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Non-Hermitian Topological Theory of Finite-Lifetime Quasiparticles:
Prediction of Bulk Fermi Arc Due to Exceptional Point

Vladyslav Kozii1 and Liang Fu1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

We introduce a topological theory to study quasiparticles in interacting and/or disordered many-
body systems, which have a finite lifetime due to inelastic and/or elastic scattering. The one-body
quasiparticle Hamiltonian includes both the Bloch Hamiltonian of band theory and the self-energy
due to interactions, which is non-Hermitian when quasiparticle lifetime is finite. We study the
topology of non-Hermitian quasiparticle Hamiltonians in momentum space, whose energy spectrum
is complex. The interplay of band structure and quasiparticle lifetime is found to have remarkable
consequences in zero- and small-gap systems. In particular, we predict the existence of topological
exceptional point and bulk Fermi arc in Dirac materials with two distinct quasiparticle lifetimes.

The intensive theoretical and experimental study of
topological materials over the past decade has made the
notion of topology an important and useful concept in
condensed matter physics. In a very broad sense, topol-
ogy is concerned with robust properties of the system
that remain unchanged upon perturbations. Since the
pioneering work of Thouless-Kohmoto-Nightingale-den
Nijs [1] on quantum Hall systems, much attention has
been focused on the topological characterization of quan-
tum states of matter at zero temperature. A quantum
state is called topological if its ground state wavefunc-
tion bears a distinctive character that can be captured
by a topological invariant. A recent example of topo-
logical quantum states is topological insulator [2], whose
realization has been found in numerous materials [3].

Despite its enormous success, the current use of topol-
ogy has its limitations in studying quantum many-body
systems at finite temperature. From a conceptual per-
spective, the strict distinction between topological and
trivial insulators is lost at T 6= 0, as the non-analyticity
of free energy in the gap-closing transition at T = 0 is
rounded. Thus topological characterization of T = 0
quantum phases is only useful at temperatures much
smaller than the gap, where the correction to quantized
physical observables such as Hall conductance is small.

Correlated electron systems are known to exhibit a
wide variety of complex phenomena at finite tempera-
ture, even when T = 0 ground states are relatively sim-
ple. The most notable example is the strange metal and
pseudogap phase of cuprates above the superconducting
transition temperature. This motivates us to consider
whether the study of correlated electron systems at finite
temperature may benefit from topology broadly defined,
rather than in the restricted sense of topological quantum
states.

In this Letter, we introduce a topological theory of
finite-lifetime quasiparticles. Finite quasiparticle life-
time is a generic property of realistic quantum many-
body systems, resulting from either inelastic electron-
electron/electron-phonon scattering at T 6= 0, or elas-
tic electron-impurity scattering. We find that the inter-
play of band structure and quasiparticle scattering has re-
markable effects on quasiparticle dispersion and dynam-

ics in zero- or small-gap systems in general. In particular,
we predict that quasiparticle lifetime effect completely
reshapes the low-energy dispersion of Dirac materials,
leading to a topologically protected bulk Fermi arc.

The central object of our theory is the quasiparticle
Hamiltonian H which we define from retarded electron
Green’s function GR,

GR(ω) = (ω −H(k, ω))−1, (1)

H(k, ω) ≡ H0(k) + Σ(k, ω). (2)

where H0(k) is the single-particle Hamiltonian of Bloch
electron in the periodic potential, and Σ(k, ω) is elec-
tron’s self-energy that includes the effect of electron-
electron, electron-phonon and electron-impurity scatter-
ings. Importantly, while the Bloch Hamiltonian H0 is
Hermitian, the self energy Σ is non-Hermitian when
quasiparticle lifetime is finite. Then the quasiparticle
Hamiltonian H(k, ω) is also non-Hermitian and its en-
ergy spectrum En(k, ω) is complex, where n is the band
index.

At a given k, the spectrum of H(k, ω), i.e., En(k, ω),
can have a discrete set of poles ω = zn(k) in electron
Green’s function in the complex frequency plane, such
that En(k, zn) = zn. In the vicinity of a first-order pole,
the Green’s function takes the form GR(k, ω) ∼ 1

ω−zn .

Then the real part of zn(k) defines the quasiparticle en-
ergy dispersion, while its imaginary part gives the quasi-
particle inverse lifetime.

The quasiparticle Hamiltonian H(k, ω) thus provides
a natural generalization of Bloch Hamiltonian H0(k) for
noninteracting electrons, and encodes a wealth of in-
formation about quasiparticles dispersion and dynamics.
The goal of this work is to study the topological property
of H(k, ω) exclusive to its non-Hermitian nature, and to
explore the implication of topology for the behavior of
finite-lifetime quasiparticles.

A fundamental difference between Hermitian and non-
Hermitian Hamiltonians is that the latter can be non-
diagonalizable, i.e., its linearly independent eigenstates
do not span the full Hilbert space. This leads to the pos-
sibility that the quasiparticle Hamiltonian H(k, ω) be-
comes non-diagonalizable at certain momentum, called
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“exceptional points” in the mathematical physics liter-
ature [4]. Interestingly, exceptional points in two and
higher dimensions are topologically stable and charac-
terized by a nontrivial topological index [5]. In recent
years, there has been a growing interest in exceptional
points in open systems [6, 7], for which the Hamiltonian
is intrinsically non-Hermitian due to the coupling with an
external bath. In contrast, here we are interested in inter-
acting or disordered systems, for which the microscopic
many-body Hamiltonian is Hermitian, but the one-body
quasiparticle Hamiltonian H(k, ω) is non-Hermitian due
to the finite quasiparticle lifetime. In the presence of
electron-electron or electron-phonon interaction, a quasi-
particle decays into incoherent multi-particle excitations,
while in the presence of disorder, elastic scattering leads
to a finite lifetime for a quasiparticle of a given momen-
tum.

We now demonstrate the emergence and consequence
of topological exceptional points in the quasiparticle
spectrum of zero- and small-gap materials. Before con-
sidering the general case, we first study a model of Dirac
semimetals in two dimensions, where the Dirac disper-
sion comes from two different orbitals unrelated by sym-
metry. This scenario may be applicable to heavy fermion
systems [8], where the two orbitals correspond to itiner-
ant and localized electrons and the hybridization gap can
have a p-wave form factor leading to Dirac point nodes.

The Bloch Hamiltonian of our two-orbital model is
given by

H0(p) =

(
ε1 + p2

2m1
vypy

vypy ε2 − p2

2m2

)
(3)

where the diagonal part describes the electron- and hole-
like dispersion of the two orbitals, and the off-diagonal
part describes their hybridization. Here we assume the
two orbitals are even and odd under both spatial inver-
sion and the reflection y → −y, respectively. Under this
condition, the hybridization term must be an odd func-
tion of py, and H0(p) must be real due to the presence
of both inversion and time-reversal symmetry.

In our model, a pair of Dirac points appear at opposite
momenta when ε1 < ε2, i.e., the band gap at p = 0 is in-
verted. Linearizing the Hamiltonian H0(p) near a Dirac

point located at p0 = (
√

2m1m2(ε2 − ε1)/(m1 +m2), 0)
yields the low-energy Hamiltonian:

H0(k) =

(
v1kx vyky
vyky −v2kx

)
(4)

with k = p − p0. In general, v1 6= v2 so that the Dirac
cone is tilted in the kx direction. This tilting is unimpor-
tant for this work, and for simplicity we set v1 = v2 = vx
below.

Despite its simplicity, our model is motivated by
general symmetry considerations and applies to several
known materials. The two-orbital Hamiltonian (3) cap-
tures the band inversion between cation d-orbitals and

anion p-orbitals of monolayer transition metal dichalco-
genides in the 1T’ structure, when the small spin-orbit
gap at the Dirac point is neglected [9]. The Dirac Hamil-
tonian (4) also applies to surface states of topological
crystalline insulators (Pb,Sn)Se, where the two orbitals
come primarily from the Pb/Sn and Se atoms respec-
tively [10].

Now consider the general form of electron self-energy
Σ(k, ω) in our model, which may come from electron-
phonon, electron-electron, and/or electron-impurity scat-
tering. Provided that electron interaction does not lead
to spontaneously symmetry breaking, Σ(k, ω) respects
the reflection symmetry as the Dirac Hamiltonian (4)
does, i.e.,

Σ(kx, ky, ω) = σzΣ(kx,−ky, ω)σz, (5)

where σz = ±1 denotes the two orbitals. In general,
Σ(k, ω) is the sum of a Hermitian part Σ′(k, ω) and
an anti-Hermitian part Σ′′(k, ω): Σ = Σ′ + iΣ′′. Σ′

renormalizes the bare band structure given by the Bloch
Hamiltonian (4), while Σ′′ leads to a finite quasiparticle
lifetime, which we shall focus on below.

We are mainly interested in self-energy on quasipar-
ticles near the Dirac point, where its effect is most
prominent. If Σ′′(k, ω) is an analytic function of k,
it can be expanded in powers of k. To leading order,
Σ′′(k, ω) ∼ Σ′′(0, ω) must be a diagonal matrix due to
the reflection symmetry (5)

iΣ′′(k, ω) '
(
iΓ1(ω) 0

0 iΓ2(ω)

)
, (6)

where Γ1,2 is the inverse lifetime of the two orbitals re-
spectively. Since these two orbitals are assumed to be
unrelated, we expect Γ1 6= Γ2 in general. The presence
of two distinct lifetimes will play a crucial role below.

As a concrete example, we study the self-energy due to
electron-phonon scattering, leaving the cases of electron-
electron and electron-impurity scattering to separate
works. The full electron-phonon Hamiltonian of Dirac
semimetal takes the form H = Hel + Hph + Hel-ph.
The first term is the electronic Hamiltonian of low-
energy Dirac fermions at chemical potential µ, Hel =∑

k c
†
k(H0(k) − µ)ck where c†k = (c†1k, c

†
2k) with i = 1, 2

denoting the two orbitals. Hph = ω0

∑
q

(
b†qbq + 1

2

)
de-

scribes dispersionless Einstein phonons at frequency ω0,
where b†q is the phonon creation operator. The electron-
phonon interaction is given by

Hel-ph =
∑
k,q

(λ1c
†
1k+qc1k + λ2c

†
2k+qc2k)φq (7)

where φq = (bq + b†q)/
√

2 is the lattice displacement op-
erator, and λi is the electron-phonon coupling constant
for orbital i.

At weak coupling, we calculate the electron self-energy
to lowest order in λi, and find Σ′′(k, ω) has the exact form
of Eq.(6) with two inverse lifetimes Γi given by
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Γi(ω) =
λ2i

16vxvy

(
|ω0 + µ+ ω|(tanh

ω0 + ω

2T
− coth

ω0

2T
) + |ω0 − µ− ω|(tanh

ω0 − ω
2T

− coth
ω0

2T
)

)
. (8)

E

kx

ky

FIG. 1. Quasiparticle energy dispersion of a two-dimensional
Dirac semimetal reshaped by the two-lifetime self-energy, see
Eq.(10). Instead of touching at the Dirac point, quasiparticle
conduction and valence bands stick on a Fermi arc that ends
at two topological exceptional points.

At small ω, Γi(ω) ' Γi(0) is a nonzero constant at any
T 6= 0, hereafter denoted by Γi. For stronger electron-
phonon coupling, a self-consistent calculation of self-
energy is required. Nonetheless, our analysis below only
relies on a nonzero Σ′′(ω) in the limit of ω → 0, which
we expect to hold in general at finite temperature.

After incorporating the self-energy (6) into the Dirac
Hamiltonian (4), the 2 × 2 quasiparticle Hamiltonian
H(k, ω) = H0(k) + Σ(k, ω) at small ω is given by

H(k) = (vxkx − iγ)σz + vykyσx − iΓ, (9)

with Γ ≡ (Γ1+Γ2)/2 and γ ≡ (Γ1−Γ2)/2. Note that the
self-energy term −iγσz generally does not commute with
the Bloch Hamiltonian. The two quasiparticle bands of
H(k) have a complex-energy dispersion given by

E±(k) = ±
√
v2xk

2
x + v2yk

2
y − γ2 − 2ikxγ − iΓ, (10)

In the single-lifetime limit Γ1 = Γ2 or γ = 0, the real
part of E±(k), i.e., the quasiparticle energy, simply gives

the Dirac dispersion E±(k) = ±
√
v2xk

2
x + v2yk

2
y, while the

imaginary part −iΓ is simply a constant inverse lifetime
for all states.

When the two lifetimes are unequal, i.e., γ 6= 0, E(k) in
Eq.(10) is generally complex. The quasiparticle energy-
momentum relation given by Re[E±(k)], plotted in Fig.1,
is dramatically different from the original Dirac disper-
sion at low energy. Instead of a single Dirac point at
k = 0, the quasiparticle conduction and valence bands
touch on a line on the ky axis, where the dispersion is

E±(0, ky) = ±
√
v2yk

2
y − γ2 − iΓ (11)

For |ky| ≤ γ/vy ≡ k0, the real parts of both E+ and E−
are zero, leading to a line of band degeneracy that ends at

two special momenta (0,±k0) ≡ ±K, which constitutes a
bulk Fermi arc as we discuss in detail later. For |ky| > k0,
a quasiparticle band gap ∆ = Re(E+)−Re(E−) opens up.
Near the end of the degeneracy line, the gap goes as

∆(0, ky) = 2
√

2vyγ(|ky| − k0), |ky| > k0 (12)

rising up faster than near any degeneracy point in Her-
mitian band structures.

At the two end points, the quasiparticle Hamiltonian
H(±K) is non-diagonalizable, as the 2 × 2 matrix is
defective—it only has a single eigenstate ψ±K = (1,±i)T
with a purely imaginary eigenvalue −iΓ. Near such a de-
fective point ±K = (0,±k0), the spectrum of H(±K+q)
is a double-valued holomorphic function of qx ± iqy:

E(±K + q) '
√

2γ(−ivxqx ± vyqy)− iΓ, (13)

such that the two complex-energy bands are inseparable
and form the Riemann surface for the square root.

Defective points with a square-root type spectrum (13)
in the vicinity, are called exceptional points in band
theory of non-Hermitian Hamiltonians [5]. Exceptional
points are topologically stable and can only be created
or annihilated in pairs. Their topological nature can
be understood from the complex spectra of H(k). As
k moves around a closed path enclosing an exceptional
point, the two distinct eigenvalues E+(k) and E−(k) be-
come swapped due to the square root singularity in (10),
i.e., E+ → E−, E− → E+. This eigenvalue swapping de-
fines a half-integer topological charge ν = ± 1

2 associated
with each exceptional point.

The swapping of complex eigenvalues E+ and E−
around an exceptional point dictates that the real parts
of E+ and E−, or the quasiparticle energies of conduc-
tion and valence bands, must coincide at some k on any
closed path enclosing an exceptional point. Therefore,
every exceptional point is the end of a bulk Fermi arc
where the quasiparticle bands are degenerate.

In our model, for any γ 6= 0 or equivalently Γ1 6= Γ2,
the original Dirac point splits into two exceptional points
with opposite topological charges, which move further
apart as γ increases. The two exceptional points are con-
nected by a band degeneracy line shown earlier. Since
the inverse lifetimes due to electron-phonon interaction
increases with temperature, the locations of exceptional
points in k space and hence the length of the bulk Fermi
arc are temperature dependent.

The presence of exceptional points also leads to a sin-
gular momentum dependence of quasiparticle lifetime,
defined by the inverse of the imaginary part of E±(k).
Across the Fermi arc, the quasiparticle lifetime of a given
band has a discontinuous jump. This results from an
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FIG. 2. Upper: color intensity map of spectral function
A(k, ω) in the kx − ω (left) and ky − ω (right) plane, show-
ing that quasiparticle conduction and valence bands cross at
kx = 0 along the kx axis, but stick over a range of momenta
along the ky axis. Lower: A(k, ω) as a function of ω for a set
of momenta on the kx (left) and ky (right) axis, including two
exceptional points (in red).

abrupt change of quasiparticle wavefunction across the
Fermi arc.

The topological nature of exceptional point does not
rely on any symmetry, which makes it robust against
all perturbations. Our model has shown that excep-
tional points appear in a zero-gap Dirac semimetal for
any γ 6= 0. We now show that exceptional points and the
concomitant bulk Fermi arcs are expected to be present
in small-gap systems under broad conditions. This can be
understood by considering the general form of the quasi-
particle Hamiltonian H(k, ω = 0) with two bands. It is
convenient to express H(k, ω = 0) as a 2 × 2 matrix in
the basis where the self energy Σ′′(k, ω = 0) is diagonal:

H(k, ω = 0) =

(
ε1k − iΓ1k ∆k

∆∗k ε2k − iΓ2k

)
. (14)

The condition for exceptional point is then given by:

ε1K = ε2K, |∆K| = |Γ1K − Γ2K|/2. (15)

The above two equations can be satisfied at isolated
momenta in two-dimensional k space, and at lines of
momenta in three-dimensions. Indeed, a general phase
diagram of Dirac Hamiltonian with both Dirac mass
and two-lifetimes consists of an extended region of ex-
ceptional points [5]. We thus expect that exceptional
points are generally present in the spectra of finite-
lifetime quasiparticles in two- and three-dimensional sys-
tems whose band gap is small or comparable to inverse
lifetimes.

FIG. 3. Color intensity map of spectral function in k space
at constant energy ω, showing the bulk Fermi arc at ω =
0 (middle) and Fermi surfaces with kx-asymmetric spectral
weight at ω < 0 (left) and ω > 0 (right).

The unusual Fermi arc due to self-energy with two
lifetimes can be directly probed by angle-resolved pho-
toemission spectroscopy (ARPES), which measures elec-
tron spectral function A(k, ω) = −ImTr(GR−GA), with
GA ≡ (GR)†. It is straightforward to show that in our
model,

A(k, ω) = −2Im(
1

ω − E+(k)
+

1

ω − E−(k)
) (16)

is a sum of two Lorentzians centered at the quasipar-
ticle energy Re[E±(k)], whose height and width are de-
termined by the inverse lifetime Im[E±(k)]. For Γ1 6=
Γ2, along the kx axis two bands with different spectral
weights cross at kx = 0, while a line of band degener-
acy appears on the ky axis. This directly demonstrates
that the original Dirac band spreads into a bulk Fermi
arc, which owes its existence to topological exceptional
points.

In addition to creating the Fermi arc at ω = 0, the
orbital-dependent lifetime also qualitatively changes the
spectral function of Dirac semimetals at ω 6= 0. Fig.3
shows an intensity map of spectral function at constant
ω in momentum space. We find that for ω 6= 0, A(k, ω)
at kx and −kx is asymmetric, such that one side of the
Fermi surface is brighter than the other. Moreover, this
asymmetry is opposite for energies above and below the
Fermi arc. This unusual feature results from the different
lifetimes of Dirac quasiparticles at kx and −kx having
different orbital characters.

To locate the exceptional point requires a more de-
tailed analysis of the lineshape of the spectral func-
tion. At the exceptional point, due to the coalescence
of eigenvalues E+ = E−, the spectral function is a single
Lorentzian with a width of Γ = (Γ1 + Γ2)/2. In Fig.2,
we plot linecuts of A(k, ω) at two sets of momenta on
the kx and ky axis respectively, including the exceptional
points ±K = (0,±k0). While the Fermi arc defined in
terms of the quasiparticle energy Re[E+] = Re[E−] ends
at the exceptional points, the change of spectral function
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on the ky axis from having a single peak to two peaks oc-
curs at a momentum k∗y beyond the exceptional points,
i.e., |k∗y | > k0, because two Lorentzians merge into a sin-
gle peak when the broadening is larger than the peak
separation.

To summarize, our work reveals the dramatic feed-
back effect of quasiparticle lifetime on quasiparticle en-
ergy dispersion in zero- and small-gap semiconductors,
including the emergence of topological exceptional points
that result in bulk Fermi arcs. The unusual dispersion
of these “exceptional quasiparticles” can be directly ob-
served by momentum-resolved spectroscopy. They also
have strong impact on thermodynamic and transport
properties, which we will present elsewhere [11]. The
essential role of self-energy calls for advanced numerical
method such as dynamical mean field theory [12] to study
and possibly predict real materials that host topological
quasiparticles.

Our work shows the usefulness of topology in study-

ing quasiparticles at finite temperature, even when the
concept of topological phases cannot be defined. We
hope the transition from topology of quantum phases to
topology of finite-lifetime quasiparticles brings new in-
sight into and a unified understanding of a variety of
many-body systems.
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