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ABSTRACT: We summarize our knowledge of the phase behavior of polymer
solutions and blends using a unified approach. We begin with a derivation of the
Flory−Huggins expression for the Gibbs free energy of mixing two chemically dissimilar
polymers. The Gibbs free energy of mixing of polymer solutions is obtained as a special
case. These expressions are used to interpret observed phase behavior of polymer
solutions and blends. Temperature- and pressure-dependent phase diagrams are used to
determine the Flory−Huggins interaction parameter, χ. We also discuss an alternative
approach for measuring χ due to de Gennes, who showed that neutron scattering from
concentration fluctuations in one-phase systems was a sensitive function of χ. In most
cases, the agreement between experimental data and the standard Flory−Huggins−de
Gennes approach is qualitative. We conclude by summarizing advanced theories that
have been proposed to address the limitations of the standard approach. In spite
of considerable effort, there is no consensus on the reasons for departure between the
standard theories and experiments.

■ INTRODUCTION

Our understanding of the thermodynamic underpinnings of the
phase behavior of polymer solutions and blends began with
the Flory−Huggins theory.1−3 In this theory, the interactions
between polymer chains of one type and another are governed by
a parameter that is related to interactions on themonomer length
scale and chain lengths. To model polymer blends, we consider
two types of monodisperse polymer chains labeled A and B,
with NA and NB repeat units, respectively. The monomer-scale
interactions are governed by a nondimensional parameter, χ,
which is traditionally called the Flory−Huggins interaction
parameter.
Most of the published derivations (e.g., refs 1−3) are restricted

to the derivation of the Helmholtz free energy of mixing for
polymer solutions. This is usually followed by generalization to
polymer blends without a formal derivation. Research articles
tend to focus on the temperature dependence of phase behavior
of either solutions or blends; it is rare to see both solutions and
blends discussed in the same paper. In this Perspective, we take a
slightly different approach. We begin with a derivation of the
Flory−Huggins Gibbs free energy of mixing for polymer blends,
and solutions are treated as a special case. This is followed by
comparing predictions based on Flory−Huggins theory with
experimentally determined phase behavior of both solutions and
blends. Our use of the Gibbs free energy enables addressing both
temperature- and pressure-dependent phase diagrams. We dis-
cuss the nature of concentration fluctuations as described by the

mean-field theory of de Gennes and their effect on phase
behavior.4,5 We conclude by discussing the limitations of the
Flory−Huggins−de Gennes approach and describe attempts to
address these limitations.

■ FLORY−HUGGINS THEORY

Our objective is to compute the Gibbs free energy of a
homogeneous mixture of two polymers, ΔG, relative to that of
the pure polymers, following the Flory−Huggins approach.1−3
The mixing process is conducted in two steps as shown in
Figure 1. In the first step, the chains are mixed at constant volume
(V) and temperature (T), and in the second step, the mixture
is expanded or contracted to obtain the correct volume of
the mixture, i.e., to account for the volume change of mixing.
The pressure after step 1 is p1, which will differ from p due to
differences in the equations of state of the pure components and
the mixture. In our analysis, we neglect the difference between p1
and p.
We begin by evaluating ΔS, the entropy increase due to the

mixing that occurs during step 1. The mixture comprises nA
indistinguishable polymer chains of type A, each with NA
segments per chain, on a lattice with nt sites. Each segment
occupies a volume v0. The remainder of the sites are occupied by
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polymer B; each B chain comprises NB segments. The overall
volume fractions of A and B chains, ϕA and ϕB, are given by
nANA/nt and nBNB/nt. We will assume that each lattice site has z
nearest neighbors. If we label the nA chains from 1 to nA and
sequentially place them in the lattice, then the total number of
configurations is given by

∏ω ω ω ωΩ′ = =
=

... n
j

n

jA 1 2
1

A

A

(1)

where ωj is the number of configurations available to the jth
chain.
The first monomer of the first chain has nt possibilities.

However, the second monomer only has z possibilities, as do all
of the other monomers of this ideal chain.

ω = ≈−n z n zt
N

t
N

1
1A A (2)

The first monomer of the (j + 1)th chain has (nt − jNA)
possibilities. On average, the probability of having an unoccupied
neighboring site for the second monomer is 1− jNA/nt. Theories
based on such averages are often referred to as mean-field theories.
The term z in eq 2 is thus replaced by z(1 − jNA/nt). Thus

ω = − −+ n jN z jN n( )( (1 / ))j t t
N

1 A A
A

(3)

The number of configurations available to indistinguishable A
chains, ΩA, is given by Ω′A/nA!
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The number of configurations that indistinguishable polymer B
chains can adopt in the remaining nt − NAnA sites is

∏ ϕΩ =
!
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t
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B 1
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B
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(5)

The number of configurations that A chains can adopt in pure A,
ΩA,0, is obtained by recognizing that a total number of sites in pure
A is ϕAnt, i.e., substituting ϕAnt for nt in eq 4.
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Similarly, the number of configurations that B chains can adopt in
pure B is given by
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Figure 1. Schematic of mixing polymers A and B in two steps. In the first step, the polymer samples are mixed at constantV andT. The pressure after step
1 is p1. In the second step volume of the mixture is changed to match the actual volume of the mixture at p and T of interest. The difference between p1
and p is neglected in the analysis.
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It can be shown (see Supporting Information) that
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Equations 8 and 10 reduce to

ϕ ϕΔ = − +S k n n[ ln ln ]B A A B B (13)

because the last two terms in eq 10 cancel each other. It is easy to
show that eq 13 is equivalent to the equation

ϕ
ϕ

ϕ
ϕΔ = − +

⎡
⎣⎢

⎤
⎦⎥S k n

N N
ln lnt A

B
B

A

A B
B

(14)

The change in internal energy due to step 1, ΔU, is given by
the standard formula based on random mixing

ϕ ϕΔ = ΔϵU n zt A B (15)

where

Δϵ = ϵ − ϵ + ϵ1
2

( )AB AA BB (16)

where ϵAA, ϵBB, and ϵAB are the interaction energies between the
segments. The change in the Helmholtz free energy in step 1 is
ΔA = ΔU − TΔS. Combining eqs 15 and 14, we get

ϕ
ϕ

ϕ
ϕ χ ϕ ϕΔ = + +
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N N
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A
A
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(17)

where

χ = Δϵz
k Tu

B (18)

where χu is the conventional Flory−Huggins interaction
parameter that is related to internal energy.
The change in Gibbs free energy in step 2 is assumed to arise

from p−V work:

Δ = Δ = ΔG H n p vtstep 2 step 2 (19)

where Δv is the volume change of mixing per lattice site (vm −
v0). We assume that the dependence of Δv on composition is
similar to that of ΔU

ηϕ ϕΔ =v A B (20)

where the η is a parameter that is similar to χu. Equation 20 is the
simplest function that satisfies the constraint that the volume
change of mixing must approach zero as ϕA or ϕB approaches
zero.
The Gibbs free energy change for steps 1 and 2 is obtained by

summing the contributions from the individual steps:

Δ = Δ − Δ + ΔG U T S Hstep 2 (21)

or
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where

χ χ η= + p k T/( )u B (23)

Empirically it has been found that χu is often a linear function
of 1/T:

χ = +A
B
Tu (24)

In some cases χu is a nonmonotonic function of 1/T. In this case,
one could use an expression of the form

χ = + +A
B
T

C
Tu 2 (25)

While eq 24 is often used in the literature, there is no
consensus on the expression that must be used in case the χ
versus 1/T plot is not linear. In theory, this term will depend on
the temperature dependence of the difference between the
specific heats at constant pressure, Cp, of the pure components
and the mixture, ΔCp,

6 as ∂(ΔH)/∂T = ΔCp. Equation 24 is
obtained when ΔCp is a constant. Equation 25 is obtained when
the temperature dependence of ΔCp is dominated by a term
proportional to 1/T2.6,7 The full expression for χ is

χ = + + +A
B
T

C
T

D
p
T2 (26)

whereD = η/kB. Parameters A, B,C, andD are obtained by fitting
experimental data. In some cases, eq 26 must be augmented by
other terms involving p alone or combinations of p and T; for
example, in ref 8 a term proportional to p is necessary to fit the
data.
We illustrate the application of the Flory−Huggins theory

by focusing on four specific systems: polystyrene/cyclohexane
(PS/C6), poly(ethylene oxide)/water (PEO/H2O), polyisobu-
tylene/deuterium-saturated polybutadiene with 63 mol %
1−2 units (PIB/DPB), and polyethylenebutylene/deuterium-
labeled polymethyl butylene (PEB/DPMB). (In the DPB
sample, the double bonds in the polybutadiene are saturated
with deuterium gas to obtain a saturated hydrocarbon polymer.)
The chemical structures of the components of interest are shown
in Table 1. We also provide the volumes of the solvent molecules
and monomers that we have used in our calculations. Parameters
A, B, C, and D are given in Table 2. The approaches used to
determine these parameters are discussed below.
The list of solvents and polymers in Table 1 is far from

exhaustive. For the sake of brevity, important systems such as
blends of polyethylene, propylene, and their copolymers,9

natural rubber/benzene,10 poly(isopropyl acrylate)/poly-
(isopropyl methacrylate),11 and polystyrene/poly(vinyl methyl
ether)12 are not discussed.
Typical values of Δv/v0 range from 10−4 to 10−3 (e.g., refs 13

and 14), and thus the pressure-dependent term in eq 26 is
typically unimportant when the pressure of interest is less than
0.1 kbar. Most of the experiments on polymer blends reported in
the literature were conducted at atmospheric pressure.
If one takes Flory−Huggins theory literally, then χu is given by

eq 18, and A and C in eq 26 must be zero. It is apparent
from Table 2 that this is seldom the case. The parameter A is often
called the noncombinatorial entropic contribution to χ. The ration-
ale is simple: we have already assumed that the monomer-level
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change of energy and volume due to mixing is of the form
ϕA(1 − ϕA). One could similarly assume that monomer-level
differences in packing between themixture and pure components
is also given by a similar expression with A as the prefactor. While
UCST behavior can be predicted even if A is 0 (or approximately
so, see PS/C6 system data, entry 2, in Table 2) prediction of
LCST behavior requires a nonzero value of A (see PEO/water
system data, entry 1, in Table 2). Within the context of Flory−
Huggins theory, nontrivial local entropic effects are essential for
obtaining LCST behavior. The term C is obtained when the
temperature dependence of the heat capacities of themixture and
pure components exhibits a nonlinear dependence on T.6

In the Flory−Huggins theory, the entropy of mixing, ΔS, is
always positive. Phase behavior is thus determined by the sign of
ΔU. χu, or equivalently Δϵ, can be either positive or negative
(eq 16). In the case of positive Δϵ, ϵAB > (ϵAA + ϵBB)/2, the
interactions between unlike segments are unfavorable relative to
those between like segments. These mixtures tend to be phase-
separated at low temperatures. One-phase systems are obtained
when the temperature is high enough for TΔS to dominate over
ΔU. In the case of negative Δϵ, ϵAB < (ϵAA + ϵBB)/2, the inter-
actions between unlike segments are favorable relative to those
between like segments. These mixtures tend to be homogeneous
at low temperatures, as both internal-energy-related and entropy-
related terms favor mixing. Phase-separated systems are obtained
at temperatures when the Δϵ/T contribution to χ is small.
Depending on the composition of the mixture (ϕA, NA, and

NB) and χ, a blend can be either single-phase or separated into
two phases. One can distinguish between these scenarios by
examining the chemical potentials of components A and B, μA
and μB, with respect to those of the pure phases, μA

0 and μB
0:6

μ μ μΔ = − = ∂Δ
∂

N
G

nA A A
0

AV
A (27)

μ μ μΔ = − = ∂Δ
∂

N
G

nB B B
0

AV
B (28)

where NAV is Avogadro’s number and R (used below) is the
universal gas constant. Equations 22, 27, and 28 give

μ ϕ ϕ χ ϕΔ = + − − + −
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥RT

N
N

Nln (1 ) 1 (1 )
B

A A A
A

A A
2

(29)

μ ϕ ϕ χ ϕΔ = + − − + −
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥RT

N
N

Nln (1 ) 1 (1 )B B B
B

A
B B

2

(30)

For phase-separated blends, the binodal curve, i.e., the locus of
compositions of the two phases in thermodynamic equilibrium

Table 1. Components and Monomer Volumesa

aProperties of the components of the polymer solution and blend
systems examined in this paper: chemical formulas, monomer volumes,
vi, and the temperature, T, at which vi values were determined. In the
deuterated polymers, the locations of the D atoms are not known
precisely.

Table 2. Flory−Huggins Interaction Parameters and Reference Volumesa

entry system v0 (nm
3) A B (K) C (K2) D (K/kbar) method

1 PEO/H2O 0.034 1.054 −200.4 7.183 PB

2 PS/C6 0.177 −0.3204 252.5 PB

3 PEO/H2O 0.034 −1.315 1782.2 −414008 PB

4 PIB/DPB 0.100 0.0150 −5.468 PB

5 PIB/DPB 0.100 0.0196 −7.467 −0.1314 NS

6 PEB/DPMB 0.100 0.0025 −1.929 446.01 NS

aConstants for calculating the Flory-Huggins interaction parameter, χ, of the polymer solution and blend systems examined in this paper. v0 is the
reference volume, the coefficients of Eq 26 that give the dependence of χ on p and T, and the method used to determine χ (phase boundaries or
neutron scattering).
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with each other, can be obtained by equating the chemical
potential of polymers A and B in the two coexisting phases

μ μ μ μ= =A
I

A
II

B
I

B
II

or by subtracting the chemical potentials of the pure phases

μ μ μ μ μ μ μ μ− = − − = −A
I

A
0

A
II

A
0

B
I

B
0

B
II

B
0

The binodal curve is thus given by

ϕ
ϕ

ϕ ϕ

χ ϕ ϕ

+ − −

+ − − − =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

N
N

N

ln ( ) 1

[(1 ) (1 ) ] 0

A
I

A
II A

II
A
I A

B

A A
I 2

A
II 2

(31)

ϕ
ϕ

ϕ ϕ

χ ϕ ϕ

−
−

− − −

+ − =

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

N
N

N

ln
1

1
( ) 1

[( ) ( ) ] 0

A
I

A
II A

II
A
I B

A

B A
I 2

A
II 2

(32)

Equations 31 and 32 are solved numerically to obtain the two
quantities of interest. If χ is known, then ϕA

I and ϕA
II can be

determined. If ϕA
I is known, then χ and ϕA

II can be determined.
Examples of both types of calculations are given in this
Perspective.
The critical point is conveniently obtained by setting the

second and third derivatives of ΔG with respect to ϕA to zero.
At the critical point

χ =
N

2
c

AVG (33)

where χc is the value of χ at the critical point and

=
+( )

N
4

N N

AVG
1 1

2

A B (34)

For polymer solutions, we set NB = 1, and χc is given by

χ = +
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟N

1
2

1
1

c
A

2

(35)

■ DEFINITIONS OF MONOMERS AND REFERENCE
VOLUMES

Both Flory and Huggins recognized that the monomers in the
Flory−Huggins theory were unrelated to the chemical repeat
units in the chains. In the discussion above, the chains are
assumed to comprise monomers of volume v0. We refer to v0 as
the reference volume. When we describe polymer/solvent mix-
tures, v0 is set to the volume of a solvent molecule (molar volume
divided by Avogadro’s number) due to the assumption that
NB = 1. When we describe mixtures of two polymers, it is
convenient to fix the reference volume; this enables comparison
of the interactions between different pairs of chains on a common
basis. In this paper, we set v0 = 0.1 nm

3 for polymer blends. If the
polymer chain comprises N̂i chemically identical repeat units
each with volume vi, then Ni is given by

= ̂N N
v
vi i

i

0 (36)

where i = A or B.
It is important to recognize that the Flory−Huggins Gibbs free

energy of mixing (eq 22) does not explicitly depend on the value
of v0. However, the value of χ that is reported depends on the
chosen value of v0. Since χ is proportional to v0, some may prefer
to report χ/v0. However, even in this case, defining v0 is necessary.
If v0 is not defined, then the relationship between N̂i and Ni is
unknown. We thus recommend reporting both χ and v0 when
presenting data on the thermodynamics of polymer mixtures.
While we have used a lattice model to derive the Flory−

Huggins free energy of mixing, as was done originally by Flory
and Huggins, modern treatments have shown that the same
expression can be obtained using off-lattice theories.15,16 We also
note in passing that defining v0 that is independent of T and p is
essential for consistency between the Flory−Huggins theory and
the stringent thermodynamic requirements that

∂ Δ
∂

= − Δ⎛
⎝⎜

⎞
⎠⎟

G T
T

H
T

( / )

p
2

(37)

and

∂Δ
∂

= Δ
⎛
⎝⎜

⎞
⎠⎟

G
p

V
T (38)

Figure 2. (a) Lower critical solution temperature,Tc, for poly(ethylene oxide)/water (PEO/H2O) fromBae et al.,17 Saeki et al.,18 and Saraiva et al.19 and
(b) upper critical solution temperature, Tc, for poly(styrene)/cyclohexane (PS/C6) from Bae et al.17 and Shultz and Flory20 as a function of the number
of monomers per chain, NA. The dashed lines are linear fits through the data, consistent with eq 39.
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whereΔH is the enthalpy change of mixing.6 For similar reasons,
accounting for subtle changes in Ni with temperature and pres-
sure is outside the scope of the Flory−Huggins theory.

■ EXPERIMENTS ON PHASE BEHAVIOR OF POLYMER
SOLUTIONS AND BLENDS

It is generally assumed that properties of polymer systems can be
predicted using two sets of parameters: one set on the monomer
length scale (independent ofNi) and the other on length scales of
the polymer chains (dependent on Ni only). The decoupling
of these two sets is an important simplification that pervades
polymer science. In the Flory−Huggins theory, the parameter
that describes behavior on the monomer length scale is χ, and the
parameter that describes behavior on the chain length scale is Ni.
A unique advantage polymer scientists have enjoyed is the ability
to test molecular theories by conducting experiments as a
function of chain length.
In Figures 2a and 2b we show the dependence of the critical

temperature, Tc, on NA for PEO/H2O and PS/C6 solutions.17−20

The dependence of Tc on NA, derived from eqs 24 and 35, is

+ = + +A
B
T N N

1
2

1 1
2c A A (39)

The Flory−Huggins theory predicts that a plot of 1/Tc versus
+N N1/(2 ) 1/A A for polymer solutions should be linear. This

is approximately true for both polymer solutions (Figures 2a and
2b). The data are, however, qualitatively different in the two cases
because PS/C6 mixtures phase separate upon cooling while
PEO/H2O mixtures phase separate upon heating. These critical
temperatures are referred to as upper critical solution temperatures
(UCST) and lower critical solution temperatures (LCST), respec-
tively. The lines in Figure 2 represent least-squares fits of eq 39
which give values of A and B; we assume C = 0 as this is consistent
with the data in entries 1 and 2 in Table 2. The parameter B is
positive for PS/C6, while it is negative for PEO/H2O.
The determination of A and B enables prediction of the phase

behavior of PS/C6 and PEO/H2O mixtures as a function of
chain length. The compositions of the coexisting phases as a
function of temperature are determined by solving eqs 31 and 32
numerically. The experimental and theoretical phase diagrams
for PS/C6 and PEO/H2O mixtures are compared in Figure 3.
We see quantitative agreement between the Flory−Huggins
theory and experiment in the case of PEO/H2O (Figure 3a).
Deviations between theory and experiment are more sub-
stantial in PS/C6 solutions: the experimental boundaries of

Figure 3. Theoretical (curves) and experimental (markers) phase diagrams for (a) poly(ethylene oxide)/water (PEO/H2O) forNA = 103 (red),NA = 120
(yellow),NA = 159 (green),NA = 213 (blue),NA = 285 (purple),NA = 380 (maroon), andNA = 712 (pink) and (b) poly(styrene)/ cyclohexane (PS/C6)
forNA = 181 (red),NA = 387 (yellow),NA = 789 (green),NA = 887 (blue),NA = 2218 (purple),NA = 5411 (maroon), andNA = 11265 (pink), using the fits
reported in Figure 2. The data and curves correspond to the binodals (see eqs 31 and 32), and phase-separated regions are bounded by the convex curves.

Figure 4. (a) Both upper and lower critical solution temperatures, 1/Tc, as a function of the number of monomers per chains, NA, and (b) the resulting
theoretical (curves) and experimental (markers) phase diagram for poly(ethylene oxide)/water (PEO/H2O) at NA = 120 (red), NA = 213 (yellow),
NA = 380 (green), and NA = 712 (blue). The dashed curve in (a) is a quadratic fit through the data, consistent with eq 40.
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the two-phase mixtures are broader than theoretical predictions
(Figure 3b).
In Figure 2a, we focused on PEO/H2O data obtained over a

limited temperature range. In Figure 4a we show the dependence
of the critical temperature on chain length of the same mixtures
over an extended temperature range. It is evident that in the
high temperature regime heating results in homogenization. The
opposite is seen in the low temperature regime. Modeling such
data requires use of eq 25:

+ + = + +A
B
T

C
T N N

1
2

1 1
2c c

2
A A (40)

The curve in Figure 4a is a fit of eq 40 through the data that
enables determination of A, B, and C, and the parameters thus
obtained are given in entry 3 of Table 2. The comparison of experi-
mental and theoretical phase behavior of PEO/H2O systems over
the full temperature range is shown in Figure 4b. The deviations
between theory and experiment in the vicinity of both lower and
upper critical temperatures are similar and rather small.
There are relatively few studies of the effect of pressure on the

phase behavior of polymer solutions. In ref 21, Cook et al.
determined the pressure at which PEO/H2O mixtures with
ϕA
I = 0.05 and with differentNA values exhibited a transition from

single-phase to two-phase systems; the temperature was held
fixed at 23 °C. Their results are shown in Figure 5a where the
binodal pressure pb is plotted as a function of NA. For each
mixture, we used eqs 31 and 32 to determine χ and ϕA

II, and we
were thus able to determine χ as a function of p. This plot is
shown in Figure 5b, and the slope of the line in that figure enables
determination of D. The pressure dependence of the phase
boundary of PEO/H2O mixtures with NA = 285 is shown in
Figure 6 along with experimental data; ref 21 provides one
data point at elevated pressures. The agreement between theory
and experiment is better at large values of NA.
One of the convenient features of polymer/solvent mixtures is

that the critical temperature is a weak function of chain length. In
the PS/C6 case, for example, changing the chain length by a factor
of about 60 increased the absolute critical temperature by only a
factor of 1.08 (from 278 to 303 K). It is much more challenging to
study the phase behavior of polymer blends as a function of chain
length as the critical temperature is a sensitive function of chain
length. For the simple case of NA = NB and χ = A/T, doubling

the chain length would double the absolute critical temperature.
Since the Flory−Huggins theory is applicable to liquid polymers at
equilibrium, the low temperature limit is dictated by the crystal-
lization or glass transition temperatures of the mixtures. The upper
limit is governed by the chain degradation temperature. The
available temperature range for thermodynamic study is seldom
larger than 200 °C. Consequently, there are relatively few examples
of phase diagrams of polymer blends for a wide range ofNA andNB.
The parameter space for polymer blends is much larger than that
for polymer solutions asmany combinations ofNA andNB could be
used to obtain a single value of NAVG.
In Figure 7, we plot 1/Tc versus 2/NAVG for the PIB/DPB blends

(entry 4, Table 2) taken from ref 22. To our knowledge, this is the
only blend system of high molecular weight polymers where Tc is
measured over a significant range ofNAVG, keeping chemical struc-
ture of the blend components fixed. The range of 1/Tc values for
this system is similar to that in Figure 2 for polymer/solvent sys-
tems, but the range of NAVG is limited for reasons discussed above.
Using the same approach that we used for solutions, we obtain

+ =A
B
T N

2

c AVG (41)

and linear fits through the data in Figure 7 enable determina-
tion of A and B. The values of A and B thus obtained are given in

Figure 5. (a) Binodal pressure, pb, as a function of the number of monomers per chain, NA, for mixtures with ϕA
I = 0.05 and T = 23 °C. (b) Flory−

Huggins interaction parameter, χ, as a function of binodal pressure, pb, for poly(ethylene oxide)/water (PEO/H2O) from Cook et al.21 The dashed line
is a linear fit through the data.

Figure 6. Theoretical (curves) and experimental (markers) phase
diagram for poly(ethylene oxide)/water (PEO/H2O) at NA = 285 and
T = 23 °C at different pressures: p = 0 kbar (red), p = 1 kbar (yellow),
p = 3 kbar (green), p = 5 kbar (blue), and p = 7 kbar (purple).
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entry 4 of Table 2. The compositions of the coexisting phases
as a function of temperature were determined by solving
eqs 31 and 32 numerically for the parameters listed in Table 2.
The experimental and theoretical phase diagrams for PIB/DPB
mixtures are compared in Figure 8. It is evident that the phase

behavior of the four blends is only in qualitative agreement
with the Flory−Huggins theory. We note in passing that the
anomalous mixing behavior of PIB and other polyolefins was first
noted by Krishnamoorti et al.23

One of the limitations of using themeasured phase boundaries to
estimate χ is that χ at the phase boundaries is always positive. It is
evident from the values of A and B given in Table 2 that there are
ranges of T where χ is predicted to be negative. For the PIB/DPB
blends, χ is negative at temperatures below 90 °C. Probing thermo-
dynamics in this regime requires study of single-phase systems.
It is well-known that concentration fluctuations in the one-

phase region contain signatures of intermolecular interactions.
This is especially true in the vicinity of the critical point,24 and
neutron scattering is a standard approach for studying these fluc-
tuations in polymer blends. In pioneering work, deGennes derived
an expression for the scattered intensity from a homogeneous

mixture of polymers.4,5 This theory, like the Flory−Huggins
theory, is a mean-field theory. One advantage of this approach
is that the T and p dependence of χ can be obtained from
temperature- and pressure-dependent experiments on one
single-phase blend; phase-boundary-based methods require the
preparation of several samples. Usually researchers choose the
critical composition as the signal is strongest at this composition.
The results of pioneering experiments using this approach are
reported in refs 25−32. The χ parameter determined using this
approach for the PIB/DPB system as a function of 1/T at p = 0 is
shown in Figure 9a, and the resulting values of A and B are given
in entry 5 of Table 2.33 It is interesting to contrast the wide range
of positive and negative χ parameters covered by Figure 9a with
the narrow range of positive values covered in Figure 7. In spite of
this, the A and B values determined by the two methods are
similar (see PB and NS values of A and B for PIB/DPB blends,
entries 4 and 5 of Table 2). In Figure 9b, we show the pressure
and temperature dependence of χ for p ranging from 0 to 3.1 kbar
and T ranging from 30 to 167 °C. A reasonable collapse of the
data is seen when χ−A− B/T is plotted versus p/T, as suggested
by eq 26. The slope of the linear fit in Figure 9b gives D.
The predicted phase behavior of PIB/DPB blends with

particular values ofNA andNB as a function ofT and p is shown in
Figure 10. Here we cannot offer any comparison with experi-
mental data; phase boundaries for this system have only been
determined at atmospheric pressure (Figure 5).
While the data in Figure 9 were obtained from a particular

homogeneous blend, i.e., particular values of ϕA, NA, and NB,
one could repeat the measurements for several other blends. If
the mean-field theories were accurate, then χ measured from
different blends at a given T and p would be identical. In most
experiments, χ obtained from different blends differ substantially.
For the PIB/DPB blends, χ obtained from such experiments
could be empirically fit to the equation22

χ ϕ

ϕ

= − + −

+ − + −
−⎡

⎣⎢
⎤
⎦⎥

T N
T T

T T N

( , , ) 0.00622
10.6 3040

0.722
638 229000 2 1

A AVG 2

2
A

AVG (42)

It was shown in ref 22 that using this expression results in
excellent agreement between the predicted and measured phase
boundaries. However, a particularly dissatisfying aspect of eq 42
is that the monomer length scale parameter χ appears to be related
to the chain length scale parameter, NAVG. This is mainly a reflec-
tion of the fact that a quantitative understanding of concentration
fluctuations and phase boundaries in polymer blends is lacking.
As a rule, χ determined from polymer blends with different

chain lengths and composition differ substantially from one
another. For example, the simplest model system one can
imagine is a blend of deuterated and nondeuterated polymers
that are otherwise identical. The thermodynamic properties of
such blends were examined in the pioneering work of Bates and
co-workers.34 Even in this system χ was strongly dependent on
blend composition.35 The exception to the rule is poly(ethyl-
butylene)/deuterium-labeled poly(methylbutylene) (PEB/
DPMB), entry 6 of Table 2.8 χ obtained from neutron scattering
from homogeneous blends with different values of NA, NB, and
ϕA are within experimental error. In Figure 11a, we show mea-
surements of χ for this system as a function of temperature for
p = 0.01 and 0.86 kbar. At both pressures, χ is independent of
blend composition. The values of A, B, and C for this system,
given in Table 2, were obtained by fitting the p = 0.01 kbar

Figure 7. Lower critical solution temperature, Tc, as a function of
average chain length, NAVG, defined by eq 34, for poly(isobutylene)/
deuterium-saturated polybutadiene (PIB/DPB) from Nedoma et al.22

The dashed line is a linear fit through the data, consistent with eq 41.

Figure 8.Theoretical (lines) and experimental (markers) phase diagram
for poly(isobutylene)/deuterium-saturated polybutadiene (PIB/DPB)
system (PIB = A and DPB = B) for four different blends: NA = 810,
NB = 1120 (circles), NA = 1030, NB = 1120 (squares), NA = 810, NB =
3589 (triangles), and NA = 1030, NB = 3589 (diamonds). Data obtained
from ref 22.
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data. In Figure 11b, we plot χ − A − B/T − C/T2 obtained at
p = 0.86 kbar as a function of p/T. This is similar in spirit to

Figure 9b for the PIB/DPB system. As expected, the data in
Figure 11b fall approximately on a straight line. It is worth noting,
however, that unlike the case of the PIB/DPB blends, the data
in Figure 11b do not go through the origin. This indicates that
additional p-dependent terms are needed in eq 26. Within
the context of eq 38, this is expected when ΔV is dependent on
T and p. Quantifying the thermodynamics of such systems is
outside the scope of this Perspective. The fact that more than one
parameter is needed to quantify the pressure dependence of χ is
not surprising, given that three parameters to describe the
temperature dependence of χ (at atmospheric pressure) in some
cases. Another point worth noting is that χ of PEB/DPMB
blends increases with increasing pressure while the opposite is
true for PIB/DPB blends. The phase-separation temperatures
(and pressures) for PEB/DPMB blends have only been
determined in a few cases, and these points are consistent with
χ determined from neutron scattering.36

In PIB/DPB blends (an LCST system) increasing pressure
stabilizes the one-phase system (Figures 9 and 10), in contrast to
PEB/DPMB blends where the opposite is observed (Figure 11).
It is evident in Table 2 that for blends the sign ofD, the parameter

Figure 9. (a) Flory−Huggins interaction parameter, χ, as a function of inverse temperature, T, for poly(isobutylene)/deuterium-saturated
polybutadiene (PIB/DPB) at atmospheric pressure (p = 0). (b) Flory−Huggins interaction parameter, χ − A− B/T, as a function of p/T, at T = 30 °C
(circles), T = 70 °C (squares), T = 110 °C (triangles), and T = 150 °C (diamonds) from Ruegg et al.33 The dashed lines are linear fits through the data.

Figure 10. Theoretical phase diagrams for poly(isobutylene)/
deuterium-saturated polybutadiene (PIB/DPB) at NA = 810, NB =
3589, and T = 23 °C at different pressures: p = 0 kbar (red), p = 2 kbar
(yellow), p = 4 kbar (green), and p = 6 kbar (blue).

Figure 11. (a) Flory−Huggins interaction parameter, χ, as a function of inverse temperature, 1/T, and (b) the reduced value χ − A − B/T − C/T2 as a
function of p/T for deuterated poly(ethylbutylene)/poly(methylbutylene) (PEB/DPMB) from Lefebvre et al.8 Data at p = 0.01 kbar from the one-phase
region atϕA = 0.414 (pink triangles),ϕA = 0.161 (yellow diamonds), andϕA = 0.099 (orange circles) and data from themetastable two-phase region atϕA =
0.161 (green squares) and ϕA = 0.099 (blue circles). Data at p = 0.86 kbar from the one-phase region atϕA = 0.414 (purple triangles), ϕA = 0.161 (mustard
diamonds), and ϕA = 0.099 (maroon circles) and data from the metastable two-phase region at ϕA = 0.161 (forest squares) and ϕA = 0.099 (navy circles).
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that quantifies volume change of mixing, appears to be related
to the sign of χu, the parameter that quantifies internal energy
change of mixing. We offer a simple explanation for this
observation. Attractive monomer−monomer energetic inter-
actions (negative χu) are naturally accompanied by negative
volume changes in mixing (negative D). In this case, vm (see
Figure 1) is slightly smaller than v0. Similarly when χu is positive,
vm is slightly larger than v0. Imre et al.37 noted that the effect of
pressure on polymer solutions differs qualitatively from that on
polymer blends: in polymer solutions, increasing pressure usually
stabilizes the homogeneous phase in both UCST and LCST
systems. The PEO/H2O system (Figure 6) is an exception rather
than the rule. More work is needed to obtain a comprehensive
understanding of the molecular factors that govern the phase
behavior of blends and solutions as a function of composition,
temperature, and pressure.
In summary, the Flory−Huggins theory, developed in 1942, is

remarkable: the phase behavior of a wide variety of polymer
solutions and blends can be predicted with reasonable accuracy
using a simple framework. All of the data in Figures 2−11 can be
reproduced using two simple tables (Tables 1 and 2) and one
easily derivable equation (eq 22). Over the past 50 years, this
theory has provided the bedrock for interpretation of experi-
mental data. It has, however, proven difficult to establish the
molecular underpinnings of the measured χ parameters. Numer-
ous researchers have proposed approaches to go beyond Flory−
Huggins theory. A few of these approaches are discussed below.

■ OTHER THEORIES FOR POLYMER SOLUTIONS
A class of theories that has gained significant acceptance in the
broader community are referred to as equation-of-state theories.
This approach was pioneered by Flory, Orwoll, and Vrij38 in
1964. They argued that the properties of mixtures must be
affected by the pVT properties (equations of state) of the pure
components. Rigorous thermodynamic arguments were pre-
sented to assert that dissimilarity in equations of state of the
components would give rise to phase separation. This approach
provides a rational explanation for the LCST behavior of mix-
tures of normal paraffin hydrocarbons (oligomeric linear
polyethylene) and alkane solvents such as octane. It is, perhaps,
noteworthy that LCST behavior is not only observed in exotic
mixtures like PEO/H2O.
A widely accepted equation-of-state model was that proposed

by Sanchez and Lacombe39−41 in 1976. This model maintains the
lattice shown in Figure 1, but a key third component is
introduced: voids. The application of pressure on both the pure
components and the mixture squeezes out the voids, and the
extent to which they are squeezed out depends on intermolecular
interactions. While a significant number of parameters are
required by the Sanchez−Lacombe model, most of them are
related to the pVT properties of the pure components, and
extensive tabulations of Sanchez−Lacombe parameters have
been published.41 There are fundamental differences between
the pVT properties of solvents and polymers. For example,
solvents have finite vapor pressures while the vapor pressure of
polymers is negligible. It is interesting to note that this is captured
by the Sanchez−Lacombe equation of state: the vapor pressure
of a pure polymeric liquid approaches zero as the chain length
approaches infinity. There is thus a correlation between the
critical temperature of the solvent and observations of LCST
behavior. LCSTs are observed well below the critical temperature
as only modest differences in pVT properties are required to
induce phase separation. Nevertheless, LCSTs are often found

above the normal boiling point of the solvent; see Figure 3 for
example. (The small pressures needed to keep the solvent from
boiling have a negligible effect on mixture thermodynamics.)
Other popular equation-of-state theories are the statistical asso-
ciating fluid theory (SAFT) and the theory of Patterson.42−44

Bekiranov et al.45 developed an extension of Flory−Huggins
theory wherein solvent monomers stick to the polymer chain.
The picture provided in Figure 1 is still applicable, but now the
solution contains many additional species which are clusters of
m solvent molecules and a polymer chain. Minimization of the
free energy of mixing gives the distribution of the clusters in
solution. This allows for explicit prediction of the closed loop
behavior seen in Figure 4. Panayiotou and Sanchez46 extended
the Sanchez−Lacombe model to include hydrogen-bonding and
other intermolecular associations. Kisselev and Manias used
this development to describe the phase behavior of PEO/H2O
mixtures.47

One might ask if the observed phase behavior of PEO/H2O
mixtures (Figures 2a, 3a, 4, 5, and 6) is due to (1) ΔU, ΔS, and
ΔV determined using the Flory−Huggins analysis presented
here (Figures 4, 5, and 6) or (2) due to clustering,45 or (3) due to
equation-of-state effects?47 Are these three effects related, i.e., is
the magnitude and sign ofΔV inferred in (1) consistent with the
clustering inferred in (2)? In an interesting study, Hammouda,
Ho, and Kline studied concentration fluctuations in PEO/H2O
mixtures by SANS.48While they observed an increase in scattering
with increasing temperature, consistent with the observed phase
behavior, they did not attempt to relate their scattering obser-
vations to molecular factors that govern phase behavior or
clustering of water molecules with PEO chains. The ambiguity
described above applies to many sets of data on polymer solu-
tions and blends. Seemingly disparate theories are consistent
with the data, and there is often no consensus on the molecular
factors that underlie phase behavior.

■ OTHER THEORIES FOR POLYMER BLENDS
While the Sanchez−Lacombe theory can readily be used to study
polymer blends (e.g., ref 49), we use this space to describe other
approaches. Many microscopic theories assume a relationship
between ϵAB, ϵAA, and ϵBB. A popular assumption is that
ϵ = ϵ ϵgAB AA BB where g, the Bertholet parameter, is a number
very close to 1. Some researchers use g as a fitting parameter.
In the special case when g is set to 1, the internal energy as given
by the Flory−Huggins theory reduces to regular solution theory.
In this theory, the solubility parameter of component i is defined
as, δ = ϵi ii and

χ δ δ= −
v

kT
( )0

A B
2

(43)

Equation-of-state parameters can also be used to estimate δi
50,51

δ
α
β

=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟T

i
i

i

1/2

(44)

where αi is the thermal expansion coefficient and βi is the iso-
thermal compressibility. This is perhaps the simplest approach
for modelingmixture properties wherein χ is predicted from pure
component data. Equations 43 and 44 suggest that equation-of-
state effects primarily affect A. Regular solution theory works
reasonably well for simple mixtures, e.g., saturated hydrocarbon
polymers that exhibit UCSTs.51 Amore elaborate theory wherein
free volume is added to regular solution theory was proposed by
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Ruzette and Mayes.52 The phase diagrams of a number of blend
systems were shown to be consistent with predictions of this
theory. Like equation-of-state-based regular solution theory,
there are no free parameters in the Ruzette−Mayes model.
Tambasco et al. have predicted χ parameters for several

polymer blends, using an equation-of-state model based on
the Born−Green−Yvon lattice theory.53 This theory accounts
for nonrandom local mixing, an effect not accounted for in
the Sanchez−Lacombe or Ruzette−Mayes models. The lattice
cluster theory accounts for chemical complexity by including
short branches along the backbone of the polymer chain in
Figure 1.54 In this theory DPMB will have a short branch at some
frequency along the chain, PEB will have a long branch at the
same frequency, while PIB will have two branches at each branch
point, emanating at a higher spatial frequency (see Table 2).
One expects this theory to provide a more accurate description
of monomer-level effects such as entropic contributions and
volume changes of mixing. Painter and Coleman developed
models that accounted for hydrogen bonding and other
associations in polymer blends.55 In the polymer reference
interaction site model (PRISM), mixture properties measured
by SANS are calculated from monomer-level pair correlation
functions of the constituents that may be determined from wide-
angle neutron or X-ray scattering experiments or by simula-
tions.56 Excellent agreement between simulated and measured
pair distribution functions is obtained in the case of simple
polymers such as saturated hydrocarbons,57,58 which enables
robust predictions of χ.

■ CONCENTRATION FLUCTUATIONS AND PHASE
SEPARATION IN POLYMER BLENDS

Modeling concentration fluctuations in homogeneous phases is
important due to two reasons: (1) they are subtle “announce-
ments” of the nature of intermolecular interactions and have
been used to measure χ (e.g., Figure 9), and (2) phase diagrams
are affected by fluctuations, especially in the vicinity of the critical
point.
Concentration fluctuations in polymer mixtures occur

naturally over a range of length scales that encompass monomer,
molecular, and supramolecular length scales. In the theory of de
Gennes,4,5 the magnitude of fluctuations is calculated by the
introduction of fluctuating fields that augment intermonomer
interactions, ϵij’s (see eq 16). The fact that fluctuations of A and B
are correlated (often referred to as the incompressibility
assumption) is used to determine the fluctuating fields self-
consistently using an approximation that de Gennes called the
random phase approximation (RPA). De Gennes did not publish
a detailed derivation of the RPA equation but generously
provided handwritten notes on the derivation when asked.
A copy of his notes that he sent to one of us (N.P.B.) in 1989 is
included in the Supporting Information (a formal derivation of
the RPA result is given in ref 59). The final result of the RPA is a
deceptively simple relationship between scattering from fluc-
tuations and χ. An additional parameter that enters discussions of
concentration fluctuations is the statistical segment length, a.
The radius of gyration of chains that are approximated as random

walks is given by =R Na /6i i ig,
2 (i = A or B). For chains located

on the lattice pictured in Figure 1, a is given by v0
1/3, i.e. a =

0.464 nm. It turns out that the statistical segment length of many
common polymers is 0.5± 0.1 nm, whenNi is defined based on a
v0 = 0.1 nm

3.60 In the discussion below we thus assume ai = v0
1/3.

It is perhaps remarkable that neutron scattering data from all

homogeneous blends are quantitatively consistent with the
theory of de Gennes4 provided χ and ai are treated as adjustable
parameters.
The magnitude and characteristic size (length) of the

concentration fluctuations diverge as the spinodal is approached;
the spinodal curve is defined by
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The calculated phase diagram for symmetric blends with
N = NA = NB on a χN versus ϕA plot is shown in Figure 12,

where both the binodal and spinodal are shown. For blends at the
critical composition, the spinodal is exposed and can be
approached from the one-phase side with relative ease. Away
from the critical point, the spinodal lies within the two-phase
window, and the extent to which one can approach the spinodal
depends on factors like nucleation barriers; one-phase systems
are metastable in the window between the binodal and spinodal.
Our understanding of nucleation barriers in polymer solutions
and blends is far from complete. While some theories have been
written on the subject,24 we are not aware of any experiment that
has attempted to measure the height of nucleation barriers in
either polymer solutions or polymer blends. The extent to which
these barriers affect the measured phase diagrams is unclear.
It appears that in the case of UCST blends nucleation barriers are
large enough that the spinodal can be approached from the one-
phase side in relatively simple experiments wherein the sample is
quenched (using pressure changes) to locations inside the
binodal but outside the spinodal.8

The issue of the kinetics of phase separation and dissolution is
an important one. While we do not dwell on the subject, it
directly affects our ability to determine phase boundaries. Most
phase boundaries are determined from the one-phase side.
Classical theories due to Cahn and co-workers suggest the
existence of two phase separation mechanisms: nucleation and
growth in the metastable region and spinodal decomposition in
the unstable region.61,62 The signature of the initial stages of
spinodal decomposition is the presence of a scattering peak due
to selective amplification of fluctuations with a characteristic
length scale. Polymer blends are ideally suited for studies of the
kinetics of phase separation because chain entanglement63 slows
down kinetics of phase separation, and the early stage can be
readily captured by time-resolved scattering experiments.

Figure 12. Binodal (solid) and spinodal (dashed) curves for blends with
NA = NB = N, calculated using the Flory−Huggins theory.
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Pioneering early work on polymer blends demonstrated the
connection between experimental data and Cahn’s predic-
tions.64−68 In particular, the dependence of the dominant length
scale of spinodal decomposition on quench depth was in
excellent agreement with the predictions.
Less is known about the initial stages of nucleation. In the

classical theories, nucleation occurs when an isolated region in
space crosses the nucleation barrier. Such an event will have no
scattering signature as scattering from any single object will be
overwhelmed by scattering from concentration fluctuations of a
sufficiently large metastable system. In experiments, however, the
scattering from polymer blends quenched into the metastable
region contain scattering peaks that are qualitatively similar to
those obtained in the spinodal region.69−71 In addition to
scattering peaks, the time-dependent scattering profiles from
blends merged at a particular scattering vector, qc; the scattering
intensity was independent of time for scattering vectors larger
than qc. Since the lack of increase in scattering at a given
q indicates the absence of growing structures with characteristic
length scales 1/q, 1/qc was taken as a measure of the critical
nucleus.70 The experiments reported in refs 69−71 were done on
PEB/DPMB blends, the system that exhibited near-perfect
agreement with the Flory−Huggins−de Gennes framework.
This facilitated determination of the dependence of critical
nucleus size on quench depth.
The effect of fluctuations on phase diagrams, particularly the

location of the spinodal, is a subject of long-standing interest.
In a classic study, de Gennes compared the average magnitude
of the fluctuations with the width of the coexistence window.72

He concluded, based on scaling arguments, that fluctuations were
only important in the vicinity of the critical point. A formal
derivation of the effect of fluctuations on polymer blend thermo-
dynamics for polymers with identical statistical segment lengths
was worked out by Olvera de la Cruz et al.73 Important entropic
corrections arising from inequality of statistical segment lengths
were derived by Fredrickson et al.74 Wang used the one-loop
renormalization approach to obtain a more complete picture of
the effect of fluctuations.16 This theory naturally encompasses
terms derived in refs 73 and 74 and leads to the conclusion that
the spinodal does not formally exist for polymer blends in three
dimensions (or lower dimensions). It also provides prefactors for
the scaling originally obtained by de Gennes. The prefactors
are much larger than anticipated by de Gennes and the com-
munity, suggesting that fluctuations may be more important than
originally anticipated. It is perhaps worth mentioning that the
one-loop approach was first used by Fredrickson and Helfand75

to compute fluctuation corrections in the block copolymer phase
diagram, a subject that is outside the scope of this Perspective.
While few experimental studies aimed at addressing fluctuation
effects in polymer blends have been carried out,76,77 many
important questions such as the existence of the spinodal have
not been addressed by experiments. Qin and Morse78 used this
approach to predict that the critical temperature (for symmetric
polymer blends) is suppressed by concentration fluctuations in
accordance with the following equation:

χ = + −N N2 3.7 1/2
(46)

Strictly speaking, N on the right-hand side of eq 46 (and eq 47)
should be replaced by Nv0

2/a6, where a is the average statistical
segment length of the two polymers. As discussed above, we have
chosen v0 is such that v0

2/a6 is approximately unity for a number
of polymers.60 In 2016, Spencer and Matsen tested this theory
by detailed computer simulations.79 This paper provides an

excellent overview of attempts to address the issue of con-
centration fluctuations and critical behavior in polymer blends.
Included in this work is careful consideration of the relationship
between the intermonomer interactions used in simulations and
χ measured by experimentalists. They obtained

χ = + −N N2 0.79 1/2
(47)

The correction to the Flory−Huggins theory is so small that for
practical N values they recommend using the mean-field theory
for interpreting experiments. For example, for N = 1000 (typical
value used in the blends reported in Figure 10), Spencer and
Matsen obtain χN = 2.025 instead of 2.0. An additional fact that
is reported in ref 79 is that the scattering from polymer blends is
indistinguishable from predictions of de Gennes. It is perhaps
noteworthy that the most recent study of fluctuation corrections
in 2016 takes us back to Flory, Huggins, and de Gennes.

■ CONCLUDING REMARKS

Our understanding of phase behavior of polymer solutions and
blends has grown steadily since the development of the Flory−
Huggins theory in 1942.1−3 The theory contains one parameter,
χ, that must be determined experimentally. In the early days, χ
was determined by fitting the experimentally observed phase
behavior to theory. In 1970, de Gennes demonstrated that χ
could be determined from measurements of scattering from
concentration fluctuations in homogeneous mixtures.5 While the
theory can be applied to any mixture containing flexible chains,59

it has mainly been used to determine χ in polymer blends. It also
presented the community with a new and powerful framework
for modeling the thermodynamics of more complex polymer
systems such as block copolymers.80

Mean-field theories are based on the assumption that χ is
independent of chain length and mixture composition. Experi-
mentally, we find this is the exception rather than the rule.
In most systems studied thus far, the experimentally determined
χ parameter is found to vary as chain length and composition are
varied. While there is little doubt that the Flory−Huggins theory
is an appropriate starting point, there is no consensus on how to
improve upon it. The reasons for departure from Flory−Huggins
theory must be nonuniversal as there is at least one system
wherein the measured χ follows the Flory−Huggins stipulation.
In cases where departures are evident, e.g., PEO/H2O, different
researchers have proposed different hypotheses that are all
consistent with experimentally determined phase behavior. Since
the unanswered questions are related to monomer-level mixing
effects, probing the local structure of mixtures using approaches
such as wide-angle X-ray scattering, nuclear magnetic resonance,
and X-ray absorption spectroscopy may be useful for deter-
mining the underlying reason for departure from Flory−Huggins
theory. Traditional methods for studying the thermodynamics
of polymer blends (those that have been the focus of this
Perspective) are not sensitive to monomer-level structure.
Independent measurements of thermodynamic functions that
affect ΔG such as ΔV, ΔS, ΔCp, and ΔH will also help dis-
criminate between different theoretical frameworks that predict
similar values of χ.
While we have focused on mixtures of polymers and low

molecular weight solvents, there is a growing interest inmixtures of
polymers and a new kind of additive: salt. One might think of salt
as a “solvent” that can dissociate into oppositely charged species or
cluster. Accounting for Coulombic interactions81 led to effects that
are qualitatively different from those discussed in this Perspective.
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