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Abstract

Mitochondria are vital organelles with distinct morphological features and functional properties. 

The dynamic network of mitochondria undergoes structural and functional adaptations in response 

to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display 

wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity 

supports unique subcellular functions and is crucial to polarized cells, such as neurons. The 

spatiotemporal metabolic burden within the complex shape of a neuron requires precisely 

localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts 

of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial 

heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their 

significance to many other cell types. Here, we put forth an outline of the multifaceted role of 

mitochondria in regulating neuronal physiology and cellular functions more broadly.

Mitochondria orchestrate diverse metabolic and stress-response pathways in cells. The 

function of mitochondria is not limited to adenosine triphosphate (ATP) synthesis through 

oxidative phosphorylation. They also play a central role in Ca2+ storage, the initiation of cell 

death, and the synthesis of biomolecules, including haeme compounds1, neurotransmitters2, 

and hormones3. Therefore, it is not surprising that mitochondrial dysfunction is associated 
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with a spectrum of diseases, ranging from inborn metabolic errors to age-dependent 

neurodegeneration, among others.

Originally perceived as singular and stationary structures, mitochondria form highly 

dynamic networks in many cell types4. Although mitochondrial organization and 

spatiotemporal energy levels have mostly been studied in large polarized cells such as 

neurons (which are up to a metre long in humans)5,6, it has long been assumed that, 

in a typical cell (ranging from 25–75 μm), the intracellular functions of mitochondria 

are homogeneous. However, recently it has been demonstrated that the positioning of 

mitochondria regulates local energy gradients and heterogenous metabolic functions, even in 

smaller cells7,8.

Mitochondria exhibit remarkable morphological and functional plasticity in a neuron, which 

allows them to meet local metabolic demands. Neurons are composed of exceptionally 

polarized long axons and dendritic processes. This complex neuronal geometry allows 

each neuron to contain anywhere from hundreds to hundreds of thousands of synapses 

(Box 1). The spatiotemporally distinctive energy landscape shapes many functional 

aspects of a neuron, from action-potential firing to synaptic-vesicle recycling at the 

synapses. The heterogeneity of mitochondria makes them well suited to unique subcellular 

neuronal functions. Considering that cellular polarity is an essential feature within a 

tissue, mechanisms identified in neurons for fine-tuning local mitochondria and regulating 

their diversity could be fundamental to many cell types. Here, we will discuss cellular 

mitochondrial heterogeneity and homeostasis mechanisms, with a special focus on 

mitochondria in neurons. We will explore how neurons control mitochondrial properties 

to maximize their functional output in specialized subcellular compartments, illuminate the 

pleiotropic role of mitochondria in neurological diseases, and present our forwards-looking 

view on the field for mitochondrial biologists and neuroscientists.

Matching mitochondrial functions to cellular needs

Mitochondria have the capacity to maintain functionally, metabolically, and morphologically 

distinct subpopulations, largely determined by their motility and fission-and-fusion rate9. 

Mitochondrial distribution in cells is achieved by motor and adapter proteins that move 

mitochondria along cytoskeletal tracks. In many cells, such as neurons, fibroblasts, and 

pancreatic cells, mitochondria undergo directional transport on microtubules or actin 

filaments4. For example, in neuronal axons, mitochondria move along microtubules from 

the cell body to reach the distal synapses, with instant energy requirements (Fig. 1a)10–14. In 

contrast, in other cell types, such as cardiomyocytes and skeletal muscle cells, mitochondria 

form an organized and stable network (Fig. 1b), aligning with myofibrils to provide an 

extended local energy reserve for muscle contraction4. In some cells, such as fibroblasts and 

lymphocytes, mitochondrial distribution is relatively even (Fig. 1c,d); however, their motility 

and morphology can shift during cell activation or metabolic adaptation15,16.

The mitochondrial proteome displays a great level of heterogeneity across heart, fat, liver, 

pancreas, muscle, and brain tissues, which implies profound functional consequences17. 

In the context of the brain, where cellular diversity is extremely complex, the emerging 
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question is how specific cell classes regulate mitochondrial functions on the basis of their 

unique metabolic needs. Neuronal mitochondria have distinct protein composition, lipid 

metabolism, Ca2+ buffering properties, and inter-organellar interactions18,19. Although little 

is known about the precise role of cell-type-specific mitochondrial heterogeneity in the 

brain, preservation of mitochondrial functions in neurons under certain circumstances may 

require neuron-supporting cells, such as astrocytes and oligodendrocytes. For example, 

during intense synaptic transmission or glucose deprivation, mitochondria in glia may play 

a supportive role for neuronal metabolism20,21. Overall, metabolic coordination between 

neurons and other cell types is critical for sustaining brain energy homeostasis.

In a neuron, mitochondria form an extensively connected and dynamic network in the 

somatodendritic area and are mostly in a singular state in the axon (Fig. 1a). Mitochondria 

clustered at the synapses constitute a discrete pool from their non-synaptic counterparts, 

exhibiting distinguishable morphological22,23, proteomic22,24, enzymatic22,25, and Ca2+ 

handling characteristics26, and increased vulnerability to oxidative damage24,27. These 

unique features are likely determined by the activity in the synaptic microenvironment. 

Synaptic activity results in high Ca2+ influxes and demands instant ATP supply. The 

synaptic mitochondrial pool may have adapted its ability to buffer Ca2+ and oxidants to 

better support neuronal functions. In other cells, such as adipocytes and striated muscles, 

lipid-droplet-associated mitochondria (LDM) are physically segregated from cytoplasmic 

mitochondria (Fig. 1e) and display distinct proteomic and metabolic properties9. For 

example, in brown adipose tissue, LDM have a lessened ability to oxidize fatty acids. 

These mitochondria are dissociated from lipid droplets upon cold exposure when fatty 

acids are oxidized to generate heat, indicating a specialized role for LDM in lipid storage 

rather than oxidation9. Understanding the significance of mitochondrial heterogeneity and its 

contribution to cellular energy homeostasis will not only help us uncover the bioenergetic 

regulation of organismal fitness, but also provide clues to disease mechanisms. We will 

next discuss lessons learnt from neurons, because of their unique reliance on mitochondrial 

diversity.

The coupling between brain energy metabolism and neuronal activity

Neurons consume ~15% of the body’s resting energy to sustain action potential, 

neurotransmitter release, cytoskeletal dynamics, and gene expression11. Despite the large 

energy demands, neurons do not store energy, but rather instantly and locally synthesize it 

in the form of ATP12. Therefore, it is not surprising that metabolic insults, including acute 

episodes of ischaemia, mitochondrial poisons, or hypoglycaemia, cause a rapid decline in 

nervous-system function. Even minor disruptions of neuronal energy homeostasis, which 

sometimes occur in neurodegenerative diseases, can restrict the information-processing 

power of the brain.

The central nervous system stores a minimal amount of glucose yet relies almost 

completely on this substrate for energy generation28,29. The network architecture of brain 

microvasculature and astroglial perivascular end feet tightly couples glucose- and oxygen-

flux rates with neuronal activity to minimize energy constraints29. Astrocytes contain small 

amounts of glycogen that could be converted to glucose under a nutrient shortage. In the 
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resting brain, glycolysis and oxidative phosphorylation rates match glucose and oxygen 

consumption. Brain stimulation causes transient uncoupling between them, which indicates 

the utilization of glucose through aerobic glycolysis. This disassociation is attributed to the 

compartmentalization of glycolysis and oxidative phosphorylation in different cell types in 

the brain. The astrocyte-to-neuron lactate shuttle (ANLS) hypothesis proposes that neuronal 

activity increases glycolysis specifically in astrocytes, which then leads to glucose to lactate 

conversion and the release of lactate that is taken up by neurons for mitochondrial ATP 

production (see reviews discussing the ANLS hypothesis30,31). Recently, the utilization 

of genetically encoded metabolic sensors allowed the ANLS hypothesis to be tested in 

acute brain slices and awake mice, which demonstrated direct glucose uptake by excitatory 

neurons upon stimulation32. However, the ANLS hypothesis and potential use of lactate as 

a fuel have not been studied systematically in other neuron subclasses, including inhibitory 

neurons, or at the neuronal processes.

The ability of neurons to modify or make new synaptic connections for memory formation 

requires a continuous supply of energy12,33. Under conditions of nutrient deprivation, 

neurons restrict energy use, which in turn results in weaker synaptic signalling between 

neurons and reduces precise information processing34. While glucose is the major fuel 

for neurons, ketone bodies and lactate could also be used for energy generation to 

adapt to glucose-starvation conditions and other anabolic pathways20,35–37. Notably, recent 

metabolite-tracing analysis in mammalian tissues argues that, even under starvation, the 

brain uses glucose as the preferred fuel for mitochondrial ATP production, synthesized 

from glycerol38. At the cellular level, neuronal mitochondria encompass a mechanism to 

sense glucose availability39,40. However, how neuronal mitochondria can tailor functional 

properties for alternative fuel use requires further investigation. Molecular mechanisms 

coupling nutrient flux, neuronal activity, and metabolism to sustain the immediate energy 

need, as well as the predicted future one, remain to be resolved.

Neuronal activity shapes synaptic energy metabolism

Neurons heavily rely on mitochondrial oxidative phosphorylation to meet their instant 

energy demands10,11. Therefore, in contrast to many cell types, neurons have evolved to 

master altering mitochondrial functions by rapidly promoting mitochondrial plasticity in 

response to neuronal activity. For maintaining energy homeostasis and neuronal functions, 

the precise axonal and dendritic distribution of mitochondria is essential41–46.

Mitochondrial biogenesis peaks during axon growth and synaptogenesis in developing 

neurons47 and regulates synaptogenesis48. As neurons mature, metabolism shifts from 

glycolysis to oxidative phosphorylation47,49. Selective immobilization of mitochondria 

is important for the extension and branching of neuronal axons and dendrites50–53. In 

fully developed neurons, approximately 50% of axonal mitochondria are located at the 

synapses54 (Fig. 2). Although not all synapses contain mitochondria, the presence of 

mitochondria at the presynaptic terminals increases synaptic longevity54,55. At the resting 

state, maintenance of the neurotransmitter-filled synaptic-vesicle pool consumes a major part 

of basal presynaptic energy56. Perhaps this is why neurons still contain a large number of 

synaptic mitochondria when synaptic-vesicle release is inhibited57.
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At the postsynaptic site, dendritic spines rarely contain mitochondria in the resting 

state58. However, during synaptic transmission and plasticity, mitochondria may be 

transiently recruited into spines59,60. Mitochondrial network stability14 and fission-and-

fusion dynamics61 are also essential for postsynaptic activity. At both the pre- and post-

synapses, activity-driven mitochondrial positioning, form, and function are matched to 

the subcellular bioenergetic needs of neurons. The mechanisms that direct and retain 

mitochondria at the synapses will be discussed in the following sections.

Overall, it seems that mitochondrial energy metabolism is preferred under the basal state, 

while both glycolysis and oxidative phosphorylation are important to support ‘on demand’ 

ATP synthesis during synaptic transmission or plasticity12,19,28,32. Starting from glucose 

uptake to ATP production by mitochondria, multiple metabolic enzymes work together 

within the complex geometry of neurons. As a result of hundreds of interconnected 

reactions, nutrients are converted to energy and building blocks.

The inhomogeneous distribution of glucose transporters in vivo and in cultured neurons 

suggests that both the glucose supply and the enzymes of the pathway may be 

heterogeneously regulated28. Glycolytic enzymes and mitochondria can be shuffled to 

respond to nutrient fluxes and energy demands (Fig. 2b). Neuronal activity translocates 

glucose transporters to the presynaptic plasma membrane28. In addition, glycolytic enzymes 

colocalize to form metabolic pockets under stress at the presynaptic boutons62,63. This 

enhances local glucose influxes and promotes glycolysis at the energetically demanding pre-

synapses. Increased glucose uptake and the compartmentalization of glycolysis, combined 

with the glucose-flux-dependent capture of mitochondria39,40,64, might improve local 

metabolic efficiency, although these mechanisms were mostly investigated at the presynaptic 

regions.

The delivery and distribution of synaptic mitochondria Microtubule-based 

mitochondrial transport.

During neural development, a neuron grows extensive protrusions (neurites) from its cell 

body to form synaptic contacts with other neurons. Essential cargos for neurite and synaptic 

growth, including mitochondria, are delivered from the cell body through microtubule-

based, long-range transport65–67. Mitochondria are first loaded onto microtubule motor–

adapter complexes and are then transported out of the cell body, powered by the microtubule 

motors. In axons, microtubules are uniformly aligned, with all plus ends pointing to the 

axonal terminal and minus ends to the cell body; in dendrites, their polarities are mixed 68.

Kinesin motors mediate movement toward the plus ends of microtubules. Out of at least 14 

kinesin families and 45 kinesin genes identified so far in mammals, the kinesin-1 family, 

also known as the conventional kinesin heavy chain (KHC) or KIF5, has been shown 

to be the primary motor for transporting mitochondria69–72. In addition, two members 

of the kinesin-3 family — KIF1Bα and kinesin-like protein 6 (KLP6) — are associated 

with mitochondria73–75. For moving mitochondria toward the minus ends of microtubules, 

cytoplasmic dynein is the universal motor 76.
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Because these motor proteins are shared with other cellular cargos, molecular adapters are 

needed to allow the motors to recognize only mitochondria. To date, a diverse array of 

mitochondrial adapters has been discovered to anchor mitochondria to microtubule motors 

(Fig. 3a), indicating the versatile nature of the regulation under different circumstances. 

The best-characterized motor–adapter complex is the KHC–Milton–Miro complex (Fig. 

3a). Milton (in mammals, TRAK1/Milton-1/OIP106 and TRAK2/Milton-2/GRIF1) is 

localized to mitochondria and interacts directly with KHC77–79. Importantly, kinesin light 

chain (KLC) seems to be dispensable for this complex77. Milton then binds to Miro, 

which has a carboxy-terminal transmembrane (TM) domain that is incorporated into the 

outer mitochondrial membrane (OMM)80,81. The kinesin and dynein complexes seem to 

coordinate with each other’s activities and can reside on the same mitochondrion76,82,83. 

Although these mechanisms have been mostly studied in neurons, they may be shared with 

other cell types that use microtubule-based mitochondrial transport.

Synaptic-activity-mediated mitochondrial positioning.

Once mitochondria reach their final destinations in distal neurites, they are immobilized 

where needed most for supporting synaptic activity. Many mitochondria are unloaded from 

microtubules by increased concentrations of intracellular Ca2+ ions. Neuronal activity raises 

Ca2+ influxes at the synapses. Ca2+ binds to the EF hands of Miro, the mitochondrial adapter 

for both the kinesin and dynein motors (Fig. 3a), leading to conformational changes of 

the KHC–Milton–Miro complex and the dissociation of mitochondria from microtubules 

(Fig. 3b)79,84–87. Hijacking mitochondria in this manner close to synaptic membranes likely 

represents a temporary and local need for mitochondria, not only to rapidly meet the high 

energy demands required to maintain electric firing19 and ion gradients across membranes, 

but also to buffer the burgeoning Ca2+ concentrations. This mechanism allows reversible 

and instantaneous regulation of mitochondrial motility. Once local Ca2+ ions are reduced, 

the KHC–Milton–Miro complex may resume its Ca2+-free conformation and reattach to 

microtubules79,84–87.

The far ends of synaptic terminals, such as dendritic spines and presynaptic boutons, 

are devoid of microtubules but enriched with actin filaments. During intense and 

repeated synaptic firing, mitochondria can be further guided into synapses by actin-

mediated movement88. The actin motor, Myo19, anchors mitochondria to actin filaments 

through Miro (Fig. 3c)89–91. Neuronal membrane depolarization triggers actin-based 

acute translocation of mitochondria into dendritic spines59. The WASP family verprolin 

homologues protein 1 (WAVE1), which regulates actin polymerization, is critical for 

depolarization-induced mitochondrial movement into spines and filipodia and spine 

morphogenesis (Fig. 3c)60. In pre-synaptic boutons, electric activity can capture axonal 

mitochondria onto actin filaments through Myo6 and syntaphilin, triggered by the AMP-

activated protein kinase (AMPK)–p21–activated kinase (PAK) energy signalling pathway13 

(Fig. 3c). These discoveries raise interesting questions that warrant further investigations. 

For example, does each synapse use a different set of myosin motor and adapter proteins to 

attract mitochondria? Or do these molecular players coordinate with each other?
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Mitochondria located inside an active synapse may provide immediate service, yet those 

stationed within a short distance may function as energy reserves13,14. In postsynaptic 

dendrites, mitochondria are spatially confined (less than 30 μm) to local spines by both 

actin and microtubule cytoskeletons to support synaptic plasticity14. Similarly, in axons, 

mitochondria can be docked onto either microtubules through syntaphilin (Fig. 3b) or 

the actin network13,92–94. It is important to note that syntaphilin is an axon-specific 

protein93. Further dissection of neuronal-compartment-specific regulations of the motor–

adapter complexes may illuminate how different populations of mitochondria are tethered 

and stabilized to cytoskeletal networks. How the transient mitochondrial hop-on-and-off 

mechanisms are coordinated at the synapses for different cytoskeletal tracks remains to be 

addressed.

Glucose-mediated mitochondrial localization.

Another key factor affecting activity-driven mitochondrial positioning at the synapses could 

be the fuel itself95,96. Glucose is metabolized to uridine diphosphate N-acetylglucosamine 

(UDP-GlcNAc), which is used for O-GlcNAc modification of Milton with the aid 

of O-linked N-acetylglucosaminyltransferase (OGT)40,97. Then, O-GlcNAcylated–Milton 

associates in the same complex with four and a half LIM domains protein 2 (FHL2), which 

docks mitochondria onto actin filaments39 (Fig. 3d). In this way, mitochondria stay where 

glucose concentrations are higher to maximize their ability to use the fuel.

Notably, only 2–5% of total glucose is converted to UDP-GlcNAc through the hexamine 

biosynthetic pathway (HBP)98. How the catalytic activity of the rate-limiting enzymes for 

O-GlcNAcylation or the HBP flux is regulated by synaptic activity remains unanswered. 

Furthermore, how do mitochondria internally sense low levels of substrates for ATP 

production? When mitochondria need more fuel, there must be an inside-out signal coming 

from the internal mitochondria to either initiate movement to seek the fuel or have the 

fuel locally delivered. Once in the region enriched with glucose, mitochondria may be 

further immobilized by molecular mechanisms, such as FHL2-mediated docking (Fig. 

3d). Although glucose is the main fuel for neurons, whether other fuel sources affect 

mitochondrial positioning is an important question to answer because it may provide 

mechanisms unique to glucose deprivation.

Additional regulators of mitochondrial motility.

The discoveries to date are probably only skimming the surface. A growing list of 

regulatory signals that could affect synaptic mitochondrial distribution has emerged, 

and their links to synaptic activity warrant further investigations. For example, hypoxia 

upregulated mitochondrial movement regulator (HUMMR) interacts with the KHC–Milton–

Miro complex and regulates mitochondrial transport and distribution99. HUMMR is induced 

by hypoxia-inducible factor 1α and may enable mitochondrial entry into the distal part of 

the neurite or synapse during hypoxia. Interestingly, hypoxia also triggers glycolytic enzyme 

compartmentalization at the synapse63. Perhaps co-regulation of glycolytic and oxidative 

ATP synthesis pathways is critical for synaptic energy homeostasis in hypoxia.
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Elevation of intracellular reactive oxygen species (ROS) immobilizes mitochondria in 

both fly and rat neurons through mechanisms potentially involving Miro and Milton100–

102. Nitric oxide (NO) also arrests mitochondrial motility through unknown molecular 

mechanisms103,104. In addition, the ratio of ADP to ATP influences mitochondrial 

positioning in cultured neurons5, which suggests another ‘sensing’ mechanism to attract 

mitochondria into the synapses in response to intense energy consumption. Besides neuronal 

activity and metabolites, neuromodulators can alter mitochondrial properties. Serotonin 

(5-HT) and dopamine (DA) have been shown to change mitochondrial movement in 

hippocampal neurons via the AKT–glycogen synthase kinase 3β pathway65,105. Focal nerve 

growth factor (NGF) stimulation can recruit mitochondria to the area of treatment106,107. 

Chronically, neuronal aging seems to slow mitochondrial motility by downregulating 

microtubule motor activities108,109.

Future studies aimed at deciphering the interplay among different metabolic states, nutrient 

fluxes, neuromodulatory signals, and stressors that impact mitochondrial motility will shed 

more light on the synaptic energy blueprint. One major challenge ahead is how to precisely 

capture and accurately interpret these dynamic mitochondrial behaviours. A cultured 

neuronal system allows unambiguous discerning of neuronal polarities and application of 

various high-resolution live-imaging technologies, whereas an in vivo imaging system has 

the advantage of observing mitochondrial events during development and aging in an intact 

physiological environment.

It should be noted that the procedures to prepare live samples for both systems could cause 

damage to neurons or surrounding tissues, thus triggering signals to alter mitochondrial 

motility. In addition, the durations of imaging experiments, imaging medium compositions, 

neuron subtypes and locations chosen for imaging, and analytical methodologies could all 

make a difference in the final conclusions6. Combining complementary model systems, 

experimental conditions, and data-analysis strategies is key to making unbiased discoveries 

in the field.

Synaptic mitochondrial quality control

If getting mitochondria to the right place already seems to be a strenuous job, the ability of 

neurons to maintain a healthy pool of mitochondria at their far-reaching ends is unparalleled. 

Mitochondrial DNAs lack protection from methylation and are exposed to high levels 

of ROS110. Ca2+ and other ions, neurotransmitters, stressors, and toxins that accumulate 

inside the synapses as a result of neuronal activity, excitotoxicity, and aging make synaptic 

mitochondria prone to damage. Mitochondrial vulnerability is further exacerbated by the 

high energy requirements of neurons. Damaged mitochondria are not only detrimental 

locally at the synapse, but can also trigger systemic immune responses111,112.

How the health of synaptic mitochondria is maintained both at steady state and under stress 

continues to be an important area for future research. A few key questions are of particular 

interest; for example, what type of mitochondrial quality control is implemented locally at 

the synapses, and is it regulated by synaptic activity and plasticity? In addition, how are 
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molecular players for quality control rapidly delivered to a damaged mitochondrion in a 

distal synapse, a long way from the cell body where new proteins are typically produced?

The remote locations of some synapses suggest that local protein translation is crucial 

for quality control6,14. Messenger RNAs may have already been delivered and stocked in 

the distal synapses, and once there is an urgent need for these proteins, translation can 

be initiated. It has been proposed that mRNAs of certain nuclear-encoded mitochondrial 

proteins are attached to the OMM113–116. Rapid local translation can supply newly 

minted mitochondrial proteins to rejuvenate old, damaged ones and maintain functional 

mitochondria117. Local protein supply may also adequately sustain the ubiquitin–proteasome 

system on the mitochondrial surface to remove defective OMM proteins or proteins 

stalled during import, or quickly provide mitochondrial proteases and chaperones to 

clear misfolded or denatured proteins inside the mitochondria (Fig. 4a)118,119. Local 

protein translation could further sustain key protein players that regulate the selective 

removal of faulty mitochondrial parts, including the generation of mitochondria nucleoid-

enriched autophagosome (APs)112, mitochondria-derived vesicles and compartments (MDVs 

and MDCs)120–125, and structures positive for OMM (SPOTs)126 (Fig. 4b), or could 

control mitophagy through which an entire mitochondrion is routed to lysosomes for 

degradation6,116,127–129 (Fig. 4c).

Mitophagy is a type of mitochondria-selective autophagy and can occur in neurons both in 

vitro and in vivo130–133. The same set of autophagy machinery for initiation, expansion, and 

engulfment of damaged organelles127 is employed during mitophagy, although additional 

molecular players are required (Fig. 4c). The best-studied mitophagy pathway is mediated 

by PINK1 and Parkin. Mitochondrial depolarization blocks the mitochondrial import of the 

Ser/Thr kinase PINK1, stabilizing it on the OMM. PINK1 subsequently phosphorylates 

multiple OMM proteins134–137 and adjacent ubiquitin molecules138–140, leading to the 

activation and recruitment of the cytosolic E3 ligase Parkin to the mitochondrial surface141. 

Parkin is further activated by PINK1’s phosphorylation141 and continues to ubiquitinate 

more OMM proteins, escalating the pathway. This feed-forward mechanism causes extensive 

phosphorylation and ubiquitination events on the mitochondrial surface, attracting the 

autophagy machinery142 (Fig. 4c). Mitochondria can also be cleared by PINK1–Parkin-

independent mitophagy pathways6,129, as well as through non-selective macroautophagy127.

Moreover, mitochondria may undergo dynamic fission-and- fusion at the synapses, like in 

most other types of cell, to discard, refresh, or exchange their contents143 (Fig. 4d). Fission-

and-fusion is mediated by mitochondrial membrane proteins: dynamin-related protein 1 

(Drp1) and its receptors for fission, and mitofusin (MFN1 and MFN2) and optic atrophy 1 

(OPA1) for fusion (see a recent review of fission-and-fusion mechanisms144).

In addition to local protein supply, anterograde microtubule-based transport may deliver 

more lysosomes, autophagosomes, or regulatory proteins packaged in vesicles from the cell 

body to support mitochondrial quality-control pathways. Damaged mitochondria could also 

be engulfed by autophagosomes locally at the synaptic terminal and then transported back to 

the soma112,145, or simply spewed out of the synapses to adjacent non-neuronal scavenging 

cells for degradation146,147.
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The diversity of the surveillance mechanisms is well suited to the plasticity of synaptic 

mitochondria and opens a dialogue to address fundamental questions of how a distinct 

type of mitochondrial quality control arises at a unique synapse within an intact neuronal 

circuitry. For example, some MDVs appear under mild oxidative stress and preceding 

mitophagy, which is triggered by prolonged and excessive damage120–122. If both pathways 

were employed at distal neurites, there might be molecular sensors to switch one ‘on’ and 

the other ‘off’.

A recent study has shown that the biogenesis of certain types of MDVs depends on Miro 

for the initial microtubule-dependent protrusion of mitochondrial membranes122 (Fig. 4b). 

By contrast, depolarization-triggered mitophagy requires proteasomal degradation of Miro to 

uncouple mitochondria from microtubules (Fig. 4c)135,148–150. Although Miro could serve 

as a molecular button to switch between these two quality-control pathways, the regulatory 

mechanisms remain to be resolved.

A neuron may need to make a prompt decision when a synaptic mitochondrion is damaged, 

considering all the factors of energetic expenses and metabolic needs, while trying to 

maintain its electric activity. Multi-disciplinary approaches, with scalable biosensors of 

mRNAs, newly synthesized proteins, ROS, metabolites, ATP, and sensitive reporters of 

the MDV, MDC, SPOT, and mitophagy pathways, in combination with super-resolution 

microscopy, individual-synapse stimulation with two-photon uncaging, and conventional 

electrophysiology techniques, will provide an excellent portfolio of tools to tackle these 

questions at a single-synapse resolution both in vivo and in cultured neurons.

Therapeutic potential of targeting synaptic mitochondria

Failure to maintain the synaptic energy blueprint is detrimental to neurons. Energy shortage 

and build-up of Ca2+ and ROS at individual synapses may lead to synaptic loss. The 

progressive loss of synaptic structure and function is an early sign prior to neurite retraction 

and cell death, and a shared signature among many neurodegenerative diseases, such as 

Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson’s disease 

(PD).

Human genetic studies have discovered variants in genes encoding mitochondrial membrane 

proteins that mediate mitochondrial trafficking, dynamics, and adaptation in various 

neurological disorders, such as encephalopathies (DRP1 and TRAK1)151,152, Charcot–

Marie–Tooth disease type 2A (MFN2)153, parkinsonism (OPA1 and MIRO)154–156, and 

autosomal-dominant optic atrophy (OPA1)157. Mutations in PINK1 and PARKIN, whose 

products function in a linear axis to control the MDV120,158 and mitophagy159 pathways 

(Fig. 4b,c), cause early-onset, recessive forms of PD160,161. Moreover, variants in optineurin 

(OPTN) and TBK1, whose products mediate mitophagy (Fig. 4c), are associated with 

ALS162. The robust genetic evidence not only shows that failure to maintain mitochondria is 

a direct cause of neuropathology, rather than a consequence of other neuronal malfunctions, 

but also suggests that targeting these proteins and pathways may be effective for disease 

intervention.
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Many of the neurodegenerative diseases involve age-dependent neuron loss. Mitochondrial 

function declines during brain aging with changes in proteome, lipidome, and 

metabolome108,109,163. Identification of early indicators or predictors of later-onset 

neurodegeneration, even before symptoms occur, will be especially valuable for early 

intervention to improve treatment efficacy. Changes in synaptic mitochondrial behaviours 

are very likely among the first signs of neuronal calamity and may be reflected at the 

molecular level. A molecular defect in neurons may be conserved in peripheral tissues, 

which could serve as an excellent candidate for biomarker development.

Recent studies have shown that Miro1 is resistant to mitochondrial depolarization-induced 

degradation in PD models, and this phenotype is retained across skin fibroblasts, induced 

pluripotent stem cells (iPSCs), and neurons derived from people with PD148,149,164,165. 

Importantly, although statistically the Miro1 defect is significantly associated with both 

people with PD and asymptomatic genetic carriers of the condition in large-cohort studies, 

it does not occur in every person with the disease or genetic carrier. Prolonged retention of 

Miro1 causes a delay in arresting and clearing damaged mitochondria, which then leads to 

oxidative stress and ultimately cell death of PD neurons109,148–150. Continued endeavours 

to search for molecular events that can mark the prodromal or early stage of a disease in a 

clinically accessible tissue (blood or skin) will enable more accurate patient stratification, 

improve the success of drug trials, and transform clinical care.

Emerging genetic and functional evidence has highlighted the therapeutic potential of 

targeting mitochondrial quality control to prevent or slow neurodegeneration. Substantial 

academic and industrial explorations of druggable targets to promote mitophagy, such as 

NAD+, Miro1, PINK1, and Parkin, are underway for diseases including PD, AD, and 

tauopathies109,148,149,165–169. Promising mitophagy-inducing compounds include NAD+ 

precursors170, tomatidine171, urolithin A167, actinonin167, kaempferol168, rhapontigenin168, 

Miro1 reducers109,149, and many others169, through diverse mechanisms of action.

It is important to note that the best therapeutic outcomes can be guided only by a 

deeper understanding of the basic molecular principles governing synaptic mitochondrial 

homeostasis, especially in an in vivo setting. Ensuing efforts to strengthen basic scientific 

knowledge and enhance technological innovation will empower more rigorous translational 

research to provide treatment strategies for people with disease.

Closing remarks

The study of mitochondrial heterogeneity and homeostasis mechanisms in neurons is 

significant at many levels. Protein players regulating mitochondrial motility and distribution 

are probably conserved among multiple cell types. Lessons learnt from neurons may 

shed light on similar mechanisms that are crucial for other cell types and on how these 

mechanisms are used for specialized purposes in heterogeneous tissues. For example, 

mitochondria redistribute to the posterior part of lymphocytes during their migration to 

possibly fuel cellular mobility16. Similarly, during the migration and invasion of breast 

cancer cells, mitochondria move to the leading edge of the cell, and blocking this movement 

can compromise the metastatic ability of cancer cells172. Mitochondria can even travel 
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from cell to cell, through nanotubes or vesicles, for a wide range of purposes, from 

supporting mitochondrial functions of recipient cells to relieving stress responses of donor 

cells125,146,147,173–176. Diversity in other molecular components (such as players that 

regulate lipidome, proteome, and stress pathways) could contribute to additional differences 

in mitochondrial functions and physiology required to meet specific cellular demands. These 

molecular mechanisms that confer mitochondrial heterogeneity warrant further investigation.

Many questions are ripe to be answered. Particularly, how are mitochondria immobilized 

in distinct subcellular compartments? What signals dictate mitochondria to permanently 

stay, pause, or move? Does an active synapse prefer to recruit a mitochondrion that is on 

or off microtubules? How do mitochondrial ATP-production pathways work together with 

glycolytic enzymes at the synapses? How is mitochondrial damage cleared or mended at the 

distal synapses?

Further investigations of subcellular domain-specific mechanisms, such as the 

concentrations and dynamics of Ca2+ ions and metabolites, the interactions of the 

resident motor–adapter complexes with actin and microtubule networks, compartmentalized 

metabolic enzymes, and local machinery for protein translation and membrane structure 

formation, might be key to solving these questions. In addition, system-level research on 

the coordination of synaptic mitochondria with neuronal signalling pathways, neuron–glia 

interactions, and local brain vasculature dynamics will reveal the impact of mitochondrial 

adaptations at the organismal level. We are now presented with an unprecedented 

opportunity to divulge how intrinsic and extrinsic cellular instructions integrate to distribute 

and sustain distinct mitochondrial populations. Intervening in these processes provides 

opportunities to promote the health of the cell and the cellular network, such as the nervous 

system, and to fend off cellular pathologies to ameliorate human illnesses.
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Box 1 |

Glossary

Action potential: The rapid rise and subsequent decline in neuronal membrane voltage 

resulting from the opening of ion channels. It propagates along the axon of a neuron 

leading to the spread of electric activity within milliseconds.

Astroglial perivascular end feet: The specialized structure of an astrocyte (a star-shaped 

glia cell found in the nervous system) that ensheaths blood vessels, providing structural 

support and allowing direct metabolite exchange between blood vessels and astrocytes.

Dendritic spine: A small membrane protrusion from the postsynaptic dendrite of a 

neuron that receives presynaptic input from neighbouring axons.

Presynaptic boutons: Specialized swellings at the end (terminaux) or along (en passant) 

the axonal branches, which contain synaptic vesicles filled with neurotransmitters and 

other supporting organelles, where a synapse is formed with another neuron.

Synapse: A specialized structure that allows communication between two neurons, where 

the presynaptic bouton of one neuron comes into close apposition to a postsynaptic 

neuron to pass electrical or chemical signals.

Synaptic plasticity: The activity-dependent alterations of pre-existing synapses to 

modify the strength or efficacy of synaptic transmission.

Synaptic transmission: The process through which a presynaptic neuron communicates 

with a postsynaptic neuron across a synapse.

Synaptic-vesicle recycling: At the presynaptic boutons, synaptic vesicles undergo a 

cycle of exocytosis, release of neurotransmitters, endocytosis, refilling of synaptic 

vesicles with neurotransmitters to sustain the synaptic vesicle pool, and moving to the 

site of exocytosis. This cycle is essential to maintain synaptic transmission.
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Fig. 1 |. Mitochondrial network in different cell types.
The shape and composition of the mitochondrial network are tailored to match cell-type-

specific energy demands. a, In neurons, mitochondria form a long and connected network 

at the somatodendritic region. In contrast, axonal mitochondria occupy a smaller volume 

as discrete units. b, In cardiomyocytes, mitochondria form a dense and perfectly aligned 

network and occupy >30% of the cytoplasmic volume177. c, Mitochondria are largely 

distributed evenly in fibroblasts, forming an interconnected network near the nucleus and 

a smaller motile pool at the cell periphery4. d, In lymphocytes, mitochondria are relatively 

homogeneously distributed in a small cytoplasmic volume. Mitochondrial network and 

size change in response to polarization and activation for metabolic adaptation15,16. e, 

In adipocytes, mitochondria occupy most of the cytoplasmic volume. Subpopulations of 

metabolically specialized mitochondria (grey; LDM) are associated with lipid droplets 

(pink)9.
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Fig. 2 |. Mitochondrial morphology and localization in neurons.
a, A typical neuron, composed of a cell body (soma), dendrites with multiple dendritic 

spines, and an axon with presynaptic boutons. b, Scheme depicting a synapse. Synaptic 

mitochondria locally generate ATP to sustain synaptic activity. The localization of 

mitochondria at the synapses is regulated by microtubule-based long-distance axonal 

transport and actin-based capture mechanisms. In addition to mitochondria, activity-

dependent glucose uptake and local glycolysis enzymes support synaptic ATP synthesis.
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Fig. 3 |. Molecular mechanisms underlying mitochondrial trafficking and positioning.
a, Schematic representation of currently known molecular machineries for microtubule-

based mitochondrial movement. Besides Miro and Milton, several other proteins have 

been found to recruit KHC to mitochondria, which include syntabulin178, fasciculation 

and elongation protein-zeta 1 (FEZ1)179,180, and RAN-binding protein 2 (RANBP2)181. 

Miro, metaxin (a group of OMM proteins), and KLC can form a complex to aid in 

KHC-dependent mitochondrial movement182. Both KIF1Bα and KLP6 can interact with 

KIF1-binding protein (KBP)74, which is essential for mitochondrial localization75,183. Miro–

Milton–dynein acts as the core motor–adapter complex for retrograde movement82,182. 

b, Mechanisms underlying mitochondrial arrest. High Ca2+ influxes as a result of 

synaptic activity dissociate mitochondria from microtubules by changing the conformation 

of the KHC–Milton–Miro complex79,84. In axons, syntaphilin can anchor axonal 

mitochondria onto microtubules close to presynaptic boutons13,92. c, Synaptic activity 

drives mitochondria into presynaptic boutons or postsynaptic spines via actin-mediated 

movement. d, Mitochondria stay where glucose concentrations are higher via Milton–OGT–

FHL2-mediated docking.
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Fig. 4 |. Mitochondrial quality-control pathways.
Future research is needed to unravel which quality-control pathways are implemented at 

individual synapses. a, Misfolded or defective mitochondrial proteins can be repaired or 

cleared by mitochondrial proteases, chaperones, or the ubiquitin–proteasome system. OMM, 

outer mitochondrial membrane. IMM, inner mitochondrial membrane. IMS, intermembrane 

space. b, Piecemeal removal. Mitochondrial stress can be alleviated and damaged 

mitochondrial portions can be removed by the biogenesis of mitochondrial-derived vesicles 

(MDVs) during various stress responses or at steady state120–122,124,125, mitochondrial-

derived compartments (MDCs) under amino acid stress123, structures positive for OMM 

(SPOTs) under protein import or infection stress126, or mitochondrial nucleoid-enriched 

autophagosomes (APs) under the basal condition112. ER, endoplasmic reticulum. c, The 

entire damaged mitochondria can be digested through mitophagy129. The scheme shows one 

mitophagy pathway that is dependent on PINK1 and parkin. d, Mitochondria also undergo 

fission-and-fusion to discard or exchange materials143,144,184. MFF, mitochondrial fission 

factor. Figures adapted with permission from: a, ref. 185, Springer Nature Limited; b, ref. 
186, Cell Press; c, ref. 129, Springer Nature Limited; d, ref. 187, Elsevier.
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