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City-wide traffic control: modeling impacts of cordon queues

Wei Ni∗1 and Michael J. Cassidy†1

1Department of Civil and Environmental Engineering, University of California, Berkeley

Abstract

Optimal cordon-metering rates are obtained using Macroscopic Fundamental Diagrams in com-
bination with flow conservation laws. A model-predictive control algorithm is also used so that
time-varying metering rates are generated based on their forecasted impacts. Our scalable algo-
rithm can do this for an arbitrary number of cordoned neighborhoods within a city. Unlike its
predecessors, the proposed model accounts for the constraining effects that cordon queues impose
on a neighborhood’s circulating traffic. It does so at every time step by approximating a neighbor-
hood’s street space occupied by cordon queues, and re-scaling the MFD downward to describe the
state of circulating traffic that results. The model is also unique in that it differentiates between
saturated and under-saturated cordon-metering operations. Computer simulations show that these
enhancements can substantially improve the predictions of both, the trip completion rates in a
neighborhood and the rates that vehicles cross metered cordons. Optimal metering policies gener-
ated as a result are similarly shown to do a better job in reducing the Vehicle Hours Traveled in
a city. The VHT reductions stemming from the proposed model and from its predecessors differed
by as much as 18%.

1 Introduction

A sizable literature exists on the re-timing of traffic signals to meter inflows to cordoned neighbor-
hoods; eg, see [1–6] . In some of those efforts, metering rates were optimized using Macroscopic
Fundamental Diagrams (MFDs) in combination with flow conservation laws [4–6]. The works have
produced what we will call Neighborhood Transmission Models.

These NTMs separately estimate a neighborhood’s time-varying accumulations of vehicles that
are bound for destinations residing in that same neighborhood, and in each of the other neighbor-
hoods within a city. The original NTM in [4, 5] has a hidden problem regarding trips of the latter
(i.e inter-neighborhood) kind. When cordon metering substantially delays vehicles from crossing
from one neighborhood to another, those vehicles are returned to their neighborhood’s circulating
traffic for another go at the boundary. They start from scratch as if previous attempts at boundary
crossings had not just occurred.

∗weini@berkeley.edu
†cassidy@ce.berkeley.edu
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Figure 1: Cordon queues and MFD

Recent work in [6] has addressed this deficiency by differentiating a neighborhood’s accumula-
tions of circulating vehicles from those queued at its metered cordons; see the example in Fig.1(a).
Though a notable advancement, this more discriminating NTM ignores constraining effects that
a neighborhood’s cordon queues can impose on its circulating vehicles; i.e. the model does not
recognize that the street space occupied by those (possibly lengthy) queues can diminish the neigh-
borhood’s capacity to serve the rest of its traffic. Of further concern, the model in [6] assumes that
metered green times are always saturated by inflows; i.e. it ignores the possibility of under-saturated
metering owing to shorter-lengthed cordon queues. The solution in [6], moreover, furnished optimal
cordon-metering rates for two neighborhoods only. Finally, the discriminating NTM was tested only
for internal consistency; i.e. its analytical solutions were compared against numerical ones generated
by the very same (macro-level) model.

The present paper offers enhancements. The most important of these captures the impact
of cordon queues on network capacity by adaptively re-scaling a neighborhood’s MFD. Another
enhancement enables the modeling of both saturated and under-saturated cordon-metering opera-
tions. Moreover, we use a scalable, model-predictive control algorithm that can optimize metering
rates for an arbitrary number of cordoned neighborhoods. Finally, the proposed NTM and its
predecessors are tested using the AIMSUN micro-level traffic simulation model [7]. It furnished the
closest approximations to ground truth available to us.

The simulations show that our proposed NTM better predicts the rates that vehicles both, cross
metered cordons and complete their trips as compared against predictions from the earlier models
in [4–6]. These improved predictions produce, in turn, optimal cordon-metering rates that do a
better job of reducing the vehicle-hours traveled in a city. Improvements can be sizable, as will be
shown in due course.

Simulations also show that inputs needed by the proposed NTM can be collected from the
information systems onboard connected vehicles, even when the penetration rate of those special
vehicles is small. As a final aside, simulations show that optimal metering rates tend to alternate
over time between one that is highly relaxed, and another that is highly restrictive. This finding is
important because it lends credibility to a key assumption in our model, as will be explained.
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2 Background

The logic behind the NTMs in [4–6] are now reviewed and critiqued in greater depth. For each
model in that family, the vehicle accumulation in a neighborhood i at time t, ni(t), is assumed
to be a measurable input. It is used with an MFD to obtain i’s total flow, fi(ni), as illustrated
in Fig.1(b). Recall from sec.1 that the ni(t) is composed of i’s accumulations of vehicles bound
for neighborhood j, nij(t), and those bound for destinations within i itself, nii(t). How one might
disentangle these more disaggregate accumulations from the ni(t) is not clear from the literature.
We will assume that in the near future, the information available from connected vehicles in the

traffic mix can be used to sample the
nij(t)
ni(t)

and nii(t)
ni(t)

, and to estimate other inputs described in
due course.

2.1 Original Model

To see how the earliest NTM in [4, 5] incorporated flow conservation laws, denote Lij as the average

distance that vehicles in i must travel to reach i’s boundary with j.1 Thus, fi(ni(t))
Lij

· nij(t)
ni(t)

is the rate

that i’s vehicles bound for j reach that boundary. The product of that rate and the fraction that can
cross the boundary when it is metered, uij(t) ∈ [umin, umax], gives the rate that j-bound vehicles
exit i for j ̸= i.2 Subtracting this boundary-crossing rate from λij(t), the inter-neighborhood
demand generated in i, enables the updating of these nij at each time step of duration τ ; i.e.

nij(t+ τ)− nij(t) = τ · [−fi(ni(t))

Lij
· nij(t)

ni(t)
· uij(t) + λij(t)]. (2.1)

The nii are similarly updated by considering the intra-neighborhood demand generated in i, λii(t),
the trip completion rate in i, and the inflows that were allowed to cross into i from j; i.e.

nii(t+ τ)− nii(t) = τ · [−fi(ni(t))

Lii
· nii(t)

ni(t)
+ λii(t) +

∑
j ̸=i

fi(nj)

Lji
· nji(t)

nj(t)
· uji(t)], (2.2)

where Lii is the average distance that intra-neighborhood vehicles travel in i.
The problem arises when metering delays vehicles that are queued and ready to cross the cordon

beyond duration τ . Note that (2.1) and (2.2) have no mechanism to carry-over those queued vehicles
into the next time step. They return instead to the nij , and are then assumed to be confronted
(again!) by the distance Lij that separates them from the cordon that they had just failed to cross.

These artificial additions to a neighborhood’s circulating traffic can constrain its trip comple-
tions. And sending back queued vehicles can artificially starve a cordon line of flow if the metering
there is suddenly relaxed.

2.2 More Discriminating Model

As noted in sec.1, the problem was addressed in [6] by decomposing the nij(t) into its accumulations
of circulating vehicles, nc,ij(t), and of vehicles queued at its cordon, nq,ij(t), such that nij(t) =

1The Lij can be estimated knowing the physical size of neighborhood i.
2One might reasonably designate umax to be 1, to describe the flow that can enter the cordon when the traffic

signals are not re-timed to function as meters. One might impose a lower bound umin to be greater than zero, to
avoid the ire of j-bound drivers.
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nc,ij(t)+nq,ij(t). For convenience, denote i’s total accumulations of circulating and cordon-queued
vehicles as nc,i(t) =

∑
j nc,ij(t) and nq,i(t) =

∑
j nq,ij(t), respectively. This more discriminating

NTM can therefore be formulated as

nc,ii(t+ τ)− nc,ii(t) = τ · [−fi(nc,i(t))

Lii
· nc,ii(t)

nc,i(t)
+ λii(t) +

∑
j

Cji · uji(t)] (2.3)

nc,ij(t+ τ)− nc,ij(t) = τ · [−fi(nc,i(t))

Lij
· nc,ij(t)

nc,i(t)
+ λij(t)] (2.4)

nq,ij(t+ τ)− nq,ij(t) = τ · [−Cij · uij(t) +
fi(nc,i(t))

Lij
· nc,ij(t)

nc,i(t)
], (2.5)

where C denotes the unmetered capacity at the cordon separating one neighborhood from another.
Equation (2.5) means that a cordon’s residual queues are carried-over from on time step to the

next. Moreover, the inclusion of C in (2.3) and (2.5) remedies any underestimates of cordon-crossing
rates that might otherwise occur should metering abruptly relax.

New concerns emerge, however. Note from (2.3) and (2.4) how vehicle flow in i, fi(nc,i(t)), is
solely a function of its circulating accumulation. The constraining effect that cordon queues can
impose on circulating flows is not considered. Further note how the inclusion of C in (2.3) and
(2.5) assumes that metered green times are always saturated by inflows.

Of further interest, the solution furnished in [6] was an analytical one. Though an impressive
achievement, the approach limited the NTM’s application to scenarios involving only two neigh-
borhoods in a city. As noted in sec.1, moreover, the analytical solutions were tested only against
numerical ones from that same (more discriminating) model. Those tests showed the analytical
solutions to be consistent with numerical ones, but say nothing about the model’s physical realism.

3 Proposed NTM

The model now proposed recognizes that a neighborhood’s circulating flows are functions of its
accumulations of both, the circulating and the cordon-queued vehicles, nc and nq. We model the
influence of nq in a simple way as will be explained momentarily. To support our simple approach,
we will show that an optimal cordon-control scheme is of bang-singular type, but entails bang-bang
control almost everywhere in the system state space. This means that optimal metering along a
cordon tends to alternate over time between fully relaxed and highly restrictive rates.3

The implication is that cordon queues that grow long enough to constrain circulating traffic
will tend to be dense. This should be the case whether bang-bang control switches frequently or
infrequently between extreme metering rates.

Consider, for example, the cordon queues that persist during prolonged periods of very re-
strictive metering. Those queues will be dense in their own right, and can only grow denser by
expanding and coalescing with queues created by other traffic signals nearby. If the queues that
formed during extended periods of fully-relaxed metering were to grow long, their coalescence with
other queues could make them dense as well. Or, if control switches frequently between relaxed and
restrictive rates, recovery waves can be halted if and when they arrive at upstream signals during
their red phases. Queues on the upstream links would remain jammed for the remainders of those
reds, and possibly beyond if turning vehicles create queues downstream; see [8].

3Theoretical derivations are presented in Appendix A, and experimental support is furnished in sec.5.
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Figure 2: Re-scaled MFD and implication on circulating speed

We exaggerate the above considerations and assume that cordon queues exhibit jam densities at
all times. The assumption enables a rescaling downward of a neighborhood’s MFD. The re-scaled
version approximates the neighborhood’s states of circulating traffic (only) that result from the
street space lost in storing cordon queues. The approximations are clearly based on lower-bound
estimates of the lost street space: vehicles in less-than-jammed traffic exhibit larger-than-jammed
spacings, and thus collectively occupy greater space. Still, our lower-bound estimates will capture
at least some of the constraining effects that cordon queues impose on neighborhood circulation,
and are improvements over ignoring the efforts entirely as in [4–6]. The point will be illustrated in
sec.5. Details of the MFD re-scaling are furnished below.

3.1 Modeling Cordon-Queue Impacts

With the assumption of jammed cordon queues, the maximum accumulation of circulating vehicles
that a neighborhood can store becomes nm − nq; i.e. the neighborhood’s vehicle-storage capacity,
nm, is diminished by the factor (1− nq

nm
), as shown in Fig.2(a). That same multiplicative factor ap-

plied to fm, the neighborhood’s maximum possible flow, gives the capacity available for circulating
flows. The assumption here is only that the neighborhood’s capacity to circulate traffic diminishes
in proportion to its street space given to cordon queues.

Capturing the constraining effect that those queues exert on circulating speeds would require
adjustments using the same factor. Hence, the neighborhood’s average circulating speed is given
by f( nc

1− nq
nm

) · ( nc

1− nq
nm

)−1, as exemplified by the slope of the chord in Fig.2(b). The product of this

speed and nc is the neighborhood’s circulating flow. That flow for neighborhood i is therefore

f̄i(nc, nq) = f(
nc

1− nq

nm

) · (1− nq

nm
), (3.1)

as given by a re-scaled MFD, like the dashed ones in Figs.2(a) and 2(b).
Recall that (3.1) represents a departure from the logic behind the original NTM [4, 5], which

assumes that circulating flows f(n) = f(nq+nc), as if vehicles in the nq were themselves circulating.
The proposed logic is likewise different from that of the discriminating NTM [6], which ignores the
influence of nq by assuming f(n) = f(nc). The proposed re-scaling can, of course, occur in every
time step.
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3.2 Saturated vs Under-Saturated Metering and Model Formulation

Denote as dij(t) the number of vehicles to cross a cordon from i to j during time window [t, t+ τ ].
Unlike [6], we do not assume that dij(t) always equals Cij · uij(t) · τ , as if the meters were always
saturated. When cordon queues are sufficiently short, dij(t) is instead the sum of the nq,ij(t),
the cordon’s queued vehicles present at the start of the time window, and the inter-neighborhood
vehicles to arrive at the cordon during duration τ . Hence,

dij(t) = min{Cij · uij(t) · τ, nq,ij(t) + τ · f̄i(nc,i(t), nq,i(t))

Lij
· nc,ij(t)

nc,i(t)
}. (3.2)

The formulation for the proposed NTM is thus

nc,ii(t+ τ)− nc,ii(t) = τ · [− f̄i(nc,i(t), nq,i(t))

Lii
· nc,ii(t)

nc,i(t)
+ λii(t)] +

∑
j

dji(t) (3.3)

nc,ij(t+ τ)− nc,ij(t) = τ · [− f̄i(nc,i(t), nq,i(t))

Lij
· nc,ij(t)

nc,i(t)
+ λij(t)] (3.4)

nq,ij(t+ τ)− nq,ij(t) = −dij(t) + τ · f̄i(nc,i(t), nq,i(t))

Lij
· nc,ij(t)

nc,i(t)
. (3.5)

3.3 Theoretical Insights

Comparisons between the proposed NTM and its predecessors support earlier remarks regarding
model predictions of trip-completion rate. We start by comparing the proposed NTM with the
original in [4, 5]. To that end, we note that

f̄i(nc,i(t), nq,i(t))

nc,i(t)
≥ fi(nc,i(t) + nq,i(t))

nc,i(t) + nq,i(t)
, (3.6)

which indicates that an average circulating speed predicted for a certain scenario by the proposed
model tends to exceed that predicted by the original one. Example speeds labeled v1 and v2 in
Fig.3 illustrate a case in point.

General verification of (3.6) comes by expanding its left-side as

f̄i(nc,i(t), nq,i(t))

nc,i(t)
= f(

nc,i(t)

1− nq,i(t)/nm
) · 1− nq,i(t)/nm

nc,i(t)
, (3.7)

6



so that the expansion has the form g(x) = f(x)/x. The function g(x) is non-increasing because

g
′
(x) =

f
′
(x) · x− f(x)

x2
=

1

x3
(f

′
(x)− f(x)− f(0)

x− 0
) ≤ 0, (3.8)

where the inequality in (3.8) holds because f is concave and f(0) = 0. With function g, (3.6)
becomes

g(
nc,i(t)

1− nq,i(t)/nm
) ≥ g(nc,i(t) + nq,i(t)). (3.9)

As regards the left-side of (3.9), it can be shown that

nc,i(t)

1− nq,i(t)/nm
= nc,i(t) + nq,i(t) ·

nc,i(t)

nm − nq,i(t)
, (3.10)

which cannot exceed the right-side argument of (3.9), nc,i(t) + nq,i(t). Hence, (3.9) holds knowing
that g is non-increasing. Equation (3.6) therefore holds as well.

Having thus verified (3.6), we can expand both sides of that inequality as

f̄i(nc,i(t), nq,i(t))

Lii
· nc,ii(t)

nc,i(t)
≥ fi(nc,i(t) + nq,i(t))

Lii
· nc,ii(t)

nc,i(t) + nq,i(t)
, (3.11)

which indicates that trip-completion rates predicted by the proposed NTM tend to exceed those
predicted by the original model. As noted, the latter’s artificial inclusion of nq,i(t) in circulating
traffic tends to damp trip completions.

Comparing predictions between the proposed NTM and the discriminating one in [6] tells a
different story. To that end, we note that

f̄i(nc,i(t), nq,i(t))

fi(nc,i(t))
≤ 1, (3.12)

as is clear from the example data points labeled “1” and “3” in Fig.3. Thus,

f̄i(nc,i(t), nq,i(t))

Lii
· nc,ii(t)

nc,i(t)
≤ fi(nc,i(t))

Lii
· nc,ii(t)

nc,i(t)
, (3.13)

which indicates that trip-completion rates predicted by the proposed NTM tend to be smaller than
those predicted by the discriminating model in [6]. As noted, the latter’s failure to account for
constraining effects of cordon queues can result in overly-optimistic predictions of trip completion.

We have also noted how the original model [4, 5] and its more discriminating counterpart [6] may
in some circumstances under- and over-estimate cordon-crossing rates, respectively. Experimental
evidence in support of all these theoretical insights is furnished in sec.5.

4 Control

As in [4–6], we seek u⋆ij(t), the optimal metering action to manage cordon crossings from i to j so
as to minimize vehicle-hours traveled (VHT) on a network. And like those previous works, we do
so assuming that trip-making demand, λij(t), is given. We discretize the entire control period into

7



small time steps of duration τ , and obtain numerical solutions using model-predictive control with
a rolling horizon of H steps. Denoting the start of each planning horizon as t = t0, our objective
function for each horizon takes the form

minu

∑
1≤h≤H

∑
i,j

nq,ij(t0 + h · τ) + nc,ij(t0 + h · τ), (4.1)

where system dynamics are constrained by (3.3)-(3.5), and accumulations at t0 are estimated as
described below.

4.1 Initial System States

Denote as α the penetration of connected vehicles in the traffic mix, since their onboard systems
can provide needed inputs. At the start of every planning horizon,

nc,ij(t0) + nq,ij(t0) =
K

α
(4.2)

if at that t0 there are K connected vehicles in i observed heading for j. Assume for simplicity that
nq,ij(t0) need travel no distance to reach i’s boundary with j. It is easy to show that

nc,ij(t0) =

∑
k lk(t0)

α · Lij
(4.3)

nq,ij(t0) =
K

α
−

∑
k lk(t0)

α · Lij
, (4.4)

where lk(t0) is the distance that connected vehicle k must travel at time t0 to reach the boundary,
as measured by that vehicle.

4.2 Numerical Solution

The dimensions of an NTM system increase quadratically with the number of cordoned neigh-
borhoods. Analytical solutions for an arbitrary number of neighborhoods therefore seem out of
reach.4

We turned to a numerical method instead. Rather than directly solving the non-linear problem
using a single-shooting method as in [4] and [5], we sought a more efficient approach that is scalable
with problem size.5 Hence we chose the iterative Linear Quadratic Regulator (iLQR) method [9],
along with several improvements to the regularization and line-search aspects of the algorithm
developed in [10]. Details of this algorithm and brief discussion of why it suits our problem so well
are furnished in Appendix B.

4Recall that the analytical solution furnished in [6] was for two neighborhoods (only).
5The single-shooting method was also used in [6] to verify the analytical solutions furnished there.
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5 Numerical Analysis
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Figure 4: Test inputs

Tests of the proposed NTM and its predecessors entailed use of the AIMSUN software [7] to simulate
traffic on a signalized network of 14x14 two-way streets. Each street segment was 200m long, with
2 lanes in each travel direction. The network was cordoned into four equally-sized neighborhoods
labeled A-D in Fig.4(a).

Demands for the O-Ds (shown with arrows in Fig.4(a)) each took the time-varying pattern
shown in Fig.4(b).6 Rates varied across tests as will be described in due course, but were always
set so that all trips were completed within each test’s 3-h period. All (simulated) drivers received
traffic updates at 5-min intervals, and responded by altering their routes as per the model in [7].
The penetration of connected vehicles, α, was set at just 5%.

5.1 Predictive Strengths

The following illustrates how the proposed NTM can produce improved estimates of neighborhood
traffic conditions. Initial demand for each O-D was set at 8,000 vph. Cordon queues were created in
the early going by restrictively metering the collective crossings from neighborhood A to B at 1,500
vph. The metering occurred from minute 5 to 35 of the simulated test. No other cordon-control
actions were taken.

Figure 5(a) presents trip-completion rates in A as predicted by: (i) the original NTM in [4, 5]; (ii)
the more discriminating NTM in [6]; and (iii) the proposed model. “Ground-truth” rates generated
by AIMSUN are shown as well. Visual inspection of Fig.5(a) clearly shows that predictions from
the proposed NTM fit the ground-truth data best.7

In contrast, the original NTM [4, 5] underestimated rates in the early going, when A’s cordon
queues were lengthiest. The queued vehicles that were sent back into A’s circulating traffic seem
indeed to have artificially constrained trip completions. The discriminating NTM [6] overestimated
rates toward the middle of the test, which is when circulating traffic entered the congested regime.

6Each trip crossed no more than one cordon line to avoid the complications of modeling the driver route-choice
behavior involved in touring three or more neighborhoods.

7Comparing predictions from the proposed model against ground truth produces a root-mean-square error of 7.7
vehicles/min. This is substantially smaller than the RMSEs of 20.5 vehicles/min and 14.7 vehicles/min produced by
the original and the discriminating NTMs, respectively.
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Overestimates occurred because that model failed to account for any of the network capacity lost
in storing cordon queues.
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(b) Cordon-crossing flows from A to B

Figure 5: Predictive strengths of different NTMs

We turn now to the time-varying rates at which vehicles crossed the cordon when traveling
from A to B. Figure 5(b) presents these predictions made by the proposed NTM and by its
predecessors, as well as the simulated ground-truth rates. Note from the latter how cross-cordon
flows: fell during the 30-mins of restrictive metering; rebounded when metering was discontinued;
and gradually dropped thereafter when cordon queues (and demand) diminished. Note too that
the proposed NTM matches that pattern best.8

The original NTM underestimated cross-cordon flows during the hour that followed metering’s
deactivation. Because that model sent back vehicles that were queued at the cordon, they were
not on the scene when opportunity came to saturate the cordon. The more discriminating NTM
overestimated cordon crossings late in the test. The model mistakenly assumed that flows from A
to B still saturated the cordon after queues and demand had dissipated.

5.2 Control Outcomes

Our NTM’s enhanced predictions lead to improved cordon-control policies. To demonstrate, initial
demand was increased to 20,000 vph for each O-D pair bound for A, and was lowered to 5,000
vph for each remaining O-D. All inter-neighborhood trips were subject to cordon metering. As
per the reasoning in footnote 2, the control variable, uij , was constrained in [0.33,1.0], which are
expressed as ratios of the metering rate to the cordon’s unmetered capacity. Optimal values, u⋆ij ,
were separately obtained from the proposed NTM and from its predecessors. To facilitate fair
comparisons: the u⋆ij(t) were in all cases selected using the iLQR method with a rolling horizon of

H = 20 steps, each of duration τ = 5 mins;9 and the resulting time-varying accumulations over
the network were always generated using AIMSUN. Outcomes for the entire network are shown in
Fig.6, along with a fourth curve for the do-nothing (no metering) case. Each curve is the average
of five simulations with distinct random seeds.

8Predictions from the proposed model produced an RMSE of 12.3 vehicles/min. The RMSEs for the original and
the discriminating NTMs were 35.1 vehicles/min and 77.3 vehicles/min, respectively.

9At each control step, the iLQR method always converged within 10 iterations. Computation time for each step
was about 5 seconds on an Intel i7-4770 CPU @ 3.4GHz. The algorithm was implemented in Python with Numpy
and Tensorflow.
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The proposed NTM wins again. It reduced VHT on the network (the area under a curve)
by nearly 15% relative to the do-nothing strategy. The original NTM reduced VHT by only 3%.
Network VHT increased by 3% under the more discriminating model. Hence, the proposed model
saved 12% more VHT than did the original one, and 18% more than did the discriminating one.

To explain these outcomes, we examine the optimal metering actions imposed on vehicles trav-
eling from B to A, u⋆BA(t). The values selected by the proposed NTM and its predecessors are
shown in Fig.7. Note that in all cases, the controller alternated between the minimum and maxi-
mum values allowed, umin = 0.33 and umax = 1.0. The outcome supports the theoretical analysis
in Appendix A indicating that bang-bang metering tends to be dominant over a control period.
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Figure 6: Network-wide vehicle accumulation over time

Note by comparing Fig.7(a) with its counterparts, how the original NTM [4, 5] selected umin

sparingly relative to the other models; i.e. umin was deployed under the original model only twice,
and only for brief periods during the 3-h test. By underestimating cordon-crossing rates (as we saw
in Fig.5(b)), the original NTM overestimated metering’s negative impacts. It therefore selected a
metering policy that was quite relaxed. This is why its resulting network accumulations so closely
resemble the do-nothing strategy, as evident in Fig.6.

The control policy generated by the more discriminating NTM [6] is once again a different
story. By ignoring the constraining effects of cordon queues and assuming that meters were always
saturated, that model underestimated metering’s negative impacts. Its selected control policy was
therefore a very restrictive one. Note from Fig.7(b) how most of the test period was metered at
umin and how that restrictive control was twice deployed for relatively extended durations. This
aggressive control slowed the network’s eventual recovery. Note how the dot-dash curve in Fig.6
lies above its thin-solid (do-nothing) counterpart during the test’s final hour or so.

The proposed NTM generated the metering pattern in Fig.7(c). This more effective policy
is a kind-of compromise between those of its predecessors; i.e. note how the pattern in Fig.7(c)
alternates more frequently between umin and umax, and how the former tends to be deployed for
durations that fall between those selected using the other models.
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(c) Proposed NTM

Figure 7: Control actions for vehicles crossing from B to A

6 Summary and Future Research

Like the others of its kind, the Neighborhood Transmission Model presently proposed addresses the
cordon-control problem on large geographic scales. Like its most recent predecessor [6], our NTM
treats a neighborhood’s circulating vehicles differently from those queued at its cordon. Unlike
other NTMs, however, ours approximately accounts for the time-varying street space occupied by
cordon queues, and models the attendant effects on circulating traffic. This is done by re-scaling
the neighborhood’s MFD with the assumption that cordon queues always exhibit jam densities.

The assumption is supported to some degree by our theoretical finding that an optimal meter-
ing strategy entails bang-singular control, which includes very restrictive metering; see Appendix
A. Experimental support for this finding is furnished from simulations. The simulations further
indicate that the proposed NTM does a better job of predicting neighborhood traffic dynamics than
do its predecessors, and that this leads to more effective cordon-metering policies. Policies were
obtained by discritizing system dynamics into small time steps and applying the iLQR method to
solve a rolling-horizon optimization. The method scales linearly with the number of variables (see
Appendix B), and always converged in relatively few iterations (see again footnote 7).

Inputs needed at the start of each planning horizon may in the future come from connected
vehicles. Our estimation methods that stemmed from this were a bit coarse, particularly the
assumption that vehicles in a cordon queue need travel zero distance to reach the cordon line.
Since the assumption will be subject to greater error as the queue lengths expand at cordons,
future research might seek to refine the present estimates. Perhaps refinements will come by further
coupling estimates with real-time measurements.

It is further worth noting that the proposed NTM implicitly assumes that inter-neighborhood-
bound vehicles evenly distribute themselves across a cordon. This may be reasonable when drivers
can readily adjust their routes in response to cordon queues. Still, our ongoing research on the
subject indicates that network performance can often be improved by varying metering rates along
a cordon line, in part to balance queue lengths there.

Finally, the proposed NTM assumes that the partitioning of neighborhoods occurs in static and
a priori fashion. Our ongoing work in this realm suggests that there is merit in adapting cordon
sizes and locations in real time, to accommodate a city’s evolving congestion patterns.
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Appendix A: “Bang-Singular” control

We show that the optimal control action, u⋆, is “bang-singular” type by re-writing the discrete
optimization problem of (4.1) in continuous fashion.10 Thus,∫ t0+Hτ

t0

1Tndt

s.t. ṅ = λ+ f(n) + g(n,u)

u ∈ [0, 1],

where n is the vector of [...nc,ij ...nq,ij ...]; u is the vector of [...uc,ij ...uq,ij ...]; λ is traffic demand;
function f is the uncontrolled part of the system dynamics; and function g represents the cordon-
crossing flows.

Thanks to the special form of g(n,u), we can rewrite the problem as follows:∫ t0+Hτ

t0

1Tndt

s.t. ṅ = λ+ f(n) +A · u
u ∈ [umin(n), umax(n)],

where we transform function g(n,u) into A · u and state-dependent control bounds umax(n) and
umin(n).

The Hamiltonian of the system is:

H(n,u,p, t) = pT (λ+ f(n) +A · u) + 1Tn

∇uH(n,u,p, t) = AT · p,

where p is the costate vector. Proof that the optimal control action, u⋆, is “bang-singular” is now
straightforward because our system is linear in the control variables and the objective function does
not involve those variables. If the coefficient in AT · p is nonzero, use of Pontryagin’s maximum
principle shows that the corresponding control is bang-bang. If any one of the coefficients in AT ·p
equals zero for a non-zero time interval, the corresponding control is of singular type, meaning that
for a time control is not extreme. (We note for future reference that when undergoing control, the
system trajectory is called a singular arc.) Now suppose (AT ·p)i = 0 for a non-zero time interval,
i.e. the i-th coefficient equals zero and ui is of singular type. Consider the costate equation

−ṗT = ∇nH(n,u,p, t) = pT · ∇nf + 1T ,

and multiply both sides by A, such that

−ṗTA = pT · ∇nf ·A+ 1T ·A.

Since (ṗT ·A)i = 0 and 1T ·A = 0, we have

(pT · ∇nf ·A)i = 0,

10The continuous formulation is, of course, roughly equivalent to the discrete version when time-step duration, τ ,
is small.
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which, together with (AT · p)i = 0, constrain the singular arc in a zero-measure subset of the
system state space. Since our use of model-predictive control optimizes the system trajectory at
each step but only applies the first control action, the observed initial system state at each time
step has near-zero probability of lying exactly on these singular arcs. In the unlikely event that
a state did lie on the singular arcs, measurement noise and prediction errors from the embedded
dynamic model would soon cause the state to drift from singular control. Optimal control therefore
tends almost always to be “bang-bang”, which explains why we did not see singular control in our
numerical results.

Appendix B: Iterative LQR algorithm

The following algorithm is adopted from [9, 10]. Consider the trajectory optimization problem

minU lf (xN ) +
∑

1≤i<N

l(xi, ui)

s.t. xi+1 = f(xi, ui), ∀1 ≤ i < N,

where x is the system state; u is the control variable; f is the system dynamic; l is the cost function;
and lf is the terminal state cost. By defining Ui = {ui, ui+1, ...uN−1}, the cost to go function J is
defined as

Ji(xi, Ui) =
∑

i≤j≤N−1

l(xj , uj) + lf (xN ).

The value function is defined by V (xi, i) = minUiJi(xi, Ui), which has the recursive form

V (xi, i) = minui [l(xi, ui) + V (f(xi, ui), i+ 1)].

The Q function is defined as

Q(xi, ui) = l(xi, ui) + V (f(xi, ui), i+ 1).

With all the above definitions, the iLQR algorithm first initializes a random control sequence U and
then alternatively performs a “backward pass” and a “forward pass” to improve U until convergence.

The backward pass is done as follows:

Qx = lx + fT
x V

′
x

Qu = lu + fT
u V

′
x

Qxx = lxx + fT
x (V

′
xx + µIn)fx

Quu = luu + fT
u (V

′
xx + µIn)fu

Qux = lux + fT
u (V

′
xx + µIn)fx

k = −Q−1
uuQu

K = −Q−1
uuQux

∆V (i) =
1

2
kTQuuk + kTQu

Vx(i) = Qx +KTQuuk +KTQu +QT
uxk

Vxx(i) = Qxx +KTQuuK +KTQux +QT
uxK,
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where µ is a regularization factor. Note that in our application, lxx, luu, lux, lu are all zeros, i.e. no
direct hessian matrix computation is involved, which can save considerable computation time and
makes the iLQR algorithm ideal for our application.

The forward pass to update the trajectory (x̂, ŷ, i) is:

û(i) = u(i) + βk(i) +K(i)(x̂(i)− x(i))

x̂(i+ 1) = f(x̂(i), û(i))

x̂(1) = x(1);

where β is the step size found by line-search. The iLQR algorithm repeats the backward and
forward passes alternatively until the trajectory converges.
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