UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Two Layer Digital RAAM

Permalink
https://escholarship.org/uc/item/85d4p3mK

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 17(0)

Author
Blair, Alan D.

Publication Date
1995

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/85d4p3mk
https://escholarship.org
http://www.cdlib.org/

Two Layer Digital RAAM

Alan D. Blair
Dept. of Computer Science
Volen Center for Complex Systems
Brandeis University
Waltham, MA 02254-9110
blair@cs.brandeis.edu

Abstract

We present modifications to Recursive Auto-Associative Mem-
ory which increase its robustness and storage capacity. This
is done by introducing an extra layer to the compressor and
reconstructor networks, employing integer rather than real-
valued representations, pre-conditioning the weights and pre-
setting the representations to be compatible with them. and
using a quick-prop modification. Initial studies have shown
this method to be reliable for data sets with up to three hundred
subtrees.

Introduction

In the late 1980’s a number of new connectionist models were
developed in response to criticisms (e.g. Fodor & Pylyshyn,
1988) that connectionism lacked the flexibility and represen-
tational adequacy needed for higher level cognitive tasks.

Chief among these were coarse coding (Touretzky, 1986),
tensor based representation (Smolensky, 1990), reduced rep-
resentations (Hinton, McClelland & Rumelhart, 1986), and
RAAM (Pollack, 1990). Compared to earlier systems, they
had the advantage of compositionality built more explicitly
into their design, and they have shown a great deal of promise
in a number of areas (Chalmers, 1990, Plate, 1994), However,
all of them typically run into difficulties when the structures
involved are scaled up to a level of complexity commensurate
with real world problems.

In this paper, we describe a number of modifications to
the RAAM architecture designed to address some of these
inadequacies, and examine the feasibility of storing large,
complex data structures within a connectionist system.

| LEFT

RECONSTRUCTOR \ ’

COMPRESSOR /] \

| LEFT | RIGHT | 2dINPUTUNITS

d HIDDEN UNITS

Figure I. RAAM architecture - a single network composed of
4 compressor and a reconstructor.

| RIGHT | 2doutput uNITS

Review of RAAM

Recursive Auto-Associative Memory or RAAM (Pollack,
1990) is a method for storing tree structures in a feed forward
network. It's architecture is very similar to that of encoder net-
works (Ackley, Hinton & Sejnowski, 1985, Cottrell, Munro
& Zipser, 1987), consisting of a compressor unit and a recon-
structor unit. The principal difference is that in a RAAM the
compressor and reconstructor are used recursively to encode
and decode, respectively.

b

I
\‘B
s

Figure 2. A simple tree and the auto-associations that
encode it in a RAAM.

Figure 2 shows how a RAAM encodes the tree (E (F G)).
First we feed (F G) into the compressor network, giving output
a. Then we feed in (E a), giving b. To decode, we feed b
into the reconstructor network, giving (E a). At that point
we need some kind of ‘terminal test’ to tell us that E, F &
G are terminals (requiring no further decoding), while a is a
non-terminal that must be fed again into the reconstructor -
giving (F G).

Several trees may be stored in the same RAAM at once. In
what follows, we shall measure the complexity of a data set
by the number n of subtrees or ‘auto-associations’ required
to encode it. In the above example n = 2.

Modifications to RAAM

Hidden layers

We enlarge the compressor and reconstructor networks to two
layers each as shown in Figure 3, in order to increase the
number of functions computable by the network.

478

mailto:blair@cs.brandeis.edu

[reew . | [z] dunimsEacH)
EH /[®
[v] [¥ | d+eunmsEach
P '\ / Q
e P | d UNITS
¢ i
] u | 2d UNITS
A/ \ B
w5 1] [t] duniTsEacH)

Figure 3. Architecture for Two Layer RAAM.

Digital outputs

One problem with RAAM is that, since the representations
are allowed to take on non-integer values, greater accuracy is
required as the depth of the trees increases, in order to prevent
accumulation of round-off errors. We modify the network so
that each output must take on a discrete value (+1 or —1),
thus allowing larger structures to be stored in a noise tolerant
fashion. This is done by using a threshold function © at the
second layer of the compressor and reconstructor networks,
while a hyperbolic tangent is used at the hidden layers:

r =
d+e d

wy = © (L"Q + Z Lij tanh(PJ—o + PJka))
=1 k=1
d+e d

Zy =

(6] (R,-g + Z Ri; tanh(Q;—n + Z ij-‘»‘”k])
j=1 k=1

Pre-conditioned weights

It is well known that the success of neural network train-
ing using back-propagation is sensitive to the initial weight
configuration (Kolen & Pollack, 1990). The complete ran-
domness of the initial representations and weights becomes a
significant problem as RAAM s are scaled up. To increase the
likelihood of convergence, we adopt the following strategy
for choosing the initial weights:

First, randomly choose two signed permutation matrices Py
and Qp. For example, if d = 4, we may have

0 0

Py =

0
V| Q=
0

ol =l = =]

0
0
—1
0

-0 O

OO -
OO —
o -0

—]
0
0

Once Py and Qg are chosen, we assign the initial weights for
the reconstructors as follows:

1P] o 1[Q] ;_p_[Ly |1
P"d[ﬂ]Q‘d[OIL‘R‘[d 0

2d d
(€] (C"U + z:] C,'J' lanh(Ajo + kzi(Ajksk + B}'ktk)))
J: =

479

where I(d) is the (d x d) identity matrix, and O denotes a zero
matrix of the appropriate dimensions. In other words, the first
d nodes of the hidden layer are connected in a 1-to-1 fashion
with those of the input and output layers by connections with
synaptic strength d~', in such a way that the connections to
the output layer are component-wise and excitatory, while
those to the input layer are randomly assigned and may be
excitatory or inhibitory. The remaining e nodes are connected
componentwise to the first e nodes of the output layer by
weaker excitatory links with strength n~' (where n is the
number of subtrees to be stored). All other connections are
initially set to zero. Each layer also has bias inputs, which
are also initialized to zero. The initial compressor network is
wired thus:
Bi= [4

_[P
A<)

0
P’ and Q' denote the transpose of P and Q. This setup has
the following advantages:
(a) the initial compressor is a left inverse for the initial recon-
structor,
(b) it produces compressors and reconstructors with much
longer transients than would be the case with random initial
weights, thus allowing the network to store trees of greater
depth.

1
] C=-[1d) Id]

Initial representations

In single layer RAAM, non-terminal representations are de-
termined by the network as an artifact of the training. This
approach has the disadvantage that two or more representa-
tions may become fused in the course of the training (An-
geline, 1992). The fusion problem gets more pronounced as
the number of nodes increases, and is even more prevalent
when the representations become digital. We circumvent this
difficulty by assigning the representations at the outset, in a
way that is compatible with the initial weights. To see how
this is done, consider our earlier example:

b

F G

Now imagine a linearized version of the problem, in which the
compressor and reconstructors are effected by (linear) matrix
multiplications, rather than two-layer neural networks. In
fact the initial weights as defined above do just that, using the
matrices [Py Qp], Po & Quo, respectively. Now suppose
we assign a random representation to the root node b. For

instance, we could assign

z(b)

=
1

Then it would be natural to use our initial (linearized) recon-
structors Py & Qo to determine representations for the other
nodes, putting

F =11 F 17
=(B)=Poat)= | T} | a(@)=Qua®= |)

L 1] L =1

= C C
2(F)=Poz(@) = | | | 2(G)=Qoala)= | |

L =1 . L 1 J

This is the strategy we follow in general, with the following
provisos:

(a) In general there will be several trees in the data set, and
we assign a random representation to each root node.

(b) The above example is particularly simple because each
terminal appears only once. In general a typical terminal or
subtree will appear several times throughout the data set, and
the above procedure will generate multiple representations for
it. We extract a single representation from this multitude by
first computing their average, then rounding off each unit to
+1 or —1, depending on its sign.

(c) It may happen that two nodes end up having exactly the
same representation. In this case, we must select Py and
Q anew, and repeat the above procedure, choosing different
representations for the root nodes. In order to estimate the
probability of this problem arising, note that the total number
of available representations is 2¢. Suppose the number of
terminals and subtrees to be represented is /N, and choose d
large enough that 2¢ > N2, If each representation were cho-
sen at random (which is not strictly the case, but is probably
a ‘reasonable’ assumption), the probability of them all being
distinct would be

N-1

H(l—%) >1-e'>06

=0

So, by repeating this procedure a couple of times if necessary,
we should soon satisfy the requirement that all representations
be distinct.

Back-prop modification

Since the representations are chosen in advance of training, the
compressor and reconstructor networks may be trained sepa-
rately. Training proceeds using back-propagation (Rumelhart,
Hinton & Williams, 1986), with the following modification
similar to Quickprop (Fahlman, 1989):

In the usual back-propagation algorithm, the value of ‘delta’
propagated back through the network from the output layer is

8 % (ti— 2)
(1 — z23) (t: — z:)

tanh(ri)
target value for z;

2i
t;

480

We instead take
5,‘ = (1 = Ziti)(t,' ot Z,')

Such a choice of d prevents individual outputs from getting
trapped into a flat region on the wrong side of zero, by putting
more emphasis on learning the correct sign for the outputs,
and less on their exact numerical values.

At the conclusion of training, the transfer function in the
output layer is changed from a hyperbolic tangent to a thresh-
old function. In view of this, the network may be said to have
successfully learned the training set once the maximum error
across all units of all outputs is less than 1.0. However it
is prudent to allow some safety margin, and in the trials de-
scribed below we continued to train until the maximum error
was less than 0.6. The learning rate must be very small in
order to ensure convergence. After some preliminary trials,
we settled on a learning rate of (nd) ™! for the reconstructors
and (2nd)~! for the compressor.

Parallel training

Parallelization of the training set provides a significant speed-
up to back-propagation (Blelloch & Rosenberg, 1987). By
removing dependencies from the original RAAM training
regimen and parallelizing the algorithm on a 4096 proces-
sor Maspar MP2, we were able to run large scale experiments
with full parallelization over the training sets.

Data

We tested our methods on four different data sets, each con-
sisting of parse trees for a collection of English sentences.
Table 1 provides a summary, showing the number of trees in
each data set, their average depth, and the total number of
subtrees.

Table 1. Summary of Data.

Data Set | No. Trees | Avg. Depth | No. Subtrees
1 7 3.1 15
2 4 8.8 45
3 48 57 169
4 37 8.4 307

Data Set (1) is from (Pollack, 1990). Data Set (3) was
taken from an introductory text on Syntactic Theory (Cowper,
1992). Data Sets (2) and (4) were extracted from a small
fragment of the University of Pennsylvania Tree Bank '. The
full data sets are available through the World Wide Web 2.
Here is an example of a ‘typical’ tree from each data set:

1. (D N)(V(D(A N))))

2. (S(NP(S(VP(P((NP(P NP))NP))))))(NP(VP(NP(P(NP NP)))))

3. (NPACV(CNPI VP))NN(CONI(NP(I VP)))

4.(ADIP((VP(NP NP))((NP(S(VP NP)))(S(NP(S(VP(NP(P NP)))))))))

We took the liberty of slightly modifying the trees to make
them binary - since our purpose was not to get syntactic details
right, but simply to test how well our scheme could cope
with the kinds of structures that typically arise in linguistic
applications.

'ftp://ftp.cis.upenn.edu/pub/treebank/doc/*
2http://www.cs.brandeis.edu/~blair/home.htm]

ftp://ftp.cis.upenn
http://www.cs.brandeis.edu/~blair/home.html

Results

The results are shown in Table 2, where n is the number of
subtrees, d is the dimension of the representations, ¢ is the
number of ‘extra’ units in the hidden layer of the reconstruc-
tors, m = (Sd + 2e + 1)(2d + 1) — | is the total number
of connections in the network, and tenc, tien & frgn are the
number of epochs to convergence for the compressor and the
left and right reconstructors, respectively.

Table 2. Summary of Results.

n d € m m/n Lenc Liest Lright

15 9 0 873 | 58.2 250 100 150

45 | 12 0] 1524 | 339 800 1,100 900
169 | 16 8| 3200 | 18.9 1,800 | 11,000 7,500
307 | 17 | 17 | 4199 | 13.7 | 16,700 | 42,800 | 31,500

For large data sets, the compressor converged faster than
the reconstructors - presumably due to the larger number of
connections in the compressor network - and the right recon-
structor converged faster than the left one. This is probably
due to the fact that parse trees tend to be left-branching (in
English), and the resulting ‘many-to-one’ nature of the left
map makes it harder to learn.

Unfortunately, the system shows little or no capacity for
generalization. Careful analysis of the compressor and recon-
structors trained on the above data sets reveals that they were
unable to store and retrieve any trees that were not explicitly
in the data set. This trade-off between storage capacity and
ability to generalize presumably comes about because of the
way we train the compressor and reconstructors separately,
and assign the subtree representations in advance, instead of
letting them be determined by the network in the course of its
training.

Conclusion

These results show that two-layer digital RAAM can be used
to reliably find representations for sets of binary trees of a size
and complexity that would confound ordinary RAAM and
most other connectionist representation systems. These ad-
vantages come from stronger constraints on the initial weights
and the actual representations of the non-terminals, at the
expense of generalization ability. Further work on how to
preserve generalization while expanding capacity is certainly
called for.

Acknowledgments
The author wishes to thank Jordan Pollack for many helpful
comments and suggestions. This research was funded by a
Krasnow Foundation Postdoctoral Fellowship, and by ONR
grant NO0OO14-95-0173.

References

Ackley, D.H., Hinton, G.E. & Sejnowski, T.J. 1985. A learn-
ing algorithm for Boltzman Machines, Cognitive Science
9, 147-169.

Angeline, P.J. 1992. Avoiding fusion in floating symbol sys-
tems, Tech. Report 92-PA-FUSION, Computer Science
Dept., Ohio State University.

Blelloch, G., Rosenberg, C.R. 1987. Network learning on
the Connection Machine, Proceedings Tenth International
Joint Conference on Artificial Intelligence, Milan, Italy.

481

Chalmers, D.J. 1990. Syntactic transformations on distributed
representations, Connection Science 2(1-2), 53-62.

Cottrell, G., Munro, P, & Zipser, D. 1987. Learning inter-
nal representations from gray-scale images: An example
of extensional programming, Proceedings Ninth Annual
Conference of the Cognitive Science Society, Seattle, WA,
461-473.

Cowper, E.A. 1992. A Concise Introduction to Syntactic The-
ory (University of Chicago Press, Chicago, IL).

Fahlman, S.E. 1989. Fast-learning variations on back-
propagation: an empirical study. In D. Touretzky, G. Hin-
ton & T. Sejnowski, eds. Proceedings of the 1988 Con-
nectionist Models Summer School, Pittsburgh, PA, 38-51
(Morgan Kaufman, San Mateo).

Fodor, J.A., Pylyshyn, Z.W. 1988. Connectionism and cogni-
tive architecture: a critical analysis, Cognition 28, 3-71.
Hinton, G.E., McClelland, J.L., Rumelhart, D.E. 1986. Dis-
tributed Representations. In D.E. Rumelhart, J.L. McClel-
land and the PDP Research Group, eds. Parallel Dis-
tributed Processing: Experiments in the Microstructure of

Cognition 1: Foundations (MIT Press, Cambridge, MA).

Kolen, J., Pollack, J.B. 1990. Back propagation is sensitive
to initial conditions, Complex Systems 4, 269-280.

Plate, T.A. 1994, Distributed Representations and Nested
Compositional Structure, Ph.D. Thesis, University of
Toronto.

Pollack, J.B. 1990. Recursive Distributed Representations,
Artificial Intelligence 46(1), 77-105.

Rumelhart, D.E., Hinton, G.E. & Williams, R.J. 1986. Learn-
ing representation by back-propagating errors, Nature 323,
533-536.

Smolensky, P. 1990. Tensor product variable binding and
the representation of symbolic structures in a connectionist
system, Artificial Intelligence 46(1-2), 159-216.

Touretzky, D.S. 1986. BoltzCONS: Reconciling connection-
ism with the recursive nature of stacks and trees, Proceed-
ings Eighth Annual conference of the Cognitive Science
Society (Erlbaum, Hillsdale, NJ).

	Cogsci_1995_478-481

