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Neural Voting Machines

Whitman Richards & Sebastian Seung
Artificial Intelligence Lab

MIT  NE43-767, Cambridge, MA 02139
{wrichards,seung}@mit.edu

Abstract
In theories of cognition that view the
mind as a system of interacting agents,
there must be mechanisms for aggregate
decision-making, such as voting. Here we
show that certain voting procedures
studied by social scientists can be imple-
mented as recurrent neural networks. For
example, a standard "winner-take-all"
network can determine which of a
number of competing alternatives garners
a plurality of votes. Similarly, in the
special case where voters share a model
governing the different rankings of
alternatives, the Borda procedure can
easily be computed. In the face of voter
un-certainties, this Borda network returns
the maximum likelihood choice.

1.0 Introduction
Information aggregation in neural
networks is a form of collective decision-
making. The winner-take-all procedure is
probably the most favored method of
picking one of many choices among a
landscape of alternatives (Hopfield &
Tank, 1986; Maas,2000.) In the social
sciences, this is equivalent to choosing the
plurality winner, which is but one of a
host of procedures that could be used to
choose winners from a set of alternatives.
More importantly, in the presence of
uncertainty about choices, the plurality
winner is not the maximum likelihood
choice (Young, 1995.) To obtain a glimpse
into some of the problems associated with
winner-take-all outcomes, consider the

analogy where the input landscape is a
population of voters. Let the number of
voters sharing the same opinions
correspond to the input weights in a
neural network. Then the plurality winner
- that outcome shared by most of the
voters -- only needs to receive more votes
than any other alternative in the choice
set. Hence it is possible for the winner to
garner only  a very small percentage of
the total votes cast. In this case,
uncertainty and errors in opinions can
have a significant impact on outcomes,
such as when only a few “on-the-fence”
voters switch choices. We sketch two
other procedures that yield more reliable
and robust winners. These procedures
utilize information about relationships
among alternatives.

2.0 Plurality Voting
To provide background, the

winner-take-all procedure is recast as a
simple voting machine. Let the number of
voters vi sharing the same preference for
a winner be inputs to the nodes in the
network. Then the outcome will be

plurality_winner  =  argMax(i) {vi} [1]

which can be found using a recurrent
network whose dynamics is described
elsewhere (Xie, Hahnloser & Seung,
2001 .)

3.0 Borda Method
To improve the robustness of

outcomes, we now follow recommen-

51



dations in Social Decision-Making, and
relax the constraint that only first choices
will be considered in the voting process
(Runkel, 1956; Saari & Haunsberger,
1991; Saari, 1998 ) Specifically, we
include second and third-rank opinions,
weighting these inversely to their rank
when the tally is taken (Borda, 1784.) To
further simplify the computation and
network design, we assume that the
alternative choices are related by a model
Mn that is held in common by all voters.
This model relates the n alternatives under
consideration by their similarity to one
another.

The shared model Mn can be
represented either as a graph, or as a
matrix Mij. If Mn is represented as a
graph, the vertices would correspond to
the alternatives, and the edges ij join nodes
that share a common property. (See Fig. 1
for an example.) If ak is a voter’s first
choice, then the second choices will be
those alternatives one edge-step from ak
in Mn. The result is that the total of m
voters can now be divided into n different
types, identified by their first choice
selection.

If the shared model Mn is
represented as a matrix Mij, the entry “1”
indicates the presence of the edge ij, and 0
otherwise (Harary,1969). For the
graphical model of Fig 1, we would have:

0 1 0 0 0
1 0 1 0 0

Mij    = 0 1 0 1 1 [2]
0 0 1 0 0
0 0 1 0 0

For simplicity, we assume that the edges of
Mn are undirected, meaning that if
alternative a1 is similar to alternative a2,
then a2 is equally similar to a1. However,
directed edges require only a trivial
modification to our scheme.  Note that if all

voters respect Mn in their ranking of
choices, as we specify here, then the
effective role of Mn is to place conditional
priors on the choice domain. Each voter’s
ranking of alternatives is now not arbitrary,
but is also reflecting information about
choice relationships (Richards et al, 1998.)

With Mn expressed as the matrix
Mij we can include second choice opinions
in a tally by defining a new voting weight
v*i as

  v*i  =  { 2 vi  +  Σ  Mij vj  } [3]

where now first-choice preferences are
given twice the weight as second-ranked
choices, and third or higher ranked
options have zero weight. The outcome is
then

winner_Borda  =  argMax(i) {v*i} [4]

The neural network required to execute
this tally is shown in Fig 1. It is a simple
modification of the standard winner-take-
all network, with a doubling of the input
weights from each excitatory node to its
recurrent partner (double arrows), and
with single excitations to non-partner
nodes that are adjacent in the model Mn.
(The recurrent layer does not show all the
recurrent connections.) For the inputs vi
given in the model Mn, the Borda winner
is node 3.  Note that the more common
winner-take-all plurality procedure would
pick node 1.

4.0 Robustness
Figure 2 shows the benefit of the

Borda procedure over classical winner-
take-all plurality methods, when some
information about alternatives in the
domain is known. The models Mn used
were connected random graphs with edge
probability 1/2. (See Richards et al, 2002
for more details.) A set of weights on the
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nodes was chosen from a uniform
distribution. Winners were calculated using
both the Plurality  and Borda procedures
for the same set of weights. Then each of
these weights were diddled by picking the
second weight from the interval 0.5 to 1.5
of the first. The graph shows the percent
of time the first and second winners were
the same vs the number of alternatives in
Mn. (There are over 100 trials per data
point.) For the Borda (B) procedure, even
for n = 48, the changes of weights (or
voting strengths) only affected 20% of the
outcomes, whereas for the maximum
weight, Plurality procedure (M), over 70%
of the outcomes differ. Not surprisingly,
the Borda and Plurality winners are
increasingly different as n increases, with
only 2% agreement for n=48 (solid
circles.)

5.0 Other Voting Procedures
Our Borda Count used only first

and second choice preferences in the tally,
with respective weightings of 2 and 1
times the voter type’s own weight. Let
this bias be recast as a vector {1, 1/2, 0 },
where the 0 is the weight applied to all
preferences ranked after second choices.
Then it is clear that the bias for the
Plurality method is {1,0,0}. Yet another
procedure would be to vote for the “top
two” choices, using the bias vector
{1,1,0}. More generally, the Borda bias
vector can be seen as {1, b, c} with 0 < b
< 1 and c = 0 for our simplified
preference rankings. Hence the Top-Two
and Plurality procedures are extremes of a
generalized Borda count.

Another obvious manipulation is to
increase the depth of the preference
ranking, thereby incorporating more
information about the relationships among
alternatives. As mentioned, for the
standard Borda method, the elements of
the bias would then be integers inverse to

the depth of the rankings. A still different
procedure that also incorporates more
infor-mation than the generalized Borda
method is to conduct a tournament, where
alternatives are compared pairwise. The
winner is then that alternative that beats
all others. Note now there is no need to
decide values for “b” in the Borda bias
vector. This is the Condorcet Method
(Condorcet, 1785.)

Definition: let dij be the minimum number
of edge steps between vertices i and j in
Mn, where each vertex corresponds to the
alternatives ai and aj respectively.

Then a pairwise Condorcet score Sij
between alternatives ai and aj is given by

 Sij = S k vk sgn[ djk - dik]    [5]

with the sign positive for the alternative ai
or aj closer to ak.
A Condorcet winner is then

 winner_ Condorcet  =
ForAlli=!=j  Sij  >  0 .   [6]

Although a Condorcet winner is a true
majority outcome, it comes at a
computational cost. For n alternatives, a
complete pair-wise comparison would require
( n | 2 ) or O(n^2) separate tallies. Hence a
neural network that calculates the Condorcet
winner is more complex than that for the
Borda winner. However, if the voting is
constrained by a shared model Mn, or its
equivalent Mij, simulations using a  Borda
bias vector of  {1, 0.5, 0} show that about
90% of the time, the Borda and Condorcet
winners will agree if Mn resembles a random
graph.
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6.0 Discussion
Biological neural networks are not

arbitrary, and presumably the form of
their organization incorporates knowledge
about the domain of interest. When
information about the choice domain is
available and used, then significant
improvements in performance can be
achieved with networks that implement a
simple version of the Borda method. The
Borda network’s resistance to pertur-
bation in the weights on inputs is
demonstrated here. Preliminary studies
show that a Borda network will also be
robust to small inconsistencies in the
shared model Mn.
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Fig. 1:   Borda count network for shared model  M
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