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Decentralized Optimal Load Scheduling using
Extremum Seeking-Based Optimization

Maojiao Ye, Guoqiang Hu and Costas J. Spanos

Abstract—In this paper, we address an optimal electricity
load scheduling problem for consumers in industrial parks. The
industrial consumers are regarded as price-anticipating users
since they have large electricity demand. A non-model based
online distributed optimization scheme is proposed to achieve
optimal load scheduling by which the social cost is minimized. In
the proposed method, the social optimum is derived without the
coordination of the utility company. Since the explicit expression
on the pricing function is usually not available for the consumers
due to privacy and fexibility concerns of the utility company, an
extremum seeking scheme is used to handle the unknown pricing
function. To provide incentives for the industrial consumers to
participate in solving the social cost minimization problem, a
benefit sharing scheme is designed such that their electricity cost
derived by using the proposed method is always not greater
than the cost of playing non-cooperative games. An example for
industrial buildings with heating ventilation and air conditioning
(HVAC) systems is used to verify the effectiveness of the proposed
method.

Index Terms—Optimal load scheduling; demand response;
energy control; extremum seeking; distributed optimization

I. INTRODUCTION

Demand response is a mechanism designed to make the
users adjust their electricity usage to the desired profile
based on supply conditions (see [18]–[20] and the references
therein). Normally, there are two categories of users considered
in the existing literature: price takers and price-anticipating
users (e.g., see [22] and the references therein). The price
takers do not suppose that their electricity consumption will
affect the price while the price-anticipating users consider the
effect of their load consumption on electricity price. Industrial
consumers with large electricity loads are typical examples of
price-anticipating users. Our interest in this paper, focuses on
designing a demand response scheme for industrial users in
industrial parks.

Considering the effect of loads on electricity price will result
in coupled optimization problem for each user. To handle the
interactions among the users, game theory is a useful tool for
the analysis of the demand response mechanisms (e.g., see
[1], [21]–[27], [31] and the references therein). In [21], the
authors considered peak-to-average ratio (PAR) minimization
and energy cost minimization problem by designing a non-
cooperative energy consumption game. A distributed algorithm
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was proposed to reach the Nash equilibrium. However, the
players need to communicate with each other which leads
to privacy concerns and the convergence is based on an
asynchronous strategy updating mechanism which challenges
convergence speed. The authors in [27] studied the interactive
behavior among the electric vehicles and aggregators using
a non-cooperative game approach. The Nash equilibrium is
shown to be the optimal solution by using specific pricing pol-
icy. In [22], the authors considered both price takers and price-
anticipating users in which the Nash equilibrium coincides
with the social optimal solution by choosing the price values
carefully. Optimality and fairness issues were considered in
[23] where the authors developed a smart electricity billing
mechanism to achieve the objective. In [26], the authors
proposed a dynamic potential game approach for demand
response. The best responses were derived analytically and the
efficiency of the equilibrium was studied. Stackelberg game is
employed to describe the interactions between multiple utility
companies and end-users [24]. A distributed method was pro-
posed to ensure the convergence to the Stackelberg equilibrium
but the efficiency of the equilibrium is not discussed. Multiple
utility companies were also considered in [25] where the
authors used a two level game approach to manage demand
response. The competition on the utility companies’ level is
solved via a non-cooperative game and the users are modelled
as evolutionary game players. Though, Nash equilibrium may
result in a social optimum solution (e.g., the results in [21]–
[23], [27]), the efficiency of the Nash equilibrium depends
highly on the game structure and therefore, relies highly on
billing policy design. For general resource allocation problems,
being non-cooperative usually yields inefficient Nash equilib-
rium from a system level perspective [28]. Motivated by this
fact, we intend to solve social cost minimization problem for
electricity consumers in industrial parks with general pricing
mechanism designs.

Several works studied social optimum seeking in power grid
[7]–[9]. However, these methods either require the participa-
tion of utility companies or precise model information when
seeking the social optimum solution. Different from these
methods, in this paper, we develop a distributed optimization
method based on extremum seeking (e.g., see [10]–[16]) to
schedule the electricity loads for consumers in industrial parks.
Compared with existing works, the main contributions of this
paper are summarized as follows: 1). We address the optimal
electricity load scheduling problem for a network of industrial
users in industrial parks under general pricing mechanism
designs. 2). We propose a continuous time distributed updating
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strategy for the users based on extremum seeking in which the
users only need to communicate with their trustful neighbors.
The proposed updating strategy is completely decentralized
and doesn’t require the coordination of the utility company.
3). The proposed updating law does not require explicit ex-
pression on the pricing function which protects the privacy and
fexibility of the utility company. 4). The overall mechanism
ensures that every user yields not more cost than that of
playing Nash equilibrium.

The rest of this paper is organized as follows: some pre-
liminaries are provided in Section II and system model is
developed in Section III. The main results are presented in
Section IV where we firstly formulate the centralized problem
and then propose a distributed method to solve it. Furthermore,
we compare the solution of the social cost minimization
problem with the corresponding Nash solution and provide
a benefit sharing protocol which ensures that every user will
benefit from the proposed coordination process. A numerical
example is provided in Section V to verify the proposed
method and brief conclusions are given in Section VI.

II. PRELIMINARIES

Throughout this paper, we use  to represent the set of real
numbers. ++ stands for the set of positive real numbers and
+ is the set of non-negative real numbers, ⊗ denotes the
Kronecker product and () denotes ()




Theorem 1: ( [14]) For a non-autonomous system repre-
sented by

̇ = 0( ) +

X
=1

( )
√
( ) (1)

with (0) = 0 ∈ R and   0 Suppose that ( ) :
R × R → R ∈ 2 

2



 





2 be

continuous and bounded for all  belongs to any compact
set;   ∈ 1 2 · · ·   are measurable functions and there
exist  such that |(1 )− (2 )| ≤  |1 − 2|
for all 1, 2 ∈ R and sup∈R |(1 )| ≤  Furthermore,
( ·) is  periodic with zero average. Then, if a compact
set is globally uniformly asymptotically stable for (1), it is
semi-globally practically uniformly asymptotically stable for
the following system

̇ = 0( ) +

X
=1

=+1

[  ] ( )() (2)

where

() =
1



Z 

0

( )

Z 

0

( ) (3)

This trajectory approximation process is denoted as Lie
bracket approximation and we call the system in (2) the
approximated system in the rest of the paper.

In the following, we provide some definitions about practi-
cal stability. Readers are referred to [6], [13], [14] for more
details on the concepts of practical stability.

Let (·) := (·; 0 0 ) denote the solution of

̇ = ( ) (4)

through (0) = (0).
Definition 1: (Practically uniformly stable) A compact set

S ⊆  is practically uniformly stable for (4) if for every
 ∈ (0∞) there exists a  ∈ (0∞) and 0 ∈ (0∞) such
that for all 0 ∈  and for all  ∈ (0∞)

(0) ∈ US =⇒ () ∈ US   ∈ [0∞)
Definition 2: (−practically uniformly attractive) Let  ∈

(0∞) A compact set S ⊆  is −practically uniformly
attractive for (4) if for every  ∈ (0∞) there exists a  ∈
[0∞) and 0 ∈ (0∞) such that for all 0 ∈  and for all
 ∈ (0∞)

(0) ∈ US =⇒ () ∈ US   ∈ [0 +  ∞)
Definition 3: (Practically uniformly bounded) Let S ⊆ 

be a compact set. The solutions of (4) is practically uniformly
bounded if for every  ∈ (0∞) there exists an  ∈ (0∞) and
0 ∈ (0∞) such that for all 0 ∈  and for all  ∈ (0∞)

(0) ∈ US =⇒ () ∈ US   ∈ [0∞)
Definition 4: (Semi-globally practically uniformly asymp-

totically stable) A compact set S ⊆  is semi-globally
practically uniformly asymptotically stable for (4) if it is
practically uniformly stable and for every  ∈ (0∞), it is
−practically uniformly attractive. Furthermore, the solutions
for (4) must be practically uniformly bounded.
Definition 5: (Saddle point) The saddle point (∗ ∗) of

function  ( ) is a point on which the following is satisfied:

 (∗ ) ≤  (∗ ∗) ≤  ( ∗)

More generally, (∗ ∗ ∗) ∈  ×  × 
+ is the saddle

point of  (  )

 (∗  ) ≤  (∗ ∗ ∗) ≤  ( ∗ ∗)

where  (  ) :  × ×
+ → 

Definition 6: (Nash equilibrium) Nash equilibrium is a
strategy profile on which no player can reduce its cost by
unilaterally changing its own strategy, i.e., a strategy profile
(∗ x

∗
−) is Nash equilibrium if for all the players

(
∗
 x
∗
−) ≤ (x

∗
−)

for ∀  6= ∗  where x− denotes all the players’ strategies
other than player .

For a graph defined as  = () in which  is the edge
set  ⊂  ×   = {1 2 · · ·  } is the set of nodes
in the network, it is undirected if for every ( ) ∈ 

(  ) ∈  An undirected graph is connected if there exists
a path between any pair of distinct vertices. The elements in
the adjacent matrix  are defined as  = 1 if node  is at the
neighborhood of node  else,  = 0 The Laplacian matrix
for the graph  is defined as  =  − where matrix  is
the degree matrix of the graph and is defined as a diagonal
matrix whose th diagonal element is equal to the out degree

of node  The out degree of node  is equal to
X
=1
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…
…

Industrial parks (users communicate with each 
other using local communication network)

power line

…
…

Utility company

…
…
…
.

…
…
…
.

Industrial consumers

Fig. 1: The demand response model.

III. SYSTEM MODEL FOR USERS IN INDUSTRIAL PARKS

We consider an industrial park with  networked indus-
trial users whose electricity loads have dominant effect on
electricity price. The model is shown in Fig. 1. The users in
industrial parks are supposed to be equipped with an energy-
management controller (EMC) and an advanced metering
infrastructure (AMI). The EMC is able to schedule the usage
of electricity for the corresponding user. The AMI enables two
way communication among users and utility company. For
privacy and fexibility concerns of the utility company who
may change the pricing curve according to necessity, we only
suppose that the output of the pricing function is measurable
to the users but the explicit expression on the pricing function
is unknown. To reserve privacy to some extent, the users only
communicate with their trustful neighbors in real time instead
of every users in the network. The communication graph
among the users in the same local communication network
is assumed to be undirected and connected and is under
ideal transmission conditions, i.e., transmission problems such
as loss of data, transmission delay, are not considered for
short distance communications. In the rest of this section,
we provide a mathematical model for the electricity users in
industrial parks.

The cost of user  is

( l−) = () +  (
P
=1

) (5)

where  denotes the electricity load of user  l− is all the
users’ loads except for user  and in the rest of the paper, we
use l as the concatenated vector of . Furthermore, ()

is the cost of consuming load  Quadratic functions and
logarithmic functions can be used to quantify this cost [25].
For example, it denotes discomfort cost in [1] and in this case,
 is a positive parameter which determines the importance of
comfort for the users. The term  (

P
=1 ) corresponds to

the billing payment for the usage of load . The marginal
price  (

P
=1 ) is closely related with the total electricity

loads
P

=1  

The optimal electricity load scheduling is achieved if the
electricity loads are such that the social cost is minimized and

the social cost is defined as the sum of the users’ costs, i.e.,

(l) =
P
=1

( l−)

Since overloaded electricity demands burden the electricity
generation system and may even collapse the system in
practice, we put a restriction on the total electricity loads,

P
=1

 ≤ max (6)

where max is a constant. This constraint reveals the elec-
tricity generation capacity. From another aspect, max can be
regarded as the total electricity load available from the utility
company [24], in this case, this constraint means that total
demand can’t exceed the total available load.

If the objective is to meet demand with supply, the constraint
should be

P
=1

 = 

where  is the electricity supply. This constraint is equivalent
to

P
=1

 ≤ 

and −
P
=1

 ≤ −

which are of the same form of (6). Therefore, we only consider
the linear inequality constraint in the rest of the paper and the
proposed method can be easily adjusted if the objective is to
meet the demand with supply.

For each user, the electricity load should be within its
acceptable range, i.e.,  ∈ [min  max ] where min  max are
the minimal and maximal acceptable electricity load for user
 respectively.

IV. MAIN RESULTS

A. Centralized Optimization of Electricity Loads for Industrial
Parks

We suppose that the goal of the utility company is to
induce the users’ electricity loads to minimize the total cost
(to achieve social optimum), i.e.,
Problem 1: (Social cost minimization) The total cost mini-

mization problem is defined as

min (l) =
P
=1

( l−) (7)

subject to
P
=1

 ≤ max

min ≤  ≤ max 

The analysis for this problem is based on the following
condition.
Assumption 1: The function (l) is continuous differen-

tiable and convex. Furthermore, the constraint set of Problem
1 is non-empty.

By this assumption and Weierstrass’ theorem [30], the set
of solutions to Problem 1 is non-empty and compact.
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B. Distributed Coordination of Electricity Loads for Industrial
Parks

1) Problem Analysis: Solving Problem 1 by utility com-
pany in a centralized fashion is inefficient since it requires
two way long distance communication among the users with
the utility company at each iteration during solution seeking.
In this paper, we provide a completely decentralized method
to solve it. Since the number of consumers in each industrial
park is not that large in practice, the proposed method does
not aim to distribute the computational burden but to avoid
long distance frequent communication among the users with
the utility company. Furthermore, by using completely decen-
tralized method, the single-node congestion problem can be
avoided [32].

If the cost function is completely known by the users, the
methods in [2]–[5] can be adapted to solve Problem 1 in a
distributed way. However, since the explicit expression on the
pricing function is not available for the users, the methods
in [2]–[5] can not be directly implemented. In the following
analysis, we firstly present two lemmas that are essential in the
subsequent analysis by adapting the method in [2]–[4]. In the
next subsection, we will design a model-free continuous time
method to deal with the unknown terms in the cost function.

Same as [2]–[4], we introduce some additional variables to
analyze Problem 1. Define

l̄ = [̄1 ̄2 · · ·  ̄ ] 
where ̄ denotes user 0s estimation on user 0s electricity
load. Furthermore,

l̄ = [̄l1 l̄2 · · ·  l̄ ] 
where

l̄1 = l̄2 = · · · = l̄ 
which is equivalent to

L̄l = 0

under undirected and connected graph. Furthermore,
L =⊗IN  is the Laplacian matrix of the communication
graph and IN is a N dimensional identity matrix. Using
these variables, we can transform Problem 1 to the following
problem.
Problem 2:

min  (̄l) =
P
=1

(̄l) (8)

=
P
=1

Ã
(̄) +  (

P
=1

̄)̄

!

subject to
P
=1

̄ ≤ max

min ≤ ̄ ≤ max

L̄l = 0  ∈ N 

where N ={1 2 · · ·  }
Different from Problem 1, Problem 2 is solvable using

only local information. Next lemma states the equivalence of
Problem 1 and Problem 2.

Lemma 1: Problem 1 and Problem 2 are equivalent.
Proof: See Appendix-VII-A for proof.

Before we proceed to the updating laws, we firstly present
the following Lemma as it will be used in the analysis of the
proposed updating law.
Lemma 2: Define

̃ (̄ly z) =  (̄l) + l̄Ly (9)

+
1

2
l̄ L̄l+

X
=1

1

Ã
P
=1

̄ − max

!

+

X
=1

2(̄ − max ) +

X
=1

3(
min
 − ̄)

where y z are auxiliary vectors defined as
y = [y1y2 · · · yN]T yi = [1 2 · · ·   ]
z = [z1 z2 · · ·  zN]T zi = [1 2 3]. Then,
the l̄ component of the saddle point (̄l∗y∗ z∗) ∈
2 × 2 × 3+ of ̃ (̄ly z) coincides with the
solution of Problem 2 under Assumption 1.

Proof: The Lagrangian function [30] for Problem 2 is

(̄ly z) =  (̄l) + l̄Ly+

X
=1

1

Ã
P
=1

̄ − max

!

+

X
=1

2(̄ − max ) +

X
=1

3(
min
 − ̄)

which is similar to ̃ and the proof of this Lemma follows
the proof of saddle point theorem for Lagrangian functions.
Since ̃ is not exactly equal to the Lagrangian function, we
provide the proof for the convenience of the readers. Readers
are referred to Appendix-VII-B for the details.

By this Lemma, we can conclude that to solve Problem 2,
we can seek for the saddle point of ̃ (̄ly z) instead.
2) Updating Strategy for Social Optimum Seeking: During

the solution seeking process, the users communicate with their
neighbors via a local communication network (e.g., Fig. 2).
Since the users only communicate with their neighbors instead
of every user in the network, their privacies are protected to
some extent. In the following analysis, we proceed to design
an updating law for the users to achieve the optimal load
scheduling by using only local information.

…
…

user 2 user 3

user 4

user 1
user N

Fig. 2: Local communication network during the solution
seeking process.
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To seek the saddle point of ̃ (̄ly z), a typical choice is to
use the saddle point dynamics, i.e.,

·
l̄=−β1F̃l̄(̄ly z) (10)

ẏ= β2F̃y(̄ly z)

̇1 = 3

"
P
=1

̄ − max

#+
1

̇2 = 4
£
̄ − max

¤+
2

̇3 = 5
£
min − ̄

¤+
3

for all  ∈ N 

where β1 β2 are two positive diagonal parameter matrices,
3 4 5 are positive gains to be determined and [Φ]+ is
a projection. Furthermore, [Φ]+ = Φ if Φ  0 or   0

and [Φ]+ = 0 otherwise. However, the gradient of the pricing
curve is not available for the users since the explicit expression
on the pricing function is unknown. Hence, the updating law
in (10) can not be directly used. And here, we employ an
extremum seeking method [14] to deal with the unmodelled
function via the measurement of the pricing value. We design
the online updating law as

·
̄ = −√ sin()

Ã
 (

P
=1

̄) + 2 − 3

!
̄ (11)

+
√
 cos()− 

2

µ

(̄)

̄
+ 1

¶
−

2

X
=1

(̄ − ̄)− 

2

X
=1

( − )

̇ =

X
=1

(̄ − ̄)

̇1 = 1

Ã
P
=1

̄ − max

!
̇2 = 2

¡
̄ − max

¢
̇3 = 3

¡
min − ̄

¢
   ∈ N 

where    are positive control gains to be determined.
The frequency  are distinct from each other and are large
enough and  is the element on the th row and th column
of the adjacent matrix of the communication graph. The
concatenated form of (11) is

·
l̄ = diag(

kijαij

2
)

µ
−L̄l− Ly− μV(̄l)

 l̄
− z1

¶
+Π−Ξ

ẏ = L̄l (12)

̇1 = 1

Ã
P
=1

̄ − max

!
̇2 = 2

¡
̄ − max

¢
̇3 = 3

¡
min − ̄

¢
  ∈ N 

where Π ∈2

, Ξ ∈2

are both vectors defined as

Π = [Π1Π2 · · · Π ]
Ξ = [Ξ1Ξ2 · · · Ξ ] 

where

Π = [1
√
1 cos(1) 2

√
2 cos(2)

· · ·  
√
 cos( )]

and

Ξ =

"
1
√
1 sin(1)

ÃÃ
 (

P
=1

̄) + 2 − 3

!
̄

!


2
√
2 sin(2)

ÃÃ
 (

P
=1

̄) + 2 − 3

!
̄

!
 · · ·

 
√
 sin( )

ÃÃ
 (

P
=1

̄) + 2 − 3

!
̄

!#


Furthermore, diag(kijij

2
) is defined as the diagonal matrix

whose diagonal elements are 
2


V(̄l)

 l̄
is the concate-

nated vector of (̄)

̄
and z1 = [11 21 · · ·  1] .

Alternatively, if we regard the explicit expression on the
whole cost function to be unknown, the following updating
law can be used as well,
·
̄ = −√ sin()

¡
(̄l) + (2 − 3)̄

¢
+

√
 cos()− 

2

X
=1

(̄ − ̄)

−
2

1 − 

2

X
=1

( − )

̇ =

X
=1

(̄ − ̄) (13)

̇1 = 1

Ã
P
=1

̄ − max

!
̇2 = 2

¡
̄ − max

¢
̇3 = 3

¡
min − ̄

¢
   ∈ N 

Theorem 2: Suppose that Assumption 1 is satisfied. Then
the set of solution to Problem 1 is semi-globally practically
uniformly asymptotically stable under the updating law in (11)
or (13) with respect to 2 ×2 ×3+  i.e., the electricity
loads are distributed among the industrial users optimally.

Proof: Firstly, we calculate the Lie bracket approximated
system for the closed-loop system

·
l̄ = diag(

kijαij

2
)

µ
−L̄l− Ly− μV(̄l)

 l̄
− z1

¶
+Π−Ξ

ẏ = L̄l

̇1 = 1

Ã
P
=1

̄ − max

!
̇2 = 2

¡
̄ − max

¢
̇3 = 3

¡
min − ̄

¢
  ∈ N 

by using Theorem 1.
Since Φ =

R 
0

√
 cos() =

1√

sin() Φ̂ =

R 
0

√
 sin() =



6

− 1√

cos() +

1√


 and for all  6=  

lim
→∞

Z 

0

cos2()

= lim
→∞

Z 

0

1 + cos(2)

2


2=
= lim

→∞

Z 2

0

³
1
2
+

cos()

2

´
2



=
1

2
 =

Z 

0

1

2


lim
→∞

Z 

0

sin2()

= lim
→∞

Z 

0

1− cos(2)
2



2=
= lim

→∞

Z 2

0

³
−1
2
+

cos()

2

´
2



=
1

2
 =

Z 

0

1

2


lim
→∞

Z 

0

cos() sin() = lim
→∞

Z 

0

sin(2)

2


2=
= lim

→∞

Z 2

0

sin()

2
 = 0

lim
→∞

Z 

0

sin() sin()

= lim
→∞

Z 

0

cos( − )− cos( + )

2


(+)=
= lim

→∞

Z 

0

cos(
−
+

)− cos()
2 ( + )



= lim
→∞

µ
1

 − 
sin(

 − 

 + 
)− sin()

2 ( + )

¶
= 0

lim
→∞

Z 

0

cos() cos()

= lim
→∞

Z 

0

cos( − ) + cos( + )

2


= 0

lim
→∞

Z 

0

cos()
=
= lim

→∞

Z 

0

cos()


 = 0

lim
→∞

Z 

0

sin()
=
= lim

→∞

Z 

0

sin()


 = 0

Hence, the value of  defined in (3) is 1
2

for
lim→∞

R 
0
cos()(cos() − 1) and is −1

2
for

lim→∞
R 
0
− sin2() and in other circumstances,

 = 0

Therefore, according to (2) and (3), we can get that the
approximated system is

·
l̄=−diag(kijαij

2
)̃̄l(̄ly z) (14)

ẏ= L̄l

̇1 = 1

Ã
P
=1

̄ − max

!
̇2 = 2

¡
̄ − max

¢
3 = 3

¡
min − ̄

¢
  ∈ N 

If we implemented the above analysis to (13), we can get that
the Lie bracket approximated system of (13) is the same as in
(14).

Let

̃ =
1

2
(̄l− l̄∗)diag(kijαij

2
)
−1
(̄l− l̄∗)

+
1

2
(y− y∗) (y − y∗)

+

X
=1

3X
=1

¡
 − ∗ − ∗ log() + ∗ log(

∗
)
¢


which is defined for  ≥ 0 Since





⎛⎝ X
=1

3X
=1

¡
 − ∗ − ∗ log() + ∗ log(

∗
)
¢⎞⎠

= 1− ∗




1− ∗


⎧⎨⎩
= 0 if  = ∗
 0 if   ∗
 0 if   ∗



Therefore
X
=1

3X
=1

¡
 − ∗ − ∗ log() + ∗ log(

∗
)
¢

has

a minimum at  = ∗ which is equal to 0. Hence ̃ ≥ 0
and the equal sign holds if and only if l̄ = l̄

∗
y = y∗ z = z∗

Taking the time derivative of ̃  we get that

·
̃ = −(̄l− l̄∗) ̃̄l(̄ly z) + (y− y∗) L̄l

+

X
=1

(1(
P
=1

̄ − max)− ∗1(
P
=1

̄ − max))

+

X
=1

¡
2
¡
̄ − max

¢− ∗2
¡
̄ − max

¢¢
+

X
=1

¡
3
¡
min − ̄

¢− ∗3
¡
min − ̄

¢¢
≤ ̃ (̄l∗y z)− ̃ (̄ly z)

+̃ (̄ly z)− ̃ (̄ly∗ z∗)

=
³
̃ (̄l∗y z)− ̃ (̄l∗y∗ z∗)

´
+
³
̃ (̄l∗y∗ z∗)− ̃ (̄ly∗ z∗)

´
≤ 0
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Hence, the set of saddle points of ̃ (̄ly z) is globally
uniformly asymptotically stable under (14). Therefore, it is
semi-globally practically uniformly asymptotically stable un-
der (11)/(13). Combining this result with Lemmas 1-2, the
analysis of this theorem is completed.

This convergence analysis for the social optimum seeking
problem using the updating law in (11)/(13) generalizes the
results in [17] to solve non-modelled based distributed opti-
mization problems with linear inequality constraint. For more
general nonlinear convex inequality constraint, the proposed
method can be easily adjusted to solve it. The continuous
updating law provides addictive communication noise rejection
property.

C. Solution Analysis and Benefit Sharing Protocol

While we provide a method for industrial users to update
their loads in real time such that system level objective is
derived, the main concern lies in the incentives for the users
to coordinate with each other, i.e., the users may choose to
act non-cooperatively due to their selfishness. If the users do
not coordinate with each other, they would try to solve

min ( l−) = () +  (
P
=1

)

subject to
P
=1

 ≤ max

min ≤  ≤ max 

The Lagrangian function is

( l− ) = ( l−) + 1(
P
=1

 − max)

+2( − max ) + 3(
min
 − )

Hence according to Karush–Kuhn–Tucker condition, the fol-
lowing condition should be satisfied at the Nash equilibrium,




(
  l

−  

 ) = 0







(
  l

−  

 ) = 0


 ≥ 0
P
=1


 ≤ max

min ≤ 
 ≤ max 

for all  ∈ N ,  ∈ {1 2 3} However, Nash equilibrium is not
necessarily the social optimal solution, i.e.,

P
=1

(l
) ≥

P
=1

(l
∗) (15)

for a minimization problem. In (15), l denotes the Nash
equilibrium solution and l∗ is the social optimal solution. From
the users’ perspective, there are two cases:
Case 1: (l

) ≥ (l
∗) for all  ∈ N  In this case,

every user can reduce its cost by solving Problem 1 compared
with being a non-cooperative player. Therefore, in this case,

all the users have incentives to coordinate to derive the social
optimum solution. However, fairness on the quantity of the
benefit they get from the coordination behavior remains to be
addressed.

Case 2: (l
) ≥ (l

∗) for  ∈ N where N is a
subset of N while (l

) ≤ (l
∗) for  ∈ N −N  That

is to say, in this case, some users can reduce their costs while
others sacrifice for the coordination behavior and they lack
incentives to coordinate.

However, since
P

=1(l
) ≥ P

=1(l
∗) is satisfied

for sure, a benefit sharing policy can be established among
the users to solve the "incentive" and "fairness" problem.
The benefit sharing policy can be implemented via signing a
contract among the users before the coordination. Any profit
sharing policy can be used if they satisfy the following two
criteria.

Criterion 1: Share the profits such that (l
) ≥ (l

∗)
for all  ∈ N 

Criterion 2: The profits they gain from the coordination
behavior are allocated relatively fairly.

Here, we provide two benefit sharing protocols. For conve-
nience, we define (l) = −(l) and (l) =

P
=1 (l).

Algorithm 1: Share the benefit based on the users’ utilities
at the Nash equilibrium.

Begin
Allocate (l) = (l

) for all  ∈ N
if
P

=1(l
)−P

=1(l
∗) = 0

end
else if

P
=1(l

)−P
=1(l

∗) 6= 0
Let (l) = (l) +

(l
)

P


=1
(l

∗)−
P



=1
(l

)
P



=1
(l)

for all  ∈ N
end
return (l)

end

Algorithm 2: Share the benefit based on the users’ contri-
bution in the coordination.

Begin
Allocate (l) = (l

) for all  ∈ N
if
P

=1(l
)−P

=1(l
∗) = 0

end
else if

P
=1(l

)−P
=1(l

∗) 6= 0
Let (l) = (l)+
(∗N−∗N\)P


=1


∗N−∗N\

 ³P
=1 (l

∗)−P
=1 (l

)
´

for all  ∈ N
end
return (l)

end

In Algorithm 2, ∗N\ denotes the social utility when user 
does not participate in the coordination and therefore, ∗N −
∗N\ represents for user 0s contribution on the social utility.
This algorithm is based on Shapley value [29].
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V. NUMERICAL EXAMPLE FOR INDUSTRIAL CONSUMERS

WITH HVAC SYSTEMS

A. Distributed Coordination for Social Optimum Seeking

Since the number of consumers in each industrial park is
usually not large, we use a simple demo to show the simulation
results in a clearer way. We consider a network of industrial
users equipped with heating ventilation and air conditioning
(HVAC) systems. For HVAC systems. the discomfort term can
be modelled as [1]

() = 
2
 ( − ̂)

2

where  is the cost coefficient,  is a parameter that specifies
thermal characteristic of the HVAC system and ̂ is the
expected electricity load. Furthermore,

 (
P
=1

) = (
P
=1

 − ∗) + 0

where ∗ is the expected demand determined by the utility
company and  is a pricing parameter. Hence, for user , the
cost function is

( l−) = 
2
 ( − ̂)

2 +

Ã
(

P
=1

 − ∗) + 0

!


Such a pricing mechanism provides some incentives for the
users to coordinate on the electricity loads to meet ∗ since
it reduces users’ electricity billings. For more details on the
deviation of the cost functions, readers are referred to [1].
In the simulation, we consider a network of 5 users with
large electricity usage in a industrial park. The parameters
in the model are setting as  = 05 

2
 = 5 + 02

̂ = (100 + 20)  min = 80 max = 250 the discomfort
cost parameter  = 08  ∈ {1 2 · · ·  5} 0 = 10 c/

∗ = 08
P

=1 ̂ For the constraint,
P

=1  ≤ max

we choose max = 780 Therefore, the social cost
minimization problem is

min (l) =
5P

=1

( l−) (16)

subject to
5P

=1

 ≤ 780
80 ≤  ≤ 250  ∈ {1 2 3 4 5}

By some calculation, we can get that the optimal solution is
1 = 830074 2 = 1043775 3 = 1256497

4 = 1468342 5 = 1679397
P5

=1  =

6278085 Furthermore, the users communicate under an
undirected, connected graph as shown in Fig. 3.

32 4

51

Fig. 3: Communication graph for the users in the network.

The simulation results are shown in Figs. 4-10. From these
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Fig. 4: Estimations on user 1’s load.
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Fig. 5: Estimations on user 2’s load.

figures, we see that the load estimations will converge to a
small neighborhood of the actual optimal solution.

B. Benefit sharing

From the solution of the above example, we see that at the
social optimum, the costs for the users are 60618, 58894,
57767, 56771, 55894 cents for users 1-5, respectively. Fur-
thermore, the total cost is about 28994 cents. However, the
benefit from the coordination process is not distributed fairly
and it should be reallocated among the users.

If the users are conducting non-cooperative behaviors, the
resulting Nash equilibrium is (107.0136, 126.3741, 145.778,
165.2209, 184.699) with total load 7290856. The
costs of the users are 62753, 73941, 85175, 9645, 10776
cents for users 1-5, respectively. The total cost at the Nash
equilibrium is 42608 cents. By these calculations, we see that
the total load reduces from 7290856 to 6278085

and the total cost reduces from 42608 to 28994 Furthermore,
the benefit can be shared according to Algorithm 1 and
Algorithm 2. The comparison on the costs is shown in Fig.
11 in which Algorithm 1 is used in the benefit re-allocation.
From this figure, we can see that every user reduces its cost by
using the proposed method thus providing the users incentives
to participate in solving the social cost minimization problem.
More fairly, the benefit they get from the coordination process
can be shared using Shapley value (Algorithm 2).

VI. CONCLUSION

In this paper, we solve the social cost minimization problem
for industrial parks. The social cost minimization is solved in
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Fig. 6: Estimations on user 3’s load.
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Fig. 7: Estimations on user 4’s load.

a distributed fashion by the users. We employ an extremum
seeking based method to solve the distributed optimization
problem online. Lie bracket approximation and saddle point
algorithms are used in the analysis of the updating law. We
propose a profit sharing strategy for the proposed scheme to
motivate the users to participate in solving the social cost
minimization problem. An example for industrial consumers
equipped with HVAC systems is used which helps to verify
the proposed method.

REFERENCES

[1] K. Ma, G. Hu and C. Spanos, "Distributed energy consumption control
via real-time pricing feedback in smart grid," IEEE Transactions on
Control Systems Technology, Vol. 22, pp. 1907-1914, 2014.

[2] J. Wang and N. Elia, “Control approach to distributed optimization,”
Allerton Conference on Communications, Control and Computing, pp.
557-561, 2010.

[3] J. Wang and N. Elia, “A control perspective for centralized and distrib-
uted convex optimization,” IEEE Conference on Decision and Control,
pp. 3800-3805, 2011.

[4] B. Gharesifard and J. Cortes, "Distributed continuous-time convex
optimization on weight-balanced digraphs," IEEE Transactions on Au-
tomatic Control, Vol. 59, pp. 781-786, 2014.

[5] M. Kraning, E. Chu, J. Lavaei and S. Boyd, "Dynamic network energy
management via proximal message passing," Foundations and Trends in
Optimization, Vol. 1, pp. 70–122, 2013.

[6] L. Moreau and D. Aeyels, "Practical stability and stabilization," IEEE
Transactions on Automatic Control, Vol. 45, pp. 1554-1558, 2000.

[7] Z. Tan, P. Yang and A. Nehorai, "An optimal and distributed demand re-
sponse strategy with electric vehicles in smart grid," IEEE Transactions
on Smart Grid, Vol. 5, pp. 861-869, 2014.

[8] N. Li, L. Chen and S. Low, "Optimal demand response based on utility
maximization in power networks," IEEE Power and Energy Society
General Meeting, pp. 1-8, 2011.

[9] L. Chen, N. Li, S. Low and J. Doyle, "Two market models for demand
response in power networks," IEEE SmartGridComm, 397-402, 2010.

0 20 40 60 80 100 120 140 160 180 200
−300

−200

−100

0

100

200

300

Time (second)

l 5

 

 

User 1’s estimation on l
5

User 2’s estimation on l
5

User 3’s estimation on l
5

User 4’s estimation on l
5

User 5’s estimation on l
5

167.9

Fig. 8: Estimations on user 5’s load.

0 20 40 60 80 100 120 140 160 180 200
−800

−600

−400

−200

0

200

400

600

800

Time (seconds)

T
o

ta
l l

o
a

d
s

 

 

User 1’s estimation on the total loads
User 2’s estimation on the total loads
User 3’s estimation on the total loads
User 4’s estimation on the total loads
User 5’s estimation on the total loads

627.8

Fig. 9: Users’ estimations on the total loads.

[10] M. Krstic and H. Wang, "Stability of Extremum Seeking Feedback for
General Nonlinear Dynamic Systems," Automatica, Vol. 36, No. 4, pp.
595-601, 2000.

[11] Y. Tan, D. Nesic, I. Mareels and A. Astolfi, "On global extremum
seeking in the presence of local extrema," Automatica, Vol. 45, No.
1, pp. 245-251, 2009.

[12] K. B. Ariyur and M. Krstic, Real-Time Optimization by Extremum-
Seeking Control, A John Wiley & Sons, Inc: Wiley-Interscience, 2003.
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VII. APPENDIX

A. Proof of Lemma 1

Proof: From Problem 2→Problem 1: Since the
communication network is undirected, connected and

L̄l = 0 we have, l̄ = 1


n ⊗ l = [̄l1 l̄2 · · ·  l̄ ]  Therefore,P
=1(̄l) =

P
=1

³
(̄) +  (

P
=1 ̄)̄

´
=P

=1

³
() +  (

P
=1 )

´
=

P
=1( l−)P

=1 ̄ ≤ max is equivalent to
P

=1  ≤ max

min ≤ ̄ ≤ max is equivalent to min ≤  ≤ max .
From Problem 1→Problem 2: For l̄ =[̄l1 l̄2 · · ·  l̄ ] 

if l̄1 = l̄2 = · · · = l̄ = l then we haveP
=1( l−) =

P
=1

³
() +  (

P
=1 )

´
=P

=1

³
(̄) +  (

P
=1 ̄)̄

´
=
P

=1(̄l) And the

constraints
P

=1  ≤ max is equivalent to
P

=1 ̄ ≤ max
and min ≤  ≤ max is equivalent to min ≤ ̄ ≤ max  To
satisfy l̄1 = l̄2 = · · · = l̄ = l we let L̄l = 0 since L̄l = 0
if and only if l̄ = 1



n ⊗ l.

B. Proof of Lemma 2

Proof: According to the definition of saddle point, we
have

sup ̃ (̄l∗y z) (17)

= sup
¡
 (̄l∗) + l̄∗Ly∗

+

X
=1

1

Ã
P
=1

̄∗ − max

!
+
1

2
l̄∗ L̄l

∗

+

X
=1

2
¡
̄∗ − max

¢
+

X
=1

3
¡
min − ̄∗

¢
= ̃ (̄l∗y∗ z∗)

=  (̄l∗) + l̄∗Ly∗ +
1

2
l̄∗ L̄l

∗

+

X
=1

1

Ã
P
=1

̄∗ − max

!

+

X
=1

2
¡
̄∗ − max

¢
+

X
=1

3
¡
min − ̄∗

¢


To achieve (17), the followings must be satisfied:

l̄∗L = 0

P
=1

̄∗ − max ≤ 0

min ≤ ∗ ≤ max 

and

∗1

Ã
P
=1

̄∗ − max

!
= 0

∗2
¡
̄∗ − max

¢
= 0

∗3
¡
min − ̄∗

¢
= 0

Otherwise, if y = −(y) and  → +∞ or  → +∞

then sup ̃ (̄l∗y z)→∞ which contradicts (17). Therefore,
if (̄l∗y∗ z∗) is a saddle point for ̃ (̄ly z) then, l̄∗ must be
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within the constraints set Ω of Problem 2. Furthermore,

inf ̃ (̄ly∗ z∗) = inf
¡
 (̄l) + l̄Ly∗

+

X
=1

∗1

Ã
P
=1

̄ − max

!
+
1

2
l̄ L̄l

+

X
=1

∗2
¡
̄ − max

¢
+

X
=1

∗3
¡
min − ̄

¢!
= inf

l̄∈Ω
 (̄l)

=  (̄l∗)

that is to say, l̄∗ solves the optimization problem.
From the other aspect, if l̄∗ solves Problem 2, then there

must exist (y z) ∈ 2 ×3+ such that

sup ̃ (̄l∗y z) = sup (̄l∗) + l̄∗Ly+
X
=1

1

Ã
P
=1

̄∗ − max

!
+
1

2
l̄∗ L̄l

∗

+

X
=1

2
¡
̄∗ − max

¢
+

X
=1

3
¡
min − ̄∗

¢
=  (̄l∗) = ̃ (̄l∗y∗ z∗)

Furthermore, according to the Karush–Kuhn–Tucker condition
and the convexity of ̃ (̄ly z) with respect to l̄, we have
̃ (̄l∗y∗ z∗) is a global minimizer of ̃ (̄ly∗ z∗) i.e.,

̃ (̄l∗y∗ z∗) ≤ ̃ (̄ly∗ z∗)

Hence, the proof is completed.




