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The Shape-Driven,Graphical Unitary Group Approach to Large-Scale

Configquration Interaction Calculations

By

Paul William Saxe

Lawrence Berkeley Laboratory, University of California
Berkeley, California 94720

Abstract

A new algorithm has been developed for large-scale configuration
interaction (CI) calculations.. This new approach, called the Shape-
Driven Graphical Unitarvarpup Approach (SDGUGA); was designed to
overcome some of the éefects inherent in the previous Locp—Dfiven
Approach (LDGUGA). Tﬁe_Shape—Driven,Approach leads to a direct CI
program based on the-simplification of the external space for
calculations involving only single and double excitations from a
multi-reference configuration set. By exploiting the shapes of the
external portions of loops on the Shavitt graph as well as the
tremendods structure implicit in the unitary group approach, the
constfuction of Hamiltonian matrix elements is»réduced to an
insignificant portion of a calculation. Therefore, programs based
on the SDGUGA are conéiderably more efficient than pfevious programs.

This efficiency is the key to the success of the direct CI
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‘formulation, and also allows the coﬁputation to be restructured so
- that the entire CT and correction vectors need not be held in the.
central memory of the computer. The Shape-Driveg Approach is the
first CI method capable of extremely large, general CI calculations.
This ability is éemonstrated by various calculations, including
one calculation with a 703 configuration reference state and over
one millian configurations in the CI expansion. The present
algorithm is also shown to be well suited to a vector coﬁputer

such as the CRAY.
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I.  INTRODUCTION

Ab initio quantum chemistry is the attempt to investigate
chemical problems without recourse to experimen;al data, apart
from fundamental physical constants such as the speed of light.
In principle, by solving the Schroedinger equation or the
relativistic counterpart§ such as the Dirac equation, one can
obtain an exact knowledge of the potential energy hypersurface of
a chemical system, from which it would appear that almost all of
chemistry_can be.undefstood‘ While it is difficult to know
absolutely if such equations accufately model nature, there is a
large body of evidence to suggest that fof all practical purposes,
they are_sufficient.-

The Schroedinger equation, however, can only be analytically

solved for a few systems. For molecules and atoms, only the one-

electron atoms lead to soluble equations. For a:molecule such as.
water or methane, the exact solutions c¢annot be found, so the

task of the quantum chemist is to find approximate solutions of
sufficient accuracy to answer chemical pr§blems. Several
approximations are commeonly made in such calculations. Each will
be commented on in turn, and they will be. arbitrarily grouped into

two classes: those in which the physical model is modified and

‘those involving truncations of mathematical expansions.
) _

The first class of approximations are based on physical
intuition and will result in solutions which must differ from the

true solution of the problem. The first approximation of this



sort which is made is the use of thé nonrelativistic Schroedinger
equation. The bulk of quantum chemical calculations to date involve
such relatively light elements as carbon and hydrogen for which the
relativistic effects are expected to Se relatively insignificantl.
For this reason, the starting point of most calculations has been
the Schroedinger equation, often with no comment about the tacit
assumption. In heavier atoms, where the relativistic effects are
no longer small, they can either be treated as a perturbation,
using a Pauli-Breit Hamiltonian,2 for instance; or the Dirac
equation can be used, leading to Dirac4H$rtree-Fock3 procedures.
A second ﬁajor approximation made is the Born-Oppenheimer
or fixed-nucleus approximation,4 For a molecule of more than one
atom, it is a formidable problem to solve for the simultaneous
motion of the electrons and nuclei. Sinéé the electrons.are much
less massive than the nuclei and therefore move much faster, it
is reascnable to assume that the electrons instantaneously |
rearrange upon a perturbation of the nuclear framework. As a
result, the nuclear and electronic wavefunctions are separable.
The electronic Schroedinger equation is solved for a number of
nuclear geometzies to give a potential surface, which can then be
used as the poténtial term to solve for the motion of the nuclei.
Empirically, both eof these approximations are very effective, q
"reducing the compiexity of the problem greatly without adversely
affecting the quality of the results. The relativistic effects

must be incorporated when dealing with heavier atoms such as



silver or lead. It is possible that they are significant for
elements as light as niCkels, bﬁt that depends greatly on the
accuracyvdesired. The Born-Oppeﬁheimer approximation is excellent
in all normal molecules, but would be suspect in calculations
on exotic molecules with electrons replaced by more massive
particles such as muons.

The final approximation usually made in the model concerns
the treatment of the electrostatic repulsion between thé electrons.
The instantaneous repulsion is difficult to treat, so the Hartree-

Fock approximation6 treats the motion of each electron in the

'aVerage field of the other electrons. Techniques exist for the

treatment of this correlation between the motions of the electrons,
and they will bé commented on presently.v Thg :esults of Hartree-
Fock calculations éan be not only quantitatively but‘also
qualitatively in error;7 The approximation is generally least
severe for normal molecules near thei; equilibrium geometries.

Even then, caution must be used. For example, the splitting
between therlowest singlet and triplet states of methylene is
overestimated by about lS kcalsbat the Hartree-Fock level while the
EZ molecule is found to have a negative dissociation energy.

The - approximation usually fares less well in situations where
chemical bonds are stretched 6r being broken or formed. Thus'
reacﬁion barriers, for example, are likely to be in error in the
Hartree-Fock picture.

'~ The second class of épproximation involves the truncation



of expansions, which means that as accurate an answer as desired can
in principle be obt;ined. The Hartree-Fock equations are in general
inséluble analytically but approximate solutions can be obtained by
expanding the wavefunction in a set of basis functions. The
Hartree~Fock equations can then be solved using the iterative
self-consistent field (SCF) meﬁhod. By using a coﬁplete set of
basis functions, which in this case would be an infinite set, the
exact solﬁtion could be obtained,' In practice, it is possible,
particularly for smaller systems, to approach quite. closely this
basis set limit.

To go beyond the level of a Hartree-Fock calculation and
attempt to recover the correlation energy, one must resort to
something like a configuration interactionlo (CI) or perturbation
theory calculation. The correlation energy arises from the
instantaneous correlation of the motion of the various electrons
and is defined as theée difference between the exact nonrelativistic
.result and the Hartree-Fock answer. The concept of a CI calculation
is to solve the Schroedinger equation approximately by expanding the
wavefunction in a set of orthonormal.n-eiectron functions called
configqurations. The configurations are formed by exciting e;ectrons
from occupied orbitals of the Hartree-Fock configuration into
virtual orbitals. The full set of configurations corresponding to
all possible arrangements of the electrons on the orbitals defined
by the SCF procedure tends to be an enormously large nhmber.

Therefore, it is common practice to truncate the configuration

-

v
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list after all of the single and double excitations from thevHartree_
Féck reference have been included.

A calculation with such a truncated list‘is referred to as CI
with singles and doubles (CISD) aﬁd represents a reasonable
compromise between the size of the c;lculation gnd the accuracy of
the results. Since the Hamiltonian contains only two-body inter-
actions, configurations which are higher than a double excitation
from the Hartree-Fock reference cannot directly interact with the
reference and are therefore less important. In some senses, this
truncation of the CI configuration list is comparablé to the
truncation of the pefturbation expansion. Even when restricted to
singles and doubles, the configufation list grows as the fourth
power of the size of the system treated, énd the computational
effort involved in the CI calculation, as the sixth power.

The CI problem is similar to the SCF procedure in that if the

'CI expansion is not truncated -- a calculation called a full-CI --

the result is the exact solution of the elecﬁronic Schroedinger

equation within the basis set used for the SCF calculation. For

an infinite basis, a full-CI results in the exact soluﬁion of the
Schroedinger equation.

Both Haﬁtree—Fbck'and CI calculations ére_variational, so the
energiés obtained are upper limits to the true energies. Since
the energies mﬁst converge to the true answers as the size of the
basis set increases and the length of the CI expansion also

increases, there is a certain element of truth to the statement



"the bigger, the better”. A larger basis or more extensive CI will
result in lower, hence better, energies.

The current work is ¢oncerned with the computational aspects
of large-scale CI calculations. At the time of this Qriting,
calculations with more than a few tens of thousands of configurations
are nog common. The methods described in this work are capable of
efficiently handling more than a million configurations on a
minicomputer, which would suggest that ten or more million configu-
rations should be manageable on a mainframe.

Some objections may be raised as to the necessity of such
large configuration lists; objections which in some ways are valid.
However, for larger molecules, millions of configurations may be
necessaxy just to do a CISD calculation from‘the Hartree-Fock
reference. As an example, a CISD calculation on the norbornyl
cation (C7H11+) with no molecular symmetryvand a standard 6-31G
basis has about 600,000 configurations even if the carben ls core
orbitals are not correlated and the corresponding virtual
6rbitals deleted from the calculation. The addition of polariza-
tion functions on only the carbon atoms to give a 6-31G* basis
boosts the number of configurations té 1.6 millien.

Presently, there is no method other than a direct CIll which
can handle such a large calculation and still give reasanable
results. One could try to select important configurations, but

any method to handle an arbitrary configuration list will spend a



considerable amount of time forming the Hamiltonian matrix, which
means'that it is desirable to store the matrix. Yet for any
reasonable number of configurations, the matrix is simply too large
to ‘store. Therefore, a cbﬁfiguration selection technique would
either have to so severely restrict the number of configurations
that the answérs would be question;ble,vor‘would have to régenerate
the Hamiltonian matrix as in a direct CI. The latter approach
would probably take more computer time than doing the entire
unselected calculation!

Another reason to use large cénfiguration lists is to try to
approach the full-CI limit by including highei excitations either
directlyl2 or by using ﬁany references.Sb Such calculations can
be-needed“to'try to.reach an accurécy of about 1 kcal in probing a
chemic&l problem. They are also of theoretical interest as a check
of’the;validity of the approximations made in other calculations.

Finally, the ability to‘do large=-scale calculations will,
hopefully, léad.to:a better understanding of the»qharac;eristics
peculiar to larger calculations. Hopefully, these characteristics
can be exploited to avoid a least part of the computational effort
now required. Oneﬁpessibility-worth investigatihg is that for
extended systemS'ﬁany of the Hamiltonian matrix elements may be
of negligible. magnitude sinéercorrelation effecﬁs are presumably
rather short range effects. One would not expect to encounter.

such accidental zeroes in a calculation on water or methane, but



perhaps they could be important in a system spch as biphenyl.

In the meantime, the quantum chemist interested in understand-
ing chemical applications should benefit greatly from tbe ability
to undertake more accurate calculations on smaller systems or
correlated calculations of any sort on larger systems. Such
calculations will require large amounts ofﬂcomputer time, but

they are now feasible.



II. REVIEW OF UNITARY GROUP APPROACH
In practice, the solution of the CI problem can be divided into

two parts: the generation of a list of configurations in terms of

which the wavefunction will be expanded, and the solution of the

eigenvalue problem. Traditionally, the configurations have been

‘expressed as a linear combination of Slater determinants, in which

case thé matrig element; Hij needed for the solution of the
eigenvalue problem are given by quite simple formulae. The unitary
group approach13 (UGA) directly provides a convenient.basis for the
expansion of the wavefunction. The Gelfand states are an orthonormal
spin-adapted set of n-electron functions -- that is, they can be
directly used.as configurations. Furthermore, the work of Paldus,
Shavitt, Drake, Schlesingerl4, and others has led to a simple and
effi;ient schéme fdr the evaluation of the necessary matrix elements.
Sincé thé»advances described in the current work are based on
the unitary group approach, and in particular on the structure
inhereﬁt in tﬁe approach, the following sections will attempt to
provide an introduction to the formalism.of'the,UGA. This int;o-
duction is necessarily brief and will highlight those aspects which
will be usefui.ih understanding later developments; therefore, the
reader is directed especially to the review articles of Paldusl4a and
Shavittl4b for further details as well as other references. A great
deal of emphasis will be»placed on the graphical aspects of the GUGA -
since it is through these aspects that the structure inherent in the

in the UGA is most apparent; however, the reader should realize that
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the graphical UGA is not different from the UGA. Rather, it is a
heuristic tool intended to aid in the understanding of the structure

within the UGA.

A. Configurations

The Gelfand states, as has been mentioned, are orthonormal spin- ~
adapted n-electron functions, formed by sequentially coupling n
orbitals to give a total spin quantum number S. Each function can

be represented as a Paldus tableau:

5

e ’ (1)
a b c
1 1l 1
;9 6] 0 B
The values in the kth row give the: number of electrons, Nk' and
spin, Sk, after coupling the first k onbitals, as follows:

2
i

x = %y * b
(2)

K bk / 2 -~

wn
il
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The third column is in some senses redundant if k is knqwn, since
ék + bk + ck = Kk (3)

and will not be referred tq.hereafter.

As a résult of the Pauli principle, there are only four
different valid rows at ﬁhe level k+1 given a particular row k.
These four rows éorrespond to the (k+1)th orbital being unoccupied;
singly occupied and coupled to increase the total spin; singly
occupied and coupled to-decfeasé the spin;_énd finally‘doubly
occupied. lThese four Ways of getting from one level to the next

are presented in the following table and given a case value, s.

Table 1. Case Values

s &y S N %

0 0 0 1 o 0
1 0 1 ) 1 s
2 1 -1 1 1 -1/2
3 1 0 0 2 0

" In the graphical representation, the four case values are denoted

1

by varying inclinations of line segments as in the following diagram.

Note that both a and b values are given by the lateral position of

" the vertices.



Figure 1.

b=3 2 10

ca+l a

Given these definitions, a configuration can be

Paldus tableau, as a vector of case values Eﬂ,

12

Graphical representation of four case values.

——=k+1l

-==k

‘represented as a

or as a walk on a

graph. The following example will‘illustréte this:

Pigure 2. Equivalence of Paldus tableau,
r2 12
202

{102

0

0]

0

1

-0

0

°

= [p,1,2 3, 1

step vector and graph.

In the graph of Figure 2, the Gelfand state is represented as a series

of arcs joining vertices to form what is usually referred to as a walk

or configuration, even though it only represents a configuration. All
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three representations in Figure 2 correspond to the same configura-

tion -- one with five electrons and five orbitals, coupled to form

a doublet state. Orbitals 2, 3, and 5 are singly occupied; 1 is

unoccupied; and 4, doubly occupied.

If we represent all Gelfand states for 5 electrons in S orbitals

coupled to a doublet Qraphically,vand superimpose them on the same

graph, the result is Figure 3:

Figure 3.

3a

-2a

la

4a

S5a

Sample Shavitt graph for full CI for 5 electrons

in 5 orbitals, coupled to a doublet.

' graph head

. o rtices

' ——graph tail

b=1 0 b=2 10 b=3 210
a=2 =] a=0
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At first glance it may be somewhat surprising that all the walks

coincide at both the graph hea_d' and tail. However, the bottom row

of all Paldus tableaus is always (0 O 0) and hence all the walks

must coincide at the graph tail. Furthermore, the top row of the

tableau is completely determined by the number of orbitals and "
electrons as well as the total spin. For the example in Figure 3,

the top fow is (2 1 2) since from Egtn 2,

b =25
(4)

[+1]
[}

N/2-58

This Shavitt graph, as such a graph is called, represents all
possible configuxatibns with 5 electrons in S5 orbitals coupled to a
doublet, and would therefore be used for a full-CI calculation.
Unfortunately, the size of a full CI calculation rapidly
becomes prohibitive for even gquite small systems. For example, one
of the largest CI‘caiculatioﬁs performed to aate was a full CI for
water within a double-zeta (D2) bass-is.l2f For this small molecule
with 6nly 10 éléctrOHS’in 14 orbitals and exploiting fully the
symmetry, there are still 256 473 configurations in the full CI for
the ground state (lAl). The commen approach to this problem is to
truncate the liét of configurations to include only those configura-
tions which are formed by a single or double replacement from one
or a few references. In the case of the water calculation mentioned’

above, such a CI with singles and double excitations from the
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Hartree-Fock reference (CISD) comprises only 361 configurations.

The'justification of such a treatment is based on the expectation

' that higher than two-body effects are not very important; indeed, in

the water case, the CISD recovers 94.7%.of the total correlation
energy which is.obtained from the much larger full-CI.

Truncation of the configgration list to certain 1evelé of
excitations from one or several references is.a simple matter in the
GUGA, being a matter of eliminating vertices from the Shavitt graph

along with all arcs passing through the eliminated vertices. Figure

‘4 gives the graph'appropriate for a CISD calculation including all

singles and doubles from the single reference,la22a23a.

Figure 4. Shavitt graph for CISD from la22a23a‘reference4

k
5 orbital
' N
3a
4
internal
2a &
'3 space
la
2 <
4a _
o external
1
space
Sa
0




16

This graph actually contains some walks corre;ponding to triple
excitations from the reference because it was constructed considering
only the number of electrons in orbitals and not the. spin coupling.
Suffice it to say that if such "noninteracting” configurationsls
are not desired, they can be removed from the Shavitt graph in many
cases. However, this procedufe would introduce considerable
additional complexity to the graph in Figure 4, which would only
serve to confuse the issue. Curfently, Shavitt graphs can be prepared
for almost all types of calculations. The most noticeable exception
is that the UGA loses most of its efficiency when applied to
calculations containing arbitrary sets of configurations, rather
than classes, such as singies and doubles. Thus the UGA has not
been applied to methods based on selecting configurations according
to, for example, a perturbation theory estimate of their importance.
Aithough Shavitt graphs are a compact and easily visualized
represénta:ich of the CI expansion, they must be reduced to a
numerical form for the use of the computer. This is ac@omplished
in the following fashion.  Each vertex is numbered using a pair of
indices -- the level k and a vertex number j within that level.
Customarily, the vertices within a level are numbered from left to
right across the graph. Each vertex corresponds to distinct row
(2 b ¢) of a Paldus tableau and so is referred to as a distinct row.
The list of all such rows in a graph along with various numbering

and chaining indices is called a distinct row table (DRT).
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Table 2 presents the distinct row table corresponding to Figure 4.

Table 2. DRT for CISD from la22a23al4a05ao.

I abc JyJ,0,3, Y ¥ Y, ¥, x K K K, Ky 2,2 Z,2%; X

5 212 1 2 3 4 0102536 54 = = = = = = = = 1
211 - 12 3 - 03 4 10 1 - - = 0 - - =1
202 1 - 34 0 -3 9 15 - 1.- - -0 - = 1
121 2 356 01 7 8 11 - -1 - - -0 - 1
112 3 46 7 0 671215 18 =~ = = 1 =--= - 0 1

]

3 201 - = - 1 = = -0 3 21 - - 01 - = 2
120 - - - 2 = - -0 1 3 -1=- 0-1- 2
111 - 12 3 - 0 3 4 6 4 3 2 1 0 1 2 3 4
102 1 - 3 4 0 - 35 6 =- 4 -2 =0 -1 2
030 - 2 - = =0 = = 1 = =3 =« == = 0 = 1
021 2 3 - - 01 - = 3 = =43 - - 01 2
012 3 4 = = 0 2 = = 3 = = = 4 =- = - 0 1

2 101 1 - 2 3 0 - 12 3 4 3 =1 02 -6 8
020 - 2 - - - 0 - - 1 6 5 3 2 0 2 3 7 9
o011 2 3 - - 01 - - 2 76 4 3 0 1 35 9
002 3 - = = 0 = = = 1 = 7 - 4 =~'0 -1 3

1 100 - = - 1 = =« =0 1 1 - = = 0 - - - 8
010 -1 - - =0 - = 1 32 1 - 0 918 - 26
001 1 - - - 0 = = = 1 4 3 -1 0 3 -12 20
000 = = = = = = =« = 1 3 2 -1 020 - 46 54

-0
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As mentioned before, the column labeled by I gives the lével within
the graph and the column labeled J numbers the distinct rows within
a level. The cdluAns a, b, and c give thevrcw of the Paldus £ableau
associated with each.distinct row. The following three sets of
entries, J, Y, and x are the chaining indices, arc weights and vertex .
weights for what is called lexical order. The chaining indices Js .
indicate which vertex in the next'level down the graph that an arc
of case value s connects to; whereas the arc Ys gives the weight of
the arc of case value s. In both of these arrays, invalid entries --
arcs which do not exist in the Shavitt graph -- are denoted by a dash.
The vertex weight x is the number of lower walks from a vertex, or
equivalently the number of different paths from the vertex to the
graph tail. The lexical number, m, of a walk or configuration is
given by the sum.of the arc weights for that walk:

m= 1+ ft: Y '(5)

=1 si

where the extra subscript i refers to the lewvel in the graph.

This lexical numbering scheme is one of the most powerful aspects
of thg GUGA. The configurations are rationally numbered from one to
the number of configurations with no duplication of numbers or gaps
in the sequence. Furthermore, the lexical number of a configuration
is rapidly and easily determined by the sum in Equation 5. Lexical
order is a downward directed scheme and so is useful when finding

the configurations which are identical from the graph head to a



19

particular vertex but then differ between the vertex and the graph

"tail. This set of configurations share a common upper partial walk

but different lower partial walks from the vertex in question.

i

‘ Letting the sum of the arc weights over the upper walk be mu, then

there will be x such configurations and due to the nature of lexical
order, their lexical numbers yill be mufl, mu+2, -«.s m +x. For
this reason, the vertex weight x will be referred to as the number
of lower walks from a vertex. That these lower walks from a given
upper partial walk are a sequential set of configurations wiil be
m§st useful.

For the set of configurations sharing a common lower partiai
walk but different upper.partial walkéy there is no such rélationship
within Lexical §rder. Their cohfiguration numbers wil} be essentialiy
randomly spaced throughout the list of configurations. ,Hoﬁever, in
reverse lexical order, the upwardidirectéd counterpért of lexical
order, these configurations sharing_a-partiai lower walk would again
be a sgquentially numbered set qf'cenfigurationsJ The last three

sets of columns in Table 1 (Ks’ Zs' and x) are the chaining indices,

"arc weights and vertex weights, or number of upper walks, for the

reverse lexical oider. The reverse lexical number of a configuration
is given by Egquation 3 with Y replaced by Z.

Unfortunately, we are left with two distinct numbéring schemes,
one of'which is useful for lower walks and the other for upper waiks.
One approach to this dichotomy is the use of an indexing array A, as

c,d

proposed by B‘rooks.ls Given a lexical configuration number m,
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then A(m) is the reverse lexical number of the -configuration. There
are several disadvantages to this rather direct approach to the
problem, not the least of which is that the indexing vector is the

length of the configuration list.

B. Matrix Elements

Thevdiscussion so far has centered on the generation of the
Shavitt graphs and the corresponding distinct row tables, as well as
on the two numbering schemés for the configurations. The next
section Qillvpresent an outline of the methods used to evaluate
Hamiltonian métri# elements during the CI calculation. The
derivation of the formulae presented will not be discussed; again,
the reader is referred to the articles in pértiﬁular of Paldusl4a
and Shavittl4b‘for further details.

The spin~independent electronic Hamiltonian that will be used,

~

in its second~quantized form, is

(6)

. y .+ o+
[13:k1] Z Xirxk-sxjrxls

3 . . ¢+ ’ . ‘-
H= E AP DR R -
13 s i3I8 i%q1

+ I .
where xi and Xi are the creation and annihilation operators for
spinorbital | is), and <i|h|j> and [ij:;k1l] are the cne and two
electron integrals over molecular orbitals, respectively. introduc-

ing the following one and two body unitary group operators:
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+ o
, E:j.j  _ Z xi.sxjs ‘ ' (7)

®i5.k1 - EisBri T %3Bi1 T %k1,i5 (8

then Equation 6 in the formalism of the UGA becomes
9)

H. = :E: Glnli> e, + X :E: - [ijiklle, .
i3 13 i3%1 1.kl
The matrix element Hm'm of the Hamiltonian between two configurations

or Gelfand states m' and m is

m'm

A L IR PIRCLIERCY LS
lJ ‘ ' (10) -

+ i 2:: [iﬁkl](mﬁe..']m>
{3xk1 13kl
At this point, the.relationship-betwéen the matrix elements of the
UGA operators and the coupling coefficients of the direct CI

; methodll is obvious:

'A?;m = (ofegyfm> | I (1D

mmo_ m
Aijkl‘— ¥ (m Ieijrkllm) (12)

Given a configuratien list and the corregponding'DRT, the task
- - of constructingsthe~Hamiltonian matrix reduces to finding the matrix
elemenﬁs of ﬁhe unitary group operatprs and using these as the
coefficients for the integrals as in the direct CI approach.
Graphically, the matrix elements of_the unitary group oéerators

‘corréspond to loops between walks on the Shavitt‘graph,»such as
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in Figure 5.

Figure 5. Loop corresponding to the matrix element
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The loop depicted in Figure 5 is a one electron loop determining the
coupling coefficient A?;m of the integf;l {i|n|j) in the matrix °
‘element Hm'm' The vaiue of the coupling coefficient, which is often
simply called the loop coefficient, is a function of only the shape
of the loop and ité lateral position in the Shavitt graph.
Spécifically, it is a product‘of seément values over the range of
the léop:

ap," - (m' e fmd = T W(T Dl : (13

ij =i

Tk is the segment shapé symbol and b, the b value df the ket m
at the kth level of the graph. 7

The matrix elements of the two bod§ operator aré sdﬁewhat
'moré compiicated but fundamentally the same concept applies.

Noting from Equation 8 that e.,. can be expressed in terms of one

ij,.kl

body operators, one has
<m}leijykl|m> = <m*|BijEkI,Q> - <®f’Eil’m> skj | (14)

The first term can be rewritten using a summation over intermediate

states Im"> to give the following:

®'legy kel > G| Eiy > <ml By p |7

- (mf gy [m) S5

(15)

In practice, the summation over intermediate states is inconvenient;
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' 4
however, Drake and S'chlesinger,l4c Paldus and Boyle,l d and

Shavittl4e suggested the following factorization scheme, reminiscent

in the form of the one body Equation 13:

, - (16)
@legpatn {1 wama} T AT w0
e kes, x=0,1 kes,
 where sz-is the range where i 3j overiaps with k 1l and Sl”is

the range of the looé where they do not. The summation over x
corresponds to éinglet and triplet recouplings of the intermediate
states in Equation 14, but the intermediate states do not explicitly
appear in this formulation.

Since the loop value depends only on the shape of the loop and
not on the upper and lower walks from the loop to the gAraph head and
tail, a loop can determine the value of a series of coupling
coeffi;ients differing only in m' and m. If there are X lower walks
from the loop and x upper walks, the loop will. contribute a value
Aijrkl[ijrkl] to x inregularly‘spaced groups of x sequential matrix
elements along an off-diagonal of the Hamiltonian matrix (provided

we use lexical order). This is illustrated in Figure 6.

—~
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Figure 6. Locations in H matrix of contribution Aijkl[ij;kl]

from loop with X lower and 5 upper walks.

In summary, the UGA provides a spin-adapted orthonormal set of
n-electron functions which serve as the éonfigurations for the
- expansion qf the CI wavefunction. These configurations are.readily
limited to only cértain classes of configurations, such as all
singles and doubles from a set of reference configurations.
Furthermore, the lis# qf configurations is easily ordered and
numbered using either lexical or reverse lexical order. The number
of any parﬁicular configuration is found as a sum of arc weights.
The coefficients of the one ‘and two elgctron integralé in Hamiltonian
matrix elements -~ the coupling coefficients =- are related to the
matrix elements of the one and two body unitary group operators,
which, in turn, are determined by the shape and locatién of loops in
the Shavitt graph. The value of a one-electron loop is a simple
product of segment'shape;valués; that of a two electron loop, a sum
over singlet and triplet recoupied terms, each of which is a simple

product of segment shape values.
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III. PREVIOU§ IMPLEMENTATIONS

The first implementation of a CI program based on the GUGA was
that of Brooks and Schaefgrlsc in 1978. A preliminary version of
the program produced a formula tape from which a diagonalization
tape was constructed. The formula tape contained the coupling
coefficients, information to identify the integrals, the "primary"
configﬁrations involved, and the number of upper'and lower yalks
from the loop. The primary configurations and number of upper and
lower walks is sufficient data to determine all Hamiltoﬁian elements
to which the current loop contributes. The program then combined
the formula tapé and the integrals to form a diagonalization tape
‘containing ap actual Qalue of a loop contribution as well as the
configurations and number of upper and lower walks.

For a CI based on the Davidson algorithm16 for finding the
lowest root or few roots of the Hamiltonian, there is no need to
actually form the Hamiltonian maﬁrix. _ The diagonalization tape
described above is sufficient. What mgst be compuﬁed.during each

iteration of the Davidson scheme is the correction vector 2Z:
2r = JZHIJCJF (17)

A loop contribution Aigkl[ij;kl] is not necessarily the same as the -

Hamiltonian matrix element H

I3’ although they often are identical.

In particular, if the configurations I and J are either the same or

a single excitation from each other, the matrix element will be the
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sum of many different loop contributions. In Equation 17, the

contributions may be summed to form HI multiplied by CJ and

» J
summed into‘ZI; or each contribution can be multiplied by CJ and
summed. The importance of the latter approach is that the various
contribﬁtions to a particular Hamiltonian matrix element tend to
-be located throughout the diagonaiization tape, and it would require
a very extensive and aifficult sort to combine them to form the
actual Hamiltonian matrix.

The'preliminary pfogram also took advantage of the fact. that
ﬁhe’Hamiltohian matrix is symmetric. Thus, it is necessary only
to form contributions to matrix elements such.that I J, and use

thevfoliowing equation as well -as 17 to account for the cases

where:
Z; = z BrsC1 (18)

A loop contribution Azgkl[ij;kl] is therefore multiplied by CI

T*

and added to Zd and by CJ and added to Z

The remaining problem is to detérmine the values of I and J
from the»primaty config&ration numbers I' and J' as well as the
numbers of upper and lo&er walks x and x. This waS’sqlved by
Brooksybwho called the solution the loop breakdown algéri;hm,
Using an indexing array A such that A(i) is the reverse lexical

configuration number of the lexical configuration i, the loop
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contributes to all HIJ such that
I = A(I'+i) + j i = 1,2;3, ....x
for _ (19)
J = A(I'+i) + j j o= 1,2,3, ...,x

Note that I and J are revefse lexical configuration numbers.

The processing of the diagonalization tape is seen to be
relatively simple and only requireé that the three vectors C, Z,
and A be randomly accessible. For thé moment, let us not dwell on
tﬁese requirements buﬁ rather investigate how the formula tape was
constructed in the firét place. The task is to find and evaluate
call possible.loops using the Shaviﬁt.graph as a teﬁplate. The
algorithﬁ used -- the loop driven approachlsc ~- is central to the
generality and efficiency‘of the current UGA based programs. The
algorithm consists of the following recursive search.

Beginning at the top level of the: graph, thé search starts 5y
finding avvalid opening Segment for a looep. The searéh then |
continues with valid body ségments of the loop, keeping tq the left
as much as possible. As a new segment is éccépted, the two arc
weights associéted'with the bra ahd get*walks are added to.the
configuration numbers 1' and J' and stored in a pushdown stack. -
The segment.shapé value (w'of Equation 16) is multiplied by the
current loop value and also stored in a‘pushdown stack. When a
loop is completed, the loop value, ihtegral indices, primary walks

I' and J', and the number of upper and lower walks are written to
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the formula tape. The search then continues at that same level but
more to.the right on the Shavitt graph. Whgn no more valid segments
are found, all the stacks are "popped" and the ée;rch continues one
level back toward the top of the graph, but with segmenﬁs more to
the right on the graph. Eventually the search returns ﬁo the
initial.level and finds another openiné segmenﬁ, and finally
exhauéts all possible opening segments. At this time, all loops
opening at the initial level of the search have been found and
evaluated. By initiating the search at all levels of the graph,
all loops contained within the.graph are evaluated and,the formula
tape will ;ontain sufficient information to construct the
Hamiltonian matrix, or, equivalently, to use the Davidson diagonal-
ization ;echniquel v |

The Shavitt graph, in its numerical form as 5 DRT, is used
only as a template for the Ioop-dfiven search. The actual search
is controlled by the loop seérching~master table, a copy of which
is found in the appendices.  The master table is a list of all the
possible segment shapes, their values, and implicit in the location
of segmeﬁts in the table; the way in which segmengs may be validlf
connected to form loops. This table is completely general, so |
provided the DRT can be generated, the Hamiltonian matrix can be
evaluatea using-the loop~driven algorithm; This generality isbone
of the important attribu£es of the UGA, since almost any type of

calculation can be handled.
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.'Another aspect of the loop-driven approach is that each loop
is evaluated with very little work. Though a loop may be the
productbof say 50 ségment values, the recursive nature of tﬁe
search means that each successive loop value is determined by ohe
or two segment values in addition to the partial product shared
with the last loop evaluated. Aé a result, the loop-driven
approach is reasonably efficient in terms of computer time.
| This preliminary program was remarkably successful and pro-
vided compelling evidence that the‘UGA would provide the basis for
a new genération of more powerful CI programé. Two criteria are
of practical importance when considering a CI program: first,
can the program handle the type and size of calculation desired?
Is it gengral enougﬁ? and second, how long-in the sense of
computer time does a §i§en calculation take? The importance of
execution time arises because a typical CI calculation might take
several hours of central processor time (CPU time), and i§ 
thérefore guite expensive. A factor‘as émall as two in execution
time may have a significant effect on the utilityvof'a progrém.

.It is. in this light that Brooks' program was sugcessful. Ihe
program could handle closed and high-spin open shell references as
well as open shell singlets and two~configuration reference
functions; The CI expansion could be truncated at an arbitrary
excitation level from the reference(s), e.g. at singles, doubles,
and triples. Furthermore, for a single high-spin open shell

reference, the configuration list could be restricted to the
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Hartree-Fock interacting configurations. A few more exotic calcu-
lations were undertaken, such as a three open-shell reference
calculation on C2H4,15d and it is fair to say that any restrictions
in the type of calculations that the program could handle were
largely due tova lack of demand for-such calculations rather than
an inherent defect in the method. This flexibility is a hallmark
of the UGA CI prégrams. |

The score on the second criterion was perhaps the most
impressive aspect of this initial program. Written in a few months
and based on the incompletely understood UGA, the progrém
nevertheless compared favorably with coﬁventional CI programs wﬁich
had been'perfected‘and honed‘over perhap5’£en years. .For instance,

the GUGA1program was nearly four times faster than a conventional

" CI program for a 2355 configuration calculation on BH3 within the

sz symmetry subg.roup..lsd
Subsequently, various improvements were made to the pre-
liminary program and the final version of the program does the

same calculation in one sixth the time required by the

conventional program. The major changes made were to directly

'geﬂerate'the-diagonaiization tape without benefit of a formula

.tape and to. avoid the summation over intermediate states in

Equation 15 by using the factorization of Eguation 16.  This final
version of the loop-driven graphical unitary group (LDGUGA) program
has since been used for many calculations ranging from usual CISD

(singles and doubles) from one reference up to CISDTQ calculations
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on waterlze and full CI's in small orbital spaces.

Since these programs are the direct antecedants of thé
program described later in this work, it will be appropriate to
discuss the limitations of the LDGUGA programs as this will explain
the motivation behind the shape-driven (SDGUGA) approach.
Concentrating on the failures of the LDGUGA prograhs with the
advéntage of hindsight is done for pedagogical reasons and is not
intended to belittle the achievemeﬁﬁ of Brooks and his coworkers.

As previously mentioned in the section about the loop break-
down algorithm; the simultaneous use of both upper and lower walks
from loops requires random access tovthree‘vectors spannihg the
length of the cbnf;guration list. These vectors are the CI vector
for the current iteration of the diagonalization, the correction
vector being formed, and the indexing vector. Thése three vectors
must be in the central memory of the computer if the unmodified
diagpnalization tape is used, and therefore the length of the
configuration list can be no longer ﬁhan about one third of the
available central memory. The first imélementation of the LDGUGA
programs was on a Harris 6024/4 with about 32k words of central
memory, so the limitation waé to about 8060 configuratiﬁns after
allowing space for the program and incidental storage. By sorting
the diagonalization tape, it is possible to do calculations up to
about three times this éize; however, the sorting of the
diagenalization tape is a difficult and time-consuming task. This

approach was used on the Slash Four minicomputer to handle
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calculations with up to about 23 000 configurations,lSd but has not

been pursued since then because current computers, with larger

central memories, are not so limitgd in this.respect.

A more important limitation now is the size of the
diagonalization tape itself.. The taée has a somewhat more compact
form than the Hamiltonian matrix itself due to the use of the
number of upper and lower walks from each loop, but for a |
calculation with abqut 20 000 éonfigurations, the tape can easily
be as large as two hundred Mbytes. This amount of data is about
the limit of the available mass storaée.space available to any one

user on most computer systems, so larger calculations are

impractical especially since the size of the diagonalization tape

grows as the square of the number of configuratibns.
6ne~fin&l'limitation on the size of calculation feasible is
the time taken for the calculation. Though this is not such a
definite limit as the others»discussed,'there is a tendencyvto
avoid calcularions taking mofe than'.a few houis to complete. In
this sense, the limitations on the Harris Slash Four were perfectly

matched since a 23 000 configuration calculation took from 5-10

hours.

The first step towards a method capable of very large CI
calculations is to eliminate the diagonalization tape. The LDGUGA
programs dis@ussed so far have divided the éalculations into two
parts: the generation of the diagonalization- tape and its

subsequent processing each of the iterations of the Davidson
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algorithm. A simple solution is to combine the two phases of the
calculation and generate and use the loops each iteration of the
calculation. Certainly this eliminatés the lengthy diagonaliza-
tion tape;vunfortunaﬁely, this tack results in a rather slow
program. When the loops are evaluated but once and then stored,
it is not important that the generation of the loops takes about
three times as long as each subsequent iteration of the Davidson
scheme bécause there are typicallf 7-8 such iteraﬁions. But
generating the loops each.iteration, the calculation would take
about three times longer.

Certainly; a_slow program that can do the calculation is
preferable to a fast one that cannot, but it is not an appealing
solution. Also, the limit of three ﬁectors in core still hoids,
which on the newer Harris-800 minicomputer results in a maximum
Cl size of perhaps 90 000 cbnfigurationsm The three vectors need
to be simultaneously in the central memory.becaﬁse of the loop
breakdown algorithm's use of both upper and lower walks of a loop.
As-mentionéd in the description of the theory of the UGA, using
both the lower and upper walks must result in large»;hanges.in the
canfiguration numbers no matter whether lexical or reverse.lexical
order is used. Thevsoiution is to use either the upper walks and ce
reverse iexica; order or the lower walks and lexical order, but
nét both. Either approach results in recalculating some loops
a number of timés and would result in the already slow pfogram

becoming even slower. Given these thoughts, it is obwvious that
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a faster method for evaluating loops is needed. The shape-driven

approach was designed as a solution to this problem.
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IV. SHAPE-DRIVEN METHODOLOGY

The shape-driven approach was originally designed fér calcula-
tions where no more than two-electrons are allowed into a set of
virtual orbitals in any of the configurations in the CI expansion.
This includes such classes of calculations as singles and doubles
from one or a few references (CISD), first-order and second-order
CI's. For the present, the discussion will exclude calculations
such as CI with sinéles, dqubies, triples and quadruples (CISDTQ)
or full-CI's. Extensions of the original concepts to include such
exotic calculations will be discussed.later. Therefore, the
following sections will presume that the program is intended for '
CISD ﬁype calculations where thefe are a substantial number of
virtual orbitals in the external space.

Siegbahn notedl7 that for such a calculation, the extermal
pértion of the Shavitt graph, that is, those orbitals unoccupied in
all the reference configurations, is extremely simple and quite
repetitive if placed at the bottom of the Shavitt graph. It is
possible to exploit this éimplicity to determine a priori the value
of the portion of any loop in this external space and thereby avoid
the need to multiply segment shape values together for the virtual
orbitals. The product in Equation 16 is factored into an internal
and external portion. The internal portioh is still found as a
product of segment shape values, but the external part is explicitly
kﬁown and incorporated in the code. The program Siegbahn developed

using this explicit treatment of the external space first generates
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all the intérnal portions of loops ;nd writes them out on a disc file.
In the second phase, the.internal portions ofrloops are linked to the
appropriate external values using an integral-driveh scheme overall.
The shape-driven approach is based on the same concept of the
e#plicit eQaluatation of the external portions of loaps; however,
unlike Siégbahn's érogram, the shape-driven approach strivesvto téke
advantage of the structure inherent in the UGA. The name "shape—‘
driven" arises from th; nature of the algorithm used. For a given
internal part of a loop, all external portions of a given shape are
treaﬁed before processing'loops of a different shape. In a sense,
loops are grouped according to the valué of the coupling coefficient.
The current approach is closely related to that used by
Shavitt's group. The concept of using exﬁernal éhapes was first
introduced by Shavittl4e in 1979, aIthough»no program based on the
external shapes was developed at that time. A version of the LDGUGA
pnogram'wasvdeveloped in the Schaefer group which was a difect CI
program based-on-ﬁhe external shapes of loops presented by Shavitt.
However, the method continued to use a loop-driven metholology and
therefore was,not.able to as fully exploit the structure of the UGA
as the current program. Apparently, the-progxam developed by
Lischka,gﬁ;gg}%bes exploit the external shapes in much the same
way that the current method does, élthough it is noﬁ yet_knowﬁ how
closely the two algorithms resemble each other.

What are the advantages of this new approach, which appears so

similar to Siegbahn's? The principal advantage lies in being able
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to visualize the problem and therefore be able to break the program
into small, easily understood, and easily optimised segments.
Furthermore, by not ignoring the structure of the CI calculation, it
will become apparent how to undertake large CI calculations where it
is impossible to simultaneously hold both thé entife CI vector and
correction vector in the central memory of the computer. Returning
for a moment to the segmentation of the computer code, by specializ-
ing each ségment of code to just one shape of external portion of
loop, it is possible to eliminate almost all decisions from the
code. Progressing through a set of 1qops of the same shape, the
configuration numbers I and J can be found by incrementing counters
’ father than bf a complicated énd time-consuming look-up. Finally,
since each segmeht of code is quite short and deals with only one
pfocedure, it is relétively simple to optimize the program.

The fbllcwing spebific example will illustrate most of the
concepts used in the.shape-driven approach. Before embarking on this
discussion, however; it is necessary to explain the terminology that
will be used. Fiqure 7 shows the external space for the type of
calculation we are interested in at the»preéent; ‘The modified Fermi
level is that level which separates the internal and external portions
of the Shavitt graph, ie. none of the orbitals below the Fermi level
is occupied in any of the references, and so will often be referred to
as virtual orbitals.'

For the external space shown, cofresponding to no more than two

electrons in the external space and no molecular symmetry present,
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External space of Shavitt graph for CI singles

and doubles, illustrating the simplicity anad

regularity.
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there are no more than four distinct rows (vertices) at any level.
These rows, and in particulér the four at the Fermi level, are
labeled W, X, Y, and Z when there are tw§ electrons singlet or
triplet coupled, one electron, or no electrons in the remaining
levels. An alternative notation used by Seigbahn17 is s, T, D, and
V, standing for singlet, triplet, doublet and valence, respectively.

Figure 8 shows a typical internal éortion of a loop. Associated
with this partial loop are the partial values of the configuration
numbers Ii and Ji and of the loop coefficients Ai and Bi. There are
aiso the appropriate part of the integral address (ARR).and symmetry
 information connected with the inteéral addressing (ASM). Finally,
the loop arrives at the Fermi level és an XX entry to the external
routines and the next segment shape must come from the ISEG=8
section of the loop-searching master table. This loop is termed an
XX entry because both the I and J partial walks arrive at the Fermi
level at the X point. The final piece of data is that the TRACK
value of the internmal loop is 3. The TRACK valueAdeterﬁines which
of a triplet of integrals to use when forming the loop contribution.
Table 3 illustrates the use of the loep-searching master table in
Appendix 1 to evaluate loop coefficients and track value for'thisv
loop.

That the sample loop is an XX entry to the extérnal-space with
an ISEG value of 8 determrines that the eight shapeS‘of‘external
portion of the loop shown in Figure 9 along with a notatioen

in&icating the coefficient value and integrals to use in
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Table 3. Evaluation of the loop coefficients for the internal portion of the loop shown
in Figure B. Refer to Appendix 1 for an explahation of the entries in this table

and for the loop-searching master table.

ISEG JSEG NEXT . SS TRACK JKCOND _VALUE

b X Y Comments
1l 1 3 0l 1l -10 X' =X 3 1 - i-level of loop is this
level. JCOND of -1 indicates
that j-level not yet reached.
¢ -
3 38 6 10 1,2 10 X i 2 M =% JCOND of 1 indicates that

Y' = -x b j-level of loop is this level
- 2 (b+2) '
. , 2 1 . . o
6 82 7 12 3 o0 X' = =Y, [————— - - KCOND of 0 indicates this is
b (b+1) 12
: not k-level.

7 98 8 22 - - 00 X' = -/2X/b

N

W
1

Still not k-level. TRACK
remains set to 3.

A
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The eight possible external shapes for the internal
portion of the loop shown in Figure 8. Note that

A is called X in Table 3.
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forming the loop contribution are the only possible continuations
from the internal portioﬁ of the loop. 1In this example, the external
loop coefficient is %1 so the total loop coefficient is iAi, as
reflected in the formulae of Figure 9. Note that the second loop
coefficient B is not usedvin this example and that for some shapes
the track value from the internal space is superceded by an external
value.

To further explain how the shapes lead to segments of the
computer program, the following section will examine the last shape
listed in Figure 9 in detail and derive from the information in the
Figure a profotype of the Fortran code used in the program. The
external portion of the bra walks configuration numﬁer is determined
by the levels ¢ and b since vertical arcs make no contribution to
configuration numbers. In general, it would be necessary to define.
an array WIX(c) which contains the arc-weight of the arc from the
'x.point at level ¢ to the Y point at level c-1l. In the piesent -
example, this will turn out to be unnecessary, but for the time
being, thg total'cqnfiguration number,I of the bra walk is given by
Ii + WIX(c) + b. Tﬁere is no need for an array analogous to WTX for
the b level contribution since within lexical order all lower walks
from the Y pcint arrived at by the arc from the X point at level
c are contiguous and numbered in a leftmost, that is bottom to top,
sense. In a similar fashion, the configuration number J of the ket
walk is Ji + WIX(a) + ¢. The integral address pointer needed is

ARR + KADD(a) + LADD(b), where the first term has been evaluated in
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Figure 10. FORTRAN code generated to handle the last external

shape of ?igﬁre 9.

IJA = ARR + KADD (A)
DO 2 C=2,A-1

CJVALA = C(JA) * VALA

Do 1 B=1,C-1
TEMP = INTGRL (IJA+LADD (B)+TRACK)

. Z(IA) = Z(IA) + TEMP *CJVALA

Z3 = 23+ TEMP * C(IA)

Ix IA + 1

1 ‘CONTINUE
Z(IK) = Z(JA) + 2T * VALA
JA =JA + 1
2 CONTINUE

3 CONTINUE
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the internal spaée. Puttiné this information together yields the
Fortran code of Figure 10. Note thét in this specific case, ;t was
possible to dispense with the auxilliary weiéht array WI'X because
6f the particular order of the nesting of the DO loops,,uéing the
fact that the lower walks from the X point at the Feimi level are a B
contiguous set ordered in a leftmost sense.

For every external shape, there is a section of Fortran code
comparablé to that in Figure lQ. In all important sections of code,
the constant coupling coefficient ‘A, but not always B, can be
removed from the innermost program loop since either the bra or ket
configuration number is constant within the innermost loop. Because
the multiplication by the loop coefficient can be removed from this
innermost program loop, the construction of Hamiltonian elements is
an insignificant time step when using SDGUGA! 1In a later section
concerned with the vectorization of the code, it will be shown that
by reeorganizing the-proqram somewhat, it is possible to completely
remove the coupling constants from the innermost loop. In this
case, it is worth emphasizing that a calculation would be esséntially
no faster even if the Hamiltonian matrix elements were avﬁiléble at
no cost or could be locked ﬁp in a master liét somehow. It would
still bevnecessary'to increment ; configuration number or some other »
counter, pick up the Hahiltonian matri# element and multiply it by
C. and CJ. The currént prograﬁ does egquivalent work in the inner-

I

most program loop, so for a moderate size calculation -- one with
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perhaps 30-50 external orbitals - tﬁe SDGUGA CI program is essentially
as fast as any program can be which multiplies the CI vector by the
cémplete Hamiltonian matrix to form a correction vector.

-In principle, it should be possible to neglect Hamiltonian
ma;rix elements which are essentially zero since they cannot
significantly affect the results. A program based on such a selection
of matrix elements could be considerably féster than a method such
as the present one which uses all matrix elements irrespective of

their magnitude. However, no such programs are currently in use, and

it is possible that the process of selecting matrix elements could

be a prohibitively expensive task.
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v. PAGING OF THE VECTO#S

Understanding the structure of the UGA and how it is being used
in the shape-driven approach allows the implementation of an
algorithm for handling large CI expansions, wﬁere it is impossible
to simultaneously hold all elements of both the CI and co;rection
vectors in the céntrai memory of the computer. From the analogy with
the method used to handle the virtual memory of the computer itself,
this process wiil be called "paging" of the vector. The CI and
correction vectors will be stored on a random-access disc file and
only those portions actually needed at one time will be transferred
on demand to the central mémory. For such a scheme to be practical,
the calculationvmust not be I/O bound, that is, a substantial amount
of central processor time must elapsé between successive paging
operations. If this ié not the case,‘the calculation will spend
most of the time waiting for the compleﬁion of a paging operation
‘since I/0 is much slower than the central processor. For example,

a basic operation such as a multiplication might take a fraction of
a microsecéndﬁ paging one section of the vector into central memory,
0.05 se@énds.

The shape-driven algorithm outlined in the preceding sections
forms loop centributions to rectangular submatrices of the
Hamiltonian matrix. Only for diagonal elements and configurations
differing by only one electron are there more than one contribution

per matrix element, so by and large, the Hamiltonian matrix will be
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constructed as a set of fectangular submatrices of moderate dimension.
In the particular examplé of tﬁe preceding sections, if there is no
symmetry apd Ne exﬁgrnal orbi;als, the submatrix constructedeill be
a square.of dimension N (N -1) /2. If N, is say’SO, the size of the
submatrix is over 1000 x 1000, which is large enough that there will
be a considerable amount of central processor work involved in
evaluating the loop contributions (there -are about 100 000 nonzero
contributions tovthevsubmatrix), but not so lafge that the five
or six thousand wvector elements needéd cannot readily be stored in
the central memory. |

The sﬁrategy'used to minimize thé amount of time spent on the
paging Qf the vectors is to page in, that is, tranéfer the
appropriate,seétion from the peripheral storage to the central memory,
as large a portion of the vectérs as possible at one time, and then
do as much work as possible on those sections of the vectors before
paging them back out to the disc file. This is accoﬁplished'by
modifying the loop-driven aigorithm for the internal portions of
loops so: that. the number of upper walks from a loop is ignored. Thus,
the loop is recomputed for each upper walk, but it was seen in the
last section that the shape-driyen'approéch,spends a negligible
‘amount of effort evaluating loop coefficients, so thié'repeated
work will not noticeablyY affect the performance of the program. The
éurpose of this modification of the loop-driven algorithm is to ensure
that the paging through the vectors is done as methodically and

efficiently as poSsible,
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The loop-driven algorithm previously outlined searched across
the distinct rows at a given level, finding all loops opening at one
distinct row before p;oceedingvto the next. The simultaneous use of
the upper walks from the loops causes the configuration numbers I and
J of the configurations making the loop to change by large amounts.
Thus, when using the upper walks t6 avoid recomputing the value of
the loop, contributions will be made to segments of thé correctidn
vector near the beginning, at Qarious locations in the middle of the
vector and also near the.end, for each distinct row at that level.
Therefore, it would be necessary to page through the vector once for
every distinct row. This can be avoided by alwéys searching from
the graph head down to the.level of interest to find the upper walks
from the loops one by one, keeping a leftmost sense to the search.

Searching in this fashion, there are-two different modes of
paging to consider. The simplest situation is when iﬁ is poessible
to hold-eﬁough»elements 6f"the vectors while still deséending to the
level of loop opening. Remember that all the lower walks from any
given distinct row are aecéntiﬁguous set. Then, while descending
from the graph head toward the Ievei of loop opening, it is
sufficient to check ‘the number-of-lower-walks, x, from each distinct
row reached. When x is less than half the available cenﬁralgmemery,
x elements of each vector, starting with the current partial
coenfiguration number, aré transferred into core. The search then
descends further down the graph before opening loops, and then

recursively continues, but all the while'the-elements of the vector

-
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needed will always be available. Only when the search returns to the
ievel Qhere the vector was paged into memory must ;t be paged back
out aﬂd a new portion paged in.

This first mode of paging is extremely efficient. The vector
is pagéd through Sequentially once for each level in the graph.
Indeed, in smaller calculations iﬁ'is possible to pass through the
vector substantially less often by holding larger numbersvof integrals
in the central mehory{ The second mode of paging occurs when the
loop has already been opened before sufficient elements of the
#ectors can be held at once. This mode of paging is somewhat more
:complicated,,and it is not péssible to know how many times the
vector must be passed through each.iteration of the calculation wifh-
-out actually trying the calculation. |

In this second case, it is not possible to accomodate the
number-of-lower-walks-from-the-loop~-head elementS:of each of the
. vectors. Therefore, this set of elements will have to be split inte
subgroups which can be held in core. Each subgroup will have to be
resident in the central memory at the same time as each other
subgroup; i.e. if the number-of-lower-walks segment of the vector is
divided into n sectioms, then the first section will have to be in
core with the second section, and then with the third, etc. -This
will reguire about n2/2 paging operations, but if the available core
space is moderately large, say 100 000 elements or more of each
vector can be held, then the amount of wérk per page request should

prevent the program from being I/O bound.
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The actual implementation of the second mode of paging is similar
to that used in the first. As the loop extends down the graph, the I
and J walks will end on a pair of distinct rows. When the sum of the
lower walks of both these points is less than half the.available
space, the four portions of the vectors -- two each of the CI and
cor;ection vectors, corresponding to the I and J walks -- can be
transferred into the central memory. The additional complexity in
this casé arises when the portion>of the vector associated with only
one walk needs to be replaced.

These two modes of paging will usually both occur in the same
calculation, the only exception being that only the first will be
néeded if more than about 2/3 of the total space needed is available.
In larger calculations, the second mode of paging is used when
evaluating loops which open near the top left portion of the graph,
since that is the region where the nﬁmber of lower walks from the
distinct rows is largest. The first mode of paging is encountered
further down the graph. The minimum required amount of central
memory for the vectors is twice the sum of the two largest numbers
of lower walks from poihts at the Fermi level. This is no more than
ZNZFeiements where Né is the number of external orbitals. For even
100 virtual‘orbiﬁals then, the program can run with 20 000 words of
memory dedicated to the vectors, irrespective of the length of the
cI ;xpansion. Thus, holding the necessary portions of the vector in
the central memory amounts to no restriction at all on the size of

the CI expansion.
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what then is the limitation on the length-of the CI expansion

the SDGUGA program can handle? Apart from the 2N§ words of central
memory mentioned above, the program needs space for about.3/2N
integrals, where N is the total number of orbitals, as well as a
few tens of thousands of words for arrays such as those defining the
DRT. In light of this small amount of central memory required, tﬁe
available memory is not a practical limitation on most computers.
The total amount of disc sto:age available to any one user might be
a limitﬁtion. The current amount needed is_N4/8 words.for the

integrals and space for two vectors per iteration of the Davidsion

algorithm. For a calculation with 100 orbitals and lO6 configura-

. . . . 7 .
tions taking ten iterations, about 3 x 10 words of disc storage are

required. The only remaining liﬁita£ion, and the one most likely to
limit tﬁevsize of calculation undexrtaken, is the time taken. On the
Harris 800 minicomputer, a calculation with—lo6 configurations took
just over 100 hours to complete. Even on a scalar machine as fast
as the CDC 7600, the same calculation would take almost lo.hours;
therefore it would seem that timevis the strongest limitation on

the size of the CI expansion.
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VI. MATRIX FORMULATION OF THE SHAPE-DRIVEN APPROACH

' The algorithm so far described is somewhat cumbérsome and
invoives more computational work and DO-loop overhead than is
strictly necessary. It has been pointed out by Saunders and van
I.’ent.hel9 that Siegbahn's approachr7 can be reformulated into
standard matrix and vector operations such as matrix multiplications.
There are several advantages to such a reformulation. Aesthetically,
the program is considerably simpler and more elegant, which has the
practical benefits that it is easier to write and debug. Futhermore,
since the computational effort is localized in a feQ matrix routines,
the performance of the proéram as # whole can be optimized by atten-
tion .to just a few portions of code. It is possible in the matiix
formulation to remove the coupling coefficiehts from the innermost
program loop in all important cases, thus making the construction
of the Hamiltonian matrix per se an insignificant portion of most
calculations.

The main motivation behind the reformulation of the algorithm,
however, is to take advantage of the very specialized and powerful
vector computers and array proéessors becoming availabie presently.
These devices are restricted to handling rather simple»operationsv
efficiently, and were designed primarily for vector and matrix
operations. Both versions of the current program have been imple-
mented on a CRAX 1S computer, and as will be shown later, the matrix
version executes more than ten times as fast as the original CRAY

version. With this performance, which is perhaps 20 times better
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than that possible on‘the fastes: scalar machines currently available,
it is possible to undertake calculatiohs on molecules which have
previously been considered too large for any attempt té be made at a
correlated calculation. For such calculations, the full powe? of the
_ SDGUGA matrix formulation will be needed ~- both speed and ability to
page the vectors. . |

The discussion of how to manipulate’the various external shapes
into matrix and vector products is necessarily lengthy and involved.
The following sections will consider each different type of entry to
the external space independently, groupihg thé shapes together
according to the number of indices of the ioop (and integrals) in
the external space. Beforé beginning this discussion, a shorthand
method of referring to configurations will be introduéed;v

The configuratioﬂs-will be labeled according to the internal
partial walk, the external orbitals occupied and the spin-coupling

of the external orbitals. The general scheme will be to label a

iw
ab

internal partial walk label and the entry point to the external

cenfiguratiop as C wﬁere the superscripts i and w give the

space. The subscripts a and b denote the external orbitals occupied
in,thiS'particular'wéik, with the orbital a being the'first orbital
coupled in the configuration and the orbital b, the second. Thus,
the orbital a will be lower than b on the Shavitt graph and will

have a smaller value. Using this nomenclature, the possible
configurations are Ciz for a configuration with no electrons in the

i . iw ix '
external space, C:v for one electron, and Cab and cab for the case
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with two electrons singlet or triplet coupled respectively.

A. Four-Internal Loops

These loops, which are completed in the internal space, are the
éimplest to treat‘as they naturally form a vector operation. There
is no need to extend the configurations to the Fermi level as long
as sufficient portions of the vectors are in the central memory.
Having just elaboratgd on the shorthand for configurations, it does
not suffice in this one case. Associated with an internal loop are
the number of lower walks, x, from the loop tail and the two partial
configuration numbers i and j found by summing the arc weights of
the bra and ket walks, respectively, from the graph head to the loop
tail. The loop naturally defines two sub§ectors of the CI vector,

L) : > 9
c* and c? , which are the x elements starting with Ci or Cj

respectively. Thus, for example, Cl is the elements ci'ci+l'

If the loop contribution is v, then the follow-

e 0 2

Civa’ Ciex-1°

ing pair of equations gives the contribution to the correction

vector:
(20)

The correction subvectors Z' are dEfined,in the same way as the C'
subvectors. One final point is that if the loop is diagonal, that
is, if the bra and ket walks are identical, only one of the

equations above is used. The other equation accounts for the
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symmetric nature of the Hamiltonian matrix and is not appropriate for

elements on the diagonal.

B. One-External Loops

The one-external loops involve integrals with one index invthe
external space and arise from YZ, 2Y, XY, YX, WY, and YW entries to
the extermnal space. The first two cases are already in the form of

a dot product and a vector times a scalar:

2% = R ond
‘ a a
(21)
z¥Y = g cI?
a - a

These are the equations for the YZ entry. Simply interchange the
superscripts i and j for the 2Y case. The vector Ha of loop
contributions is given by the following equation for all of the

entries:
Ha = A I(ijka+trl) '+ B I(ijka+tr2) (22)

A,and‘B are the loop coefficients and I(ijka+trl) is the integral
‘located in the triplet with the address for indicés-i, j. k, and a,
and. an offset within the triplet of trl. Thus, the integral is one
-of {ij:kal), [ik;jal, or [ia;jk]. An advantage of'Brooks'lintegfal
storage scheme is that the integrals needed to make sequential

- elements of‘Ha are ipAsequential triplets and thus form a vector

themselves.
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The situation with the remaining four classes of entries is not
so simple. Figure 11 showg the possible. external shapes for the XY
entries and gives the associated loop values. The evaluation of the
contributions from both of the shapes can be combined into one process
in the following fashion. A vector of loop contributions H is formed
as before as well as an antisymmetrié matrix of CI coefficienﬁs c’

defined as follows:

ix
Cab R a{b
1 _ _ ix
Cab = cba " a)b (23)
0 ' a=b

This matrix is then multiplied by the H vector to give a correction

vector 2:

‘l
Z HCL (24)
-

zgy
and to account for the symmetric counterpart in the Hamiltonian:

i iy ,
Zab Ha;b | (25)

The correction subvector z3¥ is exactly what is needed, but the

second. equation yields a matrix 2'' which must be folded to form
. ix . . )

the true correction subvector Z° using the inverse operation to

that used unfolding the CI vector to form the C' matrix. Thus,

[V
»
P
P

2. = 22l - gl a{b  (26)
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Figure ll. External loop shapes for XY entries to the

Shape

external space for one-external loops.

Loop Value
Iseg = 1lé& . 18 22

Al[TI(3) + T(L)] | AI(3) A{I(trl) + BI(tr2)]

-Aa{I(3) + 1(1)] -aAI(3) -A(I(trl) + BI(tr2)]
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The YX entries are identical except for the iﬁterchange of the
i and j superscripté. The WY and YW entries are also handled in the
same fashion ;xcept that the unfolding of the CI vector and the
folding of the correction matrix is modified. The CI vector is
unfolded to give a symmetric matrix with the diagonal elements

multiplied by /2. Thus, Equation 23 becomes

r 3
C:; ¢ acb
i iw ,
iy 4 S , a>b (27)
\/2— v ‘ a=b
o aa

iw i i

z =zt o+ 2 , ac<b

i b “ba | (28)
z.v = J2z?t

aa aa

This completes all cases involving one-external loops. In the
simplest cases, the problem can be expressed as a dot product and a
scalar times a vector. In the more complicated cases, the two or

three external shapes can be combined into a matrix-vector product
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6l1.

and the outer product of two vectors at the expense of unfolding a
section of the CI vector into a matrix and then foldihg the

correction matrix to give the contribution to the correction vector.
When the electrons in the external space are triplet coupled (in the

configuration with two external electrons), the sign of the loop

~ contribution is removed from the actual value of the contribution and

Pplaced instead on the CI elements or the elements of the correction

matrix. The sign is taken care of automatically during the unfolding
and folding processes, as are factors of /2 for the diagonal elements

which are singlet coupled.

c. qu-ﬁxternal Loops

The loops with two indices in the external space comprise a
father large fraction of all loops; therefore, it is c#ucial that
they be_ﬁreated as efficiently as possible. There are seven differeﬁt
ways a two-external loop can enter the external space; of these ways,
three actﬁally occui relatively.infrequently and are satisféctofily
treatéd by the original shape—dfiven algorithm. These three entries
are Xz, W2, and YYi AThe’evaluagion and processing of the remaining
two-external loops, which pass through XX, WX, ¥W, énd WW points at
the Fermi le#el, typically takes 70-80% of the entire computational

effort of a calculation. Fortunately, the matrix reformulation

handles these loops in about the most efficient fashion possible.

All four entries to the external space'involve"tﬁb configurations

with two electrons in virtual orbitals, the four different cases
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arising from the spin-couplings of the external orbitals in either
cbnfiguration. The procedure outlined for the XY, YX, WY, and YW
entries for one-external loops can be‘extended to handle the two-
exﬁernal-cases mentioned above. The appropriate section of the CI
vector for both the bra and ket walks are unfolding to form matrices
of CI coefficients. Again, if the external orbitals are triplet
coupled, the matrix of CI coefficients is antisymmetric; if they are
singlet coupléd,‘the métrix is-symmetric with diagonal elements
multiplied by /2.

The vector of loop contributions Ha is replaced by a matrix Hab

which is formed in a fashion analogous to Equation 22:

H A I(ijab+trl) + B I(ijab+tr2)

ab

Ha A I(ijab+trl’) "+ B I(ijab+trz) . 2%

for a{(b. Notice that the offset in the triplet ofkintegrals of the
integral multiplying the A coefficient canvbe different for the upper
and lerr triangles of this matrix.

Having formed the CI coefficient matrices and the matrix of loop

values, correction matrices are formed as follows:

i * W3 |
zab :;: Ha-cccb _ (30)

r'j Z ’i
Zab = Hcaccb

Finally, the correction matrices are folded to give the true contri-
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bution to the‘correction vector. As before, the actual method of
folding depends on the spin-coupling of the external orbitals in the
cohfigurations.

Each ma;rix product in Equation 30 is the equivalent of the

Ay 2 . .
contraction of an Ne / 2 portion of the CI vector with an

Nz /2 x Ni,/_Z submatrix of the Hamiltonian matrix in a more

conventional method. This submatrix is formed of the matrix elements
i

and CJ where the internal
ab c

between configurations of the férm of a

portions of the configurations differ in two-places. Since the

matri# elements are identically zero if the two configurations differ
in more than four places, only the matrix elements between configﬁra—~
‘tionsvsharingvat least one external orbitai in common.ﬁxe:nonvanishihg.

Each configuration interacts with ZNe other configu;ations:' C;c.can
interact withNe configurations of the form C:b andvcgd as well as

with N of the C?_ and c3 .. Thus, the submatrix contains only'N3
e - ac cd v e

' < . , . . 2 .
nonvanishing matrix elements -- but there are only Ne unique values
among the Ne remaining elements. This is because the matrix element
' i .3 . ' .
; i . on . orbita.
ab anhd Cbc does not depend on the bital

c, except for sign and perhaps a normalization constant of Jr.

between configurations C

The matrix of loop values H in Equation 29 is formed from the

2 . \ . . . .
N.e unique values of loop contributions. That each loop contribution.
. appears Ne times in the true Hamiltonian matrix is reflected in the
use of the unique value Ne times in the matrix multiplication of

Equation 30. The phase factors and normalization constants of JE

are incorporated during the unfolding of the CI vector and the
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folding of the correction matrix.

In light of the'preéeeding discussion, the bulk of the formation
of the Hamiltonian matrix can be identified with the formation of the
loop value matrix of Equation 29. The matrix products in Equation 30
replaces the usual product of the Hamiltonian matrix with the CI
vector. Note that the amount of effort expended evaluating the

_Hamiltonian matrix scales as Nz, while the matrix product scales as
N3. Therefore, for large numbers of external orbit;ls, the time

taken evaluating the Hamiltonian matrix is insignificant compared to

the actual multiplication by the CI vector.

D. Three-External Loops

Thesevloops are formed by a pair of’cdnfigurations differing in
three places in the external orbitals. Therefore, with the restric—_
tion that no more than two external orbitals in any configuration
can be occupied, only loops entering the external space at XY and
WY points can have three indices in the external space. Furthermere, in
the elegant treatment of the one- and two-externél loops, many
different loop§ shared identical values. In the three-external
loops, there is no such repetition.

However, the form of the loop contribution of the three=-external
loops is always the same so the work can be done once before the CI

calculation begins by forming the following mafrices:



Pia,bc
P,
ia,bb

Fib,ab

'and

Q

ia,bc

Qp,ab

There is no restriction

= [ib;ac] + [ic;ab)
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= 2 [ib;ab] o (31)

= [iabb] + [ib;ab]

= [ib:acj - [icfab]

_ [iasbb] - [ib;ab)

(32) -

-on the first pair-index except that i is an

internal orbital and an external one. ' The second pair index is

formed from two external orbitals, the first of which always is

equal to or above the second on the Shavitt graph. o

- The P supermatrix is used for evaluating three-external loops

entering the external space at WY points:; the Q matrix, for those

arriving at XY points.

from these loops is given by the following egquations:

23Y
a

(od

i E v iw
A Al P, C
= ia,bc bec
oc

The contribution to the correction vector

(33)

i Jy
; (A Ca-) Pi‘a-,bc

or for XY entries, P is replaced by the Q supermatrix. In the above

equations, A' is the internal portion of the loop coefficient.

. ., S S . . .
Notice that since A~ is a constant, it can be removed from the first

and premultiplied b§ the ng coefficients in the second. This again
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means that the actual evaluation of Hamiltonién matrix elements is
only a small portion of the total work. The internmal portion of the
loop coefficignt appears in Equatipn 33 2Ne times; of course, forming
the supermatrices requires about NiNz /2 operations for each one, but
this process is not repeated every iteration of the Davidson algorithm.
The penaltyvfor this avoided work is the storage of the super-
matrices P and Q, each of whicﬁ is twice as large.asithe set of
integrals it was created from. Except for extremely large basis
sets, this.additioﬁal storage is unlikely to be a significant-
problem. Also, a certain amount of time will be taken reading the
supenn’atriées into the central memory, etc. For a vector processor,
this addipional work will be easily_recoupéd by thé subsequent
vectorization of the three-external loops. The situation is not so
clearcut on a purely scalar machine. The benefits of forming the

supermatrices may be outweighed by the associated overhead.

‘E. Four-External Loops i

As in the caée of the fhree—external.loeps, the efficient vectoriza-
tion ef the four-ekternai‘leeps'depends on the formation.of super-
matrices é,f loop contributions. In this ca-se',' however, the loep
coefficient is entirely known beforehand and so can be incorporated
in the supermatrices. To handle four-external loopsv where the two
configurations &ze iden;ical in the internal space and pass through
the W point at the Fermi level, and thus have singlet coupled

electrons in the external space, the following supermatrix is formed:



(34)
Ry cq = [lacsbd]l +  [adibe]
-Rac'.bc =  [absec] +  [acibe] + <a|h|b)
| Ra;:'cc = V2 [ac;bc;:]

) Rpbe = [éb;bc] " [ac;bb] . {a|n|c)
Rp ac = [labiacl + faaibe]l + (b|h|e)
aa,bb [ab;ab]

Baa,ab = ,JS k [aarab] + {|hn/p))
Ry by = V2 ( (absbb] + Gl n|B) )

The two pair-indices are restricted so that the first of a pair isk
less than or equal to the second. There is no festriction between
the two éair-indices. |
The contribution.to the correction vecﬁor is given by:

i R - . _

Zia; = g 3ab,cd, C:; - (35)
Because there is. no restriction between the ab and cd indices, there
is no need to exploit thésymmetr;cnature of the Hamiltonian matrix.
Four-external loops contribute to submatrices on the main diagonal
of the Hamiltonian matrix_ 'Instéad of ferﬁing just the lower Half.
of the submatrix and then using the symmetric nature of the
Hamiltonian to find the contribution from the upper half of the

submatrix, it is more convenient to form the entire submatrix.
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The corresponding supermatrix for the XX entries is:

(36)
Sgp,ca = lacipdl - [adibe]
ac.be = (absec] - [acibe] + (ajh]b) Tk
Sup.be = lapibel - [acibb] - {aln]|c) :
Sib.ac = [aa;bc] - [absac] + <blhjle)

The contribution to the correction vector is:

Z gd: Sab,ca Ced

The formation of the supermatrices for the four-external loops
is advantageoﬁs even on a scalar machine. Since the loop coefficients
are incorporated in the supermatrices, there is no extra work to be
performed each iteration. After the two-external loops, the four-
external loops constitute almost all of the rest of the computational
effort, especially when using extended basis sets.

This completes the discussion.of the matrix reformulation of
the shape-driven approach. It should be stressed that this
reformulation has nothing to do with the generality of the program,
but is rather a comvenient way of reorganizing the calculation to
reduce the amount of computational work required:. Furthermore, the -
matrix and wvector operations are extremely well suited to a vector
computer such.as the CRAY. A later section will present timings for
sample calculations on a CRAY that show the distinct advantage on

such a machine of the matrix reformulation.
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VII. HIGHER EXCITATIONS

As was mentioned, the preceeding descriptions of boto the
original and matrix versions of the shape-driven approach were for
oalculations with configuration lists containing no higher than
double excitations from the reference configurations. Yet, it is
sometimes desirable to be able to include higher excitations. For
example, one may wish to include triply and quadruply-excited
configurations as well. Such a CISDTQ caloulation is of interest as
a probe of the wvalidity of truncating the CI oxpansion.after double
excitations. There are aiso occasions when, say, o reaction barrier
height is controversial, ana the inclusion of higher excitotions is:
important for an accurate determinaoion of the-ba;rier height.

The ohapefdriven approach as outlined can be simp;y but crudely
modified to handle such calculations. Since the»external'shapes
currently prograﬁmed handle all casesvwhen both external walks
contain two or fewer electrons, the modification is‘to rédefine the
external space for each individual loop. The loop-driven search is
extended down the loops until they either close or no more than two
electrons remain in each walk, at which time, the external space is
defined:tO'be the remaining orbitals. Since the supermatrices
constructed to handle the three- and four-external loops in the
matrix version version depend on the nuﬁber of external orbitals,
the matrix version of the three- and fouréexternal loops cannot
readily be used when handling higher excitations. The matrix

versions of the one—~ and two-external loops, however, can be used.
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This c¢rude approach to higher excitations results in a substantial
degradation of the performance of the program, since a large portion
of the evaluation of. loops is transferred from the external routines
to the relétively inefficient loop-driven code. Furthermore, as the
level of excitation increases, the amount of computation done in the
loop-driven section increases until, for calculations such as fuil
Ci's, the pefformance can be wérse than the previously mentioned slow
direct CI program formgd by combining the two phases of Brooks'
diagonalization tape program into one. The performance can be worse
because of the penalty of ignoring upper walks from loops paid in
order to be able to page the vectors.

By contrast, the performance should be acceptable wheh treating
low orders of excitations in large orbital spaces. For instance,

a calculation containing up through gquadruple excitations with perhaps
fifty orbitals should be quite reasonable. In principle, calculations
with higher excitations could be handled with the same efficiency as
singles and dbubleS'by programming the appropriate external shapes.
Howevei, the amount of code needed‘répidly becomes prohibitive,
although it might be possible to include triple and guadruple excita-
tions. The matrix formulétion can also be extended'to handle at

least some of thé cases encountered with higher excitations, but it

is not obvious that it can-be,ektended to all cases. The matrix
version would also need tbo much code to go beyond about quadruple

excitations.,
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Beyondvsuch quick f;xes and brute-force ideas, a major‘rest;uc-
turing of the algorithm is required to efficiently handle higher
excitations. A promisiﬁg‘algorithm would be to recursiQely search
frﬁm the middlevbf loops -in both directions. This would be
implemented by choosing a search level according to the type of-
calculation. For instance, for a full CI, the best level would be
the middle of the Shavitt graph, while fof a multi-reference CISD
calculétion the optimum level would be the modified Fermi level
used in the current programs. The partial wélks from the level
| would be numberea using lexical order for the lower walks and
reverse lexical order for the upper walks. The total configﬁration»
number'df any walk would then be a suﬁ of the lower partial walk's v
number and an.offset‘determined by the upper partiai walk's number.

The7searchingvfor; and evaluation of, thé-loops would always
begin at this dividing level rather than at the graph head as is
Acuriently dcne@b The progrém‘ﬁould»search upwards compiling a list
of all péssible\upperjportions of loops arriving at the search 1evelr
at aipamticﬁlar pair of vertices}' A'downwa;dvsearch.would then give
all the lower portions of loops, each of which would be combined with
the list of all possible upper portions to give valid loops.

, Euxtﬁezmore, since the upper porﬁion of the graph would be numbéred
using :everse~iexical order and the iower, by lexical order, both
upper and lower walks’from.loeps_could be exploited without impairing
the ability to page the vectors. Naturallf, loops entirely‘within

the upper or lower portions of the graph would have to be found by
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first éearching from the mid-level to the bottom or top of the loép,

resﬁectively. This would not amount to much extra work since the

number of loops entirely wighin one portioﬂ of the graph is a shall

percentage of the total and the extra searching required gquite minimal.
For a calculation inyolving no more than double excitations, the

current external spaceiroutines could be used to evaluate the lower

. portions of loops. In this limit, the program would function almost

identically, to the present versions, except that it would be able to

\
expldit'the upper walks frqmvloops and should, therefore, execute
slightly faster than the present programs. However, as the number

of references increases or the level of excitations increases, the'
suggested algérithm §hbuld perform increasingly well compared to the
-present programs. With a little thought, it would appear that the
proposedralgorithm could also exploit the repetition of unique values
of ﬁatrix elements in much the same way that the matrix version does.
The difference would be that the ﬁatrix version does the repetition
through carefully projr&mmed,specialized segments of code,i The
proposed algorithm could realize’thé same savings by sorting‘the
upper and lower‘éortions of loéps° Since this sorting could be
implemented in a general fashion, it would handle all casés and would
not require the tremendous proliferation of special cases evident

in ﬁhe current method.
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VIII. SAMPLE CALCULATIONS

.The-following sections will present the'results of various
sample calculations undertaken with the shape-driven approach. First,
the discussion will center on a set of calqulations on the ethylene
molecule. These calculations not only demonstrate the ability of the
current programs to handlg large CI expansions; but alsoksﬁed some
light on the importance of triply- and quadruply-excited configu:atioﬁs.‘
The next section will be concerned with the comparison of the current
prograns and the previous‘programs based on.the UGA, as well as the
advantage of .the matrix reformulation over the original versionof the
shape-driven approach on a scalar'computer. The final section will
briefl} discu#s.the preliminary results from the version of the

program on the vector CRAY computer..

A, Applicatioh.To Many;Body Correlation Effects In Ethylene

Recently there,hasAbeen éodsiderable interest in the importance
of many-body correlation éffectsq mainly because methods éapable of
handling calculations inciuding.such higher-order effects a?e becoming
available. Quantum‘chemiSCS'have hoped that for systems such as
closed shell molecules near their equilibrium geometries, the many-
body effects are negiiéibiea Otherwise, the;pr05§ect‘of:having‘to
include- higher excitations is' discouraging. The most intensely
studied. system has béen‘the‘watex molecule, for which the exact
solution within a double zeta (DZ) basis set of the electronic

Schroedinger equation has been cbtained via a full CI calculation.lZf
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The new capabilities of the shape-driven approach have been used in
the present étudyzo to investigate the importance of triply- and
qﬁadruply-excited configurations in ethylene, which serves as the
prototype of all unsaturatéd organic molecules.

Before discussing the calculations, it is necessary to present
the geometry and basis set used. The geometry, which is close to
‘the equilibrium structure, assumed the following parameters:
r(c=c) = 1.330%, r(c-H) = 1.076%, and O(HCH! = 116.6°. This
struéture results'in the following cartesian coordinates (in atomic
units) for the atoms: darbons (0.0, 0.0, i;.25666814) and hydrogens
(0.0, +1.72999314, +2.32513368).

The basis set used was a standard double zeta plus polarization
(DZP) set formed using Dunning"s21 (4s2p) contraction of Huzinaga's
'(9;4pl basis for carbon and thev(Zs) contraction of the (4s) basis
for hydrogen, the exponents of which were scaled by a factor of 1.2.
The polaiizatiqn functions were a set of six cartesian 4 functions
with orbii:al exponents of 0.75 on the carbons and av‘set of three p
functions, expenent 1.0 on the hydrogens.

A calculation including all singly- and doubly-excited configura-
tions from the,ﬂartreePFOCR reference with the restriction that the
two ¢o£e—like orﬁital§ are always doubly occupied, i.e. frozen, has
5057 configurations. If all triple and gquadruple excitations are
included, the configuration count soars to 10,593;385 which is
clearly too large to be feasible on the Harris-800 minicomputer used

for this study. The scheme used to investigate the importance of

T
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the tripl?— and quadruply-excited configurations was to include only
the moré important ones. This wés accomplished by eiiminating from
the calculation all configurations with more than two electrons out-
side the core and vglence space. The justification of this scheme is
that the valencé orbitals are considerably more important than the
remaining virtual orbitals for correlating the occupied orbitals..

Arguments based on the occupation numbers of the orbitals suggest

- that this procedure should include 80-90% of the total correlation

energy from the triples and quadruples.’

The ground state electron configuration of ethylene is the

following:

2

2 .2 2.2 2 2 2
lag.lblu 2ag zglu.lb2u‘lb3g 3ag lb3u

where the-lag'and 1b orbitals ‘are approximately the carbon 1ls core

lu

orbitals. Beyond these occupied orbitals, the unoccupied orbitals in

the valence space are the lb 3b 2b

2u’

, 4a , 2b_. , and 4b
lu g :

2g’ 3g lu

orbitais. Since the SCF virtual orbitals do not necessarily have the
form desired, a transformation to natural orbitalszg was employed.
The transformation used was that which diagonalized the one-particle
density matrix of a CISD calculation with the two core orbitals
frozen. . This transformaticn guarantees that the o:bitais have the
expected form and thus are suitable for the ensuing calculations;
Table 4 gives the orbiﬁal oécupancies for the valence orbitals and
the most important virtual orbitals outside the valence space. There

is a large gap between the occupied and virtual orbitals in the
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valencé spacé and also another significant gép between the valence
orbitals and the remaining orbitals; as one would expect.

As mentioned before, three calculations were undertaken using
these natural orbitals and always constraining the core orbitals to
be doubly occupied. These were a normal CISD from the first natural
configuration, ;nd then calculations.including through triple
excitations and through quadruples.’ In the last two calculations,
all configurationé with more than two electrons outside the valence
space were eliminated. Another way of viewing the last two calcula-
tions would be as multi-reference calculations employing all singles
and doubles from all singles, or sihgles and doubles, in the valgnce
space as references, respectively. The two cases then can be viewed
as having 37 and 703 reference configura;ions; The CISD calculation
from the first natural configuration reference had 5057_configurations.
In spite of the restriction on the configurations, the triples
calculation had 109,473 cenfigurations.andzthe quadruples, 1,046,758.
Even though 6nly about 10% of thevqugdruply~excited configurations
were~in§luded, the calculamion.was much larger than any pfeviously
atteméted,

Taﬁie:s summarizes the results of the calculations, including
those-of4the calculation using the canenical SCF orbitals which waé
used to find the natural eorbitals. Note-tﬁat there is a slight loss
of’enérgyvusing the natural orbitals in the CISD calculation, but
that the difference is quite small. The bulk of the correlation

energy is recovered, as expected, from the single reference calculation,



Table 4. Natural orbital occupation numbers (greater than 0.001) for the ground state

of ethylene.

<

‘Valence Orbitals - _ Most Important 
Additional
Occupied in Hartree-Fock Picture Unoccupied in Hartree-Fock Picture Natural Orbitals
la 2.000 1b 0.046 2b 0.008
g : 2qg : 3u
b 2.000 3b 0.017 Sa 0.007
lu lu _ : g
2a 1.982 . 2b 0.017 b, 0.007
g - 2u . . ) 2u
2b 1.976 4a 0.015 6a 0.006
lu g g
1b 1.973 2b. 0.014 , 5b 0.005
2u _ 3g : 1lu .
3a 1.969 : b, 0.005
g , 1g
1b 1.943 , ' : 3b 0.004
3u _ o . : 3u
3b 0.003
3g .
la 0.003
u
4b .0.002
2u
2b - 0.002
2g
6b_ 0.002
1u
7a 0.002
g
4b 0.001
3g
5b 0.001

2u

LL



Table 5. Summary of level of calculation and energies (in hartrees) for the ground

state of ethylene at the geometry described in the text and a double zeta

plus polarization basis.

Self-Consistent-Field (SCF)
Canonical SCF Orbitals, CISD
Above, Davidson Corrected
First Natural Configuration
Natural Orbitals, CISD
Above, Davidson Corrected
Triple Excitations

Quadruple Excitations

Number of Reference Total Number

Configurations Configurations Total Energy

- ' 1 -78.050 53

1 ‘ 5057 -78.328 11

- ' - -78.354 54*

- : x -78.049 42

1 5057 | ~78.328 00
- - -78.354 07*

37 109,473 -78.335 01

703 1,046,758 -78.354 51

* Davidson correction is a nonvariational, approximate

correction for the unlinked clusters.

8L
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which obtains 0.27858 hartrees of correlation energy. The 37
reference calculation inéluding the_more important triple excitations
recovers another 0.00700 hartrees, which is only 2.5% as much as the
contribution of the single and double excitations. The quadruples
add a further 0.01950 hartrees to the total, which is 7.0% of the
CISD lowering.

Several interesting points emerge from the above reﬁults. The
quadruple excitations appear to be almost three times as important as
thg triples, which is in line with previous fesults.12f Remembering
that not all of the triple and,quadruple ex;itationévwere included,
the above figures undérestimate somewhat their impoftance. This,
coupled with the neglect of all of the five through éix;een fold
excitétions, suggests that the CISD calculation récovers probably
léss.than 90% of the total correlation energy. By way of comparison,
for the water molecule in a smaller double zeta basis, which lacks
the,pélarization functions of the present study, the singles and
doubles account for 94.7% of the correlation energy, the triples and
gquadruples for 0;77%:and14}4%'respectively, leaving only 0.18%:for
the five through ten fold excitatioﬁszZf It is reasonable that less
of the correlation energy in ethylene iszrecovered by a simple CISD
calculation than in water-since~ethylenerhas considerably more
electrons. The relative importance of the triples in ethylene
compared to the quadruplgs is considerably different than their
importance in water, which is interesting. However, the r§le of the

polarization functions in such calculations is not understood, so it
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would be difficult to come to any conculsions.at present. A final,
and mést~important question, which has not been addressed in the
current study, is whether there are differential effects in the
contributions of higher excitations between different structures,
or states, of molecules.

These éalculations on ethylene were made possible by the
ability of the shape-driven programs to page the CI vector. The
calculations were performed on tﬁe Harris~-800 minicomputer, which has
sufficient. central memory to hold about 190,000 elements of the
vectors. Remembering that both the CI and ;orrection vectors must
be in core simultaneously, it was necessary to page the vectors for
b_even the 109,473 configuration) 37 reference calculation. For the
largest calculatidn,.less than 10% of the vectgrs could be held. No
calculation of this size has been attempted before, and as far as the
author is aware, there is no other program in existence which could
efficiently handle '‘a calculation with such a small portion of the
vectors in core. Test c#lculations on smaller systems have shown
that paging the vectors to the extent used in the largest calculation

increases the calculation time by only a few percent.
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B. Timing Comparisons With Previuos Programs
Although the shape~driven approach is capable of paging the

vectors, for which some price in the form of execution time must be

- paid, it is nonetheless a fast program. This speed is due to the

organization of the procéssing of loops, which considerably reduces
overhead aﬁd redundant wofk. Téble 6 compares the time per iteration
of the Davidsén algorithm férvvarioﬁs.proqrams, all of which are.
based on the unitary group approach. Apart from the SDGUGA program,
the prog:ams ére a) Brooks' diagonalization tape system,lsc
b) a direct CI program based on ﬁhe loop~driven approach but
exploiting the external space simplifiéation51 and c¢) a‘ratherAsldw
direct CI p:ogramvformed by combining the two phases of Brooks'
diagonalization tape system into one program. The'timings for the
diagonalization tape program include an appropriate’fracgion of the
time taken'té form the diagonalization tape, since the tapé is formed
only once and then stored in a disc file. |

The first three calculations in Table 6 are relatively small,
so the diagonalization tapé could be sﬁored. At first thought, one
would think that the direct Cvarograms could not possibly compete
favorably with a program which stores the Hamiltonian matrix rather
than regeneraﬁing it each iteration; However, the SDGUGA program
performs about as well as the diagonalization tape program in the
first two calculations and considerably better in the third. There
are two main reasons for this. The first is that it does take a

considerable amount of time to read the diagonalization tape from



" Pable 6. Timings* for sample calculations when using loop-driven diagonalization tape

program, loop-driven direct CI program using external space simplifications,

or shape-driven direct CI program,

Molecule Sym Basis
+

F+H, C,hy DZP

Al, DZh DZ

He4 C1 5s

H_CO (TS) c DZP
2 s

MnCH., C T2P

2 2v
C,H, C,, D2ZP
C,H, Do DZP

*

* %

k%

# Orbitals

29

22

20

a8

60

56

50

~ # Config.

1,125
1,076
- 2,145
10,221
22,288

45,623
74,625

5,057
109,473
1,046,758

Run with program written only for C1 symmetry

Loop-Driven

(703 references)

Time per iteration of Davidson algorithm, on Harris-800 minicomputér

Tape Direct SDGUGA
5.7s 15.5s 6.6s
1lls 25.4s 10.1s

20.6s**
40.3s 31.5s 21.1s
300s 188s
3419g**» 855s 601s
. 1260s
{Two references) '1800s
221s 66s

{37 references) 40 min.

13 ' hr. 10 min.

Slow direct CI program which generates loops each iteration using loop-driven approach

Z8
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the disc file, and it is not convenient for the program to have to

7 |
pick up a matrix element and its indices, and then have to decide

what to do with it. The shape-driven approach, on the other hand,

implicitly knows which matrix element is being dealt with. The
second major drawback with the diagonalization ﬁape program is thatv
it always uses the number of upper ahd lower walks from a loop.
This requires a doubly nested set of DO loops, yet most of the time
the number of upper and lower walks are both unity. .Thus, thg program -
probably spends more time on the ovefhead of setting up the DO loops
than in the actual camputation.

rThe performance of the loop-driven direct CI prograﬁ isnot as -
good as the shaée—dziveﬂ program, yet'evén it managesrtO'outperform

the diagonalization tape program on the He, calculation. - From the

4

relatively poor performance on the D2h A12 calculation,vit appears

that the loop-driven program spedds considerable- time handling

. symmetry information. By contrast, symmetry is. very readily handled

in the SDGUGA program by limiting the ranges of DO loops. The two

calculations on He,, illustrate this. The upper timing is for a

4
program which did not treat symmetry at all; the lower, for the final
version, which, for this calculaﬁion, must do all the symmetry check-
ingveven though there:isxno symmetry present.

The last four sets of calculations are all larger calculations
for which it is impossible to store the diagonalization tape. The

SDGUGA program continues to run faster than the loop-driven direct

CI program, especially for high symmetry molecules. The one
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+
2

direct CI program formed by combining the two programs which form and

timing for MnCH_, of 3419s is the time taken per iteration of the slow
then use the diagonalization tape. This result illustrates the
iﬁportance of using the extermal space simplifications to speed'up
the evaluation of Hamiltonian matrix elements.

Although the performance.of the priginal SDGUGA program is
impressive, the matrix veréion can be §onsiderably faster for large
calculations, even on a scalar machine. Because the matrix version
of the program uses the duplication of matri# elements, it only does
about half the computational work that the original program does
(for sufficiently large external spaces). The timings presented in
Table 7 refleét_this‘réduction in work quite $atisfactorily; it
appears that for even larger calculations than those presenﬁed in the
gable, the matrix version of the SDGUGA will run in only 30-40% of
.the ﬁime taken by the original program. The extra speed arises from
- the tremendous simplicity-of matrix opérations, which means.that.even
on a sgalar machine, matrix operations run somewhat faster than other,

less structured computations.



Table 7. Timing comparisdn between the original and the matrix reformulation of the
SDGUGA programs. Times givennare per iteration of the pavidson algorithm,

on the Harris-800 minicomputer.

Molecule Sym Basis # Orbitals # Configuratiéns Original - " Matrix
N6 D2h . D? : 48 ‘ 16,800 | 276; 2OQS
N, ' D, DZP - 84 ‘ 71,374 - 29.6 min. 16.7 min.

S8
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IX. IMPLEMENTATION OF SDGUGA ON CRAY VECTOR COMPUTER

The CRAY is the first high-performance vector computer to be
successful, and as such, it represents a challenge to a computa-
tionally bound field like gquantum chemistry. Technically, the CRAY
is a single-instruction mhlti?le-data machine,. i.e. one instrﬁction
will cause the same operation to be applied to up to 64 data elements.
For very structured processes such as matrix multiplications, one
can take advantage of this vector mode to achieve a pérformance at
least an order of magnitude better than any scalar computers cén
currently manage. .It is important for quantum chemistry to be able
to harness the power of the vector computers. Yet, many of the
algorithms used in quantum chemical caléulations do. not easily
"vectorize;.> For example, five years after the CRAY was first
introduced, the first vectorized CI programs are just starting to
work. One of these programs is that of Saunders and Qan Lenthe:,l9
the other is the matrix version of the SDGUGA. None of the other
CI programs developed on scalar machines have been subcessfuily
vectorized.

The reason for the vectorization of both Saunders' program and
the current matrix version of_the SDGUGA is the use of matrix and
vector operations wherever possible. In a sense, both programs use
the same algorithm -; that of folding and unfolding the vectors --
although not enough has been published about Saunders' program to

allow a comparison between the two.
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It was originally felt that the first version of the shape-driven
approach would‘vectorize, which it indeed did. However, the vector
lengths in a typical calculation were so short that only a small
increase in speed Qas noted due ﬁo vectorization. Therefore, the
matrix version of the program was written explicitiy to take advantage
of the vector capabilities of the CRAY. The results for a sample
calculation were a speed-up in execution time of a factor of fifteen,
in‘partvdue to the change of algorithm, bgt mainly due to vectoriza-
tion. The sample calculation used for test pﬁrposes was a CISD
calculation on ethylene with a 38 orbital 6-316* basis and no symmetry.
This calculation, which has 294161 configuratiohs,‘tpok 381 seconds on
the CRAY for seﬁen iterations using the original program. The matrix
ve?sion completes . the séme calculation in‘24}4 seconds.

It is quite interesting to examine the breakdown in Table 8 of
éhe~time spent doingIVarious phases of the calculation on the CRAY.

The first thing to notice is that for the CRAY, this calculation is

‘relatively short, and as a result, a noticeable fraction of the time

isvspent.in,oﬁerhead starting the calculation. The matrix multipli-
cations which correspond to the contraction of the CI vector with the
Hamilt§nian matrix account for about half the total time. Yet on the
CﬁAY, thermaﬁrix multiplications are. more efficiently handled than

the other operations, so that on a scalar machine one woulé expect
85-90% of the computational time to be involved in multiplying the
vector by the Hamiltonian métrix. This is the basis of the claim that
the time taken to construct matrix elements is.negligible in iarger

calculations.
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Table 8. Breakdown of timing for C2H4 sample calculation on

CRAY. Calculatioﬁtook 24.4 CPU seconds to do seven

iterations.
Calculating diagonal elements (done just once) 3.14%
Loop-driven search for internal portions of loops 7.28%
Extra work due to matrix reformulation 26 .68%
Unfolding and folding vectors 20.08%
Forming matrices of loop contributions - 6.60%
Processing loops ' 57.01%
Matrix operations ' 33.45%
Processihg four external loops and 20.04%

_part of three external loops

' Processing loops not reformulated 3.52%
in matrix form

overhead ' - 5.89%

100.00%

One aspect of the program on the CRAY isvstill,not known. ‘Since
the computational speed of the CRAY is tremendously faster than
coqventional computers, but the transfer rate from mass storage to
the'central memory-is.no faster, it is not known whether paging the
vectors will be practical. iﬁ will certainly be tried, and it is
grobable-that imérovements can be made in the paging algorithm. If
the paging is practical, then calculationé with a million configura-
tions will be routine and those with up to about ten million

configurations should be possible.
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X.  CONCLUDING REMARKS

An extremely fast configuration interaction method has been
presented which can handle calculations where the CI and correction
vectors cgnnot simultaneously be held in central memory. The method
derives its speed from the efficient use of the simplification of the
external space for caiculations involving only single and double
excitations from a set of reference configurations. vThe ability to
page the vectors is due to the use of lexical order and from ignoring
the number of upper walks from loops. The laﬁter factor increases
the number of loops which must be evaluated, but this inc:ease is
more than éompensated for by the speed of the shape-driven approach.
"A second version of -the program haskbeen formulated.almost entirely
in terms of small vector and matrix operations, and is therefore
extremely well suited to a vector computer or an_array‘processor.

'In the matrix refbrmul&tien,‘it is possiblé to exploit the fact
that unique-valued matrix elements are repeated many times in the
Hamiltonian matrix. .By férming these matrix elements only once and
then. using thém many times, it is possible for the construction of the
Hamiltonian matrix tokbecomevarrather small portion of the entire
calculation. In the limit of a large basis, all of the computational
effort is cénsumed‘by the multiplication of the elements of the CI
vectoer by the Hamiltonian matrix elements. It would appear that if
this is indeed the situatioﬁ,>then the shape-driven appréach yields
a progrém which is essentially as fast as any.CI program can be if it

uses the entire Hamiltonian matrix.
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In the last sections, the timings and results of various sample
calculations have been presented. The first set of these calculations

demonstrate the ability of the programs to page the vectors. The

a

calculations suggest that for a prototype unsatruated organic molecule,
ethylene, a CI including all single and double replacements from the
'Hartree-Fock reference recovers just under 90% of thé correlation
energy, while triples and quédruples account for about 2% and 6% of
the correlation energy. This confirms the commonly held belief that
triples and quadruples are not very important, but does not rule out
the possibility of a noticeable differential effect between different
geometries or states.

Further‘examples demonstrate that for relatively small CI
expansions, the SDGUGA program is faster than previous unitary group
based programs, which in turn, are faster than more conventional
programs. Furthermore, the ﬁatrix-reformulation is shown to be about
twice as fast as the original program for lafger calculations. Pre-
liminary results of the implementation on the vector CRAY computer are
very encouraging, with a factor of 15 being gained from vectorization.

The aim of this work has been the development of an algorithm
for CI calculations which can use the computing power a&ailéble today
to handle large CI calculations. There is a largé-demand for accurate
calculations on chemical systems as well as a need to understand the
effects of many-body correlations. The current program goes a long

‘way toward solving the first problem. Until now, there has been a
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considerable amount of art involved with large~-scale CI calculations.
This can be contrasted with SCf célculations, which have become
routine and the SCF programs, whi;h have almost become "black-boxes";’
It is hopea that the current programs will be the beginning of é trend
towards "black-box" CI programs which can be easily distributed and
used. The only limitation on a calculation should be the cdst; i.e.
the amount of time required. The amount of peripheral storage and
central memory available should not be limitations. The current
programs meet these regquirements since-thefe is no diagonalization
tape to store and the vectors can be paged.

On the second aspect, highef’excitations, the current programs
are much more limited. Although they can handle higher éxciﬁations,
the currenﬁ-prog:ams lo;e their efficiency for such calculations.
Various methods. have been propesed for overcoming these éefects, the
most promising of whicg involves a bidirectional search for loeps,
beginning at thg middie.of the graph. The experience gained w;th
paging the vectors in the current programs will be in#aluable, since
calculations with higher excitatiOAS‘tend to have extremely long
configuration lists.

The SDGUGA programs are capable of handling almost any calcula-
tion now desired. By running large calculations, defects in the
current programs may become obvious ahd improvements, or indeed
completely new algorithms, may be developed. Until such calculations

are tried, no one really knows what their requirements will be. This



92

will perhaps be the largest contribution of the current work: to
~convince quantum chemists that large CI calculations are possible, and

to continue the learning process needed to develop yet better methods.
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Appendix 1l: The Loop-Searching Master Table

The following pages contain a list of all possible segment
shapes, the segment-shape values, and other information useful in the

evaluation of loops. Each entry in the table is described below.

ISEG Divides the table into twenty-two major sections, eachbof
which contains related segment shapes. .The first sectidﬁ
is comprised of the sixteen different ways to open a loop;
thg subsequent sections gather'gogether segments which are

valid continuations of a particular shape of partial loop.
JSEG. A simple index numbering the 228 segment shapes.

NEXT Indicates the ISEG value of valid segments for the.
continuation of the partial loop terminated by the current_'
segment. A value of zero indicates that the current segment

closeS'the.loop.

SS | The case values. of thé bra ﬁnd ket sides of the current
seément; |

TRACK Information used to,determiﬁe the form of the Ioop
contribution. The TRACK value is. only occasionally modified
during the- evaluation of a loop. The last value enpountered
de;ermines the form of the loop ;ontribution. A dash
indicates that the TRACK value is not changed by the segment

. being processed. The TRACK value is either a single number,
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a pair of numbers separated by a comma, or two or three
numbers enclosed in parentheses. The loop contribution, v,

has the following form for the three cases:

n: v = XI(ijkl + n)
n,m: v = X[I(ijkl + n) + 2I(ijkl + m)]
(n,m): v = X[I(ijkl + n) + I(ijkl + m)]

X and Z are the loop coefficients (see below) and I(ijkl+n)
is the integral with ah offset of "n" in the group of integrals

at address ijkl.

These two entities (JCOND and KCOND) determine when the j>and
k indices qf the loop are reached. Tﬁe i-level is élways the
levei of the loop opening and the l-level, that of closing,
but the j- and k~levels are determined by the shape of the

loop. JCOND has the following values:

-1 if the j-level has not yet been reached
1 if the current level is the j-level

0 if the j—lével has been passed already.
'KCOND has only two possible values:

1 if the current level is the k-level

0 1if the current level is not the k-level.

The loop indices i, j, k, and 1 are used in the evaluatioq of

the integral gioup address iijkl.
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The- CODE value is related to the shape value listed under
the heading VALUE. The programs use the CODE value to
determine which section of program to use in evaluating °

the segment—éhépe values,

These algebraic expressions give the partial product of

the segmeht—shaperalués in termsvof the previous product
and a set of au¥iliary functions defined below. In the

body 6f this work only two values, A and B, were‘mentioned;
however, for convenience, the currensbtable employs three
coefficients. These three are X, ¥, and 2 = Y/X. all

loops invbi&e_the X'cpeffiéient, but only those two-electron
loops which invo;ve a summation-cver triples,and singlet
recoupled states use the last two cbefficients.' Over the

range of overlap, there are two coefficients, but outside

~ of the range of overlap, the ratio of these two is constant.

Therefore, it is convenient to remember the ratio and keep

track'of‘only the X coefficient. 2Z is the ratio, and is set

only once during the evaluation of a loop.

The shorthand used in the segment values consists of

the following constant and functions:

B(p). s 2
‘ (b+pl (b+p+l)
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vV (b+p-1) (b+p+1)
b+p

[ o+p-1) b+p+2)

Dlp) = \/ (b+p) (b+p+1)
2

E(p) = \/(b+p) Brp+l)

The parameter b is the b-value of the vertex of the Shavitt

C(p)

graph that the ket walk passes through at the top of the

segment.

Both the LDGUGA and SDGUGA CI programs require that the integrals

be sorted into the following seven groups:.

Type Offset Integral Indices

1 1 [ik;j1] i>j>k>1
2 [ij;k1] :
3 (i1;3k]

2 1 (ij:31] i>j=k>1
2 [i1;35)
3 not used

3 1 [ik;il] i=§>k>1
2 [ii:k1]

4 1 [il:31] 1i>3>k=1
2 [ij;11]
3 not used

5 1 [ii;i1] i=3=k>1
2 [i1;11) i>j=k=1
3 ilhl1)

6 1 [11;4i1] i=j>k =1
2 (ii;11]

7 1 [ii;ii] i=j=k=1

2 arniid
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The address of any particular integral is found by first sorting
the indices into strictly descending order (except for integrals such
as [il;11), which is stored under the indices iiil). If the ordered

indices are i, j, k, and 1 and the corresponding symmetries'of the

orbitals are ri’ etc., then the address of the group of integrals is:

ijkl = IJADD[Xi(i-1) + 3] + mb(k,ri x rj)

+ LADD(l,I; x [3 x rk)

The offset of the éarticular integral is then determined from the
table of integral groups and is added to the group address.

' This,integra; storage scheme'is particulariy uséful when
evaluating loops since the loop indices are.the sorted indiqes
needed to evaluate the integral group address. The TRACK value then
determines the form of the loop contribution exp:ession and the

offsets of the iﬁtegraisrwithinAthe integral group.



98

ISEG JSEG NEXT SS TRACK JKCOND CODE VALUE

1 3 01 1 -10 1 X' =1
2 18 01 3 11 1 X' =1 ,
3 2 02 1 -10 1 x' =1
4 17 02 3 11 1 X' =1 .
5 10 03 1 10 1 X' =1
6 o 11 2 11 1 X' =1
"=t .
7 5 11 ;,2 le 44 {Y, AR
8 7 12 1 10 1 x' =1
9 2 13 1 =10 3 X' =a(0,1)
10 15 13 (3,1) 11 3 X' = a(0,1)
1 o 22 2 11 1 x' =1
. . 4 b t = t‘
12 s 22 1,2 10 5 { A1)
13 3 23 1 -10 4 X' = a(2,1)
14 16 23 (3,1) 11 4 X' = a(2,1)
15 0 33 2,1 1 50 {,, = i
16 4 33 1,2 10 51 x' =2



ISEG JSEG NEXT

2 17 2
18 11
19 12
20 7
21 2
22 21
23 12
24 6
25 3
26 22
27 2
28 21
29 1
30 20
31 6
32 7
33 2
3‘45 21

SS

00

0l

02

10
11
11
13
20
21
21
22
22
23
30
31
32

33

33

TRACK

1,3

1,3

2,1

2,1

1,3

2,1

JKCOND CODE

-10 1
10 40
10 1
10 , 1

-10 6
11 6
10 7
lQ 46

-10 9

-10 2
1 52
10 41
11 5

10 47 {

10 8.
-10 2
11 53

99

VALUE

X' = X v
. {X' = XtA(llo)
Y' = -XtA(~-1,0)
X' =X
X' = X
X' = XC(0)
X' = XC(0)
X' = Xa(-1,0)
{ 't = Xt
Y' = XtA(2,0)
X' = X/b
b
Z' = b
X' = =X
{x' -X
2' = -1
X' = =Xt
' = XtAa(2,0)
X' = Xa(1,0)
Y' = Xta(-1,0)
X' = -XA(1,0)
Xt = =X
{ Y= =2X
Z' = =k



ISEG JSEG NEXT

3 35

36

37

38

39

40

41

42

43

44

45

46

a7

48
49
50
51

52

Q
-

13

11

22

21

11

22

13

19

22

SS

00

0l

02

10

11

11

12

12

13

20

22

22

23

3Q

31

32

33

33

TRACK JKCOND CODE

- -10 1
1,3 10 1
1,3 10 42
1,2 10
- -10 2
2,1 1 s2
- -10 36
2,1 11 s5
1,3 10 43
3 10 1
- -10 11
2,1 13 1
1,3 10 12
- 11 10
3 10 13
1,2 10 49
- -10 2
2,1 1 s3

100

Xta(1,2)
XtA(3,2)
Xt
-Xta(0,2)

=X

__xi

-1
-X/ (b+2)

=X/ (b+2)
=(b+2)
-Xt
-Xta(0,2)

X

XC(2)
XC(2)
XAa(3,2)
Xa(l,2)

-XA(1,2)

= XtA(1,2)
= -XtA(3,2)

=X

= -2X
= -4



ISEG JSEG NEXT

4 B

53

54

55

56

57

58

59

60.
61
62

4

22

21

SS

00
o1
. 02
11
S11

213

22

22
23
33

33

.TRACK .. JKCOND CODE

00

0l

0l

01
00

01

01

00

0l

01

00

1

77
77

77

1
79
77

1

80

78

3

VALUE
X' =X
{ ' = =Xt
L} = _2
{ ' = -xt
Z' = =2
{ "= -Xt
Z' = =2
X' = X
X' = =XtA(0,1)
' = -2 .
{ ' = =Xt
. L] - _2 s
X' =X
{:x' = -XtA(2,1)
Z' = =2
{x' = -2 X
Zt = =2
X' = X

101



ISEG JSEG NEXT

5

64

65

66

67

68

69

70

71

72

73

74

75

5

22

21

Ss
00
01l
02
11
11
12

13

22

22

23

33

33

TRACK JKCOND CODE

- 00
- | 01
- 01
1 01

- co

- 00

- 01

- 01

- 00

- 0l

.- 01

- 00

71

67

68

87

75

83

69

68
76
70
82

71

102

VALUE

w
5
4
E
&,

{
2
b
:
{
{

X

=Y

"

-Xt + YtA(2,0) *

= ﬁX/}('
= =Xt - YtA(0,2) *

J2x/%!

-Xt + YtA(2,0) *
V2X/%"

X

¥YD(0)

-YE({(0)

-XtA(0,1) - YtA(2,1)
J2xa©0,1) /%'
-Xt - YtA(0,2) *

J2X/%!
X

¥D (1)
-XtA(2,1) + YtA(0,1)
J2XA (2,11 /%

“/2X

-2

X

Y

* If X'=0, change TRACK to 2 and set X'=2'X'

*

*



ISEG JSEG NEXT

) 76
77
78
79
80
81
82
.83

-84
85
86
87
88
89
20
91

92

* If X'=0,

6

22

21

20

21

19

22

19

20

SS

00

0l

02

10

11

11

12

13

20

21

22

22

.23

31

32

33

33

TRACK JKCOND CODE

3,2

3,2

change TRACK

00
01
01
01
01
00
0]0]
01
0l
(0]0]
01
o]0}
01
0l
0l
01

00

to 2 and set X'=Z2'X'

7
67
68
67
87
75
83
69
68
83
68

76

.70

69

70

82

71

103

VALUE

;
:
v
£
3
&

xl

o
K

tZ"

X
Y
-Xt + Yta(2,0) *

NI
-Xt - YtA(OIZ) *

X/X!

= -Xt + YtA(2,0) *

([}

J2x/%!

-Xt + YtA(2,0) *

J2x/x

X
YD (0)

-YE(0)
-XtA(0,1) - Yta(2,1) *

J2xa(0,1) /%"

-Xt - YtA(0,2) *

v2x/x

-YE(0)

-Xt - YtA(.OrZ) *
J2x/x

X
YD (0)
-Xt.A(2,l) + YtA(OIl) *

V2XA(2,1) /X"

-XtA(0,l) - YtA(2,1) *

J2xa(0,1) /%

-XtA(2,1) + YtA(O,1l) *
V2¥A(2,1) /%!

Y 2

-2

X

Y



ISEG JSEG NEXT

7

93

94

9s

96

97

98

29

100

101

102

7

21

7

20

21

20

00

0l

11

20

21

21

22

23

33

TRACK JKCOND CODE

- (o]0]
- 01
- 00

1 0l

1 01l

- 00
- 00
- 01
1 0l

- 00

1

6

16

17

16

74

104

VALUE

X' =X

X' = XC(0)

X' = -XC(0)

X' = XC(0)

X' = XC(0)
X' = -/2%/b
X' = -XC(0)

X' = -XA(~1,0)
X' = -Xa(1,0)

X' =X
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8 103
104
105
106
107
108

109

110

1

12
113
114
;xs

116

117

118

' ISEG JSEG NEXT
.

22 .

21

20

21

19

22
19.

20

SS

00

01

02

10

11

11

12

i3

20
21

22

22

23

3

32

33

TRACK JKCOND CODE .

- 00

o o1

- 01
1 01
1 01
- o0
- 00
- 01

1 0l

- 00

1 © 01

- 00

- 0l

1 01

1 01

- 00

1

18

19

18

18

22

24
20
19
24

19

23

221

20

VALUE

xl
xl

xl

4‘x'

x!

xl

X'

x!

x'

xl

xl

X

XtA (2,0)
-XtA(0,2)
XtA(2,0)
XtA(2,0)
XD (0)

-XE (0)
~XtA (2,1)
-Xta (0,2)

-XE(01

-XtA(0,2)

XD(1)

Xta (0,11
-Xta(2,1)
XtA(0,1)

X

105



ISEG JSEG NEXT

9 119 9
120 22
121 19v
122 9
123 0
124 8
128 22
126 9
127 19
128 9

10 129 lOl
130 21
131 10
132 22
133 10
134 0
135 22
136 21

137 10

SS

02

10

12

12

13

22

32

33

00

10

11

20

22

30

31

32

33

TRACK JKCOND CODE

- 00 1
- 01 1
1 or 1
- 00 27
1 o1 1
- 00 28
- 01 a1
- 00 27
1 01 13
- 00 1
- 00 1
- 01 3
- 00 2
- 01 4
- 00 2
- 01 1
- o1 2
- 01 2
- 00 1

Xl
xl
xl

xl

x!
xl

x"

x'
X’.
xl

xl

106

XC(2)

XC (2)

-XC (2)
XC(2)
-ﬁx/ {(b+2)
-XA(3,2)
-XC(2)
-XA(1,2)

X



ISEG JSEG NEXT

11 138

* If x'=0,

12

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

11
21
11
12
22
13
11

0
22
21

11

set

12

12

21

14

12

21

12

SS TRACK JKCOND CODE  VALUE

00
10
11
12
20

21

22

30
31
32

33

TRACK

co
11
20

21

22

31

33

to 3 and set

00

.00

00

00

01 .

00

00

- 01

01
01

00

00

0]¢)

01

00

0o

01

00

71

63

{
{
72 { :
{
{

84 '
)
65 ,
g8s '
73 ,
29 X'
} b.&
66 {z'
X'
64 {z,
val {x'
. ‘Y'
xl =Z'xl
1 X'
30 X!
. 'X'
86 X'
1 X!
X'

7
S
1 &

=X

Y

= XtA(0,1) + YtA(2,1)
(-XtA(0,1) - YtA(2,1)) /X’

-X
-YD (0)

YB (1)

= Xta(2,1) - YtA(O,1)
(Xta(2,1) + Yta(o,l))/x’

nn

YB(0)

-X
-¥D(1)

X

-Xt + YtA(2,0)
(=Xt - YtA(2,01) /X'

= =Xt - YtA(0,2)

(=Xt + YtA(0,2)) /X'
X
Y

*

*
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*

*



ISEG JSEG NEXT

13

- 14

156

157

158

159

160

161

-162

163

le64

165

166

167

le8

169

170

171

172

13

22

13

14

13

22

13

14

21

14

12

22

13

14

22

21

14

ss
00
10
11
12
22
32

33

00

10
11
12
20
21
22

31

32

33

TRACK JKCOND CODE

- 00
- 01
- 00
- 00
- 00
- 01

- 00

1

56

1

32

31

58

S9

33

34
61
35
88

62

60

VALUE

xl

o

xl

xl

x.

i

Xl

Xl
x|
e
x'
xv
e
xl
xl
Xl
zl
X'
o

xi

108

XB(2)

XD(2)
XAa(1,2)

= -1

X

Xta(2,1)
-1

-XD (0)

‘XB (1)

-XtA(0,1)
-1

XB (0)

-XD (1)

Xta(2,0)
-1
-XtA(0,2)
-1

= X



ISEG JSEG NEXT

15 173 15
174 15
175 O
176 16
177 15
178 0
179 15
16 180 16
181 0O
182 16
183 15
184 16
185 0

186 16 .

SS TRACK JKCOND CODE

00 - 00 1
1 - oo 6
20 - 00 1
21 - 00 9
22 - 00 2
31 (3,2,1) 00 5
33 - 00 2
00 - 00 1
10 - 00 1
11 - 00 2
12 - 00 36
22 - 00 11

32 (3,2,1) 00 10

109

VALUE

X' = X
X' = XC(0)
X' = X

X' = X/b
X' = -X

X' = XA(1,0)

X' = -
X' = X
X' = X
X' = =X
X' = =X/ (b+2)
X' = xCc(2)

X' = XA(1,2)

X' = =X



ISEG JSEG NEXT

17

18

187
188
189
190
191
192

193

194
195

196

197

198

199

200

17

17

0

18

17

0

17

18

18

17

18

18

SS

00

11

20

21

22

31

33

00
10
11

12

© 22

32

33

TRACK JKCOND CODE

(3,2)

(3,2)

00

00

00

00

00

00

00

00

00

00

Cco

00

00

00

1

6

36

11

10

xl

X'

XU

xl

xl

xl

110

XC(0)

X
-X
=X/ (b+2)

XC(2)

*A(1,2)

-X



ISEG JSEG NEXT

19

20

201

202

203

204

205

206

207

208

209

210

211

212

213

214

19

0

19

20 .

0.

19

19

20

20

19

20

20

SS

00

02 -

11
12
13
22

33

00

.Ol

11

21

22

23

33

TRACK = JKCOND CODE -

- 00
- 00
- 00
- 00
- 00
- 00

- 00

1

1

37

38

4

39

37

VALUE

Xl

x'

X'

xl

xl

x.

X
X

xc (1)
X/ (b+1)
XA(2,1)
-X

-X

X
X
-X

-X/(b+2)

XC(1)

XA(0,1)

-X

111



ISEG JSEG NEXT

21 215 21

216 21
217 0
218 22
219 21
220 0
221 21

22 222 22

223 0
224 22
225 .'21
226 22
227 0
228 22

SS

00

11

20

21

22

31

33

00

10

11

12

22

32

33

TRACK JKCOND CODE

- 00 1
- 00 6
- 00 1
- 00 9
- oJo) 2
- 00 )
- 00 2
= 0o 1
- 0o 1
- o]} 2
- 00 36
- 00 11
- 00 10
- 00 2

xl

Xl

112

Xc(0)

X

-X

=X/ (b+2)
XC(2)
XA(1,2)

-X
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Appendix 2: The External Shapes

This appendix contains the diagrams and partial.loop coefficients
for all possible external portions of loops. It does not contain
the four-external loops. The external shapes are grouped according
to the vertices passed through at the Fermi level and by the ISEG
value from the internal portion of the léop. Please note that the
loopvcoéfficients are given different symbols here than in the loop-
searching master table in Appendix 1. Thus X becomes A, and Z is B.
Y remains Y, although it is seldom used. Also, in this section,.the
variables A, B, and Y refer to the valué from the internal portion 
of the loop. The bqntribution ffomvthe'external shape is explicitly
included in the formula for the loop contributions.

Beside eéch_diagram are the ‘indices of the loop which are in
the external space, as well as aﬁ indication of the total loop
indices. Thus, a notation "I=ijab" means that the loop indices
are i and j in ﬁhe internal space, and a and b in the external space.
These indices also define the integral group -address as was detailed
in Appendix 1. The form of the loép contribution is listed beside
the diagraﬁs under the appropfaite ISEG value. I(n) is the integral
in the integral gxoupvdefined by the loop indices with an offset

of n.
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ZY Entries,
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WZ Entries,
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ISEG= 16 15
AlI(3) + ()] AI(3)
I=ijka

ISEG= 20

A{I(crl) + BI(tr2)]

I=ijka

ISEG= 13

A[I(L) - I(3))

I=ijab
ISEG= 10 11
AI(1) /2 AL(1)
I=ijaa
V2 AI(1)

I=1jab

22

A{ICcrl) + BI(tr2)]

A[I(L) + I(3)]

114



¥

XY Entries,.

/ FTET T
-
0 .

[SEG= 3

-A{I(1) = I(2)]

Iéiaab

a{I(l) - I(2))

I=iabb

ALT(L) - 1(2))

I=1iabc

A[I(3) - T(D)]

I=iabc

115



XY Entries,

116

ISEG= 3, continued.

A(I(3) - I(1))

I=iabc
ISEG= 16 18 22

-A[I(3) + I(1)] -AI(3) -A[I(trl) + BI(tr2))

I=ijkb

A[I(3) + I(1)]) AI(3) AlI(erl) + BI(tr2)]

I=ijka

-



YX Entries,

ISEG= 20

-A{I(trl) + BI(tr2))

I=ijkb

A[I(trl) + BI(tr2)]

‘I=ijka

117



WY Entries,

ISEG=

V2 AI(1)

I=iaab

V2 A1(1)

I=iabb

I=iaab

I=iabb

A[I(D) + 1(2)]

A[I(L) + I(2))

118

Al



119

wy En;ries, ISEG= 2, continued.

b A[I(1) + 1(3)]

¢ I=iabc

a CA[I(D) + 1(D)]
.
c i=iabc.
a.

b A[I(3) + 1(2))

I
p
h
\
\
\
I .
" .
J
\Q c I=iabc




WY Entries,

{continued)

120

I[SEG= 15 17 21

V2 A[I(1) + 1(2) +1(3)) V2 A[i(erl) + BI(ctr2)]

I=ijka V2 A[TI(3) + 1(2))

A[I(3) +.I(l)] ATI(3) A[I(erl) + BI(tr2)]

I=ijkb

A[I(3) + I(1)] AI(3) A{I(crl) + BI(tr2))

I=ijka



YW Entries,

ISEG= 19

VZ a[1(erl) + BI(tr2)]

I=ijka

- A[I(trl) + BI(tr2)]

I=1jkb

A[I(erl) + BI(tr2)]

I=ijka

121



122

WX Entries, ISEG= 7

a -\/3/2 aI(l)
b I=ijab
a
b | (V3 /2)aI(D)
¢ I=ijab
- a
b &3 /2)AaI(erl)
c I:ijab
1
' .
i
L.
\ a V3/2 aI(crl)
\
Y
]

\\\; b I=ijab



WX Encries,

/
: ”
. — e o .

ISEG= 7,

(V3 /2)AT(1)

I=ijaa

-(V3 /2)AL(1)

 I=ijbb

(V3 /2)Al(erl)

I=ijac -

- (/3 /2)AI(trd)

I=ijbe

continued.

123



WX Entries,

[SEG= 1, continued.

-(J3 /2)aI(1)

I=ijbc

-(J3 /2)aI(l)

I=ijac

124



XWw Entries,

—— e b e o e e

S e

ISEG= 9

- ¥3/2 AI(erl)

I=ijab
(J3 /2) AI(1)
I=ijab
(J3 /2) al(erl)
I=ijab

J372 AI(1l)

I=ijab

125



XW Entries,

—— - —

pmm e mas— - —

ISEG= 9., continued.
(Vﬁ-/Z) AI(D
I=ijaa
-(V3 /2) A1Ql)
I=ijbb

(V3 /2) AI(1)

I=ijac

126



XW Entries,

p—— ——

. i
/ -
< ——re - e - .

ISEG= 9.

-(\B /2) a1 (1)

I=ijbc

(V3 /2) AI(crl)

I=ijbe

-(V3 /2) AI(erl) .

I=ijac

continued.

127



128

YY Entries, ISEG = 4 S
Iy
Define: C = -|=—a + > Y

e alnan - 2r ) CI(1) + 2AI(2)

|
|
1 |
\ |
\
\
1 V .
' .
\i b I=ijab

a -/ AlT(L) - 21(2)] CI(1) + 2AI(2)

I=ijaa




YY Entries,

(continued)

ISEC= 6 8

Define: C = -J(l/Z) A J(3/2) v

CI(1) + J2 AI(2) \ﬁgAI(l)

I=ijab
CI(3) + JZ AI(2) VEg—-AI(:,rl)
I=ijab

CCI(Ll) + V2 AI(2) VE?AI(I)

I=ijaa

129



130

XX Entries, = ISEG= ~  _4_ 5
Define: C = R/%-A + Y
o -\/%—-A[I(l) - 21(2)) " CI(1) +J5AI(2)
b I=ijaa
Ca ?-\/—gmu) - 21(2)) CI(1) + VZAI(2)
b I=ijbb
" \E““” - 21(2)) -CI(1) - 2 AL(2)

c I=ijac




131

XX Encries, ISEG= 4 5, continued.

Define: C = '\/%A + Y

Ca aEA[I(l) - 21(2)] cr(l)_+‘f7A“I(2>v

c I=1jab



XX Enctries, ISEG= 6

(continued) Define: C = = V@;A'+ Y
"D =VZ A

CI(l) + DI(2)

I=ijaa

CI(l) + DI(2)

I=ijbb

CI(1) + DI(2)

I=ijbe

132

AI(1)

AI(1)

AI(1)



XX Entries,

. . . . .
-‘ = A
Py
/ -
——re = . .
N

—p—sy
. .

)

-

[

ISEG= ’ 6

CI(3) + DI(2)

I=ijbe

-CI(1) - DI(2)

I=ijac

~CI(3) - DI(2)

I=ijac

8 , continued.

vAI(trl)

~AI(1)

-AI(trl)

133



XX Entries,

e

ISEG= 6

C1(3) + DI(2)"

I=ijab

CI(1) + DI(2)

I=ijab

134

_8 , continued.

Al(crl)

AI(D



WW Entries,

R —

135

ISEG- L85 6

Define: E = -\gA

2E[T1(1) - 2I(2)) 2E{1(1) - 21(2))

I=ijaa
— V2 E[I(1) - 21(2)]

i=ijab
I E(11) - 21(2)] VT E(1(3) - 21(2))

I=ijab

— JE E[I(1) - 21(2))

- I=ijab



WW Entries,

ISEG=

I=1ijab

I=ijaa

I=ijbb

I=1ijac

136

4 & 5 _6 , continued.

V2 E{I(1) - 2I(2)) NZ E[1I(3) - 2I(2)])

E(I(l) - 2I(2)] E[I(1) - 2I(2)]}

E{I(1) - 2I(2)] E(I(1) - 2I(2)]

- E(I1(1) - 21(2)]



WW Entries,

ISEG= 485

E(I(1) - 2I(2)]

I=ijac

E(I(1) - 2I1(2)]

I=ijbc

I=1ijbe

0137

6 , continued.

E[I(3) - 2I(2)]

E(I(3)- 21(2)]

B{I(l) - 21(2))



WW Entries,

ISEG= 485

E[I(l) - 21(2)])

I=ijab

I=ijab

138

6 , continued.

E[I(3) - 21(2))

E(I(1) - 21(2))



1

3a.

4a.

Sa;

10a.
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