Title
Accuracy of anxiety and depression screening tools in heart transplant recipients.

Permalink
https://escholarship.org/uc/item/85j1g289

Journal
Applied nursing research : ANR, 32

ISSN
0897-1897

Authors
Conway, Aaron
Sheridan, Judith
Maddicks-Law, Joanne
et al.

Publication Date
2016-11-01

DOI
10.1016/j.apnr.2016.07.015

Peer reviewed
Accuracy of anxiety and depression screening tools in heart transplant recipients

Aaron Conway, RN, BN (Hons), PhD, Judith Sheridan, DClinPsych, Joanne Maddicks-Law, RN, MN, Paul Fulbrook, RN, PhD, Chantal F. Ski, BA (Hons), PhD, David R. Thompson, RN, PhD, Lynn V. Doering, RN, PhD

A R T I C L E I N F O

Article history:
Received 8 April 2016
Revised 27 July 2016
Accepted 30 July 2016

Keywords:
Depression
Anxiety
Heart transplant
Screening
Nursing

A B S T R A C T

Purpose: The aim of this study was to assess the validity and reliability of psychological screening tools in outpatient heart transplant recipients.

Methods: Forty-eight heart transplant recipients completed the Patient Health Questionnaire 9-item scale (PHQ-9), Generalized Anxiety Disorder 7-item Scale (GAD-7), Kessler Psychological Distress 10-item Scale (K-10) and Medical Outcomes Short Form 36-item Health Survey. A structured psychological interview (Mini International Neuropsychiatric Interview Version 6) was conducted after completion of the questionnaires. Internal consistency, criterion validity and construct validity of the PHQ-9, GAD-7 and K-10 were evaluated.

Results: Internal consistency supported the reliability of the screening tools. The optimal cut-off on the PHQ-9 for depression was 10 (sensitivity = 0.86; specificity = 0.93). A score of 6 on the GAD-7 maximized sensitivity (0.75) and specificity (0.89) for anxiety. A score of 17 on the K-10 was the optimal cut-off for diagnosis of either anxiety or depression (sensitivity = 0.83; specificity = 0.84). Increasing scores on the screening tools were associated with lower health-related quality of life.

Conclusion: Psychometric analyses support the reliability and validity of the PHQ-9, GAD-7 and K-10 as screening tools for detection of anxiety and depression in heart transplant recipients.

© 2016 Elsevier Inc. All rights reserved.
Despite the potential benefits of routine evaluation of the presence of psychological distress for heart transplant recipients, the psychometric properties of screening tools for the detection of depression and anxiety have not been evaluated in this population. To assist implementation of screening and referral for specialist treatment of post-transplant psychological disorders, the aim of this analysis was to assess the validity and reliability of self-administered questionnaires to screen for post heart transplant anxiety and depression in heart transplant recipients.

1. Patients and methods

A single-site, cross-sectional study was conducted to assess the psychometric properties of screening tools for the detection of anxiety and depression in heart transplant recipients. Human research ethics committee and institutional approval was granted for the study and it was registered prospectively with the Australian New Zealand Clinical Trials Registry (ACTRN12613000740796). Internal consistency was used to test the reliability of the screening tools. Criterion validity was assessed by comparing results from the screening tools with a standard diagnostic tool for detection of psychological disorders. Construct validity was evaluated by testing hypotheses derived from previous research regarding the associations between psychopathology and quality of life. It was hypothesized that the heart transplant recipients who reported greater severity of psychological symptoms on the screening tools would also report lower health-related quality of life.

1.1. Patients

Heart transplant recipients over 18 years of age who attended the outpatient clinic at a major metropolitan hospital in Australia were eligible to participate in the study. Patients who were less than three months post-transplant as well as those who were cognitively impaired (as confirmed by a treating clinician), were unable to understand and speak English, had a diagnosed major psychiatric comorbidity (schizophrenia, bipolar disorder, dementia) or had terminal illness were excluded.

1.2. Data collection

Data concerning demographics and clinical characteristics were collected from medical records. Psychological symptom experience and quality of life data were collected from participants using self-report questionnaires. Questionnaires were completed by participants while waiting for their appointment at the outpatient clinic. A research assistant was available to provide clarification about any of the items contained within the questionnaire. A structured psychological interview was conducted over the phone by a provisional psychologist undertaking a Doctor of Clinical Psychology degree after the initial screening. The psychologist was blinded to the results of the screening questionnaires.

1.3. Measures

1.3.1. Mini International Neuropsychiatric Interview version 6.0 (MINI 6.0)

The MINI 6.0 is a short structured diagnostic interview for psychiatric disorders as included in the 4th version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and the 10th version of the International Classification of Diseases (ICD-10) (Sheehan et al., 1998). It consists of 120 questions and screens 17 axis I disorders for 24 current and lifetime diagnoses. Current is defined as experiencing symptoms associated with the disorder within the past month for all disorders except generalized anxiety disorder and substance abuse disorders. In a validation study, which enrolled 370 participants, sensitivity of the MINI was 0.7 and specificity was 0.85 with the Structured Clinical Interview for DSM-III (SCID-P) (Sheehan et al., 1997) Inter-rater reliability between interviewers was excellent in this study, with the kappa score for the majority (16/23) of modules being over 0.9 (Sheehan et al., 1997).

1.3.2. Patient Health Questionnaire 9-item scale

The Patient Health Questionnaire 9-item scale (PHQ-9) is a brief self-report measure of depression (Spitzer, Kroenke, & Williams, 1999). Participants were asked to consider the preceding two weeks and rate symptom frequency as not at all (0), several days (1), more than half of all days (2) or nearly all days (3).

1.3.3. Generalized Anxiety Disorder 7-item scale

The Generalized Anxiety Disorder 7-item scale (GAD-7) is a self-reported measure of anxiety. Higher scores indicate higher levels of anxiety. Participants were asked to consider the preceding two weeks and rate symptom frequency as not at all (0), several days (1), more than half of all days (2) or nearly all days (3). The GAD-7 has high internal consistency ($\alpha = 0.92$) and is strongly correlated with the Beck Anxiety Inventory (Spearman’s correlation coefficient = 0.72) (Spitzer, Kroenke, Williams, & Lowe, 2006).

1.3.4. Kessler Psychological Distress Scale (K-10)

The Kessler Psychological Distress Scale (K-10) is a brief self-report measure of psychological distress, which is used frequently in research and clinical practice to screen for psychological disorders. This 10-item scale measures severity of anxiety and depression symptoms using a 5-point Likert type scale. It has been shown to strongly discriminate between community cases and non-cases of DSM-IV psychological disorders (Kessler et al., 2002).

1.3.5. Medical Outcomes Short Form-36 Health Survey

The Medical Outcomes Short Form-36 Health Survey (SF-36) yields an 8-scale profile of self-reported functional health and well-being. Higher scores indicate a better health status (Garratt, Schmidt, Mackintosh, & Fitzpatrick, 2002). The domains of quality of life measured by the SF-36 are physical functioning, role limitations due to physical health, role limitations due to emotional problems, energy/fatigue, emotional well-being, social functioning, pain and general health.

1.4. Statistical analysis

Formal sample size calculation was not conducted. Descriptive statistics were generated using STATA version 13 (Statacorp, College Station, TX). Frequencies, means and standard deviations (SD) were used to describe demographic, clinical and symptom characteristics. Reliability was measured as internal consistency using Cronbach’s alpha. Receiver operating characteristics with the MINI as the criterion were calculated to assess criterion validity of GAD-7, PHQ-9 and K-10 results. MINI diagnoses of ‘major depression (current or recurrent)’, ‘major depression with melancholic features’ and ‘dysthymia’ were used as the criterion standard for evaluation of the validity of the PHQ-9. For the GAD-7, MINI diagnoses of ‘panic disorder’, ‘agoraphobia’, ‘panic disorder with agoraphobia’, ‘agoraphobia without a history of a panic disorder’, ‘social disorder (generalized or non-generalized)’, ‘post-traumatic stress disorder’ and ‘generalized anxiety disorder’ were used. As the K-10 is a non-specific measure of psychological distress, the presence of either anxiety or depression MINI diagnoses was used as the criterion. The Liu method was used to identify the optimal cut-point that maximized the sensitivity and specificity of the screening tools in the detection of psychopathology. Hierarchical regression (controlling for demographic and clinical characteristics) was used to assess whether the severity of psychological symptoms, as measured by the screening tools, was associated with quality of life. A Bonferroni correction was applied to account for multiple comparisons made from the same dataset. A p-value of $<0.002 (0.05/24)$ was considered statistically significant.

2. Results

From January to September 2014, 48 participants completed the screening questionnaires (PHQ-9, GAD-7 and K-10) as well as the
structured psychological interview (MINI). The sample comprised mostly of long-term survivors of heart transplantation (median 9 years post-transplant) who were predominantly male (n = 37; 76%). An overview of demographic and clinical characteristics for the overall sample and those participants who completed the structured psychological interview (MINI) is presented in Table 1. A moderate prevalence of both depression (n = 7; 14%) and anxiety disorders (n = 8; 16%) was identified.

2.1. Reliability

The Cronbach’s alpha for each of the screening tools indicated that internal consistency was adequate (0.88 for PHQ-9, 0.86 for K-10 and 0.91 for GAD-7).

2.2. Criterion validity

The optimal cut-off point on the PHQ-9 that maximized the sensitivity (0.86) and specificity (0.93) for diagnosis of depression was a score of 10 (area under receiver operating characteristic curve [AUC] = 0.89). A score of 6 on the GAD-7 maximized the sensitivity (0.75) and specificity (0.89) for diagnosis of an anxiety disorder (AUROC = 0.82). For the K-10, which non-specifically measures psychological distress, a score of 17 maximized the sensitivity (0.83) and specificity (0.84) for diagnosis of either anxiety or depression (AUROC = 0.84).

2.3. Construct validity

2.3.1. Quality of life

Associations between the screening tools and health-related quality of life were investigated using hierarchical regression, accounting for age, gender, number of years post-transplant, number of medical comorbidities, presence of chronic allograft vasculopathy and presence of an oncology illness (Table 2). Increasing scores on the PHQ-9 were associated with lower quality of life in the role limitations due to physical health, role limitations due to emotional problems, energy/fatigue and emotional wellbeing domains of the SF-36. The GAD-7 was associated with lower quality of life in the emotional well-being domain of the SF-36. Participants’ quality of life ratings in the role limitations due to emotional problems, energy/fatigue and emotional well-being domains of the SF-36 also decreased with increasing scores on the K-10.

3. Discussion

Results of our psychometric analyses supported the reliability and validity of the PHQ-9, GAD-7 and K-10 as screening tools for detection of anxiety and depression in a sample comprised predominantly of male long-term survivors of heart transplantation. The prevalence of depression in our study was consistent with previous research, which supports the generalizability of our results. Previous reports identified prevalence of depression from 15.8% to 41% in heart transplant recipients (Favaro et al., 2011; Dew et al., 1999). In contrast, the prevalence of PTSD in our sample (2%; n = 1) was not as high as it has been previously reported. The most recent study reported a prevalence of PTSD in a sample of 107 heart transplant recipients at 13% (Favaro et al., 2011). This estimate is consistent with previous literature (Dew et al., 1999; Dew et al., 2001). Due to the low prevalence of this specific anxiety disorder in our sample, further studies utilizing larger sample sizes should be undertaken to confirm the validity of the GAD-7 or K-10 in detecting PTSD in heart transplant recipients. Nevertheless, it should be noted that studies conducted with other populations have confirmed that both of these tools have a high sensitivity and specificity for detection of PTSD (Donker, van Straten, Marks, & Cuijpers, 2011; Spies, Kader, et al., 2005; Spies, Stein, et al., 2009). For this reason, results of the current study that demonstrated that the GAD-7 and K-10 have a high sensitivity and specificity for the detection of various anxiety disorders in a sample of heart transplant recipients should not be disregarded solely due to the low prevalence of PTSD that was observed.

A higher score was required on the PHQ-9 to maximize the sensitivity and specificity of this tool in the detection of depression compared with some other populations that have been studied. For example, a score of more than 4 on the PHQ-9 was deemed to be the optimal cut-off to identify major depression in a sample of in-patients diagnosed with acute coronary syndrome (McGuire, Eastwood, Macabasco-O’Connell, Hays, & Doering, 2013). Potentially, greater severity of somatic symptoms contained within the PHQ-9 not caused by depression, such as fatigue and sleep disturbance, was present in the heart transplant recipients included in our sample compared with a typical ACS population. It has been identified previously that PHQ-9 scores may include a small amount of variance from somatic symptoms not related to depression (Leavens, Patten, Hudson, Baron, & Thombs, 2012). Our hypothesis that greater severity of psychological symptoms measured by the PHQ-9, GAD-7 and K-10 would be associated with lower quality of life was supported. Lower scores in various quality of life domains relevant to psychological symptoms measured by the SF-36, such as role limitations due to emotional problems and emotional well-being, were significantly associated with increasing scores on the screening tools. This finding was aligned with previous population-based studies that identified significant associations between psychosocial symptom severity (measured by the screening tools evaluated in our study) and all domains of the SF-36 using Pearson correlation (Wang et al., 2014). Using hierarchical multivariate linear regression to adjust for demographic and clinical variables was a strength of our study. By controlling for these variables, we were able to identify the specific domains of quality of life that were more strongly influenced by psychological symptoms.

Larger multi-center studies would be required to increase confidence in our results, as the analyses were conducted with a small number of heart transplant recipients from one transplantation center. Employing a longitudinal design in future studies would facilitate evaluation of the sensitivity to change of the screening tools. As heart transplant recipients suffering from anxiety or depression might be less inclined to participate in research (Stevens, Katona, Manela, Watkin, & Livingston, 1999), selection bias might have impacted the prevalence of anxiety and depression in our study. There was not an exact overlap
between the recall periods for the GAD-7 (two weeks) and the time frame for anxiety disorders assessed by the MINI (one month). However, psychological distress associated with chronic conditions such as heart transplantation would not likely change over this short period of time (Dew et al., 2001). As such, it is unlikely that the slightly different recall periods would have significantly influenced the validation of the GAD-7. It should also be noted that as the screening tools were presented to participants in the same order, there was the potential for bias related to a sequential priming effect. As such, future studies focused on validation of anxiety and depression screening tools for heart transplant recipients should consider presenting the tools to participants in a random order. It should also be noted that other aspects of the validity and reliability of the screening tools, such as test–retest reliability for example, could be assessed in future studies.

In conclusion, consistent with previous studies undertaken with other populations, results of our psychometric analyses supported the reliability and validity of the PHQ-9, GAD-7 and K-10 in a sample of heart transplant recipients. For this reason, nurses and other clinicians who apply the ISHLT recommendations regarding screening for psychological disorders during routine follow-up of heart transplant recipients of a similar profile to participants included in our study can be confident that these tools will identify cases with a high degree of accuracy. However, further larger-scale studies investigating the clinical and cost-effectiveness of screening and referral for psychological treatment in heart transplant recipients should also be considered.

Disclosures

None.

References

Leavens, A, Patten, SB, Hudson, M, Baron, M, & Thoms, BD (2012). Influence of somatic symptoms on patient health questionnaire-9 depression scores among patients with systemic sclerosis compared to a healthy general population sample. Arthritis Care & Research, 64(8), 1195–1201.

