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Abstract

There are plenty of opportunities for life-long learning but peo-
ple rarely seize them. Game elements are an increasingly pop-
ular tool to keep students engaged in learning. But gamifica-
tion only works when it is done properly. Here, we introduce
the first principled approach to gamifying learning environ-
ments. Our feedback mechanism rewards students’ efforts and
study choices according to how beneficial they are in the long
run. The rewards are conveyed by game elements that we call
“optimal brain points”. In our experiment, these optimal brain
points significantly increased the proportion of participants
who attempted to learn a difficult skill, persisted through fail-
ure, and succeeded to master it. Our method provides a princi-
pled approach to designing incentive structures and feedback
mechanisms for both educational games and online courses.
We are optimistic that this can help people overcome the moti-
vational obstacles to self-directed life-long learning.

Keywords: gamification; artificial intelligence in education;
persistence; educational games; incentive structures

Introduction
As the technological development accelerates, self-directed
life-long learning is becoming critically important. Massive
Open Online Courses (MOOCs) and other digital resources
provide unprecedented opportunities for life-long learning.
However, only about 15% of the students who enroll in a
MOOC actually finish it (Jordan, 2019). One of the rea-
sons might be that learning something new often requires
confronting one’s own incompetence and persisting through
several failed attempts to understand a new concept or do
something new. Many people tend to irrationally avoid such
hardships (Urdan & Midgley, 2001; Baker et al., 2008)
even though they are often necessary to master new skills
(Ericsson, Krampe, & Tesch-Römer, 1993). People who have
become experts in using an outdated tool by doing the same
work in the same way for many years may be especially resis-
tant to learning how to use a new tool because in the short-run
it is much more comfortable for them to exploit their outdated
expertise than to become a novice again.

When students are given choices in online courses or ed-
ucational software they sometimes procrastinate on learning
something new by repeatedly practicing skills they already
know (Baker, Corbett, & Koedinger, 2004; Mostow et al.,
2002).

To help student’s overcome such motivational obstacles,
educational software increasingly relies on game elements,

such as points, levels, and badges, to encourage continued en-
gagement with the learning materials (Kapp, 2012; Dicheva,
Dichev, Agre, & Angelova, 2015; Huang & Soman, 2013).
The trend of gamification has outpaced the development of
an adequate theoretical foundation, and it has been noted that
gamification is often ineffective and sometimes even harm-
ful (Toda, Valle, & Isotani, 2018). This raises the question
how the incentive structures of digital learning environments
such as educational games and online courses should be de-
signed to optimally incentivize good study choices and effec-
tive learning strategies.

The points students receive in educational games usually
convey performance feedback. But making performance
feedback more gameful does not address the fundamental
problem that – in the short run – performance feedback might
discourage trying to learn something new. Rather, by mak-
ing student’s failures more salient to them, gamified perfor-
mance feedback can have a negative effect on their study
choices – thereby making things worse rather than better
(Shute, 2008). O’Rourke, Haimovitz, Ballweber, Dweck, and
Popović (2014) argue that to address this problem, gamifi-
cation should give students “brain points” that reward effort
and persistence rather than performance. In support of this
view, they found that incentivizing students’ effort and learn-
ing strategies in an educational game significantly increased
their persistence and the total amount of time they spent in
the game. However, the hand-crafted incentive system was
imperfect and could be exploited by discovering easy ways to
earn brain points without doing the hard work of learning a
new skill (O’Rourke, Peach, Dweck, & Popovic, 2016). The
high prevalence of students “gaming the system” across many
intelligent tutoring systems (Baker et al., 2008) underlines
that designing good incentives by hand is hard and fallible.
This illustrates the deeper issue that we lack a principled the-
ory for designing reward structures in learning systems that
incentivize learning properly.

Recent work has begun to establish such principles in the
domain of decision-support (Lieder & Griffiths, 2016; Lieder,
Chen, Krueger, & Griffiths, 2019). There, the basic idea of
this approach is to align the immediate reward of each deci-
sion with its long-term value. This addresses the problem that
people’s decisions are usually overly swayed by the antici-
pated immediate outcomes (e.g., the unpleasantness of strug-
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gling with a difficult math problem vs. the fun of watching
a YouTube video) rather than their long-term consequences
(e.g., the benefits of a good education). This, so called,
present bias (O’Donoghue & Rabin, 1999) manifests in a
wide range of sub-optimal, short-sighted decisions and prob-
lems such as impulsivity and procrastiation that have been
explained in terms of hyperbolic discounting and temporal
motivation theory (Steel & König, 2006; Steel, 2007).

Considering people’s present bias, the real world is far
from being an optimal learning environment because the im-
mediate reward for practicing a new skill is usually failure and
negative feedback – when it should be something much more
positive, namely the value of learning. Conversely, neglecting
skill development in favor of exploiting existing skills is usu-
ally rewarded because it leads to higher immediate productiv-
ity. This suggests that the present bias could be one of the ma-
jor reasons why students often quit studying too soon or pro-
crastinate on learning a difficult skill – especially when this
requires persisting through a series of failed attempts. This
suggests that the optimal gamification approach developed by
Lieder et al. (2019) might also be applicable to support stu-
dents’ study choices in MOOCs and educational games.

Here, we leverage the framework of optimal gamification
(Lieder & Griffiths, 2016; Lieder et al., 2019) to develop a
formal mathematical theory of optimal incentives for self-
directed learning and an automatic method for computing
such incentives from basic assumptions about the skills to be
learned and the process of skill acquisition. To achieve this,
we develop a mathematical model of the value of practice and
apply optimal gamification to it. Our method can be used to
automatically compute optimal brain points that encourage
learning behaviors that are consistent with the growth mind-
set that the intervention by O’Rourke et al. (2014) was meant
to encourage. We postulate that optimal brain points can not
only increase the amount of time students invest into learn-
ing, as has been demonstrated for hand-designed brain points
(O’Rourke et al., 2014), but also their learning outcomes. We
test this prediction in a behavioral experiment that simulates
a scenario where people have to choose between exploiting
their old skill (Skill 1) or learning a new skill (Skill 2) that
would allow them to solve a recurring task more efficiently.

We found that participants incentivized with optimal brain
points were less likely to give up on trying to learn a new
skill, became more likely to master it, and consequently per-
formed better at their tasks. This suggests that our method
for computing optimal brain points can help us overcome the
pitfalls of incentivizing students study choices manually.

These findings suggest that our principled approach to in-
centivizing skill acquisition can help people overcome the
motivational challenges of self-directed learning and could be
used to make educational games and online courses more ef-
fective and to avoid the pitfalls of previous attempts to gamify
education. Optimal brain points are a principled way to incen-
tivize good study choice and might be able to help students
develop a growth mindset (Dweck, 2008).

The plan for this paper is as follows: We first derive the
long-term value of practicing a new skill using a simple
model of skill acquisition. Next, we translate the value of
practice into an optimal gamification method for encouraging
skill acquisition. We then evaluate the efficacy of this method
in a behavioral experiment mimicking the motivational obsta-
cles to life-long learning. We conclude with the implications
of our findings for designing educational games and direc-
tions for future work.

Quantifying the value of practice
When should you complete a task using the skills you already
have and when should you try to learn a better way to accom-
plish it? If you would like to invest into learning a new skill,
which one should you pick? And if trying to learn this skill
is proving difficult, then how long should you keep trying be-
fore you give up and do it in the old, familiar way? To help
people make these difficult choices, we derive the value of
practicing an unfamiliar skill.

The first step of our derivation postulates a simplistic but
general and tractable model of skill acquisition through trial
and error. If a task has k potential solutions – only one of
which is correct – then the probability of discovering the skill
in the first attempt is 1

k . Conversely, the probability that the
first attempt will fail is k−1

k . After a failure the probability of
success increases to 1

k−1 .
Based on this probabilistic model, we can describe skill

acquisition as a Markov Decision Process (Sutton & Barto,
1998)

Mskill = {S ×D,A ,γ,T,r} (1)

where A includes one action for each skill, S is the set of
all possible skill levels the learner could attain through prac-
tice and D ⊂ N0 denotes how much more work is required
to complete the current task. The learner’s skill level st ∈ S
reflects how close they are to having mastered each of n dif-
ferent skills at time t and how likely they are to succeed at
the task by using each of those skills in their next attempt.
We formalize it by the tuple (k1,k2, · · · ,kn) where ki is the
number of potential ways in which the ith skill might work
given what the learner knows so far. The transition matrix
T encodes that unsuccessfully attempting skill i decreases ki
by 1 and that discovering how it works sets ki equal to 1.
It also encodes how the successful application of each skill
would reduce the amount of work required to complete the
task and that unsuccessful attempts do not decrease it. The
reward function r ((st,dt),at ,(st+1,dt+1)) encodes the imme-
diate effort of using or attempting to learn a skill and the value
of completing the current task. For simplicity, we assume that
the cost of each action is −1 and add the value of completing
the current task when d changes to 0. Finally, 1− γ ∈ [0,1]
is the probability that the current type of task will become
obsolete in the next time step.

Abstracting away the details of how specific skills are ac-
quired makes this model very general and broadly applica-
ble. It can therefore be used to incentivize student effort in
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any learning context. Our model can either be applied out of
the box or tailored to specific learning contexts by measur-
ing how specific learning activities increase the probability
that the student will successfully learn a particular skill and
plugging the measured probabilities into the model’s transi-
tion matrix T .

Having modelled the process of skill acquisition as an
MDP allows us to leverage standard dynamic programming
methods (Sutton & Barto, 1998) to compute the value of prac-
tice. For instance, we can apply the value iteration algorithm
to compute V ?((s,d)) – which is the value of having the skill
set s when the current task has difficulty d – and Q?((s,d),a)
which is the value of choosing action a (e.g., trying out a new
tool versus reusing an old one). To work out under which
conditions it is worthwhile to invest in extending one’s skill
set, we can then translate these value functions into the value
of practice which we define as

VOP((s,d),a) = Q? ((s,d),a)−V πstop learning ((s,d)) , (2)

where V πstop learning is the expected return of the strategy that
always exploits existing skills without making any investment
into learning new skills.

The simplicity of our model allows us to derive the value
of practice analytically for the dilemma of choosing between
exploiting a mastered skill and attempting to learn a new skill
that would make you more effective. When the value of com-
pleting the task is g, the mastered skill achieves it in d time
steps, and the to be learned skill could achieve it in 1 time
step, then the value of practicing the second skill is

VOP((k2,d),a2) =
1
k2
· [(g− 1) + γ ·V ?(((1,1),d))]

+

(
1− 1

k2

)
· [γ ·V ?((1,k2 − 1),d)− 1]

−V πstop learning (((1,k2),d)) ,
(3)

and the value of ceasing to learn and exploiting Skill 1 is

(4)V πstop learning ((s,d)) = g · γd−1

1− γd −
1

1− γ
,

where γd−1

1−γd is the expected number of times one can complete

the task using only Skill 1, and − 1
1−γ

is the expected cumu-
lative cost of using the skill. This allows us to characterize
under which conditions it is valuable to invest in learning a
new skill and under which conditions it is better to exploit the
skills one already has.

As shown in Figure 1, we found that the value of prac-
tice decreases with the relative effectiveness of the skill one
has already mastered ( d2

d1
= 1

d if d1 and d2 are the number
of time steps it takes to complete the task with Skill 1 vs.
Skill 2 respectively in this example), but increases with the
expected number of times one will have to perform the task
in the future (i.e., 1

1−γ
). This means that learning a new skill
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Figure 1: The value of practice. Each square of this heat map
shows the difference between the value of attempting to learn
a new skill versus exploiting an old skill (colors and numbers)
depending on relative efficacy of the old skill (x-axis) and the
expected number of occasions on which either skill could be
used (y-axis; increasing from top to bottom).

becomes more valuable the more often it might be useful in
the future and becomes less worthwhile the more effective
the skill is that one has already mastered. By quantifying
these effects, the value of practice reveals under which con-
ditions it is worthwhile to learn something new (green-blue)
and under which conditions it is better to stick with what one
already knows (orange-red). Since the recommendations of
our mathematical framework appear to be intuitively correct,
we proceed to apply our model of the value of practice to au-
tomatically incentivize people’s study choices. Furthermore,
future work might leverage Equations 2–4 to assist people
with decisions about their personal or professional develop-
ment.

An optimal gamification method for
incentivizing skill acquisition

Optimal brain points. Having quantified the value of prac-
tice with the skill acquisition MDP defined above, we can
now use it to incentivize learning behaviors according to their
expected contributions to the learner’s competency. Formally,
the expected increase in the value of the learner’s skill set s
achieved by action a is

∆V (st,a) = γ ·E[V ∗(St+1)|st,a]−V ∗(st),

where the random variable St+1 denotes the learner’s skill set
after performing action a and V ? is the optimal value function
of the skill acquisition MDP defined above. The discount
factor γ accounts for the possibility that the practiced skill
might become obsolete.

The value of learning by doing is twofold: it increases the
value of the learner’s skill set (∆V ) and it produces potentially
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valuable outcomes (r(st,a)). Our optimal brain points capture
both sources of value, that is

BrainPoints(s,a) = ∆V (s,a)+ r(s,a). (5)

The way in which optimal brain points are constructed is
a direct application of the optimal gamification method de-
veloped by Lieder et al. (2019). It satisfies the necessary
and sufficient conditions of the shaping theorem (Ng, Harada,
& Russell, 1999) which thereby guarantees that the resulting
incentives do not encourage sub-optimal learning strategies.
Rather, by using the value of the learner’s skill set (V ?) as the
basis for constructing the brain points, they are making op-
timal study choices immediately rewarding. We predict that
they should therefore help learners overcome the present bias
and invest more in acquiring difficult skills that will benefit
them in the future. In the next section, we test this hypothesis
with a simple behavioral experiment.

Optimal brain points improve learning and
performance

To evaluate the potential of our approach to help people
overcome the motivational obstacles to learning new skills,
we conducted an online experiment where people repeatedly
solve a task and can choose to either solve it using a skill
that they already possess (Skill 1) or try to learn a new skill
that, once mastered, would allow them to solve the task more
efficiently (Skill 2). The experimental group received opti-
mal brain points for their choices between exploiting Skill 1
versus attempting to learn Skill 2 whereas the control con-
dition received no brain points. We predicted that a) most
participants in the control condition would neglect investing
the time and effort necessary to acquire the new skill – even
if their investment in learning would pay off in the long run,
and b) that optimal brain points can help them overcome this
irrational bias.

Methods
We ran our experiment using psiTurk (Gureckis et al., 2016).
We recruited a total of 450 participants from Amazon Me-
chanical Turk between 15:30 EST and 18:30 EST on January
19, 2019, and we restricted the worker region to the United
States of America. Participants received $0.75 for about 6±2
minutes of work and could earn a bonus of up to $1 (average
bonus $0.10, standard deviation $0.10) for their performance
in the task. Of our 450 participants, 226 were assigned to the
control condition and 224 were assigned to the experimen-
tal condition with optimal brain points according to psiTurk’s
counterbalancing method.

Experimental paradigm. We created the Spaceship Ad-
venture game shown in Figure 2 and used it to evaluate the
efficacy of optimal brain points. The game world is a board
with 6× 6 cells. The task for the participants is to control
the spaceship so as to move from its initial position (0, 0)

Figure 2: Screenshot of the spaceship game.

to its destination (5, 5). Participants play the game for sev-
eral rounds. After each time they arrive at the destination, the
game board is reset and the spaceship is returned to its initial
position.

The instructions inform participants that they will be play-
ing the game for multiple rounds. Participants are also in-
formed that there are two modes of moving the spaceship:
The spaceship can be moved one step at a time whereas an
unknown letter key could be used to teleport the spaceship di-
rectly to its final destination. Each step (using the arrow keys
or trying out a new letter key) incurs a cost of −1, whereas
reaching the destination earns a reward of +20. Following
each round there was a 6% chance that the game would end
and a 94% chance that it would continue (i.e., γ = 0.94) and
participants were informed about that.. The two skills in-
volved in the game are using the arrow key to move the space-
ship forward one square at a time (Skill 1) and teleporting
the spaceship directly to the destination using one of the 26
letter keys (Skill 2). For each participant the letter key that
would teleport their spaceship was independently selected at
random before they started their first round and remained the
same until the end of their last round.

In the control condition, the only points being shown were
the cost of controlling the spaceship and the reward for reach-
ing the goal. In the experimental condition, participants ad-
ditionally received the optimal brain points described above.
Brain points were given for each of the participant’s choices
between exploiting Skill 1 versus attempting to learn Skill
2. As illustrated in Figure 3, brain points were conveyed
using a color-coded score that was accompanied by the im-
age of a brain. The first time, the participant received brain
points, those were explained as conveying the value of learn-
ing a new skill. To make the brain points more rewarding, a
pleasant crystal sound, which is often used to convey a sense
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Figure 3: Screenshot illustrating the brain points a participant
would receive for trying Skill 2 in the first step.

of enlightenment when the players find something valuable
in a video game, was played when the number of brain points
increased, whereas an unpleasant sound, which could be intu-
itively perceived as something shrinking, was played when it
decreased. Additionally, in both conditions a cheerful sound
is played when the spaceship reaches its destination. The
brain points score was cumulative as is customary in com-
puter games.

Our code, the experiment, and the data are available on the
Open Science Framework at https://osf.io/k6wjp/.

Results
As predicted, we found that, when left to their own devices,
42% of the participants never even tried to learn Skill 2 and
relied exclusively on Skill 1, although learning Skill 2 could
have allowed them to reap higher rewards; that is always
attempting Skill 2 would have yielded 154 points on aver-
age whereas always exploiting Skill 1 yielded only 8 points
on average. This highlights that while there are some sit-
uations where people adequately invest into exploring new
things (Wilson, Geana, White, Ludvig, & Cohen, 2014), the
choice between solving a recurring task with a skill one has
already mastered versus using trial-and-error to learn a new
skill to be able to handle future occurrences of the task more
efficiently might not be one of them for many people.

Encouragingly, we found that optimal brain points signif-
icantly increased the proportion of people who attempted to
learn the difficult skill (i.e., teleportation, henceforth “Skill
2”) from 32% to 46% of participants who had not already
tried it in the first step (χ2(1) = 5.74, p = .0165)1.

As illustrated in Figure 4, optimal brain points also in-
creased the amount of effort people invested into acquiring

1We excluded the first action from this analysis because the con-
ditions are identical up until the first feedback is displayed after the
participant’s first action.
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Figure 4: Effect of brain points on practice, learning, and
performance. The left bar chart shows the average number of
times that people who tried to teleport (skill 2) at least once
attempted to figure out how it works until they discovered it
or gave up. The middle bar chart shows the proportion of
participants in either condition who succeeded to learn skill 2
by discovering which letter key would teleport their spaceship
to its target location (“Mastery”). The right bar chart shows
the average total score by condition. The error bars represent
the standard error of the mean for the bar charts on Practice
and Performance and the standard error of the proportion for
the Mastery bar chart.

Skill 2 from 2.8 to 3.9 attempts on average (t(448) = 2.52,
p = .006; the median number of attempts were 1 and 2 re-
spectively, Z = 2.59, p = .0048). Furthermore, our optimal
brain points also made the people who tried learning Skill
2 at least once more persistent, doubling their median num-
ber of additional attempts at learning Skill 2 from 2 to 4
(Z = 2.49, p = .0064; 4.1 vs. 5.3 on average, t(448) = 1.86,
p = .0323). As a consequence, the proportion of partic-
ipants who mastered Skill 2 increased from 15% to 24%
(χ2(1) = 3.77, p = .0523), and their average total score dou-
bled from 24 points to 48 points (t(448) = 1.74, p = .0414).

These findings suggest that optimal brain points success-
fully motivated our participants to learn the more difficult
skill and thereby improved their learning outcomes and per-
formance.

Conclusion
We derived the expected value of attempting to learn a new
skill and translated it into an optimal feedback mechanism
for encouraging students to persist in learning valuable skills.
Our results suggest that optimal brain points could be useful
for helping people overcome the motivational obstacles to-
wards life-long learning. Its basic idea is to reward people’s
efforts to learn a new skill according to the long-term value
of having mastered it and the expected progress towards mas-
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tery.
Our principled computational method for incentivizing

learning might become part of the theoretical foundation for
the gamification of digital learning environments such as
MOOCs or educational games. We hope that the approach il-
lustrated in this article will eventually help people overcome
the motivational obstacles that stand in the way of life-long
self-directed learning.

Our admittedly simplistic experiment was merely the first
step towards evaluating the potential of optimal brain points
for increasing student effort. Follow-up experiments should
use more naturalistic skill acquisition paradigms and evaluate
the proposed feedback mechanism against simpler, heuris-
tic approaches to the gamification of learning environments
(Huang & Soman, 2013; Dicheva et al., 2015; Kapp, 2012;
O’Rourke et al., 2014). Before we can make any practi-
cal recommendations randomized field experiments will have
to evaluate our intervention with real students learning real
skills.

Future work will evaluate the practical utility of our op-
timal feedback mechanisms for increasing the student reten-
tion rates of MOOCs, encouraging students to use educational
games and intelligent tutoring systems more effectively, and
building apps that facilitate deliberate practice. These appli-
cations may use our method as it is or refine its model of skill
acquisition with domain-specific learner models.

While there is a lot of value in being able to motivate stu-
dents to practice a specific skill inside a digital learning en-
vironment, it would be even more valuable if we could help
them internalize the value of learning new skills. Future work
will therefore investigate whether giving people optimal brain
points for their efforts to learn a new skill in one environment
can also improve their motivation to learn other skills in dif-
ferent environments and help them develop a growth mindset
(Dweck, 2008).

References

Baker, R. S., Corbett, A. T., & Koedinger, K. R. (2004). De-
tecting student misuse of intelligent tutoring systems. In In-
ternational conference on intelligent tutoring systems (pp.
531–540).

Baker, R. S., Walonoski, J., Heffernan, N., Roll, I., Corbett,
A., & Koedinger, K. (2008). Why students engage in
gaming the system behavior in interactive learning envi-
ronments. Journal of Interactive Learning Research, 19(2),
185–224.

Dicheva, D., Dichev, C., Agre, G., & Angelova, G. (2015).
Gamification in education: A systematic mapping study.
Journal of Educational Technology & Society, 18(3).

Dweck, C. S. (2008). Mindset: The new psychology of suc-
cess. Random House Digital, Inc.

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993).
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