2) 

7 

(1.0) 

37 

(3.8) 

3 

(0.7) 

3 

(0.1) 

2 

(0.3) 

1 

(0.0) 

1 

(0.2) 

7 

 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

0 

(0.0) 

8 

 

117 

(2.1) 

120 

(17.2) 

44 

(4.6) 

45 

(10.7) 

903 

(25.3) 

221 

(29.7) 

1804 

(53.4) 

194 

(31.2) 

9 

 

4739 

(86.5) 

300 

(43.1) 

37 

(3.8) 

29 

(6.9) 

1315 

(36.8) 

239 

(32.1) 

97 

(2.9) 

68 

(10.9) 

10 

 

36 

(0.7) 

26 

(3.7) 

38 

(3.9) 

26 

(6.2) 

85 

(2.4) 

16 

(2.2) 

277 

(8.2) 

89 

(14.3) 

11 

 

63 

(1.2) 

25 

(3.6) 

83 

(8.5) 

46 

(11.0) 

68 

(1.9) 

15 

(2.0) 

354 

(10.5) 

77 

(12.4) 

12 

 

15 

(0.3) 

2 

(0.3) 

0 

(0.0) 

1 

(0.2) 

58 

(1.6) 

3 

(0.4) 

0 

(0.0) 

0 

(0.0) 

13 

 

6 

(0.1) 

3 

(0.4) 

3 

(0.3) 

2 

(0.5) 

6 

(0.2) 

3 

(0.4) 

40 

(1.2) 

6 

(1.0) 

14 

 

17 

(0.3) 

6 

(0.9) 

8 

(0.9) 

5 

(1.2) 

62 

(1.7) 

23 

(3.1) 

145 

(4.3) 

30 

(4.8) 

15 

 

144 

(2.6) 

55 

(7.9) 

119 

(12.2) 

111 

(26.5) 

592 

(16.6) 

118 

(15.9) 

301 

(8.9) 

57 

(9.2) 

16 

 

29 

(0.5) 

18 

(2.6) 

15 

(1.5) 

8 

(1.9) 

5 

(0.2) 

7 

(0.9) 

1 

(0.0) 

1 

(0.2) 

17 

 

83 

(1.5) 

38 

(5.5) 

65 

(6.7) 

42 

(10.0) 

19 

(0.5) 

8 

(1.1) 

69 

(2.0) 

6 

(1.0) 
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Figure 3-3. Tree maps of the combined dominant and non-dominant hand grasps, depicting the 

frequency and duration for PARC1 and PARC2. (a) Depicts PARC1’s combined total percent 

frequency with 90% of the total frequency accounted for by seven hand grasps. (b) PARC1’s 

combined total percent duration where the same seven hand grasps attributed to 96% of the 

duration. (c) Illustrates PARC2’s combined total percent frequency with 93% accounted for by 

seven hand grasp configurations. (d) PARC2’s combined total percent duration with 92% of the 

duration attributed to the same seven hand grasps. 

3.4.2. Participant 2 

Data were obtained from analyzing approximately 132 minutes of video footage in which the child 

used their hands to manipulate objects related to knitting, preparing hot chocolate, and playing with 
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art supplies such as clay, among many other activities. There was a total of about 115 active minutes 

where the child performed grasps with either their dominant hand or non-dominant hand. Moreover, 

the participant used their dominant and non-dominant hand for approximately 59 and 56 minutes, 

respectively, out of the total active time. The number of performed grasps was 1366,  

exceeding the total of PARC1 by 251. Here, 744 were attributed to the dominant hand and 622 were 

from the non-dominant hand. Results from Table 3-1 show the compiled duration and frequency 

data for individual grasps based on hand dominance and their corresponding percentages.  

Data synthesized across hands indicated 7 generalized grasps that accounted for 93% of their 

frequency. Upon analysis of the duration, it was found that 92% could account for these same grasp 

configurations. Grasp frequency and duration were more homogenous across combined data than 

that of PARC1. Here, 65% and 72% of the grasp frequency and duration, respectively, can be 

attributed to Pinch, Tripod, and Lateral Tripod. Data can be seen in Figure 3-3c and Figure 3-3d. 

3.5. Discussion 

A common set of hand grasps was obtained for each child as they performed their daily activities. 

Data from both PARC1 and PARC2 are in agreement with similar adult studies which suggested 

that 6-9 standard grasps can account for nearly 80% of common activities16. Here 7 generalized 

grasps accounted for 90% or more of daily activities in both frequency and duration across both 

participants when handedness was not considered. This high percentage supports that a strategic 

repertoire of grasp configurations may be pertinent when developing rehabilitative and assistive 

devices.  

For PARC1 the dominant hand accounted for about 85% of the total grasp duration yet the 

frequency of the dominant and non-dominant hands were approximately 62% and 38%, 

respectively. Further, PARC2’s dominant and non-dominant hands accounted for 51% and 49% 
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of the total grasp duration, respectively while the frequency of use was 54% for the dominant and 

46% for the non-dominant. Even though the frequency and duration of the non-dominant hands 

are generally lower than that of the dominant hands, results suggest they still play a vital role in 

supporting everyday object interactions. These results further emphasize the importance of 

understanding the role both hands play when developing rehabilitative and assistive devices. For 

example, in populations of children with unilateral motor impairments, the unaffected side often 

assumes the dominant role while the affected side offers support and stabilization of objects. 

Therefore, it is critical to recognize how laterality may impact the desired function a patient wishes 

to accomplish with a robotic technology. Those with unilateral impairments may have very 

different demands than those affected bilaterally.   

Interestingly, the results from both participants share the same top 3 frequently used generalized 

grasp configurations, Pinch, Lateral Pinch, and Tripod. These 3 grasps can be found within the top 

7 generalized grasps used by adults and account for approximately 80% of their frequency15. 

Intriguingly, PARC1 performed 5 out of the 7 generalized grasps, and PARC2 performed 6 out of 

the 7. It was expected that children may use a variety of hand grasps to accomplish tasks. Although 

our limited data set of two children exhibited similarities to how adults use their hands, this may 

not be entirely representative of the whole pediatric population. Our data supports that a common 

repertoire of grasp configurations accounts for much of a child’s hand activity and further 

investigation with a larger sample size across ages and sexes is warranted.  

While limited, the data collected here suggests that as robotic rehabilitative and assistive 

technologies continue to emerge for children, consideration of key hand grasping movements will 

be vital to their effectiveness. For example, the current standard of care pediatric upper limb 

prostheses typically provides a single-degree-of-freedom tripod grasp. This aligns well with 
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PARC1’s data in which a tripod grasp accounted for 74% total duration of hand use. However, 

PARC1’s frequency data, shows 4 hand grasp types are needed to achieve 70% of the total grasp 

frequency. Thus, evaluating the effectiveness of mechatronic assistive devices requires data-rich 

approaches that account for both the frequency and duration of grasp type in real-world settings. 

3.6. Conclusions 

This study explored how two children used their hands in daily activities and if they are inclined 

to use a strategic set of grasp patterns. It was found that 7 unique grasp configurations accounted 

for the vast majority of hand use in both frequency and duration across participants. Taken 

together, these results lay the foundation to further understand the stereotypical hand activity of 

children. Further, this work may help inform the development and evaluation of pediatric 

rehabilitative and assistive devices. However, there are a few limitations and future directions that 

must first be considered. A larger sample size is currently under investigation and will allow us to 

understand how hand grasps differ across age ranges, sexes, and daily activities. Moreover, due to 

the categorical nature of the generalized grasp taxonomy, additional data analysis can be achieved 

including analyses of digit opposition type, and virtual finger units among many others. Linking 

the activities the children performed to grasps may also provide a more comprehensive picture of 

hand use during specific activities of daily living. This may also include expanding the study 

environment beyond the home to social, school, and childcare settings. 
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Chapter 4. Development of a research-based multiarticulate pediatric 

prosthetic hand  

The majority of this chapter has been published as: 

Battraw MA, Young PR, Joiner WM, Schofield JS. (2022). A multiarticulate pediatric prosthetic 

hand for clinical and research applications. Front. Robot. AI 9, 1–14. 

4.1. Chapter preface 

The development and validation of a multiarticulate child-sized prosthetic hand for research and 

clinical applications is presented in this chapter. Mechanical and electrical characteristics were 

assessed to provide a performance benchmark for the device. A validated functional test was 

conducted to understand the grasping capabilities of the hand, which were compared to adult-based 

research devices. Our device serves as a research platform to begin investigating the abilities 

children with congenital upper limb deficiency have to control dexterous prosthetic hands (those 

that offer multiple grasping movements) during functional activities. The robotic prosthetic hand 

described in this chapter was later employed in Chapter 7 to demonstrate the feasibility for children 

born without a hand to control multiple grasping movements offered by a dexterous device.  

4.2. Introduction 

It is estimated that congenital upper limb differences occur in up to 1 in 500 live births1, and those 

with unilateral congenital below-elbow deficiencies typically present malformations amenable to 

prosthesis prescription. These children will have one typical upper limb and one that ends below 

the elbow, at the level of the proximal or mid-forearm2–4. Prosthesis prescription for these children 

is a complex challenge, and presently 35% to 45% of prescribed upper limb pediatric prostheses 

will be abandoned5. Regardless of age, factors that affect prosthesis adoption are related to the 

device offering sufficient function while promoting healthy social interactions6. The high rate of 

pediatric prosthesis abandonment suggests that current devices fall short of achieving these 
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demands and specific reasons for abandonment include the lack of useful function offered by the 

device6–8, device weight 6,9, discomfort7,8, and social aspects related to device cosmesis6,7,10,11.   

Standard-of-care pediatric prostheses provide limited functionality, typically offering only a 

single-degree-of-freedom open/close grasping function. This is a stark departure from the immense 

dexterity of an intact hand that moves with 27 degrees of freedom12, and the 6-9 common hand 

grasp movements (pulp pinch, cylindrical grasp, among others) that have been shown to account 

for nearly 80% of grasping movements when performing activities of daily living13,14. In recent 

years, multi-articulating motorized prosthetic hands for adults have become increasingly available. 

These assistive devices offer adults significant functional benefits by providing a multitude of hand 

grasp configurations15. Beyond their added function, an additional advantage inherent to their 

hand-like designs is the anthropomorphic or more life-like appearances when compared to their 

hook or grasper-style counterparts. Similarly, dexterous devices have begun to emerge for 

children, namely, the Vincent Young 3 (Vincent Systems, Karlsruhe, Germany) which is sized for 

an 8-year-old and offers up to 13 individual grasp configurations, or the Hero Arm (Open Bionics, 

Bristol, United Kingdom) which offers children 8 years and older 6 grasp configurations. 

As dexterous pediatric prostheses continue to emerge there remain many unanswered questions 

such as which control techniques may be most effective in operating these devices, the degree to 

which children can use the newly available dexterity for improved functional outcomes, and how 

best to translate many effective innovations for adults to meet the unique demands of children16. 

For example, it is not known which grasping motions may be most effective to support age-

appropriate daily activities and childhood play. Additionally, it is unknown how conventional adult 

muscle-based prosthesis control (surface EMG) may be translated to this population given that 

many were born with their limb difference and their affected muscles have never actuated an intact 
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limb16. Although control of dexterous prostheses for adults with congenital upper limb deficiencies 

has been investigated17, it is uncertain how these findings may translate to developing children. 

Furthermore, limited work has been done to illustrate changes in cortical activation during 

prosthesis control18,19. Addressing these knowledge gaps requires rigorous scientific investigations 

and supporting research platforms; hardware such as dexterous child-sized prostheses with open 

access to its programming and the mechanical capabilities to interact with daily objects to perform 

clinical or research-based activities. While there are no robust pediatric research platforms, there 

are numerous experimental or non-clinical pediatric prostheses that have been reported in 

literature; however, data characterizing their use, functional capabilities, and effectiveness remain 

sparse20. Furthermore, researchers and clinicians often have limited access to these devices as they 

are not commercially available, and few are released open-source such that they can be fabricated 

and programmed by individuals outside of their development teams.    

Our objective was to develop a child-sized multi-grasp prosthesis that may serve as a robust 

research platform to address many of the critical gaps in translating dexterous upper limb 

prostheses to pediatric populations. Supporting our open-source release of the device, we 

performed a comprehensive set of benchtop and validated functional tests manipulating common 

objects to quantify the performance of our device. Here we present the development of a cable-

driven, underactuated, adaptive grasp, multi-articulate pediatric hand termed the Bionic 

Engineering and Assistive Robotics Pediatric Assistive Ware (BEAR PAW). The mechanical and 

electrical characteristics of individual digit articulation and 7 commonly used hand grasps13 are 

presented, followed by the functional performance benchmarked against other multi-grasp devices 

using an established assessment protocol21.  
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4.3. Materials and methods 

We performed three tasks that were designed to develop, characterize, and evaluate the 

performance of the BEAR PAW. Design criteria were derived to inform the development and 

fabrication of our pediatric device. We performed benchtop testing to evaluate the device’s 

mechanical and electrical characteristics, and we evaluated the BEAR PAW while grasping 

common objects to benchmark its performance against other comparable adult devices.   

4.3.1. Pediatric prosthetic hand criteria 

In developing a robust research platform, delivering a device capable of achieving multiple hand 

grasp configurations to a similar degree of dexterity as current research-based adult devices was 

the crux of the challenge. The size of the device was an important first step to consider, as this 

directly impacted the feasibility of device development. As emerging dexterous devices have been 

targeted to no younger than the 8-year-old population and off-the-shelf componentry is limited in 

size, the minimum age of 8 provides us with an ideal size constraint. Furthermore, to achieve 

comparable dexterity, individual digit actuation was needed along with an active opposable thumb. 

Weight was another important consideration during device development because children do not 

yet have the strength of an adult9. Even in a research setting, it is important to carefully consider 

this constraint as fatigue, soreness, and/or discomfort can significantly diminish a child’s 

engagement with experimental activities. Here, the mass of an Ottobock Electrohand 2000 for 

children 8-13 years old was used as a baseline for comparison (130 g) as it is among the lightest 

commercially available terminal devices for children. Additionally, the force output of the device 

was of high importance as in biological hands, it has been shown that most hand grasping 

configurations on average hold objects less than 500 g in weight during most activities of daily 

living13 making this an ideal design target value for a pediatric prosthesis. Further, the time to fully 
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close the hand was set to be less than 1 𝑠, reflecting values found among commercially available 

prosthetic systems22. Finally, a budget value of less than $1000 for parts was selected to promote 

the accessibility of our system to other research laboratories. A detailed summary of the design 

criteria is outlined in Table 4-1. 

Table 4-1. Pediatric research platform design criteria. 

Design Requirement Specification Metric Quantitative Value 

Size Anatomical proportions 8-year-old child 

Mass Low mass < 130 g 

Inexpensive Low cost < $1000 

Degrees of actuation 
Digit actuation and thumb 

opposition 
6 degrees of actuation 

Active actuation Servo control Servo motors 

Electronics Compact design Enclosed in hand 

Extended operation Continuous power Grid power 

Control Ease of actuation Bluetooth protocol 

Ease of use High usability Graphical interface 

Finger speed Time to close < 1 s 

Load Target mass 500 g 

4.3.2. Mechanical and electrical performance 

4.3.2.1. Experimental setup 

We characterized the mechanical and electrical performance of the BEAR PAW while performing 

a set of the most frequently used generalized hand grasps along with individual digit actuations. 

Feix et al. suggests that the vast majority of human object manipulations are accomplished using 

33 different grasp types which can be simplified to 17 generalized hand grasp configurations13. 

This simplification can be made when considering that objects of different shapes and sizes may 
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actually require the hand to move in similar ways, just to differing degrees of hand closure13. This 

is a relevant consideration as the BEAR PAW is programmed to conform to objects regardless of 

their size. Of the 17 generalized hand grasps some are used far more frequently than others, and a 

subset of 7 accounts for 80% of total activity (Table 4-2). Furthermore, these 7 grasps also 

accounted for over 80% of the time duration in which a hand is used to grasp objects in daily 

living. Table 4-2 shows the top 7 generalized hand grasps that were used to characterize the BEAR 

PAW’s performance.  

Table 4-2. Top 7 common generalized hand grasps configurations, percent frequency (Freq), and 

duration (Dur). 

       

1. Cylindrical 

Grip 

Freq: 21.6% 

Dur: 30.5% 

2. Tripod 

Pinch 

Freq: 14.8% 

Dur: 10.4% 

3. Prismatic 4 

Finger 

Freq: 11.3% 

Dur: 26.9% 

4. Lateral 

Pinch 

Freq: 10.5% 

Dur: 6.9% 

5. Lateral 

Tripod 

Freq: 10.4% 

Dur: 5.1% 

6. Hook Grip 

 

Freq: 6.8% 

Dur: 5.1% 

7. Pulp Pinch 

 

Freq: 4.8% 

Dur: 2.7% 

 

A set of 6 custom manipulanda were designed and fabricated to measure the force characteristics 

of the BEAR PAW while performing the 7 grasp configurations and individual digit actuations. 

These consisted of a series of 3D printed enclosures that housed one to two calibrated 8mm 

diameter SingleTact capacitive force sensor(s) with a range of 10 Newtons (SingleTact CS8-10, 

PPS UK Limited, Glasgow, United Kingdom) (Table 4-3).  

A testing platform was assembled with 15mm x15mm MakerBeam and included a custom 3D-

printed mount for the BEAR PAW. The platform was designed to fixate the BEAR PAW which 

allowed for repeated consistent testing of the various hand motions during data collection. 

Additionally, the platform accommodated the set of manipulanda to capture the mechanical force 
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output. These were either mounted to the platform or on an external gooseneck for strategic object 

placement (Figure 4-1).  

Table 4-3. The different manipulandum used to characterize the force output of the BEAR PAW 

for individual finger articulation and common generalized hand grasp configurations. The hand 

grasp (HG) used and the number of sensors (NS) for each manipulandum are noted and each square 

on the blue background is 1 cm by 1 cm. 
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NS: 1 

HG: Pulp 

Pinch, Lateral 

Pinch 

 

NS: 1 

HG: Lateral 

Tripod 

 

 

NS: 1 

HG: Prismatic 

4 Finger 

 

 

NS: 2 

HG: Tripod 

Pinch 

 

 

NS: 1 

HG: Hook 

Grip, 

Cylindrical 

Grip 

NS: 2 

 

Beyond the mechanical force measurements obtained using the manipulanda, the electrical 

characteristics of the BEAR PAW were recorded during testing. This included capturing the 

current obtained with an ACS723 current sensor which recorded the current load of the BEAR 

PAW’s servo motors during the experimental procedure. Further, the voltage across the servo 

motors during actuation was recorded. Lastly, to synchronize the data during post-hoc analysis a 

timing voltage was used. An Arduino script was written to actuate the BEAR PAW and the voltage 

values produced from the force, servo current, servo voltage, and time voltage were passed into a 

National Instruments USB-6210 data acquisition system sampling at 4000 𝐻𝑧. This data was 

stored for further analysis in a table format using a MATLAB (The MathWorks, Inc., Natick, MA) 

script.  
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Figure 4-1. Depicts the testing platform for the BEAR PAW. It illustrates the hand mount used to 

hold the BEAR PAW stable during testing, the gooseneck which strategically held manipulanda, 

and the MakerBeam platform which supported the manipulandum used for individual digit 

articulation.   

4.3.2.2. Experimental procedures 

The BEAR PAW was tested to determine the mechanical and electrical performance when 

completing individual digit and grasp actuations. In both configurations, the BEAR PAW was 

mounted to the testing platform to assess the grasping movements shown in Figure 4-2. To test 

individual digit flexions, the manipulanda was placed at a fixed distance and was then aligned with 

the digit so that it would press down on its center. For each hand grasp configuration, the 

appropriate manipulandum was attached to the gooseneck (Figure 4-1) and was strategically 

placed in front of the BEAR PAW (Figure 4-2).  
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Figure 4-2. Depicts the BEAR PAW during grasp actuation on the various manipulanda. (a) 

represents individual digit articulation for digits 2-5 and (b-c) represents both thumb palmar 

abduction and flexion. (d-j) shows each manipulandum used for the 7 common generalized hand 

grasp configurations. 

Testing was performed in accordance with ANSI/ISA testing protocols23. The test procedure 

consisted of performing single-digit actuations and the hand grasp configurations 10 times each. 

Here one cycle consisted of the BEAR PAW actuating for a total of 5 seconds to grasp/load the 

manipulanda and then unload it. The current from the servo motors, voltage across the servo 

motors, force applied to the manipulandum, and a reference voltage used for data synchronization, 

were measured and stored for each testing cycle. Together, these data allowed for post-hoc 

calculations relating force, current, and power each time the BEAR PAW performed a grasping 

movement (see below). 

4.3.2.3. Data analysis 

A separate MATLAB script was written to read the stored data for analysis. First, the voltage 

output from the force sensor(s) in the manipulanda was converted to force using the line of best fit 

for each of the calibrated sensors24. Further, in the case of two force sensors, a point load was 

assumed at each sensor, and data were summed together after conversion to include the total force 

value. The voltage from the current sensor output was converted to amperes using the provided IC 
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sensitivity of 400mV/A25. Finally, Watt’s law was used to calculate power draw from the measured 

voltage across the servo motors and the corresponding current.  

To align data across the 10 trials a reference timing voltage was used, during the 5 seconds of 

actuation, that was set to low until the BEAR PAW began to actuate at which point it was set to 

high. Once this occurred, 1 second of the data directly after the high was omitted followed by 2.5 

seconds of recorded data to ensure that the BEAR PAW was fully actuated on the manipulanda. 

For individual digit actuations and generalized hand grasp configurations, these 2.5 seconds were 

averaged for a total of 10 values, one per each actuation cycle. Here, the mean and standard 

deviation of these measures were obtained. Measures obtained during the flexion of digits 2-5 were 

averaged together as these fingers are identical in size and mechanical design. Values for thumb 

flexion and opposition were captured separately. Additionally, all generalized hand grasp 

configuration measures were averaged on an individual grasp basis. 

4.3.3. Hand assessment protocol 

4.3.3.1. Experimental setup 

To assess the BEAR PAW’s functional capabilities, we used the validated Anthropomorphic Hand 

Assessment Protocol (AHAP)21. The protocol consists of 8 different grasp types of which there 

are 3 different objects associated with each. The 8 grasps are Hook Grip, Spherical Grip, Tripod 

Pinch, Extension Grip, Cylindrical Grip, Diagonal Volar Grip, Lateral Pinch, and Pulp Pinch. 

Furthermore, there are 2 postures – Index Pointing and Platform – for a total of 26 objects that 

must be grasped and/or maintained. A further explanation of the objects used during the AHAP 

test can be found in21 and a subset of these objects are depicted in the results section.  

We preprogrammed grasp configurations into the BEAR PAW in accordance with the definitions 

used in21. These definitions explained the proper posture for each grasp and indicated the correct 



52 

 

contact between an object and various locations on a robotic hand. With these definitions, the 

BEAR PAW’s hand grasp configurations were created in software by adjusting individual digit 

positions which allowed for it to appropriately conform to the test objects. This was achieved using 

a custom-developed graphical user interface (GUI) that allowed the investigators to fine-tune the 

digit movements for each grasp configuration using virtual buttons and knobs. The final settings 

were stored, and the GUI offered the ability to then simply press a virtual button to actuate the 

final grasping configurations. To perform the AHAP protocol a testing rig was developed which 

consisted of the BEAR PAW mounted to a forearm frame through a wrist mount (Figure 4-3) 

which could then be held by the investigator to perform necessary object manipulations. 

 

Figure 4-3. Depicts the testing rig used to perform the Anthropomorphic Hand Assessment 

Protocol, highlighting the BEAR PAW, wrist adapter mount, and forearm frame grip. 

4.3.3.2. Experimental procedures 

The AHAP test required that 26 test objects be manipulated 3 times which was then repeated by 3 

test investigators21. Replicating the test with 3 separate investigators is the standard AHAP 

procedure and ensures that collected data accounts for the minor potential variability in the way 
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objects may be manipulated. Here, investigators included laboratory personnel who acted as the 

lead investigator and test investigators. Prior to conducting the protocol the test investigators were 

instructed by the lead investigator as to the correct hand grasp for the object and were allowed to 

familiarize themselves for approximately 1 minute21. Each trial of the AHAP protocol began with 

the lead investigator holding 1 of the 26 objects in front of a test investigator in a predefined 

orientation. The test investigator used the GUI to actuate the BEAR PAW to achieve a desired 

grasp configuration and grasp the object. Afterwards, the lead investigator would release the object 

such that it was held exclusively by the BEAR PAW. For each grasp type (excluding postures), 

the BEAR PAW started in the palm-faced-up direction in which it attempted to hold the 

corresponding object for 3 seconds (known as the grasping phase) and then was rotated 180° with 

the palm faced down again attempting to hold the object for 3 seconds (known as the maintaining 

phase). The index posture consisted of starting a timer for the grasping phase and stopping it after 

3 seconds for the maintaining phase. Additionally, the platform posture only involved the grasping 

phase which entailed holding a plate for 3 seconds. The grasping and maintaining phases for each 

grasp type and posture are further described in21.   

4.3.3.3. Data analysis 

During the grasping and maintaining phases for each object, the lead investigator scored the BEAR 

PAW’s performance21. Accordingly, a score of 1 was received if the object was held with the 

specified grasp for the allotted time. A score of 0.5 was received if the BEAR PAW held the object 

for the designated time but was done with a different grasp and 0 was received if it could not hold 

the object. Then, while the BEAR PAW performed the maintaining portion, if there was no 

movement of the object with respect to the hand over the time constraint a score of 1 was awarded. 

If the object moved but did not drop, then a score of 0.5 was received and a score of 0 was received 
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if it was not able to maintain the object. The BEAR PAW’s raw AHAP scores are provided in 

Appendix A. 

These scores were then used to compare the BEAR PAW’s grasping and maintaining abilities to 

previously published values from 4 research-focused adult prosthetic hands performing the same 

experimental procedure26. These 4 adult hands (Dextrus, IMMA, InMoov, and Limbitless) were 

all underactuated systems with a range from 14-17 degrees of freedom and 1-6 degrees of 

actuation26.  Here, scores obtained from the BEAR PAW and the 4 adult prosthetic hands were 

separated based on which phase (grasping or maintaining) the prosthetic hand was in. The scores 

for each prosthetic hand were further separated into 10 categories for grasping and 9 categories for 

maintaining in accordance with the grasp type/posture. These scores were aggregated across the 3 

test investigators such that individual grasping and maintaining comparisons could be made 

between the BEAR PAW and the 4 adult prosthetic hands. 

To accommodate the ordinal (non-parametric) AHAP scoring data, statistical analyses were 

conducted using a Mann-Whitney U test to perform pairwise comparisons between the BEAR 

PAW and each of the 4 adult prosthetic hands (for the 10 grasps and 9 postures, 40 and 36 

comparisons, respectively). For each comparison, the null hypothesis H0 stated that there was no 

statistically significant difference in the central tendency or median score between the BEAR PAW 

and the corresponding adult hand for a particular grasp. A confidence interval of 95% was selected 

and p<0.05 was taken to indicate statistical differences. 

4.4. Results 

4.4.1. Pediatric prosthetic hand 

The BEAR PAW is a multi-articulating pediatric prosthetic hand developed in the computer-

automated design software SolidWorks 2020 and fabricated with a SigmaX R19 3D Printer using 
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PLA material. The BEAR PAW uses a 3.3V Arduino Pro Mini with an ATmega328 

microcontroller, HC-05 wireless Bluetooth module, and a custom breakout board to interface with 

the six KST-X08 series servo motors. Further, it internally houses its electronics, has 6 

independently programmable degrees of actuation, is an under-actuated system with 11 degrees of 

freedom, and is therefore capable of a multitude of common grasping movements. In summary, 

the BEAR PAW is a dexterous pediatric prosthetic hand that was designed using off-the-shelf 

components, highly accessible design and fabrication techniques, and open access to programming 

which includes a graphical user interface for intuitive control. A detailed depiction of the BEAR 

PAW is presented in Figure 4-4 and a detailed list of its performance characteristics is supplied in 

Table 4-4.   

 
Figure 4-4. The BEAR PAW: A pediatric multiarticulate prosthetic hand with six degrees of 

actuation and programmable hand grasp configurations. Shown in an isometric (a), front (b), and 

back (c) view. 
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Table 4-4. BEAR PAW achieved specifications. *Values obtained as explained in the Materials 

and Methods section 4.3.2 on Mechanical and Electrical Performance and the detailed analysis are 

provided in the corresponding results section 4.4.2. †The STL files and assembly guide can be 

found at https://github.com/BEAR-Labs/BEAR-PAW. 

Specification Achieved Value 

Size/Appearance 

Anatomical proportions 8 years old child 

Electrical 

Operating voltage 5 V 

Actuation power 3.388 – 8.718 W* 

Mechanical 

Time to grasp 0.67 s 

Force 0.424 – 7.216 N* 

Number of actuators 6 

Type of actuators Servo motors 

Actuation type Underactuated 

Actuation mechanism Tendon driven 

Range of motion 

Degrees of freedom 11 

Digit 2-5 flexion 120 degrees 

Thumb flexion  90 degrees 

Thumb abduction 90 degrees 

Control 

Able-bodied control Graphical interface 

Communication Bluetooth, UART 

Weight 

Mass 177 g 

Ease of access 

Cost 500 USD 

Componentry Off the shelf 

STL Files Available online†  

Assembly guide Available online† 

The BEAR PAW’s design and development was inspired by the HANDi Hand and was sized to 

50th percentile 8-year-old male and female anthropometric hand data (Figure 4-5)27–29. Similar to 

the HANDi Hand the BEAR PAW is accessible to researchers and clinicians, and provides open-

https://github.com/BEAR-Labs/BEAR-PAW


57 

 

source 3D printable files, a bill of materials, assembly instructions, microcontroller code, and GUI 

which can be found via https://github.com/BEAR-Labs/BEAR-PAW.  

 

Figure 4-5. A size comparison between the BEAR PAW (left), a pediatric prosthetic hand, and the 

HANDi Hand (right), an adult prosthetic hand. Each square in the background is 1cm by 1cm. 

4.4.2. Mechanical and electrical performance 

The BEAR PAW uses an underactuated tendon-driven design in each digit to achieve flexion, and 

torsion springs incorporated into each joint to return digits to their extended position when not 

being actuated (Figure 4-6a). Here flexion is caused by a servo motor rotating a pulley to which a 

tendon is attached. One challenge with conventional tendon-driven actuation is managing the slack 

that may present in the tendon. Therefore, we developed a tensioning mechanism in which a 

tensioner screw translates a tendon mount to compensate for the slack. Moreover, the digits 1-5 

are all actuated and controlled independently; while thumb abduction uses gearing for motion and 

is also actuated independently.  

https://github.com/BEAR-Labs/BEAR-PAW
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Figure 4-6. A detailed illustration of the mechanical features of the BEAR PAW. (a) shows an 

exploded view of individual digits 1-5 highlighting key components of the mechanical design. (b) 

provides the range of motion for each degree of actuation. Digits 1-5 are labeled with acronyms: 

finger distal phalanx (FDP), middle phalanx (FMP), proximal phalanx (FPP), thumb distal phalanx 

(TDP), proximal phalanx (TPP), and metacarpal (TM). 

The anatomical design of digits 2-5 for the BEAR PAW included the distal, middle, and proximal 

phalanx where the distal and middle are coupled to accommodate the small size required of a 

 

(a) 
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pediatric hand. The range of motion for these digits during flexion (while not contacting objects) 

was approximately 60° for the proximal and middle-distal phalanx. Further, digit 1 included the 

distal and proximal phalanx along with the thumb metacarpal. During thumb flexion, a 70° range 

of motion for the proximal and 20° for the distal was achieved, respectively. Finally, thumb 

abduction had a 90° range of motion (Figure 4-6b).  

The measured force outputs for the BEAR PAW while performing the 7 grasping configurations 

and individual digit articulations ranged from 0.424 N to 7.216 N. The maximum value of 7.216 

N was achieved during the Cylindrical Grip while the minimum value of 0.424 N was achieved 

during the Lateral Pinch (Table 4-5). The electrical performance ranged from 0.675 A to 1.789 A 

and 3.388 W to 8.718 W across the different grasp configurations. The minimum values of 0.675 

A and 3.388 W corresponded to the individual digit flexion of digits 2-5. The maximum values of 

1.789 A and 8.718 W were achieved from the Cylindrical Grip which also achieved the highest 

grasping forces (Table 4-5). 
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Table 4-5. BEAR PAW’s mechanical and electrical characteristics for the six degrees of actuation 

and the top seven generalized hand grasp configurations. *Hook Grip and Diagonal Volar Grip 

have the same gross hand motion, yet in the AHAP test, these are considered separate motions that 

include a different set of objects. 

Motion Posture Motion Picture 
Mechanical and Electrical Characteristics 

Force (Newtons) Current (Amperes) Power (Watts) 

Digits 2-5 Flexion 

 

1.709 ± 0.076 0.675 ± 0.069 3.388 ± 0.343 

Thumb Flexion 

 

0.761 ± 0.042 0.751 ± 0.002 3.763 ± 0.010 

Thumb Abduction 

 

2.454 ± 0.069 0.729 ± 0.003 3.656 ± 0.014 

Cylindrical Grip 

 

7.216 ± 0.578 1.789 ± 0.052 8.718 ± 0.242 

Tripod Pinch 

 

2.989 ± 0.253 1.433 ± 0.035  7.030 ± 0.166 

Prismatic 4 Finger 

 

5.714 ± 0.190 1.644 ± 0.068 8.011 ± 0.316 

Lateral Pinch 

 

0.424 ± 0.011 0.841 ± 0.008 4.115 ± 0.042 

Lateral Tripod 

 

0.629 ± 0.072 0.840 ±0.005 4.097 ± 0.024 

Hook Grip/Diagonal 

Volar Grip* 

 

1.415 ± 0.158 1.083 ± 0.020 5.276 ±0.109 

Pulp Pinch 

 

2.043 ± 0.025 0.949 ± 0.004 4.649 ± 0.020 
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4.4.3. Hand assessment 

When statistically comparing the BEAR PAW’s grasping performance to published values of the 

4 research-focused adult prosthetic hands, its performance scored better or equivalent for 33 of the 

40 comparisons made (10 grasp types/postures for 4 adult hands) (Figure 4-7 and Figure 4-8). 

Further, 31 times out of 36 the BEAR PAW performed statistically better or equivalent during the 

maintaining phase for the 9 grasp type/posture categories (results are included in Appendix A). 

That is, minor differences exist between the BEAR PAW and the 4 adult prosthetic hands when 

comparing grasping and maintaining capabilities. 

For the grasping phase of the AHAP test, the statistical analysis showed the BEAR PAW 

performed significantly better a total of 9 times across the 4 adult prosthetic hands. Further, 24 

times there were no statistically significant differences observed during the grasping phase. 

Finally, when comparing the BEAR PAW to each adult prosthetic hand the analysis showed 

statistically worse performance for 7 of the grasp types/postures. A detailed analysis of the 

grasping comparisons from the BEAR PAW to each of the 4 adult prosthetic hands across the 10 

grasp types/postures can be seen in Figure 4-7 and Figure 4-8. In this figure, the number of times 

the hand scored a 1, 0.5, or 0 for a grasp type/posture was tallied and plotted. Further, this figure 

depicts a subset of the 27 objects used in the AHAP test as a reference.  

The statistical analysis for the maintaining phase of the AHAP test showed significant differences 

between the BEAR PAW and each of the 4 adult prosthetic hands. There was a significantly better 

performance for 16 grasp types/postures, 15 were shown to have no significant differences, while 

5 showed statistically worse performance. The detailed statistical comparison for the maintaining 

phase of the test can be viewed in Appendix A.  
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Figure 4-7. BEAR PAW grasping comparison scores for 8 different grasp types across the 4 adult 

hands. For each grasp type, the number of times each hand scored a 1, 0.5, or 0 was plotted. 

*Represents when the BEAR PAW performed statistically worse. †Represents when the BEAR 

PAW performed statistically better. 
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Figure 4-8. BEAR PAW posture comparison scores for 2 different postures across the 4 adult 

hands across the 4 adult hands. For each grasp type/posture, the number of times each hand scored 

a 1, 0.5, or 0 was plotted. †Represents when the BEAR PAW performed statistically better. 

For both the grasping and maintaining phases of the AHAP test, the BEAR PAW performed 

significantly worse for the Hook Grip a majority of the time with only one comparison that showed 

no significant difference. Additionally, the BEAR PAW performed significantly better for the Pulp 

Pinch across all adult prosthetic hands. Finally, for the maintaining phase, the Cylindrical Grip of 

the BEAR PAW showed significantly better results than the other prosthetic hands. In summary, 

the BEAR PAW performed similarly to the 4 adult prosthetic hands and in some cases better, 

making it an effective platform to examine prosthetic control in pediatric populations. 

4.5. Discussion 
 

This work presents the design and characterization of a multiarticulate pediatric-sized prosthetic 

hand that may serve as a robust and accessible research platform. The series of benchtop tests 

performed in this study provide a benchmark analysis of the device. Its performance, when 

compared to research-focused adult prosthetic hands, suggests that the BEAR PAW has the 

potential to serve as a useful tool in exploring the multitude of questions and unique challenges 

surrounding the effective translation of advanced mechatronic prostheses to children.   
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Multiple, clinically relevant design criteria were employed to inform the design and fabrication of 

the BEAR PAW and to ensure its utility as a research platform. These criteria included a size and 

weight limit, device dexterity, control methods, and accessibility. Intuitively, these criteria are 

interconnected and directly influence one another. A prominent example of this relationship is as 

dexterity increases, the number of actuators must also increase, and with that, the weight and the 

compact size of the device become difficult to address. This issue is vital to the BEAR PAW as it 

is a highly dexterous device that is tailored to conform to the anthropomorphic nature of an 8-year-

old child to meet the need for a child-sized dexterous device. Although it is possible to develop 

smaller dexterous devices targeted at a younger population (less than 8 years old), commercial 

devices have yet to emerge, and it is unlikely a research platform with off-the-shelf componentry 

could exist as the next step to miniaturization would require hardware development. Furthermore, 

while the BEAR PAW exceeded the target weight limit of 130 g (weighing 177g), the device 

weighs less than comparable dexterous pediatric hands such as the Hero Arm hand (280– 345g30),  

and is designed to be used in a research setting, allowing the researcher opportunities to make 

necessary adjustments to test procedures thereby minimizing subject fatigue.  

As children’s motor systems are still developing and they are often still exploring interactions 

within their environments, a more dexterous device is vital to allow them to interact with objects 

in different ways using a multitude of hand gestures31. The BEAR PAW can achieve similar 

dexterity to that of the comparable adult prosthetic hands, providing researchers control over 

individual digit movements and thus, the ability to explore the effects of providing users multiple 

grasping configurations. Further, the BEAR PAW can accommodate multiple communication 

protocols and incorporates affordable off-the-shelf componentry to provide ease of use and 

accessibility to research groups. The 3D printable files, assembly instructions, bill of materials, 
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and necessary code are openly available to further facilitate this access (https://github.com/BEAR-

Labs/BEAR-PAW). Well-documented and tested open-source pediatric hands are scarce making 

experimentation with these devices difficult. Furthermore, current commercially available devices 

inhibit researchers’ ability to manipulate device hardware/software to push the boundaries of the 

current state of pediatric prostheses. Here, we begin to address this gap by disseminating an open-

source research platform with documented performance characteristics and benchmarking it to 

well-known adult research devices.  

Feix et al. suggest that the majority of objects that adults commonly manipulate in daily life do not 

exceed 500 g, and the grasping force of the hand is largely driven by the mass of the object13. The 

BEAR PAW achieved a maximum grasping force output of 7.216 N which exceeded the typical 

force required to statically grasp a 500 g object13. This maximum force output was obtained from 

the Cylindrical Grip configuration, which was anticipated, as all the digits actuated around the 

object to perform the grasp thereby utilizing the combined outputs of all servo motors. Conversely, 

the minimum force output of 0.424 N was associated with the Lateral Pinch grasp and the low 

force was likely due to the nature of the index finger’s range of motion which was limited by the 

servo motor to 120°. This limited range of motion caused restricted contact between the thumb and 

index finger. When taken together, the BEAR PAW was able to perform 7 common generalized 

hand grasp configurations successfully, although the device could not achieve the necessary force 

required to manipulate 500g objects for every hand grasp configuration. Further design 

refinements including incorporating high-performance servo motors may be warranted in future 

work. 

Additionally, the electrical characteristics of current and power were tabulated to provide a 

baseline of electrical performance. It was found during testing that the lowest current and power 

https://github.com/BEAR-Labs/BEAR-PAW
https://github.com/BEAR-Labs/BEAR-PAW
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draw were 0.675 A and 3.388 W, respectively. These results corresponded to the actuation of digits 

2-5, which was anticipated as a single digit was being activated and with minimal frictional forces 

present when compared to individual thumb flexion or geared thumb opposition. Likewise, the 

value for the maximum current and power draw was 1.789 A and 8.718 W which were recorded 

from the Cylindrical Grip. Similar to the maximum force, these values were expected as all the 

servo motors were under load causing an increase in the current and power. Overall, these values 

provide the necessary information to allow for future untethered battery-operated control.  

The AHAP test allowed for the BEAR PAW's grasping and maintaining ability to be evaluated 

when manipulating common household objects and benchmarked against the adult prosthetic 

hands. The objective of performing the comparisons was to validate the BEAR PAW’s 

performance and viability as a research platform. Here it was found that the BEAR PAW 

performed similar to or better than comparable adult devices across the test. While it outperformed 

the tested adult prosthetic hands for Pulp Pinch during both the grasping and maintaining phases, 

this was likely attributed to the silicone fingertips that allow for increased friction when performing 

pinch-type manipulations. During the Cylindrical Grip maintaining phase, the BEAR PAW 

performed better than the other comparable adult prosthetic hands which is intuitive when viewing 

the mechanical force output of the Cylindrical Grip as it exhibited the highest force output of 7.216 

N. However, the BEAR PAW was challenged in performing some functions. The main limitation 

was the size constraints required to accommodate the pediatric population. Off-the-shelf micro 

servo motors that meet these size demands are often restricted in their range of motion, thereby 

affecting the BEAR PAW’s ability to adequately grasp and maintain certain objects, i.e., the Hook 

Grip could not fully wrap around smaller objects in the AHAP test. Both the small nature of the 
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design and the limited range of motion affected the AHAP test as certain objects were too big for 

the BEAR PAW to reach around and too small for the range of motion.  

4.6. Conclusions 

Our data suggest that it is plausible for the BEAR PAW to be used in research and clinical settings 

to perform tasks and object interactions that may not be overly mechanically demanding such as 

box and blocks32,33, Jebsen/Taylor hand function34, clothespin relocation35, and the SHAP test36, 

among others. However, with the exception of the SHAP test36, the remaining standardized tests 

are not designed to challenge the patient to perform more than one grasp type/posture. Although 

the SHAP test36 allows for multiple grasps, it uses everyday objects that may not translate 

effectively to the pediatric population e.g., small hand compared to object size and lack of 

participant engagement during testing. Therefore, the BEAR PAW can be used to begin exploring 

the functional benefits that children have with the provided multi-grasp dexterity, but like the need 

for a robust research platform, standardized functional tests that challenge children to perform age-

appropriate multi-grasp tasks are also needed. As multi-grasp pediatric devices continue to emerge 

a rigorous evidence base is required to facilitate clinical adoption and inform the prosthetic 

approaches to ensure the best functional outcomes for these children. The BEAR PAW provides 

an accessible, open-source research platform to begin assessing validated outcome measures, 

refining prosthetic control systems, and examining the degree to which multi-articulating 

prostheses may make a difference for the users.  
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Chapter 5. The capacity of children with UCBED to actuate their 

affected muscles 

The majority of this chapter has been published as: 

Battraw MA, Fitzgerald J, James MA, Bagley AM, Joiner WM, Schofield JS. (2024). 

Understanding the capacity of children with congenital unilateral below-elbow deficiency to 

actuate their affected muscles. Sci. Rep. 

5.1. Chapter preface 

Children with unilateral congenital below-elbow deficiency (UCBED) display unique 

characteristics that may hinder the effective use of current dexterous prosthetic upper limb devices. 

These individuals were born without ever having actuated an intact hand; thus, before investigating 

dexterous prosthetic control techniques, this chapter aims to help further understand their ability 

to purposefully activate their affected muscles. This is an essential step since the control signals 

necessary for operating a dexterous prosthesis are derived from the affected muscle activity. Our 

investigation involves analyzing physiological signals of muscle electrical activity through surface 

electromyography (sEMG) as participants attempted a series of missing hand movements. 

Standard measures of amplitude and frequency were extracted from the sEMG data to understand 

participants’ ability to consistently and reliably actuate their affected musculature. Furthermore, 

an investigation into movement distinguishability was performed to determine whether 

participants could actuate their muscles in patterned ways that can be linked to missing intended 

hand movements. Consistent and distinguishable patterns of affected muscle activity serve as a 

proxy for assessing the potential control of multiple hand movements with a prosthesis. In 

summary, this work provides a fundamental foundation for understanding the degree to which 

children with UCBED can actuate their affected musculature—a crucial step before exploring 

dexterous prosthetic control.  
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5.2. Introduction 

Approximately 1 in 500 live births will present with an upper limb deficiency1, which is the most 

common reason for limb absence in children2. Among those born with upper limb deficiencies, 

children with unilateral congenital below-elbow deficiency (UCBED) will most typically present 

with limb characteristics amenable to prosthesis prescription. Although there are a variety of upper 

limb prostheses available for these children, they are regularly abandoned with 35%-45% of 

prescribed devices not being used3. In fact, these devices often fall short of meeting the wearers’ 

needs and typically don’t provide sufficient function and/or improve quality of life4. 

Encouragingly, dexterous prostheses that resemble the form and function of intact hands are 

becoming widely available for adults and more recently for children5,6. These devices achieve a 

variety of grasping movements and as a result, hold the potential to offer additional functional 

benefits. However, limited research has been performed to address and refine these systems for 

the unique challenges and demands of children.  

With increased prosthetic dexterity comes the need for more sophisticated control systems to 

manage the newly available function. State-of-the-art control systems for adult prostheses use 

machine learning to predict the user’s motor intent from patterns of muscle electrical activity 

(surface electromyography, sEMG) and map these predictions to corresponding prosthetic 

movements7–10. Despite promising results in adults with acquired amputation, few studies have 

been performed in those with congenital limb absence. One study recruited N = 4 adults with 

congenital limb absence and demonstrated limited success, applying sEMG and machine learning 

to predict 11 hand movements and finding classification accuracies of 52.1% ± 15.0%11. 

Additionally, in a cohort of children (N = 5, <21 years old) and adults (N = 2) with UCBED, a 

commercially available control system was used to predict missing limb movements12. Such 
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systems have been primarily designed for those with acquired limb loss and have yet to be refined 

for individuals with congenital limb differences. Only 2 of the 5 children demonstrated a 

classification accuracy greater than 80% for a limited repertoire of only 3 degrees of freedom12. 

Of these two publications, one studied and recruited children in a limited setting; however, an 

adult-specific prosthesis control system was employed which is unlikely to be directly applicable 

to children13. Collectively, these limitations restrict the translation of their findings to a more 

comprehensive understanding of affected muscle activity in children with UCBED.   

The translation of advanced sEMG techniques to decode motor intent and control prostheses for 

children with UCBED requires a more thorough understanding of the capabilities of their affected 

muscles. sEMG characteristics such as root mean squared (RMS), moving average, linear 

envelope, mean frequency (MNF), and median frequency are often used to investigate the 

biological control an individual has over their limb(s)14–17. These characteristics have yet to be 

investigated in children born with limb absence and therefore the capacity for these children to 

actuate their affected muscles is unknown.  

In this chapter, we investigated muscle activity using surface electromyography of children’s 

affected and healthy unaffected-contralateral muscles while they attempted to perform a variety of 

hand movements. We evaluated measures of within-limb and across-limb consistency, and 

distinguishability using RMS and MNF measures. Our study had three main objectives to identify 

if children with UCBED could consistently and distinguishably actuate their affected muscles, and 

to examine how this actuation might compare to their unaffected side. First, we assessed children’s 

ability to perform various distinguishable hand movements using split-data representational 

dissimilarity analysis, aiming to determine whether there was distinguishable structure in 

attempted movements. Second, we sought to quantify statistically significant differences in the 
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consistency of movements by comparing the affected and unaffected limbs. Lastly, we expanded 

our investigation to determine if a statistically significant relationship existed in the hand 

movement structure between the affected and unaffected limbs using representational dissimilarity 

randomization analysis. 

5.3. Methods 

5.3.1. Participants 

Nine participants (8 male, 1 female) with UCBED aged 8 to 20 years old participated in this study 

(mean = 14 years; SD = 4.4 years). Research protocols were approved by the Institutional Review 

Board at the Shriners Children’s – Northern California and were performed in accordance with the 

relevant guidelines and regulations. Participants provided written informed assent and/or their 

legal guardians provided written informed consent. Participant details can be found in Table 5-1. 

Additionally, participants exhibiting only a unilateral congenital upper limb deficiency in the 

forearm region were included. Children with UCBED otherwise underwent typical maturation and 

development. All potential candidates were clinically screened, and those with atypical 

development aside from UCBED were excluded. Therefore, we treated the data collected from the 

unaffected limb of each participant (described below) as a control for comparison.   

Table 5-1. Demographic information for participants with unilateral congenital below-elbow 

deficiency. PA = Passive device. BP = Body-powered device. Myo = Myoelectric device. 

†Activity specific device. 

Subject 

ID 
Age Sex 

Affected 

Limb 

Limb Length  

(cm) 

Limb Circumference 

(cm) 
Prosthesis 

Use 
Right Left Right Left 

SHR-A 20 Male Left  13  15 PA 

SHR-B 8 Male Right 14 16 20 21.5 PA 

SHR-C 11 Male Right 18 21 18 20 None 

SHR-D 9 Male Left 21.5 12.5 22.5 18.5 None 

SHR-E 18 Male Right 15 28 21 23 BP† 

SHR-F 16 Female Left 26.5 11.5 26.5 23.5 PA 

SHR-G 19 Male Left 26.5 13 25.5 21.5 Myo & PA 

SHR-H 14 Male Left 25 8 26 23 BP 

SHR-I 12 Male Right 10 24 21 24 BP 
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5.3.2. Data collection 

A 16-Channel Delsys Trigno surface EMG System (Delsys, Natick, USA) was used to capture 

affected and unaffected forearm muscle activity. The system consisted of wireless Trigno Mini 

Sensors with an inter-electrode spacing of 10 mm and dual on-board differential references. The 

sEMG signal input was set to a range of ±11mV and the data were bandpass filtered at 20 Hz to 

450 Hz18,19. A National Instruments USB-6210 data acquisition system (National Instruments 

Corp., Austin, USA) sampled sEMG data at 6,000 Hz and stored data in a MATLAB (MathWorks, 

Inc., Natick, USA) file structure for postprocessing and analysis. Additionally, a Logitech C922 

high-definition camera (Logitech International S.A., Lausanne, Switzerland) sampled at 15 frames 

per second was synchronized with the sEMG data. 

5.3.3. Experimental protocol 

We first performed “conceptual training” with each participant in which we introduced our 

experimental equipment, described terminology used during testing, provided a simple overview 

of sEMG, and allowed them to familiarize themselves20. After, we adhered the sEMG electrodes 

to their skin over the affected and unaffected forearm muscles using double-sided adhesive. The 

participants were asked to contract their affected limb as if they were making a fist while we 

palpated to find where the superficial muscles on their ventral side were most firm and we placed 

the first sEMG electrode there. If participants had a small residual limb length, less than about 10 

cm, then the first sEMG electrode was placed in the center of their residual limb starting on the 

ventral side. In either case, the remaining sEMG electrodes were placed around the circumference 

of the participants’ forearm muscles following the typical circumferential equidistant protocol21–

23. This procedure was repeated in the unaffected limb and electrodes were placed on the most 

proximal two-thirds of the forearm musculature (Figure 5-1). As reported in prior work, 7 sEMG 
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electrodes were used on each side24 (with the exception of SHR-A’s affected limb where 4 sEMG 

electrodes were adhered due to size limitations). 

 
Figure 5-1. Participants with sEMG electrodes donned across unaffected and affected limbs with 

sex and age in years old (y/o) specified. 

Participants were then informed of which hand movement was to be performed and were allowed 

to familiarize themselves before proceeding to data collection. A strategic set of 10 hand 

movements was selected, which included commonly used hand grasps in daily living25, individual 

digit motions, and wrist movements: index flexion (IF), key pinch (KP), pulp pinch (PP), index 

point (IP), cylindrical wrap (CW), cylindrical wrap wrist rotate (CR), tripod pinch (TP), wrist 

extension (WE), wrist flexion (WF), and wrist rotation (WR) (Figure 5-2a). To ensure rich data 

sets for analysis of the muscle activity and due to the potential cognitive demands of attempting to 
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move their missing limb, 10 repetitions of each movement were performed. Participants were 

tasked with envisioning and attempting the prompted hand movement with their affected limb 

while simultaneously mirroring this action with their unaffected limb. Participants performed the 

10 repetitions across 2 trials where a single trial began with the participant in the relaxed phase for 

4 seconds followed by 3 seconds of contraction as indicated by an auditory tone. The relaxation 

(no tone) and contraction (tone) phases were repeated 5 times each in a single trial ([5 relaxations 

and contractions] * 2 trials = 10 relax and contract repetitions for each hand movement). All 

participants were provided multiple opportunities for rest to mitigate fatigue. The structure of the 

experimental trials is illustrated in Figure 5-2b. 

 

Figure 5-2. Overview of the experimental outline. (a) The 10 hand movements used in the 

experimental procedures. (b) An illustration of the experimental paradigm depicting a trial 

consisting of relaxation and contraction phases. There were two trials each consisting of alternating 

phases of four seconds of relaxation and three seconds of contraction for a total of ten contraction 

and relaxation phases across trials. Participant photo shows a cylindrical warp (CW) contraction 

and relaxation phase. Figure layout adapted from39. 
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5.3.4. sEMG per-processing 

A program was written in MATLAB to pre-process (condition) the data collected from the sEMG 

electrodes by first concatenating data across the 10 repetitions for individual movements. 

Additionally, to remove the effect of participant reaction times (i.e., from when they first hear the 

tone to when they contract their muscles), 15% of the data over the relevant time interval 

(contraction/relaxation) was discarded from both the onset and recession of the movement26. 

We first performed analysis across sEMG channels, defined as the time-series voltage data 

produced from an individual sEMG electrode. From each channel, we assessed RMS and MNF 

characteristics, features that are commonly implemented and are sensitive to capturing the 

biological phenomenon of muscle excitation during hand movements15,27,28. For a given limb, 

movement, and sEMG channel the RMS and MNF were calculated with Equation 5-1 and 5-2, 

respectively. Where 𝑥𝑖 is the 𝑖-th of N samples from a single conditioned contraction (3 s) or 

relaxation (4 s) repetition (e.g. N = 6,000 Hz * 3 s * 0.7 = 12,600 samples for contraction)29. 

Additionally, 𝑓𝑗 and 𝑝𝑗 are the frequency variable and power spectrum, respectively, at a given bin 

𝑗 of M frequency bins29,30. The frequency range of interest was from 0-1,000 Hz, and the bin size 

was chosen as 0.4 Hz; therefore, the total number of bins was M = 2,500. 

𝑅𝑀𝑆 =  √∑ 𝑥𝑖
2𝑁

𝑖=1

𝑁
  Equation 5-1 

𝑀𝑁𝐹 =  
∑ 𝑓𝑗𝑝𝑗

𝑀
𝑗=1

∑ 𝑝𝑗
𝑀
𝑗=1

  Equation 5-2 

For a given limb, the RMS and MNF were normalized to their corresponding maximum across all 

movements, on an individual channel basis. All data presented here is therefore a percentage of 

the maximum characteristic per channel.  
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5.4. Analysis 

RMS and MNF characteristics were evaluated in both limbs. This included muscle excitation 

visualizations, investigating within-movement consistency with Kendall’s Coefficient of 

Concordance31,32 (see below for more details), and performing dissimilarity analysis to understand 

the distinguishability of hand movements. Furthermore, comparisons of hand movement 

consistency and the relatedness of movement characteristics across limbs with the RDM condition-

label randomization analysis33 were conducted. All analyses were performed on an individual 

participant basis.   

5.4.1. Muscle excitation 

5.4.1.1. Visualization 

The visualization of muscle excitation across hand movements and limbs was done to observe 

patterns in muscle activity across sEMG channels for RMS and MNF characteristics. The Shapiro-

Wilk Test34 was used to assess the normality of the RMS and MNF for each movement on an 

individual sEMG channel basis. This method was chosen due to its common application with 

limited sample sizes, as was the case in our study. The majority of the data were found to not be 

normally distributed. Therefore, all data were plotted using box and whisker plots for each sEMG 

channel and hand movement which included the relaxation phase.  

5.4.1.2. Movement excitation consistency 

To understand the degree to which muscle excitation during individual movements were 

reproducible, measures of consistency were evaluated. We quantified the within-movement 

consistency given the RMS and MNF muscle excitation across sEMG channels for participants 

each time the same movement was performed. Due to the nonparametric nature of the RMS and 

MNF data, the within-movement consistency was determined with Kendall’s Coefficient of 
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Concordance, W31,32. This test produces a value of agreement from the ranked order of the 10 

repetitions for RMS and MNF characteristics across the number of entities (sEMG channels). 

Therefore, Kendall’s W provides a measure of agreement (with 0 indicating no agreement and 1 

indicating complete agreement) in muscle excitation across sEMG channels (i.e., reproducibility 

of muscle excitation patterns.) The strength of agreement/consistency adapted from35–37 are 

defined as: W < 0.20 (poor consistency), 0.20 ≤ W < 0.40 (minimal consistency), 0.40 ≤ W < 0.60 

(weak consistency), 0.60 ≤ W < 0.80 (moderate consistency), and W ≥ 0.80 (strong consistency). 

5.4.1.3. Across movement dissimilarity 

To examine the distinguishability of muscle response when children with UCBED attempted to 

perform each hand movement, the spread (given by the interquartile range (IQR)) and median 

amplitude of both RMS and MNF characteristics were analyzed. In literature, representational 

geometry is often applied to quantify the distinguishability in measures of physiological activity 

(e.g., sEMG, EEG, fMRI)33,38–40 when participants are presented with different stimuli. Here, we 

applied and adapted the techniques outlined in33,38–40 to assess the distinguishability of muscle 

excitation (sEMG channels). In this context, we treated the hand movements as the stimuli. 

Additionally, we illustrated this distinguishability through a qualitative visual representation.  

To perform these analyses, a split-data representational dissimilarity matrix (sdRDM) was 

produced and analyzed. The data generated from performing a hand movement multiple times was 

first split into two equal data sets containing even and odd repetitions. Then the median and IQR 

of the RMS and MNF were obtained for each data set on a per-channel basis. Each entry of the 

sdRDM represented the rank-correlation distance between two data sets for every pair of hand 

movements across the sEMG channels. This distance was calculated from Kendall’s Tau-b (𝜏𝑏) 

rank correlation coefficient, to account for ties, and is defined as (1 - 𝜏𝑏). Kendall’s correlation 
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coefficient was used to accommodate the fact that our data sets were not normally distributed when 

checked with the Shapiro-Wilk Test34. Here the “objects” of Kendall’s correlation coefficient test 

were defined as the median or IQR of the RMS or MNF for each sEMG channel (depending on 

which measure was being tested), and the two “variables” were any two pairs of hand movements. 

Additionally, a representational dissimilarity matrix (RDM) was produced as described above, 

without splitting the data into two datasets, and multidimensional scaling (MDS) was applied for 

visualization as adapted from41. A depiction of the dissimilarity dataflow as described above is 

given in Figure 5-3. 

To determine a distinguishable structure of hand movements across the characteristics, the non-

parametric RDM-level condition-label randomization test for exemplar discriminability index 

(EDI) was performed on the sdRDMs40 (hereby referred to as the sdRDM analysis). The EDI was 

defined as the average between-exemplar dissimilarity estimate (the sdRDM off-diagonals) minus 

the average within-exemplar dissimilarity estimate (the sdRDM diagonal): EDI = mean(between-

exemplar dissimilarity) – mean(within-exemplar dissimilarity), as adapted from40. A larger EDI 

was an indication that the hand movements may be more discriminable, and alternatively, smaller 

EDI values suggested hand movements are less discriminable. The sdRDM analysis consisted of 

simulating the null distribution by performing an exhaustive permutation of the rows of the 

sdRDM and calculating the EDI for every permutation. Therefore, we define the null hypothesis 

H0 as there being no structure to the data and pairwise distances of hand movements being equal 

(i.e., the intra-movement and inter-movement dissimilarities can be shuffled without change to the 

sdRDM structure). The EDI of the unshuffled sdRDM was then calculated and used to estimate 

the p-value by a proportion, i.e., by taking the EDIs in the null distribution that were greater than 

the unshuffled EDI. A significance level of α = 0.05 was used. A p-value less than this threshold 
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would indicate that there is significant structure in the data and that pairwise distances of hand 

movements are not equal. This would suggest that as participants performed missing hand 

movements the muscle excitation derived from these motions were distinguishable from one 

another.  

 

Figure 5-3. Dataflow to produce the split-data representation dissimilarity matrix (sdRDM) and 

RDM which are used to understand and visualize distinguishability. Participants attempted various 

hand movements, and muscle excitation was recorded through sEMG. Data for the sdRDM were 

split into two data sets containing even and odd trials, and measures of amplitude and spread were 

calculated from each. Then the sdRDM and RDM were produced with 1 minus the correlation 

between hand movements for split and unsplit data, respectively. As the dissimilarity increases the 

color gets darker and as it decreases the color gets lighter. The RDM was produced from unsplit 

data and used for multidimensional scaling (MDS) visualization and distinguishability across 

limbs (described further below). 
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To qualitatively visualize the distinguishability across hand movements, the RDM constructed 

from both data sets (i.e., unsplit data) was used and multidimensional scaling (MDS) was applied 

(Figure 5-3). MDS is a dimensionality reduction technique with the objective of reflecting the 

dissimilarity between items by projecting their distances in a lower dimensional space38. 

Nonmetric MDS was applied to the dissimilarity matrices (RDMs) through the MATLAB function 

mdscale with the squared stress criterion (sstress)39. The statset parameter for the maximum 

number of iterations (MaxIter) was increased to allow for convergence of the MDS solution. 

5.4.2. Differences across limbs 

5.4.2.1. Consistency across limbs 

To further understand if the consistency of the children’s affected muscle excitation was similar 

to that of their unaffected limb, across-limb comparisons were made. The previously-discussed 

within-movement consistency (across all hand movements), was used to determine overall 

consistency for each limb. Therefore, all movement consistencies for the affected limb were 

compared to all movement consistencies for the unaffected limb of a given participant. First, we 

assessed the normality for measures of consistency across the 10 movements for each limb with 

the Shapiro-Wilk Test34. Then, due to the non-parametric nature of the data, a Wilcoxon Signed 

Rank test with an α = 0.05 was used for comparisons. The null hypothesis, H0, was defined such 

that the difference between the median movement consistency across the two limbs is zero. In this 

way, we were able to determine if there were any statistical differences in the participants’ ability 

to attempt repeatable missing hand movements with their affected limb compared to their 

unaffected limb. 
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5.4.2.2. Relatedness across limbs 

In order to understand if attempted hand movements were related across the affected and 

unaffected limbs, measures of the RMS and MNF characteristics were evaluated with the non-

parametric RDM label randomization analysis adapted from33. The affected limb RDM was 

selected, and 50,000 random permutations of both the rows and columns were performed. At each 

permutation, the RDM of the affected limb and the unaffected limb were compared with Kendall’s 

Tau-a (𝜏𝑎) correlation, provided in the representational similarity analysis toolbox42, thereby 

allowing for simulation of the null distribution. The null hypothesis, H0, is defined as two RDMs 

being unrelated. We calculated the correlation between two RDMs, which were subject to no label 

permutations, and found an estimate for the p-value through the proportion of correlations in the 

null distribution greater than the non-permuted correlation33. A significance level of α = 0.05 was 

selected and if the estimated p-value was less than the significance level then there was favor for 

the alternative hypothesis H1 that there is relatedness between the two RDMs. This suggests that 

the muscle excitation produced when participants performed missing hand movements is 

statistically related to that of their unaffected limb.  

5.5. Results 

5.5.1. Muscle excitation 

5.5.1.1. Visualization 

To visualize sEMG patterns across channels, the median RMS and MNF muscle excitation across 

limbs and hand movements were calculated as participants attempted to perform each motion 

(Figure 5-4, Figure 5-5, and Appendix B). For the RMS characteristic, the unaffected limb 

exhibited visual signs of normal muscle function. That is, as participants performed various 

movements, only a subset of sEMG channels recorded muscle excitation. This subset varied based 

on the attempted movement, indicating coordinated patterns of muscle excitation were being 
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enacted, which is considered normal in unaffected healthy limbs43. For example, during wrist 

extension and flexion, the extensor carpi radialis longus and flexor carpi radialis muscles are 

activated separately for each wrist movement43. A similar phenomenon can be seen in Figure 5-4 

as exemplified by participant SHR-C and throughout participant data sets (Appendix B). Different 

patterns of sEMG activity were observed for the RMS characteristic across attempted hand 

movements of participants' affected limbs, thereby providing a visual indication of the extent to 

which children with UCBED could actuate their affected muscles. Interestingly, although not in 

all cases, when the participants were asked to attempt a hand movement with their affected limb 

the majority of sEMG channels recorded muscle excitation above the relaxed state (see Figure 5-

4 and the RMS figures in Appendix B). Additionally, it is important to note that for some 

participants the affected limb RMS characteristic across the sEMG channels demonstrated 

relatively large degrees of variability, e.g., participant SHR-B produced a large RMS spread across 

sEMG channels for most hand movements (see Appendix B Figure B-3). In contrast, participant 

SHR-D had very few visual patterns of RMS muscle excitation with similar spread across 

movements. Therefore, we observed varied visual sEMG patterns of RMS muscle excitation across 

hand movements and participants. This visual inspection was crucial prior to performing statistical 

evaluations, particularly for identifying patterns within the sEMG voltage data. It played a key role 

in guiding the subsequent statistical analyses conducted in the proceeding sections. 

For the MNF characteristic, patterns were illustrated in frequency-based muscle excitation for the 

unaffected and affected limbs among participants across sEMG channels. The MNF muscle 

excitation for both limbs showed parallels to their RMS counterparts. While the unaffected 

excitation differed across sEMG channels from movement to movement, the majority of the 

affected excitation was above the relaxed state, as illustrated by participant SHR-C in Figure 5-5 
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and Appendix B. Although there were variations in the degree of visual patterns for the RMS 

characteristics across movements, the MNF characteristics revealed additional patterns for most 

participants across both limbs (see MNF figures in Appendix B). This indicates that separately and 

together RMS and MNF characteristics may provide sufficient information to differentiate 

between hand movements.  

 

Figure 5-4. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-C. 
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Figure 5-5. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-C. 

5.5.1.2. Movement excitation consistency 

Within-movement consistency was calculated from Kendall’s Coefficient of Concordance, W, to 

quantify participants' ability to consistently perform patterns of RMS and MNF muscle excitation 

for each limb over the multiple trials of hand movements. Here consistencies ranged from W < 

0.20, 0.20 ≤ W < 0.40, 0.40 ≤ W < 0.60, 0.60 ≤ W < 0.80, and W ≥ 0.80 with poor, minimal, weak, 

moderate, and strong consistency, respectively. The definition of consistency in this work was 

adapted from35–37 and represents a novel measure not previously applied in this context. These 
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values were utilized to demonstrate consistency and assess the affected limb in reference to the 

healthy, unaffected limb as a control. In general, for the unaffected limb, measures of consistency 

ranged from moderate to strong (0.60 ≤ W ≤ 0.99), providing a baseline for healthy, typical, 

repetitive muscle actuation; few participants had poor to weak consistency (0.16 ≤ W ≤ 0.59). 

Specifically, for the RMS consistency, all participants except for SHR-B had at least 9 hand 

movements with moderate to strong consistency i.e., a W of greater than 0.60. Interestingly, SHR-

B had the top two lowest RMS consistencies in the unaffected limb for the movement-type 

cylindrical wrap with wrist rotated (CR) and cylindrical wrap (CW), with values of W = 0.25 and 

W = 0.27, respectively. SHR-B only had 4 out of 10 hand movements with moderate to strong 

consistencies. Similarly, participant SHR-I had the third lowest consistency of W = 0.30 for wrist 

flexion (WF). Alternatively, for the MNF unaffected limb within-movement consistency, all 

participants except SHR-B had moderate to strong consistency values for at least 5 hand 

movements while SHR-B had only 2. The top three lowest consistencies were present in 

participants SHR-F (W = 0.16 for wrist extension (WE)), SHR-A (W = 0.21 for pulp pinch (PP)), 

and SHR-B (W = 0.24 for wrist rotation (WR)) in the poor to minimal consistency range. All hand 

movement consistency values for the unaffected limb can be seen in the first column of Figure 5-

6. 

When attempting to move their missing limb, participants were able to produce repeatable patterns 

of affected muscle excitation, although there was variability across participants. Repeatable 

patterns are an important facet for robust control of prostheses given that 6-9 common hand 

movements can account for nearly 80% of activities in daily living25,44, indicating the efficacy of 

prosthesis use in this population. When evaluating the RMS within-movement consistency in the 

affected limb, we found at least 5 of the 10 hand movements had moderate to strong consistency. 
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Here, participant SHR-A had the lowest consistency value of W = 0.14 for the cylindrical wrap 

(CW). Participant SHR-B had the second and third lowest consistency values: W = 0.17 in the 

cylindrical wrap (CW) and W = 0.22 in the cylindrical wrap with wrist rotated (CR). Additionally, 

the MNF within-movement consistency for the affected limb showed that all participants except 

SHR-B had moderate to strong consistency values for 4 or more hand movements. SHR-G had the 

lowest consistency value of W = 0.13 for index flexion (IF). Participant SHR-B had only 1 hand 

movement, wrist flexion (WF), with a moderate consistency value, and had the second through the 

sixth lowest consistency values from poor to weak. All other consistency values for the affected 

limb can be seen in the second column of Figure 5-6. Together, we see that 5 of 10 movements for 

RMS and 4 of 10 movements for MNF approached moderate to strong consistency (i.e., nearing 

the consistency for 6-9 hand movements). In conclusion, this may indicate that participants were 

able to perform reproducible attempted hand movements in their affected limb with a consistency 

range similar to that of their healthy unaffected limb (0.60 ≤ W ≤ 0.99). Statistical comparisons of 

consistency measures are further investigated in section 5.5.3.1 to gain a deeper understanding of 

the differences across limbs. 
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Figure 5-6. Within-movement consistency for median RMS and MNF data across repetitions 

obtained from Kendall’s Coefficient of Concordance, W. As the color gets darker this indicates a 

decrease in within-movement consistency, and the lighter the color an increase in consistency. The 

ranges of consistency are defined as W < 0.20 (poor consistency), 0.20 ≤ W < 0.40 (minimal 

consistency), 0.40 ≤ W < 0.60 (weak consistency), 0.60 ≤ W < 0.80 (moderate consistency), and 

W ≥ 0.80 (strong consistency). 

5.5.2. Across movement dissimilarity 

To further understand whether the hand movements were dissimilar or distinguishable from one 

another, sdRDM analysis was performed. This assessment was motivated given the emergence of 

different muscle excitation patterns observed across hand movements in section 5.5.1.1. The 

objective was to determine whether there was sufficient information for distinguishable structure 
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across hand movements within the measures of RMS and MNF characteristics. The investigation 

of the median RMS and MNF enabled us to understand whether the central tendency of the hand 

movement muscle excitation exhibited distinguishable structure. Additionally, assessing the 

spread/variability (i.e., interquartile range (IQR)) of these characteristics allowed us to determine 

whether the reliability of hand movement muscle excitation also exhibited a distinguishable 

structure. Collectively, this analysis provided an indication of typical muscle excitation by 

assessing the distinguishability between movements for measures of RMS and MNF. It is 

noteworthy that typical muscle excitation involves the variability in sEMG signals across channels 

from task to task, or even within the same movement15. Furthermore, we employed 

multidimensional scaling (MDS) to qualitatively visualize the distinguishability across hand 

movements. 

The sdRDM analysis of the median and IQR measures for RMS and MNF indicated that 

distinguishable structures of sEMG data were present when the participants with UCBED 

attempted to perform missing hand movements. This analysis also showed distinguishable 

structures of sEMG data were present in participants’ unaffected limbs, as is expected of typical 

muscle contractions. However, this was not the case for all participants e.g., the analysis did not 

provide sufficient evidence to suggest there was a distinguishable structure for the median RMS 

of SHR-B’s unaffected and affected limbs with p = 0.188 and p = 0.267, respectively. Additionally, 

sdRDM analysis of the affected limb did not provide sufficient evidence to suggest a 

distinguishable structure for the following participants: SHR-D (p = 0.106, RMS IQR), SHR-F (p 

= 0.118, MNF IQR), and SHR-I (p = 0.163, RMS IQR). All other sdRDM analyses for the affected 

and unaffected limb showed a distinguishable structure of the hand movements; all p-values for 

each limb across participants and characteristics can be found in Table 5-2.  
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Table 5-2. Split-data representational dissimilarity analysis to distinguish the structure of 

amplitude and spread of RMS and MNF characteristics for participants (Par). *Red p-values from 

the sdRDM analysis indicate a failure to reject the null hypothesis (i.e., there was not sufficient 

evidence to suggest a distinguishable structure of the hand movements), given a significance level 

of α = 0.05. †Green EDI values indicate the maximum within a column. ‡Yellow EDI values 

indicate the minimum within a column. 

Par 

Unaffected Affected 

RMS EDI MNF EDI RMS EDI MNF EDI 

Median IQR Median IQR Median IQR Median IQR 

SHR-A 
0.552 0.483 0.629 0.235 0.319 0.459 0.519 0.452 

p < 0.001 p < 0.001 p < 0.001 p = 0.005 p = 0.003 p = 0.006 p < 0.001 p < 0.001 

SHR-B 
0.095‡ 0.546 0.252‡ 0.728† 0.047‡ 0.256 0.167‡ 0.510† 

p = 0.188* p < 0.001 p = 0.018 p < 0.001 p = 0.267* p = 0.036 p = 0.023 p < 0.001 

SHR-C 
0.550 0.472 0.720 0.377 0.535 0.294  0.571 0.423 

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.003 p < 0.001 p < 0.001 

SHR-D 
0.455 0.463 0.667 0.205‡ 0.466 0.114‡ 0.665† 0.199 

p < 0.001 p < 0.001 p < 0.001 p = 0.020 p < 0.001 p = 0.106* p < 0.001 p = 0.015 

SHR-E 
0.421 0.453 0.648 0.235 0.489 0.273 0.599 0.212 

p < 0.001 p < 0.001 p < 0.001 p = 0.007 p < 0.001 p < 0.001 p < 0.001 p = 0.018 

SHR-F 
0.554 0.459 0.438 0.603 0.474 0.254 0.590 0.119‡ 

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.004 p < 0.001 p = 0.118* 

SHR-G 
0.635† 0.578† 0.783† 0.449 0.629† 0.519† 0.529 0.303 

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.002 p < 0.001 p = 0.007 

SHR-H 
0.457 0.368‡ 0.468 0.214 0.351 0.212 0.233 0.364 

p < 0.001 p < 0.001 p < 0.001 p = 0.007 p < 0.001 p = 0.008 p = 0.005 p < 0.001 

SHR-I 
0.552 0.497 0.453 0.366 0.474 0.116 0.309 0.180 

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.163* p < 0.001 p = 0.021 

Further investigation of the sdRDM exemplar discriminability index (EDI) highlighted 

participants that may be good candidates for control of dexterous prostheses i.e., large amplitude-

based (median) EDI values suggest increased distinguishability of prompted missing hand 

movements. Additionally, the large EDI values for IQR measures indicated two findings. First, 
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typical muscle excitation, which is indicative of distinguishable movements and therefore 

potentially effective control of dexterous prostheses. Second, variability may be too large across 

sEMG signals which may indicate poor consistency, upon which the muscle excitation plots and 

measures of consistency should be further investigated. Here, maximum and minimum EDI values 

are highlighted within the RMS or MNF measures for the unaffected and affected limbs across 

participants. SHR-G had the majority of maximum EDI values for 3 of the 4 measures of the 

unaffected limb and 2 of the 4 measures for the affected limb. In contrast, SHR-B had the majority 

of minimum EDI values for 2 of the 4 measures of the unaffected and affected limb, respectively. 

EDI values across limbs for measures of RMS and MNF are highlighted for each participant in 

Table 5-2.  

To qualitatively visualize the differences across hand movements, the complete data set across 

trials (unsplit) was used to create the RDM for each limb. As previously mentioned, nonmetric 

MDS was used on each limb’s RDM to reflect the higher dimensional distances across hand 

movements in a three-dimensional subspace. The MDS illustrated distinguishable differences 

between the various hand movements with few motions close and/or overlapping in the subspace 

as seen by the separation of points in the top panel of Figure 5-7a and b. Figure 5-7 shows both 

the median and IQR of RMS and MNF characteristics with the MDS (top) and corresponding 

RDM (bottom). Additionally, all MDS and RDM plots for participants can be seen in Appendix 

B. These results reveal, through a qualitative visualization, that the measures analyzed provide 

information to distinguish attempted hand movements by visual separation.  
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Figure 5-7. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-C. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR).  

5.5.3. Differences across limbs 

5.5.3.1. Consistency across limbs 

To get a better understanding of the differences in the participants’ ability to attempt consistent 

hand movements with their affected limb, statistical comparisons were made to the consistency of 

their unaffected limb. We found RMS consistency in the affected limb to be statistically lower 

than the unaffected limb for participants SHR-A, C, D, E, and H. Alternatively for MNF, 
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participants SHR-C, SHR-E, and SHR-I had statistically lower consistency in the affected limb 

when compared to the unaffected limb. In each of the preceding cases, the unaffected limb had an 

overall higher median than the affected limb. The consistency for RMS and MNF across 

participants with highlighted statistical differences are shown in the top and bottom panels of 

Figure 5-8, respectively. The resulting consistencies in RMS and MNF across limbs (Figure 5-8) 

indicated that some participants had difficulty reproducing hand movements to a similar degree as 

that of their unaffected limb. This inability to reproduce movements, in turn, may hinder their 

potential to use multi-grasp prostheses. 

 

Figure 5-8. Comparison of across-limb consistency for the 10 hand movements. Participant 

comparisons are done with a Wilcoxon Signed Rank test given a significance level of α = 0.05. 

Blue shading refers to the unaffected limb while black shading is for the affected limb. *Represents 

those participants where the across-limb consistency was found to be in favor of the alternative 

hypothesis i.e., the difference in the median consistency across the two limbs was not zero. 
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5.5.3.2. Relatedness across limbs 

To understand if the structure of the affected limb RDM was related to that of the unaffected limb, 

the non-parametric RDM label randomization test was used33. It was found that the majority of 

participants had some degree of shared information such that the pair-wise distances between hand 

movements for their affected limb were related to that of their unaffected limb. There was 

relatedness with the exception of the following participants: SHR-F (p = 0.060, RMS IQR), SHR-

B (p = 0.055, median MNF), and SHR-F (p = 0.054, median MNF). Additionally, Table 5-3 shows 

the non-permuted Kendall’s Tau-a (𝜏𝑎) correlations used for the RDM test with corresponding p-

values. These results indicate that the majority of participants had related information across limbs 

for amplitude and spread of RMS and MNF characteristics. 

Table 5-3. Relatedness of RDMs across limbs for each participant. The correlation and p-values 

for the amplitude and spread of RMS and MNF characteristics are provided. *Red cells highlight 

values from the RDM label randomization test, which indicate there was not sufficient evidence 

for the relatedness across limbs (with a significance level of α = 0.05). 

Participant 

RDM Relatedness Across Limbs 

RMS Correlation MNF Correlation 

Median IQR Median IQR 

SHR-A 
0.219 

p = 0.002 

0.266 

p = 0.001 

0.234 

p = 0.002 

0.288 

p < 0.001 

SHR-B 
0.401 

p < 0.001 

0.182 

p = 0.015 

0.119 

p = 0.055* 

0.381 

p < 0.001 

SHR-C 
0.255 

p = 0.005 

0.159 

p = 0.017 

0.318 

p < 0.001 

0.293 

p < 0.001 

SHR-D 
0.272 

p < 0.001 

0.215 

p = 0.005 

0.180 

p = 0.008 

0.364 

p = 0.001 

SHR-E 
0.465 

p < 0.001 

0.262 

p < 0.001 

0.298 

p = 0.001 

0.254 

p < 0.001 

SHR-F 
0.200 

p = 0.005 

0.116 

p = 0.060* 

0.123 

p = 0.054* 

0.200 

p = 0.003 

SHR-G 
0.439 

p < 0.001 

0.349 

p < 0.001 

0.204 

p = 0.002 

0.301 

p < 0.001 

SHR-H 
0.224 

p = 0.014 

0.158 

p = 0.013 

0.423 

p < 0.001 

0.200 

p = 0.005 

SHR-I 
0.179 

p = 0.007 

0.144 

p = 0.030 

0.202 

p = 0.011 

0.137 

p = 0.023 
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5.6. Discussion 

This chapter investigated the extent to which affected muscles respond when children with 

UCBED attempted to perform various hand movements. We have shown that even though these 

children were born with limb deficiency and have never used their affected muscles to actuate an 

intact limb there is still patterned, consistent, and distinguishable muscle activity in response to 

attempted missing hand movements.   

5.6.1. Visible patterns of muscle excitation 

Across most participants, different sEMG patterns of muscle excitation for both RMS and MNF 

characteristics were seen in the affected limb indicating their ability to excite coordinated muscle 

excitation as they attempted the various hand movements (Figure 5-4, Figure 5-5, and Appendix 

B). Furthermore, as expected in the unaffected limb, there were differences in muscle excitation 

as captured across sEMG channels. Although this was true for many participants’ affected limbs, 

it was not true for all. For example, SHR-A had few visual patterns in their RMS muscle excitation 

across attempted hand movements, which can be seen in Appendix B Figure B-1. This finding is 

likely attributed to the affected limb circumference (15 cm) and length (13 cm), the smallest 

circumference out of the entire cohort. Therefore, due to the size, it is doubtful that the participant 

has developed similar muscular structure and mass to those participants with longer affected limbs. 

Additionally, participant SHR-B showed a large interquartile range in RMS muscle excitation in 

their affected limb and interestingly, similar results were also observed in their unaffected limb. 

This large spread in data across the hand movements and limbs was likely attributed to the child’s 

age, as they were the youngest (8 years old) among our participants; their short attention span for 

the experimental task thereby affected movement reproducibility. Finally, when viewing 

participant SHR-D there was apparent muscle excitation, although few visual patterns emerged in 
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the affected limb for both RMS and MNF characteristics across the attempted hand movements. 

Although we believe that the limited observed patterns and large spread across data may have been 

attributed to a premature sensory-motor system in participants SHR-B and SHR-D, given their 

ages (8 and 9 years old, respectively) and the fact that their limbs have not fully developed, further 

investigation is required. This would involve larger cohorts spanning various ages and limb lengths 

to quantify these effects. Though it is clear that most participants can generate coordinated muscle 

activation in their affected side, it also appears that limb size may be a relevant factor in detecting 

muscle activity. Furthermore, age and cognitive factors such as attention spans may also be 

important in the reproducibility of muscle excitation and ultimately the efficacy of advanced 

prosthesis control systems.  

5.6.2. Reproducible attempted hand movements 

The participants' ability to reproduce attempted hand movements was explored through measures 

of within-movement consistency. The unaffected limb exhibited quantitatively higher consistency 

than that of the affected limb. However, when comparing the median consistency across limbs for 

each participant, only a few measures were found to be significantly different (Figure 5-8). One 

exception was participant SHR-B who had the lowest consistency across both limbs for RMS and 

MNF characteristics, which aligns with the visualization of muscle excitation that depicted large 

interquartile ranges across sEMG channels (see Appendix B Figures B-3 and B-4). Additionally, 

the MNF consistency was quantitatively lower than that of the RMS across participants. This 

finding may be attributed to MNF itself because although it is a robust measure of muscle 

excitation, it is often used as an assessment of and is sensitive to muscle fatigue15,28. Even though 

participants were given multiple rest periods, it is possible they became fatigued at various stages 

which would explain our findings. Fatigue may be particularly relevant in this cohort given that 
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despite consistent patterns of movement-to-movement muscle excitation, the activity may be 

deemed as physically demanding because they have never contracted their affected muscles in 

these repeatable, distinct ways. However, MNF remains a relevant measure for investigating 

muscle excitation in this unique population, as it is commonly employed when assessing 

alternative measures of physiological muscle activity28. Additionally, participants’ ability to 

produce repeatable patterns of muscle excitation in their affected limb suggests the potential for 

the use of multi-grasp prostheses. From this, it follows that given proper training, consistency is 

expected to approach that of their unaffected limb (i.e., nearing the consistency for 6-9 hand 

movements). Aside from training, an investigation into optimal sEMG characteristics, apart from 

RMS and MNF, should be explored for device control. The effects of physical conditioning, 

training, fatigue, and optimal sEMG characteristics are all important considerations for the use of 

advanced prostheses and muscle-based control systems in this population.  

5.6.3. Distinguishable attempted hand movements 

There was a distinguishable structure to the RMS and MNF characteristics in the affected limb for 

the majority of the participants (Table 5-2). Moreover, there was a degree of relatedness across 

limbs as children attempted missing hand movements (Table 5-3). However, this was not true for 

all participants. For example, participant SHR-B did not show a distinguishable structure for 

median RMS and relatedness for the median MNF across limbs, as previously shown in the results. 

This may support the large spread seen in the muscle excitation across sEMG channels and the 

lack of consistency in hand movements for this individual participant (see Appendix B Figures B-

3 and B-4). As discussed previously, these findings are likely attributed to factors of age and limb 

size. For measures of spread, some participants did not demonstrate a distinguishable structure 

(i.e., SHR-D and SHR-I for RMS IQR, and SHR-F for MNF IQR). Moreover, for the latter (SHR-
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F), we did not find that the pair-wise distances between hand movements for the RMS IQR 

measures were related across limbs. We found muscle excitation was conceivably both 

distinguishable across movements and related across limbs as a result of participants 

simultaneously mirroring hand movements. Accordingly, participants were trying to imagine 

performing the same movement to the same degree with every repetition. As a result, this still 

strongly indicates children’s potential ability to actuate their affected muscles in distinguishable 

and consistent patterns, and with proper training may be able to effectively control dexterous 

prostheses.   

The EDI values (Table 5-2) provided additional insight into the distinguishability of the muscle 

excitation structure. To note, participant SHR-G had the majority of maximum EDI values across 

all participants and limbs. This was likely attributed to a more mature sensory-motor system as the 

participant was 19 years old and uses a myoelectric prosthesis; that is, they control their device 

using the sEMG of their affected muscles. Although not a pattern recognition sEMG control 

system that necessitated contraction of their affected muscles in unique patterns, this participant 

still used 2-site control that required isolation and contraction of larger muscle groups in their 

affected limb. Presumably, this may have ameliorated their ability to generate consistent 

distinguishable muscle excitation patterns when prompted during the experiment. Participant 

SHR-B had a majority of the lowest EDI values across limbs, which parallels the previously 

discussed consistency and distinguishability results. Undoubtedly, these two participants can allow 

us to begin understanding the variability that may be present in this population of children and also 

provides a further appreciation for the improvements possible with regular prosthesis use and 

actuation of affected muscles through training. 
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The multidimensional scaling (MDS) plots are useful to visualize the distinguishability of the 

various hand movements. Although most participants showed a distinguishable structure across 

movements (see figures in Appendix B), there were a few exceptions. The RMS and MNF 

correlation distances between hand movements were determined by the median across repetitions. 

If a participant had low movement consistency the median would not be useful to define the 

motion, and the RDM and MDS plots would not demonstrate the distinguishability of hand 

movements. We can see this clearly demonstrated in participant SHR-B, who exhibited poor RMS 

and MNF consistency measures of muscle excitation for both the affected and unaffected limb. 

5.7. Conclusions 

We have shown in a limited cohort of children with UCBED that they possess a degree of 

biological control over their affected muscles with the ability to perform consistent and 

distinguishable hand movements. However, not all participants were able to achieve this degree of 

biological control over their affected muscles which may have been attributed to age and limb size, 

since cognitive demands and robust musculature are important to achieve meaningful muscle 

activation. A limitation of this study that could have affected the results was that we did not have 

a cohort of age- and sex-matched able-bodied participants to serve as a ground truth control for 

typical muscle excitation. Nevertheless, the participants underwent typical development and 

maturation, aside from their affected limb, allowing their unaffected limb to serve as an internal 

control for comparison. Our findings also suggest that children with UCBED may have the ability 

to use advanced prosthesis control systems. However, further work is needed to examine age and 

limb size with larger cohorts and more statistical power to effectively adapt, translate, and 

prescribe dexterous prostheses to the pediatric population. The bulk of literature for dexterous 

upper limb prosthetic devices is saturated in adult-based control systems using sEMG. Very 
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limited success has been found in prior studies with UCBED cohorts11,12. Moreover, these studies 

either did not investigate populations of children or simply applied commercially available control 

systems that were built on research and refinement in populations with acquired amputations. Our 

work shows distinguishable and consistent patterns of muscle excitation found in children with 

UCBED when they attempt to perform hand movements. We suggest that these findings warrant 

further investigation into techniques to best tune, adapt, and leverage existing advanced control 

techniques, such that they may be most effective in meeting the unique demand of children, most 

of whom will have a congenital upper limb absence2.  
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Chapter 6. Decoding hand motor intent in children with UCBED 

The majority of this chapter has been submitted for review as: 

Battraw MA, Fitzgerald J, Winslow E, James MA, Bagley AM, Joiner WM, Schofield JS. 

(2024). Surface electromyography evaluation for decoding motor intent in children with 

congenital upper limb deficiency. Sci. Rep. Under Review. 

6.1. Chapter preface 

The evaluation of surface electromyography (sEMG) to decode hand motor intent in children with 

unilateral congenital below-elbow deficiency (UCBED) is presented in this chapter. There are 

various sEMG signal characteristics (features) that can be extracted from the time domain, 

frequency domain, and time-frequency domain to enhance the decoding of hand motor intent. 

Common feature sets derived from sEMG data of able-bodied adults have been developed and 

employed to decode movements in adults with acquired limb loss. However, since children with 

UCBED were born with limb absence, it is unclear if these adult-based feature sets can be readily 

applied to provide optimal movement decoding. Additionally, the ability to decode with higher 

accuracy may come with the tradeoff of increased training and testing times. This poses relevant 

potential limitations, as time delays may promote user frustration and contribute to device 

rejection. Moreover, individuals using dexterous upper limb devices will typically employ a subset 

of grasp movements rather than wanting to use the full range of grasps offered by the device—a 

practical consideration for multi-grasp prostheses. To address these limitations, within this chapter, 

we systematically tuned classification algorithms with a large set of features to understand which 

sEMG signal characteristics maximized classification performance. Subsequently, we determined 

the training and testing times and assessed them in consideration of practical time limitations to 

avoid user frustration. Finally, we generated small subsets of grasp movements that provided 

optimal classification performance. The work presented within this chapter provides an essential 
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foundation for the next steps in real-time control of multi-grasp prostheses among children with 

UCBED.  

6.2. Introduction 

Unilateral congenital below-elbow deficiency (UCBED) is the absence of an upper limb that 

occurs at the anatomical region between the proximal to distal segments of the forearm1. To those 

afflicted, this condition can pose significant challenges in psychosocial and physical functioning 

while they interact within their daily environments2. The naturalistic motor control of advanced 

dexterous prosthesis utilizing surface electromyography (sEMG, the measurement of the residual 

muscle’s electrical activity) has yet to be fully investigated for children with UCBED. As these 

children were born never having actuated a hand, and their muscles and limbs never fully 

developed, prosthesis control presents with a variety of considerations that are unique from adults 

or other children that acquired their limb absence later in life. For example, there has been very 

limited study on how the muscle activity of their affected limbs may manifest especially when 

attempting to move the missing hand for prosthetic control purposes. This presents a limitation in 

the effective implementation of dexterous upper limb devices and drives the need to explore, adapt, 

and leverage current adult-based technologies to improve the motor control possibilities for 

prostheses offered to children with UCBED.  

Previous work has shown that children with UCBED have a degree of biological control over their 

affected musculature i.e., when they attempted various missing hand movements there was 

measurable consistency and distinguishability of sEMG muscle excitation3. Furthermore, through 

the use of an emerging prosthetic control modality, namely ultrasound, it has also been shown that 

children with UCBED generate distinct patterns of muscle deformation that can be classified to 

decode motor intent4. Although these results are exciting, ultrasound-based control technology is 
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not mature or commercially available and therefore lacks a translational component. Current state-

of-the-art dexterous control uses sEMG classification algorithms to decode motor intent and 

therefore drive a prosthesis. However, little work has addressed how to effectively translate the 

currently available sEMG classification technologies to the pediatric UCBED population. 

In contrast, much research has been conducted to understand what sEMG features and/or 

classifiers may be most effective in decoding hand motor intent from the activity of forearm 

muscles5–9, to name a few. However, most of this work was done with adult able-bodied 

individuals, and thus it is often assumed that top-performing feature sets and classifier 

combinations will translate effectively to those with acquired amputations10; however, these 

assumptions are often not tested rigorously in affected populations. In studies that do employ 

cohorts of adults with acquired amputations, classification of missing limb movements from sEMG 

data typically ranges from 81% to 97% depending on the hand movement, feature set, classifier, 

etc.,11. In a small cohort of adults with UCBED (N = 4), these values were significantly lower 

when simply applying a feature set developed for those with acquired limb loss (Hudgins set) with 

performance in the range of 52.1% ± 15.0% accuracy for 11 missing hand movements (including 

rest)12. Moreover, a small cohort of children (N = 4, less than 18 years old) and adults (N = 3) with 

UCBED have been studied utilizing a commercially available sEMG classification system, again 

developed for adults with acquired limb amputations13. The children achieved classification 

accuracies ranging from 80% ± 16.0% for 3 degrees of freedom13. As of our knowledge, only these 

two studies12,13 have examined individuals with UCBED, with the notable distinction that one 

investigated pediatric participants13. Importantly, neither study systematically adjusted the feature 

sets and classifiers to address the unique conditions that UCBED affected muscles may present. 
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The aim of this chapter was to investigate feature sets and classification algorithm combinations 

tailored to children with UCBED. Furthermore, if implemented, how might sEMG classification 

techniques enhance prediction accuracy while maintaining low training and testing times. To 

accomplish this, we assessed individual features and feature set performance for 31 time domain 

features, 9 frequency domain features, and 9 time-frequency domain features. Top-performing 

feature sets were evaluated over five different classification algorithms (classifiers). We then 

proposed a new generalized feature set for this unique population and compared this to two feature 

sets commonly implemented for adults with acquired amputation; the Hudgins feature set 

(HDS)14,15 and (2) a newly established efficient feature set (EFS)5. We hypothesized that a unique 

set of algorithmic parameters (i.e., features and classifiers) and attempted hand movements could 

be identified that would provide an effective balance between classification accuracy and 

computational time. 

6.3. Methods 

6.3.1. Participants 

Nine participants with UCBED (8 male and 1 female, mean age of 14 years ± 4.4 years) completed 

the experimental protocol following relevant guidelines and regulations. Written informed consent 

and assent were obtained from participants and their legal guardians. This study received approval 

from the Institutional Review Board at Shriners Children’s – Northern California. Participants had 

varying experiences of prosthesis use in addition to a wide range of affected limb lengths and 

circumferences, 8-18 cm and 15-23.5 cm, respectively (Table 6-1). All the children that 

participated in this study were clinically screened to ensure no other atypical development aside 

from UCBED.  
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Table 6-1. Participant demographics. PA = Passive, BP = Body-Powered, Myo = Myoelectric, 

†Activity specific device. 

Subject ID Age Sex 
Affected 

Limb 

Length  

(cm) 

Circumference 

(cm) 

Type of 

Prosthesis 

Used 

SHR-A 20 Male Left 13 15 PA 

SHR-B 8 Male Right 14 20 PA 

SHR-C 11 Male Right 18 18 None 

SHR-D 9 Male Left 12.5 18.5 None 

SHR-E 18 Male Right 15 21 BP† 

SHR-F 16 Female Left 11.5 23.5 PA 

SHR-G 19 Male Left 13 21.5 Myo & PA 

SHR-H 14 Male Left 8 23 BP 

SHR-I 12 Male Right 10 21 BP 

6.3.2. Experimental protocol 

Participants were first introduced to the experiment which included an overview of the hand 

motions they would attempt, the equipment used, an explanation of sEMG, and general goals of 

the experiment. Then, seven wireless Trigno Mini sEMG electrodes from a Delsys Trigno EMG 

Research System (Delsys, USA) were adhered circumferentially16–18 around the participants’ 

affected forearm with double-sided adhesive (except for SHR-A who had only four sEMG 

electrodes due to limb size constraints). Given the unique anatomy of each child’s limb difference, 

electrode placement was guided by palpation of the ventral side of the affected forearm to identify 

the region presenting with the most muscle bulk. Here the first electrode was placed with the 

remainder placed equidistant circumferentially from this location16. 

Participants were situated in a chair with their affected and unaffected limbs in a comfortable 

position by their side. Afterward, they were instructed to perform a sequence of 10 repetitions for 

the same missing hand movement, divided into two groups of five. The order of hand movements 

was randomized to reduce any potential biases. A metronome was used to ensure consistency in 
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the repetition of movements by indicating when to execute each specified movement. Each 

movement was held for 3 seconds followed by a 4-second relax phase. A depiction of the sEMG 

data for the first five repetitions and a participant attempting the motion is shown in Figure 6-1a. 

The hand movements performed represented those most commonly used during activities of daily 

living19, wrist movements, and individual digit gestures. These motions are depicted in Figure 6-

1b which included: index flexion (IF), key pinch (KP), pulp pinch (PP), index point (IP), 

cylindrical wrap (CW), cylindrical wrap wrist rotate (CR), tripod pinch (TP), wrist extension 

(WE), wrist flexion (WF), and wrist rotation (WR). 

 
Figure 6-1. Experimental protocol. (a) Depicts a participant during a cylindrical wrap (CW) 

contraction and relaxation phase of the experiment along with the sEMG data across channels. (b) 

Displays the 10 different hand motions participants were instructed to attempt.  

6.3.3. Data processing 

As participants attempted the series of missing hand motions, the sEMG electrodes recorded the 

electrical activity and data were transmitted to the Delsys System where they were reconstructed, 
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band pass filtered from 20-450Hz20,21, and output as an analog signal. This analog signal was then 

read by a National Instruments USB 6210 data acquisition system through MATLAB (R2022a, 

MathWorks, Inc, USA) sampling at 6 kHz. After all data were collected, formatting and feature 

extraction were performed offline. Data was concatenated for each missing hand movement to 

create a single data set which consisted of all 10 repetitions. Then sEMG data were segmented 

(section 6.3.3.1), features were extracted (section 6.3.3.2), and classifiers were trained (section 

6.3.3.3) to evaluate optimal feature sets (section 6.4). Evaluation was done with a custom 

MATLAB script that called functions in BioPatRec software22. 

6.3.3.1. Data segmentation 

Data segmentation specifies a window and time increment in which sEMG data is separated for 

feature extraction and classification. The typical range for window lengths is 100 to 300 ms5,23 and 

cannot exceed 300 ms as this threshold is perceived as a noticeable control delay if present in real-

time prosthetic control applications24. Due to the large amount of data obtained, 300 ms windows 

and 150 ms time increments were used.  

6.3.3.2. Feature extraction 

Feature extraction is the process of identifying relevant sEMG signal characteristics (features) to 

be classified25, which consists of discretized sEMG signals obtained from the time domain, 

frequency domain, or time-frequency domain. Here we used the features provided in BioPatRec 

and added additional ones to the software package after an extensive search of the literature. These 

included in total: 31 time domain features, 9 frequency domain features, and 9 time-frequency 

domain features, a summary of which are provided in Table 6-2. 
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Table 6-2. Extracted features from the time domain, frequency domain, and time-frequency 

domain. DWT: Discrete 4th order Coiflet Wavelet Transform, with 4th level decomposition. 

Time Domain 
ID Feature Citation 

1 tmabs Mean absolute value 5,7,8,12,22,26–31 

2 tstd Standard deviation 5,22,31 

3 tvar Variance 5,7,8,22,32–34 

4 twl Waveform length 5,7,8,12,22,26–31,34,35 

5 trms Root mean square 7,8,22,26,27,29,35,36 

6 tzc Zero-crossing 5,8,12,22,26–32,34 

7 tpks Number of peaks over the root mean square 5,22  

8 tmpks Peaks mean 5,22 

9 tmvel Mean velocity 5,22 

10 tslpch Slope changes  5,8,12,22,26,28–31,34 

11 tpwr Power 22 

12 tdam     Difference absolute mean value 5,22 

13 tmfl     Maximum fractal length 5,7,22,35,37 

14 tfd      Fractal dimension 5,22 

15 tfdh     Fractal dimension Higuchi 5,7,22,37 

16 tren Rough entropy 22 

17 tcr Correlation coefficient 5,22 

18 tcv Co-variance 22 

19 tcard    Cardinality 22 

20 tHmob Hjorth mobility 5,33 

21 tHcom Hjorth complexity 5,33 

22 tskw Skewness (3rd moment) 5 

23 tdasdv Difference absolute standard deviation value 5,8 

24 tkurt Kurtosis (4th moment) 5 

25 twam Willison amplitude: threshold = 0.01 5,8,32,34,38 

26 tmcer Multi-channel energy ratio 5,39 

27 tperc75 75th Percentile 5 

28 tiabs Integrated absolute value 5,8,32,34 

29 thist Histogram: min max voltage with 9 bins 5,8,32,34 

30 tssi Simple square integral 8 

31 tlogd Log detector 8,38 

Frequency Domain 
1 fwl Wavelength 5 

2 fmn Mean 5,26,34 

3 fmd Median 5,26 

4 fpmn Peak mean above the root mean square 5 

5 fpmd Peak median above the root mean square 5 

6 fpstd Peak standard deviation above the root mean square 5 

7 fmxp Max peak 5 

8 fr Frequency ratio: 20-250 Hz & 251-450 Hz 5 

9 fe Frequency energy: 10 Hz bins 5,36 

Time-Frequency Domain 
1 tfstd Standard deviation – 4th level wavelet coefficients (DWT) 5,40 

2 tfvar Variance – 4th level wavelet coefficients (DWT) 5,40 

3 tfwl Waveform length – 4th level wavelet coefficients (DWT) 5 

4 tfe Energy – 4th level wavelet coefficients (DWT) 31,34 

5 tfmxabs1 Maximum absolute value – 4th level wavelet coefficients (DWT) 5,41 

6 tfmxabs2 Maximum absolute value – tfmxabs1 & all detail levels (DWT) 41 

7 tfzc Zero crossing – 4th level wavelet coefficients (DWT) 34 

8 tfmn Mean – 4th level wavelet coefficients (DWT) 5 

9 tfmabs Mean absolute value – 4th level wavelet coefficients (DWT) 5 
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6.3.3.3. Pattern classification 

Classification algorithms use sEMG features to identify patterns across the multiple sEMG 

electrode channels and predict the corresponding movement intent. Five classifiers were selected 

after a review of the literature, based on their performance and typical training and testing times, 

which are described as follows.  

Linear Discriminant Analysis (LDA) is a common technique used to decode motor intent from 

muscle activity5,9,12,22,27–30,42,43 in which the variance within a movement’s feature space is 

minimized while the mean between movements is maximized, creating linear boundaries between 

each movement’s feature space data. LDA was selected due to its simplicity of implementation, 

computational demands, and ease of training25. We updated LDA in BioPatRec using MATLAB’s 

fitcdiscr function with the discriminant type set to linear.  

K-Nearest Neighbor (KNN) calculates the distance from a testing point to its k closest neighbors 

of the training data to predict the group a movement belongs to. This established method is another 

common classifier employed to decode hand movements from muscle activity5,21,28,30. We 

implemented KNN in BioPatRec with MATLAB’s fitcknn function. Here the distance type was 

set to Euclidean with k = 1 and the data were normalized with the norm-log in BioPatRec22. 

Regulatory Feedback Network (RFN) is a classifier built into BioPatRec that utilizes a 

connectivity matrix or weights constructed from the average of all training feature vectors with 

predictions produced through outputs of a negative feedback system22. The training type was set 

to mean with the normalization set to unitary range28.  

Support Vector Machine (SVM) is another commonly implemented classifier used to predict 

upper limb motor intent from muscle activity5,21,26–30,43. We implemented SVM in BioPatRec with 
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MATLAB’s fitcecoc function. Here kernels are used to map data onto separable hyper-planes for 

classification5,28. The SVM had the kernel set to the radial basis function with a scale of 5.9, 

selected after empirical investigation, and a box constraint of 1. SVM normalization was set to 0-

midrange with 2-range28.  

Design Tree (DT) has been studied in the context of decoding hand movements from muscle 

activity5,28,30 and we implemented this classifier into BioPatRec with MATLAB’s fitctree function. 

The design tree uses predictors with greater than or less than criteria to transverse different 

branches of the tree and make a prediction. The maximum number of splits was set to 100 after 

empirical investigation and the split criterion was set to Gini’s diversity index.  

6.4. Feature evaluation 

To understand which features and classifier combinations provided the most effective 

classification performance in predicting attempted hand motions for children with UCBED, a 

detailed evaluation was performed. Data were collected, features were extracted, and evaluation 

was performed for each of the five classifiers for the following cases: individual features (49 in 

total) described in section 6.4.1, individual domains (time, frequency, and time-frequency), and 

combined domains, both described in section 6.4.2. During evaluation, the performance for each 

classifier was obtained by a 60-40 cross-validation, where 60% of the data was used for training 

and 40% was used for testing, this was repeated 100 times and averaged, where each iteration 

randomized the 60-40 training and testing datasets22. After the feature evaluation was performed, 

recommendations for a generalized congenital feature set (CFS) were provided (section 6.4.3). 

Data flow for the feature evaluation can be seen in Figure 6-2. 
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Figure 6-2. (1) Feature evaluation flow diagram. (2) Features were extracted for the time domain, 

frequency domain, and time-frequency domain. (3) Individual features were then evaluated across 

classifiers and the top five features were highlighted. (4) Feature sets within individual domains 

were evaluated via the two wrapper methods (4a) followed by the filter method (4b) to select the 

optimal feature set (4c). (5) The optimal feature sets produced from the individual domains were 

then combined and (4ab) were repeated to produce the optimal combined feature set (5a). (6) 

Recommendations for a generalized congenital feature set were then made.  

6.4.1. Individual features 

As an essential first step to help us ascertain the potential of decoding important motor information 

characterized by individual features, we trained and tested five classifiers. The individual features 

were split into three sets, one for each domain: time domain, frequency domain, and time-



117 

 

frequency domain. The overall classification accuracy for each feature within the specified domain 

was determined through a 60-40 cross-validation, as previously described. In this procedure, the 

training and testing data were subject to 100 randomizations each time producing new movement 

classification accuracies. The classification accuracies from these randomizations were averaged 

together, and the correct individual movement accuracies were then averaged to produce the 

overall classification accuracy. A count of the top five highest-performing individual features for 

each classifier and participant was then obtained (shown in Figure 6-2 zone 3).   

6.4.2. Individual domains and combined domains 

We evaluated sets of features for the individual and combined domains for each classifier in order 

to understand which sets of features may produce the most effective classification performance. 

The same methodology was used to evaluate individual and combined domains as shown in Figure 

6-2 zones 4 and 5, respectively. The only difference between the two was that feature sets for 

individual domains were evaluated first to find their optimal sets. Upon evaluation, these optimal 

sets for the individual domains were combined and evaluated to produce the optimal combined-

domain feature set. All feature evaluation was done on an individual participant basis. 

We identified top-performing feature sets within the individual and combined domains using two 

wrapper methods (i.e., feature selection algorithms), namely sequential forward search and 

sequential backward search, as depicted in Figure 6-2 zone 4a6,44. The classification accuracies 

were produced as follows: the classification accuracy of every movement was computed for the 

100 randomized datasets; then those 100 datasets were averaged together; and finally, the average 

across all the movements from that averaged dataset was determined. The sequential forward 

search method loops through all the features and selects the one that produces the average highest 

classification accuracy. It then loops through the remaining features, each time combining it with 
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the previously chosen feature, ultimately selecting the two features that produce the highest 

accuracy. This process is then repeated until all the features have been selected, thereby ordering 

the features based on their contribution to the prediction accuracy. Inversely, the sequential 

backward search starts with all the features and removes one at a time. Then, the feature that 

produces the highest classification accuracy when removed is discarded from the total feature set. 

This process is repeated with the remaining features until only one is left. After these methods 

were completed, two datasets were produced: one for sequential forward search and one for 

sequential backward search. Then for any given classifier and domain, we extracted the feature set 

containing the top five features produced from each of the two search methods for further analysis.  

It should be noted that the two feature sets produced from the forward and backward wrapper 

methods were not necessarily identical and required a filter method to determine the optimal 

feature set as depicted in Figure 6-2 zones 4b and 4c. Here, we employed the Mahalanobis distance, 

a typical feature space analysis method that provides a measure for the separability of attempted 

hand movements i.e., the separability index (SI)45–48. This process involved calculating the feature 

space Mahalanobis distance from one movement to all the remaining movements. The minimum 

distance among these was then tabulated. This procedure was repeated for each movement, and 

the average was taken as the SI. This was used as a measure of robustness for the feature sets. A 

larger SI indicates increased spatial distinction between motions while a smaller SI indicates a 

decreased spatial distinction45. In this way, the optimal set between the search methods was chosen 

as the one with a larger SI.  

The modified SI was defined as the average minimum one-half Mahalanobis distance from the 

centroid μj of the jth class to the centroid μi of the remaining i classes, where Sj is the covariance 

matrix of jth class45. The inverse of the covariance matrix Sj was obtained with the Moore-Penrose 
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pseudoinverse to ensure its existence. This was done because some features were linear 

combinations of others, and threshold methods such as the Willison amplitude (twam) were 

defined with a single value for all participants, which could have caused sparse feature vectors. 

Taken together, linear combinations and sparse feature vectors could create noninvertible matrices, 

which could be addressed by using the pseudoinverse and calculating the magnitude. The modified 

SI is therefore defined by Equation 6-1.   
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6.4.3. Generalized congenital feature set 

After the feature sets were produced for the individual domains, they were combined and 

reevaluated to produce an optimal feature set from the combined domains (Figure 6-2 zone 5). The 

optimal feature sets across classifiers and participants were aggregated to make a recommendation 

based on a count of the unique number of times each feature occurred (Figure 6-2 zone 6). The top 

five unique features that occurred most often were taken as the generalized congenital feature set 

(CFS): correlation coefficient (tcr), multi-channel energy ratio (tmcer), log detector (tlogd), Hjorth 

mobility parameter (tHmob), and integrated absolute value (tiabs). 

6.5. Analysis 

6.5.1. Feature set comparisons 

To determine which feature sets may be most suitable for children with UCBED, a comparison 

across domains and feature sets was performed on an individual participant basis to produce a 

unique feature set for each domain and classifier. The unique feature sets for each domain are 

referred to as the following: time domain feature set (TMS), frequency domain feature set (FQS), 

time-frequency domain feature set (TFS), and combined domain feature set (CDS). Additionally, 

generalized feature sets described previously in adult literature were also used for comparison. 



120 

 

There are a number of proposed feature sets that have been suggested to provide high classification 

accuracy in able-bodied individuals and adults with acquired limb loss. including ‘the Efficient 

Feature Set’ (EFS)5 and ‘the Hudgins Set’ (HDS)14. The EFS consists of the following features: 

waveform length (twl), correlation coefficient (tcr), and the Hjorth parameters33 (i.e., 

activity/variance (tvar), mobility (tHmob), and complexity (tHcom)5). Additionally, HDS contains 

the following features: mean absolute value (tmabs), waveform length (twl), slope sign changes 

(tslpch), zero crossing (tzc), and difference absolute mean value (tdam)14. Finally, our generalized 

CFS feature set, produced from an aggregate across participants in this work, was used for 

comparison.   

We analyzed differences in prediction accuracy between the seven feature sets for each of the five 

classifiers using the non-parametric Friedman test49,50. Here, the improved Friedman statistic (FF) 

was then used as described by50. The null hypothesis, H0, was that all feature sets had the same 

rank (i.e., the average classifier performance across movements will be the same regardless of the 

feature set). We selected a significance level of α = 0.05 and determined the critical value of 

F(6,60) = 2.25 to evaluate statistical differences. If the improved Friedman statistic was greater 

than the critical value (FF > 2.25) then the null hypothesis was rejected. When this occurred, we 

proceeded with pairwise comparisons of the seven feature sets for a given classifier utilizing the 

post-hoc Nemenyi test51. The critical distance value of 2.72 was determined for the two-tailed 

Nemenyi test at a significance level of α = 0.05, as described by Demšar et al.50. If the difference 

in ranked classification accuracy between any pair of feature sets exceeded the critical distance, it 

was deemed statistically significant. 
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6.5.2. Congenital feature set assessment 

Our new congenital feature set was isolated in our analyses to further examine its efficacy as a 

generalized set for children with UCBED. This included comparisons of its performance across 

classifiers to understand which classifier may provide the highest performance (section 6.5.2.1). 

An investigation of training and testing times was also performed to understand the computational 

expense (section 6.5.2.2), an important aspect for future applications of real-time control. 

Additionally, we employed movement reduction techniques to identify a subset of high-

performing missing hand motions (section 6.5.2.3); this is a practical consideration for prosthetic 

control in which identifying a subset of highly accurate hand movements may be most useful in 

executing activities of daily living.  

6.5.2.1. Classifier comparisons 

Classifier comparisons were performed with the Friedman test as previously described in section 

6.5.1. The null hypothesis, H0, was that all classifiers have the same rank, that is, the performance 

across movements was the same regardless of the classifier algorithm. We selected a significance 

level of α = 0.05 and calculated the critical value of F(4,40) = 2.60 to assess statistical differences. 

As before, if the improved Friedman statistic (FF) was greater than the critical value, then the null 

hypothesis was rejected, namely, that the rank-based classifier accuracies across movements were 

not the same for all classifiers. Subsequently, we performed pairwise classifier comparisons using 

the post-hoc two-tailed Nemenyi test at a significance level of α = 0.05. The critical distance value 

of 1.84, calculated following Demšar et al.50, was used to determine statistical significance. This 

significance was defined as the difference in the ranked classification accuracies between any pair 

of classifiers that exceeded the critical distance.  
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6.5.2.2. Computational expense 

The training and testing times for the generalized CFS were then obtained for each classifier and 

participant to understand the computational expense. These computational demands were assessed 

on a Lenovo PC with the following specifications: a 64-bit Windows 11 operating system with 32 

GB of RAM and an Intel core i7-8550U at 1.80 GHz (Intel Corp, USA). The first computational 

demand, training time, is defined to be the duration to train a classifier and tune hyperparameters. 

The second computational demand is testing time, which is defined as the transitory period for the 

offline classifier to predict the labels (missing hand movements). The testing time was used as a 

metric to assess the potential for real-time control since any value exceeding the 300 ms threshold 

results in diminished prosthetic control24. 

6.5.2.3. Movement reduction 

Movement reduction was performed for each classifier on the CFS feature set. The reduction 

procedure involved training a classifier with all attempted hand movements and discarding the 

movement that produced the lowest classification performance. The remaining movements were 

then used to retrain the classifier, and this process was repeated until only two movements were 

left. In this way, we identified how the classification accuracy increased with a decrease in 

attempted hand movements. This is significant because individuals using multi-grasp prostheses 

will typically employ a limited subset of hand movements. Notably, research has shown that 6-9 

hand movements can account for nearly 80% of daily activities19,52. Therefore, we propose 

investigating a subset of five movements for children with UCBED and identifying those subsets 

that surpass the minimum threshold of 85% classification accuracy needed to promote device 

usability25. It is important to note that the rest state was not considered part of the movements to 

be discarded because it is an essential state for prosthetic control. Consequently, with every 
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reduction, the rest state was always included, even when there were only two movements 

remaining, i.e., rest and one other movement were present at the end.  

6.6. Results 

6.6.1. Individual features 

We identified and counted the top five performing individual features for a given participant and 

classifier. This process was performed for each feature domain and repeated for every participant 

and classification algorithm. The total possible occurrences for one feature across the five 

classifiers and nine participants was 45. Therefore, a higher count for an individual feature would 

indicate that it was more often among the top features for each participant (Figure 6-3). Here, we 

highlight four of the top-performing features for the time domain: tmabs (34/45), tiabs (32/45), 

tlogd (29/45), and tcr (26/45). Similarly, the top-performing features for the frequency domain 

were: fwl (45/45), fpmn (45/45), fpstd (45/45), fpmd (43/45). Finally, in the time-frequency 

domain, the top-performing features included: tfwl (45/45), tfstd (45/45), tfmabs (44/45), and tfvar 

(31/45). It is important to note that when examining classifiers, KNN demonstrated numerically 

higher classification accuracies for each participant’s top-performing individual features, while 

RFN exhibited the lowest accuracies. Figure 6-3 illustrates the cumulative count of domain-

specific features for each classifier, obtained by counting the top five high-performing features 

that occurred for each participant. Detailed tables showcasing the classification performance of all 

individual features for each participant are provided in Appendix C tables.  
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Figure 6-3. Cumulative count of domain-specific high-performing individual features. The top five 

high-performing features were identified and counted for a given participant and classifiers. This 

process was then repeated for every participant, with the results highlighted for the various 

classification algorithms. The top panel displays the count for the time domain, while the bottom 

left panel shows the frequency domain, and the bottom right panel shows the time-frequency 

domain. A count of 45 means that the given feature was in the top five for all nine participants and 

five classifiers.  

6.6.2. Generalized congenital feature set 

In the assessment of optimal combined domains, as detailed in section 6.4.2, distinct sets of five 

features were generated for each participant and classifier. Aggregating these results as displayed 

in Figure 6-4, we identified five features—tcr, tmcer, tlogd, tHmob, and tiabs—that occurred most 

frequently, forming the recommended generalized congenital feature set (CFS). Moreover, the 

CFS accounted for 60% of the total occurrences across participants, classifiers, and features. These 

results highlight the prevalent features present among the majority of participants, suggesting 

potential generalizability. 
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Figure 6-4. Feature count for recommending the generalized congenital feature set (CFS): 

correlation coefficient (tcr), multi-channel energy ratio (tmcer), log detector (tlogd), Hjorth 

mobility parameter (tHmob), and integrated absolute value (tiabs). The maximum occurrence for 

an individual feature within the combined domain feature sets was 45, indicating that a single 

feature could be present in the feature set for all five classifiers and nine participants. The CFS 

features accounted for 134 occurrences out of the possible 225, representing a total of 60%. In this 

context, the total possible occurrences result from the presence of the five features within the 

combined domain set for each of the five classifiers and all nine participants, totaling 225 

occurrences.  

6.6.3. Feature set comparisons 

To identify the feature sets that have higher classification accuracy for children with UCBED, we 

performed feature set comparisons with the Friedman test, followed by the post-hoc Nemenyi test. 

For one participant and one classifier, we performed pairwise comparisons of the seven feature 

sets, this was then repeated for each of the classifiers, and then for every participant. Statistical 

significance between any pair of the seven feature sets is discernible when the displacement 

between the pair exceeds the critical distance of 2.72. As demonstrated in participant SHR-I 

(Figure 6-5), we found higher classification accuracies and few to no statistical differences in the 
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pairwise comparisons of TMS, CDS, CFS, and EFS feature sets for each classifier. Overall, TFS, 

FQS, and HDS feature sets had lower classification accuracies and exhibited the majority of 

statistical differences when compared to the remaining feature sets, with few exceptions. The 

detailed results for each participant can be found in Appendix C. 

In general, the feature sets decreased in numerical accuracy in the following order: CDS, TMS, 

CFS, EFS, HDS, FQS, and TFS, as illustrated in  Figure 6-5 and Appendix C. Upon further 

investigation, we found that the KNN, SVM, and LDA classifiers had numerically higher 

accuracies, while RFN had the lowest, followed by DT (see Figure 6-5 and Appendix C). Here, 

we highlight classification accuracies for the optimal combined domain feature set (CDS) which 

ranged from 63.87% – 95.37%, 62.61% – 92.86%, 57.33% – 92.87%, 50.79% – 83.19%, and 

38.46% – 79.62% for KNN, SVM, LDA, DT, and RF, respectively. Participant SHR-F had the 

highest CDS feature set classification accuracy for all the classifiers. Participant SHR-B had the 

lowest values for LDA and RFN, while SHR-D had the lowest values for KNN, SVM, and DT. In 

this context, it's important to highlight that the chance accuracy for decoding the 11 movements is 

approximately 9%, and it's noteworthy that all accuracies recorded were above this threshold. 

Collectively, these results indicate that feature sets, in combination with key classifiers, can be 

tuned and generalized for children with UCBED to provide higher classification accuracy.  
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Figure 6-5. Investigation of feature set performance for participant SHR-I. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 45.36, SVM: FF = 

51.99, LDA: FF = 56.89, DT: FF = 21.63, RFN: FF = 4.3) confirmed significant differences within 

each classifier’s feature sets. A post-hoc Nemenyi test with a critical distance of 2.72 at α = 0.05 

identified superior feature sets as indicated by pairs outside the critical distance marked by the 

interval bars. Each classifier is color-coded for easy comparison, with lower average ranks 

indicating better classification accuracy. Feature sets significantly different from the highlighted 

congenital feature set (CFS) were marked with an outer black ring. The right panel displays 

classification accuracies, which range from approximately 39% to 79%, alongside the 

corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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6.6.4. Congenital feature set assessment 

We further investigated the performance of the children-specific CFS feature set which included 

the comparison of accuracies across classifiers (section 6.6.4.1), the evaluation of computational 

expense (section 6.6.4.2), and how classification accuracy improves as we remove the lowest-

performing hand movements (movement reduction, section 6.6.4.3).  

6.6.4.1. Classifier comparisons 

All pairwise comparisons between SVM, LDA, and KNN classifiers showed no statistical 

differences in the average ranked classification accuracies and demonstrated consistently high 

classification performance (with the exception of participant SHR-B). In contrast, DT and RFN 

classifiers exhibited both lower classification performance and all other observed statistical 

differences when compared to KNN, SVM, and LDA. The range of classification accuracies for 

the CFS feature set were as follows: KNN (62.17% – 94.17%), SVM (62.01% – 93.11%), LDA 

(56.22% – 92.80%), DT (50.65% – 82.43%), and RFN (37.07% – 79.74%). Participant SHR-F 

exhibited the highest classification accuracy for each classifier, while SHR-B and SHR-D had the 

lowest. Friedman test statistics and a visual depiction of the post-hoc Nemenyi test are provided 

in Figure 6-6 for all participants. In these graphical depictions, pairwise comparisons between 

classifiers within the CFS are observed, and statistical differences were determined by those that 

exceeded the critical distance of 1.84. A lower rank denotes superior classifier performance while 

a higher rank denotes diminished performance. The results from pairwise classifier comparisons 

within the CFS suggest that KNN, SVM, and LDA classifiers provide a significant improvement 

over DT and RFN in their current states.  
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Figure 6-6. Congenital feature set classifier comparisons. The Friedman test, with a critical value 

of F(4,40) = 2.60 at α = 0.05, indicated all participants rejected the null hypothesis (FF > 2.60) in 

favor of the alternative, suggesting a difference across average rank-based classifier performance. 

A lower average rank indicates superior classifier performance. Pairwise comparisons were 

performed using the post-hoc Nemenyi test, with a critical distance of 1.84 at α = 0.05. Statistical 

significance for a specific classifier is denoted by classifiers positioned outside the critical 

distance, as indicated by the interval bars. 

6.6.4.2. Computational expense 

To understand the associated computational expense for the CFS feature set, we obtained the 

average training and testing times for each participant and classifier algorithm. On average, we see 

the RFN classifier had the largest training times ranging from 421 ms – 758 ms, followed by SVM 

with 560 ms – 637 ms. LDA, KNN, and DT had relatively similar training times, all falling within 

the LDA range of 243 ms – 362 ms. Additionally, all testing times fell under the 300 ms threshold 

for usable real-time control24, and the range of time values are provided are follows: SVM (18.61 
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– 19.45 ms), KNN (3.59 – 3.93 ms), DT (2.03 ms – 2.38 ms), RFN (0.32 ms – 0.44 ms), and LDA 

(0.12 ms – 0.15 ms). Training and testing times for the CFS of each participant and classifier are 

shown in Table 6-3. The low training and testing time results suggest effective employment of the 

CFS across classifiers for future real-time control. 

Table 6-3. Computational expense of the congenital feature set (CFS) across classifiers. 

Participants 
Training Time (ms) Testing Time (ms) 

LDA KNN RFN SVM DT LDA KNN RFN SVM DT 

SHR-A 276 258 421 589 249 0.12 3.65 0.32 18.61 2.38 

SHR-B 290 329 752 574 279 0.12 3.84 0.44 18.94 2.28 

SHR-C 243 300 644 592 306 0.12 3.59 0.37 19.45 2.08 

SHR-D 362 333 758 605 352 0.12 3.89 0.42 19.18 2.35 

SHR-E 349 317 640 564 280 0.12 3.73 0.41 18.80 2.14 

SHR-F 345 310 587 560 351 0.13 3.92 0.37 18.66 2.21 

SHR-G 323 296 560 591 305 0.13 3.65 0.36 18.76 2.19 

SHR-H 349 315 657 599 318 0.15 3.91 0.44 18.85 2.03 

SHR-I 344 321 661 637 335 0.12 3.93 0.43 19.25 2.31 

6.6.4.3. Movement reduction 

We eliminated attempted hand movements one at a time, based on the lowest classification 

accuracy; to examine the relationship between the number of movements and classification 

accuracy. Although we reduced the number of movements to two (rest and one other motion), our 

point of interest was a reduced state of five (rest state and four other motions). This was done 

primarily because prosthesis wearers generally use a smaller selection of hand movements to assist 

in activities of daily living. The other point of interest was a minimum 85% classification accuracy 

threshold, which is needed to mitigate wearer frustration and promote device usability25.  
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The majority of participants across classifiers had accuracies greater than the 85% threshold for 

the reduced set of five movements. For the LDA classifier, participants had accuracies ranging 

from 91.38% – 99.45% except for SHR-B, who had a classification accuracy of 84.49% (less than 

the 85% threshold). All participants had KNN classification accuracies greater than the threshold, 

ranging from 87.64% – 99.74%. With the exceptions of SHR-B (71.86%), SHR-D (81.08%), and 

SHR-I (81.72%), all other participants had RFN classification accuracies greater than 85%, 

ranging from 93.00% – 98.09%. For the SVM classifier, all accuracies were above the threshold 

and ranged from 87.73% – 98.38%. Finally, for the DT classifier, SHR-B and SHR-D had 

classification accuracies of 77.23% and 83.31%, respectively, while all other participants ranged 

from 92.95% – 98.45%. Movement reduction radar plots for all participants are provided in Figure 

6-7.  
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Figure 6-7. Impact of movement reduction. Movements were reduced from all 11 to a set of 2, as 

annotated on the radar plot. Note that the rest state was not removed during this reduction process. 

The movement with the lowest classification accuracy was omitted, and the remaining movements 

were used to retain the given classifier. This process was repeated until only two movements 

remained: rest and one other. The dashed line indicates the suggested threshold for usability device 

control at 85% accuracy25. 
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To identify common movements within the reduced set of five across participants, we first counted 

the frequency of each movement’s occurrence across the five classifiers for a single participant. 

Consequently, a single movement could appear in each of the five classifiers. This process was 

repeated for all nine participants, potentially resulting in a total occurrence of one movement 45 

times and for five movements 225 times. The rest state, which was kept fixed and not removed to 

establish a foundation for predicting motor intent, retained a total occurrence of 45. Figure 6-8 

depicts a count of the reduced set of five movements for each participant and aggregated across all 

participants. Here, we observed that wrist extension (WE) and wrist flexion (WF) accounted for 

34 out of 45 (76%) and 24 out of 45 (53%) of the top single-movement occurrences, respectively. 

Aggregating rest, WE, WF, CW, and IF accounted for 148 out of 225 total occurrences (66%). 

These results highlight that some movements may be easier for all participants to envision and 

attempt.  

 
Figure 6-8. Count of the top five reduced hand movements. In a given column, the individual 

participant's numerical bar value indicates the cumulative occurrence of the movement across all 

five classifiers. Notably, rest was not removed during reduction and thus occurs in every 

participant and classifier. The superimposed red scatter plot illustrates the overall occurrence of a 

specific movement across all nine participants and five classifiers; therefore, the maximum 

possible occurrence was 45 (as seen on rest). 
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6.7. Discussion 

6.7.1. Unique features can be identified for children with UCBED 

When we analyzed the individual features and feature sets, unique features were identified for 

children with UCBED. The top-performing individual features identified across classifiers and 

participants for the time domain were: tmabs, tiabs, tlogd, and tcr (Figure 6-3). It is interesting to 

note that three of these top-performing individual features (tcr, tlogd, and tiabs) were also observed 

frequently within the tuned feature sets for the time and combined domains across every classifier 

(see Figure 6-4, Figure 6-5, and Appendix C). These three features showed up in the generalized 

congenital feature set (CFS) which consisted of tcr, tmcer, tlogd, tHmob, and tiabs.  

6.7.2. Children with UCBED benefit from certain feature sets 

Numerous feature sets and classification algorithms have been tuned for adult able-bodied 

individuals, with the common assumption that they will seamlessly translate to those with acquired 

amputation10. Nevertheless, these assumptions are not rigorously tested in affected populations. 

Unlike individuals with traumatic amputation, the unique population studied here presents more 

uncertainty as they were born with limb absence and, consequently, have never actuated an intact 

hand. Interestingly, the efficient feature set (EFS) developed on able-bodied individuals5 

performed well for those with congenital limb deficiency. Although not statistically significant 

relative to the EFS, the newly developed generalized congenital feature set (CFS) provided 

numerically higher classification accuracies and was comparable to each participant’s tuned time-

domain and combined-domain feature sets. 

When we analyzed the feature sets for each classifier and participant, very few statistical 

differences were obtained for the following feature sets: TMS, CDS, EFS, and CFS (see Figure 6-

5 and Appendix C). The majority of pairwise statistical differences that were observed occurred 
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between the previously mentioned feature sets and the TFS, FQS, and HDS sets (which had lower 

classification accuracies). This suggests that pure frequency, time-frequency, or even the 

commonly implemented generalized Hudgins set do not provide sufficient information for optimal 

classification in children with UCBED. Moreover, although the CDS feature set was produced 

from the optimal set of each domain on an individual participant basis, we found that the majority 

of features within the CDS sets ended up being from the time domain. Evidently so, these results 

are in line with previous research that attributes the best performance to time domain features20, 

which is also the case here for children with UCBED. 

Interestingly, participant SHR-F had the highest classification accuracy for the CDS feature set of 

each classifier (LDA: 92.87%, KNN: 95.37%, RFN: 79.62%, SVM: 92.86%, and DT: 83.19%). It 

is important to note that this participant exhibited seemingly unlikely factors that would merit good 

classification performance: (1) they only reported the use of a passive device as opposed to a 

myoelectric prosthesis; (2) they were not the oldest, but rather in the upper middle age range at 16 

years old; (3) neither did they have the largest limb length (11.5 cm) or circumference (23.5 cm). 

Despite these demographics, the only difference between this participant and the others was their 

sex (female). In contrast, the two lowest accuracies for the CDS feature set of each classifier were 

attributed to SHR-B (8 years old) and SHR-D (9 years old), the two youngest participants of the 

cohort. Moreover, the oldest participant SHR-A (20 years old) had the smallest residual limb 

circumference (15 cm) and had the third lowest scores for LDA, KNN, and DT. It follows that a 

composite effect of limb size with sex- and age-related cognitive demands may impact the ability 

to decode motor intent. 
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6.7.3. The congenital feature set is an effective generalized set 

The CFS feature set demonstrated generalizability and efficacy in decoding motor intent for our 

cohort of children with UCBED. Comparative analysis from the CFS revealed no statistical 

differences in classification accuracy when compared to the individually tuned feature sets TMS 

and CDS, as well as the generalized EFS feature set (with the exception of SHR-B). It is important 

to note that, in general, the CFS exhibited numerically higher accuracy than the generalized EFS. 

Furthermore, while tuning feature sets (TMS and CDS) on an individual participant basis has the 

potential to improve classification accuracy, the observed numerical gains are negligible when 

contrasted with the generalized CFS. Therefore, we recommend the adoption of the CFS feature 

set for participants with UCBED. 

Therefore, in revisiting participant SHR-F, we found they also exhibited the highest classification 

accuracy for each classifier relative to all other participants, while SHR-B and SHR-D displayed 

the lowest. Moreover, we found that when attempted hand movements were reduced to a set of 

five (including rest state) the majority of participants across classifiers had average accuracies 

greater than the 85% threshold (Figure 6-7). The participants that did not meet this threshold in 

totality were nonetheless able to meet it for at least two classifiers (SVM and KNN). For example, 

participants SHR-B and SHR-D did not meet this threshold and held the following values: SHR-

B (LDA 84.49%, RFN 71.86%, and DT 77.23%) and SHR-D (RFN 81.08%, DT 83.31%). These 

results further confirm the effects of age and sex in decoding motor intent, given that SHR-B and 

SHR-D were the youngest two participants. Collectively, these findings reveal the efficacy of the 

generalized CFS feature set considering that all participants were able to perform 5 hand 

movements above the 85% threshold.  
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What’s more, we found that within the top five reduced hand movements that were aggregated 

across participants, the following gross motor movements emerged (Figure 6-8): wrist extension 

(WE), wrist flexion (WF), and cylindrical wrap (CW). This is likely attributed to the fact that 

participants were born with limb deficiency and conceivably did not fully develop fine motor 

skills, hence why intricate hand movements may have proved challenging. It is astounding that the 

only digit movement, index flexion (IF), emerged following the bulk-movement sequence (WE, 

WF, and CW). This discovery comes into view in light of the fact that index flexion is unlike any 

other movement that participants were prompted to attempt, despite being a fine motor skill. 

Perceivably, this muscle activity is uniquely distinguishable from the other movements which can 

be seen by its presence in the top five reduced hand movements. Finally, since the tripod pinch 

(TP) did not occur in any of the five reduced movements observed across participants, we inferred 

that it shares similarities with the pulp pinch, a comparison frequently made by participants during 

testing. Comprehensively, we can glean that notwithstanding the dominance of gross movements, 

participants had the capacity to actuate unique motions, which can thereby be improved with 

regular prosthesis use and proper training. 

We found no statistical differences in the average ranked classification accuracies for the CFS 

feature set when we made pairwise comparisons between SVM, LDA, and KNN classifiers, with 

the exception of SHR-B (Figure 6-6). However, the majority of statistical differences were 

observed from the previously mentioned classifiers to DT and RFN. Although the DT exhibited 

lower classification accuracies, in previous work, it has indicated similar performance to the other 

classifiers5,28. This may suggest that the DT classifier requires additional tuning. In general, RFN 

also produced the lowest classification accuracy across participants, which aligns with other 

comparisons made to this classifier22,28. Additionally, when examining the computational expense 
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of the CFS, we found minimal time delays within classifiers across participants (Table 6-3). 

Furthermore, all classifier training times were within a reasonable range of less than 758 ms. 

Similarly, the testing time was also within a range suitable for future implementation of real-time 

control, with all values less than 19.45 ms. From these performance results, we deduce that SVM, 

LDA, and KNN are ideal classifiers for future investigations as currently implemented in 

MATLAB since they produced high accuracies and relatively low training and testing times.  

6.8. Conclusions 

To date, we have not found any other studies involving children with UCBED that investigate 

sEMG classification algorithms and tuned feature sets. Our work suggests three crucial points: (1) 

unique features arise for these children, (2) certain feature sets are beneficial for optimal 

classification, and (3) the newly developed generalized congenital feature set (CFS) effectively 

decodes motor intent. In tandem with these three points, we suggest that cognitive demands related 

to age, sex, and limb size seemingly play a critical role in determining motor intent. We suggest 

further examination of these factors with larger cohorts. In general, we found that the range of 

accuracies obtained for the CFS across all movements and classifiers was 73.8% ± 13.8%. 

However, these results were impacted by the difficulty children experienced in attempting repeated 

hand movements to the same degree. Therefore, we suggest that with physical conditioning and 

training, children may be able to effectively control multiple movements of dexterous upper limb 

prostheses. Moreover, when the 11 movements were reduced to a subset of 5, we found that all 

participants were able to reach the ideal threshold (85%) with accuracies of 96.5% ± 6.6%. This is 

an encouraging discovery since multi-grasp prosthesis wearers generally use only a small subset 

of movements and reaching the ideal threshold would thereby mitigate wearer frustration and 

ensure device useability25. We have found that the limited number of studies that investigate 
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UCBED cohorts do not adapt tuned classifiers and feature sets for this unique population. 

Generally, these studies only apply commercially available sEMG control systems or the Hudgins 

feature set, both of which are tailored to adults with acquired amputations12,13. Our work has shown 

that the Hudgins set often performs statistically worse when compared to the generalized CFS 

feature set or the individually tuned time-domain and combined-domain feature sets for each 

participant. Since the CFS shows promising results as a generalized feature set, further endeavors 

should be undertaken to determine its robustness on both a feature space level and in larger cohorts. 

In conclusion, the results indicate that children with UCBED have the ability to actuate their 

muscles in ways that classifier algorithms can decode and use for control of dexterous upper limb 

prostheses. Ultimately, there is a need to bridge the gap between our offline work performed on 

pre-recorded datasets and that of real-time control. Bridging this gap would enable us to develop 

effective devices for the unique clinical population. 
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Chapter 7. Real-time control of multiple grasp patterns for children with 

UCBED 

The majority of this chapter is a draft for publication as: 

Battraw MA, Fitzgerald J, James MA, Bagley AM, Joiner WM, Schofield JS. Real-time control 

of multiple movement patterns for children with unilateral congenital below-elbow deficiency: A 

Case Series 

7.1. Chapter preface 

This chapter presents a case series study focusing on the real-time control of a child-sized 

dexterous prosthetic hand among children with unilateral congenital below-elbow deficiency 

(UCBED). Chapters 5 and 6 have laid the groundwork for understanding the degree to which 

children with UCBED can actuate their affected musculature, and how to appropriately tune 

classification algorithms to decode their motor intent. While we have provided the initial steps 

towards translating dexterous control interfaces to children with UCBED, our previous work in 

decoding motor intent from attempted hand movements was conducted in offline settings (Chapter 

6). Real-time control presents additional challenges that require investigation. Therefore, in this 

chapter, we examined the robustness, responsiveness, stability, separability, consistency, and 

variability of real-time control for children with UCBED as they attempted missing hand 

movements using a child-sized dexterous prosthetic hand. These metrics are used to benchmark 

their ability to perform missing hand movements in real-time. 

7.2. Introduction 

Pediatric upper limb prosthesis users typically demonstrate device abandonment rates that far 

surpass adults, ranging from 35-45%, when compared to 23-26% in adults1. This phenomenon has 

been attributed to a large number of device-specific factors such as limited functionality, 

inadequate comfort, bulky weight, challenges with consistent control, etc1–3. Moreover, adults who 
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use upper limb prostheses are more likely to have acquired their limb loss later in life, as opposed 

to the majority of children who were born with limb deficiency, adding another level of complexity 

to prosthesis abandonment. These children have never operated a fully formed hand and their 

musculature and limbs will have never reached full maturation, marking a clear distinction from 

most adults with upper limb amputation who will use a prosthesis. However, current state-of-the-

art techniques for controlling upper limb prostheses were developed and tested for adult amputee 

populations; these techniques employ surface electromyography (sEMG), which measures muscle 

electrical activity from the surface of the skin. Consequently, it remains unknown how real-time 

control of advanced dexterous devices may be used by this unique population. While child-sized 

multi-grasp devices are emerging, there has been limited investigation into the extent to which the 

pediatric population can effectively control this newly available dexterity4.  

There have been few studies examining the motor control abilities of individuals born with upper 

limb absence to coordinate multiple movements for prosthesis use. Two studies, published 11 years 

apart, both employed systems established on adult amputee populations with limited success5,6. 

Kryger et al. demonstrated the ability to decode motor intent for 11 missing hand movements with 

a prediction accuracy of 52.1% ± 15.0% in a group of (N = 4) adults with congenital upper limb 

absense5. Additionally, Kaluf et al. showed an 80% ± 16.0% prediction accuracy when only 3 

degrees of freedom were investigated for (N = 4) children with congenital upper limb absence6. In 

our previous work with sEMG, we demonstrated that children with unilateral congenital below-

elbow deficiency (UCBED) exhibit a large degree of consistent and distinguishable control over 

their affected musculature7. Additionally, in Chapter 6, we explored classifier and feature set 

combinations to maximize multi-movement decoding accuracy. We proposed the time domain 

congenital feature set (CFS) which consisted of the following features: correlation coefficient (tcr), 
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multi-channel energy ratio (tmcer), log detector (tlogd), Hjorth mobility parameter (tHmob), and 

integrated absolute value (tiabs). These results revealed that when (N = 9) participants attempted 

to move their missing hand for a subset of 5 movements, the classification accuracy was (96.5% ± 

6.6%) (see Chapter 6). Furthermore, we investigated a promising measurement modality for 

prosthetic control among children with UCBED—ultrasound imaging to measure muscle 

displacement and deformation—which provides a complementary measure to sEMG for attempted 

missing hand movements8. However, before evaluating techniques for prosthetic control that are 

not commercially available, it is important to assess the current standard of care. Therefore, within 

this chapter, we investigated how the current state-of-the-art for sEMG dexterous real-time control 

translates to children with UCBED. 

The aim of this chapter was to explore the capability of UCBED children to control multiple hand 

movement patterns in real-time with a robotic prosthetic hand. To achieve this, we employed the 

Motion Test, which allows for the extraction and analysis of real-time performance metrics, which 

include robustness, responsiveness, and stability of attempted movements9. Additionally, we 

investigated feature space quality metrics such as separability, consistency, and variability10–12 of 

real-time sEMG data. We hypothesized that children with UCBED would exhibit control over 

multiple missing hand movements with their affected limb, and this may be to a lesser degree than 

their unaffected limb, as reflected by real-time performance and feature space quality. Altogether, 

this work represents a significant step in understanding how children use dexterous prostheses and 

how to begin the effective development and translation of such devices and control techniques to 

the pediatric UCBED population. 
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7.3. Methods 

7.3.1. Participants 

Three male participants, aged 14, 13, and 10 years, all diagnosed with right unilateral congenital 

below-elbow deficiency, were enrolled in this study. Participants had a different history of 

prosthesis use, which included body-powered, activity-specific, passivie, or none. Participant 

demographics and experimental setup are provided in Table 7-1. Prior to participation, informed 

consent was obtained from participants and/or their legally authorized representatives. The 

research protocols were approved by the Institutional Review Board at Shriners Children’s – 

Northern California, and all research methods were performed in accordance with relevant 

guidelines and regulations.  

Table 7-1. Participant demographics for children with unilateral congenital below-elbow 

deficiency. Values in brackets represent measurements for the unaffected limb. The elbow range 

of motion is defined as extension/flexion. †Participant is currently not wearing the device. 

Participant ID PAR1 PAR2 PAR3 

Participant Setup 

   

Age 14 (y/o) 13 (y/o) 10 (y/o) 

Sex Male Male Male 

Affected Limb Right Right Right 

Limb Length (cm) 11.0 (29.5) 21.5 (23.0) 13.0 (23.5) 

Limb 

Circumference 

(cm) 

22.5 (26.0) 19.0 (21.5) 14.0 (18.5) 

Elbow Range of 

Motion (deg) 
180/50 (180/35) 180/35 (180/40) 195/40 (180/45) 

Prosthesis Use 
Body-powered† 

Activity-specific 
None Passive† 
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7.3.2. Data collection 

Seven non-invasive sEMG Mini Trigno electrodes were placed over the forearm muscles of each 

limb using double-sided adhesive. These electrodes are part of the 16-Channel Delsys Trigno 

sEMG research platform (Delsys, Natick, USA). Electrodes were adhered circumferentially on the 

participants’ affected limb, located where the bulk muscle belly was palpated, and on the 

unaffected limb approximately two-thirds of the forearm length as measured from the distal end7. 

Before real-time testing, sEMG data were collected from participants' affected and unaffected 

forearm muscles in an offline algorithm-training phase. Participants were instructed to imagine 

and attempt a series of muscle contractions necessary to perform five common hand movements. 

Four of these movements are defined in adult hand grasp taxonomy13 and our previous work in 

Chapter 3 on pediatric hand grasp taxonomy: Key, Pinch, Power, and Tripod. Additionally, we 

selected the fifth hand movement, Open, for practical application in controlling multi-grasp 

prostheses, as users will require the ability to return the hand to a neutral position. During this 

offline algorithm-training phase, participants mirrored these movements with the unaffected side 

to help promote the activation of their affected limb. For each hand movement, participants 

performed two trials of three repetitions with 3 seconds of contraction followed by 4 seconds of 

relaxation. These movements were recorded using the wireless sEMG Mini Trigno electrodes. The 

data were transmitted to the Delsys research platform, where it was reconstructed and output as an 

analog signal to a National Instruments USB 6210 Data Acquisition System (National Instruments 

Corp., Austin, USA), sampling at 6 kHz. A custom MATLAB script (R2022a, MathWorks, Inc., 

Natick, USA) was employed to collect and store the sEMG data for offline algorithm training. All 

data collection, processing, and real-time control were conducted on a Lenovo PC with a 64-bit 
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Windows 11 operating system, 32 GB of RAM, and an Intel core i7-8550U at 1.80 GHz (Intel 

Corp., Santa Clara, USA). 

The collected data were then structured for use with BioPatRec, an sEMG pattern recognition 

software that operates in MATLAB14. Using this software, the sEMG data were processed with 

the following settings for offline algorithm training and real-time control. Segmentation was 

conducted with 200 ms windows and 50 ms time increments, and the features extracted were 

defined by the congenital feature set (CFS): tcr, tmcer, tlogd, tHmob, tiabs (see Chapter 6). During 

offline preprocessing, data were cleaned to remove latencies in participant reaction times by 

extracting 70% of the 3-second contraction time (2.1 seconds in total). Offline algorithm training 

was performed with a linear discriminant analysis (LDA) classifier, as our previous work indicated 

that this classifier/feature set combination offers low computational time and good performance 

for children with UCBED (see Chapter 6). However, the classifier topology was set to one-vs-one 

(OVO) because it has been demonstrated to improve individual movement classification 

accuracy15,16. This topology trains all possible combinations of paired movements from M total 

movements, producing C classifiers (C=M*(M-1)/2)15. Within this topological scheme, the 

movement that occurs most often across the C classifiers is the predicted output15. 

7.3.3. Motion Test 

To evaluate real-time classification performance in children with UCBED, we conducted the 

Motion Test9. This test required participants to perform the previously trained hand movements 

while their actions were predicted in real-time using BioPatRec. Real-time control was achieved 

using the LDA-OVO classifier through the Real-time PatRec Mov2Mov graphical interface within 

BioPatRec. Each trial of the Motion Test consisted of three randomized repetitions for each of the 

five movements. This procedure was repeated for five trials, resulting in a total of 75 attempted 
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movements. The timeout period, which indicated the total time allotted to complete each 

movement, was set to 6 seconds, with a 6-second preparation interval between randomized 

movements. The BioPatRec graphical interface displayed the movements for participants to follow 

and indicated the predicted movement in real-time. Verbal cues and movement actions were 

provided to assist participants in following the displayed movement. Additionally, as the children 

attempted the movements, the predictions were simultaneously mapped in real time to the BEAR 

PAW, a research-based multi-articulate pediatric prosthetic hand17. This allowed for the 

visualization of prosthetic control throughout the Motion Test.  

Furthermore, this test facilitated the capture of real-time performance metrics during attempted 

missing hand movements9,14. These metrics were calculated based on real-time predictions, with a 

new prediction generated every 50 ms, equating to 20 predictions per second. The following 

metrics facilitate the evaluation of how robust, responsive, and stable the control of multiple hand 

movements is within our cohort of UCBED children. 

Selection Time served as an indicator of the responsiveness of real-time classification and is 

defined as the time to the first correct prediction9. This metric is calculated starting from movement 

onset, which is identified as the first prediction during the experimental trial that is different from 

the rest prediction9. In this context, a lower selection time indicates faster responsiveness, meaning 

participants may initiate the movement for control of a device sooner, while a higher value signifies 

decreased responsiveness9. 

Completion Time reflects the stability of real-time classification and is defined as the time taken 

to produce the first 20 correct predictions, calculated from movement onset9. A faster completion 

time indicates better control stability, which signifies the participants were able to attain the 
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intended missing hand movement early on during attempted muscle actuation (speed of use 

stability), whereas a longer completion time indicates poorer control stability9.  

Completion Rate is an indicator of robustness, which is defined as the ratio of movements during 

the experimental trials that reached the completion time within the 6-second timeout period to the 

75 total attempted movements9. The higher rate suggests that participants were able to achieve 

more of their attempted missing hand movements, while a smaller value indicates fewer 

movements were achieved9. 

Real-Time Accuracy was an additional indicator of real-time classification stability, as introduced 

by Ortiz-Catalan et al14. It is defined as the accuracy obtained within the completion time, i.e., the 

ratio of 20 correct predictions to the total number of predictions made within the completion time14.  

Binned Accuracy is a supplementary metric similar to real-time accuracy, providing insight into 

the temporal classification stability. It is defined as the total number of correctly predicted 

movements calculated within time intervals (10 bins) throughout the entire timeout period. Given 

the 6-second timeout period and that 20 predictions were made per second, each of the 10 bins 

would include 120/10 individual predictions of the missing hand movements. This provides a 

metric to understand if the participants were able to sustain the desired missing hand movement at 

some time interval throughout the timeout period. 

7.3.4. Feature space quality 

During the Motion Test, raw sEMG signals were collected to investigate the feature space quality 

of real-time data. Recall that participants were instructed to maintain the desired movement for the 

entire 6-second timeout period during the Motion Test. The raw sEMG signals acquired during the 

test underwent preprocessing using the same parameters as the offline data: they were segmented 
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into 200 ms time windows with 50 ms time increments, and the CFS features were extracted 

following the procedures outlined in section 7.3.2. Common feature space quality metrics, 

including separability, consistency, and variability,10–12 were calculated over 2.1-second intervals 

of the feature space data with 50 ms time steps, producing temporal feature space trajectories. It is 

noteworthy that we chose a 2.1-second interval to align with offline data processing, as participant 

latencies for the 3-second offline contractions were accounted for by extracting 70% of the 3-

second contraction (equivalent to 2.1 seconds). An illustration of the feature space metrics 

separability, consistency, and variability is provided in Figure 7-1. 

 

Figure 7-1. Illustration of the feature space metrics employed for analysis. Separability represents 

the minimum distance from one class (grasp) to the remaining classes12. Consistency signifies the 

distance between repetitions of the same class12. Variability indicates the spread of the feature 

space for a given class. It is estimated as the radius of a hypersphere with the same volume as a 

hyper-ellipsoid, under the assumption that the feature space data conforms to a hyper-ellipsoid 

distribution12. 

7.3.4.1. Separability 

Separability defines a conflicting distance between movements within feature space. The average 

real-time separability index (RSI) across the movement classes was defined and adapted following 

Franzke et al.11. Here, the inter-class distance to the nearest neighbor separability index provided 

the average distance of the nearest neighbor10–12 across the m = 5 movement classes. The distance 
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to the nearest neighbor in feature space for each movement serves as a metric of conflict, with the 

average distance defining the “overall” separability of the movements.  

We calculated the RSI given by Equation 7-1, defined as the minimum one-half Mahalanobis 

distance of the real-time feature space data between movements i and j. Here, 𝜇𝑅𝑖 and 𝜇𝑅𝑗 represent 

the feature space centroids of the real-time data for the i and j movements, respectively. Equation 

7-2 represents the real-time covariance matrix (𝑆𝑅), considering both movement classes, as 

described by Nilsson et al.18. Furthermore, 𝑆𝑅𝑖 and 𝑆𝑅𝑗 denote the covariance matrices for the real-

time feature space data for the i and j movements, respectively. Finally, it is important to note that 

when taking the inverse of the covariance matrix, the Moore-Penrose inverse was used to ensure 

its existence. 

𝑅𝑆𝐼 =
1

𝑚
∑ ( min

𝑖=1,…𝑗−1,𝑗+1,…𝑚

1

2
√(𝜇𝑅𝑖 − 𝜇𝑅𝑗)

𝑇
∗ 𝑆𝑅

−1 ∗ (𝜇𝑅𝑖 − 𝜇𝑅𝑗))𝑚
𝑗=1  Equation 7-1 

𝑆𝑅 =
𝑆𝑅𝑖+𝑆𝑅𝑗

2
 Equation 7-2 

7.3.4.2. Consistency 

The consistency of repetitions within a given movement represents the ability for participants to 

perform repeatable patterns of muscle excitation, as assessed by determining the proximity of 

repetitions in feature space10–12. Consistency between the n = 3 movement repetitions for the real-

time trials is defined by the average within-class distance from each pair-wise repetition (p = 2). 

The consistency metric for the repetitions in feature space, represented by real-time within-class 

distance (RWD), is provided below in Equation 7-3, calculated as the average of the m movements, 

as modified from Franzke et al.11.  

𝑅𝑊𝐷 =
𝑝!(𝑛−𝑝)!

𝑚∗𝑛!
∑ (∑ (

1

2
√(𝜇𝑅𝑟𝑖 − 𝜇𝑅𝑘𝑖)𝑇 ∗ 𝑆𝑅

−1 ∗ (𝜇𝑅𝑟𝑖 − 𝜇𝑅𝑘𝑖))𝑛
𝑟=1,𝑘=1

𝑘>𝑟

)𝑚
𝑖=1  Equation 7-3 
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𝑆𝑅 =
𝑆𝑅𝑟𝑖+𝑆𝑅𝑘𝑖

2
   Equation 7-4 

The RWD was calculated in the same manner as the previously discussed separability metric but 

is defined as the one-half Mahalanobis distance for a single movement i of the real-time feature 

space data between repetitions r and k. Here, 𝜇𝑅𝑟𝑖, and 𝜇𝑅𝑘𝑖 indicate the feature space centroids of 

the real-time data for the r and k repetitions of the ith movement, respectively. Equation 7-4 

represents the real-time covariance matrix (𝑆𝑅) for the repetitions, where both repetitions r and k 

were taken into consideration, as described by Nilsson et al.18. The 𝑆𝑅𝑟𝑖 and 𝑆𝑅𝑘𝑖 are the covariance 

matrices for the real-time feature space data of the r and k repetitions for a given movement i, 

respectively. 

7.3.4.3. Variability 

Variability quantifies the spread of data within feature space for a particular movement. Here, the 

mean semi-principal axis serves as a metric for the average variability of the feature space across 

the m movements10–12. The real-time mean semi-principal axis (RMSA) is formulated as the radius 

of a hypersphere with the same volume as a hyper-ellipsoid, reflecting the assumption that the 

feature space data conforms to a hyper-ellipsoid12. Here, 𝑎𝑅𝑖𝑘 represents the real-time semi-

principal axes for the ith of m movements, respectively. The semi-principal axes of the hyper-

ellipsoid were approximated from singular value decomposition11 for the kth of d dimensions 

(where d = 57 dimensions as given by the feature set and sEMG channel combination). The RMSA 

is calculated by Equation 7-5, as defined by Bunderson et al.12. 

𝑅𝑀𝑆𝐴 =
1

𝑚
∑ ((∏ 𝑎𝑅𝑖𝑘

𝑑
𝑘=1 )

1

𝑑)𝑚
𝑖=1  Equation 7-5 
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7.4. Analysis 

7.4.1. Offline evaluation 

To evaluate the LDA-OVO offline classification performance for attempted hand movements, we 

employed a 60-40 cross-validation method. This method entails allocating 60% of the data for 

training and 40% for testing. We then conduct 100 randomizations of the training and testing sets, 

recalculating the classifier performance with each iteration. The average performance was then 

derived from these 100 randomizations. Furthermore, we measured the computational time by 

determining the average training time required to train the C classifiers and the average testing 

time needed for the C classifiers to predict the movement for the one-vs-one topology.  

7.4.2. Motion Test 

The Motion Test allowed us to understand the real-time classification performance metrics as 

participants attempted movements. Selection time, completion time, completion rate, real-time 

accuracy, and binned accuracy are compared across limbs to determine if the affected limb 

performs similar to the unaffected limb. These metrics aid in our understanding of the robustness, 

responsiveness, and stability, and are visualized using box and whisker plots. Statistical 

comparisons across limbs for each movement were performed with the nonparametric Mann-

Whitney U test at a significance level of α = 0.05. However, the completion rate comparison across 

limbs was performed by aggregating all movements due to the metric definition. The null 

hypothesis H0 states that there is no difference in the central tendency between the affected and 

unaffected limbs for the real-time classification performance metrics. Additionally, to 

contextualize the Motion Test data an ideal metrics range was obtained from adult able-bodied 

literature following a similar classification approach, utilizing LDA-OVO20. It is worth noting that 

the ideal metric range for binned accuracy was adapted to match that of the real-time accuracy, 

while all others were directly used. 
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7.4.3. Feature space quality 

In order to assess whether the real-time feature space quality metrics of the affected limb were 

comparable to those of the unaffected limb, a comparative analysis was conducted. To facilitate 

inter-limb comparisons, the trajectories of the feature space quality metrics were normalized using 

min-max normalization as determined across the five trails for each limb. These normalized data 

were then discretized into ten bins and represented using box and whisker plots to visualize 

temporal changes across limbs and the timeout period. Statistical comparisons between limbs for 

each bin were conducted with the nonparametric Mann-Whitney U test at a significance level of α 

= 0.05. The null hypothesis H0 was defined as there being no difference in the central tendency 

between the affected and unaffected limb for the observed feature space metric. Furthermore, in 

order to highlight differences in the trajectory of feature space quality metrics, trial-to-trial 

relatedness was quantified as the area enclosed by any two normalized trajectories for separability, 

consistency, and variability. This area was calculated by computing the integral of the absolute 

difference between two trajectories in MATLAB using the trapz function. Within this context, a 

larger area between any two trials suggests a greater deviation, while a smaller value indicates 

closer consistency between trials. 

7.5. Results 

7.5.1. Offline evaluation 

To understand the ability to classify six movements, the five selected missing hand movements, 

and rest, we evaluated offline classification accuracy and computational time using the LDA-OVO 

classifier for each participant. We selected a target offline threshold value of 85% classification 

accuracy since it has been suggested as the minimum for usable real-time control, where values 

lower than this can lead to user frustration due to inadequate device control19. All participants 

exhibited average classification accuracies exceeding this threshold, ranging from 91.47% to 
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99.63% across the affected and unaffected limbs. Notably, all unaffected limb average 

classification accuracies fell within the range observed in able-bodied adults20, while only 

participant 2 achieved this range with their affected limb. Classification accuracies indicating 

individual movement performance for each participant are discussed in detail in the following 

sections. In addition to the classification accuracy, computational time is a critical factor that was 

explored. Extended classifier training times pose a practical hurdle for everyday use of dexterous 

prostheses, since users will not want to endure extensive waiting periods for classifier training. 

Additionally, testing times exceeding 300 (ms) can lead to noticeable controller delays and thereby 

user frustration21. Training times across the participants and limbs ranged from 0.682 (s) to 0.800 

(s), approximately twice as long as those reported in able-bodied adults20. Moreover, testing times 

ranged from 0.145 (s) to 0.161 (s), slightly faster than those reported in able-bodied adults20. A 

summary of average offline performance metrics are presented in Table 7-2. These findings 

highlight the potential for effectively decoding the attempted missing hand movements from the 

affected musculature in children with UCBED and how that relates to their unaffected limb. 

Table 7-2. Average offline performance metrics. 

Participants Limb Accuracy (%) Training time (s) Testing time (ms) 

Participant 1 
Affected 91.47 0.760 0.145 

Unaffected 99.11 0.682 0.146 

Participant 2 
Affected  97.10 0.776 0.148 

Unaffected 99.63 0.764 0.147 

Participant 3 
Affected 92.21 0.800 0.156 

Unaffected 99.31 0.703 0.161 

Adult able-

bodied N=1518 
Dominant 97.9 ± 2.69 0.342 ± 0.058 2.20 ± 0.090 
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7.5.1.1. Participant 1 

For the affected limb, five of the six movements were above the real-time control performance 

threshold of 85%. Here, Tripod achieved 84.60%, and Power slightly surpassed the threshold at 

85.90%. Notably, Tripod tended to misclassify as Pinch with a rate of 5.70%, while Power 

commonly misclassified as Key with a rate of 6.80%. In contrast, their unaffected limb exhibited 

high classification accuracy with all movements surpassing the 85% threshold, while the lowest-

performing movement, Pinch, achieved an accuracy of 96.20%. The confusion matrices, depicting 

individual movement classification accuracy and their misclassifications, are presented in the first 

column of Figure 7-2. 

7.5.1.2. Participant 2 

All six attempted missing hand movements for their affected limb exceeded the 85% threshold. 

The lowest-performing movement, Power, achieved a classification accuracy of 92.50%, with a 

misclassification rate of 4.50% as Key. Similarly, for the unaffected limb, all movements exceeded 

the 85% threshold, with Power having the lowest classification accuracy of 99.30%. Detailed 

classification accuracies are provided in the confusion matrices within the middle column of Figure 

7-2. 

7.5.1.3. Participant 3 

For the affected limb, five out of the six missing hand movements were above the 85% threshold. 

Pinch, however, fell below the threshold of usable real-time control, with a classification accuracy 

of 84.20%. Interestingly, this movement was frequently misclassified as both Open and Tripod, 

with misclassification rates of 7.80% and 6.00%, respectively. All six movements for the 

unaffected limb surpassed the suggested threshold, with the lowest-performing movement, Power, 
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having an accuracy of 98.00%. Detailed classification accuracies for individual movements are 

presented in the last column of Figure 7-2. 

 

Figure 7-2. Offline confusion matrices. Within each given participant column, two confusion 

matrices are displayed: affected limb (top) and unaffected limb (bottom). These matrices illustrate 

the ability to classify each hand movement, with the average of the diagonal indicating the overall 

classification accuracy. Across all five movements, and rest, participants exhibited an average 

classification accuracy which exceeded approximately 91% for their affected limb and about 99% 

for their unaffected limb.  

7.5.2. Motion Test 

The Motion Test was conducted to assess participants’ ability to control a multi-grasp prosthetic 

hand in real-time with their affected limb and to determine if their performance was comparable 

to that of their unaffected limb. An illustration of the Motion Test setup is provided in Figure 7-3. 

Across both limbs, participants exhibited average real-time accuracy, selection time, and 

completion time which ranged from 38.10% to 56.83%, 0.74 (s) to 1.43 (s), and 2.28 (s) to 3.10 

(s), respectively. In comparison, literature on able-bodied adults suggests ideal metrics with real-
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time accuracy ranging from 69.3 ± 10.8%, selection time ranging from 0.659 ± 0.238 (s), and 

completion time ranging from 4.79 ± 0.815 (s)20. Notably, the ideal range for completion time, 

although slower than that reported in other adult literature,9,14 was selected since the experimental 

setup described by Abbaspour et al.20 closely matched ours. 

 

Figure 7-3. Participant examples for the Motion Test and setup. The various panels in this figure 

depict participants performing the Motion Test using different hand movements, the surface 

electromyography (sEMG) setup for both affected and unaffected limbs, and an overview of the 

general device setup.  

Detailed statistical analyses for the Motion Test metrics, organized on an individual movement 

basis, are provided in the participant-specific sections below. The completion rate serves as an 

overall metric generated across the movements; therefore, statistical analysis was not conducted 

on an individual movement basis. Across participants, the completion rate for the affected limb 

ranged from 48.00% to 80.00%, while for the unaffected limb, it ranged from 68.00% to 92.00%. 

In comparison, the ideal completion rate metric for adult able-bodied individuals ranged from 71.3 

± 14.4%20. It is important to highlight that participant 2 achieved an 80.00% completion rate for 

their affected limb, within the ideal completion rate range of 71.3 ± 14.420. This indicates that they 
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were able to successfully perform the majority of their attempted missing hand movements. A 

single statistical difference was observed in the completion rate, which occurred for participant 3, 

where the unaffected limb exhibited a statistically higher performance than the affected limb. A 

summary of the average data for these metrics, along with the ideal adult able-bodied range, is 

presented in Table 7-3. 

Table 7-3. Average real-time performance metrics. †This value was higher than found in other 

adult able-bodied literature but was used since the classification technique closely matched our 

setup. ‡Indicates there was a statistical difference in completion rate across limbs, with a 

significance level of α = 0.05. 

Participants Limb 
Accuracy 

(%) 

Selection time 

(s) 

Completion time 

(s) 

Completion rate 

(%) 

Participant 1 
Affected 38.10 1.4289 3.0953 56.00 

Unaffected 49.52 1.1600 2.4268 68.00 

Participant 2 
Affected  53.77 1.0870 2.4231 80.00 

Unaffected 51.38 1.2298 2.4883 85.33 

Participant 3 
Affected 56.83 1.1873 2.2829 48.00‡ 

Unaffected 55.86 0.7424 2.3592 92.00‡ 

Adult able-

bodied N=1520 
Dominant 69.3 ± 10.8 0.659 ± 0.238 4.79 ± 0.815† 71.3 ± 14.4 

7.5.2.1. Participant 1 

The median selection times for three movements in the affected limb —Key, Power, and Tripod—

were within the ideal range for adult able-bodied individuals. Additionally, for the unaffected limb, 

the median selection times for Key, Open, and Pinch also fell within the ideal range. Statistical 

significance was observed in the selection time for the Tripod movement, wherein the affected 

limb surprisingly outperformed the unaffected limb with a quicker selection time, indicating 

heightened responsiveness. Furthermore, the affected limb exhibited median completion times for 

all movements faster than the ideal range, while the unaffected limb had only one movement, 

Tripod, within the range. Note that faster completion times indicate that the participant had a better 

speed of use stability, as they were able to achieve the intended missing hand movement sooner9. 
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Moreover, both the affected and unaffected limbs showed median real-time accuracies that were 

below the ideal range. Analyzing completion time and real-time accuracy revealed significant 

differences between the affected and unaffected limbs for two movements: Key and Open. 

Specifically, the affected limb displayed statistically higher completion times, indicating decreased 

speed of use stability, which means it took longer to achieve 20 correct predictions and, 

consequently, longer to perform the intended hand movement. Additionally, the affected limb 

exhibited statistically lower real-time accuracy. Finally, although all median values for the binned 

accuracy were numerically higher for the unaffected limb compared to the affected limb, no 

statistical differences were observed. Detailed Motion Test data for participant 1 can be found in 

the first column of Figure 7-4. 

7.5.2.2. Participant 2 

The median selection times for four movements—Open, Pinch, Power, and Tripod—were within 

the ideal range for the affected limb. Among the movements for the unaffected limb, Pinch and 

Power fell within the selection time ideal range, while Key and Open were borderline. Statistically, 

only Power differed between limbs in selection time, with the affected limb performing better than 

the unaffected limb. All movements across both limbs, except Tripod, had faster median 

completion times compared to the ideal range, which indicates attempted missing hand movements 

were achieved faster9. However, no statistical differences were found between the affected and 

unaffected limbs for the completion time. Regarding real-time accuracy, the median values for 

three movements—Open, Pinch, and Power—were within the ideal range for the affected limb, 

while for the unaffected limb, only Open and Pinch met this criterion. No statistical differences 

for real-time accuracy were found for any of the movements across limbs. In terms of the binned 

accuracy, nine bins for the affected limb were within the ideal range, compared to only five for the 
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unaffected limb. Recall that the ideal range for the binned accuracy was defined to match that of 

real-time accuracy. No statistical differences were found across limbs for the binned accuracies. 

The Motion Test data for participant 2 is provided in the middle column of Figure 7-4. 

7.5.2.3. Participant 3 

In the affected limb, the median selection time for the Open hand movement fell within the ideal 

range, while Key exhibited a faster responsiveness. Conversely, all movements for the unaffected 

limb demonstrated either ideal or faster responsiveness. Two movements, Open and Tripod, 

showed a statistically significant difference across limbs for the selection time, with the affected 

limb performing worse. For the completion time, median values for all movements across both 

limbs had faster times than the ideal range. However, there was a statistical difference observed in 

the Open hand movement across limbs, which indicated that the affected limb took longer to 

achieve the intended missing hand movement9. In terms of real-time accuracy, only the median of 

Power from the affected limb was within the ideal range, while Open and Pinch from the 

unaffected limb had medians above and within the ideal ranges, respectively. A statistical 

difference was observed across limbs for the Open hand movement, with the affected limb 

performing statistically worse. It is important to note that both completion time and real-time 

accuracy for the affected limb had exceptions. More specifically, only one out of 15 repetitions of 

Pinch completed 20 correct predictions within the 6-second timeout period, affecting the 

completion time and real-time accuracy, while Tripod had none. Additionally, for the binned 

accuracy not a single bin for the affected limb achieved a median accuracy within the ideal range, 

contrasted with the unaffected limb, where the last 5 bins fell within this range. Only one statistical 

difference emerged across limbs in bin 9, indicating the affected limb performed statistically 

worse. All Motion Test data for participant 3 is depicted in the last column of Figure 7-4.  
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Figure 7-4. Real-time performance metrics. Within each given participant column, four metrics 

are displayed from top to bottom: selection time, completion time, real-time accuracy, and binned 

accuracy. Blue shading represents the affected limb, while red shading represents the unaffected 

limb. *Signifies a statistical difference between the limbs. †Denotes that only a single value was 

achieved out of the 15 affected limb movement repetitions. ‡Indicates the participant was unable 

to achieve the desired metric for the affected limb. Additionally, dashed lines represent the ideal 

range obtained from adult able-bodied literature for the Motion Test using a similar classification 

approach, LDA-OVO20. 
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7.5.3. Feature space quality 

The feature space quality metrics—separability, consistency, and variability—provided a 

framework for examining temporal changes across limbs and trial-to-trial relatedness. Values for 

these metrics were averaged across movements within limbs to obtain overall metrics. 

Comparisons between the affected and unaffected limbs were made using the binned data as 

discussed in sections 7.3.4 and 7.4.3. Additionally, trial-to-trial relatedness was defined as the area 

between pair-wise trials within a given feature space quality metric. These metrics collectively 

offer insight into the dynamic nature of motor performance and the interplay between temporal 

changes and trial-to-trial consistency across limbs.  

7.5.3.1. Separability 

Across all participants, we observed a notable pattern in the separability for their unaffected limb, 

characterized by a sharp increase followed by a plateau. A similar trend was evident in the affected 

limb of participant 1, although the central tendency of participant 2 showed a slight decline from 

bin 7 to bin 10 (3.6 (s) to 6.0 (s)). Additionally, participant 3 exhibited an initial increase up to bin 

3, followed by a steady decline, representing a distinct departure from the patterns observed in the 

previous participants. Moreover, participant 3 demonstrated statistically significant differences in 

separability for bins 4 through 10 (1.8 (s) to 6.0 (s)) across limbs, with the affected limb showing 

a significant decrease compared to the unaffected limb. The trajectory of separability for all 

participants is illustrated in the first row of Figure 7-5. These findings may suggest that, for some 

participants, the temporal trajectory of separability in the feature space of muscle excitation for the 

affected limb resembles that of the unaffected limb. 
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7.5.3.2. Consistency 

Similar to separability, the consistency exhibited an initial numerical increase followed by a 

plateau. This upward trend suggests an initial decrease in consistency between repeated repetitions, 

followed by stabilization at a relatively steady level of consistency. However, this pattern was 

observed only for participants 1 and 2, as participant 3 showed a trend in the central tendency that 

lacked clear visual distinction. For participants 2 and 3, the affected limb showed statistically 

significant differences from the unaffected limb in bin 1 of the consistency metric, with the affected 

limb demonstrating a larger consistency value, indicating greater inconsistency at the onset of 

movement contraction. The participant consistency trajectories are shown in the middle row of 

Figure 7-5. These results indicate that, in some participants, the ability to consistently repeat 

movements with the affected limb over a specific time period mirrors that of their unaffected limb. 

7.5.3.3. Variability 

The variability initially showed a large spread as each movement transitioned from the rest state 

to an active movement state, traversing the feature space which resulted in high variability at the 

onset. However, the variability gradually stabilized at a lower value over time. This consistent 

trend in the variability trajectory was observed across all participants, except for participant 3, who 

displayed an exceptionally high spread in their variability across the trials. The trajectories of 

variability for each participant are depicted in the last row of Figure 7-5. The similar variability 

observed across limbs for some participants may suggest a potential common underlying pattern 

of muscle variability between affected and unaffected limbs. 
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Figure 7-5. Feature space quality metric trajectories. Within each given participant column, three 

normalized trajectory metrics are illustrated from top to bottom: separability, consistency, and 

variability. Blue shading represents the affected limb, while red indicates the unaffected limb. 

*Signifies a statistical difference between the limbs for the given bin(s). 

7.5.3.4. Trial-to-trial relatedness 

The trial-to-trial area provided insight into the relationship between trials throughout the Motion 

Test. A larger area is an indication of a greater deviation and therefore inconsistency among trial 

trajectories. Generally, the trial-to-trial area for the separability trajectories of the affected limb 

showed an increase from trial 1 to subsequent trials, with minor exceptions (refer to Figure 7-6). 

No discernible trends were observed for the separability of the unaffected limb. Furthermore, there 
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were few if any observable trends for the trial-to-trial area in consistency and variability across all 

participants and limbs, as detailed in Appendix D. This increase in the separability area is likely 

attributed to an increase in sEMG amplitude, which may suggest effects of fatigue, which warrant 

further investigation.  

 

Figure 7-6. Feature space trial-to-trial separability trajectory differences. Each column represents 

the trial-to-trial area of the normalized separability trajectory for the affected limb (top) and 

unaffected limb (bottom). Lighter yellow coloring indicates a larger area between two normalized 

trajectories. The affected limb consistently exhibits an increase in area from trial 1 to trial 5 across 

all participants, whereas the unaffected limb shows undiscernible behavior. Note that the area is 

rounded to the nearest whole number.  

7.6. Discussion 

We examined the real-time performance and feature space quality metrics of three children with 

UCBED as they controlled multiple movements of a dexterous prosthetic hand. Our findings reveal 

minimal differences across limbs in real-time performance metrics, which approach those 

observed in adult able-bodied individuals20. Moreover, we demonstrated in a by-case example that 



169 

 

the feature space metric trajectories of the affected limb closely parallel those of the unaffected 

limb, with few exceptions. Collectively, these results indicate that despite being born with upper 

limb deficiency, as children with UCBED attempt to perform missing hand movements they 

possess the real-time capacity to control a dexterous prosthesis in a reproducible manner. 

7.6.1 Children with UCBED can control dexterous prostheses 

Children with UCBED exhibit muscle activity linked to attempted missing hand movements, 

which demonstrate behavior comparable to their unaffected limb and approaching that of adult 

able-bodied individuals. Our analysis, conducted offline using LDA-OVO for movement 

decoding, revealed that participants achieved average classification accuracies exceeding 91% for 

their affected limb, reaching as high as approximately 97% for participant 2 who was consistent 

with those observed in adult able-bodied individuals20. Additionally, all average classification 

accuracies for the unaffected limb of each participant were approximately 99%, aligning with 

reported values for adult able-bodied individuals20. The results for the affected limb are consistent 

with our previous research on decoding attempted missing hand movements in children with 

UCBED, which showed high classification performance (96.5 ± 6.6%) when the number of 

movements was reduced from 11 to a subset that contained only 5 (see Chapter 6). When assessing 

offline classification accuracies for each participant, all participants exceeded the suggested 85% 

threshold for usable real-time control19, with only two exceptions: participants 1 and 3, whose 

classification accuracies for Tripod and Pinch fell just below this threshold, at 84.60% and 84.20%, 

respectively. Interestingly, all participants displayed movement misclassification behavior for 

their affected limb that would resemble typical misclassification of the unaffected limb. For 

instance, participant 1 commonly misclassified Tripod as Pinch and Power as Key; participant 2 

more frequently misclassified Power as Key; participant 3 often misclassified Pinch as Tripod. 
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These misclassifications within the affected limb share similarities: Tripod and Pinch differ by 

only one finger, with the introduction of the middle finger for Tripod, while Power and Key involve 

similar movements, differing primarily in thumb abduction versus adduction, respectively. 

Overall, these results suggest that children with UCBED can achieve a high level of motor control 

over their affected muscles that approaches that of able-bodied individuals, when muscle activity 

and classification performance is assessed offline.  

Furthermore, we investigated the real-time performance of children with UCBED using the Motion 

Test and compared the performance between their affected and unaffected limbs. Overall, we 

observed mixed findings in the selection times (responsiveness), completion times (stability), and 

completion rate (robustness) across participants, with few statistical differences observed for 

individual movements between limbs. Some affected limb movements exhibited selection times 

within the ideal adult able-bodied range of 0.659 ± 0.238 (s)20, indicating an ideal responsiveness 

to initiate certain movements for device control9, while other movements showed decreased 

responsiveness. Additionally, the majority of movements for both limbs were performed with a 

faster completion time than that presented in adult able-bodied literature20, suggesting potentially 

better speed of use stability in achieving the desired movement more rapidly9. It is important to 

note that the ideal completion time range of 4.79 ± 0.815 (s) was obtained from adult able-bodied 

literature20, as it was consistent with our current experimental protocol, providing 

contextualization for our results. However, the ideal completion time was larger than other adult 

literature, with minor differences in setup9,14. When assessing the completion rate, a measure of 

robustness that indicates the success of performing the attempted missing hand movements9, we 

found that participant 2 had an 80.0% completion rate for their affected limb, well within the adult 

able-bodied range of 71.3 ± 14.4%20. When examining average real-time accuracy across 
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participants, the affected limb demonstrated numerically higher accuracy for participants 2 and 3 

compared to their unaffected limb, although this trend was not consistent for participant 1. 

Moreover, few statistical differences were found between the affected and unaffected limbs when 

assessing real-time accuracy for individual movements, where all movements approached the real-

time accuracy of adult able-bodied individuals20. To further investigate real-time accuracy, we 

implemented the binned accuracy to assess the temporal performance throughout the Motion Test. 

While variations were observed between participants, the binned accuracy generally favored the 

unaffected limb, with more bins within or approaching the ideal range20. In summary, these 

findings underscore variability in motor control capabilities among children with UCBED, with 

some demonstrating comparable performance between affected and unaffected limbs in certain 

metrics, while others exhibited significant differences for specific movements. This highlights the 

importance of future research in evaluating the effects of motor learning on these performance 

metrics. 

7.6.2 Feature space metrics follow similar behavior across limbs 

As the participants with UCBED actuated their affected musculature, the trajectories of feature 

space metrics resembled those of their unaffected limb, with few exceptions. This suggests that 

the activation patterns of affected muscles mirror those of the unaffected limb, enabling the 

execution of separable movements with consistency across repeated repetitions and similar 

variability. These findings further support claims that there is a degree of relatedness in muscle 

excitation across limbs for children with UCBED7. However, a notable exception was observed in 

participant 3, where the temporal separability of the affected limb exhibited a drastic decline from 

bins 4 through 10 (1.8 (s) to 6.0 (s)), statistically differing from that of the unaffected limb (see 

Figure 7-5). Furthermore, participant 3 also displayed a significant spread in the variability 
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metrics. These results for participant 3 are likely attributed to their age (10 years old), as they were 

the youngest in our cohort and showed signs of difficulty in maintaining attention during data 

collection. Further investigations should be conducted to assess age-related real-time feature space 

metrics for children with UCBED, aiming to enhance our understanding of their separability, 

consistency, and variability in performing multiple hand movements and how these may be related 

to typical motor control. 

When assessing the trial-to-trial differences, determined by the area between pair-wise trial 

trajectories, only qualitative observations were noted for the separability. In general, the 

separability increased with each proceeding trial for the affected limb. However, due to the absence 

of a trend in the consistency and variability for the trial-to-trial area, it is challenging to determine 

whether participants enhanced separability by improving repetition consistency or reduced 

movement variability across trials. The likely explanation for these results is participant fatigue 

throughout the trials, as it has been demonstrated that sEMG amplitude increases with fatigue22,23. 

Therefore, it is highly likely that the increased separability was a result of elevated sEMG activity 

due to fatigue. Further, investigation is needed to understand how children with UCBED perform 

consistent, separable, movements with minimal variability, particularly regarding the effects of 

fatigue and the evolution of feature space metrics with active training and regular prosthesis use.  

7.7. Conclusions 

Our finding suggests that children with UCBED have the potential to control a dexterous prosthesis 

in real-time with their affected limb, approaching the proficiency level of typical adult able-bodied 

individuals. Statistical analysis revealed minimal differences in performance metrics across limbs 

for the Motion Test. The feature space trajectory metrics of the affected limb resembled those of 

the unaffected limb, with few exceptions, further supporting the notion that children with UCBED 
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actuate their affected musculature similarly to typically developed muscles7. Furthermore, 

examination of feature space differences between trials indicated an increase in separability, likely 

attributed to muscle fatigue. However, our study had some limitations. The calculation method for 

the Motion Test completion time and real-time accuracy may have introduced biases into our 

results, since any movement repetition that did not achieve 20 correct predictions would not 

receive a completion time or real-time accuracy and thus were discarded. To overcome this, we 

reported the completion rate as a metric to indicate the total percentage of successfully completed 

movements. Additionally, the nonparametric test used for statistical analysis had limited power, 

reducing our ability to detect true effects between limbs. Moreover, the latency (delay) in the 

BEAR PAW actuation system, including both the time it took for the movement prediction to reach 

the BEAR PAW and the time the BEAR PAW took to move, might have affected how quickly 

participants recognized incorrect movements. This delay could have caused a lag in adjusting the 

intended missing hand movement, potentially impacting the accuracy or timing of their 

movements. Future research for children with UCBED should consider using additional sEMG 

sensors. Recent evidence suggests that employing 16 sEMG channels improves real-time control 

capabilities compared to only 8 channels, with some functional test metric error rates improving 

by more than a factor of three24. Finally, there have been a number of tests to assess hand 

functionality in both clinical and experimental settings for individuals with hand impairments9,25–

32, and a comprehensive functional test should be implemented to understand the ability for 

children with UCBED to control a dexterous prosthesis in real-time daily activities. Taken 

together, our study provides evidence that children with UCBED demonstrate the ability to 

perform multiple movements during real-time control of a dexterous prosthesis, emphasizing the 
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need for further investigation into how these children may learn and enhance their control over 

such devices.  
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Chapter 8. Conclusions and future directions 

Prosthesis abandonment significantly impacts children at a higher rate than their adult 

counterparts, ranging from 35-45%, compared to 23-26%, respectively1. There are a number of 

factors that contribute to whether a child prescribed a prosthesis will continue to wear their device, 

including weight, comfort, and aesthetics2–5. However, a leading cause for prosthesis rejection 

remains, that these devices do not offer sufficient functional benefit to warrant their use2–4,6,7. This 

lack of functional benefit may stem from a limited understanding of the extent to which children 

can effectively use the newly available adult-based dexterous systems. Furthermore, the majority 

of children who may be prescribed an upper limb prosthesis are born with limb deficiency8, a stark 

contrast from the adult population, which typically experiences limb loss later in life. This 

distinction underscores the need to investigate the extent to which children born with upper limb 

deficiency can actuate their affected muscles and utilize this actuation to drive dexterous 

prostheses. This gap in knowledge has remained a significant barrier to the translation of dexterous 

devices into the pediatric arena.  

In this dissertation, we investigate the motor control of attempted missing hand movements in 

children with unilateral congenital below-elbow deficiency (UCBED), laying the foundation for 

translating adult-based dexterous prosthesis technology to these children. Our investigation begins 

with an overview in Chapter 2 of the current standard of care for children utilizing upper limb 

prostheses and the inherent challenges within this domain. Moving forward, Chapter 3 examines 

how typically developed able-bodied children employ their hands in daily activities, offering 

insight to inform device development. Chapter 4 details the development of a child-sized 

multiarticulate prosthetic hand, tailored for use within research settings. Subsequently, Chapter 5 

explores muscle response when children with UCBED attempt to move their missing hand, 
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assessing the consistency and distinguishability of affected muscle actuation, as this is important 

for modern prosthetic control systems. With a comprehensive understanding of these children’s 

muscular capabilities, Chapter 6 focuses on tuning machine learning algorithms to predict their 

motor intent, culminating in the development of a generalized congenital feature set. Finally, in 

Chapter 7 we evaluate the real-time capability of these children to control the dexterous device 

developed in Chapter 4.   

The extent to which children born with upper limb absence can actuate their affected musculature 

has remained unstudied. However, in Chapter 5, we demonstrated that children with UCBED 

exhibit a degree of biological control over their affected muscles. This control manifested as 

consistent and distinguishable patterns of muscle excitation, with some shared information 

observed across affected and unaffected limbs as participants attempted the various missing hand 

movements. Our findings establish the case that children born with upper limb absence can 

produce distinguishable hand movements with their affected musculature, thereby promoting 

further investigation into how machine learning algorithms could be employed.   

To initiate the effective translation of dexterous devices to children with UCBED, it was necessary 

to tune machine learning algorithms for decoding their hand motor intent. Previous studies 

investigating individuals with UCBED have primarily leveraged machine learning algorithms and 

commercially available pattern recognition systems designed for adult-amputee populations9,10. As 

a result, the prediction accuracy for UCBED adults (N = 4) ranged from 52.1% ± 15.0% for 11 

attempted hand movements9, while for UCBED children (N = 4), it was 80% ± 16.0% for 3 degrees 

of freedom10. Unlike adults with acquired limb loss, individuals born with upper limb absence 

have never actuated an intact hand. Despite this distinction, machine learning algorithms designed 

for adult amputee populations have been applied with little success and without rigorous testing. 
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In Chapter 6, we explored five different machine learning algorithms and 49 feature combinations 

to determine what characteristics (features) of muscle activity may be most important to decode 

hand motor intent. This investigation led to the development of the congenital feature set, which 

demonstrated robust generalization across our UCBED participant cohort. Furthermore, we 

achieved high offline classification accuracy with a reduced set of five movements, a significant 

finding given our previous research in Chapter 3, which revealed that typically developed children 

use a subset of movements for activities of daily living. Ultimately, these findings lay the necessary 

foundation for transitioning from offline analysis of pre-recorded datasets to evaluating real-time 

control, as detailed in Chapter 7. 

Finally, this work culminates in the assessment of real-time control of the BEAR PAW, a research-

based pediatric prosthetic hand developed in Chapter 4. It is essential to examine how children 

with UCBED can operate a dexterous device in real time, as offline analysis serves only as a proxy 

for real-time control. In fact, performance during real-time control often decreases when compared 

to offline analysis11–13. Our study provides encouraging results, although in a small cohort, 

indicating that children with UCBED have the potential to control dexterous prostheses in real-

time with their affected limb, achieving performance levels that resemble their unaffected limb. 

This finding further supports the argument outlined in Chapter 5, which suggests that children 

demonstrate a degree of shared information across limbs as they attempt missing hand movements. 

Moving forward, it is imperative to consider larger cohorts of participants with UCBED to 

comprehensively understand the impact age, sex, and limb size have on decoding hand motor 

intent and the ability of these children to actuate their affected musculature. This is essential to 

establishing clinical guidelines for prosthesis prescription and effectively translating this research 

to the child population. Additionally, exploring the effects of motor learning for children with 
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UCBED as they acquire proficiency in using and controlling multiple hand movements in real-

time settings is important for the successful translation of advanced prostheses. A thorough 

functional assessment should be implemented to begin understanding how children operate 

dexterous devices within daily environments. Furthermore, investigating how children with 

UCBED currently use their affected limb to assist in daily activities is warranted, as this can further 

inform which prosthesis movements may be beneficial to provide for improved functionality. 

These endeavors are significant but have the potential to change clinical practices and improve the 

quality of life for children with UCBED.   
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Appendix A: BEAR PAW movement assessment  

Table A-1. Anthropomorphic Hand Assessment Protocol scores from each of the three test 

investigators for all grasp types/postures over each trial for grasping and maintaining obtained for 

the BEAR PAW. 

Test 

Investigator 
Trial 

Grasp 

Type/Posture  
Object  

Grasping Maintaining 

Trial 

1 

Trial 

2 

Trial 

3 

Trial 

1 

Trial 

2 

Trial 

3 

1 

1 Hook Skillet lid 0.5 0.5 0.5 0.5 
0.

5 
0.5 

2 Spherical grip Plastic apple 0.5 0.5 0.5 1 1 1 

3 Tripod pinch 
Large 

marker 
1 0.5 0.5 1 

0.

5 
1 

4 Extension grip Plate 1 1 1 0 0 0 

5 Cylindrical grip Chips can 1 1 1 1 1 1 

6 Diagonal volar grip 
Phillips 

screwdriver 
0.5 0.5 0.5 1 1 1 

7 Lateral pinch Bowl 0.5 0.5 0.5 1 1 1 

8 Pulp pinch 
Small 

marker 
1 0.5 1 0 1 1 

9 
Index 

pointing/pressing 
Timer 1 1 1 1 1 1 

10 Hook Pitcher base 0.5 0.5 0.5 0.5 
0.

5 
0.5 

11 Spherical grip Softball 1 0.5 1 1 1 1 

12 Tripod pinch Tuna can 1 1 1 0.5 
0.

5 
0.5 

13 Extension grip Cracker box 0.5 0.5 0.5 0 0 0 

14 Cylindrical grip Coffee can 0.5 0.5 0.5 0 0 0 

15 Diagonal volar grip Spatula 0.5 0.5 0.5 0.5 
0.

5 
0.5 

16 Lateral pinch XS Clamp 1 1 1 1 
0.

5 
1 

17 Pulp pinch Plastic pear 1 1 1 0 
0.

5 
0 

18 Platform Plate 1 1 1 - - - 

19 Hook 

Wood 

blocks with 

rope 

0.5 0.5 0.5 0.5 
0.

5 
0.5 

20 Spherical grip 
Mini soccer 

ball 
0.5 0.5 0.5 0 0 0 

21 Tripod pinch Golf ball 1 1 1 1 
0.

5 
1 

22 Extension grip Pudding box 1 1 1 0 0 0 

23 Cylindrical grip Power drill 1 1 1 1 1 1 

24 Diagonal volar grip Skillet 0 0 0 0 0 0 
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25 Lateral pinch Key 0.5 0.5 0.5 0.5 
0.

5 
0.5 

26 Pulp pinch 
Washer 

10mm 
1 1 1 1 1 0.5 

2 

1 Hook Skillet lid 0.5 0.5 0.5 0.5 0 0 

2 Spherical grip Plastic apple 0.5 0.5 0.5 1 1 1 

3 Tripod pinch 
Large 

marker 
0.5 1 0.5 0.5 

0.

5 
0.5 

4 Extension grip Plate 1 1 1 0 0 0 

5 Cylindrical grip Chips can 1 1 1 1 1 1 

6 Diagonal volar grip 
Phillips 

screwdriver 
0.5 0.5 0.5 1 1 1 

7 Lateral pinch Bowl 0.5 0.5 0.5 1 1 1 

8 Pulp pinch 
Small 

marker 
1 1 1 0.5 1 0 

9 
Index 

pointing/pressing 
Timer 1 1 1 1 1 1 

10 Hook Pitcher base 0.5 0.5 0.5 0.5 
0.

5 
0.5 

11 Spherical grip Softball 1 1 1 0.5 
0.

5 
0.5 

12 Tripod pinch Tuna can 1 1 1 0 0 0.5 

13 Extension grip Cracker box 0.5 0.5 0.5 0 0 0 

14 Cylindrical grip Coffee can 0.5 0.5 0.5 0 0 0 

15 Diagonal volar grip Spatula 0.5 0.5 0.5 0.5 
0.

5 
0.5 

16 Lateral pinch XS Clamp 1 1 1 1 1 1 

17 Pulp pinch Plastic pear 1 1 1 0 1 1 

18 Platform Plate 1 1 1  - -  -  

19 Hook 

Wood 

blocks with 

rope 

0.5 0.5 0.5 0.5 
0.

5 
0.5 

20 Spherical grip 
Mini soccer 

ball 
0.5 0.5 0.5 0 0 0 

21 Tripod pinch Golf ball 1 1 0.5 1 1 1 

22 Extension grip Pudding box 1 1 1 0 0 0 

23 Cylindrical grip Power drill 1 1 1 0.5 1 1 

24 Diagonal volar grip Skillet 0 0 0 0 0 0 

25 Lateral pinch Key 0.5 0.5 0.5 0.5 
0.

5 
0.5 

26 Pulp pinch 
Washer 

10mm 
1 1 1 1 1 1 

3 

1 Hook Skillet lid 0.5 0.5 0.5 0 0 0.5 

2 Spherical grip Plastic apple 1 0.5 1 1 0 1 

3 Tripod pinch 
Large 

marker 
0.5 0.5 0.5 0.5 

0.

5 
0.5 

4 Extension grip Plate 1 1 1 0 0 0 
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5 Cylindrical grip Chips can 1 1 1 1 0 0 

6 Diagonal volar grip 
Phillips 

screwdriver 
0.5 0.5 0.5 0.5 1 1 

7 Lateral pinch Bowl 0.5 0.5 0.5 1 1 1 

8 Pulp pinch 
Small 

marker 
1 1 1 1 

0.

5 
1 

9 
Index 

pointing/pressing 
Timer 1 1 1 1 1 1 

10 Hook Pitcher base 0.5 0.5 0.5 0.5 
0.

5 
0.5 

11 Spherical grip Softball 1 1 1 0.5 
0.

5 
0.5 

12 Tripod pinch Tuna can 1 1 1 0 
0.

5 
0.5 

13 Extension grip Cracker box 0.5 0.5 0.5 0 0 0 

14 Cylindrical grip Coffee can 0.5 0.5 0.5 0 0 0 

15 Diagonal volar grip Spatula 0.5 0.5 0.5 0.5 
0.

5 
0.5 

16 Lateral pinch XS Clamp 1 1 1 1 1 1 

17 Pulp pinch Plastic pear 1 1 1 1 1 1 

18 Platform Plate 1 1 1 -  -  -  

19 Hook 

Wood 

blocks with 

rope 

0.5 0.5 0.5 0.5 
0.

5 
0.5 

20 Spherical grip 
Mini soccer 

ball 
0.5 0.5 0.5 0 0 0 

21 Tripod pinch Golf ball 1 1 1 1 
0.

5 
1 

22 Extension grip Pudding box 1 1 1 0 0 0 

23 Cylindrical grip Power drill 1 1 1 1 1 1 

24 Diagonal volar grip Skillet 0 0 0 0 0 0 

25 Lateral pinch Key 0.5 0.5 0.5 0.5 
0.

5 
1 

26 Pulp pinch 
Washer 

10mm 
1 1 1 1 0 1 
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Figure A-1. BEAR PAW maintaining comparison scores for the (a) 8 grasp types and (b) 1 posture 

across the 4 adult hands. For each grasp type/posture, the number of times each hand scored a 1, 

0.5, or 0 was plotted. *Represents when the BEAR PAW performed statistically worse. 

†Represents when the BEAR PAW performed statistically better. 

  

(b) 

(a) 
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Appendix B: Muscle excitation and visualization 

RMS and MNF muscle excitation 

Participant: SHR-A 

 

Figure B-1. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-A. 
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Figure B-2. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-A. 
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Participant: SHR-B 

 

Figure B-3. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-B. 
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Figure B-4. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-B. 
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Participant: SHR-C 

 

Figure B-5. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-C. 
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Figure B-6. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-C. 
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Participant: SHR-D 

 

Figure B-7. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-D. 
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Figure B-8. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-D. 
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Participant: SHR-E 

 

Figure B-9. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-E. 
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Figure B-10. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-E. 

 

 

 

 

 

 

 

 

 



215 

 

Participant: SHR-F 

 

Figure B-11. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-F. 
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Figure B-12. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-F. 
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Participant: SHR-G 

 

Figure B-13. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-G. 
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Figure B-14. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-G. 
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Participant: SHR-H 

 

Figure B-15. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-H. 
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Figure B-16. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-H. 

 

 

 

 

 

 

 

 

 



221 

 

Participant: SHR-I 

 

Figure B-17. The box and whisker plots provide a visualization of the RMS muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-I. 
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Figure B-18. The box and whisker plots provide a visualization of the MNF muscle excitation 

patterns and relaxed states seen for the various hand movements across the unaffected and affected 

limbs for participant SHR-I. 
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Multidimensional scaling and representational dissimilarity 

matrices 

Participant: SHR-A 

 

Figure B-19. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-A. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-B 

 

Figure B-20. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-B. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-C 

 

Figure B-21. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-C. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-D 

 

Figure B-22. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-D. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-E 

 

Figure B-23. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-E. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-F 

 

Figure B-24. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-F. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-G 

 

Figure B-25. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-G. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-H 

 

Figure B-26. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-H. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Participant: SHR-I 

 

Figure B-27. Visual representation of the correlation distances between hand movements for the 

amplitude and spread of measurement characteristics of SHR-I. The multidimensional scaling 

plots are provided in three dimensions corresponding to the representational dissimilarity matrices 

for (a) the median RMS and MNF characteristics and (b) the RMS and MNF interquartile range 

(IQR). 
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Appendix C: Classification tables and analysis 

Individual feature performance accuracy  

Participant: SHR-A 

Table C-1. SHR-A individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 58.82 63.28 38.08 36.39 57.53 

2 tstd 55.62 63.63 37.44 37.68 56.26 

3 tvar 48.12 62.29 37.89 27.04 56.50 

4 twl 51.64 62.71 34.65 37.47 53.58 

5 trms 55.85 63.37 37.17 37.60 56.18 

6 tzc 39.87 31.96 25.54 33.09 34.25 

7 tpks 29.80 25.37 19.97 21.69 26.16 

8 tmpks 52.20 60.12 35.45 39.35 53.81 

9 tmvel 47.82 50.62 33.69 32.48 45.25 

10 tslpch 40.11 35.80 26.90 28.39 35.47 

11 tpwr 48.02 62.49 37.89 26.96 56.61 

12 tdam 51.80 61.74 34.41 37.30 53.39 

13 tmfl 51.99 62.53 34.32 36.75 53.71 

14 tfd 28.25 24.21 21.70 23.95 24.25 

15 tfdh 38.58 32.21 29.00 30.80 32.05 

16 tren 54.92 52.85 35.53 35.51 49.66 

17 tcr 60.13 59.20 37.94 39.81 52.31 

18 tcv 44.93 54.75 30.80 23.55 47.03 

19 tcard 58.55 59.49 32.39 39.40 52.65 

20 tHmob 51.20 50.94 31.28 38.17 47.13 

21 tHcom 43.57 47.44 33.61 22.65 41.62 

22 tskw 31.17 34.66 18.50 14.15 32.22 

23 tdasdv 51.71 61.03 33.77 38.52 54.66 

24 tkurt 29.99 30.42 24.93 17.88 29.25 

25 twam 49.19 51.03 28.14 30.20 47.87 

26 tmcer 45.53 53.15 28.84 27.99 51.88 

27 tperc75 47.41 52.92 32.08 29.30 50.68 

28 tiabs 59.25 63.91 38.26 36.40 57.66 

29 thist 34.39 36.17 30.19 29.89 28.06 

30 tssi 47.89 63.55 37.96 27.39 56.22 

31 tlogd 58.37 58.80 33.60 37.06 53.93 
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Table C-2. SHR-A individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 54.20 57.11 35.00 38.53 53.13 

2 fmn 44.66 39.99 27.16 33.27 39.93 

3 fmd 41.68 33.75 25.52 33.36 35.62 

4 fpmn 52.59 53.80 30.33 26.18 46.59 

5 fpmd 47.41 49.46 28.83 27.35 43.81 

6 fpstd 38.48 39.48 21.19 21.15 33.53 

7 fmxp 21.42 17.57 16.08 13.51 24.21 

8 fr 46.79 43.27 34.18 33.62 41.54 

9 fe 38.73 56.91 28.65 38.81 39.16 

 

 

Table C-3. SHR-A individual time-frequency domain feature performance. Red shading highlights 

the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 54.52 57.58 36.26 34.35 52.38 

2 tfvar 45.15 55.85 36.23 24.26 52.41 

3 tfwl 54.82 59.13 36.13 34.34 53.44 

4 tfe 44.86 57.39 36.24 24.28 52.60 

5 tfmxabs1 43.33 43.68 30.56 31.85 40.90 

6 tfmxabs2 48.09 47.89 37.86 43.80 43.11 

7 tfzc 24.75 20.30 18.30 22.01 20.98 

8 tfmn 14.20 22.92 10.98 11.86 20.43 

9 tfmabs 54.63 56.67 35.84 33.83 51.87 
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Participant: SHR-B 

Table C-4. SHR-B individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 34.41 62.53 28.05 21.73 51.05 

2 tstd 34.77 62.80 25.40 22.85 51.06 

3 tvar 30.43 56.48 22.33 19.26 50.94 

4 twl 32.91 61.29 22.88 20.61 47.35 

5 trms 35.10 63.22 25.25 22.80 50.93 

6 tzc 30.69 35.45 21.87 23.52 30.71 

7 tpks 28.26 38.56 20.19 22.67 31.20 

8 tmpks 34.78 62.13 24.51 22.81 50.88 

9 tmvel 32.94 52.72 23.15 19.60 42.74 

10 tslpch 33.45 43.88 26.34 22.30 37.83 

11 tpwr 30.21 57.22 22.50 19.35 51.04 

12 tdam 33.04 59.74 23.21 20.46 47.48 

13 tmfl 32.79 61.71 22.95 20.56 47.43 

14 tfd 26.39 23.91 18.26 20.65 21.97 

15 tfdh 28.99 40.01 23.05 22.07 31.45 

16 tren 30.51 38.31 23.00 21.60 33.32 

17 tcr 39.70 61.74 27.63 32.42 40.77 

18 tcv 34.48 55.90 28.52 24.15 44.72 

19 tcard 37.52 62.68 25.52 23.06 48.88 

20 tHmob 33.90 54.60 23.05 26.83 40.55 

21 tHcom 34.73 52.61 26.26 24.81 40.36 

22 tskw 22.52 40.13 21.13 15.75 33.23 

23 tdasdv 33.97 60.68 22.55 21.17 47.20 

24 tkurt 18.63 35.95 18.77 13.53 26.79 

25 twam 26.70 41.77 22.33 18.06 35.20 

26 tmcer 28.97 55.83 25.16 19.91 45.53 

27 tperc75 35.92 55.94 28.70 20.44 49.67 

28 tiabs 34.37 64.48 27.55 21.88 51.30 

29 thist 28.39 36.99 25.08 26.92 23.21 

30 tssi 30.59 61.04 22.24 19.37 50.87 

31 tlogd 39.88 61.47 28.42 21.22 49.44 
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Table C-5. SHR-B individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 34.90 55.18 22.38 21.00 44.32 

2 fmn 31.23 41.79 19.84 24.33 34.52 

3 fmd 29.61 27.65 21.13 24.69 27.65 

4 fpmn 29.43 52.82 19.67 19.04 37.58 

5 fpmd 26.79 51.07 19.41 18.94 38.10 

6 fpstd 25.63 37.22 20.31 15.20 29.79 

7 fmxp 22.67 24.81 18.67 18.47 24.96 

8 fr 32.34 43.21 25.57 25.98 32.00 

9 fe 24.19 53.43 20.05 20.81 33.59 

 

 

Table C-6. SHR-B individual time-frequency domain feature performance. Red shading highlights 

the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 34.70 57.62 26.66 22.86 47.71 

2 tfvar 30.01 50.80 23.38 20.41 47.97 

3 tfwl 34.38 61.08 25.59 22.59 48.05 

4 tfe 29.86 55.27 23.27 20.28 47.49 

5 tfmxabs1 29.58 47.88 21.67 20.96 40.32 

6 tfmxabs2 33.37 50.15 24.38 26.58 39.84 

7 tfzc 25.04 24.17 20.47 24.30 25.24 

8 tfmn 14.91 20.28 11.78 14.16 20.20 

9 tfmabs 35.46 54.66 27.61 21.85 45.88 

 

  



236 

 

Participant: SHR-C 

Table C-7. SHR-C individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 67.37 80.89 57.11 46.00 72.38 

2 tstd 67.01 80.88 56.08 45.44 71.73 

3 tvar 51.81 74.64 49.69 30.46 71.40 

4 twl 68.71 85.21 55.26 44.01 72.98 

5 trms 67.18 81.36 56.40 45.36 71.70 

6 tzc 51.21 45.51 39.60 41.03 42.40 

7 tpks 50.78 55.33 39.77 41.68 48.67 

8 tmpks 65.38 79.46 55.18 43.77 69.77 

9 tmvel 62.52 74.88 52.15 42.74 66.44 

10 tslpch 61.10 64.64 48.34 44.44 59.34 

11 tpwr 52.02 74.72 49.40 29.96 71.83 

12 tdam 68.54 82.62 55.33 44.15 73.15 

13 tmfl 68.58 85.11 55.23 44.53 72.91 

14 tfd 33.54 27.06 23.14 27.24 25.17 

15 tfdh 54.08 51.19 44.41 42.42 48.18 

16 tren 56.71 53.02 43.72 44.68 52.48 

17 tcr 70.93 70.25 53.86 60.00 54.66 

18 tcv 53.74 67.67 44.22 40.11 63.76 

19 tcard 70.64 81.45 56.18 50.97 70.30 

20 tHmob 55.71 61.46 41.27 43.23 49.24 

21 tHcom 57.53 73.26 42.78 46.27 60.39 

22 tskw 37.48 53.96 23.82 19.53 52.32 

23 tdasdv 67.86 82.15 55.68 44.05 72.46 

24 tkurt 25.65 35.65 22.21 15.89 27.72 

25 twam 47.06 53.39 42.58 22.13 58.79 

26 tmcer 52.91 74.39 50.12 41.05 69.78 

27 tperc75 63.96 74.71 56.52 45.78 71.02 

28 tiabs 67.42 84.31 57.11 46.02 72.39 

29 thist 36.31 37.66 35.77 37.29 27.21 

30 tssi 52.44 77.82 49.67 29.89 71.76 

31 tlogd 73.96 83.20 56.75 51.49 71.99 
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Table C-8. SHR-C individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 66.85 77.43 55.01 45.56 70.14 

2 fmn 52.82 49.17 37.57 40.41 45.00 

3 fmd 44.18 34.54 35.48 39.34 33.83 

4 fpmn 38.21 69.81 42.85 42.08 45.08 

5 fpmd 37.92 68.25 43.56 44.66 46.09 

6 fpstd 35.27 55.06 38.04 35.13 35.50 

7 fmxp 29.33 28.69 22.47 27.14 30.41 

8 fr 52.62 52.35 43.52 39.46 44.95 

9 fe 29.65 50.95 29.01 36.85 32.55 

 

 

Table C-9. SHR-C individual time-frequency domain feature performance. Red shading highlights 

the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 61.81 73.04 55.28 45.12 66.78 

2 tfvar 48.88 66.56 46.83 29.26 66.63 

3 tfwl 67.40 81.24 57.88 47.64 69.53 

4 tfe 48.72 68.48 46.93 28.98 66.70 

5 tfmxabs1 55.38 66.15 49.17 40.02 59.69 

6 tfmxabs2 60.61 67.43 55.57 52.69 61.47 

7 tfzc 30.78 22.88 23.11 29.62 23.74 

8 tfmn 15.78 27.25 11.40 13.07 26.27 

9 tfmabs 62.70 70.60 56.31 45.65 66.62 
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Participant: SHR-D 

Table C-10. SHR-D individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 44.43 49.19 22.81 39.61 43.75 

2 tstd 42.71 49.15 21.70 39.50 42.58 

3 tvar 39.36 48.19 22.22 36.91 42.87 

4 twl 43.49 45.22 23.63 38.56 40.95 

5 trms 42.66 48.73 21.82 39.00 42.96 

6 tzc 34.05 28.38 26.61 36.35 27.88 

7 tpks 24.56 25.26 20.39 27.10 24.40 

8 tmpks 41.12 49.31 21.74 38.59 41.73 

9 tmvel 41.58 42.35 23.34 33.35 37.50 

10 tslpch 30.82 31.71 19.95 35.64 30.27 

11 tpwr 39.70 47.93 22.19 36.51 42.65 

12 tdam 43.58 45.01 23.86 38.89 40.80 

13 tmfl 43.04 44.64 23.74 38.88 40.85 

14 tfd 24.62 19.89 16.84 25.93 20.30 

15 tfdh 28.10 26.16 20.22 28.99 23.85 

16 tren 25.81 24.69 17.96 28.87 24.29 

17 tcr 49.20 50.56 30.21 46.43 42.29 

18 tcv 45.47 49.06 25.92 35.25 39.65 

19 tcard 42.10 45.73 21.60 38.89 40.33 

20 tHmob 38.85 38.30 27.81 40.30 33.86 

21 tHcom 39.60 41.88 26.72 36.92 36.85 

22 tskw 30.96 36.39 21.98 31.30 29.71 

23 tdasdv 43.37 44.74 23.25 39.02 39.67 

24 tkurt 20.44 24.58 15.83 23.04 20.27 

25 twam 26.01 22.82 18.18 22.67 27.63 

26 tmcer 40.76 41.74 31.93 42.55 37.84 

27 tperc75 43.65 48.57 23.64 39.66 46.93 

28 tiabs 44.65 49.13 22.29 40.03 43.78 

29 thist 25.50 31.55 23.34 30.93 19.49 

30 tssi 39.68 48.11 21.90 36.65 42.78 

31 tlogd 50.66 52.45 24.66 43.08 45.39 
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Table C-11. SHR-D individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 40.51 41.50 21.33 38.07 38.36 

2 fmn 33.47 31.71 23.72 35.28 27.86 

3 fmd 26.48 18.96 20.92 26.00 19.83 

4 fpmn 41.78 47.40 20.98 38.98 41.62 

5 fpmd 40.22 42.96 20.87 38.72 38.83 

6 fpstd 42.05 45.54 23.50 42.99 40.83 

7 fmxp 28.05 25.06 19.89 29.12 25.48 

8 fr 33.15 29.67 25.34 33.92 26.46 

9 fe 28.18 42.71 19.91 35.90 27.09 

 

 

Table C-12. SHR-D individual time-frequency domain feature performance. Red shading 

highlights the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 41.64 40.87 22.72 40.78 37.32 

2 tfvar 37.81 40.42 21.02 37.49 37.30 

3 tfwl 41.28 41.65 22.52 38.88 38.81 

4 tfe 37.33 40.19 20.97 37.25 36.93 

5 tfmxabs1 34.68 37.33 19.82 36.75 32.37 

6 tfmxabs2 37.41 38.29 27.02 39.32 31.20 

7 tfzc 26.19 18.83 18.44 26.71 19.52 

8 tfmn 11.62 17.44 10.35 18.80 17.15 

9 tfmabs 43.70 40.83 23.92 42.00 37.78 
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Participant: SHR-E 

Table C-13. SHR-E individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 69.64 77.50 52.21 71.72 70.11 

2 tstd 65.86 75.12 50.93 67.99 67.25 

3 tvar 46.64 69.97 43.56 59.43 67.13 

4 twl 68.18 75.90 49.39 70.69 66.56 

5 trms 65.53 75.35 51.16 67.89 67.37 

6 tzc 62.10 52.40 41.15 60.67 50.39 

7 tpks 49.84 49.67 39.49 51.12 42.58 

8 tmpks 59.83 71.26 47.05 64.43 64.26 

9 tmvel 59.52 66.44 45.01 61.64 61.36 

10 tslpch 66.11 60.72 43.81 65.22 57.26 

11 tpwr 46.75 69.70 43.79 59.91 66.91 

12 tdam 68.27 75.10 49.83 70.29 66.27 

13 tmfl 68.42 75.77 49.74 70.63 66.56 

14 tfd 40.17 31.97 27.29 40.96 31.02 

15 tfdh 58.56 54.36 41.53 57.82 49.44 

16 tren 52.72 49.44 36.28 55.84 46.76 

17 tcr 70.41 72.19 54.62 74.30 55.96 

18 tcv 52.11 61.88 40.65 58.49 56.82 

19 tcard 73.81 75.66 54.43 71.47 66.78 

20 tHmob 61.80 65.40 44.70 63.75 57.44 

21 tHcom 59.06 62.01 42.78 59.42 51.87 

22 tskw 36.71 58.49 29.36 41.61 54.15 

23 tdasdv 64.91 72.62 48.52 67.22 65.26 

24 tkurt 23.23 34.14 23.19 27.97 27.45 

25 twam 40.39 46.08 30.32 40.37 48.11 

26 tmcer 45.35 67.04 39.98 59.48 60.76 

27 tperc75 65.58 70.17 49.07 69.54 67.56 

28 tiabs 69.51 80.28 51.72 71.53 69.71 

29 thist 44.93 44.54 43.56 49.81 34.11 

30 tssi 46.55 73.36 43.89 59.89 67.11 

31 tlogd 78.09 79.24 53.47 75.69 72.16 
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Table C-14. SHR-E individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 69.48 72.13 49.16 71.76 67.34 

2 fmn 57.29 56.68 41.51 58.01 50.86 

3 fmd 49.25 39.07 34.65 49.50 39.22 

4 fpmn 64.71 73.40 50.17 67.60 66.48 

5 fpmd 64.56 72.06 48.74 66.67 65.42 

6 fpstd 62.44 70.74 50.34 68.60 67.35 

7 fmxp 31.03 28.12 23.38 33.08 26.81 

8 fr 54.50 57.33 39.32 57.46 50.30 

9 fe 36.02 50.37 25.81 45.56 38.46 

 

 

Table C-15. SHR-E individual time-frequency domain feature performance. Red shading 

highlights the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 63.09 71.05 49.63 67.55 65.59 

2 tfvar 44.22 64.56 42.79 57.71 65.47 

3 tfwl 70.39 76.57 51.53 71.71 69.09 

4 tfe 43.88 67.91 42.37 57.43 65.04 

5 tfmxabs1 53.33 60.24 44.21 57.83 55.37 

6 tfmxabs2 56.06 59.46 49.73 60.52 54.40 

7 tfzc 36.18 25.97 25.49 35.36 26.07 

8 tfmn 15.48 25.23 10.88 19.57 23.46 

9 tfmabs 65.46 71.70 50.34 69.77 67.98 
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Participant: SHR-F 

Table C-16. SHR-F individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 70.60 88.41 57.95 79.70 79.05 

2 tstd 70.43 87.24 61.50 79.41 78.67 

3 tvar 56.72 82.91 56.65 71.50 79.19 

4 twl 69.64 88.24 55.95 77.74 77.87 

5 trms 70.49 87.62 61.36 79.44 78.47 

6 tzc 60.06 52.02 45.29 61.52 47.49 

7 tpks 65.75 69.75 44.02 68.19 59.96 

8 tmpks 64.86 84.90 54.96 77.92 77.56 

9 tmvel 65.08 80.61 55.15 70.94 71.24 

10 tslpch 75.81 70.56 50.63 74.43 61.39 

11 tpwr 56.94 83.08 56.38 71.50 78.16 

12 tdam 69.69 86.26 55.98 78.04 77.97 

13 tmfl 69.89 88.34 55.71 78.01 78.04 

14 tfd 45.26 35.95 29.25 44.47 32.84 

15 tfdh 72.58 66.15 52.33 71.62 58.54 

16 tren 46.87 46.78 36.84 52.63 43.43 

17 tcr 82.70 85.74 61.12 85.51 74.02 

18 tcv 64.33 82.98 48.79 72.43 74.70 

19 tcard 78.33 87.94 58.08 80.91 76.49 

20 tHmob 71.03 72.53 53.41 71.11 59.23 

21 tHcom 70.78 76.84 52.71 72.13 66.96 

22 tskw 47.59 65.50 20.59 53.04 66.28 

23 tdasdv 69.21 84.91 54.10 77.80 77.99 

24 tkurt 38.30 55.90 26.56 44.18 47.61 

25 twam 42.07 48.62 23.62 40.45 49.15 

26 tmcer 66.71 85.19 58.03 77.88 79.50 

27 tperc75 67.48 80.17 54.43 74.90 75.40 

28 tiabs 70.58 90.55 58.03 79.29 79.55 

29 thist 52.46 53.27 50.05 57.12 43.18 

30 tssi 56.68 85.17 56.40 71.46 78.40 

31 tlogd 79.29 87.86 56.82 82.42 77.33 
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Table C-17. SHR-F individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 70.22 84.34 57.04 78.62 76.21 

2 fmn 65.44 61.18 51.58 66.74 53.96 

3 fmd 55.08 42.70 40.80 55.00 39.97 

4 fpmn 70.18 86.37 60.71 78.96 77.69 

5 fpmd 68.88 84.84 59.97 78.82 76.84 

6 fpstd 69.07 80.18 57.35 76.52 72.46 

7 fmxp 41.03 37.55 33.04 43.01 37.46 

8 fr 63.30 65.57 54.68 65.77 55.25 

9 fe 41.94 61.06 26.06 57.54 46.53 

 

 

Table C-18. SHR-F individual time-frequency domain feature performance. Red shading 

highlights the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 68.14 83.26 59.53 77.67 74.21 

2 tfvar 53.92 78.46 53.91 67.20 74.24 

3 tfwl 69.98 88.12 59.58 79.56 77.31 

4 tfe 53.72 80.38 53.41 67.39 73.51 

5 tfmxabs1 61.84 74.23 51.44 71.50 66.04 

6 tfmxabs2 64.69 72.40 55.01 72.44 65.14 

7 tfzc 37.48 27.59 26.88 37.66 28.30 

8 tfmn 13.75 25.55 9.79 22.56 23.30 

9 tfmabs 68.84 82.27 57.89 77.61 73.27 
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Participant: SHR-G 

Table C-19. SHR-G individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 69.47 76.52 44.35 74.01 72.72 

2 tstd 66.70 75.50 41.49 73.08 71.29 

3 tvar 49.88 71.55 35.28 57.64 71.32 

4 twl 63.72 76.38 38.38 66.25 68.75 

5 trms 66.73 75.20 41.67 73.19 71.42 

6 tzc 60.62 57.00 44.10 61.23 53.36 

7 tpks 52.73 51.16 38.82 54.98 47.64 

8 tmpks 60.47 73.33 37.41 66.12 70.56 

9 tmvel 59.05 69.07 37.63 63.24 64.79 

10 tslpch 62.76 61.27 36.58 65.63 58.28 

11 tpwr 49.90 71.53 35.74 57.72 71.56 

12 tdam 63.45 73.21 38.17 66.27 68.72 

13 tmfl 64.02 76.33 38.14 66.43 68.50 

14 tfd 43.19 38.94 32.95 44.26 34.86 

15 tfdh 57.10 57.74 43.32 58.69 52.62 

16 tren 63.90 63.23 42.50 66.23 60.05 

17 tcr 71.44 72.14 55.00 72.69 64.10 

18 tcv 55.18 71.76 39.24 67.53 68.83 

19 tcard 75.15 78.51 39.34 77.09 72.11 

20 tHmob 58.20 64.25 43.98 62.19 55.59 

21 tHcom 57.05 63.67 40.84 60.77 56.36 

22 tskw 40.48 56.59 30.37 43.50 57.64 

23 tdasdv 60.91 72.97 35.56 65.47 67.23 

24 tkurt 25.99 41.57 16.61 31.89 35.56 

25 twam 57.90 59.05 23.69 60.21 62.61 

26 tmcer 55.44 69.84 50.49 66.67 67.34 

27 tperc75 65.93 71.21 46.01 70.61 69.54 

28 tiabs 69.55 79.07 44.58 74.02 72.56 

29 thist 46.67 47.59 43.08 50.65 36.95 

30 tssi 49.64 76.25 35.00 57.78 71.17 

31 tlogd 75.93 77.07 42.92 76.00 72.58 

 

 

 

 



245 

 

Table C-20. SHR-G individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 66.91 72.55 39.76 72.56 70.07 

2 fmn 53.20 55.46 41.93 56.96 51.13 

3 fmd 50.04 45.12 39.36 51.77 42.68 

4 fpmn 66.41 74.75 41.44 73.34 71.34 

5 fpmd 64.85 72.40 38.51 71.49 69.39 

6 fpstd 67.66 72.13 46.08 73.70 70.90 

7 fmxp 32.50 29.32 24.95 34.15 30.74 

8 fr 58.66 61.29 43.87 61.12 51.89 

9 fe 35.43 61.47 28.35 57.30 52.82 

 

 

Table C-21. SHR-G individual time-frequency domain feature performance. Red shading 

highlights the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 65.91 72.90 42.17 71.60 69.83 

2 tfvar 49.11 68.45 38.44 57.60 69.83 

3 tfwl 69.06 76.60 44.24 73.56 71.92 

4 tfe 48.97 72.96 37.83 57.32 69.77 

5 tfmxabs1 55.31 67.67 36.58 62.10 64.58 

6 tfmxabs2 57.65 64.76 41.66 65.80 63.21 

7 tfzc 37.64 29.43 28.67 37.86 29.97 

8 tfmn 22.76 35.17 12.67 26.35 35.06 

9 tfmabs 67.89 73.08 44.07 72.77 70.91 
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Participant: SHR-H 

Table C-22. SHR-H individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 66.12 80.02 48.77 67.88 66.46 

2 tstd 63.29 78.32 46.71 63.62 63.07 

3 tvar 56.80 75.81 46.18 61.63 62.65 

4 twl 57.07 66.35 36.50 53.55 52.85 

5 trms 63.05 77.98 46.44 63.46 62.76 

6 tzc 47.68 44.54 36.39 50.36 39.38 

7 tpks 39.23 35.93 28.85 39.32 32.15 

8 tmpks 57.64 70.77 42.41 58.32 58.19 

9 tmvel 52.93 55.03 31.83 48.10 45.77 

10 tslpch 47.04 45.04 32.65 49.45 40.91 

11 tpwr 56.85 75.75 46.03 61.47 62.97 

12 tdam 56.87 65.72 36.32 53.33 52.63 

13 tmfl 56.87 66.52 36.20 53.35 52.52 

14 tfd 32.99 26.67 23.16 33.73 25.12 

15 tfdh 46.30 40.41 34.83 45.66 36.22 

16 tren 32.78 29.88 22.72 37.07 30.32 

17 tcr 74.45 75.99 48.88 74.99 59.66 

18 tcv 72.07 74.61 42.02 66.95 61.04 

19 tcard 61.48 70.57 42.84 59.70 56.95 

20 tHmob 53.28 59.05 35.53 54.82 45.23 

21 tHcom 51.71 58.96 36.16 51.47 47.83 

22 tskw 33.60 39.44 24.24 34.43 33.77 

23 tdasdv 54.34 63.86 36.62 53.24 52.41 

24 tkurt 32.53 39.88 29.28 36.06 32.89 

25 twam 23.51 21.05 18.50 23.76 27.15 

26 tmcer 54.72 64.82 42.13 61.44 56.93 

27 tperc75 63.01 74.22 44.67 68.03 66.16 

28 tiabs 66.24 81.02 48.32 67.60 66.08 

29 thist 36.40 38.19 34.65 42.52 28.70 

30 tssi 56.68 76.24 46.05 61.51 62.43 

31 tlogd 69.70 79.47 46.62 70.69 67.82 
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Table C-23. SHR-H individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 55.54 59.21 38.26 56.04 50.78 

2 fmn 43.38 40.98 27.74 45.64 36.21 

3 fmd 37.12 29.31 27.41 38.17 29.97 

4 fpmn 54.40 72.51 41.55 62.40 59.95 

5 fpmd 53.22 63.96 40.82 56.99 53.75 

6 fpstd 56.08 72.78 41.49 64.96 65.14 

7 fmxp 31.31 29.17 22.85 32.39 31.89 

8 fr 41.12 40.30 33.90 41.52 34.08 

9 fe 44.20 59.53 30.33 51.32 40.03 

 

 

Table C-24. SHR-H individual time-frequency domain feature performance. Red shading 

highlights the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 59.95 69.26 45.44 63.09 59.65 

2 tfvar 52.96 66.92 43.06 59.53 59.33 

3 tfwl 62.84 71.30 46.23 63.51 60.32 

4 tfe 52.36 66.48 43.02 59.01 58.72 

5 tfmxabs1 46.29 47.08 32.97 48.58 41.52 

6 tfmxabs2 51.52 51.33 41.60 54.83 43.94 

7 tfzc 37.03 29.97 26.81 37.67 29.76 

8 tfmn 16.81 19.88 13.72 19.64 19.04 

9 tfmabs 60.11 68.59 46.92 64.10 59.83 
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Participant: SHR-I 

Table C-25. SHR-I individual time domain feature performance. Red shading highlights the top 

five performing features within a given classifier (column). 

Time Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tmabs 52.58 66.09 35.72 52.10 54.90 

2 tstd 52.75 65.38 35.77 51.76 54.60 

3 tvar 37.60 62.79 36.81 44.82 55.04 

4 twl 49.38 60.89 38.10 48.37 53.35 

5 trms 52.96 65.67 35.76 51.36 54.99 

6 tzc 40.54 35.22 31.27 42.11 32.31 

7 tpks 37.12 38.04 29.70 37.42 34.01 

8 tmpks 50.81 61.71 35.15 50.74 52.55 

9 tmvel 45.77 55.66 35.19 44.07 49.90 

10 tslpch 40.13 41.85 33.47 38.66 37.91 

11 tpwr 37.04 62.16 36.66 45.22 54.93 

12 tdam 49.17 62.09 38.15 48.28 52.82 

13 tmfl 49.23 60.48 38.34 48.10 53.03 

14 tfd 28.47 24.29 20.49 29.41 22.95 

15 tfdh 39.19 36.96 31.61 41.36 34.18 

16 tren 33.80 32.42 29.01 35.88 35.19 

17 tcr 56.96 61.88 40.03 60.69 47.61 

18 tcv 45.73 60.97 26.48 49.61 50.18 

19 tcard 56.96 58.13 33.60 51.43 53.12 

20 tHmob 42.41 47.22 31.19 45.95 37.79 

21 tHcom 35.71 48.56 33.13 39.18 38.54 

22 tskw 33.26 46.31 25.32 38.29 41.46 

23 tdasdv 48.66 62.32 37.48 46.96 53.12 

24 tkurt 23.16 31.63 16.80 26.88 24.92 

25 twam 36.20 30.33 25.66 35.40 39.31 

26 tmcer 44.22 59.65 41.27 59.25 56.14 

27 tperc75 46.42 52.05 35.06 49.04 50.83 

28 tiabs 52.03 64.81 36.01 52.11 55.33 

29 thist 31.40 34.13 28.93 35.51 24.54 

30 tssi 37.04 64.21 36.65 45.52 54.59 

31 tlogd 57.94 63.43 34.76 54.41 53.40 
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Table C-26. SHR-I individual frequency domain feature performance. Red shading highlights the 

top five performing features within a given classifier (column). 

Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 fwl 50.15 56.14 37.41 49.83 50.33 

2 fmn 38.69 37.99 29.25 40.43 33.04 

3 fmd 29.09 21.19 23.58 29.00 21.61 

4 fpmn 52.61 63.26 35.24 52.23 53.18 

5 fpmd 50.43 58.27 34.38 50.50 50.24 

6 fpstd 52.56 60.70 36.90 53.80 51.22 

7 fmxp 22.60 24.56 19.48 25.02 24.63 

8 fr 37.80 38.06 30.83 39.09 31.33 

9 fe 25.13 45.05 20.15 29.32 28.22 

 

 

Table C-27. SHR-I individual time-frequency domain feature performance. Red shading highlights 

the top five performing features within a given classifier (column). 

Time-Frequency Domain 

Feature 
Classifier Accuracy 

LDA KNN RFN SVM DT 

1 tfstd 51.82 58.24 34.69 51.00 50.33 

2 tfvar 35.74 55.48 34.89 43.80 51.33 

3 tfwl 52.32 59.28 38.25 52.20 53.02 

4 tfe 35.23 56.72 34.58 43.56 50.20 

5 tfmxabs1 44.96 48.06 31.82 45.47 42.78 

6 tfmxabs2 42.65 45.78 32.91 46.03 40.75 

7 tfzc 23.41 19.42 17.65 23.42 19.33 

8 tfmn 11.46 17.39 9.44 16.58 19.02 

9 tfmabs 49.38 55.74 35.39 50.63 49.84 
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Feature set comparisons and performance accuracies 

Participant: SHR-A 

 

Figure C-1. Investigation of feature set performance for participant SHR-A. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 12.95, SVM: FF = 

26.25, LDA: FF = 11.46, DT: FF = 6.13, RFN: FF = 3.40) confirmed significant differences within 

each classifier’s feature sets. A post-hoc Nemenyi test with a critical distance of 2.72 at α = 0.05 

identified superior feature sets as indicated by pairs outside the critical distance marked by the 

interval bars. Each classifier is color-coded for easy comparison, with lower average ranks 

indicating better classification accuracy. Feature sets significantly different from the highlighted 

congenital feature set (CFS) were marked with an outer black ring. The right panel displays 

classification accuracies, which range from approximately 46% to 80%, alongside the 

corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-B 

 

Figure C-2. Investigation of feature set performance for participant SHR-B. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 63.65, SVM: FF = 

17.15, LDA: FF = 20.24, DT: FF = 9.31, RFN: FF = 0.65) confirmed significant differences within 

each classifier’s feature sets, with the exception of RFN. A post-hoc Nemenyi test with a critical 

distance of 2.72 at α = 0.05 identified superior feature sets as indicated by pairs outside the critical 

distance marked by the interval bars. Each classifier is color-coded for easy comparison, with 

lower average ranks indicating better classification accuracy. Feature sets significantly different 

from the highlighted congenital feature set (CFS) were marked with an outer black ring. The right 

panel displays classification accuracies, which range from approximately 31% to 75%, alongside 

the corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-C 

 

Figure C-3. Investigation of feature set performance for participant SHR-C. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 26.33, SVM: FF = 

33.86, LDA: FF = 36.25, DT: FF = 26.97, RFN: FF = 1.90) confirmed significant differences within 

each classifier’s feature sets, with the exception of RFN. A post-hoc Nemenyi test with a critical 

distance of 2.72 at α = 0.05 identified superior feature sets as indicated by pairs outside the critical 

distance marked by the interval bars. Each classifier is color-coded for easy comparison, with 

lower average ranks indicating better classification accuracy. Feature sets significantly different 

from the highlighted congenital feature set (CFS) were marked with an outer black ring. The right 

panel displays classification accuracies, which range from approximately 62% to 90%, alongside 

the corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-D 

 

Figure C-4. Investigation of feature set performance for participant SHR-D. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 33.77, SVM: FF = 

37.29, LDA: FF = 62.94, DT: FF = 33.30, RFN: FF = 1.20) confirmed significant differences within 

each classifier’s feature sets, with the exception of RFN. A post-hoc Nemenyi test with a critical 

distance of 2.72 at α = 0.05 identified superior feature sets as indicated by pairs outside the critical 

distance marked by the interval bars. Each classifier is color-coded for easy comparison, with 

lower average ranks indicating better classification accuracy. Feature sets significantly different 

from the highlighted congenital feature set (CFS) were marked with an outer black ring. The right 

panel displays classification accuracies, which range from approximately 35% to 69%, alongside 

the corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-E 

 

Figure C-5. Investigation of feature set performance for participant SHR-E. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 18.66, SVM: FF = 

31.62, LDA: FF = 28.20, DT: FF = 7.03, RFN: FF = 3.70) confirmed significant differences within 

each classifier’s feature sets. A post-hoc Nemenyi test with a critical distance of 2.72 at α = 0.05 

identified superior feature sets as indicated by pairs outside the critical distance marked by the 

interval bars. Each classifier is color-coded for easy comparison, with lower average ranks 

indicating better classification accuracy. Feature sets significantly different from the highlighted 

congenital feature set (CFS) were marked with an outer black ring. The right panel displays 

classification accuracies, which range from approximately 58% to 88%, alongside the 

corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-F 

 

Figure C-6. Investigation of feature set performance for participant SHR-F. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 33.63, SVM: FF = 

22.58, LDA: FF = 15.01, DT: FF = 17.32, RFN: FF = 5.10) confirmed significant differences within 

each classifier’s feature sets. A post-hoc Nemenyi test with a critical distance of 2.72 at α = 0.05 

identified superior feature sets as indicated by pairs outside the critical distance marked by the 

interval bars. Each classifier is color-coded for easy comparison, with lower average ranks 

indicating better classification accuracy. Feature sets significantly different from the highlighted 

congenital feature set (CFS) were marked with an outer black ring. The right panel displays 

classification accuracies, which range from approximately 62% to 94%, alongside the 

corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-G 

 

Figure C-7. Investigation of feature set performance for participant SHR-G. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 15.27, SVM: FF = 

28.74, LDA: FF = 7.72, DT: FF = 8.29, RFN: FF = 1.30) confirmed significant differences within 

each classifier’s feature sets, with the exception of RFN. A post-hoc Nemenyi test with a critical 

distance of 2.72 at α = 0.05 identified superior feature sets as indicated by pairs outside the critical 

distance marked by the interval bars. Each classifier is color-coded for easy comparison, with 

lower average ranks indicating better classification accuracy. Feature sets significantly different 

from the highlighted congenital feature set (CFS) were marked with an outer black ring. The right 

panel displays classification accuracies, which range from approximately 65% to 86%, alongside 

the corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-H 

 

Figure C-8. Investigation of feature set performance for participant SHR-H. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 29.81, SVM: FF = 

47.18, LDA: FF = 44.60, DT: FF = 16.51, RFN: FF = 2.20) confirmed significant differences within 

each classifier’s feature sets, with the exception of RFN. A post-hoc Nemenyi test with a critical 

distance of 2.72 at α = 0.05 identified superior feature sets as indicated by pairs outside the critical 

distance marked by the interval bars. Each classifier is color-coded for easy comparison, with 

lower average ranks indicating better classification accuracy. Feature sets significantly different 

from the highlighted congenital feature set (CFS) were marked with an outer black ring. The right 

panel displays classification accuracies, which range from approximately 55% to 89%, alongside 

the corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Participant: SHR-I 

 

Figure C-9. Investigation of feature set performance for participant SHR-I. The left panel shows 

the pairwise comparisons for the feature sets on an individual classifier basis. The Friedman test, 

with a critical value of F(6,60) = 2.25 at α = 0.05, was used to determine if average accuracy ranks 

significantly differed from the mean rank. Classifier F Statistics (KNN: FF = 45.36, SVM: FF = 

51.99, LDA: FF = 56.89, DT: FF = 21.63, RFN: FF = 4.3) confirmed significant differences within 

each classifier’s feature sets. A post-hoc Nemenyi test with a critical distance of 2.72 at α = 0.05 

identified superior feature sets as indicated by pairs outside the critical distance marked by the 

interval bars. Each classifier is color-coded for easy comparison, with lower average ranks 

indicating better classification accuracy. Feature sets significantly different from the highlighted 

congenital feature set (CFS) were marked with an outer black ring. The right panel displays 

classification accuracies, which range from approximately 39% to 79%, alongside the 

corresponding feature sets, aligning them with the ranked performance shown in the left panel. 
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Appendix D: Real-time feature space trial differences 
 

 

Figure D-1. Feature space trial-to-trial separability trajectory differences. Each column represents 

the trial-to-trial area of the normalized separability trajectory for the affected limb (top) and 

unaffected limb (bottom). Lighter yellow coloring indicates a larger area between two normalized 

trajectories. The affected limb consistently exhibits an increase in area from trial 1 to trial 5 across 

all participants, whereas the unaffected limb shows undiscernible behavior. Note that the area is 

rounded to the nearest whole number. 
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Figure D-2. Feature space trial-to-trial consistency trajectory differences. Each column represents 

the trial-to-trial area of the normalized consistency trajectory for the affected limb (top) and 

unaffected limb (bottom). Lighter yellow coloring indicates a larger area between two normalized 

trajectories. The affected and unaffected limbs show no trends in behavior. This comes with the 

exception of participant 3’s unaffected limb where an increase in area from trial 1 to trial 5 is 

observed. Note that the area is rounded to the nearest whole number.  
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Figure D-3. Feature space trial-to-trial variability trajectory differences. Each column represents 

the trial-to-trial area of the normalized variability trajectory for the affected limb (top) and 

unaffected limb (bottom). Lighter yellow coloring indicates a larger area between two normalized 

trajectories. The affected and unaffected limbs show no trends in behavior. This comes with the 

exception of participant 3’s unaffected limb where an increase in area from trial 1 to trial 5 is 

observed. Note that the area is rounded to the nearest whole number. 




