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A new algorithm has been developed for large-scale configuration 

interaction (CI) calculations. This new approach, called the Shape-

Driven Graphical Unitary Group Approach (SDGUGA), was des·igned to· 

overcome some of the def.ects inherent in the previous Loop-Driven 

Approach (LDGUGA). The Shape-Driven. Approach leads to a direct CI 

program based on the simplifi.ca,ti.on of the external space for 

calculation·s involving only single and double excitations from a 

multi-refe-rence configura:t;.ion se·t. By e~loiting the shapes of the 

ex:ternal portions o·f loops on the Shavi tt graph as well a·s the 

tremendous structure implicit in the: un·i tary group approach, the 

construction of Hamil toni an matrix e~lements is· reduced to an 

insig.nif.icant portion of a calculation. Therefore, programs based 

on the SDGUGA are considerably more efficient than previous programs. 

This efficiency is the key to the success of the direct CI 



formulation, and also allows the computation to be restructured so 

that the entire cr and correction vectors need not be held in the . 

central memory of the computer. The Shape-Driven Approach is the 

first CI method capable of extremely large, general CI calculations. 

This ability is demonstrated hy various calculations, including 

one calculation with a 703 configuration reference state and over 

one million configurations in the CI expansion. '!'he present 

algorithm is also shown to be well suited to a vector computer 

such as the CRAY. 

iv 
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I. INTRODUCTION 

~ initio quantum chemistry is the attempt to investigate 

chemical problems without recourse to experimental data, apart 

from fundamental physical constants such as the speed of light. 

In principle, by solving the Schroedinger equation or the 

relativistic counterparts such as the Dirac equation, one can 

obtain an exact knowledge of the potential energy hypersurface of 

a chemical system, from which it would appear that almost all of 

chemistry can be understood. While it is difficult to know 

absolutely if such equations accurately model nature, there is a 

large body of evidence to suggest that for all practical purposes, 

they a·re sufficient. 

The Schroedinger equation, however, can only be analytically 

solved for a few syste•ms. For molecules and atoms, only the one-

electron atoms lead to soluble eq.ua.tions. For a molecule such as 

Water Or methane 1 the exact SOlUtiOnS Cannot be found t SO the 

task of the quantum chemist is to find approximate solutions of 

.suf:ficient accuracy to ans:we·r chemical problems. Several 

approximations are commonly made in such ca-lculations. Each :w-ill 

be commented on in turn, and they w-ill be. a·rbitrarily grouped into 

two. classes: thos·e in :which the physi.cal model is modif.ied and 

thQse involving truncati.ons of mathema.tical expansions. 
) 

The first class of approximati.on·s a-re based on physical 

intuition and will result in. solutions which must differ from the 

true solution of the problem. The first approximation of this 

1 



sort which is made is the use of the nonrelativistic Schroedinger 

equation. The bulk of quantum chemical calculations to date involve 

such relatively light elements as carbon and hydrogen for which the 

relativistic effects are expected to be relatively insignificant
1 

For this reason, the starting point of most calculations has been 

the Schroedinger equation, often with no comment about the tacit 

assumption. In heavier atoms, where the relativistic effects are 

no longer small, they can either be treated as a perturbation, 

using a Pauli-Breit Hamiltonian, 2 for instance: or the Dirac 

equation can be used, leading to Dirac-Hartree-Fock 3 procedures. 

A second major approximation made is the Born-Oppenheimer 

f . d 1 . . 4 
or 1xe -nuc eus approX1mat1on. For a molecule of more than one 

atom, it is a formidable problem to solve for the simultaneous 

motion of the electrons and nuclei~ Since the electrons are much 

less massive than the nuclei and therefore move much faster, it 

is reasonable to assume that the e-lectrons instantaneously 

rearrange upon a perturbation of the nuclear f:ramew.ork. As a 

result, the nuclear and electronic w.avefunctions are separable. 

The electronic Schroedinger equation is solved for a number of 

nuclea.r geometries to give a potential surface, which can then be 

used as the potential term to solve for the motion of the nuclei. 

Empirically, both of these approxima-tions are very effective, 

reducing the complexity of the problem greatly without adversely 

affecting the quality of the results. The relativistic e-ffects 

must be incorporated when dealing w-ith heavier atoms such as 

2 
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silver or lead. It is possible that they are significant for 

elements as light as nickel
5

, but that depends greatly on the 

accuracy desired. The Born-Oppenheimer approximation is excellent 

in all normal molecules, but would be suspect in calculations 

on exotic molecules with electrons replaced by more massive 

particles such as muons. 

The fi.nal approximation usually made in the model concerns 

the treatment of the electrostatic repulsion between the electrons. 

The instantaneous repulsion is difficult to treat, so the Hartree­

Fock approximation 
6 

treats the motion of each electron in the 

average field of the other electrons. Techniques exist for the 

trea·tment of this correlation between the motions of the electrons, 

and they will be commented on presently. The results of Hartree-

Fock calculations can be not only quantitatively but als·o 

l . . l . 7 qua ~tat~ve y ~n e·rr0r. The approximation is generally lea·st 

seve·re for normal molecules nea-r their equilibri.um geome·tries. 

Even then, caution mus·t be used. For example, the S·plitting 

between the lowe·st sing1e't and tr.iplet states of methylene is 

8 
overestimated by about 15 kcal at the Hartree-Fock level while the 

F
2 

molecule· is found to have a negative d·issociation ene·rgy. 
9 

The approximation usually fares less well in situations where 

chemi.cal bonds a.re. stretched or being broken or formed. Thus· 

reaction barriers, for example, are likely to be in error in the 

Hartree-Fock pi.cture . 

The se.cond class of approximation involves the trun.cation 

3 



of expansions, which means that as accurate an answer as desired can 

in principle be obtained. The Hartree-Fock equations are in general 

insoluble analytically but approximate solutions can be obtained by 

expanding the wave function in a set of basis functions. The 

Hartree-Fock equations can then be solved using the iterative 

self-consistent field (SCF) method. By using a complete set of 

basis functions, which in this case would be an infinite set, the 

exact solution could be obtained. In practice, it is possible, 

particularly for smaller systems, to approach quite closely this 

basis set limit. 

To go beyond the level of a Hartree-Fock calculation and 

attempt to recover the correlation energy, one must resort to 

something like a configuration interaction10 (CI) or perturbation 

theory calculation. The correlation energy arises from the 

instantaneous correlation of the motion of the various electrons 

and is defined as the di.fference between the exact n-onrelativistic 

result and the Hartree-Fock answer. The concept of a CI ca·lcula.tion 

is to solve the Schroedinger equation approxima·tely by expanding the 

wa.:ve,function in a set of orthonormal. n-electron functions called 

configurations. The configura.tions are formed by e~citing electrons 

from occupied orbi.tals of the Hartree-Fock conf.iguration into 

virtual orbitals. The full set of confi.gurations cor.re'sponding to 

all possible arrangements of the electrons on the orbitals defined 

by the SCF procedure tends to be an enormously large number. 

Therefore, it is common practice to truncate the configuration 

4 
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list after all of the single and double excitations from the Hartree-

Fock reference have been included. 

A calculation with such a truncated list is referred to as CI 

with singles and doubles (CISD) and represents a reasonable 

compromise between the size of the calculation and the accuracy of 

the results. Since the Hamiltonian contains only two-body inter-

actions, configurations which are higher than a double excitation 

from the Hartree-Fock reference cannot directly interact with the 

reference and are therefore less important. In some senses, this 

truncation of the CI configuration list is comparable to the 

truncation of the perturbation expansion. Even when restricted to 

singles and doubles, the configuration list grows as the fourth 

power of the size of the system treated, and the computational 

effort involved in the CI calculation, as the sixth power. 

The CI problem is similar to the SCF procedure in that if the 

a calculation called a full-CI 

the resul.t is the exact. solution of the electronic Schroedinger 

equation within the basis set used for the SCF calculation. For 

an inf'inite bas.is, a full~ci results in the e'Xact solution of the 

Schroedinge·r equation. 

Both Ra,rtree-Fock and CI calculations are variational, so the 

e·nerg,ies obtained are upper limits to the 'true energies. Since 

the energies must converge to the true answers as the si.ze of the 

basis set increases and the length of the CI expansion also 

increases, there is a certain element of truth to the statement 
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"the bigger, the better". A larger basis or more extensive CI will 

result in lower, hence better, energies. 

The current work is concerned with the computational aspects 

of large-scale CI calculations. At the time of this writing, 

calculations with more than a few tens of thousands of configurations 

are not common. The methods described in this work are capable of 

efficiently handling more than a million configurations on a 

minicomputer, which would suggest that ten or more million configu-

rations should be manageable on a mainframe. 

Some objections may be raised as to the necessity of such 

large configuration lists; objections which in some ways are valid. 

However, for larger molecules, millions of config.urations may be 

necessary just to do a CISD calcula-tion from the Hartree-Fock 

refe-rence. As an example, a CISD calculation on the norbornyl 

ca·tion (C
7
H

11 
+) wd.th no molecular symmetry and a standard 6-31G 

basis has about 600,000 config:Ura·tions e-ven if the carbon ls core 

orbitals a,re not correlated and the correspc!mding virtual 

orbitals dele-ted from the calcula,tion. The addition of polariza-

tion f\mctions on only the carbon atoms to give a 6-31G* basis 

boosts the numbe·r of configura·t·ions to 1 .. 6 million. 

Pre:sently I there is no me:thod other than a direct cr11 which 

can handle such a large cal.culation and still give reasonable 

results. One could try to select important configurations 1 but 

any method to handle an arbitrary configuration list will spend a 
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considerable amount of time forming the Hamiltonian matrix, which 

means that it is desirable to store the matrix. Yet for any 

reasonable number of configurations, the matrix is simply too large 

to ·store. Therefore, a configuration selection technique would 

.• either have to so severely restrict the number of configurations 

that the answers would be questionable, orwould have to regenerate 

the Hamiltonian matrix as in a direct CI. The latter approach 

would probably take more computer time than doing the entire 

unselected calcula·tion: 

Another reason to use large configuration lists is to try to 

approach the full-CI limit by including higher excitations either 

d . l 12 b . f Sb 
~rect y or y us~ng many re erences. Such calculations can 

be needed to try to . reach an accuracy of about 1 kcal in probing a 

chemical problem. They are also of theoretical interest as a check 

of the validity of the approximations made in other calculations. 

Finally, the abili.ty to do large:-s-ca,le calculations will, 

hope·fully, lead to a better unde-rstanding of the characteristics 

peculiar to la-rge•r calcula'tions. Hope,fully, these characteristics 

can be e~ploi.ted to a-void a leas,t part of the computational effort 

now required. One pos:s,ilrili.ty worth investiga-ting is that for 

extended systems many of the Hamil.tonian ma-trix elements may be 

of neg"ligib:le magnitude s:ince correlaction effects ar.e presumably 

rather short range e:ffects. One would not e·xpect to encounter 

such accidental zeroes in a calculation on water or methane, but 
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perhaps they could be important in a system such as biphenyl. 

In the meantime, the quantum chemist interested in understand-

ing chemical applications should benefit greatly from the ability 

to undertake more accurate calculations on smaller systems or 

correlated calculations of any sort on larger systems. Such 

calculations will require large amounts of computer time, but 

they are now feasible. 
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II. REVIEW OF UNITARY GROUP APPROACH 

In practice, the solution of the CI problem can be divided into 

two parts: the generation of a list of configurations in terms of 

which the wavefunction will be expanded, and the solution of the 

eigenvalue problem. Traditionally, the configurations have been 

expressed as a linear combination of Slater determinants, in which 

case the matrix elements H. . needed for the solution of the 
l.J 

eigenvalue problem are given by quite simple formulae. The unitary 

13 
group approach (UGA) directly provides a convenient basis for the 

9 

expansion of the wavefunction. The Gelfand states are an orthonormal 

spin-adapted set of n-electron functions -- that is, they can be 

directly used as configurations. Furthermore, the work of Paldus, 

Shavitt, Drake, Schlesinger
14

, and others has led to a simple and 

efficient scheme for the evaluation. of the necessary matrix elements. 

Since the advances described in the current work are based. on 

the uni ta·ry group approach., and in particular on the structure 

inherent in the approach, the following sections will attemp_t to 

provide an introduction to the formalism of the UGA. This intro-

duction is ne.cess,arily brief and will hi.ghlight those aspe.cts which 

will be use-ful in unde·rstanding later developments; the·re·fore., the 

reader is d·ire·cted e·spe.cially to the review articles of Paldus 14a and 

Shavitt
1

4b for further details as well as other re-ferences. A great 

deal of emphasis will be placed on the graphical aspects of the GUGA 

since it is through these aspects that the structure inherent in the 

in the UGA is most apparent; however, the reader should realize that 
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the graphical UGA is not different from the UGA. Rather, it is a 

heuristic tool intended to aid in the understanding of the structure 

within the UGA. 

A. Configurations 

The Gelfand states, as has been mentioned, are orthonormal spin-

adapted n-electron functions, formed by sequentially coupling n 

orbitals to give a total spin quantum number S. Each function can 

be represented as a Paldus tableau: 

a b c 
n n n 

a b c 
n-1 n-1 n-1 

(P] = 
(1) 

a b c 
1 1 1 

0 0 0 

th The values in the k row give the number of electrons, Nk, and 

spin, Sk, a-fter coupling the fir.st k orbitals, as follow.s: 

(2) 
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., 

'!he third· column is in some senses redW'ldant if k is known, since 

and will not be referred to hereafter. 

As a result of the Pauli principle, there are only four 

diffe·rent valid rows at the level k+l given a particular row k. 

These four rows correspond to the (k+l)th orbital being \U'loccupied; 

singly occupied and coupled to increase the total spin; singly 

occupied and coupled to decrease the spin; and finally doubly 

occupied. ·These fou.r ways of getting from one level to the next 

a·re presented in the following table and gi.ve·n a case value,· s. 

Table l. Case Values 

~ ~ 9< 

0 0 0 1 0 0 

l 0 1 0 1 +1/2 

2 l -1 1 l 

3 1 0 0 2 0 

In the graphical repre,senta:tion, the four cas.e va.lues axe denoted 

11 

by va-rying inc:l.ina,tions of line segments as in the f·ollow.in.g diagram. 

Nete tha,t both a and b values ct>re given by the late·ral position of 

the. ve rti ce s . 
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Figure 1. Graphical representation of four case values. 

---k+1 

---k 

b=3 2 1 0 b=3 2 1 0 

a+l a 

Given these definitions, a configuration can be represented as a 

Paldus tableau, as a vector of case values [s] , or as a walk on a 

graph. The following example will. illustrate this: 

Figure 2. Equivalence of Paldus tableau, step vector and graph. 

2 1 2 k=S 

2 0 2 k=4 

1 0 2 k=3 
= [o, 1, 2, 3, iJ = 

0 1 1 k=2 

0 0 1 k=l 

0 0 0 k=O 

b=l 0 1 0 l 0 

a= 2 1 0 

In the graph of Figure 2, the Gelfand state is represented as a se,ries 

of arcs joining ve:rtices to form what is usually referred to as a walk 

or configuration, even though it only represents a configuration. All 
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three representations in Figure 2 correspond to the same configura~ 

tion -- one with five electrons and five orbitals, coupled to form 

a doublet state. Orbitals 2, 3, and 5 are singly occupied; 1 is 

unoccupied; and 4, doubly occupied. 

If we represent all Gelfand states for 5 electrons in 5 orbitals 

.coupled to a doublet graphically, and superimpose them on the same 

graph, the result is Figure 3: 

Figure 3. Sample Shavitt graph for full CI for 5 electrons 

3a 

2a 

la 

4a 

Sa 

in 5 orbitals, coupled to a doublet. 

~·graph head 

b=l 0 
a=2 

b=2 l 0 
a=l 

----arcs 

b=3 2 l 0 
a=O 

---ve·rtice.s 

---graph tail 



At first glance it may be somewhat surprising that all the walks 

coincide at both the graph head and tail. However, the bottom row 

of all Paldus tableaus is always (0 0 0) and hence all the walks 

must coincide at the graph tail. Furthermore, the top row of the 

tableau is completely determined by the number of orbitals and 

electrons as well as the total.spin. For the example in Figure 3, 

the top row is (2 1 2) since from Eqtn 2, 

b = 2 5 
n 

a = N I 2 - 5 n 

(4) 

This Shavitt graph, as such a graph is called, represents all 

possible configurations with 5 electrons in 5 orbitals coupled to a 

doublet, and would therefore be used for a full-CI calculation. 

Unfortunately, the size of a full CI calculation rapidly 

becomes prohibitive for even quite small systems. For example , one 

of the la·rge:s.t CI calculations pe·rformed to date wa,s a full CI for 

wa:ter within a double-zeta (DZ:) basis. 
12

f For this small molecule 

with only 10 e·le·ct.r:ons in 14 orbitals and e·xploi.ting fully the 

symme·try, the·re a-.r:e still 25:6 4 73 configurations in the full CI for 

1. 
the g.round s:ta•:te ( A

1
) . The. common approach to this problem is to 

14 

truncate the. list o.f config.ura.tions to include only those conf.igura~ 

tions whi.ch a're f:Qrmed by . a s·ing.le or double replacement from one 

or a few refe·rences. In the case of the water calculation mentioned 

above, such a CI with singles and double excitations from the 



,. 
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Hartree-Fock reference (CISD) comprises only 361 configurations. 

The justification of such a treatment is based on the expectation 

that higher than two-body effects are not very important; indeed, in 

the water case, the CISD recovers 94.7% of the total correlation 

energy which is obtained from the much larger full-CI. 

Truncation of the configuration list ~o certain levels of 

excitations from one or several references is. a simple matter in the 

GUGA, being a matter of eliminating vertices from the Shavitt graph 

along with all arcs passing through the eliminated vertices. Figure 

4 gives the graph appropriate for a CISD calculation including all 

2 2 singles· and doubles from the single reference la 2a 3a. 

Figure 4. Shavitt graph for CISD from la22a23a reference. 

k 
5 orbital 

3a 

4 
inte:rnal 

2a 

3 
space 

la 

2 

4a 
external 

1 
space 

Sa 

0 
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This graph actually contains some walks corresponding to triple 

excitations from the reference because it was constructed considering 

only the number of electrons in orbitals and not the.spin coupling. 

Suffice it to say that if such "noninteracting" configurations
15 

are not desired, they can be removed from the Shavitt graph in many 

cases. However, this procedure would introduce considerable 

additional complexity to the graph in Figure 4, which would only 

serve to confuse the issue. Currently, Shavi tt graphs can be prepared 

for almost all types of calculations. The most noticeable exception 

is that the UGA loses most of its efficiency when applied to 

calculations containing arbitra-ry sets of configurations, rather 

than cla·sses, such as singles and doubles. Thus the UGA has not 

been applied to methods based on selecting configurations according 

to, for example, a perturbation the.oty estimate ez>f their impertance. 

Although Shavi tt g.raphs a•re a compact and e·asily visu-alized 

represen.t·a;ti.ez>a of the CI e·xpans;ien , they mus-t be r.educed to a 

n·umerica•l f'G:rm f'or the us•e Gf the compute·r. This is accomplished 

in the follew.ing f.ashion. Each vertex is aumbered using a pair of 

indiee.s -- the leve:l k and a ve•rte•x numbe·r j within tha·t level. 

Cus;tez>ma.ril.y, the vertice·s w.ithin a level a-re numbered frez>m left to 

r.i.ght across the graph. Each ve·rtex co·rresponds to distinct row 

(a b c) ez>f a Pa·ldus tabl.e:au and sez> is re·fe·r:t"ed to as a dis-tinct row. 

The list of a•ll such rows in a g.raph along with various numbering 

and chaining indi.ces is called a distinct row table (DRT). 
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Table 2 presents the distinct row table corresponding to Figure 4. 

5 1 2 1 2 1 2 3 4 0 10 25 36 54 1 

4 1 2 1 1 1 2 3 0 3 4 10 1 0 1 

2 "2 0 2 1 3 4 0 3 9 15 1· - 0 1 

3 1 2 1 2 3 5 6 0 1 7 8 11 1 0 1 

4 1 1 2 3 4 6 7 0 6 '12 15 18 -' 1 0 1 

3 1 2 0 1 1 0 3 2 1 0 1 2 

2 1 2 0 2 0 1 3 1 0 1 - 2 

3 1 1 1 1 2 3 0 3 4 6 4 3 2 1 0 1 2 3 4 

4 1 0 2 1 - 3 4 0 3 5 6 4 2 0 1 2 

5 0 3 0 2 0 1 3 0 1 

6 0 2 1 2 3 0 1 3 4 3 0 1 2 

7 0 1 2 3 4 0 2 3 4 0 1 

2 1 1 0 1 1 - 2 3 0 1 2 3 4 3 1" 0 2 6 8 

2 0 2 0 2 0 1 6 5 3 2 0 2 3 7 9 

3 0 1 1 2 3 0 1 - 2 7 6 4 3 0 1 3 5 9 

4 0 0 2 3 0 1 7 4 0 1 3 

1 1 1 0 0 1 - - - 0 1 1 - 0 8 

2 0 1 0 1 - 0 1 3 2 1 0 9 18 - 26 

3 001 1- 0 1 4 3 1 0 3 - 12 20 

0 1 0 0 0 1 3 2 1 0 20 - 46 54 
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As mentioned before, the column labeled by I gives the level within 

the graph and the column labeled J numbers the distinct rows within 

a level. The columns a, b, and c give the row of the Paldus tableau 

associated with each distinct row. The following three sets of 

entries, J, Y, and ~ are the chaining indices, arc weights and vertex 

weights for what is called lexical order. The chaining indices J 
s 

indicate which vertex in the next level down the. graph that an arc 

of case value s connects to; whereas the arc Y gives the weight of s 

the arc of case value s. In both of these arrays, invalid entries --

arcs which do not exist in the Shavitt graph -- are denoted by a dash. 

The verte·x weight x is the number of lower walks from a vertex, or 

equivalently the number of different paths from the vertex to the 

graph tail. The lexical number, m, of a walk or configuration is 

given by the sum·of the a~c weights for that walk: 

m = 1 + !: Y 
1;=! si 

(5) 

where the extra s.ubscript i reefers to the level in the g.raph. 

Thi.s lexical numbering sche·me· is one of the most powe·rful aspe.cts 

o.f the GUGA. The configura.tions a>Z".e rationally numbe·red from one to 

the numbe,r of configura.tions with no duplication of number.s or gaps 

in the seq~e·nce. Eur.thermore, the lexica·l n·umber of a configuration 

is rapidly and easily determined by the sum in Equation 5. Lexical 

order is a downward directed scheme and so is useful when finding 

the con·figura·tions which a~e identical from the graph head to a 



particular vertex but then differ between the vertex and the graph 

tail. This set of configurations share a common upper partial walk 

but different lower partial walks from the vertex in question. 

Letting the sum of the arc weights over the upper walk be m , then 
u 

there will be ~ such configurations and due to the nature of lexical 

order, their lexical n.umbers will be m +1, m +2, ..• , m +x. For 
u u u-

this reason, the vertex we.ight x will be referred to as the number 

of lower walks from a vertex. That these lower walks from a given 

upper partial walk are a sequential se.t of configurations will be 

most useful. 

For the set of configurations sharing a common lower partial 
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walk but different upper partial walks, there is no such relationship 

within lexical order. Their configuration numbers w.ill be essentially 

randomly spaced throughout the lis.t of configurations. However, in 

reverse lexical orde·r, the upward directed counterpart of lexical 

order, these configurat-ions sha·ring a pa-rtial lower walk would again 

be a sequential.ly numbered set o.f configurations. The last three 

sets of column·s in Table 1 (K , Z , and x) are the chaining indices, 
Si S 

a,rc wei.ghts and ve,rtex weights, or n.umbe·r of uppe·r w.alks, for the 

reverse lexical orde.r. The reverse lexical number of a configuration 

is given by Equation 3 with 'l replaced by Z. 

Unfortuna-tely, we CEe left. w-ith two distinct numbering schemes, 

Ol'le of which is useful for lower w:alks and the other for upper walks. 

One approach to this . dichotomy is the use of an indexing array A, as 

15c d 
proposed by Brooks. ' Given a lexi.cal configuration number m, 



then A(m) is the reverse lexical number of the configuration. There 

are several disadvantages to this rather direct approach to the 

problem, not the least of which is that the indexing vector is the 

length of the configuration list. 

B. Matrix Elements 

The discussion so far has centered on the generation of the 

Shavitt graphs and the corresponding distinct row tables, as well as 

on the two numbering schemes .for the configurations. The next 

section will present an outline of the methods used to evaluate 

Hamiltonian matrix elements during the CI calculation. The 

derivation of the formulae presented will not be discussed; again, 

the reader is referred to the articles in particular of Paldus14a 

and Shavitt14b for further details. 

The spin~independent electronic Hamiltonian that will be used, 

in its se·cond:-quant.ized form, is 

H= [ij ;kl] 

(6) 

+ + 
X. X. X. x

1 J.r ks Jr s 

+ where X. and X. a~re the cre·a•.tion and annihilation operators for 
l. l. 

spd.norbi.ta-1 I is), a:nd (i I h lj) a:nd [ij ;kl] are the one and two 

electron integrals over molecular orbitals, respectively. introduc-

ing the following one and two bod:y unitary group operators: 

20 

.. 



E .. 
l.J 

= 

e.· kl l.J, = 

+ X. X. 
l.S JS 

E. 'Ekl - &k 'E' 1 = l.J . J'l. 

(7) 

(8) 

then Equation 6 in the formalism of the UGA becomes 

H = l: 
ij 

(ijhl j) E .. 
l.J 

+ ~L 
ijkl 

(9) 

[ij;kl]e .. kl 
l.J ,. 
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The matrix element H , of the Hamiltonian between two configurations rnm 
or Gelfand states m' and m is 

Hrn'rn = (rn'IH!rn) = 
(10) 

+ ~· L: 
ijkl 

[i.j;kl] (m'je .. k'
1
jrn) 

l. J ' . 

At this point, the relationship between the· matrix elements of the 

UGA operators and the coupling coe·fficients of the direct CI 

11 
method is obvious : 

rn •·rn 
A .. 

l.J 
= (m' jE. ·I'm> 

l.J 

~ (rn' I ei.j,,klJm) 

(11) 

(12') 

Given a configuration list and th.e corresponding DRT, the ta-sk 

of cons.t:r:ucting the Hamil.tonian matrix reduce.s to findin.g the matrix. 

elements of the unita·ry group ope:rators and U·sing these as the 

coefficients for the integrals as in the dire.ct CI approach. 

Graphically, the matrix elements of the unitary group oper.ators 

correspond to loops between walks on the Shavitt.graph, such as 



in Figure 5. 

Figure 5 .. Loop corresponding to the matrix element 

(m' IE .. 1m) 
l.J 

graph head 

upper partial 
walk 

-i----
' 

head 

', i-level segment 

' -i-1--- .... 

' ', loop body 

' 
_.j ___ _ 

j-leve·l se.gment 

-j:-1------

' I 
I 
I 
J 

lowe;r pa>rtial walk 

loop tail 

graph tail ~ 
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The loop depicted in Figure 5 is a one electron loop determining the 

m'm 
coupling coefficient A.. of the integral (ijhjj) in the matrix ' 

l.J 

element H , . The value of the coupling coefficient, which is often m m 

simply called the loop coefficient, is a function of only the shape 

of the loop and its lateral position in the Shavitt graph. 

Specifically, it is a product of segment values over the range of 

thE:! loop: 

m'm 
A .. = 

l.J 
(m' jE .. j m) 

l.J (13) 

Tk is the segment shape symbol and bk the b value of the ket m 

th at the k level of the graph. 

The matrix elements of the two body operator are somewhat 

mor.e complicated but fundamentally the same concept applie,s. 

Noting f.rom Equation 8 that ei) ,kl can be expressed in terms of one 

body operato.rs I one has 

The first te·rm can be rewritten us:ing a summation ove'r intermedia·te 

state·s I m") to give the following: 

(m'j e .. kllm) l.J I . 
=~(m·'l E .. jm") (m"'l E ·1m\. "£.J J. J kl /' 

In practice, the summation over in.termediate states is inconvenient; 
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hl . 14c ld d 1 l4d d however, Drake and Sc es~nger, Pa us an Boy e, an 

h · 14e d th f 11 · f t · t' h · · t s av~tt suggeste e o ow~g ac or~za ~on sc eme, re~n~scen 

in the form of the one body Equation 13: 

(m'le .. kllm) 
~). 

where s
2 

is the range where i-j overlaps with k- 1 and s1 is 

the range of the loop where they do not. The summation over x 

corresponds to singlet and triplet recouplings of the intermediate 

states in Equation 14, but the intermediate states do not explicitly 

appear in this f.ormulation. 

Since the loop value depends only on the shape of the loop and 

not on the upper and lower W·alks from the loop to the graph head and 

tail, a loop can determine the value of a series of coupl.ing 

cc:>eff.icients dif.fe·ring <:>nly in m' and m. If there a~e x lc:>wer walks 

f.r<:>m the loop and x uppe•r walks , the loop wi 11. contribute a value 

A ... k·l[ij ;kl] to x irregu.larly spaced groups of ~ seq:uen,tial ma.trix 
~J , .. 

element·s along an off-diag.ona·l of the Hamil toni.an matrix (provided 

we us:e ·le:)dcal orde·r} .. This is illustrated in Figure 6. 
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Figure 6. Locations in H matrix of contribution A .. k1 [ij;kl] 
. 1) . 

from loop with x lower and 5 upper walks. 

In summary, the UGA provides a spin-adapted orthonormal set of 

n-electron functions which serve as the configurations for the 

expansion of the CI wavefunction. These configur~tions are readily 

limited to only certain classes of configurations, such as all 

singles and doubles from a set of reference configurations. 

Furthermore, the list of configurations is easily ordered and 

numbered using either lexical or reverse lexical. order. The number 

of any particular configuration is found as a sum of arc weights. 

'Ihe coe·fficients of the one and two electron integrals in Hamiltonian 

matrix elements the coupling coefficients are related to the 

matrix elements of the one and two body unitary group operators, 

which, in turn, are determined by the shape and location of loops in 

the Shavitt graph. The value of a. one-electron loop is a simple 

product of segment shape values; tha-t of a two electron loop, a sum 

over singlet and triplet recoupled terms, each of which is a simple 

product of segment shape values. 
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III. PREVIOUS IMPLEMENTATIONS 

The first implementation of a CI program based on the GUGA was 

lSc 
that of Brooks and Schaefer in 1978. A preliminary version of 

the program produced a formula tape from which a diagonalization 

tape was constructed. The formula tape contained the coupling 

coefficients, information to identify the integrals, the "primary" 

configurations involved, and the number of upper and lower walks 

from the loop. The primary configurations and number of upper and 

lower walks is sufficient data to determine all Hamiltonian elements 

to which the current loop contributes. The program then combined 

the formula tape and the integrals to form a diagonalization tape 

containing an actual value of a loop contribution as well as the 

configurations and number of upper and lower walks. 

For a CI based on the Davidson algori thm
16 for finding the 

lowest root or few roots of the Hamiltonian, there is no need to 

actually form the Hamiltonian matrix. The diagonalization tape 

described above is sufficient. Wh.at must be computed during e-ach 

iteration of the Davidson scheme is the correction vector Z: 

ZI = 2: 
J 

(17) 

A loop contribution A~~kl(ij;kl] is not ne:cessarily the same as the 
1} . 

Hamiltonian matrix element HIJ' although they often are identicaL 

In particula·r, if the configurations I and J are either the same or 

a single excitation from each other, the matrix element will be the 



sum of many different loop contributions. In Equation 17, the 

contributions may be summed to form HIJ multiplied by CJ and 

summed into z
1

, or each contribution can be multiplied by CJ and 

summed. The importance of the latter approach is that the various 

contributions to a particular Hamiltonian matrix element tend to 
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be located throughout the diagonalization tape, and it would require 

a very extensi~e and difficult sort to combine them to form the 

actual Hamiltonian matrix. 

The preliminary program also took advantage of the fact that 

the Hamiltonian matrix is symmetric. Thus, it is necessary only 

to form contributions to matrix elements such, tha-t I J, and use 

the following equation a·s well as 17 to account for the cases 

where: 

z· 
J 

= 
(18) 

1 ib ' . IJ [ . ' kl) . th f 1 . 1' d b C A oop contr · ut~on Aijkl ~J; . ~s · e're: ore mu tl:p ~e. ·. y I 

and aaded to zJ and b.y cJ and added to zi .. 

The remaining problem is to de:te·rmine the values of I and J 

from the prima·ry confi.gura.tion n.umbers I ' and J ~ as we 11 as the 

numbe,rs of upper and lowe·r walks x and x. This was solved by 

Brooks, who called the solution. the loop bre·akdown algor.i thm. 

Using an indexing array A such tha·t A (i) is the reverse lexical 

configuration number of· the lexical configuration i, the loop 



contributes to all HIJ such that 

I = A(I'+i) + j 

{ 
i = 1,2;3, ... '~ 

for (19) 

J = A{J'+i) + j j = 1,2,3, • • e 1 X 

Note that I and J are reverse lexical configuration numbers. 

The processing of the diagonalization tape is seen to be 

relatively simple and only requires that the three vectors c, Z, 

and A be randomly acces"'Sible. For the moment, let us not dwell on 

these requiremen.ts but rather investigate how the formula tape was 

constructed in the first place. The task is to find and evaluate 

all possible loops using the Shavi.tt graph as a template. The 

lSc 
a-lgorithm used -- the loop driven approach -- is central to the 

gene:rali ty and e·fficien·cy of the current UGA based programs. The 

alg.orithm consis-ts of the following recursive search. 

Be·g.inning a-t the top level o-f the g.rapt:l, the search starts by 

f±ndin.g a valid opening se~nt for a l00p. The search then 
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continue-s w-ith valid body segmen.t·s of the loop, keeping to the left 

as m\\lch a•s pos.s,ible. A-s a new segmen.t is accepted, the two a-rc 

weights a~ssocia,ted· with the bra and kle:t wa1.ks are added to the 

con-figuration numbers I.' and J' an-d· stored in a pushdown stack. 

The segment shape va1.ue (W of Equation 16) is multiplied by the 

curre-nt loop value and also stored in a pushdown stack. When a 

loop is completed, the loc;>p value, integral indices, primary walks 

I' and J', and the number of upper and lower walks are w-ritten to 
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the formula tape. The search then continues at that same level but 

more to the right on the Shavitt graph. When no more valid segments 

are found, all the stacks are "popped" and the search continues one 

level back toward the top of the graph, but with segments more to 

the right on the graph. Eventually the search returns to the 

initial level and finds another opening segment, and finally 

exhausts all possible opening segments. At this 'time, all loops 

opening at the initial level of the search have been found and 

evaluated. By initiating the search a·t all levels of the graph, 

all loops contained within the graph are evaluated and the formula 

tape will contain sufficient in.formation to construct the 

Hamiltonian matrix, or, equivalently, to use the Davidson diagonal­

ization technique. 

The Shavi tt g.raph, in its numerical form as a DRT, is used 

only as a templa·te for the loop-driven search. The actual search 

is controlled by the loop sea·rching maste·r table, a copy of which 

is found in the appendices. The maste·r table is a list of all the 

pc:>ssible se·gment shape·s, the·ir values, and implicit in the location 

of se•.gments in the table, the way in which se.gments may be validly 

connec:te·d to f:orm loc:>ps. This t·able is completely gene.ral, so 

provided the. DRT can be generated, the Hamiltonian matrix can be 

e·v.al.u·a·ted using the loop-driven algori.thm. This generality is one 

of the important a.ttribute·s of the UGA, since almost any type of 

calculation can be handled. 



Another aspect of the loop-driven approach is that each loop 

is evaluated with very little work. Though a loop may be the 

product of say SO segment values, the recursive nature of the 

search means that each successive loop value is determined by one 

or two segment values in addition to the partial product shared 

with the last loop evaluated. As a result, the loop-driven 

approach is reasonably efficient in terms of computer time. 

30 

This preliminary program was remarkably successful and pro­

vided compelling evidence that the UGA would provide the basis for 

a. new generation of more powerful CI programs. Two criteria are 

of practi.cal importance when considering a CI program: first, 

can the program handle the type and size of calculation desired? 

Is it general. enough? And second, how long ·in the sense of 

compute:r time does a given calculation take? The importance of 

execution time a;rise•s because a. typi.cal CI calcula·tion might take 

s.everal hoqrs of central processor time (CPU time), and is 

there fore q:ui te e>Xpensi ve. A factor a·s small as two in exe c.ution 

time ma·y ha~ve a s:ignificant e,f·fect on the ut·ility of a program. 

It is in this light that Brooks' program was succes;Sful. The 

p·rog.ram could handle closed and high-spin ope·n shell re·fe·re.nces as 

well a•s open shell singlets and two-configuration reference 

function.s. The CI e:JCPansion could be truncated a;t an arbitra·ry 

excitation level from the reference(s), e.g. at singles, doubles, 

and triples. Furthermore, for a single high-spin open shell 

reference, the configuration list could be restricted to the 
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Hartree-Fock interacting configurations. A few more exotic calcu-

lations were undertaken, such as a three open-shell reference 

lSd 
calculation on c

2
H

4
, and it is fair to say that any restrictions 

in the type of calculations that the program could handle were 

largely due to a lack of demand for·such calculations rather than 

an inherent defect in the method. This flexibility is a hallmark 

of the UGA CI programs. 

The score on the second criterion was perhaps the most 

impressive aspect of this initial program. Written in a few months 

and based on the incompletely understood UGA, the program 

nevertheles·s compared favorably with conventional CI programs which 

had been perfected and honed over perhaps ten years. For instance, 

the GUGA program was nearly four times faste·r than a conventional 

CI program for a 23'55 configuration calculation on BH
3 

within the 

lSd c2v symmetry subgroup .. 

Subsequently, vario.us imprevements we·re made to the· pre-

limina-ry prog.rain and the final ve-rsion -of the program does the 

same calcula,tion in one·. sixth the time· required by the 

conventional program.. The m·aj:or chan.g.es made were to dire·ctly 

· gene·ra·te the· d'iagenalization tape w.i.thout bene-fit of a formula 

. tape and to avoid the summation ove.r intermediate sta-tes in 

Equation 15 b.y us•ing the factoriz·ation of E~ation 16. This final 

vers~ion of the loop-driven g.raphica-1 unitary group (LDGUGA) program 

has s-ince been used for many calculations ranging from usual CISD 

(singles and doubles.} from one reference up to CISDTQ calculations 
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12e 
on wate·r and full CI 's in small orbital spaces. 

Since these programs are the direct antecedants of the 

program described later in this work, it will be appropriate to 

discuss the limitations of the LDGUGA programs as this will explain 

the motivation behind the shape-driven (SDGUGA) approach. 

Concentrating on the failures of the LDGUGA programs with the 

advantage of hindsight is done for pedagogical reasons and is not 

intended to belittle the achievement of Brooks and his coworkers. 

As previously mentioned in the section about the loop break-

down algorithm, the simultaneous use of both upper and lower walks 

from loops requires random access to three vectors spanning the 

length of the configuration list. These vectors a-re the CI vector 

for the current iteration o.f the diagonalization, the correction 

vector being f.ormed, and the indexing vector. These three vectors 

must be in the ce·ntra-1 memory of the compu.ter if the unmodified 

diagonalization tape is used, and there.fore the length of the 

config:ura•tion list can be no longe-r than about one third of the 

a·vailable central memory. The firs.t implementa;tion of the LIDGUGA 

prog,rams w.as on a Harris 6024/4 with about 32k w.ords o;f central 

me:rae.r:y, so the limita·tion w:as t·o about 8000 configurations af'te-r 

allowin.g space for the prog.ram and: incidental storage. By sorting. 

the dia,gonalization tape, i.t is pos-s-ible to do calculations up to 

about three times this size.; however, the sorting of the 

diagonalization tape is a difficult and time-consmning task. This 

approach was used on the Slash Four minicomputer to handle 
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calculations with up to about 23 000 configurations,
15

d but has not 

been pursued since then because current computers, with larger 

central memories, are not so limited in this respect. 

A more important limitation now is the size of the 

diagonalization tape itself. The tape has a somewhat more compact 

form than the Hamiltonian matrix itself due to the use of the 

number of upper and lower walks from each loop, but for a 

calculation with about 20 000 configurations, the tape can easily 

be as large as two hundred Mbytes. This amount of data is about 

the limit of the available mass storage space available to any one 

user on most computer systems, so larger calculations are 

impractical especially since the size of the diagonalizatj,on tape 

grow.s as the square of the number of configurations. 

One fina·l limitation on the size of calculation feasible is 

the. time t·aken for th·e ca-lculation.. Though this is not such a 

definite limit as the othe-rs discussed., there is a tendency to 

avoid calcula-tions taking more than . a few hours to complete. In 

this sense, the limitations on the Harris Slash Four we·re perfectly 

ma·:t.ched since a· 23 000 con.figura·tion calculation took from 5-·10 

hours. 

The first step towards a mecthod capable of very large CI 

calcu-lations is to e·liminate the diagona·lization tape. The LDGUGA 

programs discus·sed so far have divided the calculations into two 

parts: the generation of the diagonalization·tape and its 

subsequent processing each of the iterations of the Davidson 



algorithm. A simple solution is to combine the two phases of the 

calculation and generate and use the loops each iteration of the 

calculation. Certainly this eliminates the lengthy diagonaliza­

tion tape; unfortunately, this tack results in a rather slow 

program. When the loops are evaluated but once and then stored, 

it is not important that the generation of the loops takes about 

three times as long as each subsequent iteration of the Davidson 

scheme because there are typically 7-8 such iterations. But 

generating the loops each iteration, the calculation would take 

about three times longer. 

Certainly, a slow program that can do the calculation is 

preferable to a fast one that cannot, but it is not an appealing 

solution. Also, the limit of three vectors in core still holds, 

which on the newex- Harris-BOO minicomputer resul.ts in a maximum 

CI size of pe·rhaps 90 000 conf'ig,ura·tions. The three vectors need 

to be simultaneously in the central memory because of the loop 

breakdown algorithm's use of both upper an-d lower walks of a loop. 

As me·ntioned in the deseription of the the.ory of the UGA, using 

both the low.e·r and uppe:l- walks mus;t result in large change.s in the 

conf·i.g:uration numbers no matter whethe·r lencal or reverse lexical 

orde·r is used. The solution is to use either the upper walks and 

re·ve·rse lexical order or the lower walks and lexi~a·l order, but 

not both. Either approach results in recalculating some loops 

a number of times and would result in the already slow program 

becoming even slower. Given these thoughts, it is obvious that 
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a faster method for evaluating loops is needed. The shape-driven 

approach was designed as a solution to this problem. 



IV. SHAPE-DRIVEN. METHODOLOGY 

The shape-driven approach was originally designed for calcula­

tions where no more than two-electrons are allowed into a set of 

virtual orbitals in any of the configurations in the CI expansion. 

This includes such classes of calculations as singles and doubles 

from one or a few references (CISD), first-order and second-order 

CI's. For the present, the discussion will exclude calculations 

such as CI with singles, doubles, triples and quadruples (CISDTQ) 

or full-CI's. Extensions of the original concepts to include such 

exotic calculations will be discussed later. Therefore, the 

following sections will presume that the program is intended for 

CISD type calculations where there are a substantial number . of 

virtual orbi.tals in the external space. 
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Siegbahn noted
17 

that for such a calculation, the external 

portion of the Shavi tt graph, tha·t is, those orbi ta·ls unoccupied in 

all the re-ference configura·tions, is extremely s-imple and quite. 

repetitive if placed at the bottom of the Shavitt g.raph. It is 

poss-ible· to e"Xploit this simplicity to dete,rmine !. priori the value 

o,f the pertion of any loop in this e·xternal space and thexeby a·void 

the nee:d to mul.tiply se.gmen·t shape values together for the virtual 

orbitaJ.s. The product in Equa.tion 16 is factored into an interna·l 

and external portion. The internal portion is still found as a. 

product o.f segment shape values, but the e:xternal part is explicitly 

knewn and incorpora-ted in the code. The program Siegbahn developed 

using this e-xplicit treatment of the external space first generates 
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all the internal portions of loops and writes them out on a disc file. 

In the second phase, the internal portions of loops are linked t~ the 

appropriate external values using an integral-driven scheme overall. 

The shape-driven approach is based on the same concept of the 

explicit evaluatation of the extern~! portions of loops; however, 

unlike Siegbahn 1 s program, the shape-driven approach strives to take 

advantage of the structure inherent in the UGA. The name "shape-
1 

driven" arises from the nature of the algorithm used. For a given 

internal part of a loop, all external portions of a given shape are 

treated be·fore processing loops of a different shape. In a sense, 

loops are grouped according to the value of the coupling coefficient. 

The curren.t approach is closely related to tha·t used by 

Shavitt' s group. The concept of using external shapes was firs·t 

introduc:ed by Shavitt 
14

e in 1979, ai though no program based on the 

external shapes was deve.loped at that time. A version of the LDGUGA 

prc.og.ram was de.veloped in the Schaefer g.roup which was a direct CI 

pr.og:ram based on the external shapes of loops presented. by Shav:i.tt .. 

H0Wever, the me·thod continued to use a loop-dr.iven me·tholology and 

there.f.ore. w·as not able to a•s fully explo·it the structure. of the UGA 

a•s. the cuzrent program. Apparen.tly, the p.rog.ram developed by 

Lis:chka,!:! aa.-:'aoes exploit the externa·l s:hapes in much the s:ame· 

w.ay that the curr.ent method does 1 a·l though it is not yet known how 

closely the two algorithms resemble each other. 

What a·re the advantages of this new approach 1 which appears so 

similar to Si:egbahn 1 s? The principal advantage lies in being able 
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to visualize the problem and therefore be able to break the program 

into small, easily understood, and easily optimised segments. 

Furthermore, by not ignoring the structure of the CI calculation, it 

will become apparent how to undertake large CI calculations where it 

is impossible to simultaneously hold both the entire CI vector and 

correction vector in the central memory of the computer. Returning 

for a moment to the segmenta.tion of the computer code, by specializ­

ing each segment of code to just one shape of external portion of 

loop, it is possible to eliminate almost all decisions from the 

code. Progressing through a set of loops of the same shape, the 

configuration numbers I and J can be found by incrementi~g counters 

ra•ther than by a complicated and time-consuming look-up. Finally, 

since each segment of code is quite short and deals with only one 

procedure, i.t is relative.ly s.imple to optimi.ze the program. 

The following specific e~ample will illustrate most of the 

concepts used in the shape-driven approach. Before embarking on this 

dis.cus:sion, however, it is nece•ssary. to e~lain the terminology tha·t 

w.ill be us:ed. Figure 7 show.s the e:xte,rnal s.pace f·or the type of 

calcula.tion we are interested in· at the present. The modified Fermi 

leve·l is tha•t leve:l w.hich separates the inte·rnal and exte·rnal portions 

of the Shavitt g.raph, i.e. none of the orbitals below the Fe·rmi level 

is occupied in any o.f the references, and so will often be re·ferred to 

as virtual orbitals. 

For the external space shown, corresponding to no more than two 

electrons in the external spa·ce and no molecular symmetry present, 



Figure 7. External space of Shavitt graph for CI singles 

and doubles, illustrating the simplicity and 

regularity. 

w X y z 
Fermi level 

Graph tail 
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there are no more than four distinct rows (vertices) at any level. 

These rows, and in particular the four at the Fermi level, are 

labeled W, X, Y, and Z when there are two electrons singlet or 

triplet coupled, one electron, or no electrons in the remaining 

levels. An alternative notation used by Seigbahn
17 is S, T, D, and 

V, standing for singlet, triplet, doublet and valence, respectively. 

Figure 8 shows a typical internal portion of a loop. Associated 

with this partial loop are the partial values of the configuration 

i i i i 
numbers I and J and of the loop coefficients A and B . There are 

also the appropriate part of the integral address (ARR) and symmetry 

information connected with the integral addressing (ASM). Finally, 

the loop arrives a.t the Fermi level as an XX entry to the external 

routines and the next segment shape must come from the ISEG=8 

section of the loop-searching ma.s.te:r table. This loop is termed an 

XX entry be·cause both the I and J partial walks arrive at the Fe·rmi 

level a·t the X point. The final pie.ce of data is that the TRACK 

value of the inte·rna·l loop is 3. The TRACK va•lue· de•termines which 

of a triplet of inte.grals to use when f.orming the loop contribution. 

Table 3 illustra:te~s the use of the· loop-sea>:rching maste.r table in 

Appe•ndix. 1 to e.·val.ua•te loop coe.ff:icients and tra•ck value for this 

loop. 

That th·e sample loop is an XX entry to the exte:rnal space with 

an ISEG value o·f 8 deterlt'ine·s tha·t the ed.ght shape·s of e:xternal 

portion of the loop shown in Figure 9 along with a notation 

indicating the coefficient value and inte.grals to use in 
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Figure 8. Internal portion of a loop . 

.... """ 
0 0 0 0 0 0 0 

i 

0 0 0 0 0 0· 

j 

0 o. 0 0 0 0 0 

...... ....... ......... ... ..... ... ... spin couplings 0 0 ""0\ 0 

\ 
\ 

Fermi level 0 0 0 

w X y z 



Table 3. Evaluation of the loop coefficients for the internal portion of the loop shown 

in figure a. Refer to A,~pendix 1 for an explanation of the entries in this table 

anli for tne loop-searching master table. 

ISEG JSEG NEXT. ss TMCK JKCOND VALUE b X y Comments -- -· -·-·. -· -··-- -
1 1 3 01 1 -10 X' = X 3 1 i-1eve1 of loop is this 

level. JCOND of -1 indicates 
that j-level not yet reached. 

X' = xji; ~ 3 38 6 10 1,2 10 2 -~ JCOND of 1 indicates that 

Y' -·V2 (b~2) j-leve1 of loop is this level. 
= 

6 82 7 12 3 00 X' = -Yvb (b~ll 2 $ KCOND of 0 indicates this is 
not k-level. 

7 98 8 21 00 X' = -.fixlb 3 -$- Still not k-level. TRACK 
remains set to 3. 



Figure 9. The eight possible external shapes for the internal 
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A is called X in Table 3. 
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forming the loop contri.buti.on are the only possible continuations 

from the internal portion of the loop. In this example, the external 

loop coefficient is ±1 so the total loop coefficient is ±Ai, as 

reflected in the formulae of Figure 9. Note that the second loop 

coefficient B is not used in this example and that for some shapes 

the track value from the internal space is superceded by an external 

value. 

To further explain how the shapes lead to segments of the 

computer program, the following section will examine the last shape 

listed in Figure 9 in detail and derive from the information in the 

Figure a prototype of the Fortran code used in the program. The 

e·xternal portion of the bra walks configuration number is determined 

by the levels c and b since vertical arcs make no contribution to 

config.uration numbers. In gene·ral., it would be necessary to define. 

an a·rray WTX (c:) which contains the a.rc-weight of the arc from the 

X pQint at level c to the Y pQint at level c-1.. In the present 

example, this will turn out to be uru1e·cessary, but for the time 

being, the total confi.guration numbe·r I of the bra walk is given by 

I'i + WTX (c) + b. There is no need for an array analogous to W'I'X for 

the b level con.tri.bution S>ince w.i.thin le·xical order all lower walks 

from the Y poin.t arrived at by the a-rc from the X point a·t level 

c a·re contiguous and numbered in a leftmost, that is bottom to top, 

se,nse. In a s.imilar fashion, the configuration number J of the ke t 

walk is Ji + WTX(a) + c. The integral address pointer needed is 

ARR + KADD(a) + LADD(b), where the first term has been evaluated in 
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Figure ~0. FORTRAN code generated to handle the last external 

shape of Figure 9. 

i 
VALA = -A 

IA = Ji 

DO 3 A=3 ,.LEVFRM 

IA = Ii 

IJA = ARR + KADD (A} 

DO 2 C=2,A-l 

CJVALA = C (JA} * VALA 

ZJ = 0.0 

.. DO 1 B=~,C-1 

TEMP = INTGRL(IJA+LADD(B1+TRACKl 

z· (IA:) = Z(IA l + TEMP *CJVALA 

ZJ = ZJ + TEMP * C(IAl 

IA = IA + 1 

1 CONTINt:JE 

Z (JP>:) =, Z (JA,) + ZJ * VALA 

JA =· J:A + 1 

2 CONT.INUE 

3 CONTINUE 



the internal space. Putting this information together yields the 

Fortran code of Figure 10. Note that in this specific case, it was 

possible to dispense with the auxilliary weight array WTX because 

of the particular order of the nesting of the DO loops, using the 

fact that the lower walks from the X point at the Fermi level are a 

contiguous set ordered in a leftmost sense. 
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For every external shape, there is a section of Fortran code 

comparable to that in Figure 10. In all important sections of code, 

the constant coupling coefficient A, but not always B, can be 

removed from the innermost program loop since either the bra or ket 

configuration number is constant within the innermost loop. Because 

the multiplication by the loop coefficient can be removed from this 

innermost program loop, the con.struction of Hamiltonian elements is 

an insignificant time step when using SDGUGA! In a later section 

concerned with the ve·ctorization o.f the code, it will be shown that 

by ree>rganizing the prog.ram somewhat, it is pe>ssible to ce>mple.tely 

remove the coupling cons.tants fr.om the innerme>s:t loe>p. In this 

case, it is worth emphasiz·ing tha·t a calcul.a,t·ion would be essentially 

no faste:r even if the Hamiltonian ma,trix e·lements were available at 

ne> cost or could be looked up in a maste·r lis•t somehow. It would 

s.till be necess·a:ry to increment a configura-tion number or some other 

counter, pick up the Hamiltonian matrix element and multiply it by 

CI and CJ. The current program does equivalent work in the inner­

most program loop, so for a mode·rate size calculation -- one with 
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perhaps 30-50 external orbitals -- the SDGUGA CI program is essentially 

as fast as any program can be which multiplies the CI vector by the 

complete Hamiltonian matrix to form a correction vector. 

In principle, it should be possible to neglect Hamiltonian 

matrix elements which are essentially zero since they cannot 

significantly a-ffect the results. A program based on such a selection 

of matrix elements could be considerably faster than a method such 

as the present one which uses all matrix elements irrespective of 

their magnitude. However, no such programs are currently in use, and 

it is possible that the_process of selecting matrix elements could 

be a prohibitively expensive task. 
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V. PAGING OF THE VECTORS 

Understanding the structure of the UGA and how it is being used 

in the shape-driven approach allows the implementation of an 

algorithm for handling large CI expansions, where it is impossible 

to simultaneously hold all elements of both the CI and correction 

vectors in the central memory of the computer. From the analogy with 

the method used to- handle the virtual memory of the computer itself, 

this process will be called "paging" of the vector. The CI and 

correction vectors will be stored on a random-access disc file and 

only those portions actually needed a·t one time will be transferred 

on demand to the central memory. For such a scheme to be practical, 

the calculation must not be I/0 bound, that is, a substantial amount 

of central processor time must elapse between successive paqing 

operations. If this is not the ca·se, the calculation will spend 

most of the time waiting fbr the completion of a paging operation 

since I/O is much slowe·r than the central proce-ssor. For e·xample, 

a b-a·sic ope:ra•.tion such as a multiplication might take a fraction of 

a m.crose·cond; paging one- section o.f the vector into cen:tral memory, 

0 • OS s~:~onds . 

'!!h:e. s'hape-driven algori.thm ou.tlined in the prece.ding se·ctions 

forms loop contributions to rectangular subma•trices of the 

Hamiltonian matrix. Only for diagonal elements and conf.igurati.ons 

differing by only one electron are the·re more than one contribution 

per matrix element, so by and large, the Hamil toni an matrix will be 
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constructed as a set of rectangular submatrices of moderate dimension. 

In the particular example of the preceding sections, if there is no 

symmetry and N external orbitals, the submatrix constructed will be 
e . 

a square of dimension N (N -1) I 2. If N is say SO, the .size of the 
e e e 

submatrix is over 1000 x 1000, which is large enough that there will 

be a considerable amount·of central processor work involved in 

evaluating the loop contributionS (there ~e about 100 000 nonzero 

contributions to the submatrix) , but not so large that the five 

or six thousand vector elements needed cannot readily be stored in 

the central memory. 

The strategy used to minimize the amount of time spent on the 

paging of the vectors is to page in, that is, transfer the 

appropriate. section from the pe·riphe·ral: storage to the central memory, 

a·s large. a portion of the vectors as possible at one time-, and then 

do as much. work as possible on those sections of the vectors be-fore 

paging them back out to the disc file. This is a~complished by 

modi.fying the loop;-driven alg.ori thm for the inte·rna·l portions of 

loops· so tha.t the nwnber of· uppe;r wa~s from a loop is ignored. Thus, 

the loop is recomputed for e•a;ch upper w-alk, bu.t it was seen in the 

la•s't sect·ion tha·t. the. shape-driven approach. spends a negligible 

amount o.f: e·ff·ort eva·luatin.g loop coefficients, so this repeaoted 

work will nc:>t noti~e,ablY a•ffect the performance o.f the program. The 

purpose o-f th·is modification of the loop-driven algorithm is to ensure 

that the paging through the vectors is done as methodical.ly and 

e,fficiently as possible. 
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The loop-driven algorithm previously outlined searched across 

the distinct rows at a given level, finding all loops opening at one 

distinct row before proceeding to the next. The simultaneous use of 

the upper walks from the loops causes the configuration numbers I and 

J of the configurations making the loop to change by large amounts. 

Thus, when using the upper walks to avoid recomputing the value of 

the loop, contributions will be made to segments of the correction 

vector near the beginning, at various locations in the middle of the 

vector and also near the end, for each distinct row at that level. 

Therefore, it would be necessary to page through the vector once for 

every distinct row. This can be a·voided by always searching from 

the graph head down to the level of interest to find the upper walks 

from the loops one by one, kee.ping a leftmost sense to the search. 

Sea·rching in this fashion, there a:re· two different modes of 

pag.ing to cons.ider. The simplest S·i tua.tion is when it is possible 

to hold eaough e·leme·nts of the v:ects·rs w.hile still descending to the 

le:vel o.f loop opening. Reme,mber tha.t a~ll the lower w.alks from any 

give·n distinct row a-re a· conting.usus set. The·n, while des.cend±ng 

from the g·raph. head towa·rd the leve.l of lc::>op o,pening, i.t is 

s.ufficient to Ghe·ck ·the numbe·r-of•lower-walks, !:• from e·ach dist·inct 

rsw reached. When x is les.s than ha.lf the available central me·mery, 

x e·lements of ea·ch vector, S·tarting with the curr.ent partial 

cenfig.ura.t:ion n·wnber, are tran.sferred into core. The search then 

descends further down the graph before opening loops, and then 

re.cursively continues, but all the while the elements of the vector 
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needed will always be available. Only when the search returns to the 

level where the vector was paged into memory must it be paged back 

out and a new portion paged in. 

This first mode of paging is extremely efficient. The vector 

is paged through sequentially once for each level in the graph. 

Indeed, in smaller calculations it is possible to pass through the 

vector substantially less often by holdirig larger numbers of integrals 

in the central memory. The second mode of paging occurs when the 

loop has already been opened before sufficient elements of the 

vectors can be held at once. This mode of paging is somewhat more 

·complicated, and it is not possible to know how many times the 

vector must be pa·ssed through each iteration of the calculation with­

out actually trying the calculation. 

In this second ca•se, it. is not possible to accomodate. the 

number-of-lower-walks--from-the-loop-head elements of each O'f the 

vectors. Therefore, this set of elements will have to be spli.t into 

s;ubgroups which can be held in core. Bach subg.roup will have to be 

r.e·sident in the. centr.a·l memory at the same time a•s each. other 

s;ubgroup, i.e. if t·he number-of--lower-walks se.gment of the vector is 

divided into n sections., then the first se-ction w-ill have to be in 

core w-ith the se·cond section., an-d then w-ith the third, e-tc. This 

w.ill require about n
2
/2 paging operati.ons,. but if the available core 

space is moderately large, s·ay 100 000 elements or more of each 

vector can be held', the-n the amount of work per page request should 

prevent the program from being I/0 bound. 
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The actual implementation of the second mode of paging is similar 

to that used in the first. As the loop extends down the graph, the I 

and J walks will end on a pair of distinct rows. When the sum of the 

lower walks of both these points is less than half the available 

space, the four portions of the vectors -- two each of the CI and 

correction vectors, corresponding to the I and J walks -- can be 

transferred into the central memory. The addi tiona! complexity in 

this case arises when the portion of the vector associated with only 

one walk needs to be replaced. 

These two modes of paging will usually both occur in the same 

calculation, the only exception being that only the first will be 

needed if more than about 2/3 of the total space needed is available. 

In larger calculations, the second rn.0de of paging is used whe·n 

evaluating loops which open near the top left portion of the graph, 

sin.ce that is the region where the number of lower walks from the 

distinct rows is la,rgest. The first m<:>de of paging is encounte.red 

further down the graph. The minimum required amount of central 

memory for the vectors is twice the S'um of the two la·rgest numbers 

of !.ower w-a·lks from points at the Fe'rmi leveL This is no more than 

2N
2 

e,lements where N is the n.umber of e•xternal orbitals. For even 
e· e 

100 virtual. orbitals then, the program can run with 20 000 words of 

memory dedi..cated to the vectors, irres-pective of the length of the 

CI e·xpans.ion. Thus, holding the necessary portions of the vector in 

the central memory amounts to no restriction at all on the size of 

the CI expansion. 



What then is the limitation on the length of t.~e CI expansion 

2 
Apart from the 2N words of central 

e the SOGUGA program can handle? 

2 
memory mentioned above, the program needs space for about 3/2N 

integrals, where N is the total number of orbitals, as well as a 
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few tens of thousands of words for arrays such as those defining the 

DRT. In light of this small amount of central memory required, the 

available memory is not a practical limitation on most computers. 

The total amount of disc storage available to any one user might be 

a limitation. The current amount needed is N
4
/8 words for the 

integrals and space' for two vectors per iteration of .the Davidsion 

algorithm. For a calculation with 100 orbitals and 10
6 

configura-

7 
tions taking ten ite·rations, about 3 x 10 words of disc storage are 

req.uired. The only remainin.g limitation, and the one most likely to 

limit the· size of calculation unde·rtaken, is the time taken. On the 

H-a•rris 800 minicompute·r, a. calculation w-ith 10 
6 

configurations took 

just over. 100 hours to comple.te. Even on a scalar ma·chine as fa·st 

as t'he CDC 7600, the s·ame calcula.tion would take almost 10 hour:s; 

theorefore it w.ould seem tha·t time is the str:ong.est limitation on 

the size: o.f the CI e·xpansion. 



VI. MATRIX FORMULATION OF THE SHAPE-DRIVEN APPROACH 

The algorithm so far described is somewhat cumbersome and 

involves more computational work and DO-loop overhead than is 

strictly necessary. It has been pointed out by Saunders and van 

Lenthe
19 

that Siegbahn's approach
17 

can be reformulated into 
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standard matrix and vector operations such as matrix multiplications. 

There are several advantages to such a reformulation. Aesthetically, 

the program is considerably simpler and more elegant, which has the 

practical benefits that it is easier to write and debug. Futhermore, 

since the computational effort is localized in a few matrix routines, 

the performance of the program as a whole can be optimized by atten­

tion .to just a few portions of code. It is possible in the matrix 

formulation to remove the coupling coefficients from.the innermost 

program loop in al.l important case·s, thus making the cons,truction 

of the H'amiltonian matrix ~ ~ an insignifi.ca:nt portion of most 

calcula.tions. 

The main motivation behind the ref0rmula·.tion o·f the algorithm, 

however, is to take advan.tage of the very specialized and powerful 

vector computers and a·rray pro.ce·ssors becomin.g a'v.ailable presen.tly. 

The:se devices a're re·stricted to handling ra·the·r simple operations 

e·f·ficiently, and we·re designed primarily for vector and matrix 

operations. Both ve·rsions of the current prog.ram have been imple­

men.ted on a CRAY lS computer, and as will be shown later, the matrix 

version executes more than ten times as fast as the original CRAY 

version. With this performance, which is perhaps 20 times better 
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than that possible on the fastest scalar machines currently available, 

it is possible to undertake calculations on molecules which have 

previously been considered too large for any attempt to be made at a 

correlated calculation. For such calculations, the full power of the 

SDGUGA matrix formulation will be needed -- both speed and ability to 

page the vectors. 

The d-iscussion of how to manipulate the various external shapes 

into matrix and vector products is necessarily lengthy and involved. 

The following sections will consider each- different type of entry to 

the external space independently, grouping the shapes together 

according to the number of indices of the loop (and integrals) in 

the external space. Before beginning this discussion, a shorthand 

me-thod of referring to configurations will be introduced. 

The configurations -will be labeled according to the internal 

pa-rtial walk, the e-xternal orbitals occupied and the spin-coupling 

of· the external orbitals. The general scheme will be to label a 

iw 
config.ura.tion as Cab whe-re the superscripts i and w g.iv:e the 

inte:rnal p-a-rtial walk label and the entry point to the e·xternal 

s·pace. The s-ubscripts a and b de-note the exte.rnal orbit-als occupied 

in this particular wa-lk, w-ith the orbital a being the firs-t orbital 

coupled in the confi.g:ur·ation and the orbital b, the second. Thus., 

the orbi.tal a w-ill be lowe-r than b on the Sha-vi tt gr.aph and will 

have a sma-ller value. Using this nomenclature, the possible 

iz 
configurations are C for a configuration with no electrons in the 

extern-al space, Ci v for one electron, and ciw and cix 
a ab ab 

for the case 
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with two electrons singlet or triplet coupled respectively. 

A. Four-Internal Loops 

These loops, which are completed in the internal space, are the ~ 

simplest to treat as they naturally form a vector operation. There 

is no need to extend the configurations to the Fermi level as long 

as sufficient portions of the vectors are in the central memory. 

Having just elaborated on the shorthand for configurations, it does 

not suffice in this one case. Associated with an internal loop are 

the number of lower walks, ~, from the loop tail and the two partial 

configuration numbers i and j found by summing the arc weights of 

the bra and ket walks, respectively, from the graph head to the loop 

tail. The loop naturally defines two subvectors of the CI vector, 

ci 
1 

and cj 
1 

, which are the ~ elements s.taxting with C. or C. 
l. J 

re-spectively o Thus·, for example, Ci 
1 

is the elements C. , C. ·l, 
l. l.+ 

C. 
2
.' o •• , C. 

1
• If the loop contribution is v, then the follow-

J.+ J.+x-

ing pair of equa·tions give's the contribution to the correction 

ve.ctor: 

zil = vCj
1 

zj I veil 
(20) 

= 

The correoction sub vectors Z 1 a,re de f.ined in the same wa'Y as the C 1 

subvectors. One final point is that if the loop is diagonal, that 

is, if the bra and ket walks are identica-l, only one of the 

equations above is used. The other equation accounts for the 
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symmetric nature of the Hamiltonian matrix and is not appropriate for 

elements on the ·diagonal. 

B. One-External Loops 

The one-external loops involve integrals with one index in the 

external space and arise from YZ, ZY, XY, YX, WY, and YW entries to 

the external space. The first two cases are already in the form of 

a dot product and a vector times a scalar: 

zjz = L: H ciy 
a a a· (21) 

ziY = H cjz 
a a 

These are the equations for the YZ entry. Simply interchange the 

superscripts i and j for the ZY case. The vector H of loop a 

contributions is given by the following equation for all of the 

entries: 

H = A I(ij·ka+trl) + B I(ijka+tr2) (22) 
a 

A and B are the loop coefficients and I (i.jka+trl) is the integ.ral 

loc;:a,ted in the triplet w-ith the addr.es·s for indices i, j, k, and a, 

and. an offset within the triple't of trL Thl:ls, the integ.ral is one 

of: {ij ; ka..] , [ ik; j·aJ , or [ ia:;jk] • An advantage of· B·rooks ' in.tegral 

storage scheme is tha-.t the. inte.g.rals needed to make sequential 

elements of H are in se.quential triplets and thus form a vector 
a 

themselves. 
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The situation with the remaining four classes of entries is not 

so simple. Figure 11 shows the possible. external shapes for the XY 

entries and gives the associated loop values. The evaluation of the 

contributions from both of the shapes can be combined into one process 

in the following fashion. A vector of loop contributions H is formed 

as before as well as an antisymrnetric matrix of CI coefficients C' 

defined as follows: 

cix 
ab 

a(b 

C'i = -c;: a) b (23) 
ab 

0 a=b 

This matrix is then multiplied by the H vector to give a correction 

vector Z: 

= L: (24) 

a 

and to account for the symme.tric counte.r.part in the Hamiltonian: 

= (2'5) 

The correction subvector Zjy is exactly wha·t is needed, but the 

se·cond equa·tion yields a matrix Z'' i w.hich must be folded to form 

.ix the t·rue correction subvector Z u·sing the inverse operation to 

that used unfolding the CI vector to form the C' matrix. Thus, 

= Z'i 
ba 

a· {b (26) 



X 

X 

.. 

Figure 11. External loop shapes for XY entries to the 

e~ternal space for one-external loops. 

Loop Value 

Shape 
Iseg = 16 18 22 

y z 

A[I(3) + I(l)] AI(3) A[~(trl) + BI(tr2)] 

y z 

-A [ I ( 3) + I ( 1) ) -AI (3) -A[I(trl) + BI(tr2)] 
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The YX entries are identical except for the interchange of the 

i and j superscripts. The WY and YW entries are also handled in the 

same fashion except that the unfolding of the CI vector and the 

folding of the correction matrix is modified. The CI vector is 

unfolded to give a symmetric matrix with the diagonal elements 

multiplied by~ Thus, Equation 23 becomes 

ciw 
ab 

a <b 

C'i = ~: a> b (27) 
ab 

/2 ciw a=b a, a 

The folding of the correction matrix Z' is similarly changed: 

ziw = Z'i + Zb; a <b 
ab ab 

(28) 

iw ,f2z·i z = aa a a 

This comple-tes all cases involving one-e·xternal loops. In the 

s-implest cases, the problem can be expressed as a dot product and a 

scalar times a vector. In the more complicated cases, the two or 

three exte·rnal shapes can be combined into a matrix-vector product 
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and the outer product of two vectors at the expense of unfolding a 

section of the CI vector into a matrix and then folding the 

correction matrix .to give the contribution to the correction vector. 

When the electrons in the external space are triplet coupled (in the 

configuration with two external electrons) , the sign of the loop 

contribution is removed from the actual value of the contribution and 

placed instead on the CI elements or the elements of the correction 

matrix. The sign is taken care of automatically during the unfolding 

and folding processes, as are factors of J2 for the diagonal elements 

which are singlet coupled. 

c. Two-External Loops 

The loops with two indices in the external space comprise a 

ra.ther large fraction of all loops; therefore, it is crucial that 

they be treated as efficiently as possible. There are seven different 

ways a two-external loop can ente-r the e·xternal space; of these ways, 

three actua-lly occur rela-tively infrequently and are satisfactorily 

treated by the original shape-driven algorithm. These three entries 

are XZ, WZ, and YY. The evaluation and processing of the remaining 

two-exte·rnal loops, which pass through XX, WX, Y.W, and WW points at 

the Fe·rmi level, tyPical.ly takes 70-80\ of the entire computational 

effort of a calculation. Fortunately, the matrix reformulation 

handles these loops in about the most efficient fashion possible. 

All four entries to the external space· involve --ewo coitfigurations 

with two electrons in virtual orbitals, the four different cases 
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arising from the spin-couplings of the external orbitals in either 

configuration. The procedure outlined for the XY, YX, WY, and YW 

ent:ries for one-external loops can be extended to handle the two-

external cases mentioned above. The appropriate section of the CI 

vector for both the bra and ket walks are unfolding to form matrices 

of CI coefficients. Again, if the external orbitals are triplet 

coupled, the matrix of CI coefficients is antisymmetric; if they are 

singlet coupled, the matrix is synunetric with diagonal elements 

multiplied by j2. 

The vector of loop contributions Ha is replaced by a matrix Hab 

which is formed in a fashion analogous to Equation 22: 

::: A I (ijab+trll + 8 I(ijab+tr2l 

::: A I(ijab+trl') + 8 I (ijab+tr2) 
(29) 

for a< b. Notice that the offset in the triplet of integrals of the 

integ.ral multiplying the A coe fficie:nt can be different for the upper 

and lowe·r triangles of this matrix. 

Having formed the CI coefficient matrices and the matrix of loop 

va.lues I correction matrices are formed as follow.s: 

Z'i = 2: H C' j 
a.b ac cb (30) 

c 

z• j = L: H C'i 
ab ca cb 

c 

Finally I the correction matrices are folded to give the true contri-
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bution to the correction vector. As before, the actual method of 

folding depends on the spin-coupling of the external orbitals in the 

configurations. 

Each matrix product in Equation 30 is the equivalent of the 

contraction of an N
2 I 2 portion of the CI vector with an 
e 

X N
2 1 2 subma.trix of the Hamiltonian matrix in .a more e . 

conventional method. This submatrix is formed of the matrix elements 

between configurations of the form c~ and c;d where the internal 

portions of the configurations differ in ·two places. Since the 

matrix elements are identically zero if the two configurations differ 

in more than four places, only the matrix elements between configura-

tions sharing at least one external orbital in conunon a~e nonvanishing. 

Each configuration interacts with 2N other configurations: 
e 

i . 
Cbc .can 

interact with· N configurations of 
e the form c~ and ~d as well as 

with N of the cj and cjd. 
e ac c 

3 
Thus, the s.ubmatrix contains only N e 

. 2 
nonvanishing. matrix eclements -- but there are only N unique val.ues 

e 

th. 3 . . 1 among e N remaJ.nJ.ng e ements. 
e 

This is because the matrix e·lement 

between configur.ations ci and c.j does not depend on the orbi.tal ab -be 

c, e·xcept for sign and perhaps a normali.zation constant of ./i.. 
The ma·trix o·f loop val.ues H ab in Equa:tion 2.9 is f.ormed fr.om the 

N
2 

unique values of loop contributions. That each loop contribution 
e 

appears N times in the true Hamiltonian matrix is reflected in the 
e 

use of the unique value N time·s in the matrix multiplication of 
e 

Equation 30. The pha·se factors and normalization constants of .fi 
a•re incorporated during the unfolding of the CI vector and the 
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folding of the correction matrix. 

In light of the preceeding discussion, the bulk of the formation 

of the Hamiltonian matrix can be identified with the formation of the 

loop value matrix of Equation 29. The matrix products in Equation 30 

replaces the usual product of the Hamiltonian matrix with the CI 

vector. Note that the amount of effort expended evaluating the 

Hamiltonian matrix scales as N
2

, while the matrix product scales as 
e 

N3 . Therefore, for large numbers of external orbitals, the time 
e 

taken evaluating the Hamiltonian matrix is insignificant compared to 

the actual multiplication by the CI vector. 

D. Three-External Loops 

These loops are formed by a pair of configUrations differing in 

three places in the external"orbitals. Therefore, with the restric-

tion that no more than two external orbitals in any configuration 

can be occupied, only loops entering the external space a·t XY and 

WY points can have three indices in the ex.ternal space. Furthe·rmG>re, in 

the elegant treatment of the one- and two-external loops, many 

different loops sha~ed identical value·s. In the three-e·xte·rna1 

loops, there is no s·uch repetition. 

Howe·ve:r., the form of the loop contribution of the three-external 

loops is always the same so the wo.rk can be done once be·fore the CI 

calcula,tion be.gins by forming the fo.llowing matrices: 



p 

; 

P. b = [ib;ac] + [ic;ab] 
1a, c 

Pia,bb = 12 [ib;ab] (31) 

p ib,ab = [ia;bb] + [ib;ab] 

and 

Qia,bc = [ib;ac] [ic;ab] 
(32) 

Qib,ab = 
[ia;bb] [ib;ab] 

There is no restriction on the first pair-index except that i is an 

internal orbital and an external one. The second pair index is 

formed from two external orbitals, the first of which always is 

equal to or above the second on the Shavitt graph. 

The P supermatrix is used for evaluating three-external loops 

e.nte·r.ing the external space a,t WY points; the Q matrix, for those 

arriving at. XY po:in.ts. The contr.ibution to the correction vector 

from these loops is g:iven by the following equations: 

iw 
Zbe 

·= 

= 

Ai E 
b:c 

L: 
a 

p 
ia,bc 

P. b 1a·, c 

(33) 
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or· for XY entries, P is replaced by the Q supe·rmatr.ix. In the above 

equations, Ai is the internal portion of the loop coefficient. 

Notice that since Ai is a con·stant, it can be removed from the first 

and premultiplied by the Cjy coefficients in the second. This again 
a 
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means that the actual evaluation of Hamiltonian matrix elements is 

only a small portion of the total work. The internal portion of the 

loop coefficient appears in Equation 33 2N times; of course, forming 
e 

the supermatrices requires about N.N
3 

/2 operations for each one, but 
l. e 

this process is not repeated every iteration of the Davidson algorithm. 

The penalty for this avoided work is the storage of. the super-

matrices P and Q, each of which is twice as large as the set of 

integrals it was created from. Except for extremely large basis 

sets, this additional storage is unlikely to be a significant 

problem. Also, a certain amount of time will be taken reading the 

supermat.rices into the central memory, etc. For a vector processor, 

this additional work will be easily recouped by the subsequent 

vectoriza·tion of the three-external loops. The situa·tion is not so 

clearcut on a purely s:cala:r machine. The benefits of forming the 

s:upe~trices may be outweig;hed by the as-soci.a·ted overhead. 

E. Four-Ext.enlal Loops 

As in. the case of the three-e~e'Dlal loops, the e:fficient vectoriza:-

tion of the· four-e:xternal loops depends on the forma·tion . of supe·r-

ma.t.:rices of loop con·tributi.ons. In this case, however, the loop 

. coe·f:f·icient is en,tirely known be·forehand and so can be incorporated 

in the s:upe:rmatri.ces. To handle four-exte·rnal loops whe·re the two 

config:ura·tions ar.e identical in the inte01aJ: space and pass through 

the W point a.t the Fexmi level, and thus have singlet coupled 

electrons in the external sp~ce, the f.ollowing supennatrix is formed: 

.. 
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R . = [ac;bd] + [ ad;bc] 
ab,cd 

R = [ab;cc] + [ac;bc] + (alhlb) ac,bc 

R = 12 [ac;bc] 
ab,cc 

R = [ab;bc] + [ac;bb] + (al hi c)· a:b ,be 

R = [ab; ac] + [aa;bc] + (blh!c) ab,ac 

R = [ab;ab] 
aa,bb 

R = 12 [aa:ab J + (al hi b) aa,ab 

Rab,bb = j2 ( [ab;bb] + (al hi b) 

The two pair-indices are restricted so that the first of a pair is 

less than or equal to the second. There is no restriction between 

the two pair-indice·s. 

The contribution to the correction vector is given by: 

z·iw 
a:b = L Rab,cd c~~ 

cd 
(35) 
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Because the·re · is, no restric.tion between the ab and cd indi.ces, the·re 

is no need to e·J(ploit the symme-tric nature of the Hamiltonian ma·trix. 

Four-e-xternal loops contribute to Siubmatrices on the· main diagona-l 

of t·he- .ffamiltonian matrix.. Instead of forming just the lowe:r half 

of the s.ubma.trix and the·n us·ing the symmetric nature of the 

Hamiltonian to find the contribution from the upper half of the 

subrnatrix, it is more convenient to form the entire submatrix. 
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The corresponding supermatrix for the XX entries is: 

(36) 
s = [ac;bd] [ad;bc] 
ab,cd 

s = [ab;cc] [ac;bc] + (alhlb) .. 
ac,bc 

s = [ab;bc] [ac;bb] (alhlc) ab,bc 

s = [aa;bc] [ab;ac] + (blh lc) ab,ac 

The contribution to the correction vector is: 

zix = L s cix 
ab cd 

ab,cd cd 

The formation of the supermatrices for the four-external loops 

is advantageous even on a scala-r machine. Since the loop coefficients 

are incorporated in the supermatrices, there is no e-xtra work to be 

performed e·ach iteration. After the two-external loops, the four-

external loops constitute almost all of the rest of the computational 

e·f.fort, es-pecially when using extended basis sets. 

This completes the discus-sion of the m-atrix r.eformulation of 

the sha-pe-driven approach. It should be str.essed that this 

re£ormula·tion has nothing to do with the generality of the program, 

but is ra·thecr a convenient way of reorganizing the calculation to 

r.educe the amoun.t of computa·tional work required. Furthe·rmore, the 

matrix a·nd ve.ctor ope·rations are extremely well sui ted to a vector 

computer such a·s the ·cRAY. A later section will present t·imings for 

sample calculations on a CRAY that show the distinct advantage on 

such a machine of the matrix reformulation. 
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VII. HIGHER EXCITATIONS 

As was mentioned, the preceeding descriptions of both the 

original and matrix versions of the shape-driven approach were for 

calculations with configuration lists containing no higher than 

double excitations from the reference configurations. Yet, it is 

sometimes desirable to be able to include highe.r excitations. For 

example, one may wish to include tripl~ and quadruply-excited 

configurations as well. Such a CISDTQ calculation is of interest as 

a probe of the validity of truncating the CI expansion after double 

excitations·. There are also occasions when, say, a reaction barrier 

height is controversial, and the inclusion of higher excitations is· 

important for an accurate determination of the-barrier height. 

The shape-:-driven approach as outlined can be simply but crudely 

modified to handle S'uch ca,lculations. Since the· external shapes 

currently programmed handle all cases when both external walks 

contain two or fewer e:lectrons, the modi.fication is to rede-fine the 

external s,pace for e·a·ch individual loop. The loop-driven search is 

e:xtended down the loops tintil they either close or no more than two 

e·lec;:trons remain in e·ach walk, at which time, the external space is 

de,fine:d to be the remaining orbitals. Since the supe•.rmatrices 

constructed to handle the three- and four-external loops in the 

matrix ve·rs,ion ve·rs:ion depend on the number of external orbitals, 

the ma·trix ve·rsion of the three- and four-external loops cannot 

readily be used when handling higher excitations. The matrix 

ve·rsions of the one- and two-external loops, however, can be used. 
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This crude approach to higher excitations results in a substantial 

degradation of the performance of the program, since a large portion 

of the evaluation ofloops is transferred from the external routines 

to the relatively inefficient loop-driven code. Furthermore, as the 

level of excitation increases, the amount of computation done in the 

loop-driven section increases until, for calculations such as full 

CI's, the performance can be worse than the previously mentioned slow 

direct CI program formed by combining the two phases of Brooks' 

diagonalization tape program into one. The performance can be worse 

be.cause of the penalty of ignoring upper walks from loops paid in 

order to be able to page the vectors. 

By. contrast, the performance should be acceptable when treating 

low orders of excitations in large orbital spaces. For instance, 

a calculation containing up through quadruple excitations with perhaps 

fifty orbitals should be quite reasonable. In principle, calculations 

with higher e'xcita:tions could be handled with the same e·fficie·ncy as 

single's and d<::>ubles by programming the appropriate external sha·pe's. 

Howe·ver, the amount of code needed rapidly becomes prohibitive, 

although it mi.ght be. possible to include triple and quadruple excita­

tions. The· ma.trix fo.rmula·tion can also be e!Xtended to handle at 

le·as;t some· of the ca·ses e.ncountered w.ith hi.gher excitations, but it 

is not obvious that it can be extended to all ca•ses. The matrix 

version would also need too much code to go beyond about quadruple 

excitations·. 
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Beyond such quick fixes and brute-force ideas, a major restruc­

turing of the algorithm is required to efficiently handle higher 

excitations. A promising algorithm would be to recursively search 

from the middle of loops in both directions. This would be 

implemented by choosing a search level according to the type of 

calculation. For instance, for a full CI, the best level would be 

the middle- of the Shavitt graph, while for a multi-reference CISD 

calculation the optimum level would be the modified Fermi level 

used in the current programs. The partial walks from the level 

would be numbered using lexical order for the lower walks and 

reverse lexical order for the upper walks. The total configuration 

numbe.r of any wa·lk WQUld then be a sum of the lower partial walk's 

number and an offse·t determined by the upper partial walk's number. 

The searching for, and evalua·tion of, the loops would always 

begin at this d~ivid'in.g level rather than at the graph head as is 

cur.ren.tly done. The prog.ram would search upwards compilin.g a lis,t 

of a'll pQssible upper portions of loops arriving at the search level 

a·t a pa'rticular pair of verti.ces. A downward se·arch would then g;ive 

a-:11 the· lowe,r portions of loops, e-ach of whi.ch would· be combined w.ith 

the lis:t of a·l.l pos,sible uppe'r portions to give va·lid loops . 

FUrthe:rmore., s:ince. the· upper portion of the graph. would be numbered 

using reve:rse lexi.ca·l order and the lowe·r, by leXical o·rde·r, both 

uppe·r and lower walks from lo0ps could be exploited without impairing 

the a:bi li ty to page the vectors. · Naturally, loops entirely w-ithin 

the upper or lower portions of the graph would have to be found by 
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first searching from the mid-level to the bottom or top of the loop, 

respectively. This would not amount to much extra work since the 

number of loops entirely within one portion of the graph is a small 

percentage of the total and the extra searching required quite minimal. 

For a calculation involving no more than double excitations, the 

current external space routines could be used to evaluate the lower 

portions of loops. In this limit, the program would function almost 

identically\ to the present versions, except that it would be able to 

exploit the upper walks from loops and should, therefore, execute 

slightly faster than the present programs. However, as the number 

of references increases or the level of excitations increases, the 

suggested algorithm should perform increasingly well compared to the 

present programs. With a little thought, it would appear that the 

proposed algorithm could also exploit the repetition of unique values 

of matrix e·leme·nts in much the same way tha,t the matrix version does. 

The diffe·rence would be that the ma•trix version does the repeti.tion 

through care·fully programmed specialized segments of code. The 

proposed a.lgori thm could re'alize the same savings by sorting the 

uppe,r and lowe~r pertions ef loops. Sirice · this sorting could be 

implemen.ted in a g.e·nera·l f·ashion, it would handle all case-s and would 

not require the tremendous prolifera\tion of. s-pe.cial case·s ev±den.t 

in the curre·nt me·thod. 
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VIII. SAMPLE CALCULATIONS 

The following sections will present the results of various 

sample calculations undertaken with the shape-driven approach. First, 

the discussion will center on a set of calculations on the ethylene 

molecule. These calculations not only demonstrate the ability of the 

current programs to handle large CI expansions, but also shed some 

light on the importance of triply- and quadruply-excited confi.gurations. 

The next section will be concerned with the comparison of the current 

programs and the previous programs based on the UGA, as well as the 

advantage of ·.the matrix re·formulation over the orig~nal version of the 

shape-driven approach on a scalar computer. The final section will 

briefly discuss the preliminary re·sul ts from the version of the 

program on the vector CR:AY computer. 

A. Applica•tion To Ma·ny-Body Correlation Effects Ih Ethylene 

Rece·ntly the,re has been considerable interest in the importance 

o.f many-body correla·.tion e·ffec:ts,, mainly because me·thods capable of 

handling calcula·tions inc·l.uding such higher-order effects are becoming 

av-ailable:. Quantum chemists have hoped that for sys:tems such as 

c:losed she·ll mole·cules near their equilibrium geometries, the many­

body e·ffe·cts are neg.·ligible:. Othe·rwise, the• prospe·ct of h'avin.g to 

incl.ude· hi.ghe·r e.xcita,tions is• discouraging. The most intensely 

studied system ha·s been the w.ater molecule, for which· the exact. 

solution within a double zeta (DZ) basis set of the electro~ic 

Schroedinger equation has been obtained via a full CI calculation . .l2f 



The new capabilities of the shape-driven approach have been used in 

20 
the present study to investigate the importance of triply- and 

quadruply-excited configurations in ethylene, which serves as the 

prototype of all unsaturated organic molecules. 

Before discussing the calculations, it i~ necessary to present 

the geometry and basis set used. The geometry, which is close to 

the equilibrium structure, assumed the following parameters: 

r (C=Cl = 1. 33oR, r (C-Hl = l.076R, and 9(HCHl = 
0 

116.6 . This 

structure results in the following cartesian coordinates (in atomic 
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units) for the atoms: carbons (0.0, 0.0, ±1.25666814) and hydrogens 

(0~0. ±1.72999314, ±2.32513368). 

The basis se·t used was a standard double zeta plus polarization 

(OZP} set formed using Dunning•s
21 

(4.s2p) contraction of Huzinaga•s
22 

(.9s4pl basis for carbon and the (2s) contra·ction of the (4sl basis 

for hydroge·n, the e:xponents of which were scaled by a factor of 1. 2. 

The polariza·tion functions were a se·t of six cartesian d functions 

with orbita·l exponents of 0. 75 on the carbons and a set of three p 

fun·ctions , e:Xpene·nt l. Q on the hydrogens . 

A calcula·tion including all singly- and doubly-exci.ted confi.gura.-

tions from the H'a•rtree:-FOck reference with the res:triction that the 

two core-like orbitals a·re always doubly occupied, L e. froze•n, has 

SO.S7 config:ura,tions. If aJ.l triple and quadruple exci ta·tions a·re 

included, the conf·iguration count soars to 10,593,3'85 which is 

clearly too lar.ge to be feasib.le on the Harris-800 minicomputer used 

for this study.. The scheme used to investigate the importance of 

.. 
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the triply- and quadruply-excited configurations was to include only 

the more important ones. This was accomplished by eliminating from 

the calculation all configurations with more than two electrons out-

side the core and valence space. The. justification of this scheme is 

that the valence orbitals are considerably more important than the 

remaining virtual orbitals for correlating the occupied orbitals. 

Arguments based on the occupation numbers of the orbitals suggest 

that this procedure should include 80-90\ of.the total correlation 

energy from the triples and quadruples.· 

The ground state electron configuration of ethylene is the 

following: 

where the la and lblu orbitals are approximately the carbon ls core g 

orb i.tals. Beyond these: occupied orbi.tals, the unoccupied orbitals in 

the va•lence space a·re the lb
2

. , 3bl. , 2b
2 

, 4a· , 2b
3
· . , and. 4b

1 g ·u u g g u 

orbita·ls. Since the SCF virtual orbita·ls do not neces·sarily have the 

form de·sired., a transf.orma·tion to na·tural orbitals
23 

was employed. 

The tra:n.s<forma·ticm used was th·a·t which diagonalized the one-particle 

dens.i.ty ma.trix of a· CISD ca•lcula\tion w.ith the two core orbitals 

fro.ze:n. This tra.ns,forma,tion gua·rantees tha•t the orbi ta·ls have the 

e·xpected form and thus a;re sui.t·able f:br the ensuing calculations. 

Table 4 g.ives the orbita·l occupancies f·or the valence orbi.ta·ls and 

the most impor.tant virtual orbitals outside the valence space. There 

is a large gap between the occupied and virtual orbitals in the 



valence space and also another significant gap between the valence 

orbitals and the remaining orbitals, as one would expect. 

As mentioned before, three calculations were undertaken using 

these natural orbitals and always constraining the core orbitals to 

76 

be doubly occupied. These were a normal CISD from the first natural 

configuration, and then calculations including through triple 

excita.tions and through quadruples. In the last two calculations, 

all configurations with more than two electrons outside the valence 

space were eliminated. Another way of viewing the last two calcula­

tions would be as multi-reference calculations employing all singles 

and doubles from all singles, or sing.les and doubles, in the valence 

space as references, respectively. The two cases then can be viewed 

as having 37 and 703 reference configurations. The CISD calculation 

from the firs.t na.tural confi.guration 
1
reference had 5057 configu:ra.tions. 

In spite of the res·triction on the configurations, the triples 

calculation had 109,473 configura·tions and the ~adruple·s, 1,046, 75·a. 

EVen though only about 10\ o·f the· quadruply-excited config:ura,tions 

we:re incl.uded, the calc:ula•.tion w.as much larg.er than any previous·ly 

a1ttempted. 

Tatde 5 s:mmna•rizes the r.e•sults o-f the cal.culations, including 

thos•e· of the ca-:l.cu:la,tion uscing the canenical SCF orbi.ta·ls whi.ch w.as 

used: to f:ind the na;tural e·rbi ta-ls. Note that there is a s·li.gh t los's 

of ene•rg:y using the natural orbitals in the CISD calcula·tion, but 

that the diffe·rence is quite small. The bulk of the correlation 

energy is re.covered, as expected, from the single reference calculation, 
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Table 4. ~atural orbital occupation numbers (greater than 0.001) for the ground state 

of ethylene. 

Valence Orbitals Most Important 
Additional 

Qnoccppied in Hartree-Fock Picture Natural Orbitals 

la 2.000 lb2g 0.046 
g 2b3u 0.008 

lblu 2.000 3blu 0.017 Sa 0.007 
9 

2a 1.982 2b2u 0.017 . 'g 3b2u 0.007 

2blu 1.976 4a 0.015 
g 

6a 0.006 
9 

lb 
24 

1.973 2b3g 0.014 Sblu 0.005 

3a 1.969 
g lbl9 0.005 

lb3u 1.943 3b3u 0.004 

3b39 0.003 

la 0.003 
u 

4b2u 0.002 

2b2g 0.002 

6blu 0.002 

7a 0.002 
9 

4b39 0.001 
...... 

5b2u 0.001 
...... 



Taole 5. Summary of level of calculation and energies (in hartrees) for the ground 

state of ethylene at the geometry described in the text and a double zeta 

plus polarization basis. 

Number of Reference 
Configurations 

Total Number 
Configurations Total Energy 

Self-Censistent-Field (SCF) 1 -78.050 53 

Canonical SCF Orbitals, CISD 1 5057 -78.328 11 

Above, Pavidson Corrected -78.354 54* 

First Nat4ral Configuration 1 -78.049 42 

Natural Orbitals, CISD 1 5057 -78.328 00 

Above, Davidson Corrected -78.354 07* 

Triple Excitations 37 109,473 -78.335 01 

Quadruple Excitations 703 1,0461758 -78.354 51 

• Davidson correction is a nonvariational, approximate 

correction for the unlinked clusters. 

. . .. 

....... 
OJ 
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which obtains 0.27858 hartrees of correlation energy. The 37 

reference calculation including the more important triple excitations 

recovers another 0.00700 hartrees, which is only 2.5\ as much as the .. 
contribution of the single and double excitations. The quadruples 

add a further 0.01950 hartrees to the total, which is 7.0\ of the 

CISD lowering. 

Several interesting points emerge from the above results. The 

quadruple excitations appear to be almost three times as important as 

h . 1 ·~· . h ' . 1 . . th . ~ 1 12 f . t e trl.p es I wul.C l.S J.n J.ne Wl. . prevl.OUS resu ts. RelllemberJ.ng 

that not all of the triple and quadruple excitations were included, 

the ab.ove figures unde·restimate somewhat their importance. This, 

coupled with the neglect of all of the five through sixteen fold 

excitations, suggests that the CISD calculation recovers probably 

less than 90\ of the total correlation energy. By way of comparison, 

f:or the wa,te·r mole:cu.le in a sma-ller double zeta bas.is, which lacks 

the polariza·tion functions of the pre·sen.t study, the singles and 

double'S a•ccoun:t fcyr 9·4. 7\· of the corre·lation ene·rgy, the triples and 

quadrup1e·s for 0. 77\. and 4. 4'\: re·specti.ve.ly, leaving only 0.18\ for 

th f " hr h f ld . . . 12:f ·. e J.Ve t · oug te·n ·o · · e·xcJ..ta\tl.ons .• It is reasonable tha·t le·ss 

of the corre.la.tion ene·rgy in e!t:hyle·ne is recovered by a simple. CISD 

ca·lculation th·an in w.a.te:r s:ince· e'th:yiene has conside·rably more 

electrons. The re-lative importan·.ce· of the triples in ethyle·ne 

compa•red to the q:uacir:uples is conside·rably different than their 

iltlportance in wa•ter, which is in.teiesting. However, the role of the 

polari.zation functions in such calculations is not understood, so it 
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would be difficult to come to any conculsions at present. A final, 

and most important question, which has not been addressed in the 

current study, is whether there are differential effects in the 

contributions of higher excitations between different structures, 

or states, of molecules. 

These calculations on ethylene were made possible by the 

ability of the shape-driven programs to page the CI vector. The 

calculations were performed on the Harris-800 minicomputer, which has 

sufficient central memory to hold about 190,000 elements of the 

vectors. Remembering that both the CI and correction vectors must 

be in core simultaneously, it was necessary to page the vectors for 

even the 109,473 configuration, 37 reference calculation. For the 

largest calculation, less than 10% of the vectors could be held. No 

calculation of this size has been attempted before, and as far as the 

author is aware, the·re is no other program in existence which could 

e'fficiently handle a calcula·tion with such a small portion of the 

ve:ctors in core. Te·st calcula·tions on smaller systems have shown 

tha.t paging the vectors to the e~tent used in the la-rgest calculation 

increa,ses the calcula,tion time by only a few pe·rcent. 
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B. Timing Comparisons With Previuos Programs 

Although the shape-driven approach is capable of paging the 

vectors, for which some price in the form of execution time must be 

paid, it is nonetheless a fast program. This speed is due to the 

organization of the processing of loops, which considerably reduces 

overhead and redundant work. Table 6 compares the time per iteration 

of the Davidson algorithm for various programs, all of which are 

based on the unitary group approach. Apart from the SDGUGA program, 

th l B k , d. 1 . . lSc e programs are a roo s ~agona ~zat~on tape system, 

b) a direct CI program based on the loop-driven approach but 

exploiting the external space simplifications, and c) a rather slow 

direct CI program formed by combining the two phases of Brooks' 

diagonalization tape system into one program. The timings for the 

diagonalization tape program include an appropriate fraction of the 

time taken to form the diagonaliz·ation tape, since the tape is formed 

only once and then stored in a disc file. 

The first three calculations in Table 6 are relative·ly small, 

so the diagonalization tape could be stored. At first thought, one· 

would think that the direct CI programs could not possibly compete 

favorably with a prog.ram whi.ch stores the Hamilton·ian matrix rather 

than regenerating it each iteration. However, the SDGUGA program 

perf:orms about as well as the diagonaliza.tion tape program in the 

f.irst two calcula·tions and considerably better in the third. There 

are two main reasons for this. The first is that it does take a 

considerable amount of tilne to read the diagonalization tape from 



Table 6. Timings* for sample calculations when using loop-driven diagonalization tape 

program, loop-driven direct CI program using external space simplifications; 

or shape-driven direct CI program. 

Loop-Driven 

Molec~!e ~ Biisis # O~bitals # Config. Tape Direct SDGUGA 

F + H2 c2v DZP 29 1,125 5.7s 15.5s 6.6s 

Al2 
0

2h 
DZ 22 1,076 Us 25.4s lO.ls 

He 4 c1 5s 20 2,145 40.3s 31.5s 
20.6s** 
2l.ls 

H
2
co (TS) c DZP 38 10,221 300s 188s 

s 
+ MnCH2 c2v TZP 60 22,288 3419s••• 855s 60ls 

C4H4 c2v DZP 56 45,623 1260s 
74,625 (Two references) 1800s 

C2H4 D2h DZP 50 5,057 22ls 66s 
109,473 (37 references) 40 min. 

1,046,758 (.703 references) 13 hr . 10 min. 

• Time per iteration of Davidson algorithm, on Harris-800 minicomputer 

•• Run with program written only for c
1 

symmetfY 

••• Slow direct CI program which generates loops each iteration using loop-driven approach 

,• 

ro 
N 
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the disc file, and it is not convenient for the program to have to 

I 

pick up a matrix element and its indices, and then have to decide 

what to do with it. The shape-driven approach, on the other hand, 

implicitly knows which matrix element is being dealt with. The 

second major drawback with the diagonalization tape program is that 

it always uses the numbe·r of upper and lower walks from a loop. 

This requires a doubly nested set of DO loops, yet most of the time 

the number of upper and lower walks are both unity. Thus, the program 

probably spends more time on the overhead of setting up the DO loops 

than in the actual computa.tion. 

The performance of the loop-driven direct CI program is not as · 

good as the shape-driven program, yet even it manages to outperform 

the diagonalizaticin tape program·on the He
4 

calculation. From the 

relatively poor performance on the D
2
h Al

2 
calculation, it appears 

tha,t the loop-driven program spends considerable- time hancUing 

S¥Itlltle'try information. By con.tra,st, symmetry is very readily handled 

in the SDGUGA program by limiting the ranges of DO loops.. The two 

calculati.ons on He
4

_ illus-tra~te thi.s. The uppe.r timing is for a 

prog.ram which did not trea't symme-try a~t all; the lower, for the fina-l 

version, which, for this ca-lculation, must do a"ll the symmetry check-

ing even though there is, no symme:try present . 

The last f:our se·ts of calcuia.tions are a-ll larger calculations 

for .which it is impossible to stere the diagonalization tape. The 

SDGUGA program continues to run faster than the loop-driven direct 

CI progralll, especially for high synunetry molecules. The one 
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+ . timing for MnCH2 of 34~9s 1s the time taken per iteration of the slow 

direct CI program formed by combining the two programs which form and 

then use the diagonalization tape. This re.sult illustrates the 

importance of using the external space simplifications to speed up 

the evaluation of Hamiltonian matrix elements. 

Although the performance of the original SOGVGA program is 

impressive, the matrix version can be considerably faster for large 

calculations, even on a scalar machine. Because the matrix version 

of the program uses the duplication of matrix elements, it only does 

about half the computational work that the original program does 

(-for sufficiently large external spa·ces) . The timings presented in 

Table 7 reflect this reduction in work quite satisfactorily. It 

appears that for even larger calculations than those presented in the 

table, the matrix ver.sion o£ the SDGUGA will run in only 3.0-40\ of 

the time taken by the original program. The extra speed arises from 

the tremendous s.implici.ty of matrix operations, which means that even 

on a scalar machine; matrix operations run somewhat faster than o.the·r, 

less structured computations. 
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Table 7. Timing compariSOJ1 between the original and the matrix reformulation of the 

SDGUGA programf!. Ti~s given.are per iteration of the Davidson algorithm, 

on t)l~ H~rris-800 minicomputer. 

Mqlect!l.~ ~ ~as~s * Orbitals ft Configurations Original 

N6 0
2h 

DZ 48 16,800 276s 

N6 0
2h 

DZP 84 71,374 29.6 min. 

Matrix 

200s 

16.7 min. 

m 
V1 
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IX. IMPLEMENTATION OF SDGUGA ON CRAY VECTOR COMPUTER 

The.CRAY is the first high-performance vector computer to be 

successful, and as such, it represents a challenge to a computa­

tionally bound field like quantum chemistry. Technically, the CRAY 

is a single-instruction multiple-data machine,. i.e. one instruction 

will cause the same operation to be applied to up to 64 data elements. 

For very structured processes such as matrix multiplications, one 

can take advantage of this vector mode to achieve a performance at 

least an order of magnitude better than any scalar computers can 

currently manage. It is important for quantum chemistry to be able 

to harness the power of the vector computers. Yet, many of the 

algorithms used in quantum chemical calculations do not easily 

"vectorize". For example, five years after the CRAY was first 

introduced, the first vectorized CI programs are just starting to 

19 
wo.rk. One o.f these prog.rams is that of Saunde·rs and van Len the, 

the othe·r is the ma:trix ve·rsion of the SDGUGA. None of the othe·r 

CI programs developed on scaU.ar machines have. been successfu·lly 

vectorized. 

The rea•son for the vectorizat.ion of both Saunders' program and 

the current· ma·trix ve·rsion of the SDGUGA is the use of ma·trix and 

ve·c.tor ope·ra·tions where:ver pOS'S'ible. In a· sense, both programs us·e 

the same a,lgori.thm -- that of folding and unfolding the vectors 

a·l.though not enough has been published about Saunders' program to 

allow a comparison between the two. 

\. 
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It was originally felt that the first version of the shape-driven 

approach would vectorize, which it indeed did. However, the vector 

lengths in a typical calculation were so short that only a small 

increase in speed was noted due to vectorization. Therefore, the 

matrix version of the program was wri.tten explicitly to take advantage 

of the vector capabilities of the CRAY. The results for a sample 

calculation were a speed-up in execution time of a factor of fifteen, 

in part due to the change of algorithm, but mainly due to vectoriza­

tion. The sample calculation used for test purposes was a CISD 

calculation on ethylene with a 38 orbital 6-31G* basis and no symmetry. 

This calculation, whi.ch has 29,161 configurations, took 381 seconds ,on 

the CRAY for seven iterations using the original program. The matrix 

ve·rsion completes· the same calculation in 24. 4' seconds. 

It is quite interesting to examine the breakdown in Table 8 of 

the time spent doing va·rious pha·ses of the calculation on the CRAY. 

The firs.t. thing to notice is tha,t for the CRAY, this calculation is 

relatively short, and as a· resul.t., a• noticeable fraction of the time 

is spen.t in overhead sta-rting the calculation. The matrix multipli­

cations which corre·spond to the· contraction of the CI vector with the 

Hamil.tonian ma·.trix accoW'lt for about ha:lf the total time. Ye·t on the 

CRA:Y, the· ma:trix mul.tiplications a•re more e·fficie·ntly handled than 

the other opera·.tions, so tha.t on a· s.calar machine one would e~ect 

85-90\ of the computational t·ime to be involved in multiplying the 

ve·ctor by the Hamiltonian matrix. This is the basis of the claim that 

the t·ilne taken to con·struct matrix elements is negligible in larger 

calculations. 



Table 8. Breakdown of timing for c
2
H

4 
sample calculation on 

CRAY. Calculation took 2 4. 4 CPU seconds to do seven 

iterations. 

Calculating diagonal elements (done just once) 

Loop-driven search for internal portions of loops 

Extra work due to matrix reformulation 

Unfolding and folding vectors 

Forming matrices of loop contributions 

Processing loops 

Ma·trix operations 

Processing four external loops and 
part of three external loops 

Pr.ocessing loops not reformulated 
in ma-trix form 

Overhead 

20.08\ 

6.60\ 

33.45\ 

20.04\ 

3.52\ 

3.14\ 

7.28\ 

26.68\ 

57.01\ 

5. 89\ 

100.00\ 
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One a·spe·ct of the program on the CRAY is sti 11 not known. Since 

the computa~t·ional. s.peed of the CRAY is tremendously faster than 

cC!>nve•ntion·al cQmp,u:ters, but the transfer ra·te from mass storage to 

the cen.tra·l meuo·ry is. no faste•r, it is not known whether paging the 

ve:c:tors W·ill be pra·ctical. I:t w.ill certainly be tried, and it is 

prC!>bable tha.t improvements can be made in the paging algorithm. If 

the pa·ging is practical, then calcula•tions w.ith a million configura-

tions w-ill be routine and those W·ith up to about ten million 

configurations should be possible. 
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X. CONCLUDING REMARKS 

An extremely fast configuration interaction method has been 

presented which can handle calculations where the CI and correction 

vectors cannot simultaneously be held in central memory. The method 

derives its speed from the efficient use of the simplification of the 

external space for calculations involving only single and double 

excitations from a set of reference confisPJrations. The ability to 

page the vectors is due to the use of lexical order and from ignoring 

the number of upper walks from loops. Th.e latter factor increases 

the number of loops which must be evaluated, but this increase is 

more than compensa·ted for by the. speed of the shape-driven approach. 

A se·cond ve·rsion of the program has been formulated almost entirely 

in terms of Sltlall vector and matrix operations, and is therefore 

extremely well suited to a vector computer or an array processor. 

In the matrix re·f'ormulation, .it is possible to exploi.t the fact 

that. unique-valued ma·trix e,Iements are repeated many times in the 

Hamiltonian ma•tr.i:.x.. By f.orming these ma·trix elements only once and 

the•n using them many times, i.t is poss.ible for the construction of the 

H'amiltonia·n ma.trix to become a· rathecr S·mall portion of the entire 

cal.cula'tion. In the limit of a la~rge basis, all o·f the computational 

ef.fort is consumed b.y the mu:ltiplica,ti.on of the elements of the· CI 

vector by the Kamiltonian ma1tr.ix e·lements. It would appe·ar that if 

this is indeed the si.tuation, then the shape-driven approach yields 

a program whi.ch is essentially as f.ast as any cr program can be if it 

uses the entire lfamil tonian matrix. 
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In the last sections, the timings and results of various sample 

calculations have been presented. The first set of these calculations 

demonstrate the ability of the programs to page the vectors. The 

calculations suggest that for a prototype unsatruated organic molecule, 

ethylene, a CI including all single and double replacements from the 

Hartree-Fock reference recovers just under 90\ of the correlation 

energy, while triples and quadruples account for about 2\ and 6\ of 

the correlation energy. This confirms the commonly held belie£ that 

triples and quadruples are not very important, but does not rule out 

the possibility of a noticeable differential effect between different 

geometries or states. 

Further e~amples demonstrate that for relatively small CI 

expansions, the SDGUGA program is faster than previous unitaey group 

based programs, which in tw:.n, are f as,ter than more conventional 

programs. Furthermore, the matrix reformulation is shown to be about 

tw-ice as fa,s.t as the origina-l prog.ram for larger calcula.tions. Pre­

liminary results of the implementa·tion on the vector CRAY compute·r a·re 

very encourag.ing., with a factor of 15 being gained from vectorization. 

The a·im of this work has been the developme·nt of an a·lgori.thm 

f0r CI caJ.cula·t.ions whi.ch can use the computing p0We·r a·va·ilable today 

to handle large cr ca•lculations. Th.e,re is a la·rge demand for ac.cur.ate 

oa·lcula-tions on chemical systems a-s well a•s a need to understand the 

e·ffects of many-body correla.tions. The current program goes a long 

way towa·rd solving the first problem. Until now, there has been a 
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considerable amount of art involved with large-scale CI calculations. 

This can be contrasted with SCF calculations, which have become 

routine and the SCF programs, which have almost become "black-boxes". 

It is hoped that the current programs will be the beginning of a trend 

towards "black-box" CI programs which can be easily distributed and 

used. The only limitation on a calculation should be. the cost, i.e. 

the amount of time required. The amount of peripheral storage and 

central memory available should not be limitations. The current 

programs meet these requirements since there is no diagonalization 

tape to store and the vectors can be paged. 

On the se·cond aspect, higher excitations, the current programs 

are much more limited. Although they can handle higher e·xcita·tions, ~' ;:~ 

the current programs lose their efficiency for such calculations. ~-· 
~~. 

·''\ 

Various methods. have been proposed for overcoming the·se defects, the -~.t 

most promising of which involves a bidirectional search for loops, 
;,J 
<f 

beginning a·t the middle of the graph. The experience gained w.ith '. .. ~ 

paging the ve·ctors in the current programs wtll be invaluable, sin·ce 

calcuia.tions w.ith highe·r exci.tations tend to have e·xtremely lon.g 

csnfi.guration lis.ts. 

The· SDGUGA prog.rams are capable of h·andling almos·t any calcula-

tion now de~sired. By running large ca·lcula·.tions, de:fects in the 

current. prog.rams may become obvious and improve·ments, or indeed 

completely new algorithms, may be developed. Until such ca·lculations 

are tried, no one really knows what their requirements will be. This 
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will perhaps be the largest contribution of the current work: to 

convince quantum chemists that large CI calculations are possible, and 

to continue the learning process needed to develop yet better methods. 



Appendix l: The Loop-Searching Master Table 

The following pages contain a list of all possible segment 

shapes, the segment-shape values, and other information useful in the 

evaluation of loops. Each entry in the table is described below. 

ISEG Divides the table into twenty-two major sections, each of 

which contains related segment shapes. The first section 

is comprised of the sixteen different ways to open a loop; 

the subsequent sections gather together segments which are 

valid continuations of a particular shape of partial loop. 

JSEG A simple index numbering the 228 segment shapes. 

Indicates the ISEG value of valid se.gments for the 

continua-tion of the. pa-rtial loop terminated by the current 

segment. A va·lue of zer.o indica.tes tha·t the cur.rent segment 

closes the loop. 

ss The case values of the bra and ket sides of. the current 

segment. 

TRACK rn.forma·tion used to determine the form of the loop 

contribution. The TRACK va,lue· is only occas,ionally modified 

during th·e evaluation of a loop.. The last va·lue encounte·red 

determines the form of the loop contribution. A dash 

indicates that the TRACK value is not changed by the segment 

being. processed. The TRACK value is either a single number, 
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a pair of numbers separated by a comma, or two or three 

numbers enclosed in parentheses. The loop contribution, v, 

has the following form for the three cases: 

n: v = XI(ijkl + n) 

n,m: v = X[I(ijkl + n) + ZI(~jkl + m)] 

(n,m): v = X!I(ijkl + n) + I(ijkl + m)] 

X and Z are the loop coefficients (see below) and I (ijkl+n) 
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is the integral with an offset of "n" in the group of integrals 

at address ijkl. 

JKCOND These two entities (JCOND and KCOND) determine when the j and 

k indices of the loop a·re reached. The i-level is always the 

level of the loop opening and the 1-level, that of closing, 

but the j- and k-levels are determined by the shape of the 

loop. JCOND has the follow-ing values: 

-1 if the j·-level ha•s not yet be.en reached 

1 if the current level is the j-level 

0 if the j·-le-vel has been pa;ssed already. 

KCON:D has only two pos,s,ible values-: 

1 if the current level is the k-level 

0 if the current level is not the k-level. 

The loop indices i, j , k, and 1 are used in the evaluation of 

the integral g.roup address ijkl ~-
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CODE The· CODE value is related to the shape value listed under 

the heading VALUE. The programs use the CODE value to 

determine which section of program to use in evaluating 

the segment-shape values. 

VALUE The_se algebraic expressions give the partial product of 

the segment-shape values in terms of the previous product 

and a set of auxiliary functions defined below. In the 

body of this work only two values, A and B, were mentioned; 

however, for convenience, the current table employs three 

coefficients. These three a·re X, Y, and Z = Y/X. All 

loops involve the X coefficient, but only those two-electron 

loops which involve a summation. over triplet. and s-inglet 

recoupled states use the last two coefficients. Ove.r the 

range of overlap, the·re are two coe-fficients, but outside 

of the range of ove·rlap, the ra·tio of these two is cons-tant. 

The·re·fo-re, it is convenient to remember the ra-tio and keep 

track of only the X coefficient. Z is the ratio, and is set 

only once during the evaluation of a loop. 

The s:horth·and used in the se.gment values consists of 

the· followdng constant and functions : 

t =· $' 

A(p,.ql = t:f . 

B(.p). .,. v-(b+pl 2 
(h+p+.l) 



c (p) 
= J (b+p-1) (b+p+l) 

b+p 

O(p) = (b+p-1) (b+p+2) 
(b+p) (b+p+ 1) 

E (p) = J (J>+p) 2(b+p+l) 

The parameter b is the b-value of the vertex of the Shavitt 

graph that the ket walk passes through at the top of the 

segment. 
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Both the LDGUGA and SDGUGA CI programs require that the integrals 

be sorted into the following seven groups: 

Type Offset Integral Indices 

1 1 [ik;jl] i>j >k >1 
2 [ij ;kl] 
3 [il;jk] 

2 1 [ij;j1] i >j =k >1 
2 [il; jj] 
3 not used 

3 1 [ ik; il] i=j>k>l 
2 [ii;kl] 

4 1 [il;j·l] i>j>k=l 
2 [ij i 11] 
3 not us:ed 

5 1 [iii il] i=j=k>l 
2 [il;ll] i>j =k =l 
3 (ilhll) 

6 1 [il ;i.l] i=j>k=l 
2 [ii;11] 

7 1 {ii; ii] i = j =·k = 1 
2 (ilhl i) 
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The address· of any particular integral is found by first sorting 

the indices into strictly descending order (except for integrals such 

as [il;ll], which is stored under the indices iiil). If the ordered 

indices are i, j, k, and 1 and the corresponding symmetries of the 

orbitals are r., etc., then the address of the group of integrals is: 
1. 

ijkl = IJADD[~i (i-1) + j) + KADD (k, fi x fj) 

+ LADO ( 1, f. X [. X fk ) 
1. J 

The offset of the particular integral is then determined from the 

table of integral groups and is added to the group address. 

This integral s,torage scheme is particularly useful when 

eval.uating loops since the loop indices are the sorted indi.ces 

needed to eva·luate the integral group address. The TRACK value then 

determine·s the form o-f the lo0p contribution expression and the 

offsets of the integrals: w.i thin. the integral group. 
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I5EG J5EG NEXT 55 TRACK JKCOND CODE VALUE 

1 1 3 01 1 -10 1 X' = 1 

2 18 01 3 11 1 X' = 1 
~ 

3 2 02 1 -10 1 X' = 1 

4 17 02 3 11 1 X' = 1 

5 10 03 1 10 1 X' = 1 

6 0 11 2 11 1 X' = 1 

e· = t 
7 5 11 1,2 10 44 

Y' -tA(-1,1) = 
8 7 12 1 10 1 X' = 1 

9 2 13 1 -10 3 X' = A (0, 1) 

10 15 13 ( 3, 1) 11 3 X' = A(0,1) 

ll 0 22 2 11 1 X' = 1 

{X' = t' 12 5 22 1.,2 10 45 
Y' tA(3,1) = 

13 3 23 1 -10 4 X' = A(2,1) 

14 16 23 (3, ll 11 4 X' = A·(2, 1) 

{X' = 2 
15 0 33 2.,1 11 so z·• ~ = 

16 4 33 1,2 10 51 X' =fi 



99 

ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

2 17 2 00 -10 1 X' = X 

{X' = XtA (1,0) 
18 11 01 1,3 10 40 Y' = -XtA (-1,0) 

19 12 02 1,3 10 1 X' = X 

20 7 10 3 10 1 X' = X 

2~ 2 11 -10 6 X' = XC(O) 

22 21 11 2 11 6 X' = XC(O) 

23 12 13 1,3 10 7 X' = XA(-1,0) 

24 6 20 1,2 10 46 {X' = Xt 
Y' = XtA(2,0) 

25 3 2~ -10 9 X' = X/b 

26 22 21 2,1 1.1 54 {X' =X/b 
Z' = b 

27 2 22 -10 2 X' = -x 

52 {X' = -X 28 . 21 22 2.,1 ll Z' = -1 

29 ll 23 1,3 10 4'1 ~: = -xt 
= XtA (2 ,Ol 

30 20 30 11 5 X' = XA Cl,O) 

3~ 10 47 e· = XtA (.1,0) 
31 6 1,2 

Y' =· XtA(-1,0) 

32 7 32 3 10 8 X' = -XA (1, 0) 

33 2. 33 -10 2 X' = -x. 

53 {X' = -2X 34' 2.1 33 2,1 11 
Z' = -~ 

..... 
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ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

3 35 ., 00 -10 1 X' = X J 

36 13 01 1,3 10 1 X' =X 

37 11 02 1,3 10 42 e· = XtA(l,2) 
Y' = XtA (3 ,2) 

38 6 10 1,2 10 48 {X' = Xt 
Y' = -XtA(0,2) 

39 3 11 -10 2 X' = -x 

40 22 11 2,1 ll 52 e· = -x 
Z' = -1 

41 2 12 -10 36 X' = -X/(b+2) 

{X' = -X/ (}:)+2) 42 21 12 2,1 11 55 
Z' = - (b+2) 

13 {X' = -Xt 43 11 1,3 10 43 Y' = -XtA(0,2) 

44 9 20 3 10 1 X' = X 

45 3 22 -10 11 X' = XC (2) 

46 22 22 2,1 .ll 11 X' = XC (2) 

47 13 23 1,3 10 12 X' = XA (3 ,2) 

48 19 30 ll 10 X' = XA(l,2) 

49 9 31 3 10 13 X' = -XA(l,2) 

{X' = XtA (1, 2) so 6 32 1,2 10 49 
·Y' = -XtA ( 3, 2) 

51 3 33 -10 2 X' = -X 

{X' = -2X 52 22 33 2,1 11 53 
•Z'' = -~ 
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ISEG JSEG NEXT ss .T~CK ... JKCOND CODE VALUE 

4 53 4 00 00 1 X' = X 

{X' = -Xt 
54 22 01 01 77 Z' -2 = 

{X' = -Xt 
55 21 02 01 77 Z' -2 = 

{X' = -Xt 
56 0 11 01 77 

Z' -2 = 

57 4 11 00 1 X' = X 

e· = -XtA (0 I 1) 
58 21 13 01 79 Z' = -2 

{X' = -Xt 
59 0 22 01 77 

Z' -2 = 
60 4 22 00 1 X' =X 

61 {X' = -XtA(2,l) 22 23 01 80 Z' = -2 

78 {X' = -..ji X 62 0 33 01 
Z' = -2 

63 4 33 00 .1 X' =X 
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ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

r· = X 
5 64 5 00 00 71 Y' = y 

{X' = -Xt + YtA(2,0) 1l 

65 22 01 01 67 Z' = .fix;x• 

{X' = -Xt - YtA(0,2) * 66 21 02 01 68 Z' = fix;x• 

{X' = -Xt + YtA(2,0) * 67 0 11 1 01 87 
Z' = ,fix;x• 

~: = X 
68 5 11 00 75 YD(O) = 
69 7 12 00 83 X' = -YE(O) 

{X' = -XtA (0, 1) - YtA(2,1) * 70 21 13 01 69 
Z' = ji.XA ( 0 , 1) /X ' 

{X' = -xt - YtA(0,2) * 71 0 22 01 68 
Z' = ,fix;x• 

72 5 22 00 76 ~: = X 
= YD (1) 

{X' = -XtA(2,1) + YtA(0,1l * 73 22 23 01 70 = .,ftXA (.2 I 1} /X I Z' 

74 0 33 01 82 {X' = ~ji.x 
Z' = -2 

75 5 33 71 {X' = X 00 
Y' = y 

* If X'=O, change TRACK to 2 and set X'=Z'X' 
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.ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

6 76 6 00 00 71 {X' = X 
Y' = y 

• 77 22 01 3,2 01 67 rz: 
= -Xt + YtA(2,0l * 
= ,fix;x' · 

78 21 02 3,2 01 68 {X' = ·-xt - YtA(0,2l * 
Z' = j2x;x• 

79 20 10 01 67 {X' = -Xt + YtA(2,0) * 
Z' = ,fix;x• 

80 0 11 01 87 {X' = -Xt + YtA(2,0) * 
Z' = ji.x;x• 

81 6 11 00 75 f' = X 
Y' = YO (0) 

82 7 12 3 00 83 X' = -YE(O) 

83 21 13 3,2 01 69 tz: = -XtA(0,1) - YtA(2,1) * 
= j2XA ( 0 I 1) /X I 

84 19 20 01 68 ~: = -Xt - YtA(0,2) * 
= fix;x• 

85 9 21 3 00 83 X' = -YE(Ol 

86 0 22 01 68 {X' = -xt- YtAC.0,2l * 
Z' = fix;x• 

87 6 22 00 76 {X' = X 
y' = YO (0) 

88 22 23 3,2 01 70 {X' = -XtA(2,1) + YtA(0,1) * 
Z' = ,j2XA(2,1)/X' 

89 19 31 01 69 {X' = -X.tA(0,1) - YtA(2,1) * 
. Z' = j2XA(0,1)/X' 

90 20 32 01 70 {X' = ,-XtA(2,1) + YtA(O,l.) * 
Z' =..jiXA(2,1)/X' 

91 0 33 01 82 {X' = -Jix 
,z·• = -2 

92 6 33 00 71 t' = X 
Y' = y 

* If X'=O, chan.ge TRACK to 2 and s·et X'=·Z'X' 

... 
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ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

7 93 7 00 00 1 X' = X 

94 21 01 01 6 X' = XC(O) ~ 

95 7 11 00 16 X' = -xc (O l 

96 20 20 1 01 6 X' = XC (0) 

97 0 21 1 01 6 X' = XC(O) 

98 8 21 00 17 X' = -j2xfb 

99 7 22 00 16 X' = -xc COl 

100 21 23 01 74 X' = -XA (.-1,0) 

101 20 ll 1 0~ 8 X' = -XA (1,0) 

102 7 33 00 1 X' = X 
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ISEG JSEG NEXT ss TRACK JKCOND CQDE VALUE 

8 103 8 00 00 1 X' = X 

104 22 01 01 18 X' = XtA(2,0) 
)I g 

105 21 02 01 19 X' = -XtA(0,2) 

106 20 .· 10 1 01 18 X' = XtA(2,0) 

107 0 11 1 01 18 X' = XtA(2,0} 

108 .,.8 11 00 22 X~ = XD(O) 

109 7 12 00 24 X' = -XE (0) 

110 2~ 13 01 20 X'. = -XtA (2 ,1) 

lll 19 20 1 0~ 19 X' = -XtA(0,2l 

ll2 9 21 00 24 X' = -XE(Ol 

113 0 22 1 01 19 X' =~ -XtA (0 I 2) 

114 8 22 00 23 X' = XD (~1 

115 22 23 Ol. 2~ X' = XtA(.O ,11 

ll6 1..9 31. 1 01 2.0 X' = -XtA (2 ,l) 

117 2.0 32 l 0~ 2J. X' ~ XtA(O,.l) 

118 8 33 00 1 X' = X 
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I5EG JSEG NEXT 55 TRACK JKCOND CODE VALUE 

9 119 9 00 00 1 X' =X 

120 22 02 01 11 X' = XC(2) .. 
121 19 10 1 01 11 X' = XC(2) 

122 9 11 00 27 X' = -xc (2) 

123 0 .12 1 01 11 X' = XC(2) 

124 8 12 00 28 X' = -j2x1 (b+ 2 > 

~25 22 .13 01 8~ X' = -XA(3,2) 

.126 9 22 00 27 X' = -xc (2) 

.127 19 32 ~ 01 13 X' = -XA(1,2) 

.128 9 33 00 ~ X' =X 

10 ~29 10 00 00 1 X' = X 

.130 21 10 01 3 X' = XA(0,1) 

.13.1 10 11 00 2 X' = -x 

.132 22 20 01 4 X' = XA(2,1) 

133 10 22 00 2 X' = -x 

.134 0 30 01 1 X' = X 

.135 22 31 01 2 X' = -x 

136 21 32 01 2 X' = -x 

137 10 33 00 1 X' = X 
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ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

11 138 11 00 00 71 {X' ::::X 
Y' = y 

ft' = XtA (0 ,1) + YtA(2,~) * 139 21 10 00 63 . Z' = (-XtA(0,1) - YtA(2,1) )/X' 

{X' = -x 140 11 11 00 72 
Y' -YD(O) = 

141 12 12 00 84 X' = YB (1) 

{X' = XtA(2,1) - YtA(0,1l * 142 22 20 01. 65 Z' = (XtA (2, 1) + YtA(O,l))/X' 

143 13 21 00 as X' = YB(O) 

144 11 22 00 73 {X' = -x 
Y' = -YD (1) 

145 0 30 1 01 29 X' = 2X 

{X' = -Xt + YtA(2,0) * 146 22 31 01 66 Z' = (-Xt- YtA(2,0l)/X' 

{X' = -xt - YtA co, 2 l * 147 21 32 01 64 
Z' = (-Xt + YtAC.0,2) )/X' 

148 11 33 00 71 {X' = X 
,Y' = y 

* If X '=0, set TRACK to 3 and se·t X' =Z' X' 

12 149 12 00 00 1 X' = X 

150 12 11 00 30 X' = XD (-1) 

{X' = X 151 21. 20 01 56 z·• -1 = 

152 14· 2.1 00 86 X' = XB (-1) 

153 12 22 00 1 X' = X 

{X' = XA(1,0) 
154 21 31 01 57 

.Z' =~ -1 

155 12 33 00 1 X' = X 
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ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

13 156 13 00 00 1 X' = X 

e· = X 
157 22 10 01 56 Z' -1 ·-= 
158 13 11 00 1 X' = X 

159 14 12 00 32 X' = XB(2) 

160 13 22 00 31 X' = XD ( 2) 

{X' = XA(1,2) 
161 22 32 01 58 Z' = -1 

162 13 33 00 1 X' = X 

14 163 14 00 00 1 X' = X 

{X' = XtA (2, 1) 
164 21 10 01 59 Z' = -1 

165 14 11 00 33 X' = -xo <O> 

166 12 12 00 34 X' = XB(1) 

r· = -XtA(0,1) 
167 22 20 01 61 Z' = -1 

168 13 21 00 35 X' .... XB(O) 

169 14 22 00 88 X' = -XD ( 1) 

{X' = XtA(2,0) 
170 22 31 01 62 Z' = -1 

e· = -X.tA (0, 2) 
171 21 32 01 60 .z·• = -1 

172 14 33 00 1 X' = X 
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ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

15 173 15 00 00 1 X' = X 

' 
174 15 11 00 6 X' = XC(O) 

175 0 20 00 1 X' = X 

176 16 21 00 9 X' = X/b 

177 15 22 00 2 X' = -X 

178 0 31 (3,2,1) 00 5 X' = XA(l,O) 

179 15 33 00 2 X' = -X 

16 180 16 00 00 1 X' = X 

181 0 10 00 1 X' = X 

182 16 11 00 2 X' = -x 

183 15 12 00 36 X' = -X/(}::)+2) 

184 16 22 00 11 X' = XC(2l 

185 0 32 (3,2, ll 00 10 x·• = XA(1,2) 

186 16 33 00 2 X' = -x 
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ISEG JSEG NEXT ss TRACK JKCOND CODE VALUE 

17 187 17 00 00 1 X' = X 

188 17 11 00 6 X' = XC(O) 

189 0 20 00 1 X' = X 

190 18 21 00 9 X' = X/b 

191 17 22 00 2 X' = -x 

192 0 31 (3,2) 00 5 X' = XA(1,0} 

193 17 33 00 2 X' = -x 

18 194 18 00 00 1 X' = X 

195 0 10 00 1 X' = X 

196 18 11 00 2 X' -x .. = 

197 17 12 00 36 X' = -X/ (b+2) 

198 18 2.2 00 11 X' = XC (2) 

199 0 32 (3,2) 00 10 X' = XA(1,2) 

200 18 33 00 2 X' = -x 
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ISEG JSEG NEXT ss TRACK . JKCOND CODE VALUE 

19 201 19 00 00 1 X' = X 

' 202 0 02 00 1 X' = X 

203 19 11 00 37 X' = XC (1) 

204 20 . 12 00 38 X' = X/ (b+l) 

205 0 13 00 4 X' = XA(2,1) 

206 19 22 00 2 X' = -x 

207 19 33 00 2 X' = -x 

20 208 20 00 00 1 X' = X 

209 0 01 00 1 X' = X 

210 20 11 00 2 X' = -X 

2.ll 19 21 00 39 X' = -X/(b+2) 

212 20 22 00 37 X' = XC (1) 

213 0 23 00 3 X' = XA(0,1) 

2~4 20 33 00 2 X' = -X 

.. 
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I5EG J5EG NEXT 55 TRACK JKCOND CODE VALUE 

21 215 21 00 00 1 X' = X 

216 21 11 00 6 X' = XC(O) ' 

217 0 20 00 1 X' = X 

218 22 21 00 9 X' = X/b 

219 21 22 00 2 X' = -X 

220 0 31 00 5 X' = XA(1,0) 

221 21 33 00 2 X' = -x 

22 222 22 00 00 1 X' = X 

223 0 10 00 1 X' = X 

224 22 11 00 2 X' = -x 

225 21 12 00 36 X' = -X/ (b+2) 

226 22 22 00 11 X' = XC(2) 

227 0 32 00 10 X' = XA(1,2) 

228 22 33 00 2 X' = -X 
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Appendix 2: The External Shapes 

This appendix contains the diagrams and partial loop coefficients 

for all possible external portions of loops. It does not contain 

the four-external loops. The external shapes are grouped according 

to the vertices passed through at the Fermi level and by the ISEG 

value from the internal portion of the loop. Please note that the 

loop coefficients are given different symbols here than in the loop­

searching master table in Appendix 1. Thus X becomes A, and z is B. 

'f remains 'f, although it is·seldom used. Also, in this section, the 

variables A, B, and 'f refer to the value from the internal portion 

of the loop. The contribution from. the external shape is explicitly 

included in the formula for the loop contributions. 

Beside e.ach diagram are the 'indices of the loop which are in 

the external space, as well as an indication of the total loop 

indices. Th.us., a nota·tion "I=ijab" means tha.t the loop indices 

are i and j in the internal space, and a and b in the external space. 

These indice·s a·lso define the integ,ral group ·address as wa·s de·tailed 

in Appendix 1. The form of the loop contribution is lis.ted beside 

the diagrams under the approprai te ISEG value. I (n) is the integral 

in the· in·tegral g.roup defined by the loop indices with an offset 

of n. 



YZ Entries, ISEG= 16 

: I ! 
\Ja 

A[I(J)+I(l)] 

I= ij ka 

2Y Entries, ISEG= 20 

22 

A I (3) A[I(tr1) + BI(tr2)] 

t,j a 
A(I(trl) + BI(tr2)] 

I=ijka 

XZ Entries, ISEG= 13 

a A(I(l) - I(3)J 

I=ij ab 

b 

WZ Entries, ISEG= 10 11 

lJl 
a 

. . . 

AI ( 1) 

I=ij aa 

.J2 AI (1) 

/2. AI (1) A[I(l) + I(3)] 

I=ij ab 

114 
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XY F.n t r i e s • [SEC:= 3 

a -A ( I ( 1) - I ( 2) ] 

f 

I=iaab 

a A[I(l) I ( 2) ] 

b I=iabb 

a 

b A[I(l) - I(2)] 

c . I=iab'c 

a 

b A(I(3)- I(2)] 

c I::~iabc 
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XY Entries, ISEG= _3_, continued. 

a 

A[I(3) - I(l)) 

c I=iabc 

ISEG= 16 18 22 

a -A[I(3) + I(l)] -AI(3) -A[I(trl) + BI(tr2)] 

b I=ij kb 

a A[I(3) + I(l)] AI(3) A[I(trl) + BI(tr2)] 

b· I=ijka 
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YX Entries, ISEG= 20 

a -A[I(trl) + BI(tr2)] 

b I=ijkb 

I 
\ 

\ a A[I(trl) + BI(tr2)) 

b I=ijka 

L 



WY En tries , IS EG= 2 

I 

! 

I 
I 

\ 

! 
\ 

a J2 AI(l) 

\ b I=iaab 

' a 
.\ 

.f2 AI( 1) 

b I=iabb 

a A[I(l) + I(2)] 

b I=iaab 

a A(i(l) + !(2)] 

b I=i.abb 
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,, 
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WY Entries, 

.. ; 

\ 

\ a 
\ 

I b 
I 

~ c 

j 
\ 

a 

b 

\ c 
\ 

\ 
b \ 

\ 

I 
I 
J 
1 
I C 

119 

ISEG= _2_, continued. 

A[l(l) + I (3)] 

I=iabc 

A [ I (1) + I( 2) ] 

I=iabc 

A [ I (3) + I ( 2) ) 

I=iabc 
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WY Entries, ISEG= 15 17 21 

(continued) 

~ 
..f2 A[I(1) + 1(2) +I(3)] ~ A[I(trl) + BI(tr2)] 

a I=ijka .fi A(I(3) + I ( 2) ] 
. 

\ . 

a A(I(3) + I(l)] AI(3) A[I(trl) + BI(tr2)] 

b [=ij kb 

a A[I(3) + I(l)) AI(3) A[I(trl) + BI(tr2)] 

b I=ijka 



Y\.1 Encries, 

L, . . . : . \ 
..... ' a ..... . ... . . . 

I 

l 

I 
I 
1 

.... 

.... 

.... 

... .... 

.... 

.... 

I 

I 

I 

a 

\ b 
\ 

a 

ISEG= 19 

-./2 A[I(crl) + BI(cr2)] 

I=ij ka 

A[I(trl) + BI(cr2)] 

I=ijkb 

A(I(trl) + BI(tr2)] 

b I=ijka 
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WX Entries, 

I 
\ 

I 
I 
\ 

\ 
i 

I 
\ 

\ 
\ 
i 
I 

I 
I 

' I 
I 
I 
I 

a 

\ b 
\ 

a 

b 

c 

a 

b 

l\ 
~ c 
~ 

a 

ISEG= 

I=ij ab 

I=ijab 

I.=ij ab 

b I=ij ab 
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7 

-·VJ/i AI (1) 

'· 

c-Jf /2)AI(l) 

e.Jf /2)AI(trl) 

..f3i2 AI (trl) 



WX Entries, ISEG= _7_, cont:inued. 

' \ 

a (./3 /2)AI'(l) 

b I=ijaa 

a -(/3 /2)Al(l) 

b I=ijbb 

a 

b (.{i /2)AI(trl) 

I=ijac 

a 

b - ( /3 I 2) AI ( t rl) 

c I•ijbc 

12 J 
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WX E:ntries, ISEG= __ 7_, continued. 

~: a 

b -(/3 /2)AI(l) 

I 

\ 
\ c I=ijbc 

a 

b -(/3 /2)AI(l) 

c I=ijac 



! 

XW Ent:ries, ISEG= 9 

I 
I · .... 

' 

a - ./3fi AI(c:.rl) 

b I=ijab 

a 

b (./J /2) Al(l) 

c I=ijab 

a 

b ctr /2) A-ICc:.rl) 

c I=ijab 

a ..{372 Al(l) 

b I=ijab 

125 



XW Entries, ISEG= _9_, continued. 

.. 
I 

' ' ' 
a ('1/f /2) AI ( 1) 

b I=ijaa 

a -(Vf /2) AI(l) . 

b I=ijbb 

a 

b (\/5 I 2) AI ( 1) 

c I==·ijac 
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XW Entries, ISEG= 

I 

l 

l 

I . 
' 

' 

' 

\ 

\ 

\ 
\ 

a 

b 

c 

a 

\ b 
\ 
j 
I 
I 

I=ijbc 

I 
• c I=ijbc 

a 

b 

I=ijac 
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_9_, continued. 

-(VJ/2) AI(l) 

- (Jf /2) AI ( trl) 

- ( VJ I 2) AI ( t r 1) 



YY Entries, 

\ 

' a 
\ 
\ 
I 

ISEG = 4 

Define: rr II 
C = -j2 A + J2 y 

-F A [ I ( l) - 2 I ( 2 ) ] 

I b I=ijab 

a 

I=ijaa 

128 

5 

CI{l) + 2AI{2) 

CI(l) + 2AI{2) 



YY Entries, 

(continued) 

I 

\ 
\ 
\ 

, . 
\ 

a 

b 

' a 
\ 

i 
I 

!SEC= 6 8 

Define: C = -J(l/2) A + J(fiTI y 

CI(l) + .J2 AI(2) 

I=ijab 

Cl(3) + J2 AI(2) HAI (trl) 

1 b I=ijab 

CI (1) + .J2 AI(2) 

a 

I=ijaa 

129 



XX En cries, · ISEG= 

I 
I 
\ 

\ 
\ 

\ 
I 
I 
I 

~ 

a 

b I=ijaa 

a 

b I=ijbb 

a 

\ b 
\ 
I 

I 

c I=·ijac 
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4 5 

Define : C = -.Jf A + Y 

-Jf A[I(l) - 21(2)] . CI(l) +VZ AI(2) 

-Jf A[I(l) - 2!(2)] CI(l) + -J2AI(2) 

Jf A[I(l) - 21(2)] -CI(l) - J'f AI(2) 



131 

XX Entries, ISEG= 4 5 , con cinued. 

Define: C = - .Jf A + 'f 

I 
I 
\ 

' a -Jf A[I(l) - 21(2)] CI(l) + ..fi ~I(2) 

b 

c I=ijab 
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XX Entries, ISEG= 6 8 

(continued) Define: c =- AA + '{ 

D = VZA 

a CI(l) + 01(2) AI(l) 

b I=ijaa 

a CI(l) + DI(2) AI(l) 

b I=ijbb 

a 

b CI(l) + DI(2) AI ( 1) 



XX Entries, 

\ b 
\ 
I 
I 

I 

ISEG= 

I 

1 c I=ijbc 

\ 

\ 

\ 
I 

I 

I 

I 

' 

a 

b 

c I=ijac 

a 

b 

I=ijac 

133 

6 _8_, con Cinued. 

CI(3) + 01(2) AI(trl) 

-CI(l) - 0!(2) -AI(l) 

-CI(3) - 01(2) -AI(trl) 
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X.X Entries, ISEG= 6 _8_, cant inued. 

a 

b CI(3) + DI(2) AI(trl) 

c I=ijab 

a 

b CI(l) + 01(2) AI ( 1) 

c I=ijab 
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WW Entries, ISEG= 4 & 5 6 

Define: E =- Jf A 

2E [ l (1 ) - 2 I ( 2 ) ] 2E[I(l) - 21(2)] 

I=-ijaa 

a /iE[I(l)- 21(2)] 

\ b i=ijab 
\ 

a .f2 E[I(l)- 21(2)] .fi E[I(3) - 2I(2)] 

b I=ij ab 

a J2 E [ I ( 1) - 2 I ( 2) ] 

b I=ijab 
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WW En tries, ISEG= 4 & 5 _6_, continued. 

a J2 E(1(1) - 21(2) 1 .J2 E(1(3) - 21(2)1 

b I==ijab 

a E(I(l) - 21(2)] E(I(l) - 2!(2)] 

b I=ijaa 

a E[l(l) - 2I(2) 1 E(I(l) - 2I(2)1 

b I=ijbb 

a 

b E(I(l) - 21(2)] 

c I•-ija.c 



' <.1 

.. 
. • 

WW Entries, ISEG= 

' ' ' ' ' 
'1 

., 
I 
I 

\ 

~ 
\ 

a 

b 

c 

a 

\ b 
\ 
I 
I 
I 
I 

I=ijac 

: c I=ijbc 

a 

b 

c I=ijbc 
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4 & 5 _6_, continued. 

E[I(l) - 21(2)] E[I(3)- 2I(2)] 

E(I(l)- 21(2)] E[I(3)- 21(2)) 

E [ I ( 1) - 2 I ( 2) ) 



WW Entries, ISEG= 

' ' 

' ' 

' ' 

' ' 

a 

'l 

b 

c I=ijab 

a 

b 

c I=ijab 
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4 Or 5 _6_, continued. 

E[I(l) - 21(2)) E[I(3)- 21(2)) 

E[I(l) - 21(2)] 
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.. 
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