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Efficient Scalable Parallel Higher Order Direct
MoM-SIE Method With Hierarchically

Semiseparable Structures for 3-D Scattering
Ana B. Manić, Student Member, IEEE, Aaron P. Smull, Student Member, IEEE, François-Henry Rouet,

Xiaoye Sherry Li, and Branislav M. Notaroš, Fellow, IEEE

Abstract— A novel fast scalable parallel algorithm is proposed
for the solution of large 3-D scattering problems based on:
1) the double (geometrical and current-approximation) higher
order (DHO) method of moments (MoM) in the surface integral
equation (SIE) formulation and 2) a direct solver for dense linear
systems utilizing hierarchically semiseparable (HSS) structures.
Namely, an HSS matrix representation is used for compression,
factorization, and solution of the system matrix. In addition, a
rank-revealing QR decomposition for memory compression is
used, with a stopping criterion in terms of the relative rank
tolerance value. A method for geometrical preprocessing of the
scatterers based on the cobblestone distance sorting technique is
employed in order to enhance the HSS algorithm accuracy and
parallelization. Numerical examples show how the accuracy of
the DHO HSS-MoM-SIE method is easily controllable by using
the relative tolerance for the matrix compression. Moreover,
the examples demonstrate low memory consumption, as well
as much faster simulation time, when compared to the direct
LU decomposition. The method enables dramatically faster
monostatic scattering computations than iterative solvers and
reduced number of unknowns when compared to low-order
discretizations. Finally, great scalability of the algorithm is
demonstrated on more than one thousand processes.

Index Terms— Curved parametric elements, direct solvers, fast
solvers, hierarchically semiseparable (HSS) structures, higher
order (HO) modeling, low-rank matrix approximation, method
of moments (MoM), multilevel matrix compression, numerical
algorithms, parallelization, polynomial basis functions, scalabil-
ity, scattering, surface integral equation (SIE).

I. INTRODUCTION

RECENT trends in computational electromagnet-
ics (CEM), in applications that involve calculating,
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A. B. Manić, A. P. Smull, and B. M. Notaroš are with the Department
of Electrical and Computer Engineering, Colorado State University,
Fort Collins, CO 80523 USA (e-mail: anamanic@engr.colostate.edu;
asmull@rams.colostate.edu; notaros@colostate.edu).

F.-H. Rouet and X. S. Li are with the Lawrence Berkeley National
Laboratory, Computational Research Division, Berkeley, CA 94720 USA
(e-mail: fhrouet@lbl.gov; xsli@lbl.gov).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAP.2017.2673660

storing, and solving large and dense matrices, include
applying fast, parallel (direct or iterative) solvers for
the system of equations in conjunction with compressed
storage of large matrices and their parts. Two general
approaches emerge among fast methods attempting to reduce
numerical and storage complexity: 1) the fast multipole
method (FMM) [1] and 2) H-matrices [2]–[4]. The idea
behind both of them is to approximate the integral kernel by a
degenerate kernel using so-called functional skeletons. In the
case of multipole methods, these functions have to be known
explicitly for each kernel, which means that the method and
its behavior depend heavily on the physics behind the exact
problem to be solved. On the other hand, in the case of
algebraic methods, such as H-matrices, matrix blocks are
approximated by low-rank matrices.
H-matrix algorithms were first introduced in [2]–[4], with

their H2-matrix version being introduced in [5], and have
been used efficiently with fast LU-based direct solvers or as
preconditioners to fast iterative solvers. The H-matrix methods
are kernel independent so they are suitable for application to
any type of integral equation (IE)-based formulation. In the
CEM community, several applications of H-type direct solvers
to tackle surface IE (SIE) problems are presented in [6]–[10].

Matrix compression solvers rely heavily on a type of
the low-rank matrix approximation method such as singular
value decomposition [8], [11], rank-revealing QR (RRQR)
decomposition [12], [13], or adaptive cross approxima-
tion (ACA), where ACA can be considered as rank-revealing
LU (RRLU). ACA is well known and established method for
fast matrix computation in CEM, introduced first to solve low-
frequency (quasistatic) IE problems [14], and then combined
with different matrix compression methods to solve systems
of equations arising in high-frequency SIE methods [15]–[18].

In addition, semiseparable matrices, the ones that can easily
be compressed and accurately approximated by their low-
rank counterpart, and their application to Green’s function
integral kernels are discussed in [19]. In order to combine
the beneficial features of semiseparable matrices and H-matrix
representation, hierarchically semiseparable (HSS) matrices
were most recently introduced in [20], which exhibit great
parallel performance for use in direct solvers when com-
pared to their standard H-matrix counterparts. The solution
of problems in 2-D SIE method of moments (MoM) using
an HSS compression algorithm is discussed in [21], where the
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authors comment on the possible extension of their work to the
3-D case.

On the other hand, it is well known that by using higher
order (HO) basis functions for current/field modeling in
CEM, significant reductions in the number of unknowns,
as well as faster system matrix computation/solution, can be
achieved [22] when compared to the traditional low order (LO)
modeling [23]. Tightly coupled with using HO basis func-
tions is HO geometrical modeling [22], [24] and together
they lay a foundation for double (geometrical and current-
approximation) higher order (DHO) modeling. The DHO
approach has been effectively used in both direct and iterative
MoM-SIE solvers [25]–[29].

Besides developing fast algorithms to solve MoM-SIEs,
the CEM researchers have intensely investigated paralleliza-
tion of the fast algorithms coupled with direct solvers in
order to speed up the simulations of electrically large elec-
tromagnetic structures. DHO MoM-SIE system matrix filling
followed by a computationally expensive LU decomposition
on a full matrix was implemented into parallel out-of-core
hybrid GPU/CPU algorithm [28], while the performance of
a similar method using HO basis functions was investigated
on more than 4000 CPU cores on a distributed memory sys-
tem [29]. Similarly, a parallel H-LU direct solver using hybrid
MPI-OpenMP that builds on the ability to combine both shared
and distributed memory programming was used to analyze
3-D scattering problems with nearly 4 million unknowns [30].
Further, a parallel hierarchical ACA algorithm demonstrating
an acceleration factor larger than 200 was presented in [31].

This paper proposes a novel fast scalable HO parallel
algorithm for large and complex scattering, radiation, and
propagation problems in CEM based on the DHO MoM-SIE
modeling in the frequency domain (FD) [22], [24], [32], [33] in
conjunction with a direct solver for dense linear systems using
HSS matrices [34], namely, the DHO HSS-MoM-SIE method.
We are developing asymptotically fast HO direct algorithms
for MoM-SIE solutions which, in a nutshell, are an algebraic
generalization to FMMs. In addition to being fast, they offer
a promise of being memory- and communication-efficient
and amenable to extreme-scale parallel computing. The main
advantage of the HSS algorithm is in the linear-complexity
ULV-type factorizations (whereas the conventional LU decom-
position has cubic complexity). The HSS algorithm is shown to
have excellent parallel scalability. Our work uses the recently
developed new, state-of-the-art, algorithms for solving dense
and sparse linear systems of equations based on the HSS algo-
rithm [34]. The new HSS algorithm has been demonstrated to
have a dramatic advantage in terms of time and space complex-
ity (e.g., ∼70 times less memory for seismic imaging examples
with matrix size 250 000 × 250 000) over the LU factorization
algorithm, and to be extremely scalable. In addition, this paper
employs an RRQR decomposition for the matrix (memory)
compression. Its adaptive nature comes from the ability to
use a stopping criterion, i.e., a relative rank tolerance value,
which allows for the method to store only the low-rank
approximation of the original matrix that satisfies a predefined
accuracy. In order to take full advantage of the HSS algo-
rithm, a method for geometrical preprocessing of scatterers

based on the cobblestone distance sorting technique [15] is
utilized. MoM unknowns are divided among mesh groups
so that unknowns having spatial locality (belonging to the
same mesh group) also exhibit locality in the matrix system
of equations. In IE methods, these spatially close unknowns
have much more numerically significant interactions, whereas
interactions between mesh groups are of smaller numerical
rank [15]. Ultimately, this spatial localization of the numerical
interactions is what is exploited to have such effective coupling
with the HSS algorithm. The basic theory and preliminary
results of the DHO HSS-MoM-SIE analysis are presented in
a summary form in [35] and [36].

HSS construction is implemented in a multilevel fashion as
described in [34], and essentially, its multilevel compression
can be considered comparable to the one used in the multi-
level ACA (MLACA) algorithm [17]. Furthermore, so-called
multilevel “butterfly” algorithms [37]–[38], as well as the fast
solver presented in [39], have a similar basis to the multilevel
compression coupled with low-rank matrix representation. One
of the main advantages the HSS algorithm has over methods
like the MLACA algorithm is its strong parallel scalability.
Furthermore, the possibility to adjust the numerical rank
tolerance of the matrix or numerical rank tolerance of any of
its subblocks gives more control over the method and its com-
putational accuracy. Multilevel compressions utilize matrix
rank reduction to the maximum extent and reduce the overall
number of degrees of freedom (DoFs) describing the method,
as well as the storage requirements, to their minimum. HSS’s
purely algebraic nature compresses the matrix of interest
independently of the problem’s geometry or electrical size. The
direct ULV-type factorization also allows for a fast solution
in the case of multiple excitation vectors (i.e., multiple right
hand sides, a matrix of excitation vectors), whereas iterative
solvers often require independent solving for each excitation.
When coupled with the DHO approach to significantly reduce
the number of unknowns in MoM-SIEs, the result is a fast
parallel solver with excellent algorithmic complexity, strong
parallel scalability, and controllable accuracy.

Specifically in terms of the comparison with the method
in [6], as a major representative of H-matrix applications in
CEM, the efficiency of the H2-matrix solver [6] stems from
the fact that it compresses only the parts of the system matrix
that correspond to the interactions of the mesh groups located
far from each other. The HSS algorithm inherits this behavior.
Rather than calculating admissible blocks, the HSS algorithm
simplifies the H2-matrix implementation by considering a
single predefined block per tree node to be admissible. The
H-matrix type of solver has not been shown to exhibit scalable
behavior when parallelized. Further, it is more suitable for use
with iterative solvers, because finding the inverse matrix is
computationally more demanding than in the case of the HSS
algorithm.

Similarly, when specifically compared with the work in [40],
as a major representative of the multiscale compressed block
decomposition methods and the application of direct solvers
in CEM, the matrix compression done in our HSS-based
method is obtained by fully utilizing HSS structures, so the
compressed system matrix has rather different form, storage
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and compression layout. In addition, work presented in [40]
utilizes an inverse of a system matrix to find an appropriate
solution, while in this present work an ULV factorization
is obtained. Also, this present method is parallel, while the
method in [40] is implemented in a sequential fashion.

We find from numerical experiments that the DHO
MoM-SIE HSS method, which inherits the aforementioned
benefits of HSS matrix representation, is able to compress the
involved system matrix while maintaining accuracy of results
and results in smaller computational and memory requirements
than either DHO modeling alone, or an HSS algorithm-based
MoM in an LO modeling paradigm.

This paper is organized as follows. Section II gives an
overview of the MoM-SIE methodology and the associated
discretization using DHO modeling. In addition, geometrical
preprocessing used to group surface quadrilaterals into mesh
groups that achieves spatial-data locality in the system matrix
is described. In Section III, the HSS algorithm, including
matrix compression and the corresponding ULV factoriza-
tion followed by the solution of the compressed matrix is
discussed. The parallelization and communication between
the processes in matrix filling and the HSS algorithm is
outlined in Section IV. Section V provides numerical results
and discussion, followed by the conclusions in Section VI.

II. DHO MoM-SIE MODELING OF

METALLIC SCATTERERS

One of the most general and best established approaches to
solving scattering CEM problems is the one based on the MoM
in the SIE formulation and the FD [24]. Inherently, the MoM
results in dense linear systems, so the compression and solver
are applied to allow for fast and memory efficient execution.

A. Surface Integral Equation Formulation

The MoM-SIE methodology is applicable to the analysis
of metallic and dielectric structures, where both electric and
magnetic surface currents are introduced over boundary sur-
faces between homogeneous parts of the structure, and SIEs
based on boundary conditions for both electric and magnetic
field intensity vectors are solved with current densities as
unknowns. This paper focuses on metallic structures only.
However, extending this paper to include problems involving
dielectrics is straightforward based on [22].

If a structure made of a perfect electric conductor (PEC) is
excited by a time-harmonic electromagnetic field of electric
field intensity Einc at the angular frequency ω, then the
scattered field Escat can be expressed in terms of the surface
electric currents of density Js using the boundary condition
for the tangential fields at the surface S of the structure as
follows:
(Escat(Js) + Einc)tang = 0, Escat(Js) = − jωA − ∇� (1)

A = μ

∫
S
Jsgd S, � = j

ωε

∫
S
∇s · Js gd S

(2)

where A and � are the magnetic vector and electric scalar
potentials, respectively, g = e− jω

√
εμR/4π R, is the Green’s

Fig. 1. (a) Generalized curved parametric quadrilateral patch for DHO
MoM-SIE modeling [22]. (b) Sketch of the orthogonality factor for the first
several maximally orthogonalized hierarchical basis functions of the eighth
order [41]. The darkness of each square represents the magnitude of the inner
products between pairs of basis functions. The set of basis functions is almost
orthonormal.

function for the unbounded homogeneous medium with para-
meters ε and μ, and R is the distance of the field point from
the source point. Hence, (1) and (2) constitute an electric field
IE for Js as unknown quantity, which is discretized using the
MoM.

B. Double Higher Order Modeling

The DHO modeling consists of meshing the geometry of
the electromagnetic structure using DHO surface elements,
which means that both geometry as well as the unknown
variable (surface current) are discretized using HO functions.
In specific, surface of the structure is modeled using gen-
eralized curved quadrilaterals of arbitrary geometrical orders
Ku and Kv , shown in Fig. 1(a), and the current density Js over
quadrilaterals is approximated by means of hierarchical vector
basis functions of arbitrarily high current-expansion orders
Nu and Nv [22]

r(u, v) =
Ku∑

k=0

Kv∑
l=0

rkl L Ku
k (u)L Kv

l (v), −1 ≤ u, v ≤ 1 (3)

Js =
Nu∑

i=0

Nv −1∑
j=0

α
(u)
i j P(u)

i j (u, v)
au

�

+
Nu−1∑
i=0

Nv∑
j=0

α
(v)
i j P(v)

i j (u, v)
av

� (4)

arranged in a maximally orthogonalized fashion [41], [42]
as illustrated in Fig. 1(b). Here, L represent Lagrange inter-
polation polynomials, rkl are position vectors of interpola-
tion nodes, P are divergence-conforming polynomial bases,
� = |au × av | is the Jacobian of the covariant transformation,
and au = ∂r/∂u and av = ∂r/∂v are unitary vectors along
the parametric coordinates. The unknown current-distribution
coefficients {α} in (4) are determined by solving the SIE
in (1), employing Galerkin method. The DHO (geometrical
and current) modeling enables the use of large curved patches,
which can greatly reduce the number of unknowns for a
given problem and enhance the accuracy and efficiency of the
computation.



2470 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 65, NO. 5, MAY 2017

Fig. 2. Illustration of geometrical preprocessing of objects based on the
cobblestone distance sorting technique [15].

C. Geometrical Preprocessing Based on Cobblestone
Distance Sorting Technique

The geometrical grouping of the quadrilaterals in the object
mesh based on their spatial locality, as shown in Fig. 2, is done
by applying the distance sorting technique [15] as outlined as
follows.

To divide a number of unknowns into Ng groups we first
calculate how many unknowns Nk should be in each group
so as to have an even division. A box is created surrounding
all remaining mesh patches. We calculate the projection of all
boxed patches’ centers onto the vector forming the diagonal of
the box. The patch with the smallest projection is defined as
the zero point for our current mesh group. All unknowns are
then sorted by their distance from the zero point, and the first
Nk from this sort are assigned to that particular mesh group.
These patches are then removed from the mesh and the entire
process is repeated until there are no remaining unknowns
to be sorted. The groupings generated from this process are
illustrated in Fig. 2 for two different geometric shapes.

The distance sorting technique is adapted to more appropri-
ately fit a hierarchical method like the HSS algorithm. Instead
of choosing Nk subgroups, the cobblestone method is used
to sort the initial mesh into just two subgroups. Afterwards,
each of these mesh groups is treated as an independent mesh,
and individually sorted into two subgroups among itself. This
process is applied recursively in a binary fashion, until the
number of mesh groups is equal to the number of leafs in the
desired HSS tree (or the number of processes), as described
in Section III. If there are multiple processes per leaf, each
mesh group corresponding to a leaf is then sorted appropriately
by itself among the remaining processes. This hierarchical
division of the mesh matches exactly with the desired partition
defined by the HSS tree (Section III).

This grouping technique ensures data locality in the dense
system matrix, which is greatly beneficial for achieving
the properties needed for the HSS algorithm. Specifically,
the cobblestone distance sorting technique divides the mesh
into Ng mesh groups. Each matrix subblock determined by
the coordinates (i, j ) stores the interactions between MoM
unknowns belonging to the i th and j th mesh groups. The
mesh size of each mesh group (i.e., the number of unknowns)
is predetermined by the number of processes, geometry, and
other simulation specifics and is given as an input to the
geometrical preprocessor. The outcome of the preprocessor

Fig. 3. Four-level postordered HSS tree, along with the associated index sets
at each level. Here, the full index set I = {0, 1, . . . , 7}.

is that MoM unknowns belonging to the same mesh group,
along with having their spatial locality, exhibit data locality in
the system matrix: self-interaction blocks are on the diagonal,
while near interactions tend to be closer to the diagonal
and far interactions are further away from the diagonal in
the system matrix. It is well known that the numerical rank
of the matrix block describing the interactions between two
groups decreases with an increase in distance between the
groups [15], [43]. This matrix property plays a significant role
in matrix compression during the HSS construction step.

III. HSS THEORY

This section contains an overview of HSS structures, their
construction, factorization, and solution, defined and explained
in more detail in [34].

A. HSS Structures

The HSS form of a general N × N matrix A relies on
something called an HSS tree, denoted by T , which defines
a hierarchical partitioning of the set of indices of the matrix,
I = {1, 2, . . . , N}. A binary cluster tree is a binary tree such
that every node i has associated with it an index subset, ti ⊂ I.
We denote the left and right child nodes of a particular node
as c1 and c2, respectively. An HSS tree is a full binary cluster
tree such that any nonleaf node i ’s children c1 and c2 have
the property that tc1 ∩ tc2 = Ø and tc1 ∪ tc2 = ti , i.e., a node’s
children define an even finer partition of that node’s index set.
Consequently, A|ti×t j denotes the submatrix of A formed by
the columns with indices in ti and the rows with indices in t j .

We say that an HSS tree T is postordered if the nodes in the
tree are enumerated in such a way that for every nonleaf node
i ∈ T , its children c1 and c2 satisfy c1 < c2 < i . Following
this ordering scheme, a full L-level postordered HSS tree will
consist of 2k − 1 (where k = 2L−1) ordered nodes, in which
the root node is always numbered as 2k − 1. The index set
associated with the root node is t2k−1 = I, the full index
set. As we traverse down the HSS tree starting from the root,
the partitioning of the index set described by the nodes on
each level becomes finer and finer. We also number the levels
of the tree with the leaf level being 1, and the level number
increasing as we get closer to the root. A visualization of a
four-level HSS tree and corresponding index partitioning is
given in Fig. 3.
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Fig. 4. Illustration of a corresponding HSS form. Diagonal blocks of the
matrix are stored in full, while off-diagonal blocks are stored as low-rank
approximations.

With the structure of an HSS tree firmly in place, the HSS
compressed representation Â of a matrix A can be defined
from the bottom up by defining a set of so-called generator
matrices, Di , Ui , Ri , Bi , Wi , and Vi , at the i th node of the
HSS tree (we discuss HSS construction and corresponding
computation of these generator matrices in Section III-B).
At the lowest (leaf) level, a matrix Di corresponds to the
block of the original matrix on the diagonal at the finest
partition, A|ti×ti . With the unknown ordering scheme described
in Section II, these diagonal blocks consist primarily of the
interactions between basis functions which are spatially close
to each other in the MoM-SIE mesh. Because of the strong 1/R
spatial dependence of the electrodynamic Green’s function,
blocks close to the main diagonal of the system matrix are
numerically much more significant (higher rank) than the off
diagonal blocks [15], [43]. This numerical structure of the
system matrix is what allows us to exploit the compressibility
of the system matrix during HSS construction. Thus, the HSS
algorithm is perfectly suited for its application in many CEM
problems.

At the higher (nonleaf) levels, a subset of the generator
matrices of a node i are block-wise defined in terms of the
generators of i ′s children, c1 and c2, as so

Di = Â|ti×ti =
[

Dc1 Uc1 Bc1V H
c2

Uc2 Bc2V H
c1 Dc2

]
(5)

Ui =
[

Uc1 Rc1
Uc2 Rc2

]
, Vi =

[
Vc1Wc1
Vc2Wc2

]
(6)

where the superscript “H ” denotes the Hermitian transpose.
The remaining generator matrices, Ri , Bi , and Wi are stored
at each level. With this structure in place, at the root node
2k − 1, we have that D2k−1 = Â, the full HSS compressed
representation of A. Fig. 4 depicts a block example of the
8×8 (four-level) HSS representation of a matrix defined on the
corresponding HSS tree given in Fig. 3. Leaf level D matrices
are calculated and stored in a fully dense manner, while other
matrices will be calculated and saved in a compressed form
obtained by the RRQR decomposition.

The maximum numerical rank r for a given rank tolerance τ
of all compressed blocks is called the HSS rank of matrix A.
We say that a matrix A has the low-rank property and can be
efficiently compressed and solved using the HSS algorithm if
r is small comparing to the matrix size.

B. HSS Construction

HSS construction is done in two stages: first a row
compression is applied, followed by a column compression.
We utilize RRQR decompositions [13] for matrix compression
at all stages. The RRQR decomposition is a modified Graham–
Schmidt algorithm designed to terminate after a certain rank
tolerance is reached.

The RRQR algorithm is as follows. We may compress and
approximate a general M × N matrix A ≈ QT with a rank
tolerance τ by iterating through the columns (or the first M
columns if M < N) of the matrix and doing the following at
each iteration i . We will use the notation ai to designate the
i th column of our current matrix A.

1) Find the column of the current matrix A with the largest
two-norm. We call this the j th column, a j .

2) Swap ai and a j .
3) Set the i th diagonal element of T to be the two-norm of

ai , tii = ‖ai‖2. If tii /t11is below the selected tolerance
τ , we terminate the algorithm, and we define the rank r
of A to be i .

4) Calculate the i th column of Q as qi = ai /tii .
5) Calculate the remainder of the i th row of T as t H

i = q H
i

[ai+1, ai+2, . . . , aN ].
6) Update the remaining columns of A as

[ai+1, ai+2, . . . , aN ] = [ai+1, ai+2, . . . , aN ] − qi t
H
i .

The matrix A is now compressed and stored as a low-rank
approximation given by the product of an M × r orthogonal
matrix Q and an r × N upper trapezoidal matrix T .

Row compression is applied in an upward sweep along the
HSS tree, beginning at the leaf level, where at each node i ,
a local row block of the global system matrix A|ti×I is filled
in full as explained in Section II. To this row block, an initial
RRQR decomposition is applied to the portion which does
not lie on the diagonal block, A|ti×I\ti (the notation I\ti
refers to the set of all indices which are in I, but not in ti ).
We approximate this block via an RRQR decomposition as

A|ti× (I\ti) ≈ Ui A|t̂i× (I\ti ) (7)

which defines the column block HSS generators Ui at the leaf
level nodes. We use the notation t̂i to express that the new row
index set is no longer a part of the global index set, but rather a
set of indices corresponding to the new row compressed form
of that matrix block.

At every nonleaf level i , row compression is done by
inheriting submatrices of i ’s children’s row compressed blocks,
A|tc1×I\ti and A|tc2×I\ti . Again these correspond to the por-
tions of the compressed matrices which do not lie on the
diagonal block at the next level up the HSS tree. These
two forwarded blocks are concatenated vertically and then
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compressed again as(
A|t̂c1× (I\ti)
A|t̂c2× (I\ti)

)
≈

(
Rc1
Rc2

)
A|t̂i× (I\ti ). (8)

The remaining portions of i ’s children’s corresponding row
compressed matrices are left as they were

A|tc1×tc2 ≈ Uc1 A|t̂c1×tc2
, A|tc2×tc1 ≈ Uc2 A|t̂c2×tc1

. (9)

Recursively applying this algorithm upward along the HSS
tree until the root node is reached defines all of the necessary
row generators Ui and Ri . It also defines all row-compressed
matrices of the form A|t̂i×t j

where i and j are sibling
nodes (i.e., nodes which are both children of the same node).

Column compression is applied in a similar fashion via an
upward sweep along the HSS tree. We define at every leaf
node i a new row index set t̄i , which consists of all the rows in
all the row-compressed matrices for which there exist entries in
the columns indexed by ti . Formally, this may be expressed as

t̄i =
L−1⋃
l=1

t̂sib(ances(i,l)) (10)

where sib(i ) refers to the sibling node of i and ances(i, l) refers
to i ’s ancestor node at the lth level of the HSS tree [note that
ances(i, 1) = i ].

Again, RRQR decompositions are performed hierarchically
to blocks of the row-compressed matrices to generate the final,
fully compressed matrices. The column compression of the
local matrix at the leaf level is given by

A|t̄i×ti ≈ A|t̄i×t̃i V
H

i . (11)

Blocks of these leaf level matrices are again inherited up the
tree, just as in the row compression step given by (9). For a
nonleaf node i , we define the horizontal compression in terms
of submatrices of i ’s children’s compressed matrices. We con-
catenate blocks of the column compressed matrices from each
child, and perform the last series of RRQR decompositions
which define the generator matrices Wc1 and Wc2

(
A|t̄i×t̃c1

A|t̄i×t̃c2

) = A|t̄i×t̃i

(
Wc1
Wc2

)H

. (12)

The portions of the compressed matrices from the children
which are not forwarded become the final generator matrices,
Bi for the child nodes

Bc1 = A|t̂c1×t̃c2
, Bc2 = A|t̂c2×t̃c1

. (13)

Construction of the matrix A in its HSS form and all
generators corresponding to the nonroot nodes are obtained
by the completion of the column compression stage. Note that
the compression of the right-hand side is done in the same
fashion as the compression of the system matrix.

C. HSS ULV Factorization and Solution

Once the HSS matrix form has been constructed, and all
relevant generator matrices have been calculated, an HSS ULV
factorization is systematically applied to the HSS compressed
form of the matrix A in (5) in order to find orthogonal (U, V )

and triangular (L) matrices. The ULV factorization is done
beginning at the lowest nonleaf level node i by multiplying
the local matrix Di given in (5) by specially constructed
orthogonal matrices Q and P , calculated from i ’s children’s
generators[

QH
c1 0

0 QH
c2

] [
Dc1 Uc1 Bc1V H

c2
Uc2 Bc2V H

c1 Dc2

] [
P H

c1 0
0 P H

c2

]
.

(14)

The Q matrices are formed by standard Gram–Schmidt
QL factorizations of the children’s column block generator
matrices, Uc1 and Uc2, in order to introduce zeros on their
off-diagonal row blocks

Uc1 = Qc1

[
0

Ũc1

]
, Uc2 = Qc2

[
0

Ũc2

]
. (15)

Now, Ũc1 and Ũc2 are lower square triangular matrices of
size rc1 and rc2, respectively, with rck being the rank of the
matrix Uck . The obtained Q matrices are used to further define
D̂ck = QH

ck Dck , k = 1, 2, which are partitioned as

D̂ck =
[

D̂ck;1,1 D̂ck;1,2
D̂ck;2,1 D̂ck;2,2

]
, k = 1, 2 (16)

so that D̂ck;2,2 is a square matrix of size equal to rck . Finally,
the P matrices are defined by the following LQ factorization:

(D̂ck;1,1 D̂ck;1,2) = (D̃ck;1,1 0)Pck . (17)

Following the steps given in (14)–(17) and applying the
orthogonality properties of the involved P and Q matrices,
(14) may be expressed in a new, more convenient form:⎡
⎢⎢⎣

[
D̃c1;1,1 0
D̃c1;2,1 D̃c1;2,2

] [
0

Ũc1 Bc1
[

Ṽ H
c2;1 Ṽ H

c2;2
]
]

[
0

Ũc2 Bc2
[

Ṽ H
c1;1 Ṽ H

c1;2
]
] [

D̃c2;1,1 0
D̃c2;2,1 D̃c2;2,2

]
⎤
⎥⎥⎦.

(18)

It is important to note that all nonzero off-diagonal blocks
in (18) are of small dimensions relative to the full matrix.
At this stage, it is easy to redefine the generators at the next
level up node using only a small part of its children’s factorized
generators

Di =
[

D̃c1;2,2 Ũc1 Bc1Ṽ H
c2;2

Ũc2 Bc2Ṽ H
c1;2 D̃c2;2,2

]

Ui =
[

Ũc1 Rc1

Ũc2 Rc2

]
, Vi =

[
Ṽc1;2Wc1

Ṽc2;2Wc2

]
. (19)

Note that, for example, a square matrix Di is still saved in a
compressed fashion as before, but its new dimension is only
rc1 + rc2, while immediately after the HSS construction stage,
it was the size of tc1 ∪ tc2.

The algorithm described in (14)–(19) is then performed in
an upward sweep along the HSS tree. When the root node
is reached, a dense LU factorization with partial pivoting is
performed on a square matrix of dimensions far smaller than
those of the starting matrix (19) along with the corresponding
HSS compressed form of the excitation matrix, defines the
matrix system at the i th node—these unknowns do not corre-
spond to the final solution, but a partial factorization. Once this



MANIĆ et al.: EFFICIENT SCALABLE PARALLEL HO DIRECT MoM-SIE METHOD 2473

Fig. 5. Illustration of a process context change throughout matrix filling
and HSS construction/solution on a level 3 HSS tree using 16 processes.
Matrix filling is done by partitioning the matrix into row chunks, while all
matrix operations during HSS construction/solution are done utilizing 2-D
block cyclic distributions. The process grid arrangements in the binary tree
represent the block cyclic distribution patterns for the local matrices at each
tree node during HSS construction and factorization.

is solved on the parent node, it is straightforward to perform
elimination on (18) and calculate the solutions corresponding
to the children nodes. Solving the matrix is thus done in a
downward sweep along the HSS tree—the final solution is
obtained once the leaf level is reached.

IV. PARALLELIZATION STRATEGY

The parallelization strategy of the HSS-MoM-SIE method is
adapted from [34] for construction, factorization, and solution,
and from [44] for MoM-SIE matrix filling. The communica-
tion methods between the processes are designed to fit with
the communication layer of the state-of-the-art dense linear
algebra libraries ScaLAPACK [45] and basic linear algebra
communication subprograms (BLACS) [46]. Both libraries are
utilized extensively for the execution of algebraic computa-
tions on dense matrix blocks.

MoM-SIE matrix filling is done as described in Section II,
where the parallel matrix filling builds on top of the geomet-
rical processing as modified from [44]. If the total number of
processes running the simulation is Nprocs, then the number of
mesh groups used to partition the mesh during preprocessing
is Ng = √

Nprocs. The processes form a block partitioning of
the matrix, where each matrix block may be described by its
coordinates (p, q), corresponding to the interactions between
the pth and qth mesh groups.

Matrix filling is done at the leaf level, where the 2-D
process grid is divided into k (the number of leaf nodes)
contexts, where each context defines a process subgrid of size
Ng/k×Ng , as illustrated in Fig. 5 for the case of 16 processes.
Each of these subgrids consists of multiple processes operating
blockwise on a row chunk of the full matrix. A set of processes
operating on a matrix block together like this is known as a
context. The context corresponding to the leaf-level node i is
used to calculate the chunk of the MoM-SIE system matrix
A|ti×I as well as the corresponding right-hand side vector set.

For optimal communication and computation, dense matrix
blocks shared by multiple processes on a context are stored
in a distributed 2-D block cyclic fashion in accordance with
the ScaLAPACK library routines [45]. Any overlap in compu-
tation (i.e., elements whose unknowns may be split between
processes), may be avoided by effective use of the BLACS
communication routines.

Fig. 6. Illustration of pairwise communication, visualized on eight
processes (one per node of the HSS tree). Immediately after the first row
compression stage, the processes have exchanged matrix blocks according to
the red arrows. Note that when, for example, processes 6 and 7 merge into
one context, the data is in the proper block cyclic distribution for the next
level of row compression.

Matrix distribution and process grouping at each level of
the HSS algorithm follows the basic HSS tree structure. The
processes are utilized in such a way that they are combined
and split into hierarchical groupings (known as contexts) as
the algorithm traverses up and down the tree. At each node
of the HSS tree, the process grid (and hence the block cyclic
distribution) is redefined in terms of its child nodes’ contexts.
It inherits the contexts from both nodes, and their process grid
is concatenated in order to form a new process grid. This is
done hierarchically in a way that preserves as close to a square
process grid as possible, as seen in Fig. 5.

During the construction and factorization stages, intercon-
text communication can largely be avoided, relying largely
on only intracontext communication. An example of this
communication process can be visualized as in Fig. 6. The
communication in HSS construction is visualized here as
performed with eight processes, each corresponding to one row
block of the matrix at the row level; immediately following
the leaf level row compression, blocks of the row compressed
matrices A|t̂i× (I\ti) are pairwise exchanged between pairs of
processes as follows: 0 ↔ 1, 2 ↔ 3, 4 ↔ 5, and 6 ↔ 7,
as the pairs of processes are merged into new contexts ({0, 1},
{2, 3}, {4, 5}, and {6, 7}). This sets up the matrix in the proper
block cyclic distribution for the next level of row compression.
At every level during the row compression, to maintain the
proper distribution during context merging, all that is required
are similar pairwise exchanges, which may all be done in
parallel.

More details behind the communication at each step in the
parallel HSS solver can be found in [34]. An example of
intracontext communication throughout the computation phase
is the following. In the RRQR algorithm, when finding the
norm of each column, the norm of each local column is
determined and then the BLACS function is used for fast
summing in a column-wise fashion for norm calculations on
a 2-D process grid.

V. NUMERICAL RESULTS AND DISCUSSION

This section provides numerical results obtained by the
DHO HSS-MoM-SIE analysis. All simulations were run on the
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TABLE I

SIMULATION PARAMETERS FOR THE RESULTS GIVEN IN FIG. 7

TACC Stampede supercomputer, made accessible through The
extreme science and engineering discovery environment [47].
Stampede has 6400 compute nodes where each node contains
two Xeon Intel 8-Core 64-bit E5-processors (16 cores on
each node). The core frequency is 2.7 GHz and supports
eight floating-point operations per clock period with a peak
performance of 21.6 GFLOPS/core or 346 GFLOPS/node.
Each node contains 32 GB of memory (2 GB/core). Nodes
are interconnected with Mellanox FDR InfiniBand technology
in a two-level fat-tree topology [48]. The first example is a
spherical scatterer for comparison with the exact Mie series
solutions. This example is well suited for the demonstration
of the effectiveness of using HO modeling compared to LO
modeling, as well as a strong parallel scalability. The second
example is a NASA almond scatterer to show that this method
performs well for electrically large problems, as well as objects
with complex shapes.

A. Example 1: Spherical Scatterer

As the first example of our application as well as a
validation of the HSS-MoM-SIE method, we consider the
scattering analysis of a PEC sphere of diameter d = 4.666λ0,
where λ0 is the free-space wavelength. First, consider an
HO mesh of the scatterer, of which the allowed size for a
single patch is to be less than or equal to a wavelength.
After the meshing procedure, the patch size s is approximately
0.9λ0 ≤ s ≤ 0.95λ0 for all 96 geometrically second-
order (Ku = Kv = 2) curvilinear quadrilateral patches. The
adopted current approximation orders are Nu = Nv = 4,
which results in a total of N = 3072 MoM-SIE unknowns.
Fig. 7 shows the normalized bistatic radar cross section (RCS)
σ3D/λ2

0 as a function of the scattered angle, in two charac-
teristic plane cuts. The exciting plane wave is incident from
the direction defined by (θinc, φinc) = (90°, 0°) in spherical
coordinates. For the set of results given in Fig. 7, the number of
levels in the full postordered HSS tree is chosen to be 5, which
results in 16 leaf nodes, while the number of processes used in
the parallel simulation is 64. In the same figure, we observe the
convergence of results to the analytical Mie solution with the
decrease of τ , the user selected RRQR relative tolerance (used
in the matrix compressions during the construction step).

In addition, Table I provides information on the average
error, maximal rank, memory consumption, and total simu-
lation time (including matrix filling, HSS construction, fac-
torization, and solution times) for different simulations given

Fig. 7. Normalized bistatic RCS of a spherical PEC scatterer computed by
the HSS-MoM-SIE method using preprocessed mesh given in the Fig. 2 and
by the Mie’s series. (a) φ = 0° cut. (b) θ = 90° cut.

in Fig. 7. The average relative error is obtained as the average
of the absolute error between the normalized bistatic RCS
calculated by the numerical method and by the analytical
Mie’s series, respectively. The averaging is done by taking into
account the error in a number (Ndir) of directions describing
the bistatic RCS plane

ζ = 10log

(
Ndir∑
i=0

∣∣σ num
i − σMIE

i

∣∣
)

(
Ndir∑
i=0

∣∣σMIE
i

∣∣
) . (20)

Based on the convergence of different graphs given in Fig. 7,
as well as the average errors given in Table I, it can be
concluded that the accuracy of the results is easy to control
by the relative tolerance used in the RRQR. In addition,
by inspecting the results given in Fig. 7 and Table I, as well
as the results of the wide range of performed simulations (dif-
ferent tree levels and RRQR relative tolerance) using the same
HO model, scattering results for the PEC sphere that can
readily be considered as accurate are obtained in simulations
with the maximal rank r ≥ 490. Maximal rank in the HSS
algorithm corresponds to the maximal number of independent
DoFs needed for an accurate numerical simulation [49]. The
number of DoFs needed to accurately model a scatterer should
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Fig. 8. Error of the normalized bistatic RCS of the PEC scatterer computed by
the HSS-MoM-SIE method with respect to the exact Mie solution. (a) φ = 0°
cut. (b) θ = 90° cut. We compare LO modeling with HO models. L denotes
the number of levels in the HSS tree.

depend solely on the scatterer properties and not on the used
discretization [37], [43], [49].

Further analysis that compares low- and high-order
modeling results shows the advantage of HO modeling when
capturing the real rank of the scattering problem. In particular,
the adopted LO model of the same PEC scatterer consists
of 7776 geometrically first-order (Ku = Kv = 1) quadrilat-
erals with the maximal size of 0.12λ0. The adopted current
approximation orders are Nu = Nv = 1, resulting in a total of
N = 15 552 unknowns. After the initial discretization, when
compared to the HO model, the number of unknowns in the
LO model is more than 5 times larger. However, due to the
physical properties of the scatterer, the maximal numerical
rank of the compressed HSS matrix should be approximately
the same for both models.

On the other hand, Fig. 8 shows the relative error metric
σ num

i /σMIE
i in the RCS for three choices of LO simulations

and one HO simulation, confirming that in order to achieve
similar accuracy, an LO simulation needs about one-and-a-
half times the numerical rank in the compressed system. This
is confirmed by the information in Table II that contains the
average error for the four simulations given in Fig. 8.

Further, note that the true LO modeling based on
Rao-Wilton-Glisson (RWG) functions [1] defined over flat

TABLE II

SIMULATION PARAMETERS FOR THE RESULTS GIVEN IN FIG. 8

Fig. 9. Performance and scalability of the HSS-MoM-SIE method applied
to the simulation of an LO PEC sphere model with the number of levels in
the HSS tree equal to 5.

triangular patches uses from 500 to 600 unknowns per square
wavelength [17], [18], [48], which leads to a truly LO model of
a PEC sphere with around 35 000 to 40 000 unknowns, making
the number of unknowns more than 10 times larger than in
the adopted HO model.

Next, we test the scalability performance of the
HSS-MoM-SIE method—in the same example. Because
the HO model with only 96 quadrilaterals is not well fit
for simulations on hundreds of processes, the scalability
testing of the method is done on an LO model of the sphere.
All simulations used in the test are set up for the tolerance
τ = 5 · 10−4 and level 5 full postordered HSS tree. Note that
the number of leaves in the tree is 16, which, for the particular
example, corresponds to the minimal number of processes
that can be used in a parallel run of the HSS-MoM-SIE
code. The runtime of the parallel code on 16 processes is
thus adopted to be the baseline computational time used in
the speed-up calculations. To measure scalability, we run the
same model on 64, 256, and 1024 processes, and observe an
excellent scalability performance in Fig. 9.

B. Example 2: NASA Almond

In the second example, the HSS-SIE-MoM code is applied
to analyze scattering from a NASA almond [50], an established
benchmarking structure for monostatic RCS computations.
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Fig. 10. Normalized monostatic RCS of a PEC NASA almond
computed at 50 GHz by the full-storage direct ScaLAPACK LU-MoM-SIE
and HSS-MoM-SIE methods. Note that the full LU factorization solution
and HSS-MoM solutions (both from same geometrical model) show good
agreement.

In specific, we consider a PEC almond of the maximal size
42λ0 at a frequency of 50 GHz, with the overall surface of the
scatterer being equal to 1111λ2

0. The constructed HO model
of the almond uses a total of 16 384 curvilinear quadrilateral
elements with Ku = Kv = 2 and the current approxima-
tion in different directions on different patches ranging from
Nu/v = 1 to Nu/v = 3 depending on the electrical
dimensions of the quadrilateral element. The final number
of unknowns (that would be even smaller if larger patches
and even higher Nu/v were used) is 149 756. A similar
scatterer is analyzed in [40] using the model with around
450 000 unknowns. In addition, applying, for comparison,
the true lower order quadrilateral modeling to the almond scat-
terer requires 524 288 unknowns defined over 262 144 patches
with Ku = Kv = 1 and Nu/v = 1 on all the patches.

Fig. 10 shows the monostatic scattering computations
of the DHO model of the PEC almond obtained by the
HSS-MoM-SIE method and validated by the full-storage direct
solver using ScaLAPACK LU decomposition [44] simulation
of the same model, as well as against the LO modeling
results [40]. The normalized monostatic RCS is calculated
for 361 different directions, in the z = 0 plane, with the
polarization of the incident electric field along the z-axis.

HSS construction for this example is done using a relative
tolerance of τ = 3 ·10−4 on a five-level HSS tree. The relative
rank tolerance τ was selected heuristically in such a way as
to satisfy the needs for the electrical size of the problem.
In general, scatterers which are electrically large will require
a smaller rank tolerance than electrically small scatterers to
maintain the same level of solution accuracy, so the second
example will require a smaller τ . The maximal rank of the
compressed matrix in this example comes out to be 3926. The
simulation is run in parallel on 256 processes, with matrix
calculation and HSS construction times being 846 and 2596 s,
respectively. Further, the HSS factorization time is 41.95 s,
while the total backsubstitution time for all 361 excitation
vectors is 5.36 s. ScaLAPACK LU decomposition time on

the same number of processes is 8565 s, which in terms
of the performance can be compared to total time of the
HSS construction and factorization: 2638 s. The compressed
matrix storage in the DHO HSS-MoM-SIE simulation amounts
to 20.78 GB, while the full matrix storage for the same
model would require 180 GB of memory. In addition, the LO
quadrilateral model described above would require 2.2 TB.
Hence, we observe great advantages of the DHO model-
ing coupled with the direct solver and compression of the
MoM-SIE matrix in the analysis of electrically large objects
with multiple excitations (right-hand side values).

VI. CONCLUSION

This paper has proposed a novel fast scalable parallel
algorithm and solver for large scattering problems based
on (geometrical and current-approximation) DHO MoM in the
SIE formulation and the FD in conjunction with a direct solver
for dense linear systems with HSS structures, namely, with a
HSS matrix representation for compression, factorization, and
solution of the system matrix. In addition, an RRQR decompo-
sition for memory compression has been used, with a stopping
criterion in terms of the relative tolerance value, allowing for
the method to store only the low-rank approximation of the
original matrix that satisfies predefined accuracy. In order to
enhance the HSS construction and parallelization, a method
for geometrical preprocessing of the scatterers based on the
cobblestone distance sorting technique has been employed,
such that the MoM unknowns belonging to the same mesh
group and thus having spatial locality also exhibit the data
locality in the matrix system of equations.

Numerical examples have shown how the accuracy of the
DHO HSS-MoM-SIE method is easily controllable by using
the relative tolerance for the matrix compressions. Moreover,
the examples have demonstrated low memory consumption,
as well as much faster simulation times, when compared to
direct LU decompositions. Finally, great scalability of the
algorithm has been demonstrated on more than thousand
processes.

Overall, the DHO HSS-MoM-SIE method and its future
extensions and advancements are asymptotically faster
direct algorithms for IE solutions that are memory and
communication-efficient and amenable to extreme-scale
parallel computing. They also are purely algebraic and kernel-
independent and enable dramatically faster monostatic scatter-
ing and other multiple-excitation computations than iterative
solvers. The combination of the DHO and HSS approaches,
along with the distance sorting technique and parallel method,
fully utilizes problem’s properties to reduce the solution com-
plexity (both computation time and storage) by minimizing
the problem’s DoFs based on both its physical and alge-
braic properties. The presented coupling and implementation
of the two approaches is a natural way to advance the
MoM-SIE modeling, since compressing an LO matrix may be
considered less efficient. For example, based on the presented
numerical results, it can be concluded that the prime problem
size reduction is obtained by combining the DHO and HSS
approaches together.
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This paper has focused on metallic scatterers. Nonetheless,
due to the truly algebraic nature of the method, its extension
to any electromagnetic system solved by the MoM-SIE analy-
sis, or any other IE method, is straightforward.
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